Sample records for radiosensitizes malignant human

  1. Human Central Nervous System Distribution of c\\/s-Diamminedichloroplatinum and Use as a Radiosensitizer in Malignant Brain Tumors1

    Microsoft Academic Search

    David J. Stewart; Milam Leavens; Moshe Maor; Lyn Feun; Mario Luna; Jeanne Bonura; Richard Caprioli; Ti Li Loo; Robert S. Benjamin

    The human central nervous system pharmacology of c\\/'s- diamminedichloroplatinum (CDDP) was studied, and trials were initiated of CDDP as a radiosensitizer in the treatment of malignant primary brain tumors. Samples were assayed for platinum using X-ray-dispersive fluorescence spectrometry. Platinum was barely detectable in cerebrospinal fluid from two patients and was not detectable (<0.10 ftg\\/ml) in cerebrospinal fluid from three patients

  2. Book Review: Human Radiosensitivity

    SciTech Connect

    Morgan, William F.

    2013-11-01

    This well written report reviews the evidence for variation in human sensitivity to ionizing radiation from epidemiological, clinical, animal, and experimental studies. The report also considers the mechanism(s) of radiation sensitivity and the ethical implications of current and potential knowledge that might be gained in the future. The report is concisely written, considers a large number of historical as well as recent studies, and features a ‘ bullet like ’ summary at the end of each chapter that captures the salient points.

  3. Absence of p350 Subunit of DNA-Activated Protein Kinase from a Radiosensitive Human Cell Line

    Microsoft Academic Search

    Susan P. Lees-Miller; Roseline Godbout; Doug W. Chan; Michael Weinfeld; Rufus S. Day III; Geraldine M. Barron; Joan Allalunis-Turner

    1995-01-01

    The radiosensitive rodent mutant cell line xrs-5 is defective in DNA double-strand break repair and lacks the Ku component of the DNA-activated protein kinase, DNA-PK. Here radiosensitive human cell lines were analyzed for DNA-PK activity and for the presence of related proteins. The radiosensitive human malignant glioma M059J cell line was found to be defective in DNA double-strand break repair,

  4. The radiosensitivity of the human oocyte

    Microsoft Academic Search

    W. H. B. Wallace; A. B. Thomson; T. W. Kelsey

    2003-01-01

    BACKGROUND: We determined the best model available for natural follicle decline in healthy women and used this to calculate the radiosensitivity of the human oocyte. METHODS: Ovarian failure was diagnosed in six patients with a median age of 13.2 years (range 12.5-16.0) who were treated with total body irradiation (14.4 Gy) at 11.5 years of age (4.9-15.1). We previously estimated

  5. Inhibition of Akt by the alkylphospholipid perifosine does not enhance the radiosensitivity of human glioma cells.

    PubMed

    de la Peña, Lorena; Burgan, William E; Carter, Donna J; Hollingshead, Melinda G; Satyamitra, Merriline; Camphausen, Kevin; Tofilon, Philip J

    2006-06-01

    Akt has been implicated as a molecular determinant of cellular radiosensitivity. Because it is often constitutively activated or overexpressed in malignant gliomas, it has been suggested as a target for brain tumor radiosensitization. To evaluate the role of Akt in glioma radioresponse, we have determined the effects of perifosine, a clinically relevant alkylphospholipid that inhibits Akt activation, on the radiosensitivity of three human glioma cell lines (U87, U251, and LN229). Each of the glioma cell lines expressed clearly detectable levels of phosphorylated Akt indicative of constitutive Akt activity. Exposure to a perifosine concentration that reduced survival by approximately 50% significantly reduced the level of phosphorylated Akt as well as Akt activity. Cell survival analysis using a clonogenic assay, however, revealed that this Akt-inhibiting perifosine treatment did not enhance the radiosensitivity of the glioma cell lines. This evaluation was then extended to an in vivo model using U251 xenografts. Perifosine delivered to mice bearing U251 xenografts substantially reduced tumor phosphorylated Akt levels and inhibited tumor growth rate. However, the combination of perifosine and radiation resulted in a less than additive increase in tumor growth delay. Thus, in vitro and in vivo data indicate that the perifosine-mediated decrease in Akt activity does not enhance the radiosensitivity of three genetically disparate glioma cell lines. These results suggest that, although Akt may influence the radiosensitivity of other tumor types, it does not seem to be a target for glioma cell radiosensitization. PMID:16818509

  6. SU11657 Enhances Radiosensitivity of Human Meningioma Cells

    SciTech Connect

    Milker-Zabel, Stefanie [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)], E-mail: stefanie_milker-zabel@med.uni-heidelberg.de; Bois, Angelika Zabel-du [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Ranai, Gholamreza [Department of Neurosurgery, University of Heidelberg, Heidelberg (Germany); Trinh, Thuy [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Department of Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Unterberg, Andreas [Department of Neurosurgery, University of Heidelberg, Heidelberg (Germany); Debus, Juergen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Lipson, Kenneth E. [3M Pharmaceuticals, St. Paul, MN (United States); Abdollahi, Amir; Huber, Peter E. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Department of Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2008-03-15

    Purpose: To analyze the effect of the multireceptor tyrosine kinase inhibitor SU11657 (primarily vascular endothelial growth factor, platelet-derived growth factor) in combination with irradiation in freshly isolated primary human meningioma cells. Methods and Materials: Tumor specimens were obtained from meningioma patients undergoing surgery at the Department of Neurosurgery, University of Heidelberg, Germany. For the present study only cells up to passage 6 were used. Benign and atypical meningioma cells and human umbilical vein endothelial cells (HUVEC) were treated with SU11657 alone and in combination with 6-MV photons (0-10 Gy). Clonogenic survival and cell proliferation were determined alone and in coculture assays to determine direct and paracrine effects. Results: Radiation and SU11657 alone reduced cell proliferation in atypical and benign meningioma cells as well as in HUVEC in a dose-dependent manner. SU11657 alone also reduced clonogenic survival of benign and atypical meningioma cells. SU11657 increased radiosensitivity of human meningioma cells in clonogenic survival and cell number/proliferation assays. The anticlonogenic and antiproliferative effects alone and the radiosensitization effects of SU11657 were more pronounced in atypical meningioma cells compared with benign meningioma cells. Conclusion: Small-molecule tyrosine kinase inhibitors like SU11657 are capable of amplifying the growth inhibitory effects of irradiation in meningioma cells. These data provide a rationale for further clinical evaluation of this combination concept, especially in atypical and malignant meningioma patients.

  7. Hyaluronan in human malignancies

    SciTech Connect

    Sironen, R.K. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland) [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Tammi, M.; Tammi, R. [Institute of Biomedicine, Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)] [Institute of Biomedicine, Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Auvinen, P.K. [Department of Oncology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)] [Department of Oncology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Anttila, M. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland) [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Gynecology and Obstetrics, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Kosma, V-M., E-mail: Veli-Matti.Kosma@uef.fi [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  8. The in vitro radiosensitivity of human head and neck cancers.

    PubMed Central

    Björk-Eriksson, T.; West, C. M.; Karlsson, E.; Slevin, N. J.; Davidson, S. E.; James, R. D.; Mercke, C.

    1998-01-01

    A study was made of the intrinsic radiosensitivity of 140 biopsy and surgical specimens of malignant head and neck tumours of different histologies. Using a soft-agar clonogenic assay, the material was assessed for the ability to grow in culture (colony-forming efficiency; CFE) and inherent tumour radiosensitivity (surviving fraction at 2 Gy, SF2). The success rate for obtaining growth was 74% (104/140) with a mean CFE of 0.093% (median 0.031) and a range of 0.002-1.3%. SF2 was obtained for 88 of 140 specimens, representing a success rate of 63% with a mean SF2 of 0.48 (median 0.43) and a range of 0.10-1.00. There were no significant differences in radiosensitivity between different sites of the head and neck region. There were no significant relationships between SF2 and disease stage, nodal status, tumour grade, patient age, primary tumour growth pattern and CFE. The results were compared with those for other tumour types previously analysed with the same assay. The distribution of the SF2 values for the head and neck tumours was similar to that for 145 cervix carcinomas and there was no significant difference in mean radiosensitivity between the two tumour types. Also, there was no significant difference in radiosensitivity between head and neck tumours and either breast or colorectal cancers. However, a group of eight lymphomas was significantly more radiosensitive. These results confirm the feasibility of carrying out radiosensitivity measurements using a soft-agar clonogenic assay on head and neck tumours. In addition, the work has shown that radiosensitivity is independent of many clinical parameters and that the mean value is similar to that reported for cervix carcinomas. Images Figure 1 PMID:9649161

  9. A review of human cell radiosensitivity in vitro

    Microsoft Academic Search

    Patrick J. Deschavanne; Bernard Fertil

    1996-01-01

    The survival curves of 694 human cell lines irradiated in exponentially growing phase in vitro were collected from the literature. Among them, 271 were derived from tumors, 423 were nontransformed fibroblasts and other normal cell strains from healthy people or people with some genetic disorders. Seventy-six different cell types are identified, and a specific radiosensitivity could be associated with each,

  10. 5Fluorouracil modulation of radiosensitivity in cultured human carcinoma cells

    Microsoft Academic Search

    Stephen R. Smalley; Bruce F. Kimler; Richard G. Evans

    1991-01-01

    We evaluated conventional pulse exposure versus continuous exposure models of 5-fluorouracil (5-FU) radiosensitization in HT-29 (human colon adenocarcinoma) and DU-145 (human prostate cancer adenocarcinoma) cell lines. Cell survival following treatment with drug and\\/or radiation was determined by colony formation assays. Radiation was delivered either by itself, approximately midway through a 1-hr exposure to 5-FU (10 micrograms\\/ml), or at various times

  11. Radiosensitivity of human lymphocytes and monocytes. [UV and ionizing radiation

    Microsoft Academic Search

    Kwan; D. K. H

    1975-01-01

    The in vitro survival of human peripheral blood lymphocytes, thymocytes and monocytes was measured 4 days following graded doses of ionizing and ultraviolet (uv) radiations. Results of ionizing radiation experiments indicate considerable heterogeneity among lymphocyte subpopulations with respect to radiosensitivity. T lymphocytes were characterized by rosette formation with neuraminidase-tested sheep red blood cells (nSRBC); early T (T\\/sub E\\/) cells by

  12. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W; Basse, Per H; Wang, Hong; Wang, Xinhui; Proia, David A; Greenberger, Joel S; Socinski, Mark A; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of ?-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  13. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of ?-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  14. Effect of heterogeneity of human population in cell radiosensitivity on the extrapolation of dose-response relationships to low doses

    SciTech Connect

    Filyushkin, I.V.; Bragin, Yu.N.; Khandogina, E.K.

    1989-09-01

    Presented are the results of an investigation of the dose-response relationship for the yield of chromosome aberrations in peripheral blood lymphocytes of persons with some hereditary diseases which represent the high risk group with respect to the increased incidence of malignant tumors and decreased life span. Despite substantially different absolute radiosensitivities of chromosomes, the variations of the alpha/beta ratio determining the extrapolation of experimental dose-response relationships to low doses did not prove to be too high, the mean deviation from the control being 15%. This points to the possible practical use of the dose-response relationships averaged over the human population as a whole.

  15. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing, E-mail: wangstella5@163.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China) [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Yang, Qifeng, E-mail: qifengy@gmail.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China)] [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, UMDNJ-Robert Wood Johnson School of Medicine, Cancer Institute of New Jersey, NB (United States); Li, Xiaoyan, E-mail: xiaoyanli1219@gmail.com [Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China)] [Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Moran, Meena S., E-mail: meena.moran@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2013-02-08

    Highlights: ? Fulvestrant radiosensitizes MCF-7 cells. ? Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ? Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  16. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  17. The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles.

    PubMed

    Biade, S; Stobbe, C C; Chapman, J D

    1997-04-01

    The intrinsic radiosensitivity of tumor cells is most frequently reported for asynchronous populations, although cell cycle variation in radiosensitivity is known to be significant. Linear-quadratic analyses of survival data for asynchronous human tumor cells show wide variations in the alpha coefficient with smaller variations in the beta coefficient. HT-29 (colon), OVCAR10 (ovary) and A2780 (ovary) tumor cells with alpha coefficients of 0.03, 0.16 and 0.47 Gy(-1), respectively, and square-root of beta coefficients of 0.23-0.27 Gy(-1) for asynchronous populations were amenable to synchronization by mitotic selection. Selection procedures were optimized for each cell line and produced mitotic populations of >90%, approximately 80% and approximately 65% purity for HT-29, OVCAR10 and A2780 cells, respectively. Mitotic cells from each line exhibited similar and maximum radiosensitivities with alpha coefficients of approximately 1.3 Gy(-1) after irradiation with 137Cs gamma rays and after correction for genome multiplicity. Their relative radiosensitivities observed with asynchronous cells were maintained as they progressed through interphase of the cell cycle. All cells in early G1 phase exhibited a marked radioresistance relative to their sensitivity in mitosis, and maximum interphase radiosensitivity was observed near the G1/S-phase boundary. All cells became increasingly radioresistant as they moved through S phase, the effect being most pronounced for OVCAR10 cells and least pronounced for A2780 cells. HT-29 cells remained relatively radioresistant in G2 phase. The different interphase radiosensitivities observed for these cell lines were determined mainly by the single-hit inactivation mechanism. These studies clearly demonstrate the dominant role of single-hit inactivation in determining the intrinsic radiosensitivity of human tumor cells to 137Cs gamma rays, especially at doses of 2 Gy and less. PMID:9092920

  18. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu [Department of Life Science, Tzu Chi University, Hualien (China); Lee Yijang [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei (China); Yu Yichu; Hsaio Chinghui [Department of Life Science, Tzu Chi University, Hualien (China)

    2010-08-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  19. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    SciTech Connect

    Williams, Jerry R. [Molecular Radiation Biology Program, Department of Radiation Medicine, Loma Linda Medical Center, Loma Linda, CA (United States); Laboratory of Radiobiology, Johns Hopkins School of Medicine, Baltimore, MD (United States)], E-mail: jrwilliams_france@yahoo.com; Zhang Yonggang; Zhou Haoming [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Gridley, Daila S. [Molecular Radiation Biology Program, Department of Radiation Medicine, Loma Linda Medical Center, Loma Linda, CA (United States); Koch, Cameron J. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Slater, James M. [Molecular Radiation Biology Program, Department of Radiation Medicine, Loma Linda Medical Center, Loma Linda, CA (United States); Little, John B. [Center for Radiation Sciences and Environmental Health, Harvard School of Public Health, Boston, MA (United States)

    2008-11-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses ({approx}2 Gy HDR, {approx}6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications.

  20. GLO1 overexpression in human malignant melanoma.

    PubMed

    Bair, Warner B; Cabello, Christopher M; Uchida, Koji; Bause, Alexandra S; Wondrak, Georg T

    2010-04-01

    Glyoxalase I [lactoylglutathione lyase (EC 4.4.1.5) encoded by GLO1] is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. On the basis of the hypothesis that GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells, we examined GLO1 expression status in human melanoma tissue. Quantitative reverse transcription polymerase chain reaction analysis of a cDNA tissue array containing 40 human melanoma tissues (stages III and IV) and 13 healthy controls revealed pronounced upregulation of GLO1 expression at the mRNA level. Immunohistochemical analysis of a melanoma tissue microarray confirmed upregulation of glyoxalase I protein levels in malignant melanoma tissue versus healthy human skin. Consistent with an essential role of GLO1 in melanoma cell defense against methylglyoxal cytotoxicity, siRNA interference targeting GLO1-expression (siGLO1) sensitized A375 and G361 human metastatic melanoma cells towards the antiproliferative, apoptogenic, and oxidative stress-inducing activity of exogenous methylglyoxal. Protein adduction by methylglyoxal was increased in siGLO1-transfected cells as revealed by immunodetection using a monoclonal antibody directed against the major methylglyoxal-derived epitope argpyrimidine that detected a single band of methylglyoxal-adducted protein in human LOX, G361, and A375 total cell lysates. Using two-dimensional proteomics followed by mass spectrometry the methylglyoxal-adducted protein was identified as heat shock protein 27 (Hsp27; HSPB1). Taken together, our data suggest a function of GLO1 in the regulation of detoxification and target adduction by the glycolytic byproduct methylglyoxal in malignant melanoma. PMID:20093988

  1. Effect of downregulation of survivin expression on radiosensitivity of human epidermoid carcinoma cells

    SciTech Connect

    Sah, Nand K. [Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Munshi, Anupama [Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Hobbs, Marvette B.A. [Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Carter, Bing Z. [Department of Bone Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Andreeff, Michael [Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Department of Bone Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Meyn, Raymond E. [Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)]. E-mail: rmeyn@mdanderson.org

    2006-11-01

    Purpose: The expression of survivin, a member of the inhibitor-of-apoptosis protein family, is elevated in many types of human cancer. High survivin expression has been associated with poor patient prognosis and tumor resistance to chemotherapy and radiotherapy. The purpose of this study was to compare the radiosensitizing effects of five agents that target survivin on their relative ability to downregulate survivin expression. Methods and Materials: The human epidermoid carcinoma cell line A431 was treated with adenoviral-mediated wild-type p53, antisense to survivin, the mitogen-activated protein kinase inhibitor PD98059, the cyclin-dependent kinase inhibitor Purvalanol A, or the histone deacetylase inhibitor trichostatin A. The radiosensitizing effects of these treatments were determined by clonogenic survival curve analysis and their abilities to suppress survivin expression by Western blot analysis. Results: All the strategies were shown to radiosensitize A431 cells. This effect correlated with their abilities to downregulate survivin. Conclusion: Expression of survivin appears to confer a radioresistant phenotype that can be overcome using several clinically achievable strategies that target survivin either specifically or nonspecifically.

  2. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnamsi (Korea, Republic of); Kim, In-Ah, E-mail: inah228@snu.ac.k [Department of Radiation Oncology, Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  3. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China) [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan (China); Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Shih, Wen-Ling [Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, Taiwan (China)] [Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, Taiwan (China); Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)] [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  4. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes. PMID:7312076

  5. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    Microsoft Academic Search

    G. Lammering; T. H. Hewit; J. N. Contessa; W. Hawkins; P. S. Lin; K. Valerie; R. Mikkelsen; P. Dent; R. K. Schmidt-Ullrich

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts

  6. Fluorescence Spectroscopy of Human Nonmalignant and Malignant Cells and Tissues.

    NASA Astrophysics Data System (ADS)

    Glassman, Wenling Sha

    This thesis explores steady state and time resolved fluorescence spectroscopy from human malignant and non -malignant cells and tissues. The focus of these studies are the analysis of the excitation spectra, emission spectra, and decay time based on the contribution from several key intrinsic fluorophors: NAD(P)H, flavins, tryptophan, elastin and collagen that exist in different amounts in the human tissues and cells. The comparison between the spectra from malignant and non-malignant cells and tissues gives information on the changes that occur from non-malignancy to malignancy in the cells and tissues. The spectra of tissues and cells are also compared to help in understanding what fluorophors are responsible for fluorescence spectral differences between the malignant and non-malignant tissues and cells. The results in this thesis show that the spectral differences between the normal and cancerous tissues and cells exist in various wavelength ranges. The experimental data from GYN tissues have shown with over 95% of the sensitivity and specificity to separate malignant from non-malignant tissues using 300nm excitation. The 340nm band, which is mostly in response to intrinsic fluorophor (amino acid tryptophan), from malignant tissues were relatively higher then that from the non-malignant tissues. This might have been caused by the higher concentration of free tryptophan in the malignant tumor when compared to that of the normal tissue. This has been found in medical clinical study. The experimental data in this thesis also show that the fluorescence intensities around 450nm-460nm, which are mostly due to the intrinsic fluorophor coenzyme NADH, from both malignant cells in vitro and tissues in vitro are relatively higher than from non-malignant cells in vitro and tissues in vitro. These findings are reinforced by the faster decay time of the NADH fluorescence from normal cells in vitro than from neoplasm cells in vitro. Thus, the NADH in the mitochondria might be bound less tight in the malignant cells then that in the non-malignant cells because of metabolism changes from non-malignance to malignance. This thesis contributes to the new field of "mediphotonics" in life science.

  7. Flavopiridol enhances human tumor cell radiosensitivity and prolongs expression of gammaH2AX foci.

    PubMed

    Camphausen, Kevin; Brady, Kristin J; Burgan, William E; Cerra, Michael A; Russell, Jeffery S; Bull, Elizabeth E A; Tofilon, Philip J

    2004-04-01

    Flavopiridol is a cyclin-dependent kinase (CDK) inhibitor, which has recently entered clinical trials. However, when administered as a single agent against solid tumors, the antitumor actions of flavopiridol have been primarily cytostatic. Given its reported effects on cell cycle regulation, transcription, and apoptosis, flavopiridol may also influence cellular radioresponse. Thus, to evaluate the potential for combining this cyclin-dependent kinase inhibitor with radiation as a cancer treatment strategy, we have investigated the effects of flavopiridol on the radiation sensitivity of two human prostate cancer cell lines (DU145 and PC3). The data presented here indicate that exposure to flavopiridol (60-90 nM) after irradiation enhanced the radiosensitivity of both DU145 and PC3 cells. This sensitization occurred in the absence of significant reductions in cell proliferation, retinoblastoma protein phosphorylation, or P-TEFb activity. Moreover, the post-irradiation addition of flavopiridol had no effect on radiation-induced apoptosis or the activation of the G2 cell cycle checkpoint. However, flavopiridol did modify the time course of gammaH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced gammaH2AX foci at 6 h, at 24 h after irradiation, the number of cells expressing gammaH2AX foci was significantly greater in the flavopiridol-treated cells. These results indicate that flavopiridol can enhance radiosensitivity of human tumor cells and suggest that this effect may involve an inhibition of DNA repair. PMID:15078984

  8. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10?years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  9. Adenoviral Transduction of Human Acid Sphingomyelinase into Neo-Angiogenic Endothelium Radiosensitizes Tumor Cure

    PubMed Central

    Fuller, John D.; Rotolo, Jimmy A.; García-Barros, Mónica; Feldman, Regina; Rao, Shyam; Weichselbaum, Ralph R.; Harats, Dror; Haimovitz-Friedman, Adriana; Fuks, Zvi; Sadelain, Michel; Kolesnick, Richard

    2013-01-01

    These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT). Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase) translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x), and a hypoxia-inducible dual-binding HIF-2?-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x)-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x)-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x)-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors. PMID:23936314

  10. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells

    PubMed Central

    Bridges, Kathleen A.; Toniatti, Carlo; Buser, Carolyn A.; Liu, Huifeng; Buchholz, Thomas A.; Meyn, Raymond E.

    2014-01-01

    The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of ?-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation. PMID:24970803

  11. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells.

    PubMed

    Ke, Shaobo; Zhou, Fuxiang; Yang, Hui; Wei, Yuehua; Gong, Jun; Mei, Zijie; Wu, Lin; Yu, Haijun; Zhou, Yunfeng

    2015-03-01

    The functions of the high mobility group box 1 (HMGB1) in tumor cells include replenishing telomeric DNA and maintaining cell immortality. There is a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Our aim was to elucidate the relationship among HMGB1, telomere homeostasis and radiosensitivity in MCF-7 cells. In this study, we established stably transfected control (MCF-7-NC) and HMGB1 knockdown (MCF-7-shHMGB1) cell lines. The expression of HMGB1 mRNA and the relative telomere length were examined by real-time PCR. Radiosensitivity was detected by clonogenic assay. The protein expressions were determined by western blot analysis. The telomerase activity was detected by PCR-ELISA. Proliferation ability was examined by CCK-8 assay. Cell cycle and apoptosis were examined by flow cytometry. DNA damage foci were detected by immunofluorescence. ShRNA-mediated downregulation of HMGB1 expression increased the radiosensitivity of MCF-7 cells, and reduced the accumulation of hTERT and cyclin D1. Moreover, knockdown of HMGB1 in MCF-7 cells inhibited telomerase activity and cell proliferation, while increasing the extent of apoptosis. Downregulation of HMGB1 modulated telomere homeostasis by changing the level of telomere-binding proteins, such as TPP1 (PTOP), TRF1 and TRF2. This downregulation also inhibited the ATM and ATR signaling pathways. The current data demonstrate that knockdown of HMGB1 breaks telomere homeostasis, enhances radiosensitivity, and suppresses the repair of DNA damage in human breast cancer cells. These results suggested that HMGB1 might be a potential radiotherapy target in human breast cancer. PMID:25501936

  12. Autotaxin Inhibition with PF-8380 Enhances the Radiosensitivity of Human and Murine Glioblastoma Cell Lines

    PubMed Central

    Bhave, Sandeep R.; Dadey, David Y. A.; Karvas, Rowan M.; Ferraro, Daniel J.; Kotipatruni, Rama P.; Jaboin, Jerry J.; Hallahan, Andrew N.; DeWees, Todd A.; Linkous, Amanda G.; Hallahan, Dennis E.; Thotala, Dinesh

    2013-01-01

    Purpose: Glioblastoma multiforme (GBM) is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo, and radiotherapy. Autotaxin (ATX) is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM. Methods and Materials: Mouse GL261 and Human U87-MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin fold model in GL261. Heterotopic mouse GL261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer. Results: Pre-treatment of GL261 and U87-MG cells with 1??M PF-8380 followed by 4?Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL261; P?=?0.002 and 17.9% in U87-MG; P?=?0.012), decreased invasion (35.6% in GL261; P?=?0.0037 and 31.8% in U87-MG; P?=?0.002), and attenuated radiation-induced Akt phosphorylation. In the tumor window model, inhibition of ATX abrogated radiation induced tumor neovascularization (65%; P?=?0.011). In a heterotopic mouse GL261 tumors untreated mice took 11.2?days to reach a tumor volume of 7000?mm3, however combination of PF-8380 (10?mg/kg) with irradiation (five fractions of 2?Gy) took more than 32?days to reach a tumor volume of 7000?mm3. Conclusion: Inhibition of ATX by PF-8380 led to decreased invasion and enhanced radiosensitization of GBM cells. Radiation-induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate GBM response to radiotherapy. PMID:24062988

  13. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; ?urišová, Kamila; Link, Marek; Vávrová, Ji?ina; ?ezá?ová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  14. Combined EGFR and autophagy modulation impairs cell migration and enhances radiosensitivity in human glioblastoma cells.

    PubMed

    Palumbo, Silvia; Tini, Paolo; Toscano, Marzia; Allavena, Giulia; Angeletti, Francesca; Manai, Federico; Miracco, Clelia; Comincini, Sergio; Pirtoli, Luigi

    2014-11-01

    Glioblastoma (GBM) remains the most aggressive and lethal brain tumor due to its molecular heterogeneity and high motility and invasion capabilities of its cells, resulting in high resistance to current standard treatments (surgery, followed by ionizing radiation combined with Temozolomide chemotherapy administration). Locus amplification, gene overexpression, and genetic mutations of epidermal growth factor receptor (EGFR) are hallmarks of GBM that can ectopically activate downstream signaling oncogenic cascades such as PI3K/Akt/mTOR pathway. Importantly, alteration of this pathway, involved also in the regulation of autophagy process, can improve radioresistance in GBM cells, thus promoting the aggressive phenotype of this tumor. In this work, the endogenous EGFR expression profile and autophagy were modulated to increase radiosensitivity behavior of human T98G and U373MG GBM cells. Our results primarily indicated that EGFR interfering induced radiosensitivity according to a decrease of the clonogenic capability of the investigated cells, and an effective reduction of the in vitro migratory features. Moreover, EGFR interfering resulted in an increase of Temozolomide (TMZ) cytotoxicity in T98G TMZ-resistant cells. In order to elucidate the involvement of the autophagy process as pro-death or pro-survival role in cells subjected to EGFR interfering, the key autophagic gene ATG7 was silenced, thereby producing a transient block of the autophagy process. This autophagy inhibition rescued clonogenic capability of irradiated and EGFR-silenced T98G cells, suggesting a pro-death autophagy contribution. To further confirm the functional interplay between EGFR and autophagy pathways, Rapamycin-mediated autophagy induction during EGFR modulation promoted further impairment of irradiated cells, in terms of clonogenic and migration capabilities. Taken together, these results might suggest a novel combined EGFR-autophagy modulation strategy, to overcome intrinsic GBM radioresistance, thus improving the efficacy of standard treatments. J. Cell. Physiol. 229: 1863-1873, 2014. © 2014 Wiley Periodicals, Inc. PMID:24691646

  15. Radiosensitization of human leukemic HL-60 cells by ATR kinase inhibitor (VE-821): phosphoproteomic analysis.

    PubMed

    Šalovská, Barbora; Fabrik, Ivo; ?urišová, Kamila; Link, Marek; Vávrová, Ji?ina; ?ezá?ová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)-triggered by radiation-induced double strand breaks-is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  16. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna [Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); Discipline of Infectious Diseases and Immunology, University of Sydney, NSW (Australia); Delic, Naomi C. [Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); Discipline of Dermatology, University of Sydney, NSW (Australia); Hong, Angela; Zhang Mei [Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); Department of Radiation Oncology, Royal Prince Alfred Hospital, NSW (Australia); Rose, Barbara R. [Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); Discipline of Infectious Diseases and Immunology, University of Sydney, NSW (Australia); Lyons, J. Guy, E-mail: guy.lyons@sydney.edu.a [Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, NSW (Australia); Discipline of Dermatology, University of Sydney, NSW (Australia)

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  17. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells

    PubMed Central

    HSIAO, HUNG TSUNG; XING, LIGANG; DENG, XUELONG; SUN, XIAORONG; LING, C. CLIFTON; LI, GLORIA C.

