Science.gov

Sample records for radiosensitizes glioblastoma cells

  1. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization

    PubMed Central

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-01-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced γH2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization. PMID:26518290

  2. EGFRvIII does not affect radiosensitivity with or without gefitinib treatment in glioblastoma cells

    PubMed Central

    Struve, Nina; Riedel, Matthias; Schulte, Alexander; Rieckmann, Thorsten; Grob, Tobias J.; Gal, Andreas; Rothkamm, Kai; Lamszus, Katrin; Petersen, Cordula; Dikomey, Ekkehard; Kriegs, Malte

    2015-01-01

    Background Glioblastomas (GBM) are often characterized by an elevated expression of the epidermal growth factor receptor variant III (EGFRvIII). We used GBM cell lines with native EGFRvIII expression to determine whether this EGFR variant affects radiosensitivity with or without EGFR targeting. Methods Experiments were performed with GBM cell lines lacking (LN229, U87MG, U251, CAS-1) or endogenously expressing EGFRvIII (BS153, DKMG). The two latter cell lines were also used to establish sublines with a low (−) or a high proportion (+) of cells expressing EGFRvIII. EGFR signaling and the cell cycle were analyzed using Western blot and flow cytometry; cell survival was assessed by colony forming assay and double-strand break repair capacity by immunofluorescence. Results DKMG and BS153 parental cells with heterogeneous EGFRvIII expression were clearly more radiosensitive compared to other GBM cell lines without EGFRvIII expression. However, no significant difference was observed in cell proliferation, clonogenicity or radiosensitivity between the EGFRvIII− and + sublines derived from DKMG and BS153 parental cells. Expression of EGFRvIII was associated with decreased DSB repair capacity for BS153 but not for DKMG cells. The effects of EGFR targeting by gefitinib alone or in combination with irradiation were also found not to depend on EGFRvIII expression. Gefitinib was only observed to influence the proliferation of EGFRvIII− BS153 cells. Conclusion The data indicate that EGFRvIII does not alter radiosensitivity with or without anti-EGFR treatment. PMID:26418954

  3. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  4. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  5. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms

    PubMed Central

    Wolfsperger, F; Hogh-Binder, S A; Schittenhelm, J; Psaras, T; Ritter, V; Bornes, L; Huber, S M; Jendrossek, V; Rudner, J

    2016-01-01

    Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1 and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude

  6. Effects of resveratrol and methoxyamine on the radiosensitivity of iododeoxyuridine in U87MG glioblastoma cell line.

    PubMed

    Khoei, Samideh; Shoja, Mohsen; Mostaar, Ahmad; Faeghi, Fariborz

    2016-06-01

    The purpose of this study was to evaluate the combination effect of resveratrol and methoxyamine on radiosensitivity of iododeoxyuridine in spheroid culture of U87MG glioblastoma cell line using colony formation and alkaline comet assays. Spheroids on day-20 with 350 µm diameters were treated with 20 µM resveratrol and/or 6 mM methoxyamine and/or 1 µM iododeoxyuridine for one volume doubling time (67 h), and then irradiated with 2 Gy gamma-radiation ((60)Co) in different groups. After treatment, viability of the cells, colony forming ability and DNA damages were obtained by blue dye exclusion, colony formation and alkaline comet assay, respectively. Our results showed that methoxyamine and resveratrol could significantly reduce colony number and induce the DNA damages of glioblastoma spheroid cells treated with iododeoxyuridine in combination with gamma-rays. Therefore, methoxyamine as base excision repair inhibitor and resveratrol as hypoxia inducible factor 1-alpha inhibitor in combination with iododeoxyuridine as radiosensitizer enhanced the radiosensitization of glioblastoma spheroid cells. PMID:26748400

  7. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  8. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound

    PubMed Central

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  9. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated

    SciTech Connect

    Guo, Pin; Lan, Jin; Ge, Jianwei; Nie, Quanmin; Guo, Liemei; Qiu, Yongming; Mao, Qing

    2014-01-15

    Glioblastoma multiforme (GBM) is notoriously resistant to radiation, and consequently, new radiosensitizers are urgently needed. MicroRNAs are a class of endogenous gene modulators with emerging roles in DNA repair. We found that overexpression of miR-26a can enhance radiosensitivity and reduce the DNA repair ability of U87 cells. However, knockdown miR-26a in U87 cells could act the converse manner. Mechanistically, this effect is mediated by direct targeting of miR-26a to the 3′UTR of ATM, which leads to reduced ATM levels and consequent inhibition of the homologous recombination repair pathway. These results suggest that miR-26a may act as a new radiosensitizer of GBM. - Highlights: ●miR-26a directly target ATM in GBM cells. ●miR-26a enhances the radiosensitivity of GBM cells. ●miR-26a could reduce the DNA repair capacity of GBM cells.

  10. β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway.

    PubMed

    Liu, Siwei; Zhou, Lei; Zhao, Yongshun; Yuan, Yuhui

    2015-08-01

    Glioblastoma multiforme (GBM), a tumor associated with poor prognosis, is known to be resistant to radiotherapy and alkylating agents such as temozolomide (TMZ). β-elemene, a monomer found in Chinese traditional herbs extracted from Curcuma wenyujin, is currently being used as an antitumor drug for different types of tumors including GBM. In the present study, we investigated the roles of β-elemene in the radiosensitivity and chemosensitivity of GBM cells. Human GBM cell lines U87-MG, T98G, U251, LN229 and rat C6 cells were treated with β-elemene combined with radiation or TMZ. We used MTT and colony forming assays to evaluate the proliferation and survival of the cells, and the comet assay to observe DNA damage. Expression of proteins was analyzed by immunoblotting. In the present study, we found that β-elemene inhibited the proliferation and survival of different GBM cell lines when combined with radiotherapy or TMZ via inhibition of DNA damage repair. Treatment of GBM cells with β-elemene decreased the phosphorylation of ataxia telangiectasia mutated (ATM), AKT and ERK following radiotherapy or chemotherapy. These results revealed that β-elemene could significantly increase the radiosensitivity and chemosensitivity of GBM. β-elemene may be used as a potential drug in combination with the radiotherapy and chemotherapy of GBM. PMID:26062577

  11. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells.

    PubMed

    Berardinelli, F; Siteni, S; Tanzarella, C; Stevens, M F; Sgura, A; Antoccia, A

    2015-01-01

    G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications. PMID:25467559

  12. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  13. DNA damage response and anti-apoptotic proteins predict radiosensitization efficacy of HDAC inhibitors SAHA and LBH589 in patient-derived glioblastoma cells.

    PubMed

    Pont, Lotte M E Berghauser; Naipal, Kishan; Kloezeman, Jenneke J; Venkatesan, Subramanian; van den Bent, Martin; van Gent, Dik C; Dirven, Clemens M F; Kanaar, Roland; Lamfers, Martine L M; Leenstra, Sieger

    2015-01-28

    HDAC inhibitors have radiosensitizing effects in established cancer cell lines. This study was conducted to compare the efficacy of SAHA, LBH589, Valproic Acid (VPA), MS275 and Scriptaid in the patient-derived glioblastoma model. In more detail, SAHA and LBH589 were evaluated to determine predictors of response. Acetylated-histone-H3, γH2AX/53BP1, (p)Chek2/ATM, Bcl-2/Bcl-XL, p21(CIP1/WAF1) and caspase-3/7 were studied in relation to response. SAHA sensitized 50% of cultures, LBH589 45%, VPA and Scriptaid 40% and MS275 60%. Differences after treatment with SAHA/RTx or LBH589/RTx in a sensitive and resistant culture were increased acetylated-H3, caspase-3/7 and prolonged DNA damage repair γH2AX/53BP1 foci. pChek2 was found to be associated with both SAHA/RTx and LBH589/RTx response with a positive predictive value (PPV) of 90%. Bcl-XL had a PPV of 100% for LBH589/RTx response. Incubation with HDACi 24 and 48 hours pre-RTx resulted in the best efficacy of combination treatment. In conclusion a subset of patient-derived glioblastoma cultures were sensitive to HDACi/RTx. For SAHA and LBH589 responses were strongly associated with pChek2 and Bcl-XL, which warrant further clinical exploration. Additional information on responsiveness was obtained by DNA damage response markers and apoptosis related proteins. PMID:25305451

  14. The radiosensitivity index predicts for overall survival in glioblastoma

    PubMed Central

    Ahmed, Kamran A.; Chinnaiyan, Prakash; Fulp, William J.; Eschrich, Steven; Torres-Roca, Javier F.; Caudell, Jimmy J.

    2015-01-01

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04–92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08–2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19–3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker. PMID:26451615

  15. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    PubMed Central

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  16. STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma.

    PubMed

    Ouédraogo, Zangbéwendé Guy; Müller-Barthélémy, Mélanie; Kemeny, Jean-Louis; Dedieu, Véronique; Biau, Julian; Khalil, Toufic; Raoelfils, Lala Ines; Granzotto, Adeline; Pereira, Bruno; Beaudoin, Claude; Guissou, Innocent Pierre; Berger, Marc; Morel, Laurent; Chautard, Emmanuel; Verrelle, Pierre

    2016-01-01

    Radiotherapy is an essential component of glioma standard treatment. Glioblastomas (GBM), however, display an important radioresistance leading to tumor recurrence. To improve patient prognosis, there is a need to radiosensitize GBM cells and to circumvent the mechanisms of resistance caused by interactions between tumor cells and their microenvironment. STAT3 has been identified as a therapeutic target in glioma because of its involvement in mechanisms sustaining tumor escape to both standard treatment and immune control. Here, we studied the role of STAT3 activation on tyrosine 705 (Y705) and serine 727 (S727) in glioma radioresistance. This study explored STAT3 phosphorylation on Y705 (pSTAT3-Y705) and S727 (pSTAT3-S727) in glioma cell lines and in clinical samples. Radiosensitizing effect of STAT3 activation down-modulation by Gö6976 was explored. In a panel of 15 human glioma cell lines, we found that the level of pSTAT3-S727 was correlated to intrinsic radioresistance. Moreover, treating GBM cells with Gö6976 resulted in a highly significant radiosensitization associated to a concomitant pSTAT3-S727 down-modulation only in GBM cell lines that exhibited no or weak pSTAT3-Y705. We report the constitutive activation of STAT3-S727 in all GBM clinical samples. Targeting pSTAT3-S727 mainly in pSTAT3-Y705-negative GBM could be a relevant approach to improve radiation therapy. PMID:25736961

  17. The Search for New Hypoxic Cell Radiosensitizers

    PubMed Central

    Mansfield, Carl M.; Kimler, Bruce F.; Cheng, C.C.; Abrahams, Iris L.; Podrebarac, Eugene G.; Wittek, Philip J.; Reddy, Eashwer K.

    1980-01-01

    A number of newly synthesized compounds whose chemical structure suggested possible or remotely possible ability to radiosensitize hypoxic mammalian cells were studied in an in-vitro system. Those compounds that were not excluded because of insolubility or extreme cytotoxicity were tested for radiosensitizing ability. The correlation between chemical structure and radiosensitizing ability will be used for the rational design of additional compounds with a high probability of being effective hypoxic cell radiosensitizers. It is hoped that this will contribute to attempts to improve the cure rate of patients with malignant tumors through the use of radiation therapy and hypoxic cell radiosensitizers. PMID:7401185

  18. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. Kinsella, Michael T.; Seo, Yuji; Berk, Gregory

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  19. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  20. Nodal Promotes Glioblastoma Cell Growth

    PubMed Central

    De Silva, Tanya; Ye, Gang; Liang, Yao-Yun; Fu, Guodong; Xu, Guoxiong; Peng, Chun

    2012-01-01

    Nodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type. To further understand the role of Nodal in tumorigenesis, we examined the effect of Nodal in glioblastoma cell growth and spheroid formation using U87 cell line. Treatment of U87 with recombinant Nodal significantly increased U87 cell growth. In U87 cells stably transfected with the plasmid encoding Nodal, Smad2 phosphorylation was strongly induced and cell growth was significantly enhanced. Overexpression of Nodal also resulted in tight spheroid formation. On the other hand, the cells stably transfected with Nodal siRNA formed loose spheroids. Nodal is known to signal through activin receptor-like kinase 4 (ALK4) and ALK7 and the Smad2/3 pathway. To determine which receptor and Smad mediate the growth promoting effect of Nodal, we transfected siRNAs targeting ALK4, ALK7, Smad2, or Smad3 into Nodal-overexpressing cells and observed that cell growth was significantly inhibited by ALK4, ALK7, and Smad3 siRNAs. Taken together, these findings suggest that Nodal may have tumor-promoting effects on glioblastoma cells and these effects are mediated by ALK4, ALK7, and Smad3. PMID:22645523

  1. Adoptive Cell Therapies for Glioblastoma

    PubMed Central

    Bielamowicz, Kevin; Khawja, Shumaila; Ahmed, Nabil

    2013-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts. PMID:24273748

  2. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  3. Genetic Alterations in Gliosarcoma and Giant Cell Glioblastoma.

    PubMed

    Oh, Ji Eun; Ohta, Takashi; Nonoguchi, Naosuke; Satomi, Kaishi; Capper, David; Pierscianek, Daniela; Sure, Ulrich; Vital, Anne; Paulus, Werner; Mittelbronn, Michel; Antonelli, Manila; Kleihues, Paul; Giangaspero, Felice; Ohgaki, Hiroko

    2016-07-01

    The majority of glioblastomas develop rapidly with a short clinical history (primary glioblastoma IDH wild-type), whereas secondary glioblastomas progress from diffuse astrocytoma or anaplastic astrocytoma. IDH mutations are the genetic hallmark of secondary glioblastomas. Gliosarcomas and giant cell glioblastomas are rare histological glioblastoma variants, which usually develop rapidly. We determined the genetic patterns of 36 gliosarcomas and 19 giant cell glioblastomas. IDH1 and IDH2 mutations were absent in all 36 gliosarcomas and in 18 of 19 giant cell glioblastomas analyzed, indicating that they are histological variants of primary glioblastoma. Furthermore, LOH 10q (88%) and TERT promoter mutations (83%) were frequent in gliosarcomas. Copy number profiling using the 450k methylome array in 5 gliosarcomas revealed CDKN2A homozygous deletion (3 cases), trisomy chromosome 7 (2 cases), and monosomy chromosome 10 (2 cases). Giant cell glioblastomas had LOH 10q in 50% and LOH 19q in 42% of cases. ATRX loss was detected immunohistochemically in 19% of giant cell glioblastomas, but absent in 17 gliosarcomas. These and previous results suggest that gliosarcomas are a variant of, and genetically similar to, primary glioblastomas, except for a lack of EGFR amplification, while giant cell glioblastoma occupies a hybrid position between primary and secondary glioblastomas. PMID:26443480

  4. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  5. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  6. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  7. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    PubMed Central

    2012-01-01

    Background Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. Methods A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Results Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Conclusions Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair. PMID:22429326

  8. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  9. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme.

    PubMed

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T; Peng, Lifeng; Davis, Paul F; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM's cancer biology. PMID:27148537

  10. PCDH10 is required for the tumorigenicity of glioblastoma cells

    SciTech Connect

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-31

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma.

  11. Glioblastoma with signet ring cell morphology: A diagnostic challenge

    PubMed Central

    Krishnamoorthy, Naveen; Veldore, Vidya; Sridhar, P. S.; Govindrajan, M. J.; Prabhudesai, Shilpa; Hazarika, Digantha; Ajaikumar, B. S.

    2016-01-01

    Glioblastoma (WHO Grade IV), the most frequent malignant brain tumor, can have varied morphologic variations like epithelial/glandular structures, granular cells, and lipidized cells. Glioblastoma with signet ring cell morphology is very unusual and can mimic a metastatic carcinoma. These rare tumors may be just a morphological variant or may signify a different carcinogenic pathway. PMID:27366281

  12. Glioblastoma with signet ring cell morphology: A diagnostic challenge.

    PubMed

    Krishnamoorthy, Naveen; Veldore, Vidya; Sridhar, P S; Govindrajan, M J; Prabhudesai, Shilpa; Hazarika, Digantha; Ajaikumar, B S

    2016-01-01

    Glioblastoma (WHO Grade IV), the most frequent malignant brain tumor, can have varied morphologic variations like epithelial/glandular structures, granular cells, and lipidized cells. Glioblastoma with signet ring cell morphology is very unusual and can mimic a metastatic carcinoma. These rare tumors may be just a morphological variant or may signify a different carcinogenic pathway. PMID:27366281

  13. Radiosensitization of Non-Small Cell Lung Cancer Cells by Inhibition of TGF-β1 Signaling With SB431542 Is Dependent on p53 Status.

    PubMed

    Zhao, Yifan; Wang, Longxiao; Huang, Qianyi; Jiang, Youqin; Wang, Jingdong; Zhang, Liyuan; Tian, Ye; Yang, Hongying

    2016-01-01

    Although medically inoperable patients with stage I non-small cell lung cancer cells (NSCLC) are often treated with stereotactic body radiation therapy, its efficacy can be compromised due to poor radiosensitivity of cancer cells. Inhibition of transforming growth factor-β1 (TGF-β1) using LY364947 and LY2109761 has been demonstrated to radiosensitize cancer cells such as breast cancer, glioblastoma, and lung cancer. Our previous results have demonstrated that another potent and selective inhibitor of TGF-β1 receptor kinases, SB431542, could radiosensitize H460 cells both in vitro and in vivo. In the present study, we investigated whether SB431542 could radiosensitize other NSCLC cell lines, trying to explore the potential implication of this TGF-β1 inhibitor in radiotherapy for NSCLC patients. The results showed that A549 cells were significantly radiosensitized by SB431542, whereas no radiosensitizing effect was observed in H1299 cells. Interestingly, both H460 and A549 cells have wild-type p53, while H1299 cells have deficient p53. To study whether the radiosensitizing effect of SB431542 was associated with p53 status of cancer cells, the p53 of H460 cells was silenced using shRNA transfection. Then it was found that the radiosensitizing effect of SB431542 on H460 cells was not observed in H460 cells with silenced p53. Moreover, X-irradiation caused rapid Smad2 activation in H460 and A549 cells but not in H1299 and H460 cells with silenced p53. The Smad2 activation postirradiation could be abolished by SB431542. This may explain the lack of radiosensitizing effect of SB431542 in H1299 and H460 cells with silenced p53. Thus, we concluded that the radiosensitizing effect of inhibition of TGF-β1 signaling in NSCLC cells by SB431542 was p53 dependent, suggesting that using TGF-β1 inhibitor in radiotherapy may be more complicated than previously thought and may need further investigation. PMID:27178816

  14. A paired comparison between glioblastoma "stem cells" and differentiated cells.

    PubMed

    Schneider, Matthias; Ströbele, Stephanie; Nonnenmacher, Lisa; Siegelin, Markus D; Tepper, Melanie; Stroh, Sebastien; Hasslacher, Sebastian; Enzenmüller, Stefanie; Strauss, Gudrun; Baumann, Bernd; Karpel-Massler, Georg; Westhoff, Mike-Andrew; Debatin, Klaus-Michael; Halatsch, Marc-Eric

    2016-04-01

    Cancer stem cells (CSC) have been postulated to be responsible for the key features of a malignancy and its maintenances, as well as therapy resistance, while differentiated cells are believed to make up the rapidly growing tumour bulk. It is therefore important to understand the characteristics of those two distinct cell populations in order to devise treatment strategies which effectively target both cohorts, in particular with respect to cancers, such as glioblastoma. Glioblastoma is the most common primary brain tumour in adults, with a mean patient survival of 12-15 months. Importantly, therapeutic improvements have not been forthcoming in the last decade. In this study we compare key features of three pairs of glioblastoma cell populations, each pair consisting of stem cell-like and differentiated cells derived from an individual patient. Our data suggest that while growth rates and expression of key survival- and apoptosis-mediating proteins are more similar according to differentiation status than genetic similarity, we found no intrinsic differences in response to standard therapeutic interventions, namely exposure to radiation or the alkylating agent temozolomide. Interestingly, we could demonstrate that both stem cell-like and differentiated cells possess the ability to form stem cell-containing tumours in immunocompromised mice and that differentiated cells could potentially be dedifferentiated to potential stem cells. Taken together our data suggest that the differences between tumour stem cell and differentiated cell are particular fluent in glioblastoma. PMID:26519239

  15. Glioblastoma

    MedlinePlus

    ... most common form of glioblastoma; it is very aggressive. Secondary: These tumors have a longer, somewhat slower growth history, but still are very aggressive. They may begin as lower-grade tumors which ...

  16. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells

    PubMed Central

    Li, Hui-Fang; Kim, Jung-Sik; Waldman, Todd

    2009-01-01

    Background Ionizing radiation (IR) therapy is a primary treatment for glioblastoma multiforme (GBM), a common and devastating brain tumor in humans. IR has been shown to induce PI3K-Akt activation in many cell types, and activation of the PI3K-Akt signaling pathway has been correlated with radioresistance. Methods Initially, the effects of IR on Akt activation were assessed in multiple human GBM cell lines. Next, to evaluate a potential causative role of IR-induced Akt activation on radiosensitivity, Akt activation was inhibited during IR with several complementary genetic and pharmacological approaches, and radiosensitivity measured using clonogenic survival assays. Results Three of the eight cell lines tested demonstrated IR-induced Akt activation. Further studies revealed that IR-induced Akt activation was dependent upon the presence of a serum factor, and could be inhibited by the EGFR inhibitor AG1478. Inhibition of PI3K activation with LY294002, or with inducible wild-type PTEN, inhibition of EGFR, as well as direct inhibition of Akt with two Akt inhibitors during irradiation increased the radiosensitivity of U87MG cells. Conclusion These results suggest that Akt may be a central player in a feedback loop whereby activation of Akt induced by IR increases radioresistance of GBM cells. Targeting the Akt signaling pathway may have important therapeutic implications when used in combination with IR in the treatment of a subset of brain tumor patients. PMID:19828040

  17. Glioblastoma.

    PubMed

    Wirsching, Hans-Georg; Galanis, Evanthia; Weller, Michael

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy. PMID:26948367

  18. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  19. Histone Deacetylation Critically Determines T-cell Subset Radiosensitivity1

    PubMed Central

    Pugh, Jason L.; Sukhina, Alona S.; Seed, Thomas M.; Manley, Nancy R.; Sempowski, Gregory A.; van den Brink, Marcel R.M.; Smithey, Megan J.; Nikolich-Zugich, Janko

    2014-01-01

    Lymphocytes are sensitive to ionizing radiation and naïve lymphocytes are more radiosensitive than their memory counterparts. Less is known about radiosensitivity of memory cell subsets. We examined the radiosensitivity of naïve (TN), effector memory (TEM), and central memory (TCM) T cell subsets in C57BL/6 mice, and found TEM to be more resistant to radiation-induced apoptosis than either TN or TCM. Surprisingly, we found no correlation between the extent of radiation-induced apoptosis in T cell subsets and : (i) levels of pro- and anti-apoptotic Bcl-2 family members; or (ii) the H2-AX content and maximal γH2-AX fold change. Rather, TEM cell survival correlated with higher levels of immediate γH2-AX marking, immediate break binding and genome-wide open chromatin structure. T cells were able to mark DNA damage seemingly instantly (30 s), even if kept on ice. Relaxing chromatin with the histone deacetylase inhibitor valproic acid following radiation or etoposide treatment, improved the survival of TCM and TN cells up to levels seen in the resistant TEM cells, but did not improve survival from caspase-mediated apoptosis. We conclude that an open genome-wide chromatin state is the key determinant of efficient immediate repair of DNA damage in T cells, explaining the observed T cell subset radiosensitivity differences. PMID:24990082

  20. Tumor cohesion and glioblastoma cell dispersal

    PubMed Central

    Foty, Ramsey A

    2013-01-01

    Patients with glioblastoma typically present when tumors are at an advanced stage. Surgical resection, radiotherapy and adjuvant chemotherapy are currently the standard of care for glioblastoma. However, due to the infiltrative and dispersive nature of the tumor, recurrence rate remains high and typically results in very poor prognosis. Efforts to treat the primary tumor are, therefore, palliative rather than curative. From a practical perspective, controlling growth and dispersal of the recurrence may have a greater impact on disease-free survival, In order for cells to disperse, they must first detach from the mass. Preventing detachment may keep tumors that recur more localized and perhaps more amenable to therapy. Here we introduce a new perspective in which a quantifiable mechanical property, namely tissue surface tension, can provide novel information on tumor behavior. The overall theme of the discussion will attempt to integrate how adhesion molecules can alter a tumor’s mechanical properties and how, in turn, these properties can be modified to prevent tumor cell detachment and dispersal. PMID:23902244

  1. Radiosensitization of EMT6 cells by four platinum complexes.

    PubMed

    Teicher, B A; Rockwell, S; Lee, J B

    1985-05-01

    The greatest research effort in producing radiation sensitizers has been directed toward organic compounds. However, platinum complexes also have radiosensitizing capabilities, perhaps because they bind to DNA. The compound described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 microM and 400 microM trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 microM and 1.8 at 400 microM. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes, (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 microM Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 microM and 400 microM Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 microM PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands. PMID:4039304

  2. Radiosensitizing Effect of TRPV1 Channel Inhibitors in Cancer Cells.

    PubMed

    Nishino, Keisuke; Tanamachi, Keisuke; Nakanishi, Yuto; Ide, Shunta; Kojima, Shuji; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2016-07-01

    Radiosensitizers are used in cancer therapy to increase the γ-irradiation susceptibility of cancer cells, including radioresistant hypoxic cancer cells within solid tumors, so that radiotherapy can be applied at doses sufficiently low to minimize damage to adjacent normal tissues. Radiation-induced DNA damage is repaired by multiple repair systems, and therefore these systems are potential targets for radiosensitizers. We recently reported that the transient receptor potential vanilloid type 1 (TRPV1) channel is involved in early responses to DNA damage after γ-irradiation of human lung adenocarcinoma A549 cells. Therefore, we hypothesized that TRPV1 channel inhibitors would have a radiosensitizing effect by blocking repair of radiation-induced cell damage. Here, we show that pretreatment of A549 cells with the TRPV1 channel inhibitors capsazepine, AMG9810, SB366791 and BCTC suppressed the γ-ray-induced activation of early DNA damage responses, i.e., activation of the protein kinase ataxia-telangiectasia mutated (ATM) and accumulation of p53-binding protein 1 (53BP1). Further, the decrease of survival fraction at one week after γ-irradiation (2.0 Gy) was enhanced by pretreatment of cells with these inhibitors. On the other hand, inhibitor pretreatment did not affect cell viability, the number of apoptotic or necrotic cells, or DNA synthesis at 24 h after irradiation. These results suggest that inhibition of DNA repair by TRPV1 channel inhibitors in irradiated A549 cells caused gradual loss of proliferative ability, rather than acute facilitation of apoptosis or necrosis. TRPV1 channel inhibitors could be novel candidates for radiosensitizers to improve the efficacy of radiation therapy, either alone or in combination with other types of radiosensitizers. PMID:27150432

  3. Investigation of Radiosensitivity Gene Signatures in Cancer Cell Lines

    PubMed Central

    Hall, John S.; Iype, Rohan; Senra, Joana; Taylor, Janet; Armenoult, Lucile; Oguejiofor, Kenneth; Li, Yaoyong; Stratford, Ian; Stern, Peter L.; O’Connor, Mark J.; Miller, Crispin J.; West, Catharine M. L.

    2014-01-01

    Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2) by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median) was investigated using Affymetrix GeneChip Exon 1.0ST (cervix) or U133A Plus2 (head and neck) arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4%) were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI), and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins. PMID:24466029

  4. Neoadjuvant immunotherapy enhances radiosensitivity through natural killer cell activation.

    PubMed

    Chi, Chau-Hwa; Wang, Yu-Shan; Yang, Chieh-Han; Chi, Kwan-Hwa

    2010-02-01

    We investigated whether natural killer (NK) cells in the tumor microenvironment have a radiosensitization effect. The radiosensitization effect of combined CpG and Herceptin((R)) (Genentech, Inc., South San Francisco, CA) (CpG/Herceptin), given before or after radiation, was evaluated by using a murine colon cancer cell line overexpressing human HER2/neu, CT26HER2/neu. In vitro radiosensitization effects were investigated by coculture of CT26HER2/neu with splenocytes, CpG, and Herceptin before applying radiation. Tumor cells, cocultured with CpG-pretreated splenocytes and Herceptin, were more vulnerable to radiation damage. In BALB/c mice injected with CT26HER2/neu, CpG/Herceptin administered before radiotherapy was associated with a better retardation of tumor growth than when administered after radiotherapy. The radiosensitization effect was significantly abrogated by NK-cell depletion, indicating that NK cells play an essential role in it. Further, surviving mice treated with CpG or CpG/Herceptin and reverse transcriptase were resistant to renewed tumor challenge, suggesting the presence of an induced immune response to the tumor. Neoadjuvant immunotherapy with CpG/Herceptin may improve response to radiotherapy of HER2/neu-expressing tumors. PMID:20187795

  5. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}.

    PubMed

    Neijenhuis, Sari; Verwijs-Janssen, Manon; van den Broek, Lenie J; Begg, Adrian C; Vens, Conchita

    2010-11-01

    Ionizing radiation (IR) is an effective anticancer treatment, although failures still occur. To improve radiotherapy, tumor-targeted strategies are needed to increase radiosensitivity of tumor cells, without influencing normal tissue radiosensitivity. Base excision repair (BER) and single-strand break repair (SSBR) contribute to the determination of sensitivity to IR. A crucial protein in BER/SSBR is DNA polymerase β (polβ). Aberrant polβ expression is commonly found in human tumors and leads to inhibition of BER. Here, we show that truncated polβ variant (polβ-Δ)-expressing cells depend on homologous recombination (HR) for survival after IR, indicating that a considerable fraction of polβ-Δ-induced lesions are subject to repair by HR. Increased sensitization was found not to result from involvement in DNA-dependent protein kinase-dependent nonhomologous end joining, the other major double-strand break repair pathway. Caffeine and the ATM inhibitor Ku55933 cause polβ-Δ-dependent radiosensitization. Consistent with the observed HR dependence and the known HR-modulating activity of ATM, polβ-Δ-expressing cells showed increased radiosensitization after BRCA2 knockdown that is absent under ATM-inhibited conditions. Our data suggest that treatment with HR modulators is a promising therapeutic strategy for exploiting defects in the BER/SSBR pathway in human tumors. PMID:20978197

  6. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  7. [Cisplatin influence on: the radiosensitivity and recovery of yeast cells].

    PubMed

    Evstratova, E S; Petin, V G

    2013-01-01

    The effect of the simultaneous combined action of ionizing radiation and cisplatin on the radiosensitivity and liquid holding recovery (LHR) of diploid yeast cells was studied. It was shown that regardless of the cisplatin concentration (0; 0.002; 0.01; 0.02 g/ml) the radiosensitivity of cells was increased by 1.3 times. The ability of a cell to the LHR was progressively decreased with the increasing cisplatin concentration up to the complete inhibition. It was shown that the LHR of yeast cells after a combined action of ionizing radiation and chemical agents is mainly inhibited due to formation of a greater proportion of irreversible damage. The constant of recovery, characterizing the probability of recovery per a unit of time, was independent on cisplatine concentration. PMID:25486742

  8. [Cisplatin influence on: the radiosensitivity and recovery of yeast cells].

    PubMed

    2013-01-01

    The effect of the simultaneous combined action of ionizing radiation and cisplatin on the radiosensitivity and liquid holding recovery (LHR) of diploid yeast cells was studied. It was shown that regardless of the cisplatin concentration (0; 0.002; 0.01; 0.02 g/ml) the radiosensitivity of cells was increased by 1.3 times. The ability of a cell to the LHR was progressively decreased with the increasing cisplatin concentration up to the complete inhibition. It was shown that the LHR of yeast cells after a combined action of ionizing radiation and chemical agents is mainly inhibited due to formation of a greater proportion of irreversible damage. The con- stant of recovery, characterizing the probability of recovery per a unit of time, was independent on cisplatine concentration. PMID:25508873

  9. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing; Xiong Jie; Xie CongHua; Luo Zhiguo; Liu Shiquan; Zhou Yunfeng . E-mail: yfzhouwhu@163.com

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.

  10. Targeting Aggressive Cancer Stem Cells in Glioblastoma

    PubMed Central

    Seymour, Tracy; Nowak, Anna; Kakulas, Foteini

    2015-01-01

    Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12–15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance, and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggest that GSCs share critical signaling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients. PMID:26258069

  11. Emerging targets for glioblastoma stem cell therapy

    PubMed Central

    Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Cohen-Gadol, Aaron A.; Pollok, Karen E.; Bijangi-Vishehsaraei, Khadijeh

    2016-01-01

    Abstract Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells. PMID:26616589

  12. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target. PMID:26432005

  13. Radiosensitivity of testicular cells in the prepubertal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Eerdenburg, F.J.C.M. van; Huiskamp, R.; Bas, R.J.; Jong, F.H. de; Davids, J.A.G.

    1994-09-01

    The effects of total-body X-irradiation on the prepubertal testis of the CBA/P mouse have been studied. At either day 14 or day 29 post partum male mice were exposed to single doses of X-rays ranging from 15-6.0 Gy. At 1 week after irradiation the repopulation index method was used to study the radiosensitivity of the spermatogonial stem cells. A D{sub 0} value of 1.8 Gy was determined for the stem cells at day 14 post partum as well as for the stem cells at day 29 post partum, indicating that the radiosensitivity of the spermatogonial stem cells in the prepubertal mouse testis is already comparable to that observed in the adult mouse. One, 2 or 3 weeks after irradiation total cell number per testis of Sertoli cells, Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelium and perivascular cells were determined using the disector method. The Sertoli cells and interstitial cell types appeared to be relatively radioresistant during the prepubertal period. No significant changes in plasma testosterone levels were found, indicating that there is no Leydig cell dysfunction after exposure to doses up to 6 Gy during the prepubertal period. Taken together, the radioresponse of the prepubertal mouse testis is comparable to that of the adult mouse testis. 38 refs., 6 figs., 1 tab.

  14. SU11657 Enhances Radiosensitivity of Human Meningioma Cells

    SciTech Connect

    Milker-Zabel, Stefanie Bois, Angelika Zabel-du; Ranai, Gholamreza; Trinh, Thuy; Unterberg, Andreas; Debus, Juergen; Lipson, Kenneth E.; Abdollahi, Amir; Huber, Peter E.

    2008-03-15

    Purpose: To analyze the effect of the multireceptor tyrosine kinase inhibitor SU11657 (primarily vascular endothelial growth factor, platelet-derived growth factor) in combination with irradiation in freshly isolated primary human meningioma cells. Methods and Materials: Tumor specimens were obtained from meningioma patients undergoing surgery at the Department of Neurosurgery, University of Heidelberg, Germany. For the present study only cells up to passage 6 were used. Benign and atypical meningioma cells and human umbilical vein endothelial cells (HUVEC) were treated with SU11657 alone and in combination with 6-MV photons (0-10 Gy). Clonogenic survival and cell proliferation were determined alone and in coculture assays to determine direct and paracrine effects. Results: Radiation and SU11657 alone reduced cell proliferation in atypical and benign meningioma cells as well as in HUVEC in a dose-dependent manner. SU11657 alone also reduced clonogenic survival of benign and atypical meningioma cells. SU11657 increased radiosensitivity of human meningioma cells in clonogenic survival and cell number/proliferation assays. The anticlonogenic and antiproliferative effects alone and the radiosensitization effects of SU11657 were more pronounced in atypical meningioma cells compared with benign meningioma cells. Conclusion: Small-molecule tyrosine kinase inhibitors like SU11657 are capable of amplifying the growth inhibitory effects of irradiation in meningioma cells. These data provide a rationale for further clinical evaluation of this combination concept, especially in atypical and malignant meningioma patients.

  15. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W; Basse, Per H; Wang, Hong; Wang, Xinhui; Proia, David A; Greenberger, Joel S; Socinski, Mark A; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  16. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  17. Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines

    PubMed Central

    Maeda, Junko; Froning, Coral E.; Brents, Colleen A.; Rose, Barbara J.; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Canine cancer cell lines have progressively been developed, but are still underused resources for radiation biology research. Measurement of the cellular intrinsic radiosensitivity is important because understanding the difference may provide a framework for further elucidating profiles for prediction of radiation therapy response. Our studies have focused on characterizing diverse canine cancer cell lines in vitro and understanding parameters that might contribute to intrinsic radiosensitivity. First, intrinsic radiosensitivity of 27 canine cancer cell lines derived from ten tumor types was determined using a clonogenic assay. The 27 cell lines had varying radiosensitivities regardless tumor type (survival fraction at 2 Gy, SF2 = 0.19–0.93). In order to understand parameters that might contribute to intrinsic radiosensitivity, we evaluated the relationships of cellular radiosensitivity with basic cellular characteristics of the cell lines. There was no significant correlation of SF2 with S-phase fraction, doubling time, chromosome number, ploidy, or number of metacentric chromosomes, while there was a statistically significant correlation between SF2 and plating efficiency. Next, we selected the five most radiosensitive cell lines as the radiosensitive group and the five most radioresistant cell lines as the radioresistant group. Then, we evaluated known parameters for cell killing by ionizing radiation, including radiation-induced DNA double strand break (DSB) repair and apoptosis, in the radiosensitive group as compared to the radioresistant group. High levels of residual γ-H2AX foci at the sites of DSBs were present in the four out of the five radiosensitive canine cancer cell lines. Our studies suggested that substantial differences in intrinsic radiosensitivity exist in canine cancer cell lines, and radiation-induced DSB repair was related to radiosensitivity, which is consistent with previous human studies. These data may assist further investigations

  18. Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines.

    PubMed

    Maeda, Junko; Froning, Coral E; Brents, Colleen A; Rose, Barbara J; Thamm, Douglas H; Kato, Takamitsu A

    2016-01-01

    Canine cancer cell lines have progressively been developed, but are still underused resources for radiation biology research. Measurement of the cellular intrinsic radiosensitivity is important because understanding the difference may provide a framework for further elucidating profiles for prediction of radiation therapy response. Our studies have focused on characterizing diverse canine cancer cell lines in vitro and understanding parameters that might contribute to intrinsic radiosensitivity. First, intrinsic radiosensitivity of 27 canine cancer cell lines derived from ten tumor types was determined using a clonogenic assay. The 27 cell lines had varying radiosensitivities regardless tumor type (survival fraction at 2 Gy, SF2 = 0.19-0.93). In order to understand parameters that might contribute to intrinsic radiosensitivity, we evaluated the relationships of cellular radiosensitivity with basic cellular characteristics of the cell lines. There was no significant correlation of SF2 with S-phase fraction, doubling time, chromosome number, ploidy, or number of metacentric chromosomes, while there was a statistically significant correlation between SF2 and plating efficiency. Next, we selected the five most radiosensitive cell lines as the radiosensitive group and the five most radioresistant cell lines as the radioresistant group. Then, we evaluated known parameters for cell killing by ionizing radiation, including radiation-induced DNA double strand break (DSB) repair and apoptosis, in the radiosensitive group as compared to the radioresistant group. High levels of residual γ-H2AX foci at the sites of DSBs were present in the four out of the five radiosensitive canine cancer cell lines. Our studies suggested that substantial differences in intrinsic radiosensitivity exist in canine cancer cell lines, and radiation-induced DSB repair was related to radiosensitivity, which is consistent with previous human studies. These data may assist further investigations

  19. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  20. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    PubMed

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies. PMID:26224516

  1. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    PubMed Central

    Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds. PMID:26998418

  2. 5-Fluorouracil modulation of radiosensitivity in cultured human carcinoma cells.

    PubMed

    Smalley, S R; Kimler, B F; Evans, R G

    1991-02-01

    We evaluated conventional pulse exposure versus continuous exposure models of 5-fluorouracil (5-FU) radiosensitization in HT-29 (human colon adenocarcinoma) and DU-145 (human prostate cancer adenocarcinoma) cell lines. Cell survival following treatment with drug and/or radiation was determined by colony formation assays. Radiation was delivered either by itself, approximately midway through a 1-hr exposure to 5-FU (10 micrograms/ml), or at various times following initiation of exposure to 5-FU (0.5 microgram/ml) present throughout the entire period of incubation. Drug concentrations were selected to approximate those achieved in vivo in humans. HT-29 cells showed a plating efficiency of 87% and similar cytotoxicity (survival reduced to 0.57-0.71) for all 5-FU conditions. The Do's of the radiation survival curves were not different for 1 hr of 5-FU exposure versus radiation alone. However, continuous exposure conditions demonstrated statistically significantly different Do's from radiation alone and pulse 5-FU exposure. DU-145 cells displayed a plating efficiency of 17% and cytotoxicities of 0.10-0.91 for the 5-FU conditions. DU-145 cells showed different radiation 5-FU interactions: 5-FU produced statistically significant changes in Do well as the differences between cell lines insofar as their radiosensitization by 5-FU underscore the caution required in extrapolating these radiobiologic models to the clinical setting. PMID:1991680

  3. Glioblastoma stem cells and stem cell-targeting immunotherapies.

    PubMed

    Esparza, Rogelio; Azad, Tej D; Feroze, Abdullah H; Mitra, Siddhartha S; Cheshier, Samuel H

    2015-07-01

    Advancements in immunotherapeutics promise new possibilities for the creation of glioblastoma (GBM) treatment options. Ongoing work in cancer stem cell biology has progressively elucidated the role of this tumor sub-population in oncogenesis and has distinguished them as prime therapeutic targets. Current clinical trials take a multifaceted approach with the intention of harnessing the intrinsic cytotoxic capabilities of the immune system to directly target glioblastoma cancer stem cells (gCSC) or indirectly disrupt their stromal microenvironment. Monoclonal antibodies (mAbs), dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) T cell therapies have emerged as the most common approaches, with particular iterations incorporating cancer stem cell antigenic markers in their treatment designs. Ongoing work to determine the comprehensive antigenic profile of the gCSC in conjunction with efforts to counter the immunosuppressive tumor microenvironment holds much promise in future immunotherapeutic strategies against GBM. Given recent advancements in these fields, we believe there is tremendous potential to improve outcomes of GBM patients in the continuing evolution of immunotherapies targeted to cancer stem cell populations in GBM. PMID:25682090

  4. Activation of radiosensitizers by hypoxic cells.

    PubMed Central

    Olive, P. L.; Durand, R. E.

    1978-01-01

    Hypoxic cells can metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighbouring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitroreductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the "active" specie (s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. PMID:354676

  5. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line.

    PubMed

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  6. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    PubMed Central

    Ma, Debin; Jia, Hui; Qin, Mengmeng; Dai, Wenjie; Wang, Tao; Liang, Erguang; Dong, Guofu; Wang, Zuojun; Zhang, Zhiyuan; Feng, Fan

    2015-01-01

    MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR) on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy. PMID:26389880

  7. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    SciTech Connect

    Panicucci, R.; Heal, R.; Laderoute, K.; Cowan, D.; McClelland, R.A.; Rauth, A.M.

    1989-04-01

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 is reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.

  8. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang; Tretiakova, Maria; Zhang Zhongfa; Li Yan; Wang Xiaozhen; Zhu, Julie Xiaohong; Gao Yuanhong; Mai Weiyuan; Furge, Kyle; Qian Chaonan; Amato, Robert; Butler, E. Brian

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  9. Giant cell glioblastoma in the frontal cortex of a dog.