    2014-01-01

    The hypoxic microenvironment, an important feature of human solid tumors but absent in normal tissue, may provide an opportunity for cancer-specific gene therapy. The purpose of the present study was to investigate whether hypoxia-driven triple suicide gene TK/CD/UPRT expression enhances cytotoxicity to ganciclovir (GCV) and 5-fluorocytosine (5-FC), and sensitizes human colorectal cancer to radiation in vitro and in vivo. Stable transfectant of human colorectal HCT8 cells was established which expressed hypoxia-inducible vectors (HRE-TK/eGFP and HRE-CD/UPRT/mDsRed). Hypoxia-induced expression/function of TK, CD and UPRT was verified by western blot analysis, flow cytometry, fluorescent microscopy and cytotoxicity assay of GCV and 5-FC. Significant radiosensitization effects were detected after 5-FC and GCV treatments under hypoxic conditions. In the tumor xenografts, the distribution of TK/eGFP and CD/UPRT/mDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC and GCV in mice in combination with local irradiation resulted in tumor regression, as compared with prodrug or radiation treatments alone. Our data suggest that the hypoxia-inducible TK/GCV+CDUPRT/5-FC triple suicide gene therapy may have the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy. PMID:24912473

  18. Late ROS-accumulation and Radiosensitivity in CuZnSOD Overexpressing Human Glioma Cells

    PubMed Central

    Gao, Zhen; Sarsour, Ehab H.; Kalen, Amanda L.; Li, Ling; Kumar, Maneesh G.; Goswami, Prabhat C.

    2008-01-01

    This study investigates the hypothesis that CuZn-superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and G2/M checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell cycle phase distributions, and cyclin B1 expression. SOD1 overexpressing cells were radioresistant compared to wild type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (~2-fold) in DHE-fluorescence beginning at 2 d post-irradiation, which remained elevated at 8 d post-irradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability, and an increase in the percentage of cells with sub G1 DNA content. SOD1 overexpression enhanced radiation-induced G2-accumulation within 24 h post-irradiation, which was accompanied with a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after the radiation exposure a “metabolic redox-response” regulates radiosensitivity of human glioma cells. PMID:18790046

  19. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  20. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  1. Correlation between radiosensitivity, percentage hypoxic cells and pO2 measurements in one rodent and two human tumor xenografts.

    PubMed

    Thomas, C D; Chavaudra, N; Martin, L; Guichard, M

    1994-07-01

    Computerized pO2 histography has been used to measure the intratumor pO2 in patients for the past few years, and there is now evidence that these tumors contain hypoxic cells. One of the major questions that remains to be answered is the relevance of such data to radiosensitivity. The present study looks for a correlation between intratumor pO2, the percentage of hypoxic cells in the tumor and the radiosensitization induced by carbogen and/or the oxygen carrier, perflubron emulsion. Two human tumor xenografts (HRT18, Na11+) and one rodent tumor (EMT6) were used. The radiosensitivity (clonogenic assay) and the oxygen tension (computerized pO2 histography) were measured. All experiments were performed under similar conditions. Carbogen increased tumor radiosensitivity; sensitization was greatest when 4 ml/kg perflubron emulsion was used in conjunction with carbogen. The pO2 distribution was shifted to higher pO2 values in the tumors whatever the treatment; the shift was greater for perflubron emulsion plus carbogen. The low pO2 values (< 0.4 kPa) were lost for the HRT18 cells. A correlation (EMT6, HRT18) or a link (Na11+) between the radiosensitization and the oxygen tension measurements was found for values below 1.07 or 1.33 kPa. A trend between the percentage of hypoxic cells and pO2 measurements was found taking into account pO2 measurements comprised between 0.27 and 0.67 kPa. PMID:8016297

  2. Ultrastructure of human malignant diffuse mesothelioma.

    PubMed Central

    Suzuki, Y.; Kannerstein, M.

    1976-01-01

    Eleven cases of malignant diffuse mesotheliomas, histologically classified into two groups, epithelial (5 pleural and 3 peritoneal) and biphasic or mixed (2 pleural and 1 peritoneal) forms, were stuied by electron microscopy to elucidate their ultrastructural characteristics. The neoplastic cells of the epithelial forms were varied in ultrastructure, from well differentiated (marked by polarity, micovilli, glycogen granules, junctional structures, tonofilaments, intracellular vacuoles, and a basement membrane) to poorly differentiated (which lacked some of these epithelial characteristics). In four of eight instances in epithelial type tumors, nonepithelial or mesenchymal neoplastic cells were recognized. The biphasic or mixed cases included three major cell types: epithelial, atypical epithelial, and mesenchymal. It appeared that there were transitional forms among the three cell types. The observations support the concept that the neoplastic cell of malignant mesothelioma can differentiate into a number of cell lines. Images Figures 20 and 21 Figure 22 Figure 23 Figures 24 and 25 Figure 26 Figure 27A Figure 27B and C Figure 28 Figure 29 Figure 30 Figure 31 Figures 32 and 33 Figure 34 Figure 35 Figure 36 Figures 1-4 Figures 5 and 6 Figure 37 Figures 7-10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figures 17 and 18 Figure 19 PMID:998721

  3. Cell Cycle Arrests and Radiosensitivity of Human Tumor Cell Lines: Dependence on Wild-Type p53 for Radiosensitivity

    Microsoft Academic Search

    Amanda J. Mcllwrath; Paul A. Vasey; Gillian M. Ross; Robert Brown

    Loss of p53 function has been shown to cause increased resistance to ionizing radiation in normal murine cells; however, the role of p53 in radloresistance of human tumor cells is less clear. Since wild-type p53 function is required for radiation-induced G1 arrest, we measured G1 arrest in 12 human tumor cell lines that have a wide range of radiosen sitivities

  4. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    E-print Network

    Di Giorgio, M; Busto, E; Mairal, L; Menendez, P; Roth, B; Sardi, M; Taja, M R; Vallerga, M B

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro...

  5. HCG variants, the growth factors which drive human malignancies

    PubMed Central

    Cole, Laurence A

    2012-01-01

    The term human chorionic gonadotropin (hCG) refers to a group of 5 molecules, each sharing the common amino acid sequence but each differing in meric structure and carbohydrate side chain structure. The 5 molecules are each produced by separate cells and each having separate biological functions. hCG and sulfated hCG are hormones produced by placental syncytiotrophoblast cells and pituitary gonadotrope cells. Hyperglycosylated hCG is an autocrine produced by placental cytotrophoblast cells. Hyperglycosylated hCG drives malignancy in placental cancers, and in testicular and ovarian germ cell malignancies. hCG? and hyperglycosylated hCG? are autocrines produce by most advanced malignancies. These molecules, particularly the malignancy promoters are presented in this review on hCG and cancer. hCG? and hyperglycosylated hCG? are critical to the growth and invasion, or malignancy of most advanced cancers. In many ways, while hCG may appear like a nothing, a hormone associated with pregnancy, it is not, and may be at the center of cancer research. PMID:22206043

  6. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong [Department of Oncology, Juravinski Cancer Center and McMaster University, Hamilton, Ontario (Canada)

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  7. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    SciTech Connect

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany) [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)] [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany) [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  8. Radiosensitizers, radioprotectors, and radiation mitigators.

    PubMed

    Raviraj, Jayam; Bokkasam, Vijay Kumar; Kumar, Venkata Suneel; Reddy, Uday Shankar; Suman, Venkata

    2014-01-01

    Radiotherapy is regarded as one of the most important therapeutic modality for the treatment of malignant lesions. This field is undergoing rapid advancements in the recent times. With the use of radiosensitizers and radioprotective agents, the course of radiotherapy has improved the sensitization of tumor cells and protection of normal cells, respectively. The aim of this paper was to critically review and analyze the available compounds used as radiosensitizers, radioprotectors, and radiation mitigators. For reviewing, the author used the electronic search for the keywords 'Radiosensitizers', 'Radioprotectors', 'Radiation mitigators' on PubMed for inclusion of previously published articles and further search of reference papers on individual radiosensitizing and radioprotecting agents was done. Radiosensitizers are agents that sensitize the tumor cells to radiation. These compounds apparently promote fixation of the free radicals produced by radiation damage at the molecular level. The mechanism of action is similar to the oxygen effect, in which biochemical reactions in the damaged molecules prevent repair of the cellular radiation damage. Free radicals such as OH + are captured by the electron affinity of the radiosensitizers, rendering the molecules incapable of repair. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. This article tries to discuss the various aspects of radiosensitizers, radioprotectors, and radiation mitigators including the newer agents. PMID:24748306

  9. Role of human papillomavirus and its detection in potentially malignant and malignant head and neck lesions: updated review

    Microsoft Academic Search

    Ajay Kumar Chaudhary; Mamta Singh; Shanthy Sundaram; Ravi Mehrotra

    2009-01-01

    Head and neck malignancies are characterized by a multiphasic and multifactorial etiopathogenesis. Tobacco and alcohol consumption are the most common risk factors for head and neck malignancy. Other factors, including DNA viruses, especially human papilloma virus (HPV), may also play a role in the initiation or development of these lesions. The pathways of HPV transmission in the head and neck

  10. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  11. Siltuximab (CNTO 328): a promising option for human malignancies

    PubMed Central

    Chen, Runzhe; Chen, Baoan

    2015-01-01

    Siltuximab (CNTO 328) is a promising antibody-drug conjugate targeting cytokine interleukin-6 (IL-6). It is highly binding to IL-6 and thus neutralizing IL-6 bioactivity and promoting death of tumor cell. In this review, we mainly focus on the mechanisms, clinical studies, and adverse effect of siltuximab in the treatment of human malignancies. We also provide our recommendations for siltuximab treatment in the future. PMID:26170629

  12. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    SciTech Connect

    Li Ping; Zhang Qing [Department of Radiation Oncology, 6th People's Hospital of Jiao Tong University, Shanghai 200233 (China); Torossian, Artour [Vanderbilt University, School of Medicine, Nashville, TN (United States); Li Zhaobin; Xu Wencai [Department of Radiation Oncology, 6th People's Hospital of Jiao Tong University, Shanghai 200233 (China); Lu Bo [Department of Radiation Oncology, Thomas Jefferson University and Hospitals, Inc. Philadelphia, PA (United States); Fu Shen, E-mail: fushen1117@gmail.com [Department of Radiation Oncology, 6th People's Hospital of Jiao Tong University, Shanghai 200233 (China)

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used to investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have important therapeutic implication in the treatment of a subset of breast cancer patients with high expression of EGFR and deficient function of PTEN.

  13. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  14. Celecoxib Enhances the Radiosensitizing Effect of 7-Hydroxystaurosporine (UCN-01) in Human Lung Cancer Cell Lines

    SciTech Connect

    Kim, Young-Mee; Jeong, In-Hye [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Pyo, Hongryull, E-mail: Quasar93@yahoo.co.kr [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-07-01

    Purpose: 7-Hydroxystaurosporine (UCN-01), a Chk1-specific inhibitor, showed promising in vitro and in vivo chemo- or radiosensitizing activity. However, there have been concerns about its limited therapeutic efficacy and risk of side effects. A method of enhancing the treatment efficacy of UCN-01 while not increasing its side effects on normal tissue may therefore be required to apply this drug in clinical settings. Celecoxib is a cyclooxygenase-2 (COX-2)-specific inhibitor that downregulates ataxia telangiectasia and rad3-related (ATR) protein, an upstream kinase of Chk1. In this study, we investigated whether the addition of celecoxib can potentiate the radiosensitizing effect of UCN-01. Methods and Materials: The cooperative radiosensitizing effects and the underlying molecular mechanisms of UCN-01 plus celecoxib were determined by clonogenic assay, tumor growth delay assay, flow cytometry, and Western blotting. Synergism of the three agents combined (UCN-01 plus celecoxib plus radiation) were evaluated using median drug effect analysis and drug-independent action model analysis. Results: The combination of UCN-01 and celecoxib could induce synergistic cytotoxicity and radiosensitizing effects in in vitro and in vivo systems. The combination of both drugs also cooperatively inhibited IR-induced G{sub 2}/M arrest, and increased the G{sub 2} to mitotic transition. Conclusions: Combined treatment with UCN-01 and celecoxib can exert synergistically enhanced radiosensitizing effects via cooperative inhibition of the ionizing radiation-activated G{sub 2} checkpoint. We propose that this combination strategy may be useful in clinical applications of UCN-01 for radiotherapy of cancer patients.

  15. Effect of Recombinant Human Endostatin on Radiosensitivity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Jiang Xiaodong; Dai Peng; Wu Jin; Song Daan [Department of Oncology, Lianyungang First People's Hospital, Lianyungang (China); Yu Jinming, E-mail: jxdysy@sohu.com [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan (China)

    2012-07-15

    Purpose: To observe the effects of recombinant human endostatin (RHES) on the radiosensitivity of non-small cell lung cancer (NSCLC). Methods and Materials: First, 10 hypoxia-positive cases of pathology-diagnosed NSCLC selected from 15 patients were used to determine the normalization window, a period during which RHES improves NSCLC hypoxia. Second, 50 hypoxia-positive cases of pathology-diagnosed NSCLC (Stages I-III) were randomly divided into a RHES plus radiotherapy group (25 cases) and a radiotherapy-alone group (25 cases). Intensity = modulated radiotherapy with a total dose of 60 Gy in 30 fractions for 6 weeks was adopted in the two groups. The target area included primary foci and metastatic lymph nodes. In the RHES plus radiotherapy group, RHES (15 mg/day) was intravenously given during the normalization window. Results: After RHES administration, the tumor-to=normal tissue radioactivity ratio and capillary permeability surface were first decreased and then increased, with their lowest points on the fifth day compared with the first day (all p < 0.01). Blood flow was first increased and then decreased, with the highest point on the fifth day, compared with the first and tenth day (all p < 0.01). In the RHES plus radiotherapy group and the radiotherapy-alone group, the total effective rates (complete response plus partial response) were 80% and 44% (p = 0.009), respectively. The median survival times were 21.1 {+-} 0.97 months and 16.5 {+-} 0.95 months (p = 0.004), respectively. The 1-year and 2-year local control rates were 78.9 {+-} 8.4% and 68.1 {+-} 7.8% (p = 0.027) and 63.6 {+-} 7.2% and 43.4 {+-} 5.7% (p = 0.022), respectively. The 1-year and 2-year overall survival rates were 83.3 {+-} 7.2% and 76.6 {+-} 9.3% (p = 0.247) and 46.3 {+-} 2.4% and 37.6 {+-} 9.1% (p = 0.218), respectively. Conclusion: The RHES normalization window is within about 1 week after administration. RHES combined with radiotherapy within the normalization window has better short-term therapeutic effects and local control rates and no severe adverse reactions in the treatment of NSCLC, but it failed to significantly improve the 1-year and 3-year overall survival rates.

  16. Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas

    PubMed Central

    Zhang, Yan; Young, Eric D.; Bill, Katelynn; Belousov, Roman; Peng, Tingsheng; Lazar, Alexander J; Pollock, Raphael E; Simmons, Paul J.; Lev, Dina; Kolonin, Mikhail G.

    2013-01-01

    Liposarcomas are tumors arising in white adipose tissue (WAT) with avidity for local recurrence. Aggressive dedifferentiated liposarcomas (DDLS) may arise from well-differentiated subtypes (WDLS) upon disease progression, however, this key issue is unresolved due in large part to knowledge gaps about liposarcoma cellular composition. Here, we wished to improve insights into liposarcoma cellular hierarchy. Tumor section analysis indicated that the populations, distinguishable based on expression of CD34 (a marker of adipocyte progenitors) and CD36 (a marker of adipocyte differentiation), occupy distinct intra-tumoral locations in both WDLS and DDLS. Taking advantage of these markers, we separated cells from a panel of fresh human surgical specimens by fluorescence-activated cell sorting (FACS). Based on chromosome analysis and the culture phenotypes of the composing populations, we demonstrate that malignant cells comprise four mesenchymal populations distinguished by expression of CD34 and CD36, while vascular (CD31+) and hematopoietic (CD45+) components are non-neoplastic. Finally, we show that mouse xenografts are derivable from both CD36-negative and CD36-positive DDLS cells, and that each population recreates the heterogeneity of CD36 expression in vivo. Combined, our results show that malignant cells in WDLS and DDLS can be classified according to distinct stages of adipogenesis and indicate immonophenotypic plasticity of malignant liposarcoma cells. PMID:23770802

  17. Development of novel radiosensitizers for cancer therapy

    E-print Network

    Akamatsu, K

    2002-01-01

    The novel radiosensitizers for cancer therapy, which have some atoms with large X-ray absorption cross sections, were synthesized. The chemical and radiation (X-rays, W target, 100kVp) toxicities and the radiosensitivities to LS-180 human colon adenocarcinoma cells were also evaluated. 2,3,4,5,6-pentabromobenzylalcohol (PBBA) derivatives were not radiosensitive even around the maximum concentration. On the other hand, the hydrophilic sodium 2,4,6-triiodobenzoate (STIB) indicated meaningful radiosensitivity to the cells. Moreover, the membrane-specific radiosensitizers, cetyl fluorescein isthiocyanate (cetyl FITC), cetyl eosin isothiocyanate (cetyl br-FITC), cetyl erythrosin isothiocyanate (cetyl I-FITC), which aim for the membrane damage by X-ray photoabsorption on the target atoms, were localized in the plasma membrane. As the results of the colony formation assay, it was found that both cetyl FITC are similarly radiosensitive. In this report, we demonstrate the synthetic methods of the radiosensitizers, the...

  18. Clonal proliferation of cultured nonmalignant and malignant human breast epithelia

    SciTech Connect

    Smith, H.S. (Peralta Cancer Research Inst., Oakland, CA); Lan, S.; Ceriani, R.; Hackett, A.J.; Stampfer, M.R.

    1981-11-01

    We have developed a method for clonal growth of human mammary epithelial cells of both nonmalignant and malignant origin. Plating efficiencies of 1 to 50% were obtained by seeding second-passage mammary epithelial cells on fibroblast feeder layers in an enriched medium composed of various hormones and growth factors, as well as conditioned media from three specific human cell lines. Single mammary epithelial cells seeded sparsely onto the fibroblasts underwent at least eight population doublings to form large, readily visible colonies. Optimal colony formation required both feeder cells and the enriched medium. Epithelial colonies containing at least 16 cells were visible 5 days postseeding, and these colonies continued to grow progressively. Plating efficiency and colony size were similar on ultraviolet-irradiated or nonirradiated fibroblasts. The number of colonies formed was proportional to the number of epithelial cells plated. The colonies were identified as epithelial by the presence of human mammary epithelial antigens.

  19. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Microsoft Academic Search

    Yingbin Yang; Shaoxi Cai; Li Yang; Shuhui Yu; Jiahuan Jiang; Xiaoqing Yan; Haoxing Zhang; Lan Liu; Qun Liu; Jun Du; Shaohui Cai; K. L. Paul Sung

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of

  20. Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.

    PubMed

    Wang, Wenbo; Yang, Lei; Hu, Liu; Li, Fen; Ren, Li; Yu, Haijun; Liu, Yu; Xia, Ling; Lei, Han; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H) screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R) cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3) as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1. PMID:23741361

  1. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States)], E-mail: timothy.kinsella@UHhospitals.org; Kinsella, Michael T.; Seo, Yuji [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States); Berk, Gregory [Hana Biosciences, South San Francisco, CA (United States)

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  2. Radiosensitization of Human Vascular Endothelial Cells Through Hsp90 Inhibition With 17-N-Allilamino-17-Demethoxygeldanamycin

    SciTech Connect

    Kabakov, Alexander E. [Department of Radiation Biochemistry, Medical Radiology Research Center, Obninsk (Russian Federation)], E-mail: aekabakov@hotmail.com; Makarova, Yulia M.; Malyutina, Yana V. [Department of Radiation Biochemistry, Medical Radiology Research Center, Obninsk (Russian Federation)

    2008-07-01

    Purpose: In addition to invasive tumor cells, endothelial cells (ECs) of the tumor vasculature are an important target for anticancer radiotherapy. The purpose of the present work is to investigate how 17-N-allilamino-17-demethoxygeldanamycin (17AAG), known as an anticancer drug inhibiting heat shock protein 90 (Hsp90), modifies radiation responses of human vascular ECs. Methods and Materials: The ECs cultured from human umbilical veins were exposed to {gamma}-irradiation, whereas some EC samples were pretreated with growth factors and/or 17AAG. Postirradiation cell death/survival and morphogenesis were assessed by means of terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick end labeling or annexin V staining and clonogenic and tube-formation assays. The 17AAG-affected expression and phosphorylation of radioresistance-related proteins were probed by means of immunoblotting. Dominant negative or constitutively activated Akt was transiently expressed in ECs to manipulate Akt activity. Results: It was found that nanomolar concentrations of 17AAG sensitize ECs to relatively low doses (2-6 Gy) of {gamma}-irradiation and abolish the radioprotective effects of vascular endothelial growth factor and basic fibroblast growth factor. The drug-induced radiosensitization of ECs seems to be caused by prevention of Hsp90-dependent phosphorylation (activation) of Akt that results in blocking the radioprotective phosphatidylinositol 3-kinase/Akt pathway. Conclusions: Clinically achievable concentrations of 17AAG can decrease the radioresistance intrinsic to vascular ECs and minimize the radioprotection conferred upon them by tumor-derived growth factors. These findings characterize 17AAG as a promising radiosensitizer for the tumor vasculature.

  3. Correlation between the radiosensitivity in vitro of clones and variants derived from a human melanoma cell line and their spontaneous metastatic potential in vivo.

    PubMed

    Thomas, C P; Buronfosse, A; Portoukalian, J; Fertil, B

    1995-01-27

    With an experimental model of spontaneous lung metastases of human melanoma in immunosuppressed newborn rats, a large panel of clones and variants with different metastatic potential were derived from a single human melanoma parental cell line (M4Be). Seven clones and variants from M4Be were selected, respectively, for their low (parental, clone 1), intermediate (clones 2 and 3, subvariant 1-) and high (variant 1, subvariant 1+, clone 4) metastatic potential. This paper investigates the relationship between the in vivo metastatic potential of the eight cell lines and their sensitivity to ionizing radiation in vitro (range 0.05-7 Gy). The radiosensitivity was estimated from the mean inactivation dose, a parameter equal to the area under the survival curve plotted in linear coordinates. Examination of the eight survival curves, obtained with cells cultured for no more than five passages after defrost, shows that clone 1, subvariant 1- and the M4be parental line are the most radioresistant cells, clone 4 and subvariant 1+ are the most radiosensitive cells, while clones 2 and 3 and variant 1 showed an intermediate response to radiation. The metastatic potential in vivo of the parental line and the seven sublines is significantly correlated to their radiosensitivity in vitro: the higher the metastatic potential, the higher the radiosensitivity. PMID:7874696

  4. Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells

    PubMed Central

    Javvadi, Prashanthi; Hertan, Lauren; Kosoff, Rachelle; Datta, Tatini; Kolev, Johann; Mick, Rosemarie; Tuttle, Stephen W; Koumenis, Constantinos

    2010-01-01

    Curcumin, a plant polyphenol, is a widely studied chemopreventive agent with demonstrated antitumor activities in preclinical studies and low toxicity profiles in multiple clinical trials against human malignancies. We previously demonstrated that curcumin radiosensitizes cervical tumor cells without increasing the cytotoxic effects of radiation on normal human fibroblasts. Here we report that an inhibitory activity of curcumin on the anti-oxidant enzyme Thioredoxin Reductase-1 (TxnRd1) is required for curcumin-mediated radiosensitization of squamous carcinoma cells. Stable knockdown of TxnRd1 in both HeLa and FaDu cells nearly abolished curcumin-mediated radiosensitization. TxnRd1 knockdown cells demonstrated decreased radiation-induced reactive oxygen species and sustained ERK1/2 activation, which we previously demonstrated was required for curcumin-mediated radiosensitization. Conversely, overexpressing catalytically active TxnRd1 in HEK293 cells, with low basal levels of TxnRd1, increased their sensitivity to curcumin alone and to the combination of curcumin and ionizing radiation. These results demonstrate the critical role of TxnRd1 in curcumin-mediated radiosensitization and suggest that TxnRd1 levels in tumors could have clinical value as a predictor of response to curcumin and radiotherapy. PMID:20160040

  5. In vitro and in vivo radiosensitization of human glioma U251 cells induced by upregulated expression of SLC22A18.

    PubMed

    Chu, S-H; Zhou, Z-M; Karri, S; Li, Z-Q; Zhao, J-M

    2014-03-01

    Our previous study showed that solute carrier family 22 (organic cation transporter) member 18 (SLC22A18) downregulation via promoter methylation was associated with the development and progression of glioma, and the elevated expression of SLC22A18 was found to increase the sensitivity of glioma U251 cells to the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. In this study, we investigated the possible upregulated expression of SLC22A18-induced enhancement of radiosensitivity of human glioma U251 cells in order to provide evidence in support of further clinical investigations. Stably overexpressing SLC22A18 human glioma U251 cells were generated to investigate the effect of SLC22A18 on the sensitivity of cells to irradiation in vitro using clonogenic survival assay. The apoptosis of U251 cells was examined with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. DNA damage and repair were measured using ?H2AX foci. The effect of SLC22A18 on the in vivo tumor radiosensitivity was investigated in the orthotopic mice model. Upregulated expression of SLC22A18 enhanced the radiosensitivity of glioma U251 cells and also enhanced irradiation-induced apoptosis of U251 cells, but irradiation-induced apoptosis did not correlate with radiosensitizing effect of upregulated expression of SLC22A18. The repair of irradiation-induced double-strand-breaks was retarded in stably overexpressing SLC22A18 U251 cells. In the orthotopic mice model, the upregulated expression of SLC22A18 in U251 cells enhanced the effect of irradiation treatment and increased the survival time of mice. These results show that upregulated expression of SLC22A18 radiosensitizes human glioma U251 cells by suppressing DNA repair capacity. PMID:24481489

  6. Raman spectroscopic identification of normal and malignant human stomach cells

    NASA Astrophysics Data System (ADS)

    Yang, Jipeng; Guo, Jianyu; Wu, Liangping; Sun, Zhenrong; Cai, Weiying; Wang, Zugeng

    2005-12-01

    Micro-Raman spectroscopy is employed to identify the normal and malignant human stomach cells. For the cancer cell, the reduced intensity of the Raman peak at 1250 cm^(-1) indicates that the protein secondary structure transforms from ?-sheet or disordered structures to ?-helical, while the increased intensity of the symmetric PO2 stretching vibration mode at 1094 cm^(-1) shows the increased DNA content. The ratio of the intensity at 1315 cm^(-1) to that at 1340 cm^(-1) reduces from 1.8 for the normal cell to 1.1 for the cancer cell in the course of canceration, and the ratio of the intensity at 1655 cm^(-1) to that at 1450 cm^(-1) increases from 1.00 for the cancer cell to 1.26 for the normal cell which indicates that the canceration of stomach cell may induce saturation of the lipid chain.

  7. The role of human papilloma virus in urological malignancies.

    PubMed

    Heidegger, Isabel; Borena, Wegene; Pichler, Renate

    2015-05-01

    Human papillomavirus (HPV) is associated with cancer of the cervix uteri, penis, vulva, vagina, anus and oropharynx. However, the role of HPV infection in urological tumors is not yet clarified. HPV appears not to play a major causative role in renal and testicular carcinogenesis. However, HPV infection should be kept in mind regarding cases of prostate cancer, as well as in a sub-group of patients with bladder cancer with squamous differentiation. Concerning the role of HPV in penile cancer incidence, it is a recognized risk factor proven in a large number of studies. This short review provides an update regarding recent literature on HPV in urological malignancies, thereby, also discussing possible limitations on HPV detection in urological cancer. PMID:25964524

  8. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound

    Microsoft Academic Search

    Feng Wu; Wen-Zhi Chen; Jin Bai; Jian-Zhong Zou; Zhi-Long Wang; Hui Zhu; Zhi-Biao Wang

    2001-01-01

    The purpose of this study was to investigate the pathologic changes of extracorporeal ablation of human malignant tumors with high-intensity focused ultrasound (HIFU). HIFU treatment was performed in the 164 patients with liver cancer, breast cancer, malignant bone tumor, soft tissue sarcoma and other malignant tumors at focal peak intensities from 5000 W cm?2 to 20,000 W cm?2, with operating

  9. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/?m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  10. VorinostatSAHA Promotes Hyper-Radiosensitivity in Wild Type p53 Human Glioblastoma Cells

    PubMed Central

    Diss, Eric; Nalabothula, NarasimhaRao; Nguyen, Duc; Chang, Elizabeth; Kwok, Young; Carrier, France

    2014-01-01

    Glioblastoma multiforme (GBM) is a very aggressive and locally invasive tumor. The current standard of care is partial brain radiation therapy (60 Gy) concurrently with the alkylating agent temozolomide (TMZ). However, patients’ survival remains poor (6-12 months) mainly due to local and diffuse (distant) recurrence. The possibility to promote hyper radiosensitivity (HRS) with low dose radiation may contribute to improve outcome. Here, we evaluated the effect of VorinostatSAHA and TMZ on glioblastoma cells’ sensitivity to low dose radiation. Clonogenic survivals were performed on D54 (p53 and PTEN wild type) and U118 (p53 and PTEN mutants) cells exposed to clinically relevant doses of VorinostatSAHA and TMZ and increasing radiation doses. Apoptosis was measured by the activation of caspase-3 and the role of p53 and PTEN were evaluated with the p53 inhibitor pifithrin ? and the PI3K/AKT pathway inhibitor LY29002. VorinostatSAHA promoted HRS at doses as low as 0.25 Gy in the D54 but not the U118 cells. Killing efficiency was associated with caspase-3 activation, delayed H2AX phosphorylation and abrogation of a radiation -induced G2 arrest. Inhibiting p53 function with pifithrin ? prevented the promotion of HRS by VorinostatSAHA. Moreover, LY29002, a PI-3K inhibitor, restored promotion of HRS by VorinostatSAHA in the p53 mutant U118 cells to levels similar to the p53 wild type cells. TMZ also promoted HRS at doses as low as 0.15 Gy. These finding indicate that HRS can be promoted in p53 wild type glioblastoma cells through a functional PTEN to delay DNA repair and sensitize cells to low dose radiation. Promotion of HRS thus appears to be a viable approach for GBM that could be used as a basis to develop new Phase I/II studies. PMID:25379568

  11. Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas

    Microsoft Academic Search

    I M Germano; L Emdad; Z A Qadeer; E Binello; M Uzzaman

    2010-01-01

    High-grade gliomas are among the most lethal of all cancers. Despite considerable advances in multimodality treatment, including surgery, radiotherapy and chemotherapy, the overall prognosis for patients with this disease remains dismal. Currently available treatments necessitate the development of more effective tumor-selective therapies. The use of gene therapy for malignant gliomas is promising, as it allows in situ delivery and selectively

  12. Melanoma differentiation associated gene-7, mda-7\\/IL24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner

    Microsoft Academic Search

    Zao-Zhong Su; Irina V Lebedeva; Devanand Sarkar; Rahul V Gopalkrishnan; Moira Sauane; Carter Sigmon; Adly Yacoub; Kristoffer Valerie; Paul Dent; Paul B Fisher

    2003-01-01

    Malignant gliomas are extremely aggressive cancers currently lacking effective treatment modalities. Gene therapy represents a promising approach for this disease. A requisite component for improving gene-based therapies of brain cancer includes tumor suppressor genes that exhibit cancer constrained inhibitory activity. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7) as a gene associated with melanoma cell growth, differentiation and progression. Ectopic

  13. Radiation-induced DNA damage and repair evaluated with 'comet assay' in human ovarian carcinoma cell lines with different radiosensitivities.