    PubMed

    Uchida, K; Kuroki, K; Priosoeryanto, B P; Kato, K; Yano, Y; Murakami, T; Yamaguchi, R; Tateyama, S

    1995-03-01

    A dark gray mass 3 cm in diameter replacing the right frontal cortex was found in the brain of a 5-year-old male Doberman Pinscher dog at necropsy. Microscopic studies revealed that the mass consisted of a proliferation of pleomorphic tumor cells: large bizarre or plump eosinophilic cells, multinucleated giant cells, and small lymphocytic cells. These neoplastic cells at the margin of the necrotic area had a psuedopalisade arrangement and tended to proliferate around blood vessels. Immunohistochemically, the tumor cells reacted intensely with the antibody for vimentin and moderately with those for S-100 and glial fibrillary acidic protein. This canine tumor is placed in the category of glioblastoma or undifferentiated astrocytoma, which is analogous to human giant cell glioblastoma. PMID:7771064

  10. Advances in radiation biology: Radiosensitization in DNA and living cells

    NASA Astrophysics Data System (ADS)

    Lacombe, S.; Sech, C. Le

    2009-06-01

    One fundamental goal of radiation biology is the evolution of concepts and methods for the elaboration of new approaches and protocols for the treatment of cancers. In this context, the use of fast ions as ionizing particles offers the advantage of optimizing cell killing inside the tumor whilst preserving the surrounding healthy tissues. One extremely promising strategy investigated recently is the addition of radiosensitizers in the targeted tissue. The optimization of radiotherapy with fast ions implies a multidisciplinary approach to ionizing radiation effects on complex living systems, ranging from studies on single molecules to investigations of entire organisms. In this article we review recent studies on ion induced damages in simple and complex biological systems, from DNA to living cells. The specific aspect of radiosensitization induced by metallic atoms is described. As a fundamental result, the addition of sensitizing compounds with ion irradiation may improve therapeutic index in cancer therapy. In conclusion, new perspectives are proposed based on the experience and contribution of different communities including Surface Sciences, to improve the development of radiation biology.

  11. Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy.

    PubMed

    De Stasio, G; Casalbore, P; Pallini, R; Gilbert, B; Sanità, F; Ciotti, M T; Rosi, G; Festinesi, A; Larocca, L M; Rinelli, A; Perret, D; Mogk, D W; Perfetti, P; Mehta, M P; Mercanti, D

    2001-05-15

    157Gd is a potential agent for neutron capture cancer therapy (GdNCT). We directly observed the microdistribution of Gd in cultured human glioblastoma cells exposed to Gd-diethylenetriaminepentaacetic acid (Gd-DTPA). We demonstrated, with three independent techniques, that Gd-DTPA penetrates the plasma membrane, and we observed no deleterious effect on cell survival. A systematic microchemical analysis revealed a higher Gd accumulation in cell nuclei compared with cytoplasm. This is significant for prospective GdNCT because the proximity of Gd to DNA increases the cell-killing potential of the short-range, high-energy electrons emitted during the neutron capture reaction. We also exposed Gd-containing cells to thermal neutrons and demonstrated the GdNC reaction effectiveness in inducing cell death. These results in vitro stimulated in vivo Gd-DTPA uptake studies, currently underway, in human glioblastoma patients. PMID:11358855

  12. Cyclopentenylcytosine does not enhance cisplatin-induced radiosensitization in human lung tumour cells

    PubMed Central

    RODERMOND, HANS M.; CATE, ROSEMARIE TEN; HAVEMAN, JAAP; VAN KUILENBURG, ANDRÉ; MEDEMA, JAN PAUL; VAN BREE, CHRIS; FRANKEN, NICOLAAS A.P.

    2010-01-01

    The search for agents that enhance the effect of ionizing radiation has been an object of study for decades. In this study, the sensitizing properties of cyclopentenylcytosine (CPEC) on radiation and cisplatin-induced radiosensitization in human squamous lung carcinoma cells were investigated. Human lung tumour SW-1573 cells (SWp, parental; SWg, gemcitabine-resistant) were incubated with CPEC and cisplatin and subsequently irradiated with different doses of γ-rays. Clonogenic survival was determined to measure the effectiveness of the treatments. CPEC (1 or 2 μM) treatment for 4 h decreased the plating efficiency to 75 and 50% in SWp and SWg cells, respectively. In the SWg cells, 0.1 and 1 μM CPEC for 4 h enhanced the cell killing effect of cisplatin. However, an increase was not noted in the SWp cells. Due to the moderate toxicity of 1 μM for 4 h, this CPEC dose was used in the radiosensitization experiments. However, CPEC neither radiosensitized the lung tumour cells nor enhanced the radiosensitizing effect of cisplatin. A 2-h incubation with 4 μM cisplatin also decreased the plating efficiency to 75–80% in the two cell lines. Using this cisplatin dose, radiosensitization was obtained in the two cell lines. Although cisplatin treatment clearly radiosensitized the lung tumour cells, CPEC treatment did not. Cisplatin-induced radiosensitization was also not enhanced by CPEC. PMID:22966339

  13. TGF-B3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum From Whole-Body Low Dose-Rate Irradiated Mice.

    PubMed

    Edin, Nina Jeppesen; Altaner, Čestmír; Altanerova, Veronica; Ebbesen, Peter

    2015-01-01

    Prior findings in vitro of a TGF-β3 dependent mechanism induced by low dose-rate irradiation and resulting in increased radioresistance and removal of low dose hyper-radiosensitivity (HRS) was tested in an in vivo model. DBA/2 mice were given whole-body irradiation for 1 h at low dose-rates (LDR) of 0.3 or 0.03 Gy/h. Serum was harvested and added to RPMI (4% mouse serum and 6% bovine serum).This medium was transferred to reporter cells (T-47D breast cancer cells or T98G glioblastoma cells). The response to subsequent challenge irradiation of the reporter cells was measured by the colony assay. While serum from unirradiated control mice had no effect on the radiosensitivity in the reporter cells, serum from mice given 0.3 Gy/h or 0.03 Gy/h for 1 h removed HRS and also increased survival in response to doses up to 5 Gy. The effect lasted for at least 15 months after irradiation. TGF-β3 neutralizer added to the medium containing mouse serum inhibited the effect. Serum from mice given irradiation of 0.3 Gy/h for 1 h and subsequently treated with iNOS inhibitor 1400W did not affect radiosensitivity in reporter cells; neither did serum from the unirradiated progeny of mice given 1h LDR whole-body irradiation. PMID:26673923

  14. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  15. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  16. Multiple Subsets of Brain Tumor Initiating Cells Coexist in Glioblastoma.

    PubMed

    Rennert, Robert C; Achrol, Achal S; Januszyk, Michael; Kahn, Suzana A; Liu, Tiffany T; Liu, Yi; Sahoo, Debashis; Rodrigues, Melanie; Maan, Zeshaan N; Wong, Victor W; Cheshier, Samuel H; Chang, Steven D; Steinberg, Gary K; Harsh, Griffith R; Gurtner, Geoffrey C

    2016-06-01

    Brain tumor-initiating cells (BTICs) are self-renewing multipotent cells critical for tumor maintenance and growth. Using single-cell microfluidic profiling, we identified multiple subpopulations of BTICs coexisting in human glioblastoma, characterized by distinct surface marker expression and single-cell molecular profiles relating to divergent bulk tissue molecular subtypes. These data suggest BTIC subpopulation heterogeneity as an underlying source of intra-tumoral bulk tissue molecular heterogeneity, and will support future studies into BTIC subpopulation-specific therapies. Stem Cells 2016;34:1702-1707. PMID:26991945

  17. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1

    PubMed Central

    FAN, HAONING; SHAO, MENG; HUANG, SHAOHUI; LIU, YING; LIU, JIE; WANG, ZHIYUAN; DIAO, JIANXIN; LIU, YUANLIANG; TONG, LI; FAN, QIN

    2016-01-01

    Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo. A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3′ UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo, resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells. PMID:27313684

  18. Enhanced radiosensitization of p53 mutant cells by oleamide

    SciTech Connect

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil . E-mail: yslee@kcch.re.kr

    2006-04-01

    Purpose: Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. Methods and Materials: NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Results: Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Conclusions: Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  19. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    PubMed Central

    2009-01-01

    Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP. PMID:19216795

  20. Radiosensitivity of testicular cells in the fetal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Huiskamp, R.; Bas, R.J.; Davids, J.A.G.

    1995-01-01

    The effects of prenatal X irradiation on postnatal development of the CBA/P mouse testis was studied. At days 14, 15 and 18 post coitus pregnant female mice were exposed to single doses of X rays ranging from 0.25-1.5 Gy. Higher doses resulted in extensive loss of fetal mice. In the male offspring, at days 3 and 31 post partum, the numbers of gonocytes, type A spermatogonia and Sertoli cells per testis were determined using the disector method. Furthermore, after irradiation at day 15 post coitus, the numbers of Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelial cells and perivascular cells per testis were also determined at days 3 and 31 post partum. At day 3 post partum, the number of germ cells was decreased after irradiation at days 14 and 15 post coitus. A D{sub o} value of 0.7 Gy was determined for the radiosensitivity of the gonocytes at day 14 post coitus. A D{sub o} value of 0.8 Gy was determined for the gonocytes at day 15 post coitus which, however, seems to be less accurate. No accurate D{sub o} value could be determined for the gonocytes at day 18 post coitus. At day 31 post partum, the repopulation of the seminiferous epithelium as well as testis weights and tubular diameters were more affected by irradiation with increasing age of the mice at the time of irradiation. The percentage of tubular cross sections showing spermatids decreased with increasing dose after irradiation at days 15 and 18 post coitus, but not after irradiation at day 14 post coitus. Furthermore, in tubular cross sections showing spermatids, exposure of testes to 1.25 and 1.5 Gy at day 18 post coitus resulted in significantly lower numbers of spermatids per cross section when compared to those testes exposed to the same doses at day 15 post coitus. 30 refs., 7 figs., 1 tab.

  1. Dibutyryl cyclic AMP reduces the radiosensitivity of cultured endothelial cells

    SciTech Connect

    Ward, W.; Molteni, A.; Ts'ao, C.; Hinz, J. )

    1991-03-11

    The purpose of this study was to determine whether dibutyryl cyclic AMP modifies the radiosensitivity of confluent monolayers of bovine aortic endothelial cells (BAEC). Three indices of BAEC function were monitored from 4-24 hrs after exposure to 1-10 Gy of {sup 60}Co gamma rays: the release of {sup 51}Cr from prelabeled cells, and release of lactate dehydrogenase (LDH) and plasminogen activator (PLA) into the culture medium. There was a time- and radiation dose-dependent increase in {sup 51}Cr, LDH and PLA release from the BAEC, detectable within 12 hrs after 5 Gy or higher, and by 24 hrs after 1 Gy or higher. This increased release was accompanied by a radiation dose-dependent decrease in {sup 51}Cr and LDH, and an increase in PLA activity in the lysate of cells adherent to the monolayer at 24 hrs. The continuous presence of cAMP from 1 hr before to 24 hrs after irradiation reduced all of these radiation reactions, although mM concentrations of cAMP were required for significant sparing. The presence of cAMP from 1 hr before to 10 min after irradiation had no effect on BAEC sensitivity, whereas cAMP added 10 min after irradiation was fully as effective as continuously administered drug. Thus, cultured BAEC exhibit membrane dysfunction within 24 hrs after clinically relevant radiation doses, and this dysfunction is ameliorated by cAMP present after irradiation.

  2. Differentiation and radiosensitivity of hemopoietic stem cells of mice during hypokinesia

    NASA Technical Reports Server (NTRS)

    Shvets, V. N.

    1980-01-01

    The potential for differentiation and radiosensitivity of the stem hemopoietic cells (KOE) under conditions of initial and later hypokinesia is examined. It is established that in the initial period of hypokinesia (3 days) when a stress reaction prevails, changes occur in the erythroid differentiation and radiosensitivity of KOE. This effect is associated with redistribution of T-lymphocytes that increase in number in the bone marrow of mice during hypokinesia. At later periods of hypokinesia (30 days) when changes in the organism are related to hypokinesia proper, differentiation and radiosensitivity of KOE were normalized.

  3. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  4. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  5. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  6. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    PubMed Central

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS).We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. PMID:25034532

  7. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells.

    PubMed

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. PMID:25034532

  8. Sesquiterpenoid Lactones in Tanacetum huronense Inhibit Human Glioblastoma Cell Proliferation.

    PubMed

    Dissanayake, Amila A; Bejcek, Bruce E; Zhang, Chuan-Rui; Nair, Muraleedharan G

    2016-05-01

    Tanacetum huronense (Lake Huron tansy), which is native to the upper Midwest region of USA and Canada, was examined for the presence of anticancer compounds using an in vitro human tumor cell proliferation inhibition assay, with glioblastoma derived cell line U-87 MG. Bioassay-directed purification of the ethyl acetate extract of the aerial portion of this plant identified six active sesquiterpenoid lactones (1-6). Among these, compounds 5 and 6 are new structural analogs. One of the most abundant isolates, tanacin (4), exhibited the greatest inhibition with an IC50 value of 4.5 μg/mL. PMID:27319121

  9. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation.

    PubMed

    Wu, Jun; Fang, Jiasheng; Yang, Zhuanyi; Chen, Fenghua; Liu, Jingfang; Wang, Yanjin

    2012-10-01

    Wnt proteins are powerful regulators of cell proliferation and differentiation, and activation of the Wnt signalling pathway is involved in the pathogenesis of several types of human tumours. Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumour suppressor. Previous studies have shown that reducing expression of the WIF-1 gene aberrantly activates Wnt signalling and induces the development of certain types of cancers. In the present study, we examined the expression of WIF-1 in human primary glioblastoma multiforme (GBM) tumours. Studies using semiquantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis revealed that WIF-1 expression is lower in human GBM than in normal brain tissue. To clarify the role of WIF-1, we transfected U251 human glioblastoma-derived cells, which do not express WIF-1, with the pcDNA3.1-WIF1 vector to restore WIF-1 expression. The results of cell proliferation, colony formation and apoptosis assays, as well as flow cytometry, indicate that exogenous WIF-1 has no effect on U251 cell apoptosis, but does arrest cells at the G(0)/G(1) phase and inhibit cell growth. Collectively, our data suggest that WIF-1 is a potent inhibitor of GBM growth. PMID:22901505

  10. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  11. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma.

    PubMed

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua

    2016-08-28

    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma. PMID:27267806

  12. 53BP1 foci as a marker of tumor cell radiosensitivity.

    PubMed

    Markova, E; Vasilyev, S; Belyaev, I

    2015-01-01

    Predicting tumor radiosensitivity has yet to be routinely integrated into radiotherapy. We analyzed the possibility to assess radiosensitivity of tumor cells based on endogenous and radiation-induced 53BP1 foci which are molecular markers of DNA double strand breaks (DSB). In eleven tumor cell lines of different origin, radiosensitivity was assessed by surviving cell fraction following irradiation with 2 Gy (SF2). 53BP1 foci were measured at 4 and 12 h post-irradiation by confocal laser microscopy and dedicated software. The correlation of 53BP1 foci and their post-irradiation kinetics with SF2 was assessed using Spearman rank test. The SF2 correlated with both excess of radiation-induced 53BP1 foci per cell at 4 h after irradiation and decay in number of 53BP1 foci from 4 to 12 h post-irradiation. The fraction of cells with multiple endogenous 53BP1 foci also correlated with SF2 of tumor cells. We conclude that the radiosensitivity of tumor cells can be predicted by kinetics of formation and decay of 53BP1 foci after irradiation. For the first time we report that the fraction of cells with multiple endogenous 53BP1 foci can be used as a marker of tumor cell radiosensitivity. PMID:26278144

  13. The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells

    PubMed Central

    Jamal, Muhammad; Rath, Barbara H; Tsang, Patricia S; Camphausen, Kevin; Tofilon, Philip J

    2012-01-01

    Brain tumor xenografts initiated from glioblastoma (GBM) CD133+ tumor stem-like cells (TSCs) are composed of TSC and non-TSC subpopulations, simulating the phenotypic heterogeneity of GBMs in situ. Given that the discrepancies between the radiosensitivity of GBM cells in vitro and the treatment response of patients suggest a role for the microenvironment in GBM radioresistance, we compared the response of TSCs and non-TSCs irradiated under in vitro and orthotopic conditions. As a measure of radioresponse determined at the individual cell level, γH2AX and 53BP1 foci were quantified in CD133+ cells and their differentiated (CD133-) progeny. Under in vitro conditions, no difference was detected between CD133+ and CD133- cells in foci induction or dispersal after irradiation. However, irradiation of orthotopic xenografts initiated from TSCs resulted in the induction of fewer γH2AX and 53BP1 foci in CD133+ cells compared to their CD133- counterparts within the same tumor. Xenograft irradiation resulted in a tumor growth delay of approximately 7 days with a corresponding increase in the percentage of CD133+ cells at 7 days after radiation, which persisted to the onset of neurologic symptoms. These results suggest that, although the radioresponse of TSCs and non-TSCs does not differ under in vitro growth conditions, CD133+ cells are relatively radioresistant under intracerebral growth conditions. Whereas these findings are consistent with the suspected role for TSCs as a determinant of GBM radioresistance, these data also illustrate the dependence of the cellular radioresistance on the brain microenvironment. PMID:22431923

  14. MET inhibition overcomes radiation resistance of glioblastoma stem-like cells.

    PubMed

    De Bacco, Francesca; D'Ambrosio, Antonio; Casanova, Elena; Orzan, Francesca; Neggia, Roberta; Albano, Raffaella; Verginelli, Federica; Cominelli, Manuela; Poliani, Pietro L; Luraghi, Paolo; Reato, Gigliola; Pellegatta, Serena; Finocchiaro, Gaetano; Perera, Timothy; Garibaldi, Elisabetta; Gabriele, Pietro; Comoglio, Paolo M; Boccaccio, Carla

    2016-01-01

    Glioblastoma (GBM) contains stem-like cells (GSCs) known to be resistant to ionizing radiation and thus responsible for therapeutic failure and rapidly lethal tumor recurrence. It is known that GSC radioresistance relies on efficient activation of the DNA damage response, but the mechanisms linking this response with the stem status are still unclear. Here, we show that the MET receptor kinase, a functional marker of GSCs, is specifically expressed in a subset of radioresistant GSCs and overexpressed in human GBM recurring after radiotherapy. We elucidate that MET promotes GSC radioresistance through a novel mechanism, relying on AKT activity and leading to (i) sustained activation of Aurora kinase A, ATM kinase, and the downstream effectors of DNA repair, and (ii) phosphorylation and cytoplasmic retention of p21, which is associated with anti-apoptotic functions. We show that MET pharmacological inhibition causes DNA damage accumulation in irradiated GSCs and their depletion in vitro and in GBMs generated by GSC xenotransplantation. Preclinical evidence is thus provided that MET inhibitors can radiosensitize tumors and convert GSC-positive selection, induced by radiotherapy, into GSC eradication. PMID:27138567

  15. Radiosensitizing Effects of Temozolomide Observed in vivo only in a Subset of O6-Methylguanine-DNA Methyltransferase Methylated Glioblastoma Multiforme Xenografts

    SciTech Connect

    Carlson, Brett L.; Grogan, Patrick T.; Mladek, Ann C.; Schroeder, Mark A.; Kitange, Gaspar J.; Decker, Paul A.; Giannini, Caterina; Wu Wenting; Ballman, Karla A.; James, C. David; Sarkaria, Jann N.

    2009-09-01

    Purpose: Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with glioblastoma multiforme (GBM), although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested with a panel of 20 primary GBM xenografts. Methods and Materials: Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. Results: The median survival ratio was significantly higher for O6-methylguanine-DNA methyltransferase (MGMT) methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio, 3.6 vs. 1.5, respectively; p = 0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p = 0.001) but not RT alone (1.7 vs. 1.6; p = 0.47). In an analysis of variance, MGMT methylation status and p53 mutation status were significantly associated with treatment response. When we analyzed the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) of MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment in which RT (week 1) was followed by TMZ (week 2) proved significantly less effective than TMZ followed by RT or concurrent TMZ/RT (survival ratios of 4.0, 9.6 and 12.9, respectively; p < 0.0001). Conclusions: Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors and provides superior antitumor activity relative to sequential administration of RT and TMZ.

  16. Betulinic acid derivatives NVX-207 and B10 for treatment of glioblastoma--an in vitro study of cytotoxicity and radiosensitization.

    PubMed

    Bache, Matthias; Bernhardt, Stephan; Passin, Sarina; Wichmann, Henri; Hein, Anja; Zschornak, Martin; Kappler, Matthias; Taubert, Helge; Paschke, Reinhard; Vordermark, Dirk

    2014-01-01

    Betulinic acid (BA), a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229). Based on IC50 values under normoxic conditions, we detected a 1.3-2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p=0.029) and 1.55 (p=0.002), respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions. PMID:25361208

  17. Differential radiosensitivity in cultured B-16 melanoma cells following interrupted melanogenesis induced by glucosamine

    SciTech Connect

    Mileo, A.M.; Mattei, E.; Fanuele, M.; Delpino, A.; Ferrini, U. )

    1989-05-01

    The relationship between cell pigmentation and radiosensitivity was investigated in a cell model in which melanogenesis was suppressed by a glycosylation inhibitor. It was found that X-irradiation of melanotic B-16 melanoma cells and their amelanotic counterparts, obtained by glucosamine treatment, showed an inverse correlation between radiosensitivity and melanin contents. Since melanogenesis interruption by glucosamine does not affect the DNA repair capacity of nonpigmented cells, it is likely that intracellular melanins play a role in the relative resistance of pigmented cells to X-irradiation.

  18. Stem cell niches in glioblastoma: a neuropathological view.

    PubMed

    Schiffer, Davide; Mellai, Marta; Annovazzi, Laura; Caldera, Valentina; Piazzi, Angela; Denysenko, Tetyana; Melcarne, Antonio

    2014-01-01

    Glioblastoma (GBM) stem cells (GSCs), responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent. PMID:24834433

  19. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells.

    PubMed

    Edalat, Lena; Stegen, Benjamin; Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M

    2016-03-22

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  20. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells

    PubMed Central

    Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2016-01-01

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  1. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells.

    PubMed

    Yang, Wen-Tao; Li, Gen-Hua; Li, Zheng-You; Feng, Song; Liu, Xue-Qin; Han, Guang-Kui; Zhang, Hao; Qin, Xian-Yun; Zhang, Ran; Nie, Quan-Min; Jin, Feng

    2016-01-01

    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell

  2. Effect of Corilagin on the Proliferation and NF-κB in U251 Glioblastoma Cells and U251 Glioblastoma Stem-Like Cells

    PubMed Central

    Yang, Wen-Tao; Li, Gen-Hua; Li, Zheng-You; Feng, Song; Liu, Xue-Qin; Han, Guang-Kui; Zhang, Hao; Qin, Xian-Yun; Zhang, Ran; Nie, Quan-Min; Jin, Feng

    2016-01-01

    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell

  3. Designing CAR T cells for glioblastoma

    PubMed Central

    Maus, Marcela V

    2015-01-01

    Chimeric antigen receptor (CAR)-modified T cells directed against CD19 can mediate long-term durable remissions in B cell malignancies, but bringing a new target antigen to the clinic requires extensive modeling to avoid on-target and off-target toxicity. We recently described a systematic approach to test a new CAR directed against EGFR variant III. PMID:26587317

  4. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck; Bang, Seung Min; Park, Seung Woo; Song, Si Young

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.

  5. Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway.

    PubMed

    Liu, Shihai; Sun, Junfeng; Lan, Qing

    2014-01-01

    Glioblastoma tumor cells release microvesicles, which contain mRNA, miRNA and angiogenic proteins. These tumor-derived microvesicles transfer genetic information and proteins to normal cells. Previous reports demonstrated that the increased microvesicles in cerebrospinal fluid (CSF) of patients with glioblastoma up-regulate procoagulant activity. The concentration of microvesicles was closely related to thromboembolism incidence and clinical therapeutic effects of glioblastoma patients. However, it is still not clear how CSF microvesicles and what factors affect glioblastoma development. In this study, we collected the plasma and CSF from glioblastoma patients and healthy volunteers. Microvesicles acquired from serum or CSF were added to cultured endothelial cells. And the effects of these microvesicles on endothelial cells were examined. Our results showed that microvesicles from CSF of patients, but not from circulating blood, promoted endothelial cells migration and proliferation in vitro. In addition, the degree of endothelial cell proliferation triggered by microvesicles from CSF was reduced when treated with siRNA targeting Akt/beta-catenin, suggesting that the Akt/beta-catenin pathway is involved in the microvesicle-initiated endothelial cell proliferation. In conclusion, glioblastoma mainly affects microvesicles within CSF without showing significant impact on microvesicles in circulating blood. Microvesicles from the CSF of glioblastoma patients may initiate endothelial cell growth and thus promote cell invasion. This effect may be directly exerted by activated Akt/beta-catenin pathway. PMID:25197356

  6. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    SciTech Connect

    Oka, Naoki; Soeda, Akio . E-mail: ccd29400@nyc.odn.ne.jp; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.

  7. Radiation-induced mitotic cell death and glioblastoma radioresistance: a new regulating pathway controlled by integrin-linked kinase, hypoxia-inducible factor 1 alpha and survivin in U87 cells.

    PubMed

    Lanvin, Olivia; Monferran, Sylvie; Delmas, Caroline; Couderc, Bettina; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2013-09-01

    We have previously shown that integrin-linked kinase (ILK) regulates U87 glioblastoma cell radioresistance by modulating the main radiation-induced cell death mechanism in solid tumours, the mitotic cell death. To decipher the biological pathways involved in these mechanisms, we constructed a U87 glioblastoma cell model expressing an inducible shRNA directed against ILK (U87shILK). We then demonstrated that silencing ILK enhanced radiation-induced centrosome overduplication, leading to radiation-induced mitotic cell death. In this model, ionising radiations induce hypoxia-inducible factor 1 alpha (HIF-1α) stabilisation which is inhibited by silencing ILK. Moreover, silencing HIF-1α in U87 cells reduced the surviving fraction after 2 Gy irradiation by increasing cell sensitivity to radiation-induced mitotic cell death and centrosome amplification. Because it is known that HIF-1α controls survivin expression, we then looked at the ILK silencing effect on survivin expression. We show that survivin expression is decreased in U87shILK cells. Furthermore, treating U87 cells with the specific survivin suppressor YM155 significantly increased the percentage of giant multinucleated cells, centrosomal overduplication and thus U87 cell radiosensitivity. In consequence, we decipher here a new pathway of glioma radioresistance via the regulation of radiation-induced centrosome duplication and therefore mitotic cell death by ILK, HIF-1α and survivin. This work identifies new targets in glioblastoma with the intention of radiosensitising these highly radioresistant tumours. PMID:23747271

  8. Association between cellular radiosensitivity and G1/G2 checkpoint proficiencies in human cholangiocarcinoma cell lines.

    PubMed

    Hematulin, Arunee; Sagan, Daniel; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Wongkham, Sopit

    2014-09-01

    Cholangiocarcinoma is a destructive malignancy with a poor prognosis and lack of effective medical treatment. Radiotherapy is an alternative treatment for patients with unresectable cholangiocarcinoma. However, there are limited data on the radiation responsiveness of individual cholangiocarcinoma cells, which is a key factor that influences radiation treatment outcome. In this study, we found that cholangiocarcinoma cell lines differ remarkably in their radiosensitivity. The variation of radiosensitivity of cholangiocarcinoma cells correlates with their p53 status and existing G1 and/or G2 checkpoint defects. We also demonstrated the potential of checkpoint kinase Chk1/2 inhibition on the enhancement of the radiosensitivity of cholangiocarcinoma cells. Thus, this study provides useful information for predicting radiation response and provides evidence for the enchantment of radiotherapeutic efficiency by targeting checkpoint kinase Chk1/2 in some subpopulations of cholangiocarcinoma patients. PMID:24969815

  9. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines

    PubMed Central

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC. PMID:26046692

  10. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells.

    PubMed

    Hirai, Takahisa; Saito, Soichiro; Fujimori, Hiroaki; Matsushita, Keiichiro; Nishio, Teiji; Okayasu, Ryuichi; Masutani, Mitsuko

    2016-09-01

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. PMID:27425251

  11. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter.

  12. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    PubMed

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P < .05). Increased cellular uptake of the fluorophore calcein associated with infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  13. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    PubMed

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy. PMID:24272483

  14. [Evodiamine enhances the radiosensitivity of esophageal squamous cell cancer Eca-109 cells].

    PubMed

    Feng, Hui; Guo, Baorui; Kong, Xiangmei; Wu, Biao

    2016-07-01

    Objective To investigate the effect of evodiamine on the radiosensitivity of esophageal squamous cell cancer Eca-109 cells. Methods Eca-109 cells were treated with various concentrations of evodiamine [(10, 20, 40, 60, 80, 100, 120) μg/mL], and then cell proliferation was examined by MTT assay. After the optimal evodiamine concentration was determined, the cells were divided into radiation group (0, 2, 4, 6, 8 Gy X-ray radiation) and radiation combined with evodiamine group (80 μg/mL evodiamine and 0, 2, 4, 6, 8 Gy X-ray radiation) .The radiosensitivity of Eca-109 cells was detected using colony formation assay. Flow cytometry was used to determine cell cycle of Eca-109 cells. The protein expressions of Ku70, Ku80, DNA-PKcs and Rad51 were examined by Western blotting. Results MTT assay showed that evodiamine decreased the proliferation of Eca-109 cells in a concentration-dependent manner. The inhibition reached the maximal level at 80 μg/mL. Compared with radiotherapy alone, the combination of 80 μg/mL evodiamine and radiotherapy improved survival curve and decreased the values of D0 and Dq. Sensitizer enhancement ratio was 1.86±0.06. Furthermore, cell cycle analysis revealed that evodiamine suppressed radiotherapy-induced the G2/M arrest. Additionally, evodiamine treatment also significantly inhibited radiotherapy-induced increase in Ku70, Ku80, DNA-PKcs and Rad51 expressions. Conclusion Evodiamine enhances radiosensitivity of Eca-109 cells during radiotherapy. The effect may be associated with the inhibition of G2/M arrest and the attenuation of Ku70, Ku80, DNA-PKcs and Rad51 expressions. PMID:27363277

  15. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-08-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  16. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells.

    PubMed

    Schonberg, David L; Miller, Tyler E; Wu, Qiulian; Flavahan, William A; Das, Nupur K; Hale, James S; Hubert, Christopher G; Mack, Stephen C; Jarrar, Awad M; Karl, Robert T; Rosager, Ann Mari; Nixon, Anne M; Tesar, Paul J; Hamerlik, Petra; Kristensen, Bjarne W; Horbinski, Craig; Connor, James R; Fox, Paul L; Lathia, Justin D; Rich, Jeremy N

    2015-10-12

    Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable dependence. PMID:26461092

  17. Late adult onset of Langerhans cell histiocytosis mimicking glioblastoma multiforme.

    PubMed

    Perren, F; Fankhauser, L; Thiévent, B; Pache, J-C; Delavelle, J; Rochat, T; Landis, T; Chizzolini, C

    2011-02-15

    Langerhans cell histiocytosis (LCH) with multiple organ involvement is a rare disorder in adults. Extrapituitary involvement of the central nervous system (CNS) is uncommon. We report the unusual case of a 55-year-old woman presenting with a left-sided hemiataxia-hemiparesis, left hemisensory loss and short-lasting episodes of an alien left hand due to lesions of the internal capsule and the right thalamus, extending into the mesencephalon associated with extensive surrounding edema, without pituitary involvement. The neuroradiological image suggested glioblastoma multiforme. Brain biopsy revealed inflammatory tissue and "pseudotumoral" multiple sclerosis was suspected. Biopsy of concomitant lung and bone lesions disclosed Langerhans cell histiocytosis. The treatment with pulsed steroids in association with mycophenolate mofetil led to a sustained, clinical neurological remission. PMID:21131007

  18. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    PubMed Central

    El Hallani, Soufiane; Colin, Carole; El Houfi, Younas; Boisselier, Blandine; Marie, Yannick; Ravassard, Philippe; Labussière, Marianne; Mokhtari, Karima; Thomas, Jean-Léon; Delattre, Jean-Yves; Eichmann, Anne; Sanson, Marc

    2014-01-01

    Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM). Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF). By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance. PMID:24868550

  19. Coupling of the radiosensitivity of melanocyte stem cells to their dormancy during the hair cycle.

    PubMed

    Ueno, Makiko; Aoto, Takahiro; Mohri, Yasuaki; Yokozeki, Hiroo; Nishimura, Emi K

    2014-07-01

    Current studies have revealed that stem cells are more radiosensitive than mature cells. As somatic stem cells are mostly kept in a quiescent state, this conflicts with Bergonié and Tribondeau's law that actively mitotic cells are the most radiosensitive. In this study, we focused on hair graying to understand the stress-resistance of melanocyte stem cells (McSCs). We used Dct-H2B-GFP transgenic mice which enables the stable visualization of McSCs and an anti-Kit monoclonal antibody which selectively eradicates amplifying McSCs. The results demonstrate that quiescent McSCs are rather radiosensitive, but the coexistence of non-quiescent McSCs provides the stem cell pool with radioresistance. The irradiated quiescent McSCs prematurely differentiate in the niche upon their activation without sufficiently renewing themselves for cyclic hair pigmentation. These data indicate that tissue radiosensitivity is largely dependent on the state of somatic stem cells under their local microenvironment. PMID:24730534

  20. Antiangiogenic Variant of TSP-1 Targets Tumor Cells in Glioblastomas

    PubMed Central

    Choi, Sung Hugh; Tamura, Kaoru; Khajuria, Rajiv Kumar; Bhere, Deepak; Nesterenko, Irina; Lawler, Jack; Shah, Khalid

    2015-01-01

    Three type-1 repeat (3TSR) domain of thrombospondin-1 is known to have anti-angiogenic effects by targeting tumor-associated endothelial cells, but its effect on tumor cells is unknown. This study explored the potential of 3TSR to target glioblastoma (GBM) cells in vitro and in vivo. We show that 3TSR upregulates death receptor (DR) 4/5 expression in a CD36-dependent manner and primes resistant GBMs to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)-induced caspase-8/3/7 mediated apoptosis. We engineered human mesenchymal stem cells (MSC) for on-site delivery of 3TSR and a potent and secretable variant of TRAIL (S-TRAIL) in an effort to simultaneously target tumor cells and associated endothelial cells and circumvent issues of systemic delivery of drugs across the blood–brain barrier. We show that MSC-3TSR/S-TRAIL inhibits tumor growth in an expanded spectrum of GBMs. In vivo, a single administration of MSC-3TSR/S-TRAIL significantly targets both tumor cells and vascular component of GBMs, inhibits tumor progression, and extends survival of mice bearing highly vascularized GBM. The ability of 3TSR/S-TRAIL to simultaneously act on tumor cells and tumor-associated endothelial cells offers a great potential to target a broad spectrum of cancers and translate 3TSR/TRAIL therapies into clinics. PMID:25358253

  1. Daily variation in radiosensitivity of circulating blood cells and bone marrow cell density in mice

    SciTech Connect

    Tabatabai, R.N.

    1984-01-01

    Mice on a 12/12 light/dark cycle were bled during a twenty-four hour period each week for eight weeks to establish daily values of circulating blood cells. No significant daily variation was found in total red blood cells, hematocrit, or percentage of reticulocytes. A significant (P < 0.001) daily variation was found in total white blood cells, with the minimum occurring at 8 PM and the maximum occurring during the daylight hours from 8 a.m. to 2 p.m. Mice were then exposed to 0 R, 20 R, 50 R, or 100 R of x-radiation to determine what dose significantly reduces the total white cell count in circulating blood. It was found that 100 R significantly (P < .05) reduces the total white cell count over a four week period post-exposure. To determine if circulating blood cells and bone marrow cells show a diurnal radiosensitivity, mice were exposed to 100 R or 200 R of x-radiation at noon or midnight. Hematocrits, reticulocyte and white blood cell counts, daily white blood cell rhythm, and bone marrow cell density indicate that these mice were more radiosensitive at night.

  2. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo

    PubMed Central

    Karpel-Massler, Georg; Banu, Matei A.; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N.; Canoll, Peter; Siegelin, Markus D.

    2016-01-01

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  3. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  4. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    SciTech Connect

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-03-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  5. Induction of Cytopathogenicity in Human Glioblastoma Cells by Chikungunya Virus

    PubMed Central

    Abraham, Rachy; Mudaliar, Prashant; Padmanabhan, Aiswaria; Sreekumar, Easwaran

    2013-01-01

    Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against

  6. Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus.

    PubMed

    Abraham, Rachy; Mudaliar, Prashant; Padmanabhan, Aiswaria; Sreekumar, Easwaran

    2013-01-01

    Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against

  7. Slug inhibition increases radiosensitivity of oral squamous cell carcinoma cells by upregulating PUMA.

    PubMed

    Jiang, Fangfang; Zhou, Lijie; Wei, Changbo; Zhao, Wei; Yu, Dongsheng

    2016-08-01

    As a new strategy, radio-gene therapy was widely used for the treatment of cancer patients in recent few years. Slug was involved in the radioresistance of various cancers and has been found to have an anti-apoptotic effect. This study aims to investigate whether the modulation of Slug expression by siRNA affects oral squamous cell carcinoma sensitivity to X-ray irradiation through upregulating PUMA. Two oral squamous cell carcinoma cell lines (HSC3 and HSC6) were transfected with small interfering RNA (siRNA) targeting Slug and subjected to radiotherapy in vitro. After transfection with Slug siRNA, both HSC3 and HSC6 cells showed relatively lower expression of Slug and higher expression of PUMA. The Slug siRNA transfected cells showed decreased survival and proliferation rates, an increased apoptosis rate and enhanced radiosensitivity to X-ray irradiation. Our results revealed that Slug siRNA transfection in combination with radiation increased the expression of PUMA, which contributed to radiosensitivity of oral squamous cell carcinoma cells. Thus, controlling the expression of Slug might contribute to enhance sensitivity of HSC3 and HSC6 cells toward X-ray irradiation in vitro by upregulating PUMA. PMID:27277529

  8. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.

    PubMed

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  9. ROS1 amplification mediates resistance to gefitinib in glioblastoma cells

    PubMed Central

    Zarzour, Ahmad; Park, Byung Sun; Lee, So Ha; Bahassi, El Mustapha

    2015-01-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults and remains incurable despite multimodal intensive treatment regimens. The majority of GBM tumors show a mutated or overexpressed EGFR, however, tumors treated with tyrosine kinase inhibitors (TKIs) will inevitably recur highlighting the need to identify signalling pathways involved in GBM resistance to these drugs. To this end, we treated GBM cells that overexpress EGFR with increasing concentrations of gefitinib and isolated resistant clones. These resistant clones were subject to RNAseq and the expression of several genes was found to be upregulated. These genes are mainly tyrosine kinase receptors and include ROS1, DDR1 and PDGFRA and are known to control several downstream targets of EGFR. The upregulation of ROS1 and DDR1 was confirmed at the protein level by western blot. Treatment with a potent and highly specific pyrazole ROS1 inhibitor in ROS1 overexpressing clones led to a sensitization of these cells to low concentrations of gefitinib. Combined treatment with gefitinib and ROS1 inhibitor induces massive cell death by apoptosis following a prolonged S phase cell cycle arrest. Our current study led to the discovery of alternative pathways used by GBM cells to evade cell death following treatment with gefitinib and identifies new therapeutic targets to prevent GBM cell resistance to the drug. PMID:25978031

  10. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells

    PubMed Central

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  11. Dendritic cell vaccination in glioblastoma after fluorescence-guided resection

    PubMed Central

    Valle, Ricardo Diez; de Cerio, Ascension Lopez-Diaz; Inoges, Susana; Tejada, Sonia; Pastor, Fernando; Villanueva, Helena; Gallego, Jaime; Espinos, Jaime; Aristu, Javier; Idoate, Miguel Angel; Andreu, Enrique; Bendandi, Maurizio

    2012-01-01

    AIM: To assess whether the addition of a customized, active immunotherapy to standard of care including fluorescence-guided surgery, may provide hints of an improved survival for patients with poor-prognosis, incurable glioblastoma multiform. METHODS: Preliminary to our ongoing, phase-II clinical trial, we conducted a small pilot study enrolling five consecutive patients with resectable glioblastoma. In terms of Recursive Partitioning Analysis, four patients were class V and one was class IV. In all five cases, fluorescence-guided surgery was employed, followed by rapid steroid discontinuation. Patients were then treated with a combination of standard radio-chemotherapy with temozolomide and tumor lysate-pulsed, mature dendritic cell-based vaccinations. RESULTS: Though all five patients ultimately progressed, with any further treatment left to the sole decision of the treating oncologist, active immunotherapy was very well tolerated and induced specific immune responses in all three patients for whom enough material was available for such an assessment. Median progression-free survival was 16.1 mo. Even more important, median and mean overall survival were 27 mo and 26 mo, respectively. Three patients have died with an overall survival of 9 mo, 27 mo and 27.4 mo, while the other two are still alive at 32 mo and 36 mo, the former receiving treatment with bevacizumab, while the latter has now been off therapy for 12 mo. Four of five patients were alive at two years. CONCLUSION: Active immunotherapy with tumor lysate-pulsed, autologous dendritic cells is feasible, safe, well tolerated and biologically efficacious. A phase-II study is ongoing to possibly improve further on our very encouraging clinical results. PMID:23293753

  12. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    SciTech Connect

    Oike, Takahiro; Ogiwara, Hideaki; Torikai, Kohta; Nakano, Takashi; Yokota, Jun; Kohno, Takashi

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  13. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells

    PubMed Central

    Dolman, M. Emmy M.; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization. PMID:26716839

  14. Modulating Roles of Amiloride in Irradiation-Induced Antiproliferative Effects in Glioblastoma Multiforme Cells Involving Akt Phosphorylation and the Alternative Splicing of Apoptotic Genes

    PubMed Central

    Tang, Jen-Yang

    2013-01-01

    Apoptosis is a key mechanism for enhanced cellular radiosensitivity in radiation therapy. Studies suggest that Akt signaling may play a role in apoptosis and radioresistance. This study evaluates the possible modulating role of amiloride, an antihypertensive agent with a modulating effect to alternative splicing for regulating apoptosis, in the antiproliferative effects induced by ionizing radiation (IR) in glioblastoma multiforme (GBM) 8401 cells. Analysis of cell viability showed that amiloride treatment significantly inhibited cell proliferation in irradiated GBM8401 cells (p<0.05) in a time-dependent manner, especially in cells treated with amiloride with IR post-treatment. In comparison with GBM8401 cells treated with amiloride alone, with GBM8401 cells treated with IR alone, and with human embryonic lung fibroblast control cells (HEL 299), GBM8401 cells treated with IR combined with amiloride showed increased overexpression of phosphorylated Akt, regardless of whether IR treatment was performed before or after amiloride administration. The alternative splicing pattern of apoptotic protease-activating factor-1 (APAF1) in cells treated with amiloride alone, IR alone, and combined amiloride-IR treatments showed more consistent cell proliferation compared to that in other apoptosis-related genes such as baculoviral IAP repeat containing 5 (BIRC5), Bcl-X, and homeodomain interacting protein kinase-3 (HIPK3). In GBM8401 cells treated with amiloride with IR post-treatment, the ratio of prosurvival (-XL,-LC) to proapoptotic (-LN,-S) splice variants of APAF1 was lower than that seen in cells treated with amiloride with IR pretreatment, suggesting that proapoptotic splice variants of APAF1 (APAF1-LN,-S) were higher in the glioblastoma cells treated with amiloride with IR post-treatment, as compared to glioblastoma cells and fibroblast control cells that had received other treatments. Together, these results suggest that amiloride modulates cell radiosensitivity

  15. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    PubMed Central

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-01-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery. PMID:27549983

  16. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.