    PubMed

    Bacová, G; Hunáková, L E; Chorváth, M; Boljesíková, E; Chorváth, B; Sedlák, J; Gábelová, A

    2000-01-01

    Radiation-induced DNA damage and kinetics of DNA repair was evaluated in three human ovarian carcinoma cell lines (i.e. CH-1, A-2780 and SKOV-3) with different sensitivities to ionizing radiation and radiation-induced apoptosis with the aid of single cell gel electrophoresis (SCGE, the comet assay). A good correlation was found between the initial level of DNA breaks and radiation induced apoptosis in CH-1 and SKOV-3 cell lines. While the radiation-sensitive CH-1 cell line manifested the highest level of initial DNA breakage and a significant delay in DNA break rejoining, the inverse correlation was found in the radiation-resistant cell line SKOV-3. Intermediate initial level of breaks was induced in the A-2780 cell line characterized by the intermediate sensitivity to X-ray radiation in comparison to CH-1 and SKOV-3 cells, however, the kinetics of DNA repair was comparable with radiation-resistant cell line SKOV-3. Our data suggest that the comet assay could be a promising tool for prediction of intrinsic cell radiosensitivity. This method might be considered as a supplementary technique to the more reliable but time consuming clonogenic assay. PMID:11263861

  14. Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines

    PubMed Central

    Yajima, Ichiro; Kumasaka, Mayuko Y; Naito, Yuji; Yoshikawa, Toshikazu; Takahashi, Hiro; Funasaka, Yoko; Suzuki, Tamio; Kato, Masashi

    2012-01-01

    Heterotrimeric G protein is composed of a G?-subunit and a G??-dimer. Previous studies have revealed that G??-dimers including the G?2 subunit (Gng2/GNG2) are associated with cell proliferation, differentiation, invasion and angiogenesis. At present, however, there is no information on the expression level of Gng2/GNG2 alone in any kind of tumor. In this study, we performed DNA microarray analysis in a benign melanocytic tumor and a malignant melanoma from RET-transgenic mice (RET-mice). Gng2 transcript expression levels in a malignant melanoma were less than 1/10 of the level in a benign tumor. The difference in Gng2 transcript expression levels between benign tumors and malignant melanomas was greatest among all of the G protein ? subunits examined in this study. Moreover, protein expression levels of Gng2 were decreased in malignant melanomas compared with those in benign melanocytic tumors in RET-mice. Analysis of human malignant melanomas also showed reduced GNG2 protein expression levels in five human malignant melanoma cell lines compared with the expression levels in normal human epithelial melanocytes (NHEM). Thus, we demonstrated for the first time that Gng2/GNG2 expression levels are reduced in malignant melanoma, suggesting that GNG2 could be a novel biomarker for malignant melanoma. PMID:22679562

  15. Impaired Pten Expression in Human Malignant Peripheral Nerve Sheath Tumours

    PubMed Central

    Zietsch, Jan; Jäschke, Sebastian; Mautner, Victor-F; Kurtz, Andreas; Park, Su-Jin; Baier, Michael; Harder, Anja; Reuss, David; von Deimling, Andreas; Heppner, Frank L.; Holtkamp, Nikola

    2012-01-01

    Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that develop in about 10% of patients with the genetic disease neurofibromatosis type 1 (NF1). Molecular alterations contributing to MPNST formation have only partially been resolved. Here we examined the role of Pten, a key regulator of the Pi3k/Akt/mTOR pathway, in human MPNST and benign neurofibromas. Immunohistochemistry showed that Pten expression was significantly lower in MPNST (n?=?16) than in neurofibromas (n?=?16) and normal nervous tissue. To elucidate potential mechanisms for Pten down-regulation or Akt/mTOR activation in MPNST we performed further experiments. Mutation analysis revealed absence of somatic mutations in PTEN (n?=?31) and PIK3CA (n?=?38). However, we found frequent PTEN promotor methylation in primary MPNST (11/26) and MPNST cell lines (7/8) but not in benign nerve sheath tumours. PTEN methylation was significantly associated with early metastasis. Moreover, we detected an inverse correlation of Pten-regulating miR-21 and Pten protein levels in MPNST cell lines. The examination of NF1?/? and NF1+/+Schwann cells and fibroblasts showed that Pten expression is not regulated by NF1. To determine the significance of Pten status for treatment with the mTOR inhibitor rapamycin we treated 5 MPNST cell lines with rapamycin. All cell lines were sensitive to rapamycin without a significant correlation to Pten levels. When rapamycin was combined with simvastatin a synergistic anti-proliferative effect was achieved. Taken together we show frequent loss/reduction of Pten expression in MPNST and provide evidence for the involvement of multiple Pten regulating mechanisms. PMID:23139750

  16. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer

    SciTech Connect

    Parshad, R.; Sanford, K.K.; Jones, G.M.

    1985-08-01

    The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer.

  17. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    SciTech Connect

    Chen Wenshu; Yu Yichu [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Lee Yijang [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Chen, J.-H. [Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan (China); Hsu, H.-Y. [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Chiu, S.-J., E-mail: chiusj@mail.tcu.edu.t [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan (China)

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.

  18. Normal human colon cells suppress malignancy when fused with colon cancer cells

    SciTech Connect

    Johnson, T.L.; Moyer, M.P. (Univ. of Texas Health Science Center, San Antonio (USA))

    1990-11-01

    Normal human colon mucosa cells and cells obtained from histologically normal tissues near that cancer were fused with human colon cancer cells. Resultant hybrid populations of normal and malignant cell fusions behaved as nonmalignant cells in culture, were unable to grow in soft agar, did not express tumor-associated antigens, and were nontumorigenic in nude mice. Autofusion of the cancer cell population led to a phenotype intermediate between normal and malignant cells. That is, the cultures had a much lower plating efficiency in soft agar, and the tumors had a longer latency and slower growth rate in nude mice. This is the first cell culture system to demonstrate that normal epithelial cells can suppress malignancy of their autologous cancer cells, and is a prelude to more extensive studies of genetic events involved in malignant conversion of human colonic epithelium.

  19. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Li Hongzhen [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Miki, Jun [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Kim, Kee-Hong [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Furusato, Bungo [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Armed Forces Institute of Pathology, Washington, DC 20307 (United States); Sesterhenn, Isabell A. [Armed Forces Institute of Pathology, Washington, DC 20307 (United States); Chu, Wei-Sing [Armed Forces Institute of Pathology, Washington, DC 20307 (United States); McLeod, David G. [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Walter Reed Army Medical Center, Washington, DC 20307 (United States); Srivastava, Shiv [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States); Ewing, Charles M. [Johns Hopkins Medical Institutions, Baltimore, MD 21287 (United States); Isaacs, William B. [Johns Hopkins Medical Institutions, Baltimore, MD 21287 (United States); Rhim, Johng S. [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 (United States)]. E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  20. Effects of low oxygen levels on G2-specific cytogenetic low-dose hyper-radiosensitivity in irradiated human cells.

    PubMed

    Joshi, Gnanada S; Joiner, Michael C; Tucker, James D

    2015-07-01

    Low-dose hyper-radiosensitivity (HRS) has been reported in normal human lymphoblastoid cell lines for exposures at???20 cGy, but the cytogenetic effects of oxygen (O2 ) levels in tissue culture medium on HRS have not been evaluated. We asked whether HRS was lost in G2-irradiated cells grown in atmospheres of 2.5% or 5% O2 , compared to responses by cells cultured in ambient O2 (21%). The results indicate a loss of HRS when cells are cultured and irradiated either in 2.5% or 5% O2 . We then evaluated whether low O2 levels either before or after exposure were responsible for the loss of HRS. For cells irradiated in 5% O2 , subsequent immediate re-oxygenation to ambient O2 levels restored the HRS effect, while cells cultured and irradiated at ambient O2 levels and then transferred to 5% O2 exhibited little or no HRS, indicating that ambient O2 levels after, but not before, radiation substantially affect the amounts of cytogenetic damage. HRS was not observed when cells were irradiated in G1. At doses of 40-400 cGy there was significantly less cytogenetic damage when cells were recovering from radiation at low O2 levels than at ambient O2 levels. Here we provide the first cytogenetic evidence for the loss of HRS at low O2 levels in G2-irradiated cells; these results suggest that at low O2 levels for all doses evaluated there is either less damage to DNA, perhaps because of lower amounts of reactive oxygen species, or that DNA damage repair pathways are activated more efficiently. Environ. Mol. Mutagen. 56:545-555, 2015. © Wiley Periodicals, Inc. PMID:25808121

  1. In vitro measurements of ultraweak luminescence of human malignant tumors and healthy tissues

    NASA Astrophysics Data System (ADS)

    Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Pozniak, V.; Dziczek, D.; Michniewicz, Z.; Jackowski, M.; Raczynska, A. M.; Winczakiewicz, J.

    2001-07-01

    In vitro measurements of levels of ultraweak luminescence were carried out using healthy and malignant tissues obtained from 63 patients undergoing surgical operations for cancers of colon, stomach and breast. The results obtained support recent reports that there is a difference in mean intensities of the ultraweak luminescence emitted from healthy and malignant tissues. This work demonstrates, however, that because of a large scatter among the intensities detected for samples obtained from different patients the differences found for the mean intensities cannot serve as a parameter for differentiating between the malignant and normal human tissues.

  2. ‘Decoy’ and ‘non-decoy’ functions of DcR3 promote malignant potential in human malignant fibrous histiocytoma cells

    PubMed Central

    TODA, MITSUNORI; KAWAMOTO, TERUYA; UEHA, TAKESHI; KISHIMOTO, KENTA; HARA, HITOMI; FUKASE, NAOMASA; ONISHI, YASUO; HARADA, RISA; MINODA, MASAYA; KUROSAKA, MASAHIRO; AKISUE, TOSHIHIRO

    2013-01-01

    Decoy receptor 3 (DcR3) is a soluble secreted protein that belongs to the tumor necrosis factor receptor (TNFR) superfamily. DcR3 inhibits the Fas ligand (FasL)/Fas apoptotic pathway by binding to FasL, competitively with Fas receptor. Previous studies have reported that overexpression of DcR3 has been detected in various human malignancies and that DcR3 functions as a ‘decoy’ for FasL to inhibit FasL-induced apoptosis. In addition, recent studies have revealed that DcR3 has ‘non-decoy’ functions to promote tumor cell migration and invasion, suggesting that DcR3 may play important roles in tumor progression by decoy and non-decoy functions. We have previously reported that overexpression of DcR3 was observed in human malignant fibrous histiocytoma (MFH), however, the roles of DcR3 in MFH have not been studied. In the present study, to elucidate the roles of DcR3 in tumor progression of MFH, we examined the effects of DcR3 inhibition on cell apoptosis, migration and invasion in human MFH cells. siRNA knockdown of DcR3 enhanced the FasL-induced apoptotic activity and significantly decreased cell migration and invasion with a decrease in the activation of phosphatidylinositol 3 kinase (PI3K)/Akt and matrix metalloproteinase (MMP)-2. The findings in this study strongly suggest that DcR3 plays important roles in tumor progression of human MFH by decoy as well as non-decoy functions and that DcR3 may serve as a potent therapeutic target for human MFH. PMID:23817777

  3. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy

    Microsoft Academic Search

    Bernard Fertil; Edmond-Philippe Malaise

    1981-01-01

    A statistical analysis has been performed on a set of 59 published survival curves of human cell lines. Six fibroblast cell lines derived from patients free of genetic disorders and 36 tumor cell lines were used in this study. Using the linear quadratic (L-Q) model, which provides an overall adequate fitting, especially in the low dose range, we show that

  4. Malignant Potential of Murine Stromal Cells after Transplantation of Human Tumors into Nude Mice

    NASA Astrophysics Data System (ADS)

    Goldenberg, David M.; Pavia, Rose A.

    1981-04-01

    Human malignant cancer tumors grafted into nude mice produce tumors containing both human cancer cells and the host's stromal cells. After short-term propagation of these tumors in vitro, the murine mesenchymal cells appear transformed and are tumorigenic in nude mice. However, established human cancer cell lines fail to similarly alter adjacent murine stromal cells when used to produce tumors in nude mice. These experiments suggest that cancer cells may recruit normal cells to become malignant, qualifying the view of the clonal (unicellular) origin of cancer.

  5. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China) [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China)] [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China) [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China) [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China)] [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China)] [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children's Hospital of Chongqin Medical University, Chongqing 400014 (China)] [Department of Laboratory of Medicine, Children's Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China)] [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China)] [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China)] [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China) [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  6. Cell Cycle Synchrony Unmasks the Influence of p53 Function on Radiosensitivity of Human Glioblastoma Cells

    Microsoft Academic Search

    Garret L. Yount; Daphne A. Haas; Charlie A. Vidair; Martin Haas; William C. Dewey; Mark A Israel

    Although ionizing radiation causes DNAdamage that can play a role in tumorigenesis, such Irradiation is also an important modality of cancer therapy. We studied the radiation response of the U-87 MG human glioblastoma cell line and transfected derivatives in which p53 function had been inactivated.Althoughlittle effect of p53 on the radiationsemi tivity of asynchronously growing cultures could be detected, Inactivation

  7. Spontaneous and experimental malignancies in non-human primates.

    PubMed

    Lapin, Boris A; Yakovleva, Lelita A

    2014-04-01

    Contrary to earlier established opinion that tumors in monkeys are found rarely, now the large material confirms that monkey tumors are frequent phenomenon. Tumor incidence clearly increases with age. Frequencies of benign and malignant tumors of various locations and histogenesis are slightly different. Tumors of hematopoietic system are the most frequent. Sporadic cases and enzootic outbreaks of lymphomas are described for different kinds of monkeys, including apes, and probably are caused by viruses. Two viruses were isolated by us from sick monkeys - the retrovirus C-type STLV-1 and the herpes virus papio HVP. Inoculation of virus cultures into monkeys and rabbits induces neoplasms. Monkey neoplasms can be induced by exposure to various chemical agents, and by oncogenic and non-oncogenic viruses. There is no strict species specificity of tumor viruses. The role of polyoma viruses in neoplasms etiology is discussed. PMID:24392944

  8. Adenoviral-E2F-1 radiosensitizes p53{sup wild-type} and p53{sup null} human prostate cancer cells

    SciTech Connect

    Nguyen, Khanh H. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hachem, Paul [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Khor, L.-Y. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Salem, Naji [Department of Radiotherapy, Institut Paoli-Calmette, Avignon (France); Hunt, Kelly K. [Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Calkins, Peter R. [Department of Pathology, Baylor College of Medicine, Houston, TX (United States); Pollack, Alan [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)]. E-mail: Alan.Pollack@fccc.edu

    2005-09-01

    Purpose: E2F-1 is a transcription factor that enhances the radiosensitivity of various cell lines by inducing apoptosis. However, there are conflicting data concerning whether this enhancement is mediated via p53 dependent pathways. Additionally, the role of E2F-1 in the response of human prostate cancer to radiation has not been well characterized. In this study, we investigated the effect of Adenoviral-E2F-1 (Ad-E2F-1) on the radiosensitivity of p53{sup wild-type} (LNCaP) and p53{sup null} (PC3) prostate cancer cell lines. Methods and Materials: LNCaP and PC3 cells were transduced with Ad-E2F-1, Adenoviral-Luciferase (Ad-Luc) control vector, or Adenoviral-p53 (Ad-p53). Expression of E2F-1 and p53 was examined by Western blot analysis. Annexin V and caspase 3 + 7 assays were performed to estimate the levels of apoptosis. Clonogenic survival assays were used to determine overall cell death. Statistical significance was determined by analysis of variance, using the Bonferroni method to correct for multiple comparisons. Results: Western blot analysis confirmed the efficacy of transductions with Ad-E2F-1 and Ad-p53. Ad-E2F-1 transduction significantly enhanced apoptosis and decreased clonogenic survival in both cell lines. These effects were compounded by the addition of RT. Although E2F-1-mediated radiosensitization was independent of p53 status, this effect was more pronounced in p53{sup wild-type} LNCaP cells. When PC3 cells were treated with Ad-p53 in combination with RT and Ad-E2F-1, there was at least an additive reduction in clonogenic survival. Conclusions: Our results suggest that Ad-E2F-1 significantly enhances the response of p53{sup wild-type} and p53{sup null} prostate cancer cells to radiation therapy, although radiosensitization is more pronounced in the presence of p53. Ad-E2F-1 may be a useful adjunct to radiation therapy in the treatment of prostate cancer.

  9. Normal Sequence and Activity but Reduced Levels of DNA-Pkcs in Human Lymphoblastic Cells Implicate Impaired Protein Stability with Radiosensitive Phenotype.

    PubMed

    Yap, Seow Fong; Boo, Cynthia Sk; Loong, Susan LE; Baskar, Rajamanickam

    2013-01-01

    Background: Non-homologous end joining (NHEJ) is the main repair pathway for DNA double strand breaks (DSBs) induced by ionizing radiation in mammalian cells. Subsets of cancer patients are hypersensitive to radiotherapy after standard doses. We sought to determine the radiosensitivity of human lymphoblastic cells (LB0005) for the abnormality in NHEJ components. Methods: Lymphoblastic (LB0005) cells are derived from an adult cancer patient with late radionecrosis. A low magnesium in vitro DNA-end joining assay was performed to examine for any defect in NHEJ activity. Single-nucleotide polymorphism (SNP) and sequence analysis were performed to examine for abnormality if any, in the genetic sequence of known NHEJ components. Results: LB0005 cells showed a gain of functional abnormality in the NHEJ pathway. While genetic sequence analysis showed no apparent mutational variations in the known classical NHEJ components, DNA-PKcs (DNA-dependent protein kinase catalytic subunit) protein is reduced in quantity compared to normal control, in spite of higher transcript levels. Conclusions: Taken together cells derived from a radiosensitive patient showed an abnormality in NHEJ activity. Proteins other than the classical NHEJ factors may regulate the NHEJ activity. Furthermore, the defect in theses regulatory proteins may have an impact on the stability of DNA-PKcs. PMID:24155772

  10. Normal Sequence and Activity but Reduced Levels of DNA-Pkcs in Human Lymphoblastic Cells Implicate Impaired Protein Stability with Radiosensitive Phenotype

    PubMed Central

    Yap, Seow Fong; Boo, Cynthia SK; Loong, Susan LE; Baskar, Rajamanickam

    2013-01-01

    Background: Non-homologous end joining (NHEJ) is the main repair pathway for DNA double strand breaks (DSBs) induced by ionizing radiation in mammalian cells. Subsets of cancer patients are hypersensitive to radiotherapy after standard doses. We sought to determine the radiosensitivity of human lymphoblastic cells (LB0005) for the abnormality in NHEJ components. Methods: Lymphoblastic (LB0005) cells are derived from an adult cancer patient with late radionecrosis. A low magnesium in vitro DNA-end joining assay was performed to examine for any defect in NHEJ activity. Single-nucleotide polymorphism (SNP) and sequence analysis were performed to examine for abnormality if any, in the genetic sequence of known NHEJ components. Results: LB0005 cells showed a gain of functional abnormality in the NHEJ pathway. While genetic sequence analysis showed no apparent mutational variations in the known classical NHEJ components, DNA-PKcs (DNA-dependent protein kinase catalytic subunit) protein is reduced in quantity compared to normal control, in spite of higher transcript levels. Conclusions: Taken together cells derived from a radiosensitive patient showed an abnormality in NHEJ activity. Proteins other than the classical NHEJ factors may regulate the NHEJ activity. Furthermore, the defect in theses regulatory proteins may have an impact on the stability of DNA-PKcs. PMID:24155772

  11. Hematologic Effects of Recombinant Human Granulocyte Colony-Stimulating Factor in Patients With Malignancy

    Microsoft Academic Search

    Albrecht Lindemann; Friedhelm Herrmann; Wolfgang Oster; Gerd Haffner; Walter Meyenburg; Larry M. Souza; Roland Mertelsmann

    1989-01-01

    The effect of recombinant human granulocyte colony- stimulating factor (G-CSF) on hematologic parameters was evaluated in a phase I clinical study in 1 8 patients with advanced malignancy. G-CSF was administered once daily as a 30-minute infusion for 1 4 days; three patients each were treated at increasing dose levels of 1 . 3, 1 0, 30, and 60 ?g

  12. Activation of Neural and Pluripotent Stem Cell Signatures Correlates with Increased Malignancy in Human Glioma

    Microsoft Academic Search

    Johan Holmberg; Xiaobing He; Inti Peredo; Abiel Orrego; Göran Hesselager; Christer Ericsson; Outi Hovatta; Sueli Mieko Oba-Shinjo; Suely Kazue Nagahashi Marie; Monica Nistér; Jonas Muhr; Joseph Najbauer

    2011-01-01

    The presence of stem cell characteristics in glioma cells raises the possibility that mechanisms promoting the maintenance and self-renewal of tissue specific stem cells have a similar function in tumor cells. Here we characterized human gliomas of various malignancy grades for the expression of stem cell regulatory proteins. We show that cells in high grade glioma co-express an array of

  13. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang [Department of Radiology, Division of Radiation Oncology, Baylor College of Medicine, Houston, TX (United States); Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing (China); Tretiakova, Maria [Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Zhang Zhongfa; Li Yan [Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, MI (United States); Wang Xiaozhen [Department of Radiology, Division of Radiation Oncology, Baylor College of Medicine, Houston, TX (United States); Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing (China); Zhu, Julie Xiaohong [Department of Radiology, Division of Radiation Oncology, Baylor College of Medicine, Houston, TX (United States); Gao Yuanhong [Department of Radiology, Division of Radiation Oncology, Baylor College of Medicine, Houston, TX (United States); Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou (China); Mai Weiyuan [Department of Radiology, Division of Radiation Oncology, Baylor College of Medicine, Houston, TX (United States); Furge, Kyle [Laboratory of Computational Biology, Van Andel Research Institute, Grand Rapids, MI (United States); Qian Chaonan [Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, MI (United States); Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou (China); Amato, Robert [Department of Genitourinary Oncology, Methodist Hospital, Houston, TX (United States); Butler, E. Brian [Department of Radiation Oncology, Methodist Hospital and Methodist Hospital Research Institute, Houston, TX (United States)] (and others)

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  14. Melatonin inhibits cell proliferation and induces caspase activation and apoptosis in human malignant lymphoid cell lines.

    PubMed

    Sánchez-Hidalgo, Marina; Lee, Melanie; de la Lastra, Catalina A; Guerrero, Juan M; Packham, Graham

    2012-11-01

    Melatonin exerts strong anti-tumour activity via several mechanisms, including anti-proliferative and pro-apoptotic effects in addition to its potent antioxidant activity. Several studies have investigated the effects of melatonin on haematological malignancies. However, the previous studies investigating lymphoid malignancies have been largely restricted to a single type of malignancy, Burkitt's lymphoma (BL). Thus, we examined the actions of melatonin on the growth and apoptosis in a small panel of cell lines representing different human lymphoid malignancies including Ramos (Epstein-Barr virus-negative BL), SU-DHL-4 (diffuse large B cell lymphoma), DoHH2 (follicular B non-Hodgkin lymphoma) and JURKAT (acute T cell leukaemia). We showed that melatonin promotes cell cycle arrest and apoptosis in all these cells, although there was marked variations in responses among different cell lines (sensitivity; Ramos/DoHH2 > SU-DHL-4 > JURKAT). Melatonin-induced apoptosis was relatively rapid, with increased caspase 3 and PARP cleavage detected within 0.5-1 h following melatonin addition. Moreover, there was evidence for rapid processing of both caspase 9, as well as a breakdown of the mitochondrial inner transmembrane potential. On the contrary, caspase activation was detected only in SU-DHL-4 and Ramos cells following melatonin treatment suggesting that the extrinsic pathway does not make a consistent contribution to melatonin-induced apoptosis in malignant lymphocytes. Although all cell lines expressed the high-affinity melatonin receptors, MT1 and MT2, melatonin-induced caspase activation appeared to be independent these receptors. Our findings confirm that melatonin could be a potential chemotherapeutic/preventive agent for malignant lymphocytes. However, it is necessary to take into account that different lymphoid malignancies may differ in their response to melatonin. PMID:22582944

  15. Zebrafish as a Model for the Study of Human Myeloid Malignancies

    PubMed Central

    Lu, Jeng-Wei; Hsieh, Meng-Shan; Liao, Heng-An; Yang, Yi-Ju; Ho, Yi-Jung; Lin, Liang-In

    2015-01-01

    Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies.

  16. Telomerase activity in benign and malignant human thyroid tissues.

    PubMed Central

    Cheng, A. J.; Lin, J. D.; Chang, T.; Wang, T. C.

    1998-01-01

    Telomerase is a specialized ribonucleoprotein polymerase that directs the synthesis of telomerase repeats at chromosome ends. Accumulating evidence has indicated that telomerase is stringently repressed in normal human somatic tissues but reactivated in cancers and immortal cells, suggesting that activation of telomerase activity plays a role in carcinogenesis and immortalization. In this work, the status of telomerase activity during the development of human thyroid cancer was determined using telomeric repeat amplification protocol (TRAP) in 14 nodular hyperplasia, 14 adenomas, 23 papillary carcinomas and 11 follicular carcinomas. Positive telomerase activity was detected in 2 of 14 nodular hyperplasias (14%), 4 of 14 adenomas (29%), 12 of 23 papillary carcinomas (52%) and 10 of 11 follicular carcinomas (91%). The cancers that are negative for telomerase activity are mostly in early stage (stage I or II). These results suggest that telomerase reactivation plays a role during the development of thyroid cancer. Images Figure 1 PMID:9649130

  17. Diverse mechanisms of AKT pathway activation in human malignancy

    PubMed Central

    Cheung, Mitchell; Testa, Joseph R.

    2013-01-01

    AKT/PKB (Protein Kinase B) are central proteins mediating signals from receptor tyrosine kinases and phosphatidylinositol 3-kinase. AKT kinases are involved in a number of important cellular processes including cell proliferation and survival, cell size in response to nutrient availability, tumor invasion/metastasis, and angiogenesis. Various components of the AKT signaling pathway are encoded by tumor suppressor genes and oncogenes whose loss or activation, respectively, plays an important role in tumorigenesis. The growing body of evidence connecting deregulated AKT signaling with sporadic human cancers and inherited cancer predisposition syndromes is discussed. We also highlight new findings regarding the involvement of activating mutations of AKT1, AKT2, and AKT3 in somatic overgrowth disorders: Proteus syndrome, hypoglycemia with hypertrophy, and hemimegalencephaly, respectively. In addition, we review recent literature documenting the various ways the AKT signaling pathway is activated in human cancers and consequences for molecularly targeted therapies. PMID:23297823

  18. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis

    Microsoft Academic Search

    Mirella Lazarov; Yoshiaki Kubo; Ti Cai; Maya Dajee; Masahito Tarutani; Qun Lin; Min Fang; Shiying Tao; Cheryl L. Green; Paul A. Khavari

    2002-01-01

    Ras acts with other proteins to induce neoplasia. By itself, however, strong Ras signaling can suppress proliferation of normal cells. In primary epidermal cells, we found that oncogenic Ras transiently decreases cyclin-dependent kinase (CDK) 4 expression in association with cell cycle arrest in G1 phase. CDK4 co-expression circumvents Ras growth suppression and induces invasive human neoplasia resembling squamous cell carcinoma.

  19. Malignant conversion of chemically transformed normal human cells.

    PubMed Central

    Milo, G E; Li, D; Casto, B C; Theil, K; Shuler, C; Noyes, I; Chen, J

    1996-01-01

    Two structurally unrelated chemicals, aflatoxin B1 and propane sultone, transformed human foreskin cells to a stage of anchorage-independent growth. Isolation from agar and repopulation in monolayer culture of these transformed cells was followed by transfection with a cDNA library, which resulted in cells that exhibited an altered epithelioid morphology. Chemically transformed/nontransfected cells and transfected normal cells did not undergo a significant morphological change. These epithelioid-appearing, transfected cells, when inoculated into nude mice, form progressively growing tumors. The tumors are histopathologically interpreted as carcinomas. All of the first generation tumors in the surrogate hosts exhibited characteristic rates of growth similar to those of transplants of spontaneous human tumors. In the second generation of tumor xenografts, the progressively growing tumors derived from the transfected cells exhibited a more rapid rate of growth. Southern analysis and reverse transcription PCR confirmed that a 1.3-kb genetic element was integrated into the genome and was actively being transcribed. Examination of the metaphase chromosomes in normal human cells revealed that the genetic element responsible for this conversion was located at site 31-32 of the q arm of chromosome 7. The DNA sequence of this 1.3-kb genetic element contains a coding region for 79 amino acids and a long 3'-untranslated region and appears to be identical to CATR1.3 isolated from tumors produced by methyl methanesulfonate-converted, nontransplantable human tumor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8643558

  20. Malignant transformation of human benign prostate epithelial cells by high linear energy transfer alpha-particles.

    PubMed

    Li, Hongzhen; Gu, Yongpeng; Miki, Jun; Hukku, Bharati; McLeod, David G; Hei, Tom K; Rhim, Johng S

    2007-09-01

    Although epidemiological studies have suggested a positive correlation between environmental radon exposure and prostate cancer, the mechanism involved is not clear. In the present study, we examined the oncogenic transforming potency of alpha-particles using non-tumorigenic, telomerase-immortalized human benign prostate epithelial cells. We report the malignant transformation of human benign prostate epithelial cells after a single exposure to 0.6 Gy dose of alpha-particles. Transformed cells showed anchorage-independent growth in soft agar and induced progressively growing tumors when transplanted into SCID mice. The tumors were characterized histologically as poorly differentiated adenocarcinomas. The cell line derived from tumor (SCID 5015), like the unirradiated cells, expressed cytokeratin 5, 8 and 18, NKX3.1 and AMACR. The malignant cells showed increased secretion of MMP2. Stepwise chromosomal changes in the progression to tumorigenicity were observed. Chromosome abnormalities were identified in both irradiated and tumorigenic cells relative to the non-irradiated control cells. Prominent changes in chromosomes 6, 11 and 16, as well as mutations and deletions of the p53 gene were observed in the tumor outgrowth and tumor cells. These findings provide the first evidence of malignant transformation of human benign prostate epithelial cells exposed to a single dose of alpha-particles. This model provides an opportunity to study the cellular and molecular alterations that occur in radiation carcinogenesis in human prostate cells. PMID:17671680

  1. Expression of TGF-? Signaling Genes in the Normal, Premalignant, and Malignant Human Trophoblast: Loss of Smad3 in Choriocarcinoma Cells

    Microsoft Academic Search

    Guoxiong Xu; Chandan Chakraborty; Peeyush K. Lala

    2001-01-01

    We had earlier shown that TGF-? controls proliferation, migration, and invasiveness of normal human trophoblast cells, whereas premalignant and malignant trophoblast cells are resistant to TGF-?. To identify signaling defects responsible for TGF-? resistance in premalignant and malignant trophoblasts, we have compared the expression of TGF-? signaling molecules in a normal trophoblast cell line (HTR-8), its premalignant derivative (RSVT2\\/C), and

  2. Confocal reflectance imaging of excised malignant human bladder biopsies

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Kastein, Albrecht; Koenig, Frank; Sachs, Markus; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.

    2004-08-01

    To evaluate the potential of reflectance confocal scanning laser microscopy (CM) for rapid imaging of non-processed freshly excised human bladder biopsies and cystectomy specimens. Freshly excised bladder tumors from three cystectomy specimens and random biopsies from twenty patients with a history of superficial bladder tumors were imaged with CM. Additional acetic acid washing prior to CM imaging was performed in some of the samples. Confocal images were compared to corresponding routine histologic sections. CM allows imaging of unprocessed bladder tissue at a subcellular resolution. Urothelial cell layers, collagen, vessels and muscle fibers can be rapidly visualized, in native state. In this regard, umbrella cells, basement membrane elucidated. Besides obvious limitations partly due to non-use of exogenous dyes, CM imaging offers several advantages: rapid imaging of the tissue in its native state like the basement membrane, normally seen only by using immunohistopathology. Reflectance CM opens a new avenue for imaging bladder cancer.

  3. Trachea-specific antigens in normal and malignant human tissues*

    PubMed Central

    Rose, Noel R.; Bonstein, Herbert S.

    1970-01-01

    One to four trachea-specific antigens were demonstrated regularly by means of various rabbit antisera to human tracheal mucosa, using immunoelectrophoresis or Ouchterlony tests. In addition, one or more antigens common to trachea and oesophagus were found. Trachea-specific antisera cross-reacted with rhesus monkey but not with bovine, ovine, equine or porcine trachea. The three most prominent trachea-specific antigens were localized in the same fraction by chromatography. The chromatographic fraction was usable in tanned cell haemagglutination, but only trachea-oesophagus antigen, and not trachea-specific antigen, seemed to attach to tanned cells. Of the ten cancers of the respiratory tract tested, three were found to retain some trachea-specific antigen. PMID:4991122

  4. On the radiosensitivity of man in space.

    PubMed

    Esposito, R D; Durante, M; Gialanella, G; Grossi, G; Pugliese, M; Scampoli, P; Jones, T D

    2001-01-01

    Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical model of radiation-induced myelopoiesis which includes the effect of microgravity on bone marrow kinetics. It is assumed that cellular radiosensitivity is not modified by the space environment, but repopulation rates of stem and stromal cells are reduced as a function of time in weightlessness. A realistic model of the space radiation environment, including the HZE component, is used to simulate the radiation damage. A dedicated computer code was written and applied to solar particle events and to the mission to Mars. The results suggest that altered myelopoiesis and lymphopoiesis in microgravity might increase human radiosensitivity in space. PMID:11642296

  5. Malignant transformation of human prostate epithelial cells by N-nitroso-N-methylurea.

    PubMed

    Rhim, J S; Jin, S; Jung, M; Thraves, P J; Kuettel, M R; Webber, M M; Hukku, B

    1997-02-15

    We report the malignant transformation of adult human prostate epithelial cells after multiple exposures to the chemical carcinogen N-nitroso-N-methylurea. Such transformants showed morphological alterations and anchorage-independent growth in soft agar and induced carcinomas when transplanted into nude mice. No p53 or ras mutations were observed. Stepwise chromosomal changes in the progression to tumorigenicity were observed. Loss of the p arms of chromosome 8 (p10>pter) and chromosome 10 (p10>pter) and gain of the q arm of chromosome 8 (q10>qter) were only observed in the tumor outgrows. These findings provide the first evidence of malignant transformation of human prostate epithelial cells exposed to a chemical carcinogen. PMID:9044828

  6. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies

    Microsoft Academic Search

    Yukiya Yamamoto; Hitoshi Kiyoi; Yasuyuki Nakano; Ritsuro Suzuki; Yoshihisa Kodera; Shuichi Miyawaki; Norio Asou; Kazutaka Kuriyama; Fumiharu Yagasaki; Chihiro Shimazaki; Hideki Akiyama; Kenji Saito; Miki Nishimura; Toshiko Motoji; Katsuji Shinagawa; Akihiro Takeshita; Hidehiko Saito; Ryuzo Ueda; Ryuzo Ohno; Tomoki Naoe

    2010-01-01

    Mutations of receptor tyrosine kinases are implicated in the constitutive activation and development of human malignancy.An inter- nal tandem duplication (ITD) of the jux- tamembrane (JM) domain-coding sequence of the FLT3 gene (FLT3\\/ITD) is found in 20% of patients with acute myeloid leukemia (AML) and is strongly associated with leuko- cytosis and a poor prognosis. On the other hand, mutations

  7. Selective Killing of Human Malignant Cell Lines Deficient in Methylthioadenosine Phosphorylase, a Purine Metabolic Enzyme

    Microsoft Academic Search

    Naoyuki Kamatani; Walter A. Nelson-Rees; Dennis A. Carson

    1981-01-01

    Seven out of 31 (23%) human malignant tumor cell lines had no detectable methylthioadenosine phosphorylase activity (<0.001 nmol\\/min per mg of protein), assayed with 5'-chloroadenosine as substrate. The enzyme-deficient cell lines were derived from five leukemias, one melanoma, and one breast cancer. None of 16 cell lines of nonmalignant origin, derived from lymphocytes, fibroblasts, and epithelial cells, lacked the enzyme

  8. Isolation and Characterization of Spheroid Cells from Human Malignant Melanoma Cell Line WM266-4

    Microsoft Academic Search

    Y. R. Na; S. H. Seok; D. J. Kim; J. H. Han; T. H. Kim; H. Jung; B. H. Lee; J. H. Park

    2009-01-01

    Background\\/Aims: Spheroid cells which can grow as nonattached spheroids in vitro culture condition are considered as tumor-initiating cells that have properties similar to those of stem cells. However, the existence of spheroid cells in WM-266-4, a human malignant metastatic melanoma cell line, has not yet been reported. Methods: Accordingly, we investigated whether WM-266-4 can form spheroids, and characterized these spheroids

  9. p53 Mutations in Human Lymphoid Malignancies: Association with Burkitt Lymphoma and Chronic Lymphocytic Leukemia

    Microsoft Academic Search

    Gianluca Gaidano; Paola Ballerini; Jerry Z. Gong; Giorgio Inghirami; Antonino Neri; Elizabeth W. Newcomb; Ian T. Magrath; Daniel M. Knowles; Riccardo dalla-Favera

    1991-01-01

    We have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direct sequencing of PCR-amplified fragments. Mutations were

  10. Malignant Transformation of Human Prostate Epithelial Cells by N-nitroso-N-methylurea

    Microsoft Academic Search

    Johng S. Rhim; Sunji Jin; Mira Jung; Peter J. Thraves; Michael R. Kuettel; Mukta M. Webber; Bharati Hukku

    We report the malignant transformation of adult human prostate epithelialcellsafter multipleexposures to the chemicalcarcinogen N. nitroso-N.methylurea. Such transformants showed morphological alter ations and anchorage-independent growth in soft agar and induced car cinomaswhentransplantedinto nudemice.No p53or rasmutationswere observed.Stepwisechromosomal changes in the progressionto tumorige nicity wereobserved. Lossofthe p armsofchromosome8 (plO>pter) and chromosome 10 (plO>pter)and gainof the q arm of chromosome 8 (qlO>qter) were

  11. Malignant lymphoma associated with human AIDS and with SIV-induced immunodeficiency in macaques.

    PubMed

    Feichtinger, H; Kaaya, E; Putkonen, P; Li, S L; Ekman, M; Gendelman, R; Biberfeld, G; Biberfeld, P

    1992-03-01

    Malignant lymphomas associated with human (HIV) and simian (SIV) immunodeficiency virus infections are reviewed and compared. Recent observation of a high frequency of lymphomas in a series of cynomolgus macaques, highly immunodeficient after infection with SIVsm(smm3) are described. In addition to the increased frequency in human and monkey AIDS, SIV and HIV lymphomas share several important features. Clinically and by histology they present as aggressive high-grade malignant tumors with a predilection for extranodal growth in viscera, skin, central nervous system, testis, and retroorbitally. Most malignant lymphomas are of B-cell origin. AIDS lymphomas in humans are heterogeneous with regard to Epstein-Barr virus (EBV) association. Similarly, most lymphomas in monkeys experimentally infected with SIV tested to date were shown to be associated with an EBV-like simian herpes virus. These observations point to the possibility of using SIV-immunodeficient macaques for study of EBV and other oncogenic and immunosuppressive factors in AIDS-associated lymphomagenesis. PMID:1571194

  12. Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990

    PubMed Central

    2013-01-01

    Background and purpose Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990 increases radiosensitivity, thermosensitivity and radiothermosensitivity of human tumor cell lines. Material and methods U251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. To determine clonogenic survival, colony forming assays were performed. Cell viability and proliferation were assesed by Trypan blue staining. Cell cycle and apoptosis analyses were performed by flow cytometry. DAPI staining was used to detect mitotic catastrophe. Results NVP-HSP990 increased the thermosensitivity, radiosensitivity and radio-thermosensitivity of both cell lines in clonogenic assays. 72?hours after irradiation with 4?Gy, a significant reduction in cell number associated with considerable G2/M acumulation and mitotic catastrophe as well as cell death by apoptosis/necrosis was observed. Conclusions Treatment with NVP-HSP990 strongly sensitized U251 and MIA PaCa-2 cells to hyperthermia and ionizing radiation or combination thereof through augmentation of G2/M arrest, mitotic catastrophe and associated apoptosis. PMID:23448094

  13. Expression of p21\\/sup ras\\/ in normal and malignant human tissues: lack of association with proliferation and malignancy

    Microsoft Academic Search

    P. G. Chesa; W. J. Rettig; M. R. Melamed; L. J. Old; H. L. Niman

    1987-01-01

    Proteins encoded by cellular ras oncogenes (p21\\/sup ras) are expressed in a wide variety of malignant tumors, including carcinomas, lymphomas, and neuroectodermal tumors. The function of p21\\/sup ras\\/ in these tumors and the distribution and role of p21\\/sup ras\\/ in corresponding normal tissues are unclear. This immunohistochemical study examined the relationship between p21\\/sup ras\\/ expression and malignant transformation, cellular differentiation,

  14. The mechanisms responsible for the radiosensitizing effects of sorafenib on colon cancer cells.

    PubMed

    Kim, Eun Ho; Kim, Mi-Sook; Jung, Won-Gyun

    2014-12-01

    Colorectal cancer is one of the most common malignancies in the world, and is generally treated more effectively by chemoradiotherapy rather than radiotherapy or chemotherapy alone. Targeted radiosensitizers are often used in order to enhance the radiosensitivity of tumor cells. The aim of the present study was to identify the mechanism of radiosensitization by sorafenib in colorectal cancer. Three human colorectal adenocarcinoma cell lines (HCT116, HT29 and SW480) were treated with sorafenib alone or radiation followed by sorafenib. In vitro tests were performed using colony forming assays, FACS analysis, immunohistochemistry, tumor cell motility assays, invasion assays and endothelial tube formation assays. Sorafenib enhanced the anti-proliferative effects of radiation, reducing colony formation, increasing G2/M arrest and enhancing radiation-induced apoptosis by reactive oxygen species. Sorafenib also inhibited the repair of radiation-induced DNA damage by blocking the activation of DNA-dependent protein kinase. Combination treatment significantly inhibited tumor cell migration, tumor cell invasion and vascular endothelial growth factor-mediated angiogenesis in vitro. Taken together, our results provide a scientific rationale for the use of sorafenib with radiotherapy in colon cancer and suggest a clinical utility for this approach. PMID:25242034

  15. On the radiosensitivity of man in space

    Microsoft Academic Search

    R. D. Esposito; M. Durante; G. Gialanella; G. Grossi; M. Pugliese; P. Scampoli; T. D. Jones

    2001-01-01

    Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical

  16. Malignant plasma cell tumors in human immunodeficiency virus-infected patients.

    PubMed

    Gold, J E; Schwam, L; Castella, A; Pike, S B; Opfell, R; Zalusky, R

    1990-07-15

    The development of malignant neoplasms in patients with the acquired immune deficiency syndrome (AIDS) or with a positive human immunodeficiency virus (HIV) antibody test is a well known phenomenon. According to the guidelines from the Centers for Disease Control (Atlanta, GA), the presence of intermediate-grade or high-grade B-cell non-Hodgkin's lymphoma in HIV antibody-positive patients is considered a diagnostic criterion for AIDS. The authors describe two cases of malignant plasma cell tumors in two young HIV-infected patients. In light of this and other reports of plasma cell tumors in patients at risk for AIDS or with a positive HIV antibody test, the finding of another manifestation of B-cell neoplasia in these patients may enlarge the spectrum of AIDS-related tumors. PMID:2369717

  17. Drug Metabolism and Homologous Recombination Repair in Radiosensitization with Gemcitabine

    PubMed Central

    Im, Michael M.; Flanagan, Sheryl A.; Ackroyd, Jeffrey J.; Shewach, Donna S.

    2015-01-01

    Gemcitabine (difluorodeoxycytidine; dFdCyd) is a potent radiosensitizer, noted for its ability to enhance cytotoxicity with radiation at noncytotoxic concentrations in vitro and subchemotherapeutic doses in patients. Radiosensitization in human tumor cells requires dFdCyd-mediated accumulation of cells in S phase with inhibition of ribonucleotide reductase, resulting in ?80% deoxyadenosine triphosphate (dATP) depletion and errors of replication in DNA. Less is known of the role of specific DNA replication and repair pathways in the radiosensitization mechanism. Here the role of homologous recombination (HR) in relationship to the metabolic and cell cycle effects of dFdCyd was investigated using a matched pair of CHO cell lines that are either proficient (AA8 cells) or deficient (irs1SF cells) in HR based on expression of the HR protein XRCC3. The results demonstrated that the characteristics of radiosensitization in the rodent AA8 cells differed significantly from those in human tumor cells. In the AA8 cells, radiosensitization was achieved only under short (?4 h) cytotoxic incubations, and S-phase accumulation did not appear to be required for radiosensitization. In contrast, human tumor cell lines were radiosensitized using noncytotoxic concentrations of dFdCyd and required early S-phase accumulation. Studies of the metabolic effects of dFdCyd demonstrated low dFdCyd concentrations did not deplete dATP by ?80% in AA8 and irs1SF cells. However, at higher concentrations of dFdCyd, failure to radiosensitize the HR-deficient irs1SF cells could not be explained by a lack of dATP depletion or lack of S-phase accumulation. Thus, these parameters did not correspond to dFdCyd radiosensitization in the CHO cells. To evaluate directly the role of HR in radiosensitization, XRCC3 expression was suppressed in the AA8 cells with a lentiviral-delivered shRNA. Partial XRCC3 suppression significantly decreased radiosensitization [radiation enhancement ratio (RER) = 1.6 ± 0.15], compared to nontransduced (RER = 2.7 ± 0.27; P = 0.012), and a substantial decrease compared to nonspecific shRNA-transduced (RER =2.5 ± 0.42; P =0.056) AA8 cells. Although the results support a role for HR in radiosensitization with dFdCyd in CHO cells, the differences in the underlying metabolic and cell cycle characteristics suggest that dFdCyd radiosensitization in the nontumor-derived CHO cells is mechanistically distinct from that in human tumor cells. PMID:25564718

  18. Radiosensitive effect of curcumin on thyroid cancer cell death induced by radioiodine-131

    PubMed Central

    Hosseini, Seyed Amir Hossein

    2014-01-01

    Curcumin is a natural product widely consumed by humans. It has many biological properties. In this study, we investigated the radiosensitive effect of curcumin on thyroid cancer cells against cellular toxicity induced by 131-I. Human thyroid cancer and human non-malignant fibroblast cells (HFFF2) were treated with 131-I and/or curcumin at different concentrations (5, 10 and 25 µg/ml) for 48 h. The cell proliferation was measured by determination of the surviving cells by using MTT assay. Our results showed that curcumin increased the killing effect of 131-I on thyroid cancer cells, while it exerted no toxicity on HFFF2 cells. This result shows a promising effect of curcumin on the enhancement of therapeutic effects of 131-I in patients.

  19. Characterization of a new malignant human T-cell line (PFI-285) sensitive to ascorbic acid.

    PubMed

    Helgestad, J; Pettersen, R; Storm-Mathisen, I; Schjerven, L; Ulrich, K; Smeland, E B; Egeland, T; Sørskaard, D; Brøgger, A; Hovig, T

    1990-01-01

    A new malignant human T-cell line-labelled PFI-285-has been isolated from a boy with malignant lymphoma. Morphologically, the cells had characteristics of malignant lymphoid cells. The cells presented surface antigens as early cortical lymphocytes and proliferated non-adherently as single cells, independent of T-cell growth factor (IL-2), in liquid culture. The cells had undetectable levels of receptors for IL-2, were not clonogenic in soft agar, but did form tumors in nude mice. Their establishment and continuous growth in vitro was dependent on the number of cells inoculated and on the growth medium used. Cytogenetic alteration, HTLV-1 or reverse transcriptase activity were not detected. The production of known T-cell derived lymphokines such as IL-2, B-cell growth factor(s), alpha-interferon or granulocyte/macrophage colony stimulating or inhibiting factor(s) was not detected. The cells had 5-8% natural killer (NK)-cell activity against NK-cell sensitive target cells (K562) and were not sensitive for NK cells. A most unusual characteristic was the pronounced sensitivity of the cells to ascorbic acid. Concentrations down to 50 mumol/l killed the cells within hours. PMID:2307225

  20. EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies.

    PubMed

    Yuling, He; Ruijing, Xiao; Li, Li; Xiang, Ji; Rui, Zhou; Yujuan, Wang; Lijun, Zhang; Chunxian, Du; Xinti, Tan; Wei, Xiao; Lang, Chen; Yanping, Jiang; Tao, Xiong; Mengjun, Wu; Jie, Xiong; Youxin, Jin; Jinquan, Tan

    2009-10-15

    The underlying mechanism of the protective and suppressive role of NKT cells in human tumor immunosurveillance remains to be fully elucidated. We show that the frequencies of CD8(+) NKT cells in patients with EBV-associated Hodgkin's lymphoma or nasopharyngeal carcinoma are significantly lower than those in healthy EBV carriers. These CD8(+) NKT cells in tumor patients are also functionally impaired. In human-thymus-severe combined immunodeficient (hu-thym-SCID) chimeras, EBV challenge efficiently promotes the generation of IFN-gamma-biased CD8(+) NKT cells. These cells are strongly cytotoxic, drive syngeneic T cells into a Th1 bias, and enhance T-cell cytotoxicity to EBV-associated tumor cells. Interleukin-4-biased CD4(+) NKT cells are predominately generated in unchallenged chimeras. These cells are noncytotoxic, drive syngeneic T cells into a Th2 bias, and do not affect T-cell cytotoxicity. In humanized xenogeneic tumor-transplanted hu-thym-SCID chimeras, adoptive transfer with EBV-induced CD8(+) NKT cells significantly suppresses tumorigenesis by EBV-associated malignancies. EBV-induced CD8(+) NKT cells are necessary and sufficient to enhance the T-cell immunity to EBV-associated malignancies in the hu-thym-SCID chimeras. CD4(+) NKT cells are synergetic with CD8(+) NKT cells, leading to a more pronounced T-cell antitumor response in the chimeras cotransferred with CD4(+) and CD8(+) NKT cells. Thus, immune reconstitution with EBV-induced CD8(+) NKT cells could be a useful strategy in management of EBV-associated malignancies. PMID:19808969

  1. Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model

    PubMed Central

    Hillegass, Jedd M.; Shukla, Arti; Lathrop, Sherrill A.; MacPherson, Maximilian B.; Beuschel, Stacie L.; Butnor, Kelly J.; Testa, Joseph R.; Pass, Harvey I.; Carbone, Michele; Steele, Chad; Mossman, Brooke T.

    2010-01-01

    Asbestos fibers cause chronic inflammation that may be critical to the development of malignant mesothelioma (MM). Two human MM cell lines (Hmeso, PPM Mill) were used in a SCID mouse xenograft model to assess time-dependent patterns of inflammation and tumor formation. After intraperitoneal (IP) injection of MM cells, mice were euthanized at 7, 14, and 30 days, and peritoneal lavage fluid (PLF) was examined for immune cell profiles and human and mouse cytokines. Increases in human MM-derived IL-6, IL-8, bFGF, and VEGF were observed in mice at 7 days postinjection of either MM line, and a striking neutrophilia was observed at all time points. Free-floating tumor spheroids developed in mice at 14 days, and both spheroids and adherent MM tumor masses occurred in all mice at 30 days. Results suggest that inflammation and cytokine production precede and may be critical to the development of MMs. PMID:20716277

  2. Response of human malignant melanoma xenografts to hyperthermia: effect of vascular occlusion

    SciTech Connect

    Rofstad, E.K.; Brustad, T.

    1981-12-01

    Two human malignant melanomas from two patients, grown subcutaneously in the leg of athymic nude mice, were exposed to hyperthermia (42.5/sup o/C) for varying times. Single cell survival was assayed in vitro in soft agar. The sensitivity to heat of the tumor cells was considerably enhanced when the blood supply to the tumors was occluded 15 min before and during treatment. The D/sub 0/-values of the survival curves were 86 min (unclamped) and 13 min (clamped) for E.E. melanoma and 25 min (unclamped) and 11 min (clamped) for V.N. melanoma.

  3. Ovarian malignant mixed mesodermal tumor producing the free form of the ?-subunit of human chorionic gonadotropin

    Microsoft Academic Search

    Taro Higashida; Tamio Koizumi; Satoshi Yamaguchi; Takaya Ichimura; Kazuo Hasegawa; Ryuichiro Nishimura

    2001-01-01

    We report a patient with ovarian malignant mixed mesodermal tumor (MMMT) that produced immunoreactive human chorionic gonadotropin\\u000a ?-subunit (IR-hCG?). Qualitative analysis indicated that IR-hCG? in the patient's serum represented the free form of the ?-subunit\\u000a of hCG. Immunohistochemical localization of hCG? in MMMT was observed in the sarcomatous stroma, but not in the adenocarcinoma\\u000a component. Reverse transcription-polymerase chain reaction (RT-PCR)

  4. Growth and Spread of Human Malignant T Lymphoblasts in Immunosuppressed Nude Mice: A Model for Meningeal Leukemia

    Microsoft Academic Search

    Federica Cavallo; Marco Forni; Carlo Riccardi; Antonio Soleti; Francesco Di Pierro; Guido Forni

    1992-01-01

    Previous work has shown that nude (nu\\/nu) mice addition- ally immunosuppressed by splenectomy, sublethal irradia- tion, and treatment with antiasialo GMI antiserum (SIA- nu\\/nu mice) have no detectable natural killer activity and allow the growth of human malignant lymphoblasts. We show here that all SIA-nulnu mice engrafted intravenously with 5 x 108 malignant lymphoblasts originally derived from a child with

  5. Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2.