    PubMed

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P; Reynolds, Brent A; Lei, Yuguo

    2016-01-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>10(10)-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 10(7) cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery. PMID:27549983

  17. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells

    PubMed Central

    Matsuda, Ken-ichiro; Sato, Atsushi; Okada, Masashi; Shibuya, Keita; Seino, Shizuka; Suzuki, Kaori; Watanabe, Eriko; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2012-01-01

    Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells. PMID:22816039

  18. Radiosensitivity of CD45RO{sup +} memory and CD45RO{sup {minus}} naive T cells in culture

    SciTech Connect

    Uzawa, Akiko; Suzuki, Gen; Nakata, Yukiko; Akashi, Makoto; Ohyama, Harumi; Akanuma, Atsuo

    1994-01-01

    Radiosensitivities of various human T-cell subsets were investigated by a proliferation assay and by a single-cell gel electrophoresis assay. Each T-cell subset was purified using a cell sorter and was induced to proliferate by ionomycin and interleukin 2. Unsorted T cells showed biphasic dose-survival curves, indicating the heterogeneity of T cells in terms of radiosensitivity. Purified CD4{sup +} helper and CD8{sup +} killer T cells showed similar biphasic dose-survival curves. Hence both T-cell subsets were composed of cells of different radiosensitivity. The T-cell subsets belonging to different activation stages such as CD45RO{sup +} memory and CD45RO{sup {minus}} naive T cells had different dose-survival curves. The former was more radiosensitive than the latter. The high radiosensitivity of CD45RO{sup +} cells was also demonstrated by single-cell gel electrophoresis after irradiation. This is the first demonstration that a particular cell surface marker on T cells is correlated with greater radiosensitivity. 27 refs., 7 figs., 1 tab.

  19. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance

    PubMed Central

    Dahan, P; Martinez Gala, J; Delmas, C; Monferran, S; Malric, L; Zentkowski, D; Lubrano, V; Toulas, C; Cohen-Jonathan Moyal, E; Lemarie, A

    2014-01-01

    Glioblastomas (GBM) are some bad prognosis brain tumors despite a conventional treatment associating surgical resection and subsequent radio-chemotherapy. Among these heterogeneous tumors, a subpopulation of chemo- and radioresistant GBM stem-like cells appears to be involved in the systematic GBM recurrence. Moreover, recent studies showed that differentiated tumor cells may have the ability to dedifferentiate and acquire a stem-like phenotype, a phenomenon also called plasticity, in response to microenvironment stresses such as hypoxia. We hypothesized that GBM cells could be subjected to a similar dedifferentiation process after ionizing radiations (IRs), then supporting the GBM rapid recurrence after radiotherapy. In the present study we demonstrated that subtoxic IR exposure of differentiated GBM cells isolated from patient resections potentiated the long-term reacquisition of stem-associated properties such as the ability to generate primary and secondary neurospheres, the expression of stemness markers and an increased tumorigenicity. We also identified during this process an upregulation of the anti-apoptotic protein survivin and we showed that its specific downregulation led to the blockade of the IR-induced plasticity. Altogether, these results demonstrated that irradiation could regulate GBM cell dedifferentiation via a survivin-dependent pathway. Targeting the mechanisms associated with IR-induced plasticity will likely contribute to the development of some innovating pharmacological strategies for an improved radiosensitization of these aggressive brain cancers. PMID:25429620

  20. Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme

    PubMed Central

    Yang, Liu; Guo, Geng; Niu, Xiao-yuan; Liu, Jing

    2015-01-01

    Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment. PMID:26167495

  1. Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide.

    PubMed

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2016-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ-blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM, and perhaps other TMZ-resistant cancers. PMID:26542214

  2. Decitabine Nano-conjugate Sensitizing Human Glioblastoma Cells to Temozolomide

    PubMed Central

    Cui, Yi; Naz, Asia; Thompson, David H.; Irudayaraj, Joseph

    2015-01-01

    In this study we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based nano-conjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells. After synthesis, the highly efficient uptake process and intracellular dynamics of this nano-conjugate was monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nano-vector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing a “positive feedback” to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to excellent internalization and endo-lysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than free drug molecules. Hence, the synthesized nano-conjugate and temozolomide could act in synergy to deliver a more potent and long-term anti-proliferation effect against malignant GBM cells. PMID:25751281

  3. Cell killing, radiosensitization and cell cycle redistribution induced by chronic hypoxia

    SciTech Connect

    Spiro, I.J.; Rice, G.C.; Durand, R.E.; Stickler, R.; Ling, C.C.

    1984-08-01

    Some of the biological changes associated with extreme hypoxia at 37/sup 0/C (less than 10 ppM pO/sub 2/) were examined in Chinese hamster V79 cells. Specifically, extreme hypoxia caused an initial decrease in plating efficiency to 55% in 4 hr after the onset of hypoxia. Beyond this time, the decline in plating efficiency was more gradual reaching 35% of control at 20 hr. Flow microfluorimetry (FMF) studies, in which cells are sorted on the basis of DNA content and then assayed for viability, demonstrated that mid S phase cells were most sensitive to chronic hypoxia. Hypoxia also caused alterations in the cell cycle distribution of initially asynchronous cells, as determined by dual parameter FMF measurements of both cellular DNA content and incorporated BudR. Lastly, cells stored in chronic hypoxia displayed an enhanced radiosensitivity when compared to acutely hypoxic cells.

  4. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D/sub 0/ values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F/sub 1/+/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D/sup 0/ value was about 100 rad for the former and about 800 rad for the latter.

  5. Caspase-dependent signaling underlies glioblastoma cell death in response to the fungal metabolite, fusarochromanone

    PubMed Central

    MAHDAVIAN, ELAHE; MARSHALL, MONIQUE; MARTIN, PATRICK M.; CAGLE, PATRICE; SALVATORE, BRIAN A.; QUICK, QUINCY A.

    2014-01-01

    Fungal metabolites continue to show promise as a viable class of anticancer agents. In the present study, we investigated the efficacy of the fungal metabolite, fusarochromanone (FC101), for its antitumor activities in glioblastomas, which have a median survival of less than two years and a poor clinical response to surgical resection, radiation therapy and chemotherapy. Using clinically applicable doses, we demonstrated that FC101 induced glioblastoma apoptotic cell death via caspase dependent signaling, as indicated by the cleavage of poly(ADP-ribose) polymerase, glioblastoma (PARP). FC101 also induced differential reactive oxygen species (ROS) levels in glioblastoma cells, contrasting a defined role of oxidative stress in apoptotic cell death observed with other fungal metabolites. Furthermore, the antitumorigenic effects of FC101 on tumor cell migration were assessed. Cell migration assays revealed that FC101 significantly reduced the migratory capacity of glioblastomas, which are incredibly invasive tumors. Taken together, the present study establishes FC101 as a candidate anticancer agent for the cooperative treatment of glioblastomas. PMID:25016928

  6. Systematic characterization of lncRNAs' cell-to-cell expression heterogeneity in glioblastoma cells

    PubMed Central

    Dong, Jun; Zhuang, Yan; Huang, Shuyu; Ma, Binbin; Chen, Puxiang; Li, Xiaodong; Zhang, Bo; Li, Zhiguang; Jin, Bilian

    2016-01-01

    Glioblastoma (GBM) is the most common malignant adult brain tumor generally associated with high level of cellular heterogeneity and a dismal prognosis. Long noncoding RNAs (lncRNAs) are emerging as novel mediators of tumorigenesis. Recently developed single-cell RNA-seq provides an unprecedented way for analysis of the cell-to-cell variability in lncRNA expression profiles. Here we comprehensively examined the expression patterns of 2,003 lncRNAs in 380 cells from five primary GBMs and two glioblastoma stem-like cell (GSC) lines. Employing the self-organizing maps, we displayed the landscape of the lncRNA expression dynamics for individual cells. Further analyses revealed heterogeneous nature of lncRNA in abundance and splicing patterns. Moreover, lncRNA expression variation is also ubiquitously present in the established GSC lines composed of seemingly identical cells. Through comparative analysis of GSC and corresponding differentiated cell cultures, we defined a stemness signature by the set of 31 differentially expressed lncRNAs, which can disclose stemness gradients in five tumors. Additionally, based on known classifier lncRNAs for molecular subtypes, each tumor was found to comprise individual cells representing four subtypes. Our systematic characterization of lncRNA expression heterogeneity lays the foundation for future efforts to further understand the function of lncRNA, develop valuable biomarkers, and enhance knowledge of GBM biology. PMID:26918340

  7. Voltage-Gated Proton Channel in Human Glioblastoma Multiforme Cells.

    PubMed

    Ribeiro-Silva, Luisa; Queiroz, Fernanda Oliveira; da Silva, Annielle Mendes Brito; Hirata, Aparecida Emiko; Arcisio-Miranda, Manoel

    2016-07-20

    Solid tumors tend to have a more glycolytic metabolism leading to an accumulation of acidic metabolites in their cytosol, and consequently, their intracellular pH (pHi) turns critically lower if the cells do not handle the acid excess. Recently, it was proposed that the voltage gated proton channels (HV1) can regulate the pHi in several cancers. Here we report the functional expression of voltage gated proton channels in a human glioblastoma multiforme (GBM) cell line, the most common and lethal brain tumor. T98G cells presented an outward, slow activating voltage-dependent proton current, which was also ΔpH-dependent and inhibited by ZnCl2, characterizing it as being conducted by HV1 channels. Furthermore, blocking HV1 channels with ZnCl2 significantly reduced the pHi, cell survival, and migration, indicating an important role for HV1 for tumor proliferation and progression in GBM. Overall, our results suggest that HV1 channels can be a new therapeutic target for GBM. PMID:27225904

  8. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments.

    PubMed

    Jorritsma, J B; Burgman, P; Kampinga, H H; Konings, A W

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed. PMID:3754338

  9. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    SciTech Connect

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-02

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.

  10. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun; Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han; Shih, Wen-Ling; Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  11. Cytokinesis failure and successful multipolar mitoses drive aneuploidy in glioblastoma cells.

    PubMed

    Telentschak, Sergej; Soliwoda, Mark; Nohroudi, Klaus; Addicks, Klaus; Klinz, Franz-Josef

    2015-04-01

    Glioblastoma (GB) is the most frequent human brain tumor and is associated with a poor prognosis. Multipolar mitosis and spindles have occasionally been observed in cultured glioblastoma cells and in glioblastoma tissues, but their mode of origin and relevance have remained unclear. In the present study, we investigated a novel GB cell line (SGB4) exhibiting mitotic aberrations and established a functional link between cytokinesis failure, centrosome amplification, multipolar mitosis and aneuploidy in glioblastoma. Long-term live cell imaging showed that >3% of mitotic SGB4 cells underwent multipolar mitosis (tripolar>tetrapolar>pentapolar). A significant amount of daugther cells generated by multipolar mitosis were viable and completed several rounds of mitosis. Pedigree analysis of mitotic events revealed that in many cases a bipolar mitosis with failed cytokinesis occurred prior to a multipolar mitosis. Additionally, we observed that SGB4 cells were also able to undergo a bipolar mitosis after failed cytokinesis. Colchicine-induced mitotic arrest and metaphase spreads demonstrated that SGB4 cells had a modal chromosome number of 58 ranging from 23 to 170. Approximately 82% of SGB4 cells were hyperdiploid (47-57 chromosomes) or hypotriploid (58-68 chromosomes). In conclusion, SGB4 cells passed through multipolar cell divisions and generated viable progeny by reductive mitoses. Our results identified cytokinesis failure occurring before and after multipolar or bipolar mitoses as important mechanisms to generate chromosomal heterogeneity in glioblastoma cells. PMID:25625503

  12. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  13. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    PubMed Central

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the

  14. The effects of antiepileptic drugs on the growth of glioblastoma cell lines.

    PubMed

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-05-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levetiracetam, magnesium sulfate, oxcarbazepine, phenytoin, primidone, tiagabine, topiramate, valproic acid, and vigabatrin. Dexamethasone and temozolomide were used as a negative and positive control respectively. Our results showed temozolomide and oxcarbazepine significantly inhibited glioblastoma cell growth and reached IC50 at therapeutic concentrations. The other antiepileptic drugs screened were unable to reach IC50 at therapeutic concentrations. The metabolites of oxcarbazepine were also unable to reach IC50. Dexamethasone, ethosuximide, levetiracetam, and vigabatrin showed some growth enhancement though they did not reach statistical significance. The growth enhancement effects of ethosuximide, levetiracetam, and vigabatrin found in the study may indicate that these compounds should not be used for prophylaxis or short term treatment of epilepsy in glioblastoma. While valproic acid and oxcarbazepine were effective, the required dose of valproic acid was far above that used for the treatment of epilepsy and the metabolites of oxcarbazepine failed to reach significant growth inhibition ruling out the use of oral oxcarbazepine or valproic acid as monotherapy in glioblastoma. The possibility of using these compounds as local treatment is a future area of study. PMID:26758059

  15. CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner

    PubMed Central

    Yang, Ying; Roine, Niina; Mäkelä, Tomi P

    2013-01-01

    Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle-related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re-entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK-related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage. PMID:23743448

  16. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna; Delic, Naomi C.; Hong, Angela; Zhang Mei; Rose, Barbara R.; Lyons, J. Guy

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  17. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer. PMID:27220342

  18. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    PubMed Central

    Xie, Yuan; Bergström, Tobias; Jiang, Yiwen; Johansson, Patrik; Marinescu, Voichita Dana; Lindberg, Nanna; Segerman, Anna; Wicher, Grzegorz; Niklasson, Mia; Baskaran, Sathishkumar; Sreedharan, Smitha; Everlien, Isabelle; Kastemar, Marianne; Hermansson, Annika; Elfineh, Lioudmila; Libard, Sylwia; Holland, Eric Charles; Hesselager, Göran; Alafuzoff, Irina; Westermark, Bengt; Nelander, Sven; Forsberg-Nilsson, Karin; Uhrbom, Lene

    2015-01-01

    Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research. PMID:26629530

  19. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    SciTech Connect

    Wilson, D.E.; Anderson, K.M. ); Seed, T.M. )

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  20. Radiosensitization of head and neck squamous cell carcinoma by a SMAC-mimetic compound, SM-164, requires activation of caspases

    PubMed Central

    Yang, Jie; McEachern, Donna; Li, Wenyan; Davis, Mary A.; Li, Hua; Morgan, Meredith A.; Bai, Longchuan; Sebolt, Jonathan T.; Sun, Haiying; Lawrence, Theodore S.; Wang, Shaomeng; Sun, Yi

    2011-01-01

    Chemoradiation is the treatment of choice for locally advanced head and neck squamous cell carcinoma (HNSCC). However, radioresistance, which contributes to local recurrence, remains a significant therapeutic problem. In this study, we characterized SM-164, a small SMAC mimetic compound that promotes degradation of cIAP-1 (also known as BIRC2) and releases active caspases from XIAP inhibitory binding, as a radiosensitizing agent in HNSCC cells. We found that SM-164 at nanomolar concentrations induced radiosensitization in some HNSCC cell lines in a manner dependent on intrinsic sensitivity to caspase activation and apoptosis induction. Blockage of caspase activation via siRNA knockdown or a pan-caspase inhibitor, z-VAD-fmk largely abrogated SM-164 radiosensitization. On the other hand, the resistant lines with a high level of BCL-2 that blocks caspase activation and apoptosis induction became sensitive to radiation upon BCL-2 knockdown. Mechanistic studies revealed that SM-164 radiosensitization in sensitive cells was associated with NFκB activation and TNFα secretion, followed by activation of caspases-8 and -9, leading to enhanced apoptosis. Finally, SM-164 also radiosensitized human tumor xenograft, while causing minimal toxicity. Thus, SM-164 is a potent radiosensitizer via a mechanism involving caspase activation and holds promise for future clinical development as a novel class of radiosensitizer for the treatment of a subset of head and neck cancer patients. PMID:21282353

  1. Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies

    SciTech Connect

    Jain, Suneil; Coulter, Jonathan A.; Hounsell, Alan R.; Butterworth, Karl T.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; O'Sullivan, Joe M.; Hirst, David G.

    2011-02-01

    Purpose: Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Methods and Materials: Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. Results: GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). Conclusions: We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization.

  2. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  3. A novel stem cell culture model of recurrent glioblastoma.

    PubMed

    Qazi, Maleeha A; Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Subapanditha, Minomi K; Murty, Naresh K; Hassell, John A; Hallett, Robin M; Singh, Sheila K

    2016-01-01

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with average disease relapse at 9 months and median survival rarely extending beyond 15 months. Brain tumor stem cells (BTSCs) have been implicated in not only initiating GBM but also conferring resistance to therapy. However, it is not clear whether the BTSC population that initiates tumor growth is also responsible for GBM recurrence. In this study, we have developed a novel in vitro treatment model to profile the evolution of primary treatment-naïve GBM BTSCs through chemoradiotherapy. We report that our in vitro model enriched for a CD15+/CD133- BTSC population, mirroring the phenotype of BTSCs in recurrent GBM. We also show that in vitro treatment increased stem cell gene expression as well as self-renewal capacity of primary GBMs. In addition, the chemoradiotherapy-refractory gene signature obtained from gene expression profiling identified a hyper-aggressive subtype of glioma. The delivery of in vitro chemoradiotherapy to primary GBM BTSCs models several aspects of recurrent GBM biology, and could be used as a discovery and drug-screening platform to uncover new biological drivers and therapeutic targets in GBM. PMID:26498281

  4. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays

    NASA Astrophysics Data System (ADS)

    Xie, W. Z.; Friedland, W.; Li, W. B.; Li, C. Y.; Oeh, U.; Qiu, R.; Li, J. L.; Hoeschen, C.

    2015-08-01

    Abundant studies have focused on the radiosensitization effect of gold nanoparticles (GNPs) in the cellular environment with x-ray irradiation. To better understand the physical foundation and to initially study the molecular radiosensitization effect within the nucleus, a simple cell model with detailed DNA structure in the central nucleus was set up and complemented with different distributions of single and multiple GNPs in this work. With the biophysical Monte Carlo simulation code PARTRAC, the radiosensitization effects on both physical quantities and primary biological responses (DNA strand breaks) were simulated. The ratios of results under situations with GNPs compared to those without GNPs were defined as the enhancement factors (EFs). The simulation results show that the presence of GNP can cause a notable enhancement effect on the energy deposition within a few micrometers from the border of GNP. The greatest upshot appears around the border and is mostly dominated by Auger electrons. The enhancement effect on the DNA strand breakage becomes smaller because of the DNA distribution inside the nucleus, and the corresponding EFs are between 1 and 1.5. In the present simulation, multiple GNPs on the nucleus surface, the 60 kVp x-ray spectrum and the diameter of 100 nm are relatively more effective conditions for both physical and biological radiosensitization effects. These results preliminarily indicate that GNP can be a good radiosensitizer in x-ray radiotherapy. Nevertheless, further biological responses (repair process, cell survival, etc) need to be studied to give more accurate evaluation and practical proposal on GNP’s application in clinical treatment.

  5. Expression and rearrangement of the ROS1 gene in human glioblastoma cells

    SciTech Connect

    Birchmeier, C.; Sharma, S.; Wigler, M.

    1987-12-01

    The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, the authors found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, they detected a potentially activating mutation at the ROS1 locus.

  6. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    SciTech Connect

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias; Santos, Jennifer; Li, Xuejun; Peehl, Donna M.; Knox, Susan J.

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  7. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    PubMed

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P < 0.05) with a sensitizing enhancement ratio of 1.28. Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P < 0.001; P < 0.05). Moreover, compared with the independent radiation group, the andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. PMID:25059546

  8. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. PMID:25959841

  9. Metabolic potentiation of the radiosensitization of hypoxic bacterial cells afforded by nitroaromatic compounds.

    PubMed

    Anderson, R F; Patel, K B

    1983-03-01

    Prolonged preirradiation incubation of nitroaromatic radiosensitizers with Escherichia coli cells has been found to increase the degree of radiosensitization of the cells in anoxia. Studies with E. coli strains which differ in their nitroreductase activity indicate that the increase in sensitization arises from the action of metabolites produced by the nitroreductase system of the cell. The metabolites alone appear to decrease the extrapolation number of irradiated hypoxic cells and when combined with the parent compound give a biphasic survival curve. The combination of misonidazole (1 mmole dm-3) and its metabolites (1 mmole dm-3) gave initial and final enhancement ratios of 2.4 and 1.4, respectively. The final enhancement ratio is that expected for 1 mmole dm-3 misonidazole alone, whereas the initial enhancement ratio indicates that the metabolites potentiate the action of misonidazole. The preirradiation incubation effect is removed by dithiothreitol at concentrations which do not affect the radiosensitization level of the nitroaromatic sensitizer. This result indicates that the active metabolite probably depletes a certain amount of the free-thiol compounds inside the cell which assist in the repair of radiation-induced damage. PMID:6344127

  10. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  11. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.

    PubMed

    Jung, Eun-Hwa; Lee, Han-Na; Han, Gi-Yeon; Kim, Min-Jung; Kim, Chan-Wha

    2016-04-01

    Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood-brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self-renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase-like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down-regulation of ROR1 suppressed the expression of epithelial-mesenchymal transition-related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy. PMID:26923195

  12. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells.

    PubMed

    Generalov, Roman; Kuan, Woo Boon; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2015-05-01

    Nanoparticulates responsive to X-rays offer increased efficacy of radiation therapy. However, successful demonstrations of such nanoparticle use are limited so far due to lack of significant radiosensitizing effects or poor nanoparticle stability in a biological system. Zinc oxide (ZnO) is the most promising biocompatible material for medicinal applications. In this paper, we report preparation and characterization of scintillating ZnO/SiO2 core-shell nanoparticles. The ZnO/SiO2 nanoparticles absorb ultraviolet (UV) radiation (below 360nm) and emit green fluorescence (400-750nm, maximum 550nm). Under X-ray irradiation (200kVp), the nanoparticles scintillate emitting luminescence in the region 350-700nm (maximum 420nm). The synthesized ZnO/SiO2 nanoparticles are stable in a biologically relevant environment (water and cell growth medium). The potential of the ZnO/SiO2 nanoparticles for radiosensitization is demonstrated in human prostate adenocarcinoma cell lines (LNCaP and Du145). The nanoparticles enhance radiation-induced reduction in cell survival about 2-fold for LNCaP and 1.5-fold for Du145 cells. Radiosensitizing effect can be attributed to X-ray-induced radiocatalysis by the nanoparticles. PMID:25829130

  13. Radiosensitization of Human Colorectal Cancer Cells by MLN4924: An Inhibitor of NEDD8-Activating Enzyme.

    PubMed

    Wan, Juefeng; Zhu, Ji; Li, Guichao; Zhang, Zhen

    2016-08-01

    Colorectal cancer is the third most frequently diagnosed cancer and the combination of radiation with capecitabine has been shown to achieve only 15% to 25% of pathologic complete response. This study aimed to investigate the effect of MLN4924, a potent small molecule inhibitor of SKP1-Cullin-F-box proteins E3 ubiquitin ligases, as a novel radiosensitizing agent in colorectal cancer cells. Indeed, we found that MLN4924 effectively sensitized colorectal cancer cells to radiation with a sensitivity-enhancement ratio of 1.61 for HT-29 cells and 1.35 for HCT-116 cells. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest, apoptosis, and DNA damage response through accumulation of p27. Knockdown of p27 via small interfering RNA partially inhibited MLN4924-induced radiosensitization, indicating a causal role played by p27. Our study suggested that MLN4924 could be further developed as a novel radiosensitizing agent against colorectal cancer. PMID:26082455

  14. Regulatory T cells are not a strong predictor of survival for patients with glioblastoma

    PubMed Central

    Thomas, Alissa A.; Fisher, Jan L.; Rahme, Gilbert J.; Hampton, Thomas H.; Baron, Udo; Olek, Sven; Schwachula, Tim; Rhodes, C. Harker; Gui, Jiang; Tafe, Laura J.; Tsongalis, Gregory J.; Lefferts, Joel A.; Wishart, Heather; Kleen, Jonathan; Miller, Michael; Whipple, Chery A.; de Abreu, Francine B.; Ernstoff, Marc S.; Fadul, Camilo E.

    2015-01-01

    Background Regulatory T cells (Tregs) are potentially prognostic indicators in patients with glioblastoma. If differences in frequency of Tregs in tumor or blood account for substantial variation in patient survival, then reliably measuring Tregs may enhance treatment selection and improve outcomes. Methods We measured Tregs and CD3+ T cells in tumors and blood from 25 patients with newly diagnosed glioblastoma. Tumor-infiltrating Tregs and CD3+ T cells, measured by quantitative DNA demethylation analysis (epigenetic qPCR) and by immunohistochemistry, and peripheral blood Treg proportions measured by flow cytometry were correlated with patient survival. Additionally, we analyzed data from The Cancer Genome Atlas (TCGA) to correlate the expression of Treg markers with patient survival and glioblastoma subtypes. Results Tregs, as measured in tumor tissue and peripheral blood, did not correlate with patient survival. Although there was a correlation between tumor-infiltrating Tregs expression by epigenetic qPCR and immunohistochemistry, epigenetic qPCR was more sensitive and specific. Using data from TCGA, mRNA expression of Forkhead box protein 3 (FoxP3) and Helios and FoxP3 methylation level did not predict survival. While the classical glioblastoma subtype corresponded to lower expression of Treg markers, these markers did not predict survival in any of the glioblastoma subtypes. Conclusions Although immunosuppression is a hallmark of glioblastoma, Tregs as measured in tissue by gene expression, immunohistochemistry, or demethylation and Tregs in peripheral blood measured by flow cytometry do not predict survival of patients. Quantitative DNA demethylation analysis provides an objective, sensitive, and specific way of identifying Tregs and CD3+ T cells in glioblastoma. PMID:25618892

  15. Neuronatin in a Subset of Glioblastoma Multiforme Tumor Progenitor Cells Is Associated with Increased Cell Proliferation and Shorter Patient Survival

    PubMed Central

    Bründl, Elisabeth; Brawanski, Alexander; Fang, Xueping; Lee, Cheng S.; Weil, Robert J.; Zhuang, Zhengping; Lonser, Russell R.

    2012-01-01

    Glioblastoma multiforme is the most common and malignant primary brain tumor. Recent evidence indicates that a subset of glioblastoma tumor cells have a stem cell like phenotype that underlies chemotherapy resistance and tumor recurrence. We utilized a new “multidimensional” capillary isoelectric focusing nano-reversed-phase liquid chromatography platform with tandem mass spectrometry to compare the proteomes of isolated glioblastoma tumor stem cell and differentiated tumor cell populations. This proteomic analysis yielded new candidate proteins that were differentially expressed. Specifically, two isoforms of the membrane proteolipid neuronatin (NNAT) were expressed exclusively within the tumor stem cells. We surveyed the expression of NNAT across 10 WHO grade II and III gliomas and 23 glioblastoma (grade IV) human tumor samples and found NNAT was expressed in a subset of primary glioblastoma tumors. Through additional in vitro studies utilizing the U87 glioma cell line, we found that expression of NNAT is associated with significant increases in cellular proliferation. Paralleling the in vitro results, when NNAT levels were evaluated in tumor specimens from a consecutive cohort of 59 glioblastoma patients, the presence of increased levels of NNAT were found to be a an independent risk factor (P = 0.006) for decreased patient survival through Kaplan-Meier and multivariate analysis. These findings indicate that NNAT may have utility as a prognostic biomarker, as well as a cell-surface target for chemotherapeutic agents. PMID:22624064

  16. Molecular Targeting of TRF2 Suppresses the Growth and Tumorigenesis of Glioblastoma Stem Cells

    PubMed Central

    Bai, Yun; Lathia, Justin D.; Zhang, Peisu; Flavahan, William; Rich, Jeremy N.; Mattson, Mark P.

    2014-01-01

    Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within two years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and β3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma. PMID:24909307

  17. Radiosensitizing effect of medroxyprogesterone acetate on endometrial cancer cells in vitro

    SciTech Connect

    Huber, H.; Husslein, P.; Michalica, W.; Wagenbichler, P.

    1984-09-15

    From clinical experience it is known that medroxyprogesterone acetate (MPA) can increase the radiosensitivity of adenocarcinomas of the corpus uteri. This study investigates this phenomenon in vitro. Primary explants of highly differentiated adenocarcinomas were irradiated with or without pretreatment with MPA and compared with an untreated control group and to a group treated with MPA only. Cell culture itself was performed on an agarose medium in order to prevent overgrowth by fibroblasts. Untreated samples formed 43 +/- 5 clones, explants treated with MPA only produced 39 +/- 5 clones, a difference which was not statistically different; samples irradiated without pretreatment produced 16 +/- 8 and samples after combined treatment 9 +/- 3 clones (all values means +/- SD). This numeric reduction of cell growth through preirradiation treatment with MPA was statistically significant. The effect of MPA as a radiosensitizer may be due to its potential to prolong the radiosensitive G2 phase of the cell cycle. This effect of MPA may be useful also in other hormone-dependent tumors.

  18. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    SciTech Connect

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  19. The gangliosides as a possible molecular coupling factor between the proportion of radiosensitive cells in vitro and the metastatic potential in vivo within a human melanoma cell line.

    PubMed Central

    Thomas, C. P.; Buronfosse, A.; Portoukalian, J.; Fertil, B.

    1997-01-01

    With an experimental model of spontaneous lung metastases in immunosuppressed newborn rats, seven clones and variants with different metastatic potential and gangliosides expression were derived from a single parental human melanoma cell line M4Be. The cellular radiosensitivity of M4Be and its seven sublines was estimated using an in vitro colony assay. The total amount of gangliosides in M4Be and its seven sublines was determined by cell extraction and thin-layer chromatography, while the expression of GD3 gangliosides was estimated by flow cytometry with a monoclonal antibody. The radiation-cell survival curves of most clones and variants derived from M4Be showed a zero dose extrapolation clearly lower than 100%, suggesting that two populations of cells of very different radiosensitivity coexist within each of these clones and variants. Although the proportion of radiosensitive cells could be estimated from the shape of the survival curve, its radiosensitivity is too high to be properly evaluated by the colony assay. The eight survival curves differ essentially in the proportion of radiosensitive cells--which varied from 0% to 40% among M4Be and its seven sublines--whereas the cellular radiosensitivity of the radioresistant population was similar among them. The metastatic potential in vivo of M4Be and its seven sublines was not significantly related to the cellular radiosensitivity of their corresponding radioresistant population, but significantly increased with the fraction of radiosensitive cells. This relationship is valid only when the highly metastatic cells are cultured for no more than five passages in vitro as the fraction of radiosensitive cells is rapidly lost during subcultures. The relationship remains valid in vivo as metastatic melanoma-bearing newborn rats whole body irradiated with 20 cGy show no lung metastasis compared with controls. The radiosensitive cell fraction is inversely correlated with both the total ganglioside content (r = 0.84, P

  20. Comparison of the radiosensitivities of neurons and glial cells derived from the same rat brain

    PubMed Central

    KUDO, SHIGEHIRO; SUZUKI, YOSHIYUKI; NODA, SHIN-EI; MIZUI, TOSHIYUKI; SHIRAI, KATSUYUKI; OKAMOTO, MASAHIKO; KAMINUMA, TAKUYA; YOSHIDA, YUKARI; SHIRAO, TOMOAKI; NAKANO, TAKASHI

    2014-01-01

    Non-proliferating cells, such as mature neurons, are generally believed to be more resistant to X-rays than proliferating cells, such as glial and vascular endothelial cells. Therefore, the late adverse effects of radiotherapy on the brain have been attributed to the radiation-induced damage of glial and vascular endothelial cells. However, little is known about the radiosensitivities of neurons and glial cells due to difficulties in culturing these cells, particularly neurons, independently. In the present study, primary dissociated neurons and glial cultures were prepared separately from the hippocampi and cerebrum, respectively, which had been obtained from the same fetal rat on embryonic day 18. X-irradiations of 50 Gy were performed on the cultured neurons and glial cells at 7 and 21 days in vitro (DIV). The cells were fixed at 24 h after irradiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was then performed to measure the apoptotic indices (AIs). The AIs of non-irradiated and irradiated neurons at 7 DIV were 23.7±6.7 and 64.9±4.8%, and those at 21 DIV were 52.1±17.4 and 44.6±12.5%, respectively. The AIs of non-irradiated and irradiated glial cells at 7 DIV were 5.8±1.5 and 78.4±3.3% and those at 21 DIV were 9.6±2.6 and 86.3±4.9%, respectively. Glial cells and neurons were radiosensitive at 7 DIV. However, while glial cells were radiosensitive at 21 DIV, neurons were not. PMID:25120594

  1. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  2. Accelerated tumor invasion under non-isotropic cell dispersal in glioblastomas

    NASA Astrophysics Data System (ADS)

    Fort, Joaquim; Solé, Ricard V.

    2013-05-01

    Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biased random walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction-diffusion-advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread.

  3. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    PubMed Central

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  4. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    SciTech Connect

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  5. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells.

    PubMed Central

    Gladson, C L; Cheresh, D A

    1991-01-01

    Glioblastoma multiforme, the most malignant astroglial-derived tumor, grows as an adherent mass and locally invades normal brain. An examination of adult cerebral glioblastoma biopsy material for the expression of adhesive proteins that might potentiate adhesion and invasion demonstrated tumor cell-associated vitronectin (5/5). In contrast, vitronectin was not detected associated with glial cells in low grade astroglial tumors (0/4), reactive astrogliosis (0/4), or in normal adult cortex and cerebral white matter (0/5). Also, a wide variety of other adhesive ligands were absent from the glioblastoma tumor parenchyma. The alpha v beta 3 integrin was the only vitronectin receptor identified in glioblastoma tumors in situ, and was also not expressed on low grade astroglial-derived tumors, reactive astrogliosis, or on glia or neurons in normal adult cortex and cerebral white matter. In a cell attachment assay, cultured glioblastoma cells attached to the parenchyma of glioblastoma tumor cryostat sections at the sites of vitronectin expression, but failed to attach to normal brain. This adhesion was inhibited by antibodies directed against vitronectin, the alpha v beta 3 integrin, and with an Arg-Gly-Asp-containing peptide. These data provide evidence for a cell adhesion mechanism in glioblastoma tumors that might potentiate glioblastoma cell invasion of normal brain. Images PMID:1721625

  6. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    PubMed

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  7. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line

    PubMed Central

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  8. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  9. Coibamide A Induces mTOR-Independent Autophagy and Cell Death in Human Glioblastoma Cells

    PubMed Central

    Hau, Andrew M.; Greenwood, Jeffrey A.; Löhr, Christiane V.; Serrill, Jeffrey D.; Proteau, Philip J.; Ganley, Ian G.; McPhail, Kerry L.; Ishmael, Jane E.

    2013-01-01

    Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death

  10. Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion.

    PubMed

    Yu, Jian-Bo; Jiang, Hao; Zhan, Ren-Ya

    2016-08-01

    Upregulation of the Notch signaling pathway in cancer stem cells and side population (SP) cells has a major role in maintenance, self-renewal and chemoresistance. The present study isolated a cancer stem cell-like SP accounting for 4.1% of a glioblastoma cell population using a Hoechst 33342 dye exclusion assay. In this glioblastoma SP, the expression of of Notch1 signaling proteins Notch1 intracellular domain and Hes‑1 was markedly upregulated. Furthermore, knockdown of Notch1 by RNA interference significantly diminished the neurosphere formation ability, self‑renewal and chemoresistance of the SP cells. In addition, the expression of the stem‑cell surface genes Oct‑4, Sox2 and Nanog in SP cells was significantly reduced and the sensitivity to the SP cells to chemotherapeutics was enhanced following Notch1 knockdown. In conclusion, the results of the present study suggested that upregulation of Notch1 is involved in the chemotherapy resistance and tumor recurrence of glioblastoma. Hence, the development of novel anti‑cancer drugs targeting the Notch1 signaling pathway may be a promising strategy for curing glioblastoma. PMID:27315154

  11. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1.

    PubMed

    Vance, Sean; Liu, Erqi; Zhao, Lili; Parsels, Joshua D; Parsels, Leslie A; Brown, Jeffery L; Maybaum, Jonathan; Lawrence, Theodore S; Morgan, Meredith A

    2011-12-15

    We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G 2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 'deficient-like' phenotype in p53 mutant tumor cells, while sparing normal tissue. PMID:22134241

  12. Partial knockdown of TRF2 increase radiosensitivity of human mesenchymal stem cells.

    PubMed

    Orun, O; Tiber, P Mega; Serakinci, N

    2016-09-01

    Telomere repeat binding factor TRF2 is a member of shelterin complex with an important role in protecting and stabilizing chromosomal ends. In the present study, we investigated the effect of partial knockdown of TRF2 on radiosensitivity of telomerase immortalized human mesenchymal stem cells (hMSC-telo1), which have a higher radioresistance compared to non telomerized counterpart. Partial knockdown of the protein achieved 15-20% reduction in TRF2 protein levels. The study compared the effect of 2.5Gy radiation in two-four days after irradiation for hMSC-telo1 cells and the cells transfected with siTRF2 and null control vector. Radio-response of the cells were examined using senescence associated β-Gal assay (β-Gal), colony forming assay (CFU) and γ-H2AX phosphorylation. TRF2 deficiency substantially increased radiosensitivity of cells compared to controls in both proliferation and senescence assay (2.4 fold increase in β-Gal, 1.6 fold decrease in CFU). In addition, it increased the γ-H2AX foci as revealed by both immunfluorescence and Western blot analysis. Our data suggests that partial knockdown of TRF2 in hMSC-telo1 cells cause increased γ-H2AX foci which led to fail TRF2 to protect telomeres from radiation thus TRF2 deficiency led to a 1,5-2 fold increase in the radiosensitivity of hMSC-telo1 cells through telomere destabilization. PMID:26598048

  13. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species.

    PubMed

    Liu, Yuanyuan; Fan, Chenghe; Pu, Lv; Wei, Cui; Jin, Haiqiang; Teng, Yuming; Zhao, Mingming; Yu, Albert Cheung Hoi; Jiang, Feng; Shu, Junlong; Li, Fan; Peng, Qing; Kong, Jian; Pan, Bing; Zheng, Lemin; Huang, Yining

    2016-06-01

    Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS. PMID:26983952

  14. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    PubMed Central

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Thomas, Ginu; Zhou, Shouhao; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  15. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    NASA Astrophysics Data System (ADS)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  16. [Optimization and Prognosis of Cell Radiosensitivity Enhancement in vitro and in vivo after Sequential Thermoradiactive Action].

    PubMed

    Belkina, S V; Petin, V G

    2016-01-01

    Previously developed mathematical model of simultaneous action of two inactivating agents has been adapted and tested to describe the results of sequential action. The possibility of applying the mathematical model to the interpretation and prognosis of the increase in radio-sensitivity of tumor cells as well as mammalian cells after sequential action of two high temperatures or hyperthermia and ionizing radiation is analyzed. The model predicts the value of the thermal enhancement ratio depending on the duration of thermal exposure, its greatest value, and the condition under which it is achieved. PMID:27534067

  17. Effect of restoration of retinoblastoma gene function on the radiosensitivity of cells of human tumor cell lines

    SciTech Connect

    Tsang, N.M.; Little, J.B.

    1994-11-01

    To assess the role of expression of the retinoblastoma (RB) gene on the sensitivity of cells to the cytotoxic effects of ionizing radiation, we transfected a normal RB gene into cells of RB{sup +} and RB{sup {minus}} osteosarcoma cell lines and an RB{sup {minus}} prostate carcinoma line and studied the radiosensitivity of the cells before and after transfection. Four transfected clones were isolated from the two RB{sup {minus}} tumor cell lines that expressed the product of the transfected normal RB gene and contained no mutations in the pocket and C-terminal regions by sequencing. A small increase in radiosensitivity was observed in cell lines transfected with the pDOL plasmid vector alone, containing the neo gene and a long terminal repeat (LTR) promoter. However, no significant change in radiosensitivity occurred in transfected cells expressing the normal RB gene compared to controls transfected with an RB{sup {minus}} plasmid. Based on this and other information, we conclude that RB gene function is not involved in the response of these human tumor cells to the cytotoxic effects of radiation. 38 refs., 5 figs., 4 tabs.

  18. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    SciTech Connect

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne; Faethe, Christina; Mueller-Klieser, Wolfgang; Taucher-Scholz, Gisela; Temme, Achim; Schackert, Gabriele

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  19. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  20. MG132 enhances the radiosensitivity of lung cancer cells in vitro and in vivo.

    PubMed

    Zhu, Wei; Liu, Jing; Nie, Jihua; Sheng, Wenjiong; Cao, Han; Shen, Wenhao; Dong, Aijing; Zhou, Jundong; Jiao, Yang; Zhang, Shuyu; Cao, Jianping

    2015-10-01

    Radiotherapy is a common treatment modality for lung cancer, however, radioresistance remains a fundamental barrier to attaining the maximal efficacy. Cancer cells take advantage of the ubiquitin-proteasome system (UPS) for increased proliferation and decreased apoptotic cell death. MG132 (carbobenzoxyl-leucinyl-leucinyl-leucinal‑H), a specific and selective reversible inhibitor of the 26S proteasome, has shown anticancer effect in multiple types of cancers. Previously, we have reported that MG132 enhances the anti‑growth and anti-metastatic effects of irradiation in lung cancer cells. However, whether MG132 can enhance the radiosensitivity in lung cancer cells in vitro and in vivo is still unknown. In this study, we found that MG132 increased apoptosis and dicentric chromosome ratio of A549 and H1299 cells treated by irradiation. Radiation-induced NF-κB expression and IκBα phosphorylation was attenuated in MG132 plus irradiation-treated cells. The in vivo model of H1299 xenografts of nude mice showed that the tumor size of MG132 plus irradiation treated xenografts was smaller than that of irradiation, MG132 or the control group. Moreover, MG132 plus irradiation group showed significant reduced Ki67 expression. Taken together, these results demonstrate that MG132 enhances the radiosensitivity through multiple mechanisms in vitro and in vivo. PMID:26238156

  1. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    SciTech Connect

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard

    2012-05-01

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  2. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  3. Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells.

    PubMed

    Varshney, R; Dwarakanath, Bs; Jain, V

    2005-05-01

    The aim was to exploit simultaneous inhibition of glycolytic and pentose phosphate pathways of energy production for radiosensitization using 2-deoxy-D-glucose (2-DG) and 6-aminonicotinamide (6-AN) in transformed mammalian cells. Two human tumour cell lines (cerebral glioma, BMG-1 and squamous carcinoma cells 4197) were investigated. 2-DG and/or 6-AN added at the time of irradiation were present for 4 h after radiation. Radiation-induced cell death (macrocolony assay), cytogenetic damage (micronuclei formation), cell cycle delay (bromodeoxyuridne (BrdU) pulse chase), apoptosis (externalization of phosphotidylserine (PS) by annexin V), chromatin-bound proliferation cell nuclear antigen (PCNA) and cellular glutathione (GSH) levels were investigated as parameters of radiation response. The presence of 2-DG (5 mM) during and for 4 h after irradiation increased the radiation-induced micronuclei formation and cell death, and caused a time-dependent decrease in GSH levels in BMG-1 cells while no significant effects could be observed in 4197 cells. 6-AN (5 microM) enhanced the radiosensitivity of both cell lines and reduced the GSH content by nearly 50% in gamma-irradiated 4197 cells. Combining 2-DG and 6-AN caused a profound decrease in the GSH content and enhanced the radiation damage in both the cell lines by increasing mitotic and apoptotic cell death. Further, the combination (2-DG + 6-AN) enhanced the radiation-induced G2 block, besides arresting cells in S phase and inhibited the recruitment of PCNA. The combination of 2-DG and 6-AN enhances radiation damage by modifying damage response pathways and has the potential for improving radiotherapy of cancer. PMID:16076755

  4. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer.