    PubMed

    Pi, Jingbo; Diwan, Bhalchandra A; Sun, Yang; Liu, Jie; Qu, Wei; He, Yuying; Styblo, Miroslav; Waalkes, Michael P

    2008-09-01

    Arsenic is a well-known human skin carcinogen but the underlying mechanisms of carcinogenesis are unclear. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism, and emerging data suggest that constitutive activation of Nrf2 contributes to malignant phenotype. In the present study when an immortalized, nontumorigenic human keratinocyte cell line (HaCaT) was continuously exposed to an environmentally relevant level of inorganic arsenite (100 nM) for 28 weeks, malignant transformation occurred as evidenced by the formation of highly aggressive squamous cell carcinoma after inoculation into nude mice. To investigate the mechanisms involved, a broad array of biomarkers for transformation were assessed in these arsenic-transformed cells (termed As-TM). In addition to increased secretion of matrix metalloproteinase-9 (MMP-9), a set of markers for squamous differentiation and skin keratinization, including keratin-1, keratin-10, involucrin, and loricrin, were significantly elevated in As-TM cells. Furthermore, As-TM cells showed increased intracellular glutathione and elevated expression of Nrf2 and its target genes, as well as generalized apoptotic resistance. In contrast to increased basal Nrf2 activity in As-TM cells, a diminished Nrf2-mediated antioxidant response induced by acute exposure to high doses of arsenite or tert-butyl hydroxyquinone occurred. The findings that multiple biomarkers for malignant transformation observed in As-TM cells, including MMP-9 and cytokeratins, are potentially regulated by Nrf2 suggest that constitutive Nrf2 activation may be involved in arsenic carcinogenesis of skin. The weakened Nrf2 activation in response to oxidative stressors observed in As-TM cells, coupled with acquired apoptotic resistance, would potentially have increased the likelihood of transmittable oxidative DNA damage and fixation of mutational/DNA damage events. PMID:18572023

  6. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    PubMed

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  7. Human ?-defensin (DEFA) gene expression helps to characterise benign and malignant salivary gland tumours

    PubMed Central

    2012-01-01

    Background Because of the infrequence of salivary gland tumours and their complex histopathological diagnosis it is still difficult to exactly predict their clinical course by means of recurrence, malignant progression and metastasis. In order to define new proliferation associated genes, purpose of this study was to investigate the expression of human ?-defensins (DEFA) 1/3 and 4 in different tumour entities of the salivary glands with respect to malignancy. Methods Tissue of salivary glands (n=10), pleomorphic adenomas (n=10), cystadenolymphomas (n=10), adenocarcinomas (n=10), adenoidcystic carcinomas (n=10), and mucoepidermoid carcinomas (n=10) was obtained during routine surgical procedures. RNA was extracted according to standard protocols. Transcript levels of DEFA 1/3 and 4 were analyzed by quantitative realtime PCR and compared with healthy salivary gland tissue. Additionally, the proteins encoded by DEFA 1/3 and DEFA 4 were visualized in paraffin-embedded tissue sections by immunohistochemical staining. Results Human ?-defensins are traceable in healthy as well as in pathological altered salivary gland tissue. In comparison with healthy tissue, the gene expression of DEFA 1/3 and 4 was significantly (p<0.05) increased in all tumours – except for a significant decrease of DEFA 4 gene expression in pleomorphic adenomas and a similar transcript level for DEFA 1/3 compared to healthy salivary glands. Conclusions A decreased gene expression of DEFA 1/3 and 4 might protect pleomorphic adenomas from malignant transformation into adenocarcinomas. A similar expression pattern of DEFA-1/3 and -4 in cystadenolymphomas and inflamed salivary glands underlines a potential importance of immunological reactions during the formation of Warthin’s tumour. PMID:23050799

  8. Combinatorial anti-angiogenic gene therapy in a human malignant mesothelioma model.

    PubMed

    Kubo, Shuji; Takagi-Kimura, Misato; Kasahara, Noriyuki

    2015-08-01

    Anti-angiogenic gene therapy represents a promising strategy for cancer; however, it has rarely been tested in malignant mesothelioma, a highly aggressive tumor associated with asbestos with poor prognosis. In the present study, we investigated whether anti-angiogenic factors such as angiostatin, endostatin and the soluble form of vascular endothelial growth factor receptor 2 (sFlk1) were able to inhibit endothelial cell proliferation via lentivirus-mediated gene transfer into malignant mesothelioma cells in culture. We also assessed whether a dual-agent strategy had greater therapeutic benefit. Human malignant pleural mesothelioma MSTO-211H cells were transduced using lentiviral vectors that individually expressed angiostatin, endostatin and sFlk1 and linked to enhanced green fluorescent protein (EGFP) marker gene expression via an internal ribosome entry site. The lentivirus expressing EGFP alone was used as a control. The resultant cells designated as MSTO-A, MSTO-E, MSTO-F and MSTO-C were confirmed by western blot analysis and fluorescence microscopy to stably express the corresponding proteins. No differences were observed in the in vitro growth rates between any of these cells. However, co-culture of MSTO-A, MSTO-E and MSTO-F showed significant suppression of human umbilical endothelial cell growth in vitro compared with that of MSTO-C. Furthermore, a combination of any two among MSTO-A, MSTO-E and MSTO-F significantly enhanced efficacy. These results suggest that combinatorial anti-angiogenic gene therapy targeting different pathways of endothelial growth factor signaling has the potential for greater therapeutic efficacy than that of a single-agent regimen. PMID:26082103

  9. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells

    PubMed Central

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  10. Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-?B Regulated ATM Expression

    PubMed Central

    Xiao, Lanbo; Tang, Min; Liu, Liyu; Li, Zijian; Deng, Mengyao; Sun, Lunquan; Cao, Ya

    2011-01-01

    Background The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. Results In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-?B. By using a specific inhibitor of NF-?B signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-?B DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. Conclusions Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-?B pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs. PMID:22096476

  11. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    Microsoft Academic Search

    W. F. Rettig; P. Garin-Chesa; H. R. Beresford; H. F. Oettgen; M. R. Melamed; L. J. Old

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and >

  12. MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma.

    PubMed

    Peng, Biao; Hu, Su; Jun, Qinming; Luo, Dongdong; Zhang, Xun; Zhao, Hailin; Li, Dan

    2013-07-01

    MicroRNAs can coordinately repress multiple target genes and interfere with the biological functions of the cell, such as proliferation and apoptosis. In the present study, we report that miR-200b was downregulated in malignant glioma cell lines and specimens. Overexpression of miR-200b suppressed the proliferation and colony formation of glioma cells. An oncogene encoding cAMP responsive element-binding protein 1 (CREB1), which has been shown to be an important transcription factor involved in the proliferation, survival, and metastasis of tumor cells, was here confirmed as a direct target gene of miR-200b. CREB1 was also found to be present at a high level in human glioma tissues. This was inversely correlated with miR-200b expression. Ectopic expression of CREB1 attenuated the growth suppressive phenotypes of glioma cells caused by miR-200b. These results indicate that miR-200b targets the CREB1 gene and suppresses glioma cell growth, suggesting that miR-200b shows tumor-suppressive activity in human malignant glioma. PMID:23543137

  13. In vivo study of breast carcinoma radiosensitization by targeting eIF4E

    SciTech Connect

    Yang, Hua [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China)] [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China); Li, Li-Wen [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China) [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China); Department of Bioscience, College of Life Sciences, Northwest University, No. 229 North Taibai Road, Xi'an 710069 (China); Shi, Mei, E-mail: mshi82@fmmu.edu.cn [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China)] [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China); Wang, Jian-Hua; Xiao, Feng; Zhou, Bin; Diao, Li-Qiong; Long, Xiao-Li; Liu, Xiao-Li; Xu, Lin [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China)] [Department of Radiotherapy, Xijing Hospital, The Fourth Military Medical University, No. 17 Changle Western Road, Xi'an 710032 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer eIF4E is associated with the formation and progression for breast cancer. Black-Right-Pointing-Pointer pSecX-t4EBP1 can downregulated the expression of eIF4E in direct binding. Black-Right-Pointing-Pointer We transfected pSecX-t4EBP1 into a mouse xenograft model. Black-Right-Pointing-Pointer It can significantly inhibit tumor growth and enhance the radiosensitivity. Black-Right-Pointing-Pointer The possible mechanism is downregulation of HIF-1{alpha} expression. -- Abstract: Background: Eukaryotic initiation factor eIF4E, an important regulator of translation, plays a crucial role in the malignant transformation, progression and radioresistance of many human solid tumors. The overexpression of this gene has been associated with tumor formation in a wide range of human malignancies, including breast cancer. In the present study, we attempted to explore the use of eIF4E as a therapeutic target to enhance radiosensitivity for breast carcinomas in a xenograft BALB/C mice model. Materials and methods: Ninety female BALB/C mice transfected with EMT-6 cells were randomly divided into six groups: control, irradiation (IR), pSecX-t4EBP1, pSecX-t4EBP1 + irradiation, pSecX and pSecX + irradiation. At the end of the experiments, all mice were sacrificed, the xenografts were harvested to measure the tumor volume and mass, and the tumor inhibition rates were calculated. Apoptosis was detected with a flow cytometric assay. Immunohistochemistry was used to detect the expression of HIF-1{alpha}. Results: The xenografts in pSecX-t4EBP1 mice showed a significantly delayed growth and smaller tumor volume, with a higher tumor inhibition rate compared with the control and pSecX groups. A similar result was obtained in the pSecX-t4EBP1 + IR group compared with IR alone and pSecX + irradiation. The expression of HIF-1{alpha} in the tumor cells was significantly decreased, while the apoptosis index was much higher. Conclusions: pSecX-t4EBP1 can significantly inhibit tumor growth and enhance the radiosensitivity of breast carcinoma xenografts in BALB/C mice. This is possibly associated with the downregulation of HIF-1{alpha} expression, which suggests that pSecX-t4EBP1 may serve as an ideal molecular target for the radiosensitization of breast carcinoma.

  14. Expression of p21/sup ras/ in normal and malignant human tissues: lack of association with proliferation and malignancy

    SciTech Connect

    Chesa, P.G.; Rettig, W.J.; Melamed, M.R.; Old, L.J.; Niman, H.L.

    1987-05-01

    Proteins encoded by cellular ras oncogenes (p21/sup ras) are expressed in a wide variety of malignant tumors, including carcinomas, lymphomas, and neuroectodermal tumors. The function of p21/sup ras/ in these tumors and the distribution and role of p21/sup ras/ in corresponding normal tissues are unclear. This immunohistochemical study examined the relationship between p21/sup ras/ expression and malignant transformation, cellular differentiation, and proliferative activity in vivo. p21/sup ras/ was found to be widely expressed in normal tissues, but within those tissues expression was often sharply restricted to cells at specific stages of differentiation; terminally differentiated cells generally showed stronger reactivity with antibodies to p21/sup ras/ than did rapidly proliferating cells. Fetal and adult tissues had corresponding patterns of p21/sup ras/ expression, and the distribution of p21/sup ras/ in neoplasms paralleled the pattern in normal tissue from which they were derived. Thus, p21/ras/ seems to play a role in many fully differentiated cell types, and levels of p21/sup ras/ expression do not correlate with proliferative activity in normal cells or, in contrast to past reports, with the transformed phenotype.

  15. Genetic blockade of the insulin-like growth factor 1 receptor for human malignancy.

    PubMed

    Adachi, Yasushi; Lee, Choon-Taek; Carbone, David P

    2004-01-01

    Growth factor receptor signals, including insulin-like growth factor (IGF)-1 receptor (IGF-1R), are required for carcinogenesis and tumour progression in many human malignancies. The concept of targeting specific tumorigenic receptors has been validated by successful clinical application of multiple new drugs, including trastuzumab and gefitinib. In this paper, we review strategies of the genetic blockade of IGF-1/IGF-1R that validate this receptor as a promising anticancer target. Adenoviruses efficiently transduce malignant epithelial cells in culture and are useful for such target validation and potentially also as clinical therapeutics. To block IGF-1R signalling, we constructed adenoviruses expressing antisense IGF-1R and two truncated IGF-1R (482 and 950 amino acids long, IGF-1R/482st and IGF-1R/950st, respectively) that function as dominant negative inhibitors (IGF-1R/dn). The truncated receptors were also cloned into tetracycline regulated expression vectors to study the effects of modulating this pathway without the use of viral vectors. Blocking for IGF-1R suppressed tumorigenicity both in vitro and invivo and effectively blocked both IGF-1 and IGF-2-induced activation of Akt-1. IGF-1R/dn expression increased radiation- and chemotherapy-induced apoptosis and these combination therapies with chemotherapy were very effective against tumours in mice. In an intraperitoneal dissemination mouse model, blockade of IGF-IR reduced dissemination and prolonged survival times. IGF-1R/482st was more effective than IGF-IR/950st due to its bystander effect. These studies confirm the validity of IGF-1R as a therapeutic target and genetic blockade as a potential strategy for several malignancies, including lung, colon and pancreatic carcinoma. PMID:15562829

  16. Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells

    PubMed Central

    Seol, Ho Jun; Chang, Jong Hee; Yamamoto, Junkoh; Romagnuolo, Rocco; Suh, Youngchul; Weeks, Adrienne; Agnihotri, Sameer; Smith, Christian A.

    2012-01-01

    The malignant glioma is the most common primary human brain tumor, and its migration and invasiveness away from the primary tumor mass are considered a leading cause of tumor recurrence and treatment failure. Recently, gene expression profiling revealed that the transmembrane glycoprotein CD99 is more highly expressed in malignant glioma than in normal brain. Although its function is not completely understood, CD99 is implicated in cell adhesion and migration in a variety of different cell types. CD99 has wild-type and splice variant isoforms. Previous studies have shown that wild-type CD99 may be an oncosuppressor in some tumors, distinct from the role of the splice variant isoform. In this study, our data reveal that only wild-type CD99 is expressed in human glioma cells and tissues. Using a tissue microarray, we validated that gliomas demonstrate higher expression of CD99 compared with nonneoplastic brain. To assess the role of CD99 in glioma migration and invasion, we inhibited CD99 expression by siRNA and demonstrated decreased glioma migration and invasion. In contrast, when CD99 was overexpressed in glioma cells, we observed enhancement of cell migration and invasiveness. An orthotopic brain tumor model demonstrates that CD99 overexpression significantly increases invasiveness and decreases survival rate. Interestingly, Rac activity was decreased and Rho activity was increased in CD99 overexpressing glioma cells, and the proportion of amoeboid cells to mesenchymal cells was significantly increased. Taken together, our findings suggest that CD99 may play an important role in the migration and invasion of human gliomas independent of Akt, ERK, or JNK signaling pathways. Moreover, CD99 might be involved in amoeboid-mesenchymal transition in glioma migration. CD99 may be an important future target to inhibit migration and invasion, especially in CD99-expressing gliomas. PMID:23486730

  17. Periostin accelerates human malignant melanoma progression by modifying the melanoma microenvironment.

    PubMed

    Kotobuki, Yorihisa; Yang, Lingli; Serada, Satoshi; Tanemura, Atsushi; Yang, Fei; Nomura, Shintaro; Kudo, Akira; Izuhara, Kenji; Murota, Hiroyuki; Fujimoto, Minoru; Katayama, Ichiro; Naka, Tetsuji

    2014-07-01

    Given no reliable therapy for advanced malignant melanoma, it is important to elucidate the molecular mechanisms underlying the disease progression. Using a quantitative proteomics approach, the 'isobaric tags for relative and absolute quantitation (iTRAQ)' method, we identified that the extracellular matrix protein, periostin (POSTN), was highly expressed in invasive melanoma compared with normal skin. An immunohistochemical analysis showed that POSTN was expressed in all invasive melanoma (n = 20) and metastatic lymph node (n = 5) tissue samples, notably restricted in their stroma. In terms of the intercellular regulation of POSTN, we found that there was upregulation of POSTN when melanoma cells and normal human dermal fibroblasts (NHDFs) were cocultured, with restricted expression of TGF-?1 and TGF-?3. In a functional analyses, recombinant and NHDF-derived POSTN significantly accelerated melanoma cell proliferation via the integrin/mitogen-activated protein kinase (MAPK) signaling pathway in vitro. The size of implanted melanoma tumors was significantly suppressed in POSTN/Rag2 double knockout mice compared with Rag2 knock-out mice. These results indicate that NHDF-derived POSTN accelerates melanoma progression and might be a promising therapeutic target for malignant melanoma. PMID:24674392

  18. Frequency analysis of multispectral photoacoustic images for differentiating malignant region from normal region in excised human prostate

    NASA Astrophysics Data System (ADS)

    Sinha, Saugata; Rao, Navalgund A.; Valluru, Keerthi S.; Chinni, Bhargava K.; Dogra, Vikram S.; Helguera, Maria

    2014-03-01

    Frequency domain analysis of the photoacoustic (PA) radio frequency signals can potentially be used as a tool for characterizing microstructure of absorbers in tissue. This study investigates the feasibility of analyzing the spectrum of multiwavelength PA signals generated by excised human prostate tissue samples to differentiate between malignant and normal prostate regions. Photoacoustic imaging at five different wavelengths, corresponding to peak absorption coefficients of deoxyhemoglobin, whole blood, oxyhemoglobin, water and lipid in the near infrared (NIR) (700 nm - 1000 nm) region, was performed on freshly excised prostate specimens taken from patients undergoing prostatectomy for biopsy confirmed prostate cancer. The PA images were co-registered with the histopathology images of the prostate specimens to determine the region of interest (ROI) corresponding to malignant and normal tissue. The calibrated power spectrum of each PA signal from a selected ROI was fit to a linear model to extract the corresponding slope, midband fit and intercept parameters. The mean value of each parameter corresponding to malignant and adjacent normal prostate ROI was calculated for each of the five wavelengths. The results obtained for 9 different human prostate specimens, show that the mean values of midband fit and intercept are significantly different between malignant and normal regions. In addition, the average midband fit and intercept values show a decreasing trend with increasing wavelength. These preliminary results suggest that frequency analysis of multispectral PA signals can be used to differentiate malignant region from the adjacent normal region in human prostate tissue.

  19. Radiosensitizing Properties of Bortezomib Depend on Therapeutic Schedule

    SciTech Connect

    Labussiere, Marianne [EA 4421 SiGReTO, UHP Nancy-University (France); Pinel, Sophie, E-mail: Sophie.Pinel@medecine.uhp-nancy.f [EA 4421 SiGReTO, UHP Nancy-University (France); Vandamme, Marc [EA 4421 SiGReTO, UHP Nancy-University (France); Plenat, Francois [EA 4421 SiGReTO, UHP Nancy-University (France); Service d'Anatomie et Cytologie Pathologiques, Hopital de Brabois CHU Nancy (France); Chastagner, Pascal [EA 4421 SiGReTO, UHP Nancy-University (France); Service d'Onco-Hematologie Pediatrique, Hopital d'Enfants CHU Nancy F-54500 Vandoeuvre-les-Nancy (France)

    2011-03-01

    Purpose: To investigate the influence of the bortezomib (BTZ) on malignant glioma radiosensitivity in two xenograft models. Methods and Materials: For TCG3 and U87 models, we evaluated the antitumor activity of BTZ, radiotherapy, and BTZ plus radiothearapy according to two therapeutic schedules: a 'nonfractionated' schedule corresponding to a single dose of treatment per week, and a 'fractionated' schedule corresponding to the same weekly dose divided into 5 fractions. Treatments influence on proliferation and apoptosis indexes, cell cycle distribution, and nuclear factor-{kappa}B pathway were explored. Results: The radiosensitizing properties of BTZ observed with the nonfractionated schedule were lost with the fractionated schedule. Bortezomib-mediated radiosensitization was associated with an increased apoptosis response and major changes in cell proliferation, but the nuclear factor-{kappa}B pathway was not involved. Most of the cellular effects induced by BTZ when tumors received a single irradiation were cancelled out if radiotherapy was fractionated. Conclusion: The influence of BTZ on glioma radiosensitivity seems to depend on the treatment fractionation schedule, emphasizing the need to clarify the mechanisms underlying BTZ's radiosensitizing effects before further clinical trials are initiated.

  20. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse

    PubMed Central

    Clappier, Emmanuelle; Gerby, Bastien; Sigaux, François; Delord, Marc; Touzri, Farah; Hernandez, Lucie; Ballerini, Paola; Baruchel, André

    2011-01-01

    Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA–mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle– and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse. PMID:21464223

  1. Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies

    PubMed Central

    Viswanathan, Srinivas R.; Powers, John T.; Einhorn, William; Hoshida, Yujin; Ng, Tony; Toffanin, Sara; O'Sullivan, Maureen; Lu, Jun; Philips, Letha A.; Lockhart, Victoria L.; Shah, Samar P.; Tanwar, Pradeep S.; Mermel, Craig H.; Beroukhim, Rameen; Azam, Mohammad; Teixeira, Jose; Meyerson, Matthew; Hughes, Timothy P.; Llovet, Josep M; Radich, Jerald; Mullighan, Charles G.; Golub, Todd R.; Sorensen, Poul H.; Daley, George Q.

    2009-01-01

    Multiple members of the let-7 family of miRNAs are often repressed in human cancers1,2, thereby promoting oncogenesis by de-repressing the targets K-Ras, c-Myc, and HMGA2 3,4. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins Lin28 and Lin28B block let-7 precursors from being processed to mature miRNAs5–8, suggesting that over-expression of Lin28/Lin28B might promote malignancy via repression of let-7. Here we show that LIN28 and LIN28B are over-expressed in primary human tumors and human cancer cell lines (overall frequency ?15%), and that over-expression is linked to repression of let-7 family miRNAs and de-repression of let-7 targets. Lin28/Lin28B facilitate cellular transformation in vitro, and over-expression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28/LIN28B with poor clinical prognosis. PMID:19483683

  2. Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines.

    PubMed Central

    Xu, Y H; Richert, N; Ito, S; Merlino, G T; Pastan, I

    1984-01-01

    To investigate the possibility that the epidermal growth factor (EGF) receptor functions as an oncogene product, we have determined the levels of EGF receptor protein and RNA in a variety of malignant and normal human cells, using a specific polyclonal antibody to the EGF receptor and a cDNA clone (plasmid pE7) that encodes the EGF receptor, respectively. Besides A431 epidermoid carcinoma cells, which are known to make large amounts of EGF receptor, cell lines from two ovarian cancers, two cervical cancers, and one kidney cancer were found to contain substantial amounts of receptor protein (11-22% of A431). Normal human fibroblasts (Detroit 551), a human lymphocyte line (IM-9), and a leukemic lymphocyte line (CEM) contained low or undetectable levels of EGF receptor. RNA blot analysis showed that among the human cell lines examined the levels of a 10- and a 5.6-kilobase species of pE7-specific RNA generally correlated with the amount of the EGF receptor protein. Genomic DNA blot analysis revealed that except for A431 none of these cell lines expressing high levels of EGF receptor protein possessed amplified receptor gene sequences. A431 cells are known to secrete a truncated form of the EGF receptor. An abundant 2.9-kilobase RNA is found only in A431 cells; it could encode the truncated form of the EGF receptor. Images PMID:6095284

  3. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy.

    PubMed

    Kadoch, Cigall; Hargreaves, Diana C; Hodges, Courtney; Elias, Laura; Ho, Lena; Ranish, Jeff; Crabtree, Gerald R

    2013-06-01

    Subunits of mammalian SWI/SNF (mSWI/SNF or BAF) complexes have recently been implicated as tumor suppressors in human malignancies. To understand the full extent of their involvement, we conducted a proteomic analysis of endogenous mSWI/SNF complexes, which identified several new dedicated, stable subunits not found in yeast SWI/SNF complexes, including BCL7A, BCL7B and BCL7C, BCL11A and BCL11B, BRD9 and SS18. Incorporating these new members, we determined mSWI/SNF subunit mutation frequency in exome and whole-genome sequencing studies of primary human tumors. Notably, mSWI/SNF subunits are mutated in 19.6% of all human tumors reported in 44 studies. Our analysis suggests that specific subunits protect against cancer in specific tissues. In addition, mutations affecting more than one subunit, defined here as compound heterozygosity, are prevalent in certain cancers. Our studies demonstrate that mSWI/SNF is the most frequently mutated chromatin-regulatory complex (CRC) in human cancer, exhibiting a broad mutation pattern, similar to that of TP53. Thus, proper functioning of polymorphic BAF complexes may constitute a major mechanism of tumor suppression. PMID:23644491

  4. FTIR microscopic comparative study on normal, premalignant, and malignant tissues of human intenstine

    NASA Astrophysics Data System (ADS)

    Mordechai, Shaul; Argov, Shmuel; Salman, Ahmad O.; Cohen, Beny; Ramesh, Jagannathan; Erukhimovitch, Vitaly; Goldstein, Jed; Sinelnikov, Igor

    2000-07-01

    Fourier-Transform Infrared Spectroscopy (FTIR) employs a unique approach to optical diagnosis of tissue pathology based on the characteristic molecular vibrational spectra of the tissue. The architectural changes in the cellular and sub-cellular levels developing in abnormal tissue, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in infrared spectroscopy. The biological systems we have studied include normal, premalignant (polyp) and malignant human colonic tissues from three patients. Our method is based on microscopic infrared study (FTIR-microscopy) of thin tissue specimens and a direct comparison with normal histopathological analysis, which serves as a `gold' reference. The normal intestine tissue has a stronger absorption than polyp and cancerous types over a wide region in all three cases. The detailed analysis showed that there is a significant decrease in total phosphate and creatine contents for polyp and cancerous tissue types in comparison to the controls.

  5. Circadian rhythmometry of mammalian radiosensitivity

    NASA Technical Reports Server (NTRS)

    Haus, E.; Halberg, F.; Loken, M. K.; Kim, Y. S.

    1974-01-01

    In the case of human bone marrow, the largest number of mitoses is seen in the evening in diurnally active men, mitotic activity being at a minimum in the morning. The opposite pattern is observed for nocturnal animals such as rats and mice on a regimen of light during the daytime alternating with darkness during the night hours. The entirety of these rhythms plays an important role in the organism's responses to environmental stimuli, including its resistance to potentially harmful agents. Conditions under which circadian rhythms can be observed and validated by inferential statistical means are discussed while emphasizing how artifacts of the laboratory environment can be shown to obscure circadian periodic variations in radiosensitivity.

  6. Expression of a-disintegrin and metalloproteinase 10 correlates with grade of malignancy in human glioma

    PubMed Central

    QU, MIN; QIU, BO; XIONG, WENDE; CHEN, DONG; WU, ANHUA

    2015-01-01

    The aim of the present study was to determine the expression of a-disintegrin and metalloproteinase 10 (ADAM10) in human glioma tissues from surgical specimens and discuss its possible significance in glioma biology. A total of 43 glioma specimens obtained from patients between 2007 and 2010 were collected and a series of assays were performed. Of these, 22 cases were low-grade gliomas, while 21 cases were high-grade gliomas. In addition, 20 cases of meningioma were used as the control group. Reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry were used to determine the mRNA and protein expression levels of ADAM10. Besides the quantitative analysis, histological observations were also performed to localize ADAM10 expression in glioma cells. The RT-PCR and western blot analysis results demonstrated increased ADAM10 expression in the low-grade glioma samples compared with the control (P<0.05), while ADAM10 expression was further increased in the high-grade glioma samples (P<0.01 vs. control; P<0.05 vs. low-grade glioma), indicating that the mRNA and protein expression levels of ADAM10 were malignancy-dependent. The immunohistochemical analysis revealed that the ADAM10 protein was located on both the tumor cell membrane and blood vessel walls within tumor tissues. In conclusion, these results indicated that ADAM10 expression correlates with the grade of malignancy in human glioma from surgical specimens. In addition, the fact that ADAM10 protein was expressed on cell membranes and blood vessel walls within tumor tissues, indicates that its expression may be associated with invasive tumor growth and peritumoral edema formation. PMID:26137031

  7. Role of malignant ascites on human mesothelial cells and their gene expression profiles

    PubMed Central

    2014-01-01

    Background Malignant ascites is often present at diagnostic in women with advanced ovarian cancer (OC) and its presence is associated with a worse outcome. Human peritoneal mesothelial cells (HPMCs) are key components of malignant ascites. Although the interplay between HPMCs and OC cells is believed to be critical for tumor progression, it has not been well characterized. The purpose of this study was to assess the effect of ascites on HPMCs and clarify the role of HPMCs in OC progression. Methods Human OC ascites and benign peritoneal fluids were assessed for their ability to stimulate HPMC proliferation. Conditioned medium from ascites- and benign fluid-stimulated HPMCs were compared for their ability to attenuate apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL). We conducted a comparative analysis of global expression changes in ascites-stimulated HPMCs using Agilent oligonucleotide microarrays. Results As compared to benign peritoneal fluids, malignant ascites stimulated the proliferation of HPMCs. TRAIL-induced apoptosis was attenuated in OC cells exposed to conditioned medium from ascites-stimulated HPMCs as compared to OC cells exposed to conditioned medium from benign fluid-stimulated HPMCs. A total of 649 genes were differentially expressed in ascites-stimulated HPMCs. Based on a ratio of more than 1.5-fold and a P?

  8. Transfer of oligosaccharide from oligosaccharide pyrophosphoryl dolichol to endogenous acceptor proteins in human breast malignant and normal tissues

    Microsoft Academic Search

    A. R. Santa Cruz; A. Baldi

    1985-01-01

    Summary We have prepared dolichylpyrophosphoryl-[14C]-oligosaccharide (Dol-PP-oligosaccharide) from calf thyroid. Microsomal fractions from human breast tissues catalyzed the transfer of labeled oligosaccharide to endogenous acceptor proteins. Malignant tumors showed higher activity of the oligosaccharide transferring enzyme than normal tissue. With kojibiose (Kj), and inhibitor of (Glc3)-glucosidase, an increase in the radioactivity associated with glycoprotein was observed.

  9. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  10. Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor

    Microsoft Academic Search

    Geetha S Rao; Susan Murray; Stephen P Ethier

    2000-01-01

    Purpose: Overexpression of the ErbB family of growth factor receptors is present in a wide variety of human tumors and is correlated with poor prognosis. The purpose of this study was to determine the effects of a novel small molecule ErbB tyrosine kinase inhibitor, CI-1033, in combination with ionizing radiation on breast cancer cell growth and survival.Materials & Methods: Growth

  11. Effects of Serum Starvation on Radiosensitivity, Proliferation and Apoptosis in Four Human Tumor Cell Lines with Different p53 Status

    Microsoft Academic Search

    Natsuo Oya; Friedo Zölzer; Frank Werner; Christian Streffer

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in

  12. Relationship between DNA double-strand break rejoining and cell survival after exposure to ionizing radiation in human fibroblast strains with differing ATM/p53 status: Implications for evaluation of clinical radiosensitivity

    SciTech Connect

    Mirzayans, Razmik [Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta (Canada); Severin, Diane [Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta (Canada); Murray, David [Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta (Canada)]. E-mail: davem@cancerboard.ab.ca

    2006-12-01

    Purpose: To better understand the impact of defects in the DNA damage-surveillance network on the various cell-based assays used for the prediction of patient radiosensitivity. Methods and Materials: We examined noncancerous human fibroblast strains from individuals with ataxia telangiectasia (ataxia telangiectasia mutated [ATM] deficient) or Li-Fraumeni syndrome (p53 deficient) using the neutral comet, H2AX phosphorylation, and clonogenic survival assays. Results: Using the comet assay, we found that, compared with normal fibroblasts, cells lacking either ATM or p53 function exhibited a reduced rate of double-strand break (DSB) rejoining early ({<=}4 h) after exposure to 8 Gy of {gamma}-radiation and also exhibited high levels of unrejoined DSBs later after irradiation. ATM-deficient and p53-deficient fibroblasts also exhibited abnormally increased levels of phosphorylated H2AX ({gamma}-H2AX) at later intervals after irradiation. In the clonogenic assay, ATM-deficient cells exhibited marked radiosensitivity and p53-deficient cells had varying degrees of radioresistance compared with normal fibroblasts. Conclusion: Regardless of whether ataxia telangiectasia and Li-Fraumeni syndrome fibroblasts are DSB-repair deficient per se, it is apparent that p53 and ATM defects greatly influence the cellular phenotype as evidenced by the neutral comet and {gamma}-H2AX assays. Our data suggest that the {gamma}-H2AX levels observed at later intervals after irradiation may represent a reliable measure of the overall DSB rejoining capabilities of human fibroblasts. However, it appears that using this parameter as a predictor of radiosensitivity without knowledge of the cells' p53 status could lead to incorrect conclusions.

  13. Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo.

    PubMed

    Goldenberg, David M; Zagzag, David; Heselmeyer-Haddad, Kerstin M; Berroa Garcia, Lissa Y; Ried, Thomas; Loo, Meiyu; Chang, Chien-Hsing; Gold, David V

    2012-07-01

    Cell fusion in vitro has been used to study cancer, gene mapping and regulation, and the production of antibodies via hybridomas. However, in-vivo heterosynkaryon formation by cell-cell fusion has received less attention. This investigation describes the spontaneous fusion of a human glioblastoma with normal hamster cells after xenogeneic transplantation, resulting in malignant cells that express both human and hamster genes and gene products, and retention of glioblastoma traits with an enhanced ability to metastasize. Three of 7 human genes found showed translation of their proteins during serial propagation in vivo or in vitro for years; namely, CD74, CXCR4 and PLAGL2, each implicated with malignancy or glioblastoma. This supports the thesis that genetic hybridization of cancer and normal cells can transmit malignancy and also, as first described herein, regulatory genes involved in the tumor's organotypic morphology. Evidence also is increasing that even cell-free human cancer DNA can induce malignancy and transfer genetic information to normal cells. Hence, we posit that the transfer of genetic information between tumor and stromal cells, whether by cell-cell fusion or other mechanisms, is implicated in the progression of malignancy, and may further define the crosstalk between cancer cells and their stromal neighbors. PMID:21796629

  14. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A., E-mail: charles.kunos@UHhospitals.org [Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH (United States); Colussi, Valdir C. [Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH (United States); Pink, John [Department of General Medical Sciences, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH (United States); Radivoyevitch, Tomas [Department of Epidemiology and Biostatistics, Case Comprehensive Cancer Center, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH (United States); Oleinick, Nancy L. [Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH (United States)

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  15. Aberrant Expression of Interleukin-1? and Inflammasome Activation in Human Malignant Gliomas

    PubMed Central

    Tarassishin, Leonid; Casper, Diana; Lee, Sunhee C.

    2014-01-01

    Objective Glioblastoma is the most frequent and malignant form of primary brain tumor with grave prognosis. Mounting evidence supports that chronic inflammation (such as chronic overactivation of IL-1 system) is a crucial event in carcinogenesis and tumor progression. IL-1 also is an important cytokine with species-dependent regulations and roles in CNS cell activation. While much attention is paid to specific anti-tumor immunity, little is known about the role of chronic inflammation/innate immunity in glioma pathogenesis. In this study, we examined whether human astrocytic cells (including malignant gliomas) can produce IL-1 and its role in glioma progression. Methods We used a combination of cell culture, real-time PCR, ELISA, western blot, immunocytochemistry, siRNA and plasmid transfection, micro-RNA analysis, angiogenesis (tube formation) assay, and neurotoxicity assay. Results Glioblastoma cells produced large quantities of IL-1 when activated, resembling macrophages/microglia. The activation signal was provided by IL-1 but not the pathogenic components LPS or poly IC. Glioblastoma cells were highly sensitive to IL-1 stimulation, suggesting its relevance in vivo. In human astrocytes, IL-1? mRNA was not translated to protein. Plasmid transfection also failed to produce IL-1 protein, suggesting active repression. Suppression of microRNAs that can target IL-1?/? did not induce IL-1 protein. Glioblastoma IL-1? processing occurred by the NLRP3 inflammasome, and ATP and nigericin increased IL-1? processing by upregulating NLRP3 expression, similar to macrophages. RNAi of annexin A2, a protein strongly implicated in glioma progression, prevented IL-1 induction, demonstrating its new role in innate immune activation. IL-1 also activated Stat3, a transcription factor crucial in glioma progression. IL-1 activated glioblastoma-conditioned media enhanced angiogenesis and neurotoxicity. Conclusions Our results demonstrate unique, species-dependent immune activation mechanisms involving human astrocytes and astrogliomas. Specifically, the ability to produce IL-1 by glioblastoma cells may confer them a mesenchymal phenotype including increased migratory capacity, unique gene signature and proinflammatory signaling. PMID:25054228

  16. Role of the KIT protooncogene in normal and malignant human hematopoiesis.

    PubMed Central

    Ratajczak, M Z; Luger, S M; DeRiel, K; Abrahm, J; Calabretta, B; Gewirtz, A M

    1992-01-01

    The role of the KIT protooncogene in human hematopoiesis is uncertain. Therefore, we examined KIT mRNA expression in normal human bone marrow mononuclear cells (MNC) and used antisense oligodeoxynucleotides (oligomers) to disrupt KIT function. KIT mRNA was detected with certainty only in growth factor-stimulated MNC. Expression was essentially abrogated by making MNC quiescent or by inhibiting myb gene function. Oligomers blocked KIT mRNA expression in a dose-response and sequence-specific manner, thereby allowing functional examination of the KIT receptor. In experiments with either partially purified or CD34(+)-enriched MNC, neither granulocyte nor megakaryocyte colony formation was inhibited by oligomer exposure. In contrast, KIT antisense oligomers inhibited interleukin 3/erythropoietin-driven erythroid colony formation approximately 70% and "stem cell factor"/erythropoietin-driven colony formation 100%. The presence of erythroid progenitor cell subsets with differential requirements for KIT function is therefore suggested. Growth of hematopoietic colonies from chronic myeloid leukemia and polycythemia vera patients was also inhibited, while acute leukemia colony growth appeared less sensitive to KIT deprivation. These results suggest that KIT plays a predominant role in normal erythropoiesis but may be important in regulating some types of malignant hematopoietic cell growth as well. They also suggest that KIT expression is linked to cell metabolic activity and that its expression may be regulated by or coregulated with MYB. Images PMID:1371882

  17. Renal allograft recipients with high susceptibility to cutaneous malignancy have an increased prevalence of human papillomavirus DNA in skin tumours and a greater risk of anogenital malignancy.

    PubMed Central

    Arends, M. J.; Benton, E. C.; McLaren, K. M.; Stark, L. A.; Hunter, J. A.; Bird, C. C.

    1997-01-01

    Renal allograft recipients (RARs) have a well-documented increased incidence of viral warts and cutaneous neoplasia, particularly those with long graft life and high sun exposure. A clinicopathological survey of 69 RARs in south-east Scotland, with follow-up periods of up to 28 years after transplantation, revealed marked variation in patient susceptibility to cutaneous malignancy with concomitant variation in HPV prevalence. Skin cancers were found in 34 patients. Eight patients showed high susceptibility [defined as more than four intraepidermal carcinomas (IECs) or invasive squamous cell carcinomas (SCCs)] 42 had intermediate susceptibility (1-3 IECs or SCCs, or >3 keratoses) and 18 had low susceptibility (< or = 3 keratoses and no cancers). SCCs, IECs and keratoses from the high-susceptibility group were found to have greater prevalences of human papillomavirus (HPV) DNA (56%, 45% and 50% respectively), than SCCs (0%) and IECs (33%) from intermediate-susceptibility RARs and keratoses (36%) from the combined intermediate- and low-susceptibility groups and compared with a group of immunocompetent controls (27%, 20% and 15% respectively). No differences in p53 protein accumulation, determined immunohistochemically, were observed in tumours from the three groups. Categorization of RARs by susceptibility to cutaneous malignancy provides clinically useful information, as significantly more high-susceptibility patients (38%) developed aggressive, potentially lethal anogenital or cutaneous squamous cell cancers than did patients in the intermediate group (5%, P=0.005) or the low-susceptibility group (0%). PMID:9043031

  18. Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers

    PubMed Central

    Kinsella, Timothy J.; Gurkan-Cavusoglu, Evren; Du, Weinan; Loparo, Kenneth A.

    2011-01-01

    Over the last 7?years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP), brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR-induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitization in MMR deficient (MMR?) “damage tolerant” human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular) and to in vivo (human tumor xenografts in athymic mice) models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR? damage tolerant cancers. PMID:22649757

  19. Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers.

    PubMed

    Kinsella, Timothy J; Gurkan-Cavusoglu, Evren; Du, Weinan; Loparo, Kenneth A

    2011-01-01

    Over the last 7?years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP), brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR-induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitization in MMR deficient (MMR(-)) "damage tolerant" human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular) and to in vivo (human tumor xenografts in athymic mice) models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR(-) damage tolerant cancers. PMID:22649757

  20. Radioprotection of Human Cell Nuclear DNA by Polyamines: Radiosensitivity of Chromatin is Influenced by Tightly Bound Spermine

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Newton, Gerald L.; Olive, Peggy L.; Fahey, Robert C.

    1999-01-01

    The polyamines putrescine (PUT) and spermine (SPM) were examined for their ability to protect human cell Deoxyribonucleic Acid (DNA) against the formation of radiation-induced double-strand breaks (DSBs). As observed previously, under conditions where polyamines were shown to be almost completely absent, association with nuclear matrix protein into a nucleoid, and organization into chromatin structure, protected DNA from induction of DSBs by factors of 4.5 and 95, respectively. At concentrations below 1 mM, PUT or SPM provided equivalent levels of protection to deproteinized nuclear DNA, consistent with their capacity to scavenge radiation-induced radicals. At constant ionic strength, 5 mM SPM protected deproteinized DNA and nucleoid DNA and DNA in nuclear chromatin by factors of 100 and 26, respectively. At 5 mM, SPM provided 15 times greater protection of deproteinized DNA than did PUT. Under physiologically relevant conditions, 5 mM SPM protected DNA in the intact nucleus from the induction of DSBs by a factor of 2 relative to DNA in the absence of SPM. Studies of SPM binding during cellular fractionation revealed that a significant fraction of the cellular SPM is tightly bound in the nucleus but can be removed by extended washing. Thus the association of SPM with nuclear chromatin appears to be a significant contributor to the resistance of the cell's DNA to the induction of DSBs.

  1. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  2. Expression of peroxiredoxin 1 and 4 promotes human lung cancer malignancy

    PubMed Central

    Jiang, Hong; Wu, Lisha; Mishra, Murli; Chawsheen, Hedy A; Wei, Qiou

    2014-01-01

    Members of the Peroxiredoxin (Prx) family are major cellular antioxidants that scavenge hydrogen peroxide and play essential roles in oxidative stress and cell signaling. 2-Cys Prxs, including Prx1, 2, 3 and 4, have been indicated in multiple oncogenic signaling pathways and thus may contribute to various processes of cancer development. The significance of 2-Cys Prxs in lung cancer development and their biological function in signal transduction have not been fully investigated. In this study we analyzed the expression of 2-Cys Prxs in lung cancer, and examined their levels of expression in a variety of cell lines established from human lung normal or cancer tissues. We found that 2-Cys Prxs, in particular, Prx1 and Prx4, were preferentially expressed in cell lines derived from human lung cancer. Through isoform specific knockdown of individual Prx, we demonstrated that Prx1 and Prx4 (but not Prx3) were required for human lung cancer A549 cells to form soft agar colony and to invade through matrigel in culture. Knockdown of Prx1 or Prx4 significantly reduced the activation of c-Jun and repressed the AP-1 mediated promoter activity. In mouse xenograft models, knockdown of Prx4 in A549 cells reduced subcutaneous tumor growth and blocked metastasis formation initiated through tail vein injection. Moreover, overexpression of Prx1 or Prx4 further enhanced the malignancy of A549 cells both in culture and in mouse xenografts in vivo. These data provide an in-depth understanding of the contribution of Prx1 and Prx4 to lung cancer development and are of importance for future development of therapeutic methods that targeting 2-Cys Prxs. PMID:25232487

  3. Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer

    PubMed Central

    Cao, Maria D.; Döpkens, Mailin; Krishnamachary, Balaji; Vesuna, Farhad; Gadiya, Mayur M.; Loenning, Per E.; Bhujwalla, Zaver M.; Gribbestad, Ingrid S.; Glunde, Kristine

    2012-01-01

    Altered choline phospholipid metabolism is a hallmark of cancer, leading to malignant choline metabolite profiles consisting of low glycerophosphocholine (GPC) and high phosphocholine (PC) in human breast cancers. Glycerophosphocholine phosphodiesterase (GPC-PDE) catalyzes the degradation of GPC to free choline and glycerol-3-phosphate. The gene(s) encoding for the GPC-PDE(s) responsible for GPC degradation in breast cancers have not yet been identified. Here we have demonstrated for the first time that the GPC-PDE encoded by glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) is associated with breast cancer malignancy. Two human breast cancer cell lines (n=8 and 10) and primary human breast tumor samples (n=19) were studied with combined magnetic resonance spectroscopy (MRS) and qRT-PCR to investigate several isoforms of GDPD expression with respect to choline phospholipid metabolite levels. Out of five GDPDs tested, GDPD5 was found to be significantly overexpressed in highly malignant estrogen receptor negative (ER?) compared to weakly malignant estrogen receptor positive (ER+) human breast cancer cells (P=0.027) and breast tumors from patients (P=0.015). GDPD5 showed significantly positive correlations with PC (P<0.001), total choline (tCho) (P=0.007) and PC/GPC (P<0.001) levels in human breast tumors. GDPD5 showed a trend towards negative correlation with GPC levels (P=0.130). Human breast cancers with malignant choline metabolite profiles consisting of low GPC and high PC levels highly co-expressed GDPD5, choline kinase alpha (CHKA), and phosphatidylcholine-specific phospholipase D1 (PLD1), while cancers containing high GPC and relatively low PC levels displayed low co-expression of GDPD5, CHKA, and PLD1. GDPD5, CHKA and PLD1 were significantly overexpressed in highly malignant ER? tumors in our patient cohort. Our study identified GDPD5 as a GPC-PDE that likely participates in regulating choline phospholipid metabolism in breast cancer, which possibly occurs in cooperation with CHKA and PLD1. PMID:22279038

  4. Malignant mesothelioma

    PubMed Central

    Moore, Alastair J; Parker, Robert J; Wiggins, John

    2008-01-01

    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis. PMID:19099560

  5. Curcumin inhibits AP-2?-induced apoptosis in the human malignant testicular germ cells in vitro

    PubMed Central

    Zhou, Chang; Zhao, Xiao-meng; Li, Xiao-feng; Wang, Cheng; Zhang, Xiao-ting; Liu, Xi-zhi; Ding, Xiao-feng; Xiang, Shuang-lin; Zhang, Jian

    2013-01-01

    Aim: To investigate the effects of curcumin on proliferation and apoptosis in testicular cancer cells in vitro and to investigate its molecular mechanisms of action. Methods: NTera-2 human malignant testicular germ cell line and F9 mouse teratocarcinoma stem cell line were used. The anti-proliferative effect was examined using MTT and colony formation assays. Hoechst 33258 staining, TUNEL and Annexin V-FITC/PI staining assays were used to analyze cell apoptosis. Protein expression was examined with Western blot analysis and immunocytochemical staining. Results: Curcumin (5, 10 and 15 ?mol/L) inhibited the viability of NTera-2 cells in dose- and time-dependent manners. Curcumin significantly inhibited the colony formation in both NTera-2 and F9 cells. Curcumin dose-dependently induced apoptosis of NTera-2 cells by reducing FasL expression and Bcl-2-to-Bax ratio, and activating caspase-9, -8 and -3. Furthermore, curcumin dose-dependently reduced the expression of AP transcription factor AP-2? in NTera-2 cells, whereas the pretreatment with the proteasome inhibitor MG132 blocked both the curcumin-induced reduction of AP-2? and antiproliferative effect. Curcumin inhibited ErbB2 expression, and decreased the phosphorylation of Akt and ERK in NTera-2 cells. Conclusion: Curcumin induces apoptosis and inhibits proliferation in NTera-2 cells via the inhibition of AP-2?-mediated downstream cell survival signaling pathways. PMID:23685957

  6. Human Cytomegalovirus Antigens in Malignant Gliomas as Targets for Adoptive Cellular Therapy

    PubMed Central

    Landi, Daniel; Hegde, Meenakshi; Ahmed, Nabil

    2014-01-01

    Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV) proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM). This discovery is significant because HCMV gene products can be targeted by immune-based therapies. In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients. PMID:25505736

  7. Monoclonal antibody localization of A and B isoantigens in normal and malignant fixed human tissues.

    PubMed Central

    Ernst, C.; Thurin, J.; Atkinson, B.; Wurzel, H.; Herlyn, M.; Stromberg, N.; Civin, C.; Koprowski, H.

    1984-01-01

    The expression of human blood group A and B isoantigens in normal and malignant tissues from stomach, colon, and pancreas was analyzed in an immunoperoxidase assay using monoclonal antibodies specific for these isoantigens. Appropriate isoantigen expression was demonstrated in the normal epithelium from the stomach, pancreas, and proximal but not distal colon of blood group A, AB, or B patients. Half of all gastric carcinomas and of proximal colon carcinomas showed complete loss of isoantigen, whereas the adjacent mucosa in these cases continued to express appropriate isoantigen. Isoantigen expression was completely lost in only 13% of pancreatic carcinomas tested. Neither A nor B isoantigen was detected in normal epithelium from the distal colon. By contrast, 85% of carcinomas derived from this site showed reexpression of isoantigen. Inappropriate expression of A isoantigen was detected in pancreatic carcinomas (2/5) but not in gastric or colon carcinomas (0/21). Inappropriate expression of B substance was not detected in any tissue (0/38). Interestingly, differential binding of antibodies to Type 1 versus Type 2 and/or difucosyl versus monofucosyl blood group B substances was manifested by differences in intensity of staining for endothelium and red blood cells. Images Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 PMID:6507589

  8. Evaluation of cell lysis methods for platinum metallomic studies of human malignant cells.

    PubMed

    Tran, Mai Quynh Thanh; Nygren, Yvonne; Lundin, Christina; Naredi, Peter; Björn, Erik

    2010-01-01

    Three cell lysis methods-freeze-thaw, osmosis, and a chemical detergent-based method-were evaluated as sample treatment procedures for platinum metallomic studies of in vitro grown human malignant cells exposed to cisplatin. The lysis methods are relatively mild, resemble those commonly used in proteomic studies, and were selected because of the proven reactivity of platinum drug metabolites and indications that platinum in exposed cells and plasma is mainly associated with proteins. The chemical method gave an absolute lysis efficiency of greater than 80%, whereas the freeze-thaw and osmosis methods gave approximately 30% lower efficiency. The within- and between-batch lysis reproducibilities were, for all methods, better than 20 and 24% relative standard deviations, respectively. Total platinum concentration normalized to lysate protein content was statistically the same for all lysis methods. Reagents in the chemical lysis buffer did, however, react with platinum analyte compounds, making this method unsuitable for analysis of reactive compounds or for metallome profiling encompassing analytes with unknown reactivity. Of the lysis methods evaluated here, osmosis gave the highest cisplatin recovery, likely because this protocol is chemically inert and can be carried out at a constant low temperature. Therefore, it is the recommended cell lysis method for the determination of reactive and unknown intracellular platinum compounds. PMID:19733145

  9. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy

    PubMed Central

    Okada, Kazue; Kimura, Taichi; Piao, Jinhua; Tanaka, Shinya; Shinohara, Yasuro

    2015-01-01

    Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, ?2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response. PMID:26132161

  10. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3? activation, while p38? phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors. PMID:24789042

  11. Characterization of a high-affinity folate receptor in normal and malignant human testicular tissue.

    PubMed

    Holm, J; Hansen, S I; Høier-Madsen, M; Christensen, T B; Nichols, C W

    1999-12-01

    We have characterized the folate receptor in normal and malignant tissue from male gonads. Radioligand binding displayed characteristics typical of other folate receptors. Those included a high-affinity type of binding (K = 10(10M-1)), apparent positive cooperativity changing into non-cooperativity at low receptor concentrations, a tendency to increased binding affinity with decreasing receptor concentrations, a slow dissociation at pH 7.4 becoming rapid at pH 3.5 and inhibition by folates, in particular oxidized forms. The gel filtration profile of Triton X-100 solubilized tissue contained a 25 and 100 kDa peak of radioligand-receptor. The latter peak could represent receptor equipped with a hydrophobic membrane anchor that inserts into Triton X-100 micelles. The concentration of radiolabelled receptor ranged from 0.41 nmol/g protein to 1.68 nmol/g protein in specimens of normal testicular tissue from patients with prostatic carcinomas and from 1.54 nmol/g protein to 3.82 nmol/g protein in testicular tissue from young individuals. Compared to normal testicular tissue the concentration of receptor in seminoma tissue was low (0.38-1.27 nmol/g protein) but showed a higher degree of immunoreactivity in the presence of antibodies against human milk folate binding protein as evidenced by ELISA and immunohistochemistry data. Hence a folate receptor isoform homologous to human milk folate binding protein is apparently expressed in seminomas where the total expression of receptor, however, seems to be lower than in normal testicles. PMID:10841273

  12. Radioimmunoassay for human pancreatic ribonuclease and measurement of serum immunoreactive pancreatic ribonuclease in patients with malignant tumors

    SciTech Connect

    Kurihara, M.; Ogawa, M.; Ohta, T.; Kurokawa, E.; Kitahara, T.; Murata, A.; Matsuda, K.; Kosaki, G.; Watanabe, T.; Wada, H.

    1984-05-01

    A method for radioimmunoassay of human pancreatic RNase was developed. The method is sensitive, reproducible, and specific. Almost no cross-reactivity exists between human pancreatic and liver RNases. A good correlation was observed between the serum concentration of pancreatic RNase as measured by radioimmunoassay and its enzymatic activity using polycytidylic acid as substrate. The concentration of serum pancreatic RNase correlates well with age, blood urea nitrogen, and albumin contents but does not correlate with serum amylase activity. Using the data of 52 patients with malignant tumors except pancreatic cancer, serum RNase level could be expressed by a multiple regression equation: Immunoreactive RNase content in pancreatic cancer was elevated in patients with complications from renal failure. Serum pancreatic RNase contents in patients with pancreatic cancer measured by radioimmunoassay agreed well with the values calculated using the equation derived from the data of patients with other malignant tumors.

  13. The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells12

    PubMed Central

    Seol, Ho Jun; Smith, Christian A; Salhia, Bodour; Rutka, James T

    2009-01-01

    The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue. PMID:19956392

  14. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    PubMed Central

    Lai, Wen-Lin; Harn, Horng-jyh; Hung, Pei-Hsiu; Hsieh, Ming-Chang; Chang, Kai-Fu; Huang, Xiao-Fan; Liao, Kuang-Wen; Lee, Ming-Shih; Tsai, Nu-Man

    2013-01-01

    Glioblastoma multiforme (GBM) is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer. PMID:24319475

  15. Radiosensitization by gold nanoparticles.

    PubMed

    Jeremic, B; Aguerri, A R; Filipovic, N

    2013-08-01

    Recent years brought increasing use of gold nano particles (GNP) as a model platform for interaction of irradiation and GNPs aiming radiosensitization. Endocytosis seems to be one of the major pathways for cellular uptake of GNPs. Internalization mechanism of GNPs is likely receptor-mediated endocytosis, influenced by GNP size, shape, its coating and surface charging. Many showed that DNA damage can occur as a consequence of metal-enhanced production of low energy electrons, Auger electrons and alike. Kilovoltage radiotherapy (RT) carries significantly higher dose enhancement factor (DEF) that is observed with megavoltage irradiations, the latter usually been at the order of 1.1-1.2. Higher gold concentrations seem to carry higher risk of toxicity, while with lower concentrations the DEF can be reduced. Adding a chemotherapeutic agent could increase level of enhancement. Clinical trials are eagerly awaited with a promise of gaining more knowledge deemed necessary for more successful transition to widespread clinical practice. PMID:23359187

  16. Virus-like particles for the prevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    As compared to peptide/protein-based vaccines, naked DNA vectors and even traditional attenuated or inactived virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform because they offer a combination of safety, ease of production, and both high density B cell epitope display and intracellular presentation of T cell epitopes that induce potent humoral and cellular immune responses respectively. Indeed, human papillomavirus (HPV) vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil®, Merck & Co.) or insect cells (Cervarix®, GlaxoSmithKline) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. These HPV vaccines however have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1 VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. Here we examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design. PMID:23414405

  17. Human Malignant Histiocytosis CD30+ DEL Cell Line Differentiates into Macrophage-like Cells When Treated with a Phorbol Diester1

    Microsoft Academic Search

    Jean Gogusev; Sylvette Barbey; Christian Nezelof

    1991-01-01

    The histiocytic or lymphoid origin of human malignant histiocytosis is currently a subject of debate. The aim of this study was to investigate the in vitro effects of 12-O-tetradecanoylphorbol-13-acetate used as a differentiation inducer on the CD30, t(5;6) (q35;p21) DEL cell line, taken to be a reliable representative of the human malignant histiocytosis cell line. Treatment of DEL cells with

  18. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome

    PubMed Central

    Ginestier, Christophe; Hur, Min Hee; Charafe-Jauffret, Emmanuelle; Monville, Florence; Dutcher, Julie; Brown, Marty; Jacquemier, Jocelyne; Viens, Patrice; Kleer, Celina; Liu, Suling; Schott, Anne; Hayes, Dan; Birnbaum, Daniel; Wicha, Max S.; Dontu, Gabriela

    2008-01-01

    Application of stem cell biology to breast cancer research has been limited by the lack of simple methods for identification and isolation of normal and malignant stem cells. Utilizing in vitro and in vivo experimental systems, we show that normal and cancer human mammary epithelial cells with increased aldehyde dehydrogenase activity (ALDH) have stem/progenitor properties. These cells contain the subpopulation of normal breast epithelium with the broadest lineage differentiation potential and greatest growth capacity in a xenotransplant model. In breast carcinomas, high ALDH activity identifies the tumorigenic cell fraction, capable of self-renewal and of generating tumors which recapitulate the heterogeneity of the parental tumor. In a series of 577 breast carcinomas, expression of ALDH1 detected by immunostaining correlated with poor prognosis. These findings offer an important new tool for the study of normal and malignant breast stem cells and facilitate the clinical application of stem cell concepts. PMID:18371393

  19. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature

    PubMed Central

    Gupta, Shikha; Gupta, Sunita

    2015-01-01

    Human papillomaviruses (HPVs) are epitheliotropic viruses with an affinity for keratinocytes and are principally found in the anogenital tract, urethra, skin, larynx, tracheobronchial and oral mucosa. On the basis of high, but variable frequency of HPV in oral squamous cell carcinoma (OSCC), malignant potential of HPV infection has been hypothesized but not definitely confirmed. The aim of this review was to highlight the genomic structure and possible mechanism of infection and carcinogenesis by HPV in the oral mucosa and to review the frequency of HPV prevalence in OSCC and oral potentially malignant disorders. A computer database search was performed through the use of PubMed from 1994 to 2014. Search keywords used were: HPV and oral cancer, HPV and oral leukoplakia, HPV and oral lichen planus, HPV and OSCC, HPV and verrucous carcinoma, HPV and proliferative verrucous leukoplakia, HPV and oral papilloma.

  20. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature.

    PubMed

    Gupta, Shikha; Gupta, Sunita

    2015-01-01

    Human papillomaviruses (HPVs) are epitheliotropic viruses with an affinity for keratinocytes and are principally found in the anogenital tract, urethra, skin, larynx, tracheobronchial and oral mucosa. On the basis of high, but variable frequency of HPV in oral squamous cell carcinoma (OSCC), malignant potential of HPV infection has been hypothesized but not definitely confirmed. The aim of this review was to highlight the genomic structure and possible mechanism of infection and carcinogenesis by HPV in the oral mucosa and to review the frequency of HPV prevalence in OSCC and oral potentially malignant disorders. A computer database search was performed through the use of PubMed from 1994 to 2014. Search keywords used were: HPV and oral cancer, HPV and oral leukoplakia, HPV and oral lichen planus, HPV and OSCC, HPV and verrucous carcinoma, HPV and proliferative verrucous leukoplakia, HPV and oral papilloma. PMID:26097339

  1. p53: Biology and Role for Cellular Radiosensitivity

    Microsoft Academic Search

    Jochen Dahm-Daphi

    2000-01-01

    Purpose: p53 is the most commonly mutated gene in human tumors with large impact on cellular biology and response to radiation. Many excellent reviews are available on various aspects but for several years none about the role of p53 for radiosensitivity. The latter is the aim of the present paper. Methods: Review of the literature. Results: p53 is a regulator

  2. Non-malignant disease mortality in meat workers: a model for studying the role of zoonotic transmissible agents in non-malignant chronic diseases in humans

    PubMed Central

    Johnson, E S; Zhou, Y; Sall, M; Faramawi, M El; Shah, N; Christopher, A; Lewis, N

    2007-01-01

    Background Current research efforts have mainly concentrated on evaluating the role of substances present in animal food in the aetiology of chronic diseases in humans, with relatively little attention given to evaluating the role of transmissible agents that are also present. Meat workers are exposed to a variety of transmissible agents present in food animals and their products. This study investigates mortality from non-malignant diseases in workers with these exposures. Methods A cohort mortality study was conducted between 1949 and 1989, of 8520 meat workers in a union in Baltimore, Maryland, who worked in manufacturing plants where animals were killed or processed, and who had high exposures to transmissible agents. Mortality in meat workers was compared with that in a control group of 6081 workers in the same union, and also with the US general population. Risk was estimated by proportional mortality and standardised mortality ratios (SMRs) and relative SMR. Results A clear excess of mortality from septicaemia, subarachnoid haemorrhage, chronic nephritis, acute and subacute endocarditis, functional diseases of the heart, and decreased risk of mortality from pre-cerebral, cerebral artery stenosis were observed in meat workers when compared to the control group or to the US general population. Conclusions The authors hypothesise that zoonotic transmissible agents present in food animals and their products may be responsible for the occurrence of some cases of circulatory, neurological and other diseases in meat workers, and possibly in the general population exposed to these agents. PMID:17604337

  3. Tumor Radiosensitivity and Apoptosis

    Microsoft Academic Search

    Boris Zhivotovsky; Bertrand Joseph; Sten Orrenius

    1999-01-01

    With approximately 50% of all cancer patients receiving radiation therapy at some point in their treatment, increasing the sensitivity of tumor cells to the lethal effects of irradiation has the potential to significantly improve the rate of recovery from many malignancies. The major biological determinant of radiotherapy failure is tumor radioresistance. It is well known that tumors from the same

  4. ErbB3 Expression Predicts Tumor Cell Radiosensitization Induced by Hsp90 Inhibition

    Microsoft Academic Search

    Hideaki Dote; David Cerna; William E. Burgan; Kevin Camphausen; Philip J. Tofilon

    2005-01-01

    The ability to identify tumors that are susceptible to a given molecularly targeted radiosensitizer would be of clinical benefit. Towards this end, we have investigated the effects of a representative Hsp90 inhibitor, 17-(dimethylaminoethyla- mino)-17-demethoxygeldanamycin (17DMAG), on the radio- sensitivity of a panel of human tumor cell lines. 17DMAG was previously shown to enhance the radiosensitivity of a number of human

  5. ErbB receptor tyrosine kinase network inhibition radiosensitizes carcinoma cells

    SciTech Connect

    Contessa, Joseph N. [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States)]. E-mail: jcontess@med.umich.edu; Abell, Angela [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States); Valerie, Kristoffer [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States); Lin, Peck-Sun [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States); Schmidt-Ullrich, Rupert K. [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States)

    2006-07-01

    Purpose The expression of epidermal growth factor receptor (EGFR)-CD533, a truncation mutant of the wild-type EGFR, radiosensitizes carcinoma and malignant glioma cell lines. This deletion mutant disrupts EGFR activation and downstream signaling through the formation of inhibitory dimerizations. In this study, the effects of EGFR-CD533 on other ErbB receptor tyrosine kinase (RTK) family members were quantified to better understand the mechanism of EGFR-CD533-mediated radiosensitization. Methods and Materials Breast carcinoma cell lines with different ErbB RTK expression profiles were transduced with EGFR or ErbB2 deletion mutants (EGFR-CD533 and ErbB2-CD572) using an adenoviral vector. ErbB RTK activation, mitogen activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/p70S6K signaling, and clonogenic survival were determined for expression of each deletion mutant. Results EGFR-CD533 radiosensitizes carcinoma cells with either high EGFR expression (MDA-MB231) or low EGFR expression (T47D) through significant blockade of the ErbB RTK network. Analysis of clonogenic survival demonstrate significant enhancement of the {alpha}/{beta} ratios, as determined by the linear-quadratic model. Split-dose survival experiments confirm that EGFR-CD533 reduces the repair of cellular damage after ionizing radiation. Conclusion Expression of EGFR-CD533 inhibits the ErbB RTK network and radiosensitizes carcinoma cells irrespective of the ErbB RTK expression patterns, and ErbB2-CD572 does not radiosensitize cells with low EGFR expression. These studies demonstrate that the mechanism of action for EGFR-CD533-mediated radiosensitization is inhibition of the ErbB RTK network, and is an advantage for radiosensitizing multiple malignant cell types.