    PubMed

    Sears, Catherine R; Cooney, Sean A; Chin-Sinex, Helen; Mendonca, Marc S; Turchi, John J

    2016-04-01

    Non-small cell lung cancers (NSCLC) are commonly treated with a platinum-based chemotherapy such as cisplatin (CDDP) in combination with ionizing radiation (IR). Although clinical trials have demonstrated that the combination of CDDP and IR appear to be synergistic in terms of therapeutic efficacy, the mechanism of synergism remains largely uncharacterized. We investigated the role of the DNA damage response (DDR) in CDDP radiosensitization using two NSCLC cell lines. Using clonogenic survival assays, we determined that the cooperative cytotoxicity of CDDP and IR treatment is sequence dependent, requiring administration of CDDP prior to IR (CDDP-IR). We identified and interrogated the unique time and agent-dependent activation of the DDR in NSCLC cells treated with cisplatin-IR combination therapy. Compared to treatment with CDDP or IR alone, CDDP-IR combination treatment led to persistence of γH2Ax foci, a marker of DNA double-strand breaks (DSB), for up to 24h after treatment. Interestingly, pharmacologic inhibition of DDR sensor kinases revealed the persistence of γ-H2Ax foci in CDDP-IR treated cells is independent of kinase activation. Taken together, our data suggest that delayed repair of DSBs in NSCLC cells treated with CDDP-IR contributes to CDDP radiosensitization and that alterations of the DDR pathways by inhibition of specific DDR kinases can augment CDDP-IR cytotoxicity by a complementary mechanism. PMID:26991853

  5. MiR-124 Radiosensitizes Human Colorectal Cancer Cells by Targeting PRRX1

    PubMed Central

    Huang, Jing; Gao, Fei; Lin, Xiaoshan; He, Lian; Li, Dan; Li, Zhijun; Ding, Yi; Chen, Longhua

    2014-01-01

    One of the challenges in the treatment of colorectal cancer patients is that these tumors show resistance to radiation. MicroRNAs (miRNAs) are involved in essential biological activities, including chemoresistance and radioresistance. Several research studies have indicated that miRNA played an important role in sensitizing cellular response to ionizing radiation (IR). In this study, we found that miR-124 was significantly down-regulated both in CRC-derived cell lines and clinical CRC samples compared with adjacent non-tumor colorectal tissues, MiR-124 could sensitize human colorectal cancer cells to IR in vitro and in vivo. We identified PRRX1, a new EMT inducer and stemness regulator as a novel direct target of miR-124 by using target prediction algorithms and luciferase assay. PRRX1 knockdown could sensitize CRC cells to IR similar to the effects caused by miR-124. Overexpression of PRRX1 in stably overexpressed-miR-124 cell lines could rescue the effects of radiosensitivity enhancement brought by miR-124. Taking these observations into consideration, we illustrated that miR-124 could increase the radiosensitivity of CRC cells by blocking the expression of PRRX1, which indicated miR-124 could act as a great therapeutic target for CRC patients. PMID:24705396

  6. Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo

    SciTech Connect

    Zhuo, Enqing; He, Jiao; Wei, Ting; Zhu, Weiliang; Meng, Hui; Li, Yan; Guo, Linlang; Zhang, Jian

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer First investigated the role of GnT-V on the radiosensitivity of NPC cells in vitro and in vivo. Black-Right-Pointing-Pointer The mechanisms of the changing radiosensitivity were also investigated. Black-Right-Pointing-Pointer In this study, more than one experiment methods were used to investigate a problem. -- Abstract: The purpose of this study was to investigate the role of GnT-V on radiosensitivity in human nasopharyngeal carcinoma (NPC) both in vitro and in vivo, and the possible mechanism. The GnT-V stably suppressed cell line CNE-2 GnT-V/2224 was constructed from CNE-2 by transfection. The radiosensitivity of the cells was studied by CCK-8 assay, flow-cytometry, caspases-3 activity analysis and tumor xenografts model. The expression of Bcl-2, Bax and Bcl-xl was analyzed with or without radiation. The results showed that down-regulation of GnT-V enhanced CNE-2 radiosensitivity. The underlying mechanisms may be link to the cell cycle G2-M arrest and the reduction of Bcl-2/Bax ratio. The results suggest that GnT-V may be a potential target for predicting NPC response to radiotherapy.

  7. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin.

    PubMed

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. PMID:24657544

  8. Phosphoproteome of Human Glioblastoma Initiating Cells Reveals Novel Signaling Regulators Encoded by the Transcriptome

    PubMed Central

    Kozuka-Hata, Hiroko; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Ao-Kondo, Hiroko; Tsumoto, Kouhei; Akiyama, Tetsu; Oyama, Masaaki

    2012-01-01

    Background Glioblastoma is one of the most aggressive tumors with poor prognosis. Although various studies have been performed so far, there are not effective treatments for patients with glioblastoma. Methodology/Principal Findings In order to systematically elucidate the aberrant signaling machinery activated in this malignant brain tumor, we investigated phosphoproteome dynamics of glioblastoma initiating cells using high-resolution nanoflow LC-MS/MS system in combination with SILAC technology. Through phosphopeptide enrichment by titanium dioxide beads, a total of 6,073 phosphopeptides from 2,282 phosphorylated proteins were identified based on the two peptide fragmentation methodologies of collision induced dissociation and higher-energy C-trap dissociation. The SILAC-based quantification described 516 up-regulated and 275 down-regulated phosphorylation sites upon epidermal growth factor stimulation, including the comprehensive status of the phosphorylation sites on stem cell markers such as nestin. Very intriguingly, our in-depth phosphoproteome analysis led to identification of novel phosphorylated molecules encoded by the undefined sequence regions of the human transcripts, one of which was regulated upon external stimulation in human glioblastoma initiating cells. Conclusions/Significance Our result unveils an expanded diversity of the regulatory phosphoproteome defined by the human transcriptome. PMID:22912867

  9. p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression

    PubMed Central

    Landré, Vivien; Antonov, Alexey; Knight, Richard; Melino, Gerry

    2016-01-01

    Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN. PMID:26930720

  10. Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma

    NASA Astrophysics Data System (ADS)

    Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.

    2016-08-01

    Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.

  11. Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance

    SciTech Connect

    Rockwell, S.; Kapp, D.S.

    1982-06-01

    The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazoles - the inhibition of cell-mediated immune responses. (JMT)

  12. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    PubMed

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  13. Identification of Novel Radiosensitizers in a High-Throughput, Cell-Based Screen for DSB Repair Inhibitors

    PubMed Central

    Goglia, Alexander G.; Delsite, Robert; Luz, Antonio N.; Shahbazian, David; Salem, Ahmed F.; Sundaram, Ranjini K.; Chiaravalli, Jeanne; Hendrikx, Petrus J.; Wilshire, Jennifer A.; Jasin, Maria; Kluger, Harriet; Glickman, J. Fraser; Powell, Simon N.; Bindra, Ranjit S.

    2014-01-01

    Most cancer therapies involve a component of treatment which inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radio-sensitization. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) represent the two major pathways by DSBs are repaired in mammalian cells. Here, we report the design and execution of a high-throughput, cell-based small molecule screen for novel DSB repair inhibitors. We miniaturized our recently developed dual NHEJ and HR reporter system into a 384-well plate-based format and interrogated a diverse library of 20,000 compounds for molecules which selectively modulate NHEJ and HR repair in tumor cells. We identified a collection of novel hits which potently inhibit DSB repair, and we have validated their functional activity in comprehensive panel of orthogonal secondary assays. A selection of these inhibitors were found to radiosensitize cancer cell lines in vitro, which suggests they may be useful as novel chemo- and radio-sensitizers. Surprisingly, we identified several FDA-approved drugs, including the calcium channel blocker, mibefradil dihydrochloride, which demonstrated activity as DSB repair inhibitors and radiosensitizers. These findings suggest the possibility for repurposing them as tumor cell radiosensitizers in the future. Accordingly, we recently initiated a Phase I clinical trial testing mibefradil as glioma radiosensitizer. PMID:25512618

  14. Inhibition of PARP1-dependent end-joining contributes to Olaparib-mediated radiosensitization in tumor cells.

    PubMed

    Kötter, Annika; Cornils, Kerstin; Borgmann, Kerstin; Dahm-Daphi, Jochen; Petersen, Cordula; Dikomey, Ekkehard; Mansour, Wael Y

    2014-12-01

    Poly-ADP-ribose-polymerase inhibitors (PARPi) are considered to be optimal tools for specifically enhancing radiosensitivity. This effect has been shown to be replication-dependent and more profound in HR-deficient tumors. Here, we present a new mode of PARPi-mediated radiosensitization which was observed in four out of six HR-proficient tumor cell lines (responders) investigated, but not in normal cells. This effect is replication-independent, as the radiosensitization remained unaffected following the inhibition of replication using aphidicolin. We showed that responders are radiosensitized by Olaparib because their DSB-repair is switched to PARP1-dependent end-joining (PARP1-EJ), as evident by (i) the significant increase in the number of residual γH2AX foci following irradiation with 3Gy and treatment with Olaparib, (ii) the enhanced enrichment of PARP1 at the chromatin after 3Gy and (iii) the inhibition of end-joining activity measured by a specific reporter substrate upon Olaparib treatment. This is the first study which directly demonstrates the switch to PARP1-EJ in tumor cells and its contribution to the response to Olaparib as a radiosensitizer, findings which could widen the scope of application of PARPi in tumor therapy. PMID:25028150

  15. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion

    PubMed Central

    Chen, Wen-Liang; Barszczyk, Andrew; Turlova, Ekaterina; Deurloo, Marielle; Liu, Baosong; Yang, Burton B.; Rutka, James T.; Feng, Zhong-Ping; Sun, Hong-Shuo

    2015-01-01

    Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels. PMID:25965832

  16. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    PubMed Central

    2011-01-01

    Background Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. Methods In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Results Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Conclusion Our

  17. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo.

    PubMed

    Kwon, Su-Jung; Lee, Seul-Ki; Na, Juri; Lee, Shin-Ai; Lee, Han-Sae; Park, Ji-Hye; Chung, June-Key; Youn, Hyewon; Kwon, Jongbum

    2015-02-01

    Radiotherapy treats cancer by inducing DNA double-strand breaks (DSB) in tumor cells using ionizing radiation. However, DNA repair in tumor cells often leads to radioresistance and unsuccessful outcome. Inhibition of DNA repair by targeting repair proteins can increase radiosensitivity of tumor cells. The BRG1 chromatin remodeling enzyme assists DSB repair by stimulating γ-H2AX formation and BRG1 binding to acetylated histones at DSBs via bromodomain (BRD) is critical for this activity. Here, we show that ectopic expression of BRG1-BRD inhibited γ-H2AX and DSB repair after irradiation and increased the radiosensitivity in various human cancer cells, including HT29 colon cancer. Dimerization of BRG1-BRD, increasing its chromatin binding affinity, aggravated the defects in γ-H2AX and DSB repair and further enhanced the radiosensitivity. While little affecting the upstream ATM activation, BRG1-BRD in irradiated HT29 cells inhibited the recruitment of 53BP1 to damaged chromatin, the downstream event of γ-H2AX, and compromised the G2-M checkpoint and increased apoptosis. Importantly, in a xenograft mouse model, BRG1-BRD increased the radiosensitivity of HT29 tumors, which was further enhanced by dimerization. These data suggest that BRG1-BRD radiosensitizes tumor cells by a dominant negative activity against BRG1, which disrupts γ-H2AX and its downstream 53BP1 pathways, leading to inefficient DNA repair, G2-M checkpoint defect, and increased apoptosis. This work therefore identifies BRG1-BRD as a novel tumor radiosensitizer and its action mechanism, providing the first example of chromatin remodeler as a target for improving cancer radiotherapy. PMID:25504753

  18. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells

    PubMed Central

    YAMAMURO, SHUN; SANO, EMIKO; OKAMOTO, YUTAKA; OCHIAI, YUSHI; OHTA, TAKASHI; OGINO, AKIYOSHI; NATSUME, ATSUSHI; WAKABAYASHI, TOSHIHIKO; UEDA, TAKUYA; HARA, HIROYUKI; NAKAYAMA, TOMOHIRO; YOSHINO, ATSUO; KATAYAMA, YOICHI

    2015-01-01

    Glioma stem-like cells (GSCs) are undifferentiated cells that are considered to be an origin of glioblastomas. Furthermore, they may contribute to treatment resistance and recurrence in glioblastomas. GSCs differentiate into differentiated glioma cells (non-glioma stem-like cells: non-GSCs), and interconversion might occur between GSCs and non-GSCs. We investigated whether interferon-beta (IFN-β) could exert any efficacy towards GSCs or such interconversion processes. The neural stem cell marker CD133 and pluripotency marker Nanog in GSCs were analyzed to evaluate their differentiation levels. GSCs were considered to undergo differentiation into non-GSCs upon serum exposure, since the expression of CD133 and Nanog in the GSCs was negatively affected. Furthermore, the cells regained their undifferentiated features upon removal of the serum. However, we verified that IFN-β reduced cell proliferation and tumor sphere formation in GSCs, and induced suppression of the restoration of such undifferentiated features. In addition, we also confirmed that IFN-β suppressed the acquisition process of undifferentiated features in human malignant glioma cell lines. Our data thus suggest that IFN-β could be an effective agent not only through its cell growth inhibitory effect on GSCs but also as a means of targeting the interconversion between GSCs and non-GSCs, indicating the possibility of IFN-β being used to prevent treatment resistance and recurrence in glioblastomas, via the inhibition of undifferentiated features. PMID:26397698

  19. Transcription Factor HBP1 Enhances Radiosensitivity by Inducing Apoptosis in Prostate Cancer Cell Lines

    PubMed Central

    Chen, Yicheng; Wang, Yueping; Yu, Yanlan; Xu, Liwei; Zhang, Youyun; Yu, Shicheng; Li, Gonghui; Zhang, Zhigeng

    2016-01-01

    Radiotherapy for prostate cancer has been gradually carried out in recent years; however, acquired radioresistance often occurred in some patients after radiotherapy. HBP1 (HMG-box transcription factor 1) is a transcriptional inhibitor which could inhibit the expression of dozens of oncogenes. In our previous study, we showed that the expression level of HBP1 was closely related to prostate cancer metastasis and prognosis, but the relationship between HBP1 and radioresistance for prostate cancer is largely unknown. In this study, the clinical data of patients with prostate cancer was compared, and the positive correlation was revealed between prostate cancer brachytherapy efficacy and the expression level of HBP1 gene. Through research on prostate cancer cells in vitro, we found that HBP1 expression levels were negatively correlated with oncogene expression levels. Furthermore, HBP1 overexpression could sensitize prostate cancer cells to radiation and increase apoptosis in prostate cancer cells. In addition, animal model was employed to analyze the relationship between HBP1 gene and prostate cancer radiosensitivity in vivo; the result showed that knockdown of HBP1 gene could decrease the sensitivity to radiation of xenograft. These studies identified a specific molecular mechanism underlying prostate cancer radiosensitivity, which suggested HBP1 as a novel target in prostate cancer radiotherapy. PMID:26942107

  20. Stereotactic Ablative Radiotherapy Should Be Combined With a Hypoxic Cell Radiosensitizer

    SciTech Connect

    Brown, J. Martin; Diehn, Maximilian; Loo, Billy W.

    2010-10-01

    Purpose: To evaluate the effect of tumor hypoxia on the expected level of cell killing by regimens of stereotactic ablative radiotherapy (SABR) and to determine the extent to which the negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer. Results and Discussion: We have calculated the expected level of tumor cell killing from regimens of SABR, both with and without the assumption that 20% of the tumor cells are hypoxic, using the standard linear quadratic model and the universal survival curve modification. We compare the results obtained with our own clinical data for lung tumors of different sizes and with published data from other studies. We also have calculated the expected effect on cell survival of adding the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations. Modeling tumor cell killing with any of the currently used regimens of SABR produces results that are inconsistent with the majority of clinical findings if tumor hypoxia is not considered. However, with the assumption of tumor hypoxia, the expected level of cell killing is consistent with clinical data. For only some of the smallest tumors are the clinical data consistent with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the expected level of tumor cell killing from the large radiation doses used in SABR. Conclusions: The presence of tumor hypoxia is a major negative factor in limiting the curability of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the hypoxic cell radiosensitizer etanidazole.

  1. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro.

    PubMed

    Li, Junyang; Tang, Chao; Li, Liwen; Li, Rujun; Fan, Youwu

    2016-08-01

    We previously demonstrated that the acquired resistance because of Hsp27 activation weakens the cytotoxic effect of t-AUCB on glioblastoma cells. Since autophagy is regarded as a survival mechanism for cells exposed to cytotoxic agents, the aim of this study is to investigate whether t-AUCB induces autophagy and whether Hsp27 and autophagy are interacted with each other. Our data demonstrated that t-AUCB induces autophagy in glioblastoma cells and regulates multiple autophagy related-gene expression. t-AUCB induces overexpression of Atg7, which is downstream of Hsp27 and participates in the resistance of glioblastoma cells to t-AUCB treatment. Hsp27 inhibitor quercetin suppresses Atg7 expression and strengthens t-AUCB-induced cell death by autophagy blockage. We concluded that combination of quercetin and t-AUCB might be a potential strategy for glioblastoma treatment. PMID:27174198

  2. Differences in heat-induced cell killing as determined in three mammalian cell lines do not correspond with the extent of heat radiosensitization.

    PubMed

    Kampinga, H H; Jorritsma, J B; Burgman, P; Konings, A W

    1986-10-01

    Three different cell lines, Ehrlich ascites tumour (EAT) cells, HeLa S3 cells and LM mouse fibroblasts, were used to investigate whether or not the extent of heat killing (44 degrees C) and heat radio-sensitization (44 degrees C before 0-6 Gy X-irradiation) are related. Although HeLa cells were the most heat-resistant cell line and showed the least heat radiosensitization, we found that the most heat-sensitive EAT cells (D0, EAT = 8.0 min; D0, LM = 10.0 min; D0, HeLa = 12.5 min) showed less radiosensitization than the more heat-resistant LM fibroblasts (TERHeLa less than TEREAT less than TERLM). Therefore, it is concluded that the routes leading to heat-induced cell death are not identical to those determining heat radiosensitization. Furthermore the inactivation of DNA polymerase alpha and beta activities by heat seemed not to correlate with heat survival alone but showed a positive relationship to heat radiosensitization. The possibility of these enzymes being a determinant in heat radiosensitization is discussed. PMID:3489689

  3. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth

    PubMed Central

    Bryukhovetskiy, Igor; Manzhulo, Igor; Mischenko, Polina; Milkina, Elena; Dyuizen, Inessa; Bryukhovetskiy, Andrey; Khotimchenko, Yuri

    2016-01-01

    The development of antitumor medication based on autologous stem cells is one of the most advanced methods in glioblastoma multiforme (GBM) treatment. However, there are no objective criteria for evaluating the effectiveness of this medication on cancer stem cells (CSCs). One possible criterion could be a change in the number of microglial cells and their specific location in the tumor. The present study aimed to understand the interaction between microglial cells and CSCs in an experimental glioblastoma model. C6 glioma cells were used to create a glioblastoma model, as they have the immunophenotypic characteristics of CSCs. The glioma cells (0.2×106) were stereotactically implanted into the brains of 60 rats. On the 10th, 20th and 30th days after implantation, the animals were 15 of the animals were sacrificed, and the obtained materials were analyzed by morphological and immunohistochemical analysis. Implantation of glioma cells into the rat brains caused rapid development of tumors characterized by invasive growth, angiogenesis and a high rate of proliferation. The maximum concentration of microglia was observed in the tumor nodule between days 10 and 20; a high proliferation rate of cancer cells was also observed in this area. By day 30, necrosis advancement was observed and the maximum number of microglial cells was concentrated in the invasive area; the invasive area also exhibited positive staining for CSC marker antibodies. Microglial cells have a key role in the invasive growth processes of glioblastoma, as demonstrated by the location of CSCs in the areas of microglia maximum concentration. Therefore, the present study indicates that changes in microglia position and corresponding suppression of tumor growth may be objective criteria for evaluating the effectiveness of biomedical treatment against CSCs. PMID:27602106

  4. Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population

    PubMed Central

    Kaur, Ekjot; Sahu, Aditi; Hole, Arti R.; Rajendra, Jacinth; Chaubal, Rohan; Gardi, Nilesh; Dutt, Amit; Moiyadi, Aliasgar; Krishna, C. Murali; Dutt, Shilpee

    2016-01-01

    An inability to discern resistant cells from bulk tumour cell population contributes to poor prognosis in Glioblastoma. Here, we compared parent and recurrent cells generated from patient derived primary cultures and cell lines to identify their unique molecular hallmarks. Although morphologically similar, parent and recurrent cells from different samples showed variable biological properties like proliferation and radiation resistance. However, total RNA-sequencing revealed transcriptional landscape unique to parent and recurrent populations. These data suggest that global molecular differences but not individual biological phenotype could differentiate parent and recurrent cells. We demonstrate that Raman Spectroscopy a label-free, non-invasive technique, yields global information about biochemical milieu of recurrent and parent cells thus, classifying them into distinct clusters based on Principal-Component-Analysis and Principal-Component-Linear-Discriminant-Analysis. Additionally, higher lipid related spectral peaks were observed in recurrent population. Importantly, Raman spectroscopic analysis could further classify an independent set of naïve primary glioblastoma tumour tissues into non-responder and responder groups. Interestingly, spectral features from the non-responder patient samples show a considerable overlap with the in-vitro generated recurrent cells suggesting their similar biological behaviour. This feasibility study necessitates analysis of a larger cohort of naïve primary glioblastoma samples to fully envisage clinical utility of Raman spectroscopy in predicting therapeutic response. PMID:27221528

  5. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    SciTech Connect

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  6. miR-30e Blocks Autophagy and Acts Synergistically with Proanthocyanidin for Inhibition of AVEN and BIRC6 to Increase Apoptosis in Glioblastoma Stem Cells and Glioblastoma SNB19 Cells

    PubMed Central

    Chakrabarti, Mrinmay; Klionsky, Daniel J.; Ray, Swapan K.

    2016-01-01

    Glioblastoma is the most common and malignant brain tumor in humans. It is a heterogeneous tumor harboring glioblastoma stem cells (GSC) and other glioblastoma cells that survive and sustain tumor growth in a hypoxic environment via induction of autophagy and resistance to apoptosis. So, a therapeutic strategy to inhibit autophagy and promote apoptosis could greatly help control growth of glioblastoma. We created hypoxia using sodium sulfite (SS) for induction of substantiated autophagy in human GSC and glioblastoma SNB19 cells. Induction of autophagy was confirmed by acridine orange (AO) staining and significant increase in Beclin-1 in autophagic cells. microRNA database (miRDB) search suggested that miR-30e could suppress the autophagy marker Beclin-1 and also inhibit the caspase activation inhibitors (AVEN and BIRC6). Pro-apoptotic effect of proanthocyanidin (PAC) has not yet been explored in glioblastoma cells. Combination of 50 nM miR-30e and 150 μM PAC acted synergistically for inhibition of viability in both cells. This combination therapy most effectively altered expression of molecules for inhibition of autophagy and induced extrinsic and intrinsic pathways of apoptosis through suppression of AVEN and BIRC6. Collectively, combination of miR-30e and PAC is a promising therapeutic strategy to inhibit autophagy and increase apoptosis in GSC and SNB19 cells. PMID:27388765

  7. Baicalein Inhibits MCF-7 Cell Proliferation In Vitro, Induces Radiosensitivity, and Inhibits Hypoxia Inducible Factor.