  6. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies.

    PubMed

    Chon, Hae J; Bae, Kyoung J; Lee, Yura; Kim, Jiyeon

    2015-01-01

    The casein kinase 2 (CK2) protein kinase is a pro-survival kinase and therapeutic target in treatment of various human cancers. CK2 overexpression has been demonstrated in hematological malignancies, including chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma. CX-4945, also known as Silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2. CX-4945 induces cytotoxicity and apoptosis and is currently being evaluated in clinical trials for treatment of many cancer types. In the past 2 years, the focus on the therapeutic potential of CX-4945 has shifted from solid tumors to hematological malignancies. CX-4945 exerts anti-proliferative effects in hematological tumors by downregulating CK2 expression and suppressing activation of CK2-mediated PI3K/Akt/mTOR signaling pathways. Furthermore, combination of CX-4945 with other inhibitors yielded synergistic effects in cell death induction. These new findings demonstrate that CK2 overexpression contributes to blood cancer cell survival and resistance to chemotherapy. Combinatorial use of CX-4945 is a promising therapeutic tool for treatment of hematological malignancies. PMID:25873900

  7. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies

    PubMed Central

    Chon, Hae J.; Bae, Kyoung J.; Lee, Yura; Kim, Jiyeon

    2015-01-01

    The casein kinase 2 (CK2) protein kinase is a pro-survival kinase and therapeutic target in treatment of various human cancers. CK2 overexpression has been demonstrated in hematological malignancies, including chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma. CX-4945, also known as Silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2. CX-4945 induces cytotoxicity and apoptosis and is currently being evaluated in clinical trials for treatment of many cancer types. In the past 2 years, the focus on the therapeutic potential of CX-4945 has shifted from solid tumors to hematological malignancies. CX-4945 exerts anti-proliferative effects in hematological tumors by downregulating CK2 expression and suppressing activation of CK2-mediated PI3K/Akt/mTOR signaling pathways. Furthermore, combination of CX-4945 with other inhibitors yielded synergistic effects in cell death induction. These new findings demonstrate that CK2 overexpression contributes to blood cancer cell survival and resistance to chemotherapy. Combinatorial use of CX-4945 is a promising therapeutic tool for treatment of hematological malignancies. PMID:25873900

  8. PREDICTION OF RESPONSE TO RECOMBINANT HUMAN ERYTHROPOIETIN (rHuEpo) IN ANEMIA OF MALIGNANCY

    Microsoft Academic Search

    Mario Cazzola; Luisa Ponchio; Claudia Pedrotti; Giovanna Farina; Paola Cerani; Claudia Lucotti; Annunziata Novella; Andrea Rovati; Gaetano Bergamaschi; Yves Beguin

    Background. Since only a portion of anemic patients outside the uremia setting benefit from erythro- poietin treatment, a reliable means of predicting potential responders and nonresponders would be very useful. Materials and Methods. We retrospectively reviewed the clinical records of 58 patients with refracto- ry anemia associated with various malignant disorders who had been treated with subcutaneous rHuEpo. The starting

  9. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    SciTech Connect

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  10. Malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor immunoreactivity in the surrounding stroma.

    PubMed

    Olapade-Olaopa, E O; MacKay, E H; Taub, N A; Sandhu, D P; Terry, T R; Habib, F K

    1999-03-01

    The cellular pathways involved in the pathogenesis of hormone resistance remain unclear. Studies evaluating the role of changes in human androgen receptor (hAR) expression in the progression of prostatic tumors have been inconclusive. Androgenic influence over prostatic growth is mediated via the regulation of interactions between stromal and epithelial cells. We hypothesized that neoplastic transformation of the prostate would be associated with alterations in hAR expression in the adjacent stroma. Using immunohistochemical techniques, we determined hAR positivity in the epithelium and adjacent stroma of sections from 17 benign and 39 malignant prostatic glands. We found that whereas the expression of the receptor decreased in both cellular compartments as the tissues dedifferentiated, the depletion was more pronounced in the stromal nuclei (P<0.0001). However, in sections from both untreated and hormone-resistant prostate cancer tissues, although heterogeneity of hAR expression in malignant epithelia was increased, there appeared to be a unique field effect around the cancerous prostate glands that resulted in a decreased expression of the receptor in the adjacent benign glands and its total loss in the surrounding stroma. The loss of hAR in the stroma adjacent to malignant prostatic epithelium may play an important role in prostate cancer progression. Furthermore, the similarity of the lack of stromal hAR expression in newly diagnosed and hormone-resistant prostate cancer (P = 0.85) may be an indication that the mechanisms responsible for the acquisition of hormone independence are established early in the malignant transformation process. PMID:10100708

  11. A 170-kDa Membrane-Bound Protease is Associated with the Expression of Invasiveness by Human Malignant Melanoma Cells

    Microsoft Academic Search

    Atsuko Aoyama; Wen-Tien Chen

    1990-01-01

    Malignant spreading of cancer cells requires cell surface proteases that cleave the crosslinked collagenous matrix of connective tissues. From correlating the morphologically defined invasiveness of tumor cells with the presence of specific membrane-associated proteases, we have identified a malignant human melanoma cell line, LOX, that invades crosslinked gelatin films in vitro and contains uniquely a neutral 170-kDa gelatinase in the

  12. Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies

    PubMed Central

    Sansone, Pasquale; Bromberg, Jacqueline

    2012-01-01

    The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6–mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058

  13. The caffeine test of isolated human muscle in relation to malignant hyperthermia

    Microsoft Academic Search

    W. Kalow; B. A. Britt; A. Richter

    1977-01-01

    Summary  o| li]1.|Pharmacological tests of isolated fibers of skeletal muscle proved to be a means of clarifying the occurrence of\\u000a certain genetic defects. li]2.|Muscle specimens from 74 subjects were investigated. Of these, 14 had recovered from an episode\\u000a of malignant hyperthermia (MH), an often fatal complication of general anaesthesia which is known to occur on the basis of\\u000a a genetic predisposition.

  14. Western blotting and isoform analysis of cathepsin D from normal and malignant human breast cell lines

    Microsoft Academic Search

    Lisa D. Laury-Kleintop; Elizabeth C. Coronel; Marianne K. Lange; Thomas Tachovsky; Santo Longo; Sandra Tucker; Jack A. Alhadeff

    1995-01-01

    Cathepsin D from normal (Hs578Bst) and malignant (MCF7, MDA-MB-231) breast cell lines has been characterized with regard to its kinetic properties, activity levels, precursor and processed Mr forms, and isoform composition. Normal cell cathepsin D appears to have a more neutral pH optimum (pH 3.5) than the cancer cell line (pH 3.0–3.2) and greater activity between pH values of 4.0

  15. DNA Copy Number Changes in Human Malignant Fibrous Histiocytomas by Array Comparative Genomic Hybridisation

    Microsoft Academic Search

    Stine H. Kresse; Hege O. Ohnstad; Bodil Bjerkehagen; Ola Myklebost; Leonardo A. Meza-Zepeda; Syed A. Aziz

    2010-01-01

    BackgroundMalignant fibrous histiocytomas (MFHs), or undifferentiated pleomorphic sarcomas, are in general high-grade tumours with extensive chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, as well as novel gene targets of potential importance for MFH development and\\/or progression, we have analysed DNA copy number changes in 33 MFHs using microarray-based comparative genomic hybridisation (array CGH).Principal findingsIn

  16. Expression of Estrogen Receptor ? and Ki 67 in Benign & Malignant Human Prostate Lesions by Immunohistochemistry.

    PubMed

    Grover, Shrruti K; Agarwal, Sarla; Gupta, Sanjay; Wadhwa, Neelam; Sharma, Nivedita

    2015-07-01

    Estrogen regulates the growth of prostate through two receptors Estrogen receptor ? & ? of which ER? is proposed to be antiproliferative. There is a wide variation in the results of various studies regarding the localisation, level of expression of ER? in benign & malignant lesions of prostate and its relation to the grade of tumor emphasizing the need for additional studies to standardize the distribution of this receptor in prostate. This was a prospective study conducted in Department of Pathology, UCMS, Delhi, evaluating ER? & Ki 67 immunoexpression in 60 cases of benign and malignant lesions of prostate (30 each). Tissue for study included prostatic core biopsy and TURP chips. After histomorphological diagnosis, immunohistochemical staining was performed using a monoclonal antibody. Nuclear expression of ER? & Ki67 was evaluated and compared between the two study groups (benign & malignant lesions) using Pearson chi square test. ER? was predominantly localized to nuclei of secretory epithelium of prostatic glands. Expression of ER? was higher in benign glands compared to carcinoma. However, majority of carcinomas retained ER? expression though at much lower levels. Expression of Ki 67 was higher in carcinoma than benign hyperplasia. There was no correlation between the ER? status, Ki 67 expression & grade of tumor. Expression of ER? is downregulated in carcinoma compared to benign hyperplasia and is consistent with its chemopreventive role in prostate. It might have a therapeutic implication as agonists' targeting this receptor could be a part of treatment protocol for those patients of carcinoma who retain this receptor at significant levels. PMID:25527409

  17. Cellular and Molecular Mechanisms Underlying Oxygen-Dependent Radiosensitivity

    PubMed Central

    Liu, Chao; Lin, Qun; Yun, Zhong

    2015-01-01

    Molecular oxygen has long been recognized as a powerful radiosensitizer that enhances the cell-killing efficiency of ionizing radiation. Radiosensitization by oxygen occurs at very low concentrations with the half-maximum radiosensitization at approximately 3 mmHg. However, robust hypoxia-induced signal transduction can be induced at <15 mmHg and can elicit a wide range of cellular responses that will affect therapy response as well as malignant progression. Great strides have been made, especially since the 1990s, toward identification and characterization of the oxygen-regulated molecular pathways that affect tumor response to ionizing radiation. In this review, we will discuss the current advances in our understanding of oxygen-dependent molecular modification and cellular signal transduction and their impact on tumor response to therapy. We will specifically address mechanistic distinctions between radiobiological hypoxia (0–3 mmHg) and pathological hypoxia (3–15 mmHg). We also propose a paradigm that hypoxia increases radioresistance by maintaining the cancer stem cell phenotype. PMID:25938770

  18. Growth and spread of human malignant T lymphoblasts in immunosuppressed nude mice: a model for meningeal leukemia.

    PubMed

    Cavallo, F; Forni, M; Riccardi, C; Soleti, A; Di Pierro, F; Forni, G

    1992-09-01

    Previous work has shown that nude (nu/nu) mice additionally immunosuppressed by splenectomy, sublethal irradiation, and treatment with antiasialo GM1 antiserum (SIA-nu/nu mice) have no detectable natural killer activity and allow the growth of human malignant lymphoblasts. We show here that all SIA-nu/nu mice engrafted intravenously with 5 x 10(6) malignant lymphoblasts originally derived from a child with a T-cell acute lymphoblastic leukemia (PF382) and from a boy with a T-cell lymphoma (ST-4) develop lethal meningeal leukemia and die within 35 days. Histologic examination of moribund SIA-nu/nu mice showed that vertebral and skull bone marrow was always replaced by proliferating human T lymphoblasts. From the spinal canal, lymphoblasts spread to the meninges, causing hind leg paralysis. Leaving the skull, they permeated the meninges and then invaded the nervous parenchyma. This efficient and reproducible experimental model may be suitable for experimental studies on the pathogenesis of meningeal leukemia. PMID:1515643

  19. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17?-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor ?. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant human tissue, revealing a role for GPER in estrogen-induced breast physiology and pathology. PMID:24718936

  20. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  1. Radiosensitive Severe Combined Immunodeficiency Disease

    PubMed Central

    Dvorak, Christopher C.; Cowan, Morton J.

    2009-01-01

    Synopsis Inherited defects in components of the non-homologous end joining DNA repair mechanism produce a T-B-NK+ severe combined immunodeficiency disease (SCID) characterized by heightened sensitivity to ionizing radiation. Patients with the radiosensitive form of SCID may also have increased short- and long-term sensitivity to the alkylator-based chemotherapy regimens traditionally utilized for conditioning prior to allogeneic hematopoietic cell transplantation (HCT). Known etiologies of radiosensitive SCID include deficiencies of Artemis, DNA Ligase IV, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and Cernunnos-XLF, all of which have been treated with HCT. Because of their sensitivity to certain forms of chemotherapy, the approach to donor selection and type of conditioning regimen utilized for a radiosensitive SCID patient requires careful consideration. Significantly more research needs to be done in order to determine the long-term outcomes of radiosensitive SCID patients following HCT, as well as to discover novel non-toxic approaches to HCT that might benefit those with intrinsic radio- and chemo-sensitivity, as well as potentially all patients undergoing an HCT. PMID:20113890

  2. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    PubMed Central

    Zhang, Yonghong; Sun, Xinlin; Huang, Min; Ke, Yiquan; Wang, Jihui; Liu, Xiao

    2015-01-01

    Background In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs) exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas. Materials and methods In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo. Results In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01). In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model. Conclusion The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic.

  3. COX-2 overexpression increases malignant potential of human glioma cells through Id1

    PubMed Central

    Xu, Kaiming; Wang, Lanfang; Shu, Hui-Kuo G.

    2014-01-01

    Increased COX-2 expression directly correlates with glioma grade and is associated with shorter survival in glioblastoma (GBM) patients. COX-2 is also regulated by epidermal growth factor receptor signaling which is important in the pathogenesis of GBMs. However, COX-2 expression has not been previously shown to directly alter malignancy of GBMs. Id1 is a member of the helix-loop-helix (HLH) family of transcriptional repressors that act as dominant-negative inhibitors of basic-HLH factors. This factor has been shown to be regulated by COX-2 in breast carcinoma cells and recent studies suggest that Id1 may also be involved in the genesis/progression of gliomas. We now show that COX-2 increases the aggressiveness of GBM cells. GBM cells with COX-2 overexpression show increased growth of colonies in soft agar. Tumorigenesis in vivo is also increased in both subcutaneous flank and orthotopic intracranial tumor models. COX-2 overexpression induces Id1 expression in two GBM cell lines suggesting a role for Id1 in glioma transformation/tumorigenesis. Furthermore, we find direct evidence of a role for Id1 with significant suppression of in vitro transformation and in vivo tumorigenesis in COX-2-overexpressing GBM cells where Id1 has been knocked down. In fact, Id1 is even more efficient at enhancing transformation/tumorigenesis of GBM cells than COX-2. Finally, GBM cells with COX-2 or Id1 overexpression show greater migration/invasive potential and tumors that arise from these cells also display increased microvessel density, results in line with the increased malignant potential seen in these cells. Thus, COX-2 enhances the malignancy of GBM cells through induction of Id1. PMID:24659686

  4. Proteomic and Bioinformatic Analysis of mSWI/SNF (BAF) Complexes Reveals Extensive Roles in Human Malignancy

    PubMed Central

    Kadoch, Cigall; Hargreaves, Diana C.; Hodges, Courtney; Elias, Laura; Ho, Lena; Ranish, Jeff; Crabtree, Gerald R.

    2013-01-01

    Subunits of mammalian SWI/SNF (mSWI/SNF, also called BAF) complexes have recently been implicated as tumor suppressors in a number of human malignancies. To understand the full extent of their involvement, we conducted a proteomic analysis of purified endogenous mSWI/SNF complexes. Our studies revealed several new dedicated, stable subunits not found in the yeast SWI/SNF complex including Bcl7a, b and c, Bcl11a and b, Brd9 and SS18. Incorporating these novel members, we determined the frequency of mSWI/SNF subunit mutations in recent exome- and whole-genome sequencing studies of primary human tumors. Surprisingly, mSWI/SNF subunits are mutated in 19.6% of all human tumors reported in 44 exome sequencing studies. Our analysis suggests that specific subunits protect against cancer in specific tissues. In addition, we find that mutations to more than one subunit, which we define as a type of compound heterozygosity, are prevalent in certain cancers. Our studies demonstrate that mSWI/SNF is the most frequently mutated chromatin-regulatory complex (CRC) in human cancer and that in contrast to other known tumor suppressors and oncogenes surveyed, mSWI/SNF is broadly mutated, similar to TP53. Thus, proper functioning of these polymorphic chromatin regulatory complexes may constitute a major mechanism of human tumor suppression. PMID:23644491

  5. In vitro radiosensitization of human cervical carcinoma cells by combined use of 13- cis-retinoic acid and interferon-?2a

    Microsoft Academic Search

    Samuel Ryu; Ok Bae Kim; Sang-Hie Kim; Shao Quin He; Jae Ho Kim

    1998-01-01

    Background: Significant antitumor activity has been reported with the combined use of 13-cis-retinoic acid (cRA) and interferon-?2a (IFN-?) in the treatment of advanced-stage cervical cancers and skin cancers. Since IFN-? has been shown to be a modest radiation enhancer for selected malignant tumor cells and the cytotoxic activity is more enhanced by combining cRA and IFN-?, we hypothesized that the

  6. Revealing the inherent heterogeneity of human malignancies by variant consensus strategies coupled with cancer clonal analysis

    PubMed Central

    2014-01-01

    Tumors are heterogeneous in composition. They are composed of cancer cells proper, along with stromal elements that collectively form a microenvironment, all of which are necessary to nurture the malignant process. In addition, many of the stromal cells are modified to support the unique needs of the malignant state. Tumors are composed of a variety of clones or subpopulations of cancer cells, which may differ in karyotype, growth rate, expression of cell surface markers, sensitivity to therapeutics, etc. New tools and methods to provide an improved understanding of tumor clonal architecture are needed to guide therapy. The subclonal structure and transcription status of underlying somatic mutations reveal the trajectory of tumor progression in patients with cancer. Approaching the analysis of tumors to reveal clonal complexity in a quantitative manner should facilitate better characterization and therapeutic assignments. The challenge is the interpretation of massive amounts of data from next generation sequencing (NGS) experiments to find what is truly meaningful for improving the understanding of basic cancer biology, as well as therapeutic assignments and outcomes. To meet this need, a methodology named CloneViz was developed and utilized for the identification of serial clonal mutations. Whole exome sequencing (WES) on an Illumina HiSeq 2500 was performed on paired tumor and normal samples from a Multiple Myeloma (MM) patient at presentation, then first and second relapse. Following alignment, a consensus strategy for variant selection was employed along with computational linkage to a formal tumor clonality analysis based on visualization and quantitative methods. PMID:25350589

  7. Combination of Intensive Chemotherapy and Anticancer Vaccines in the Treatment of Human Malignancies: The Hematological Experience

    PubMed Central

    Liseth, Knut; Ersvær, Elisabeth; Hervig, Tor; Bruserud, Øystein

    2010-01-01

    In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients. PMID:20625438

  8. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors.

    PubMed

    Gutova, Margarita; Najbauer, Joseph; Frank, Richard T; Kendall, Stephen Edward; Gevorgyan, Anna; Metz, Marianne Z; Guevorkian, Mark; Edmiston, Marissa; Zhao, Donghong; Glackin, Carlotta A; Kim, Seung U; Aboody, Karen S

    2008-06-01

    Human neural and mesenchymal stem cells have been identified for cell-based therapies in regenerative medicine and as vehicles for delivering therapeutic agents to areas of injury and tumors. However, the signals required for homing and recruitment of stem cells to these sites are not well understood. Urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) are involved in chemotaxis and cell guidance during normal development and are upregulated in invasive tumors. Here we provided evidence that activation of uPA and uPAR in malignant solid tumors (brain, lung, prostate, and breast) augments neural and mesenchymal stem cell tropism. Expression levels of uPAR on human solid tumor cell lines correlated with levels of uPA and soluble uPAR in tumor cell-conditioned media. Cytokine expression profiles of these tumor-conditioned media were determined by protein arrays. Among 79 cytokines investigated, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 were the most highly expressed cytokines in uPAR-positive tumors. We provided evidence that human recombinant uPA induced stem cell migration, whereas depletion of uPA from PC-3 prostate cancer cell-conditioned medium blocked stem cell migration. Furthermore, retrovirus-mediated overexpression of uPA and uPAR in neuroblastoma (NB1691) cells induced robust migration of stem cells toward NB1691 cell-conditioned media, compared with media derived from wild-type NB1691 cells. We conclude that expression of uPA and uPAR in cancer cells underlies a novel mechanism of stem cell tropism to malignant solid tumors, which may be important for development of optimal stem cell-based therapies. Disclosure of potential conflicts of interest is found at the end of this article. PMID:18403751

  9. Suppression of the malignant phenotype of human prostate cancer cell line PPC-1 by introduction of normal fragments of human chromosome 10.

    PubMed

    Murakami, Y S; Albertsen, H; Brothman, A R; Leach, R J; White, R L

    1996-05-01

    Numerous studies have detected frequent losses of heterozygosity at polymorphic loci on chromosomal arms 10p and 10q in human prostate cancers. To confirm the presence of tumor suppressor genes in these chromosomal regions, fragments of normal human chromosome 10 tagged with a neomycin resistance gene were transferred into cells from a human prostate cancer cell line. PPC-1, by microcell-mediated chromosome transfer. Two of the six hybrid clones obtained showed decreased tumorigenicity in athymic nude mice and decreased efficiency of colony formation in soft agar compared with PPC-1; the other four retained fully malignant phenotypes. Analysis of polymorphic loci on chromosome 10 in these hybrid clones suggested that a tumor suppressor gene associated with prostate cancer is located within a 17-cM region at distal 10p. PMID:8616865

  10. Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology.

    PubMed

    Goldenberg, David M; Gold, David V; Loo, Meiyu; Liu, Donglin; Chang, Chien-Hsing; Jaffe, Elaine S

    2013-01-01

    We report the in-vivo fusion of two Hodgkin lymphomas with golden hamster cheek pouch cells, resulting in serially-transplanted (over 5-6 years) GW-532 and GW-584 heterosynkaryon tumor cells displaying both human and hamster DNA (by FISH), lymphoma-like morphology, aggressive metastasis, and retention of 7 human genes (CD74, CXCR4, CD19, CD20, CD71, CD79b, and VIM) out of 24 tested by PCR. The prevalence of B-cell restricted genes (CD19, CD20, and CD79b) suggests that this uniform population may be the clonal initiating (malignant) cells of Hodgkin lymphoma, despite their not showing translation to their respective proteins by immunohistochemical analysis. This is believed to be the first report of in-vivo cell-cell fusion of human lymphoma and rodent host cells, and may be a method to disclose genes regulating both organoid and metastasis signatures, suggesting that the horizontal transfer of tumor DNA to adjacent stromal cells may be implicated in tumor heterogeneity and progression. The B-cell gene signature of the hybrid xenografts suggests that Hodgkin lymphoma, or its initiating cells, is a B-cell malignancy. PMID:23405135

  11. Intra-arterial bromodeoxyuridine radiosensitization of malignant gliomas

    Microsoft Academic Search

    T. J. Hegarty; A. F. Thornton; R. F. Diaz; W. F. Chandler; W. D. Ensminger; L. Junck; M. A. Page; S. S. Gebarski; T. W. Hood; P. L. Stetson

    1990-01-01

    In the 1950's it was first observed that mammalian cells exposed to the halogenated deoxyuridines were more sensitive to ultraviolet light and radiation than untreated cells. This prompted early clinical trials with bromodeoxyuridine (BUdR) which showed mixed results. More recently, several Phase I studies, while establishing the feasibility of continuous intravenous (IV) infusion of BUdR, have reported significant dose limiting

  12. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese [Universite de Lyon 1, Laboratoire de Radiobiologie Cellulaire et Moleculaire, Faculte de Medecine Lyon-Sud, Oullins (France); Hospices Civils de Lyon, Service de Radiotherapie, Centre Hospitalier Lyon-Sud, Pierre-Benite (France)], E-mail: marie-therese.aloy@sante.univ-lyon1.fr; Hadchity, Elie; Bionda, Clara [Universite de Lyon 1, Laboratoire de Radiobiologie Cellulaire et Moleculaire, Faculte de Medecine Lyon-Sud, Oullins (France); Diaz-Latoud, Chantal [Universite de Lyon 1, UMR-CNRS-5534, Centre de Genetique Moleculaire et Cellulaire, Villeurbanne (France); Claude, Line; Rousson, Robert [Universite de Lyon 1, Laboratoire de Radiobiologie Cellulaire et Moleculaire, Faculte de Medecine Lyon-Sud, Oullins (France); Arrigo, Andre-Patrick [Universite de Lyon 1, UMR-CNRS-5534, Centre de Genetique Moleculaire et Cellulaire, Villeurbanne (France); Rodriguez-Lafrasse, Claire [Universite de Lyon 1, Laboratoire de Radiobiologie Cellulaire et Moleculaire, Faculte de Medecine Lyon-Sud, Oullins (France)

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  13. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy.

    PubMed

    Ganti, Ketaki; Broniarczyk, Justyna; Manoubi, Wiem; Massimi, Paola; Mittal, Suruchi; Pim, David; Szalmas, Anita; Thatte, Jayashree; Thomas, Miranda; Tomai?, Vjekoslav; Banks, Lawrence

    2015-01-01

    Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM) at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression. PMID:26147797

  14. Concurrent Chemoradiotherapy with Weekly Paclitaxel in Malignant Cerebral Glioma Treatment

    Microsoft Academic Search

    José Paulo Montemor; Fernanda Maris Peria; Carlos Roberto Monti; Luis Salvador Petrilli; Benedicto Oscar Colli; Carlos Gilberto Carlotti Júnior

    2008-01-01

    SummaryBackground: Anaplastic astrocytomas (AA) and glioblastomas (GB) are the most common malignant gliomas, and despite newly developed drugs and combined treatments, they still have an adverse prognosis. Paclitaxel is a cytotoxic agent with radiosensitizing properties and exerts objective growth inhibition in glioma tumor cells. Patients and Methods: From 1998 to 2002, 61 microneurosurgically treated patients were randomized to group I

  15. Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1.

    PubMed

    Yamada, Takayuki; Sato, Koichi; Komachi, Mayumi; Malchinkhuu, Enkhzol; Tobo, Masayuki; Kimura, Takao; Kuwabara, Atsushi; Yanagita, Yasuhiro; Ikeya, Toshiro; Tanahashi, Yoshifumi; Ogawa, Tetsushi; Ohwada, Susumu; Morishita, Yasuo; Ohta, Hideo; Im, Doon-Soon; Tamoto, Koichi; Tomura, Hideaki; Okajima, Fumikazu

    2004-02-20

    Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells. PMID:14660630

  16. Photodynamic therapy of human malignant tumors: a comparative study between photohem and tetrasulfonated aluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Litvin, Grigory D.; Astrakhankina, Tamara A.

    1996-01-01

    The analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs, urinary bladder, rectum and other locations has been made. During 1992-1995 543 tumoral foci in 146 patients have been treated with PDT. All patients were previously treated with conventional techniques without effect or they were not treated due to contraindications either because of severe accompanying diseases or because of old age. A part of the patients had PDT because of recurrences or intradermal metastases in 1-2 years after surgical, radial or combined treatment. Two home-made preparations were used as photosensitizers: Photohem (hematoporphyrine derivative) and Photosense (aluminum sulfonated phthalocyanine). Light sources were: the argon pumped dye laser ('Innova-200,' 'Coherent') and home-made laser devices: copper-vapor laser-pumped dye laser ('Yakhroma-2,' Frjazino), gas-discharge unit 'Xenon' (wavelength 630 nm), gold-vapor laser (wavelength 627.8 nm) for Photohem; while for Photosense sessions we used solid-state laser on ittrium aluminate 'Poljus-1' (wavelength 670 mn). Up to now we have follow-up control data within 2 months and 3 years. Positive effect of PDT was seen in 92.4% of patients including complete regression of tumors in 62.3% and partial -- in 30.1%. Currently, this new perspective technique of treating malignant neoplasms is successfully being used in Russia; new photosensitizers and light sources for PDT and fluorescent tumour diagnostics are being developed as well.