    PubMed

    Gade, Shruti; Gandhi, Nitin Motilal

    2015-01-01

    Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors. Results presented in this study indicate that Baicalein (BA) inhibits HIF stabilization and also reduces its transcription activity in MCF-7 cells in vitro. Furthermore, BA was found to have antiproliferative ability as determined by the MTT assay and clonogenic survival. BA also induces apoptosis in MCF-7 cells at the concentration of 50 µM. We also report the radiosensitization of MCF-7 cells when they are treated with BA, resulting in higher γ-radiation-induced DNA damage. BA is extensively used in Chinese medicine and is known to be nontoxic at pharmacological doses. Our studies indicate that BA is one of the attractive natural compounds suitable for further evaluation as an adjuvant therapy. PMID:26756423

  8. A serially transplantable human giant cell glioblastoma that maintains a near-haploid stem line.

    PubMed

    Bigner, S H; Mark, J; Schold, S C; Eng, L F; Bigner, D D

    1985-10-01

    We have karyotyped a human giant cell glioblastoma removed from an 11-year-old girl and have established from it a subcutaneously transplantable line in athymic nude mice. The original tumor contained near-haploid cells with 25 or 26 chromosomes, including two copies of #1, (7 or 7p+) and #18. There were also hyperdiploid (49-52) cells that were tetraploid for these same three chromosome types; doubled versions of the hyperdiploid population were also seen. The stemline of the mouse-grown tumor was 26,X, +1, +7p+, +18 in the first passage and has remained consistently near-haploid through ten serial in vivo passages. Growth stabilization has occurred with an average latency of less than 3 months. This transplantable line is available for evaluating chemotherapeutic responsiveness of human giant cell glioblastoma and for studying near-haploidy in solid human tumors. PMID:3840409

  9. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells.

    PubMed

    Meidanchi, Alireza; Akhavan, Omid; Khoei, Samideh; Shokri, Ali A; Hajikarimi, Zahra; Khansari, Nakisa

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy. PMID:25492003

  10. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; Ďurišová, Kamila; Link, Marek; Vávrová, Jiřina; Řezáčová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  11. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma

    PubMed Central

    Bagó, Juli R.; Alfonso-Pecchio, Adolfo; Okolie, Onyi; Dumitru, Raluca; Rinkenbaugh, Amanda; Baldwin, Albert S.; Miller, C. Ryan; Magness, Scott T.; Hingtgen, Shawn D.

    2016-01-01

    Transdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer. We find that iNSCs genetically engineered with optical reporters and tumouricidal gene products retain the capacity to differentiate and induced apoptosis in co-cultured human glioblastoma cells. Time-lapse imaging shows that iNSCs are tumouritropic, homing rapidly to co-cultured glioblastoma cells and migrating extensively to distant tumour foci in the murine brain. Multimodality imaging reveals that iNSC delivery of the anticancer molecule TRAIL decreases the growth of established solid and diffuse patient-derived orthotopic glioblastoma xenografts 230- and 20-fold, respectively, while significantly prolonging the median mouse survival. These findings establish a strategy for creating autologous cell-based therapies to treat patients with aggressive forms of brain cancer. PMID:26830441

  12. Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells.

    PubMed

    Kig, Cenk; Beullens, Monique; Beke, Lijs; Van Eynde, Aleyde; Linders, Johannes T; Brehmer, Dirk; Bollen, Mathieu

    2013-08-16

    Maternal embryonic leucine zipper kinase (MELK) belongs to the subfamily of AMP-activated Ser/Thr protein kinases. The expression of MELK is very high in glioblastoma-type brain tumors, but it is not clear how this contributes to tumor growth. Here we show that the siRNA-mediated loss of MELK in U87 MG glioblastoma cells causes a G1/S phase cell cycle arrest accompanied by cell death or a senescence-like phenotype that can be rescued by the expression of siRNA-resistant MELK. This cell cycle arrest is mediated by an increased expression of p21(WAF1/CIP1), an inhibitor of cyclin-dependent kinases, and is associated with the hypophosphorylation of the retinoblastoma protein and the down-regulation of E2F target genes. The increased expression of p21 can be explained by the consecutive activation of ATM (ataxia telangiectasia mutated), Chk2, and p53. Intriguingly, the activation of p53 in MELK-deficient cells is not due to an increased stability of p53 but stems from the loss of MDMX (mouse double minute-X), an inhibitor of p53 transactivation. The activation of the ATM-Chk2 pathway in MELK-deficient cells is associated with the accumulation of DNA double-strand breaks during replication, as demonstrated by the appearance of γH2AX foci. Replication stress in these cells is also illustrated by an increased number of stalled replication forks and a reduced fork progression speed. Our data indicate that glioblastoma cells have elevated MELK protein levels to better cope with replication stress during unperturbed S phase. Hence, MELK inhibitors hold great potential for the treatment of glioblastomas as such or in combination with DNA-damaging therapies. PMID:23836907

  13. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells.

    PubMed

    Ke, Shaobo; Zhou, Fuxiang; Yang, Hui; Wei, Yuehua; Gong, Jun; Mei, Zijie; Wu, Lin; Yu, Haijun; Zhou, Yunfeng

    2015-03-01

    The functions of the high mobility group box 1 (HMGB1) in tumor cells include replenishing telomeric DNA and maintaining cell immortality. There is a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Our aim was to elucidate the relationship among HMGB1, telomere homeostasis and radiosensitivity in MCF-7 cells. In this study, we established stably transfected control (MCF-7-NC) and HMGB1 knockdown (MCF-7-shHMGB1) cell lines. The expression of HMGB1 mRNA and the relative telomere length were examined by real-time PCR. Radiosensitivity was detected by clonogenic assay. The protein expressions were determined by western blot analysis. The telomerase activity was detected by PCR-ELISA. Proliferation ability was examined by CCK-8 assay. Cell cycle and apoptosis were examined by flow cytometry. DNA damage foci were detected by immunofluorescence. ShRNA-mediated downregulation of HMGB1 expression increased the radiosensitivity of MCF-7 cells, and reduced the accumulation of hTERT and cyclin D1. Moreover, knockdown of HMGB1 in MCF-7 cells inhibited telomerase activity and cell proliferation, while increasing the extent of apoptosis. Downregulation of HMGB1 modulated telomere homeostasis by changing the level of telomere-binding proteins, such as TPP1 (PTOP), TRF1 and TRF2. This downregulation also inhibited the ATM and ATR signaling pathways. The current data demonstrate that knockdown of HMGB1 breaks telomere homeostasis, enhances radiosensitivity, and suppresses the repair of DNA damage in human breast cancer cells. These results suggested that HMGB1 might be a potential radiotherapy target in human breast cancer. PMID:25501936

  14. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    SciTech Connect

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  15. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    SciTech Connect

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  16. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-01-01

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes. PMID:26125914

  17. Metabolic Patterns and Biotransformation Activities of Resveratrol in Human Glioblastoma Cells: Relevance with Therapeutic Efficacies

    PubMed Central

    Shu, Xiao-Hong; Li, Hong; Sun, Xiao-Xin; Wang, Qian; Sun, Zheng; Wu, Mo-Li; Chen, Xiao-Yan; Li, Chong; Kong, Qing-You; Liu, Jia

    2011-01-01

    Background Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s). Methodology/Principal Findings Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s), brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3) were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1) in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. Conclusions/Significance LN-18 glioblastoma cells are insensitive to resveratrol due to the more inducible brain

  18. Down-regulation of HSP60 Suppresses the Proliferation of Glioblastoma Cells via the ROS/AMPK/mTOR Pathway

    PubMed Central

    Tang, Haiping; Li, Jin; Liu, Xiaohui; Wang, Guihuai; Luo, Minkui; Deng, Haiteng

    2016-01-01

    Glioblastoma is a fatal and incurable cancer with the hyper-activated mTOR pathway. HSP60, a major chaperone for maintenance of mitochondrial proteostasis, is highly expressed in glioblastoma patients. To understand the effects of HSP60 on glioblastoma tumorigenesis and progression, we characterized the HSP60-knockdowned glioblastoma cells and revealed that HSP60 silencing markedly suppressed cell proliferation and promoted cell to undergo the epithelial-mesenchymal transition (EMT). Proteomic analysis showed that ribosomal proteins were significantly downregulated whereas EMT-associated proteins were up-regulated in HSP60-knockdowned U87 cells as confirmed by a distinct enrichment pattern in newly synthesized proteins with azido-homoalanine labeling. Biochemical analysis revealed that HSP60 knockdown increased reactive oxygen species (ROS) production that led to AMPK activation, similarly to the complex I inhibitor rotenone-induced AMPK activation. Activated AMPK suppressed mTORC1 mediated S6K and 4EBP1 phosphorylation to decrease protein translation, which slowed down cell growth and proliferation. On the other hand, high levels of ROS in HSP60 knockdowned or rotenone-treated U87 cells contributed to EMT. These results indicate that HSP60 silencing deactivates the mTOR pathway to suppress glioblastoma progression, suggesting that HSP60 is a potential therapeutic target for glioblastoma treatment. PMID:27325206

  19. The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis.

    PubMed

    Lépinoux-Chambaud, Claire; Eyer, Joël

    2013-10-01

    Glioblastoma are the most frequent and aggressive tumour of the nervous system despite surgical resection associated with chemotherapy and radiotherapy. Recently, we showed that the NFL-TBS.40-63 peptide corresponding to the sequence of a tubulin-binding site of neurofilaments, enters selectively in glioblastoma cells where it blocks microtubule polymerization, inhibits their proliferation, and reduces tumour development in rats bearing glioblastoma (Bocquet et al., 2009; Berges et al., 2012a). Here, we characterized the molecular mechanism responsible for the uptake of NFL-TBS.40-63 peptide by glioblastoma cells. Unlike other cell penetrating peptides (CPPs), which use a balance between endocytosis and direct translocation, the NFL-TBS.40-63 peptide is unable to translocate directly through the membrane when incubated with giant plasma membrane vesicles. Then, using a panel of markers and inhibitors, flow cytometry and confocal microscopy investigations showed that the uptake occurs mainly through endocytosis. Moreover, glycosaminoglycans and αVβ3 integrins are not involved in the NFL-TBS.40-63 peptide recognition and internalization by glioblastoma cells. Finally, the signalling of tyrosine kinase receptors is involved in the peptide uptake, especially via EGFR overexpressed in tumour cells, indicating that the uptake of NFL-TBS.40-63 peptide by glioblastoma cells is related to their abnormally high proliferative activity. PMID:23603097

  20. Transcription factor 3 controls cell proliferation and migration in glioblastoma multiforme cell lines.

    PubMed

    Li, Ruiting; Li, Yinghui; Hu, Xin; Lian, Haiwei; Wang, Lei; Fu, Hui

    2016-06-01

    Transcription factor 3 (TCF3) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family. Recent studies have demonstrated its potential carcinogenic properties. Here we show that TCF3 was upregulated in glioma tissues compared with normal brain tissues. This upregulation of the TCF3 gene probably has functional significance in brain-tumor progression. Our studies on glioblastoma multiforme (GBM) cell lines show that knock-down of TCF3 induced apoptosis and inhibited cell migration. Further analysis revealed that down-regulation of TCF3 gene expression inhibits Akt and Erk1/2 activation, suggesting that the carcinogenic properties of TCF3 in GBM are partially mediated by the phosphatidylinositol 3-kinase-Akt and MAPK-Erk signaling pathways. Considered together, the results of this study demonstrate that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways. PMID:27105323

  1. Effect of hypoxic cell radiosensitizers on glutathione level and related enzyme activities in isolated rat hepatocytes

    SciTech Connect

    Noguchi, K.; Hattori, T.; Igarashi, T.; Ueno, K.; Satoh, T.; Kitagawa, H.; Hori, H.; Shibata, T.; Inayama, S.

    1985-08-19

    A comparative study of the effect of misonidazole and novel radiosensitizers on glutathione (GSH) levels and related enzyme activities in isolated rat hepatocytes was performed. Incubation of hepatocytes with 5 mM radiosensitizers led to a decrease in the intracellular GSH level. The most pronounced decrease in cellular GSH was evoked by 2,4-dinitromidazole-1-ethanol (DNIE); after incubation for only 15 min, GSH was hardly detected. DNIE-mediated GSH loss was dependent upon its concentration. DNIE reacted with GSH nonenzymatically as well as with diethylmaleate, while misonidazole and 1-methyl-2-methyl-sulfinyl-5-methoxycarbonylimidazole (KIH-3) did not. Addition of partially purified glutathione S-transferase (GST) did not enhance DNIE-mediated GSH loss in a cell-free system. DNIE inhibited glutathione peroxidase (GSH-Px), GST, and glutathione reductase (GSSG-R) activities in hepatocytes, while misonidazole and KIH-3 did not. GSH-Px activity assayed with H/sub 2/O/sub 2/ as substrate was the most inhibited. Inhibition of GSH-Px activity assayed with cumene hydroperoxide as substrate and GST was less than that of GSH-Px assayed with H/sub 2/O/sub 2/ as substrate. GSSG-R activity was decreased by DNIE, but not significantly. Incubation of purified GSH-Px with DNIE resulted in a little change in the activity when assayed with H/sub 2/O/sub 2/ as substrate. 26 references, 2 figures, 4 tables.

  2. Puerarin inhibits proliferation and induces apoptosis in human glioblastoma cell lines

    PubMed Central

    Yang, Ji-An; Li, Ji-Qiang; Shao, Ling-Min; Yang, Qian; Liu, Bao-Hui; Wu, Ting-Feng; Wu, Peng; Yi, Wei; Chen, Qian-Xue

    2015-01-01

    Puerarin has been widely used in clinical treatment and experiment research and is considered to exert an anticancer effect recently. The present study investigated the anticancer activity of puerarin in U251 and U87 human glioblastoma cells. The cells were treated with puerarin at various concentrations for different times. Cell viability and cell proliferation were detected by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2’-deoxyuridine (EdU) staining respectively. Cell cycle and apoptosis were measured separately with PI staining and Annexin V-FITC/PI double staining method by flow cytometry. DNA damage of glioblastoma cells caused by puerarin exposure was evaluated by γ-H2AX foci detection, and the expressions of p-AKT, caspase-3 and apoptosis-related proteins were detected by Western blotting after puerarin treatment. Cell viability and proliferation of glioblastoma cells treated with puerarin were significantly lower than that of the control group; the apoptosis rate increased obviously compared to the control group. Puerarin significantly decreased the proportion at G1 phase of cell cycling accompanied by increased populations at the S and G2/M phases in both cell lines. At the same time, DNA damage level of puerarin treated cells was significantly higher than that in the control cells. Moreover, puerarin treatment suppressed the expression of p-Akt and Bcl-2 and promoted the expression of Bax and cleaved caspase-3 in U251 cells. These findings indicate that puerarin exerts antitumor effects both in U251 and U87 cells. PMID:26309712

  3. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.

    PubMed

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T

    2015-12-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  4. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

    PubMed Central

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T.

    2015-01-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  5. Isoalantolactone Enhances the Radiosensitivity of UMSCC-10A Cells via Specific Inhibition of Erk1/2 Phosphorylation

    PubMed Central

    Hu, Jiehua; Wang, Hongyan; Li, Lihua; Liu, Hua

    2015-01-01

    Background Although radiotherapy is one of the mainstream approaches for the treatment of head and neck squamous cell carcinoma (HNSCC), this cancer is always associated with resistance to radiation. In this study, the mechanism of action of isoalantolactone as well as its radiosensitizing effect was investigated in UMSCC-10A cells. Methods The radiosensitization of UMSCC-10A cells treated with isoalantolactone was analyzed by colony formation assay. The radiosensitization effects of isoalantolactone on cell proliferation, cell cycle and apoptosis regulation were examined by BrdU incorporation assay, DNA content assay and flow cytometry, respectively. Western blotting was performed to determine the effects of isoalantolactone combined with radiation on the protein expression of Mek, extracellular signal-regulated kinase (Erk1/2) as well as phosphorylated Mek and Erk1/2. Erk1/2 knockdown by siRNA was used to confirm that isoalantolactone specifically inhibited the activation of Erk1/2 signaling pathway in UMSCC-10A cells. Results Isoalantolactone enhanced the radiosensitivity of UMSCC-10A cells; the sensitivity enhanced ratios (SERs) were 1.44 and 1.63, respectively, for 2.5 and 5 μM. Moreover, isoalantolactone enhanced radiation-induced cell proliferation and apoptosis and cell cycle arrested at G2/M phase. Furthermore, no marked changes were observed in the expression of total Erk1/2 and Mek protein after radiation treatment. However, isoalantolactone was significantly reduced radiation-induced the phosphorylation of Erk1/2, whereas it altered the phosphorylation of Mek to a lesser extent. In addition, the radiosensitivity of UMSCC-10A cells with Erk1/2 knockdown was increased. Isoalantolactone cannot further prevent the proliferation of UMSCC-10A cells with Erk1/2 knockdown which other mechanism regulated cell proliferation. Conclusion Our results suggested that isoalantolactone enhanced radiation-induced apoptosis, cell cycle arrested and reduced the cell

  6. Do Increased Doses to Stem-Cell Niches during Radiation Therapy Improve Glioblastoma Survival?

    PubMed Central

    Adeberg, Sebastian; Harrabi, Semi Ben; Mohr, Angela; Rieber, Juliane; Rieken, Stefan; Debus, Juergen

    2016-01-01

    Background and Purpose. The reasons for the inevitable glioblastoma recurrence are yet understood. However, recent data suggest that tumor cancer stem cells (CSCs) in the stem-cell niches, with self-renewing capacities, might be responsible for tumor initiation, propagation, and recurrence. We aimed to analyze the effect of higher radiation doses to the stem-cell niches on progression-free survival (PFS) and overall survival (OS) in glioblastoma patients. Materials and Methods. Sixty-five patients with primary glioblastoma treated with radiation therapy were included in this retrospective analysis. The SVZ and DG were segmented on treatment planning magnetic resonance imaging, and the dose distributions to the structures were calculated. The relationship of dosimetry data and survival was evaluated using the Cox regression analysis. Results. Conventionally fractionated patients (n = 54) who received higher doses (Dmean ≥ 40 Gy) to the IL SVZ showed improved PFS (8.5 versus 5.2 months; p = 0.013). Furthermore, higher doses (Dmean ≥ 30 Gy) to the CL SVZ were associated with increased PFS (10.1 versus 6.9 months; p = 0.025). Conclusion. Moderate higher IL SVZ doses (≥40 Gy) and CL SVZ doses (≥30 Gy) are associated with improved PFS. Higher doses to the DG, the second stem-cell niche, did not influence the survival. Targeting the potential cancer stem cells in the SVZ might be a promising treatment approach for glioblastoma and should be addressed in a prospective randomized trial. PMID:27429623

  7. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase.

    PubMed

    Jayakumar, Sundarraj; Patwardhan, R S; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K

    2016-09-01

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. PMID:27381867

  8. HDAC inhibition radiosensitizes human normal tissue cells and reduces DNA Double-Strand Break repair capacity.

    PubMed

    Purrucker, Jan C; Fricke, Andreas; Ong, Mei Fang; Rübe, Christian; Rübe, Claudia E; Mahlknecht, Ulrich

    2010-01-01

    HDAC inhibitors (HDACi) are gaining increasing attention in the treatment of cancer, particularly in view of their therapeutic effectiveness and assumed mild toxicity profile. While numerous studies have investigated the role of HDACi in tumor cells, little is known about their effects on normal tissue cells. We studied the effect of suberoylanilide hydroxamic acid (SAHA), MS275, sodium-butyrate and valproic acid in healthy human fibroblasts and found HDACi-treatment to go along with increased radiosensitivity and reduced DSB repair capacity. In view of the potential genotoxic effects of HDACi-treatment, particularly when being administered long-term for chronic disease or when given to children, to women of childbearing age or their partners or in combination with radiotherapy, an extensive education of patients and prescribing physicians as well as a stringent definition of clinical indications is urgently required. PMID:19956891

  9. Equine Herpesvirus Type 1-Mediated Oncolysis of Human Glioblastoma Multiforme Cells

    PubMed Central

    Courchesne, Michael J.; White, Maria C.; Stanfield, Brent A.

    2012-01-01

    The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells. PMID:22205738

  10. Inhibition of monocarboxylate transporter 1 suppresses the proliferation of glioblastoma stem cells.

    PubMed

    Takada, Tetsuya; Takata, Kazuyuki; Ashihara, Eishi

    2016-09-01

    Recent evidence suggests that a minor subset of cancer cells, termed cancer stem cells (CSCs), have self-renewal and tumorigenic potential. Therefore, the characterization of CSCs is important for developing therapeutic strategies against cancer. Cancer cells rely on anaerobic glycolysis to produce ATP even under normoxic conditions, resulting in the generation of excess acidic substances. Cancer cells maintain a weakly alkaline intracellular pH to support functions. Glioblastoma is an aggressive malignancy with a poor 5-year survival rate. Based on the hypothesis that ion transport-related molecules regulate the viability and function of CSCs, we investigated the expression of ion transport-related molecules in glioblastoma CSCs (GSCs). Quantitative RT-PCR analysis showed that monocarboxylate transporter1 (MCT1) were upregulated in GSCs, and inhibition of MCT1 decreased the viability of GSCs compared with that of non-GSCs. Our findings indicate that MCT1 is involved in the maintenance of GSCs and is a promising therapeutic target for glioblastoma. PMID:26902636