  17. A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells.

    PubMed

    Cen, Esther G; Dalton, Colin; Li, Youlan; Adamia, Sophia; Pilarski, Linda M; Kaler, Karan V I S

    2004-09-01

    The study of the dielectric properties of micrometer- or nanometer-scale particles is of particular interest in present-day applications of biomedical engineering. Electrokinetics utilises electrically energised microelectrode structures within microfluidic chambers to noninvasively probe the physiological structure of live cancer cells. A system is described that combines the three complementary techniques of dielectrophoresis (DEP), travelling wave dielectrophoresis (TWD) and electrorotation (ROT) for the first time on a single, integrated chip (3 x 6 mm). The chip employs planar microelectrode arrays fabricated on a silicon substrate to facilitate the synthesis of the various nonuniform electric fields required for the controlled manipulation, measurement and characterization of mammalian cells. A study of the dielectric properties of human malignant cells (Daudi and NCI-H929) was performed to demonstrate the potential and the versatility of the system in providing a fully programmable microsystem. PMID:15279943

  18. Mutation Analysis of Human Cytokeratin 8 Gene in Malignant Rhabdoid Tumor: A Possible Association with Intracytoplasmic Inclusion Body Formation

    Microsoft Academic Search

    Hideki Shiratsuchi; Tsuyoshi Saito; Akio Sakamoto; Eijun Itakura; Sadafumi Tamiya; Yumi Oshiro; Yoshinao Oda; Satoshi Toh; Sohtaro Komiyama; Masazumi Tsuneyoshi

    2002-01-01

    The rhabdoid cell, which is typically observed in malignant rhabdoid tumor (MRT) and other malignant neoplasms, has an eosinophilic cytoplasm containing a spheroid perinuclear inclusion body. This distinct cell is known to act as a highly aggressive indicator in many types of malignant tumors and is characterized by aggregates of intermediate filaments, comprising both vimentin and cytokeratin (CK) 8, which

  19. The combination of olaparib and camptothecin for effective radiosensitization

    PubMed Central

    2012-01-01

    Background Poly (ADP-ribose) polymerase-1 (PARP-1) is a key enzyme involved in the repair of radiation-induced single-strand DNA breaks. PARP inhibitors such as olaparib (KU-0059436, AZD-2281) enhance tumor sensitivity to radiation and to topoisomerase I inhibitors like camptothecin (CPT). Olaparib is an orally bioavailable inhibitor of PARP-1 and PARP-2 that has been tested in multiple clinical trials. The purpose of this study was to investigate the characteristics of the sensitizing effect of olaparib for radiation and CPT in order to support clinical application of this agent. Methods DLD-1 cells (a human colorectal cancer cell line) and H1299 cells (a non-small cell lung cancer cell line) with differences of p53 gene status were used. The survival of these cells was determined by clonogenic assay after treatment with drugs and X-ray irradiation. The ?H2AX focus formation assay was performed to examine the influence of olaparib on induction and repair of double-stranded DNA breaks after exposure to radiation or CPT. Results A radiosensitizing effect of olaparib was seen even at 0.01 ?M. Its radiosensitizing effect after exposure for 2 h was similar to that after 24 h. H1299 cells with depletion or mutation of p53 were more radioresistant than H1299 cells with wild-type p53. However, similar enhancement of radiosensitization by olaparib was observed with all of the tested cell lines regardless of the p53 status. Olaparib also sensitized cells to CPT. This sensitizing effect was seen at low concentrations of olaparib such as 0.01 ?M, and its sensitizing effect was the same at both 0.01 ?M and 1 ?M. The combination of olaparib and CPT had a stronger radiosensitizing effect. The results of the ?H2AX focus assay corresponded with the clonogenic assay findings. Conclusion Olaparib enhanced sensitivity to radiation and CPT at low concentrations and after relatively short exposure times such as 2 h. The radiosensitizing effect of olaprib was not dependent on the p53 status of tumor cells. These characteristics could be advantageous for clinical radiotherapy since tumor cells may be exposed to low concentrations of olaparib and/or may have different levels of p53 mutation. The combination of olaparib and CPT had a stronger radiosensitizing effect, indicating that combining a PARP inihibitor with a topoiomerase I inhibitor could be promising for clinical radiosensitization. PMID:22524618

  20. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    PubMed

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ?-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5 mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer. PMID:25336096

  1. Hypoxie Mammalian Cell Radiosensitization by Nitric Oxide

    Microsoft Academic Search

    James B. Mitchell; David A. Wink; William DeGraff; Janet Gamson; Larry K. Keefer; Murali C. Krishna

    1993-01-01

    The bioregulatory molecule, nitric oxide (NO), was evaluated as a liy- poxic cell radiosensitizer. Authentic NO gas was nearly as effective as oxygen in radiosensitizing hypoxic Chinese hamster V79 lung cells as evaluated using clonogenic assays. When NO was delivered to hypoxic Chinese hamster V79 cells using the NO-releasing agent i( ',lls),N(N(())- NO| NV, radiosensitization was also observed with a

  2. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: A model for viral-related carcinogenesis of human malignant mesothelioma

    PubMed Central

    Cacciotti, Paola; Libener, Roberta; Betta, Piergiacomo; Martini, Fernanda; Porta, Camillo; Procopio, Antonio; Strizzi, Luigi; Penengo, Lorenza; Tognon, Mauro; Mutti, Luciano; Gaudino, Giovanni

    2001-01-01

    Recent studies suggested that simian virus 40 (SV40) may cause malignant mesothelioma, although the pathogenic mechanism is unclear. We found that in SV40-positive malignant mesothelioma cells, the hepatocyte growth factor (HGF) receptor (Met) was activated. In human mesothelial cells (HMC) transfected with full-length SV40 DNA (SV40-HMC), Met receptor activation was associated with S-phase entry, acquisition of a fibroblastoid morphology, and the assembly of viral particles. Coculture experiments revealed the ability of SV40-HMC to infect permissive monkey cells (CV-1), HMC, and murine BNL CL cells. Cocultured human and murine SV40-positive cells expressed HGF, showed Met tyrosine phosphorylation and S-phase entry, and acquired a spindle-shaped morphology (spBNL), whereas CV-1 cells were lysed. Cocultured HMC inherited from SV40-HMC the infectivity, as they induced lysis in cocultured CV-1 cells. Treatment with suramin or HGF-blocking antibodies inhibited Met tyrosine phosphorylation in all large T antigen (Tag)-positive cells and reverted the spindle-shaped morphology of spBNL. This finding indicated that Met activation and subsequent biological effects were mediated by an autocrine HGF circuit. This, in turn, was causally related to Tag expression, being induced by transfection with the SV40 early region alone. Our findings suggest that when SV40 infects HMC it causes Met activation via an autocrine loop. Furthermore, SV40 replicates in HMC and infects the adjacent HMC, inducing an HGF-dependent Met activation and cell-cycle progression into S phase. This may explain how a limited number of SV40-positive cells may be sufficient to direct noninfected HMC toward malignant transformation. PMID:11572935

  3. Radiosensitivity in ataxia-telangiectasia: a new explanation

    Microsoft Academic Search

    R. B. Painter; B. R. Young

    1980-01-01

    The cause of increased radiosensitivity in ataxia-telangiectasia (AT) cells may be a defect in their ability to respond to DNA damage rather than a defect in their ability to repair it. Doses of x-radiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition in AT cells and thus less delay during which x-ray

  4. Radiosensitization by non-nitro compounds

    SciTech Connect

    Wardman, P. (Mount Vernon Hospital, Northwood, England); Anderson, R.F.; Hodgkiss, R.J.; Parrick, J.; Smithen, C.E.; Wallace, R.G.; Watts, M.E.

    1982-03-01

    The effects of 23 non-vitro compounds on the radiosensitivity of hypoxic Chinese hamster V79-379A or E. coli AB 1157 cells in vitro are outlined. Imidazole derivatives substituted with several alternative electron-withdrawing groups are described; the dicyanovinyl function conferred considerable radiosensitizing activity. 2,4,5-Tribromoimidazole and 2,4-dinitrophenol may show unusual radiosensitizing activity because of interference with oxidative phosphorylation. Attempts to influence radiosensitivity by compounds potentially capable of depleting intracellular sulphydryls are also described.

  5. Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo.

    PubMed

    Abe, Riichiro; Shimizu, Tadamichi; Yamagishi, Sho-Ichi; Shibaki, Akihiko; Amano, Shinjiro; Inagaki, Yosuke; Watanabe, Hirokazu; Sugawara, Hiroshi; Nakamura, Hideki; Takeuchi, Masayoshi; Imaizumi, Tsutomu; Shimizu, Hiroshi

    2004-04-01

    Pigment epithelium-derived factor (PEDF) has recently been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, and is involved in the pathogenesis of angiogenic eye disease such as proliferative diabetic retinopathy. However, a functional role for PEDF in tumor growth and angiogenesis remains to be determined. In this study, we have investigated both the in vitro and in vivo growth characteristics of human malignant melanoma G361 cell lines, stably transfected to overexpress human PEDF. Expression levels of PEDF proteins in melanoma cell lines G361 and A375 were comparable with that of human cultured melanocytes, whereas vascular endothelial growth factor levels in two tumor cell lines were much stronger than that in normal melanocytes. Overexpression of PEDF was found to significantly inhibit tumor growth and vessel formation in G361 nude mice xenografts. Furthermore, in vitro proliferation rates of G361 cells were decreased in PEDF-transfected cells. PEDF proteins showed dose-dependent induced growth retardation and apoptotic cell death in nontransfected G361 cells, which were completely prevented by treatment with antibodies against the Fas ligand. Our present study highlights two beneficial effects of PEDF treatment on melanoma growth and expansion; one is the suppression of tumor angiogenesis, and the other is induction of Fas ligand-dependent apoptosis in tumor cells. PEDF therefore might be a promising novel therapeutic agent for treatment of patients with melanoma. PMID:15039211

  6. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L. (Health Sciences Center, State Univ. of New York at Stony Brook, Stony Brook, NY (US))

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignant melanoma by fast neutrons.

  7. An in vitro inhibition of human malignant cell growth of crude water extract of cassava (Manihot esculenta Crantz) and commercial linamarin

    Microsoft Academic Search

    Umar F. Yusuf; Fakhru' l-Razi Ahmadun; Rozita Rosli; Sunny E. Iyuke; Nashiru Billa; Nasir Umar-Tsafe

    Yusuf, U.F., Fakhru'l-Razi, A., Rosli, R., Iyuke, S.E., Billa, N., Abdullah, N. and Umar-Tsafe, N. An in vitro inhibition of human malignant cell growth of crude water extract of cassava (Manihot esculenta Crantz) and commercial linamarin

  8. Antibody-based therapeutics for the treatment of human B cell malignancies.

    PubMed

    Baskar, Sivasubramanian; Muthusamy, Natarajan

    2013-02-01

    The dynamic expression of various phenotypic markers during B cell development not only defines the particular stage in ontogeny but also provides the necessary growth, differentiation, maturation and survival signals. When a B cell at any given stage becomes cancerous, these cell surface molecules, intracellular signaling molecules, and the over-expressed gene products become favorite targets for potential therapeutic intervention. Various adaptive and adoptive immunotherapeutic approaches induce T cell and antibody responses against cancer cells, and successful remission leading to minimal residual disease has been obtained. Nonetheless, subsequent relapse and development of resistant clones prompted further development and several novel strategies are evolving. Engineered monoclonal antibodies with high affinity and specificity to target antigens have been developed and used either alone or in combination with chemotherapeutic drugs. They are also used as vehicles to deliver cytotoxic drugs, toxins, or radionuclides that are either directly conjugated or encapsulated in liposomal vesicles. Likewise, genetically engineered T cells bearing chimeric antigen receptors are used to redirect cytotoxicity to antigen-positive target cells. This review describes recent advancements in some of these adoptive immunotherapeutic strategies targeting B cell malignancies. PMID:23229130

  9. Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells

    Microsoft Academic Search

    Bernd Hubner; Corinna Löhning; Robert Rauchenberger; Silke Reiffert; Elisabeth Thomassen-Wolf; Stefan Zahn; Sigmar Leyer; Eva M. Schier; Angelika Zahradnik; Christoph Brunner; Kurt Lobenwein; Benno Rattel; Michael Stanglmaier; Michael Hallek; Mark Wing; Steve Anderson; Matt Dunn; Titus Kretzschmar; Michael Tesar; Zoltan A. Nagy

    2002-01-01

    The Human Combinatorial Antibody Library (HuCAL) was screened for antibodies specific to human leukocyte antigen-DR (HLA-DR) that induce programmed death of lymphoma\\/leukemia cells expressing the target antigen. The active Fab fragments were affinity-matured, and engineered to IgG4 antibodies of sub-nanomolar affinity. The antibodies exhibited potent in vitro tumoricidal activity on several lymphoma and leukemia cell lines and on chronic lymphocytic

  10. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay [Columbia University] [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.

  11. Efficacy of Post Operative Adjuvant Therapy with Human Interferon Beta, MCNU and Radiation (IMR) for Malignant Glioma: Comparison Among Three Protocols

    Microsoft Academic Search

    N. Hatano; T. Wakabayashi; Y. Kajita; M. Mizuno; T. Ohno; N. Nakayashiki; A. Takemura; J. Yoshida

    2000-01-01

    Summary  ?In order to develop ultimate adjuvant therapy for malignant gliomas, we analysed 77 patients with malignant gliomas (29 anaplastic\\u000a astrocytomas (AAs) and 48 glioblastoma multiformes (GMs)) treated by three protocols of IMR therapy (human interferon-beta\\u000a (HuIFN-?), MCNU and radiation).\\u000a \\u000a ?In protocol 1 (n=45: AA=13, GM=32), 1 ×106 IU of HuIFN-? was administrated intravenously once a day for 7 days. On

  12. Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging

    PubMed Central

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n?=?10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed to improve the visibility of photoacoustic signals emitted from deeply-located lesions. PMID:25379674

  13. Wnt7A is a putative prognostic and chemosensitivity marker in human malignant pleural mesothelioma

    PubMed Central

    HIRATA, TOMOMI; ZHENG, QINGFENG; CHEN, ZHAO; KINOSHITA, HIROYASU; OKAMOTO, JUNICHI; KRATZ, JOHANNES; LI, HUI; LUI, NATALIE; DO, HANH; CHENG, TIFFANY; TSENG, HSIN-HUI KATTY; KOIZUMI, KIYOSHI; SHIMIZU, KAZUO; ZHOU, HAI-MENG; JABLONS, DAVID; HE, BIAO

    2015-01-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive tumor that has a poor prognosis, limited treatment options, and a worldwide incidence that is expected to increase in the next decade. We evaluated Wnt7A expression in 50 surgically resected tumor specimens using quantitative PCR. The expression values, were assessed by clinicopathological factors and K-M and Cox’s regression with OS. The mean level of Wnt7A expression had a significant correlation with International Mesothelioma Interest Group (IMIG) stage (P<0.034), gender, smoking history and ethnicity, respectively (P=0.020, P=0.014, P=0.039). In the univariate analysis, low Wnt7A expression was a significant negative factor for overall survival (P=0.043, HR=2.30). However, multivariate Cox’s regression revealed no significant factors for overall survival (low Wnt7A: P=0.051, HR=2.283; non-epithelioid subtype: P=0.050, HR=2.898). In patients with epithelioid tumors, those with low Wnt7A expression had significantly worse prognosis (P=0.019, HR=2.98). In patients with epithelioid tumors, females had significantly better prognosis than males (P=0.035). In patients who did not have neoadjuvant chemotherapy, prognosis was significantly more favorable for patients with high Wnt7A expression than for those with low Wnt7A expression (P=0.031). Among the patients with low Wnt7A-expressing tumors, those who received neoadjuvant chemotherapy had better prognosis than those who did not (P=0.024). The results of our study suggest that Wnt7A expression is a putative prognostic factor and a predictor of chemosensitivity. PMID:25632963

  14. Neovibsanin B inhibits human malignant brain tumor cell line proliferation and induces apoptosis

    PubMed Central

    Cui, Yi-Fen; Yuan, Xiao-Lin; Fan, Wen-Hai; Li, Sheng-Fan; Deng, Yu-Qin; Zhang, Qing; Zhang, Chun-lei; Yang, Zhen

    2015-01-01

    The present study was designed to examine the effect of neovibsanin B on glioma cell viability, apoptosis and on the survival time in mice bearing tumor xenografts. The results demonstrated that neovibsanin B significantly reduced the cell viability of GL261-NS and GL261-AC cells in a dose-dependent manner. However the inhibition of proliferation was more significant in GL261-NS cells. The IC50 value of neovibsanin B against GL261-NS and GL261-AC cells is 5 and 25 nM, respectively. The inhibitory effect of neovibsanin B on cell growth was more effective than that of vincristine (VCR) (P < 0.05). We also observed a significant decrease in sphere-forming ability of GL261-NS cells on treatment with neovibsanin B. The number of colonies formed by GL261-NS cells on treatment with neovibsanin B, VCR and DMSO were 3.34 ± 1.02, 12.53 ± 3.46 and 61.34 ± 9.89% respectively after 7 days. The flow cytometry revealed a marked increase in apoptotic cell death of GL261-NS cells on treatment with neovibsanin B. The western blots showed a significant decrease in the level of activated caspase-3 on treatment with neovibsanin B after 24 h. In addition, neovibsanin B increased the median survival time of glioma-bearing mice (P < 0.05). Therefore, neovibsanin B effectively inhibits glioma cell viability by inducing apoptosis, and can be a potent therapeutic agent for the treatment of malignant glioma.

  15. Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate

    PubMed Central

    Chung, Ivy; Montecinos, Viviana P.; Buttyan, Ralph; Johnson, Candace S.; Smith, Gary J.

    2013-01-01

    Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182–1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous “antiangiogenic” agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients. PMID:23548616

  16. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    SciTech Connect

    Li Hongzhen [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); Zhou Jianjun [Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892 (United States); Miki, Jun [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); Furusato, Bungo [Department of Genitourinary Pathology, Armed Forces Institutes of Pathology, Washington, DC 20307 (United States); Gu Yongpeng; Srivastava, Shiv; McLeod, David G. [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); Vogel, Jonathan C. [Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892 (United States); Rhim, Johng S. [Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States)], E-mail: jrhim@cpdr.org

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.

  17. DOC45, a novel DNA damage-regulated nucleocytoplasmic ATPase that is overexpressed in multiple human malignancies.

    PubMed

    Sun, Hong; Luo, Xiuquan; Montalbano, JoAnne; Jin, Weixin; Shi, Jingxue; Sheikh, M Saeed; Huang, Ying

    2010-01-01

    In this article, we report the characterization of a novel DNA damage-regulated gene, named DNA damage-regulated overexpressed in cancer 45 (DOC45). Our results indicate that DNA damage-inducing agents, including doxorubicin (adriamycin), etoposide, and ionizing and UV radiation, strongly downregulate DOC45 expression, whereas endoplasmic reticulum stress-inducing agents do not. Our results also indicate that DOC45 is overexpressed in several human malignancies, including cancers of the colon, rectum, ovary, lung, stomach, and uterus. DOC45 harbors conserved nucleotide triphosphate-binding motifs and is capable of ATP hydrolysis, findings that highlight its function as a novel ATPase. Although predominantly cytoplasmic, DOC45 exhibits a characteristic nucleocytoplasmic distribution and, on inhibition of nuclear export, predominantly accumulates in the nucleoli. These results suggest that DOC45 may shuttle between nucleus and cytoplasm to carry out its function. Our results also indicate that DOC45 expression is enhanced during oncogenic Ras-mediated transformation and that its expression is linked to phosphoinositide 3-kinase signaling pathway. Furthermore, short hairpin RNA-mediated knockdown of DOC45 in human colon cancer cells inhibits their proliferation and enhances cellular sensitivity to doxorubicin-induced cell death, suggesting that DOC45 plays an important role in cell proliferation and survival. Collectively, our results indicate that DOC45 is a novel ATPase that is linked to cellular stress response and tumorigenesis, and may also serve as a valuable tumor marker. PMID:20053727

  18. Esculetin, a Coumarin Derivative, Exhibits Anti-proliferative and Pro-apoptotic Activity in G361 Human Malignant Melanoma

    PubMed Central

    Jeon, Young-Joo; Jang, Jeong-Yun; Shim, Jung-Hyun; Myung, Pyung Keun; Chae, Jung-Il

    2015-01-01

    Background: Although esculetin, a coumarin compound, is known to induce apoptosis in human cancer cells, the effects and molecular mechanisms on the apoptosis in human malignant melanoma (HMM) cells are not well understood yet. In this study, we investigated the anti-proliferative effects of esculetin on the G361 HMM cells. Methods: We analyzed the anti-proliferative effects and molecular mechanisms of esculetin on G361 cells by a 3-(4,5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, 4?,6-diamidino-2-phenylindole staining and Western blotting. Results: Esculetin exhibited significant anti-proliferative effects on the HMM cells in a dose-dependent manner. Interestingly, we found that esculetin induced nuclear shrinkage and fragmentation, typical apoptosis markers, by suppression of Sp1 transcription factor (Sp1). Notably, esculetin modulated Sp1 downstream target genes including p27, p21 and cyclin D1, resulted in activation of apoptosis signaling molecules such as caspase-3 and PARP in G361 HMM cells. Conclusions: Our results clearly demonstrated that esculetin induced apoptosis in the HMM cells by downregulating Sp1 protein levels. Thus, we suggest that esculetin may be a potential anti-proliferative agent that induces apoptotic cell death in G361 HMM cells.

  19. T24 human bladder carcinoma cells with activated Ha-ras protooncogene: Nontumorigenic cells susceptible to malignant transformation with carcinogen

    SciTech Connect

    Senger, D.R.; Perruzzi, C.A.; Ali, I.U. (Harvard Medical School, Boston, MA (USA))

    1988-07-01

    A comparative analysis of T24 human bladder carcinoma cells and N-methyl-N{prime}-nitro-N-nitrosoguanidine (MeNNG)-transformed derivatives (MeNNG-T24) revealed the following: (i) The presence of an activated c-Ha-ras gene (in the absence of the normal allele) is sufficient to confer upon T24 cells a tumor-associated phenotype. (ii) MeNNG-transformed T24 cells not only acquire tumor-associated (in vitro) traits (growth in soft agar and rhodamine retention) but, are highly tumorigenic in nude mice. (iii) It is possible to render T24 cells tumorigenic by chemical transformation; therefore, the reason that T24 cells lack tumorigenicity is not because of possible incompatibilities between these cells and nude mice but, in fact, because T24 cells are not malignant. (iv) The loss of expression of a transformation-related M{sub r} 67,000 phosphoprotein by MeNNG-T24 cells after explanation of these cells from nude mouse tumors to in vitro culture indicates that culture conditions can be responsible for rapid phenotypic conversion of human tumor cell lines.

  20. Repair of chromosome damage induced by X-irradiation during G/sub 2/ phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R. (Howard Univ. College of Medicine, Washington, DC); Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G/sub 2/ phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or ..beta..-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G/sub 2/ phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H/sub 2/O/sub 2/, or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G/sub 2/ phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  1. The human Bosniak model applied to a cat with renal cystadenoma. A classification to differentiate benign and malignant cystic renal masses via computed tomography and ultrasound.

    PubMed

    Baloi, P; Del Chicca, F; Ruetten, M; Gerber, B

    2015-01-01

    A 13-year-old domestic shorthair cat was presented with weight loss and azotemia. Abdominal ultrasound revealed a large cystic space- occupying lesion with multiple septae in the left kidney. A core needle biopsy yielded a renal cystadenoma originating from the epithelial cells. This report describes the clinical, ultrasonographic and computed tomographic features and the growth progression of a renal cystadenoma. We describe the first attempt to apply the human Bosniak classification to a cat with renal cystic neoplasia to differentiate between benign and malignant lesions. Cystadenoma should be a differential diagnosis in cases of renal cystic space-occupying lesions. Other differentials, imaging features to differentiate benign and malignant lesions and the risk of malignant transformation will be discussed. PMID:25599531

  2. Association of human papillomavirus with malignant and premalignant lesions of the uterine endometrium

    Microsoft Academic Search

    Masami Fujita; Kenneth R Shroyer; N. E Markham; Masaki Inoue; Seiichi Iwamoto; Satoru Kyo; Takayuki Enomoto

    1995-01-01

    The possible association of human papillomavirus (HPV) with endometrial hyperplasia and endometrial adenocarcinoma was investigated. DNA from frozen tissues of 30 endometrioid carcinomas of Japanese patients was tested for HPV DNA by Southern blot hybridization analysis. Screening with HPV type 58 probe under low stringency conditions showed the presence of HPV DNA in two of 30 endometrioid carcinomas. High stringency

  3. Monoclonal Antibody to HER2\\/neuReceptor Modulates Repair of Radiation induced DNA Damage and Enhances Radiosensitivity of Human Breast Cancer Cells Overexpressing This Oncogene1

    Microsoft Academic Search

    Richard J. Pietras; Joseph C. Poen; David Gallardo; P. Nancy Wongvipat; H. Julie Lee; Dennis J. Slamon

    1999-01-01

    The management of human breast cancer frequently includes radiation therapy as an important intervention, and improvement in the clinical efficacy of radiation is desirable. Overexpression of the HER-2 growth factor receptor occurs in 25-30% of human breast cancers and correlates with poor clinical outcome, including earlier local relapse following con- servative surgery accompanied by radiation therapy. In breast cancer cells

  4. Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSVtk gene.

    PubMed

    Asklund, Thomas; Appelskog, Ioulia B; Ammerpohl, Ole; Langmoen, Iver A; Dilber, M Sirac; Aints, Alar; Ekström, Tomas J; Almqvist, Per M

    2003-04-01

    The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of alpha-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones. PMID:12651152

  5. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate.

    PubMed

    Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae

    2014-02-01

    Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300??m and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model. PMID:24296879

  6. ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition.

    PubMed

    Dote, Hideaki; Cerna, David; Burgan, William E; Camphausen, Kevin; Tofilon, Philip J

    2005-08-01

    The ability to identify tumors that are susceptible to a given molecularly targeted radiosensitizer would be of clinical benefit. Towards this end, we have investigated the effects of a representative Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17DMAG), on the radiosensitivity of a panel of human tumor cell lines. 17DMAG was previously shown to enhance the radiosensitivity of a number of human cell lines, which correlated with the loss of ErbB2. We now report on cell lines in which 17DMAG induced the degradation of ErbB2, yet had no effect on radiosensitivity. In a comparison of ErbB family members, ErbB3 protein was only detectable in cells resistant to 17DMAG-induced radiosensitization. To determine whether ErbB3 plays a casual role in this resistance, short interfering RNA (siRNA) was used to knockdown ErbB3 in the resistant cell line AsPC1. Whereas individual treatments with siRNA to ErbB3 or 17DMAG had no effect on radiosensitivity, the combination, which reduced both ErbB2 and ErbB3, resulted in a significant enhancement in AsPC1 radiosensitivity. In contrast to siRNA to ErbB3 or 17DMAG treatments only, AsPC1 cell exposure to the combination also resulted in a decrease in ErbB1 kinase activity. These results indicate that ErbB3 expression predicts for tumor cell susceptibility to and suggests that the loss of ErbB1 signaling activity is necessary for 17DMAG-induced radiosensitization. However, for cell lines sensitized by 17DMAG, treatment with siRNA to ErbB2, which reduced ErbB1 activity, had no effect on radiosensitivity. These results suggest that, whereas the loss of ErbB1 signaling may be necessary for 17DMAG-induced radiosensitization, it is not sufficient. PMID:16061682

  7. Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma

    Microsoft Academic Search

    Fajun Xie; Haibo Liu; Ying-Hui Zhu; Yan-Ru Qin; Yongdong Dai; Tingting Zeng; Leilei Chen; Changjun Nie; Hong Tang; Yan Li; Li Fu; Xin-Yuan Guan

    2011-01-01

    Background  By using cDNA microarray analysis, we identified a G protein-coupled receptor, GPR39, that is significantly up-regulated in ESCC. The aim of this study is to investigate the role of GPR39 in human esophageal\\u000a cancer development, and to examine the prevalence and clinical significance of GPR39 overexpression in ESCC.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  The mRNA expression level of GPR39 was analyzed in 9 ESCC cell

  8. Photodynamic Therapy with Photofrin Reduces Invasiveness of Malignant Human Glioma Cells

    Microsoft Academic Search

    F. Jiang; M. Chopp; M. Katakowski; K. K. Cho; X. Yang; N. Hochbaum; L. Tong; T. Mikkelsen

    2002-01-01

    .\\u000a \\u000a In this study we investigated the influence of Photofrin-based photodynamic therapy (PDT) on the migration of two human glioma\\u000a cell lines in vitro. U87 and U25ln tumour cells were treated with Photofrin at various doses and subjected to a fixed optical\\u000a (632?nm) dose of 100?mJ\\/cm2. Photofrin cytotoxicity was determined using MTT and colony forming assays. Using a matrigel artificial

  9. Distinct Host Cell Fates for Human Malignant Melanoma Targeted by Oncolytic Rodent Parvoviruses

    PubMed Central

    Vollmers, Ellen M.; Tattersall, Peter

    2013-01-01

    The rodent parvoviruses are known to be oncoselective, and lytically infect many transformed human cells. Because current therapeutic regimens for metastatic melanoma have a low response rates and have little effect on improving survival, this disease is a prime candidate for novel approaches to therapy, including oncolytic parvoviruses. Screening of low-passage, patient-derived melanoma cell lines for multiplicity-dependent killing by a panel of five rodent parvoviruses, identified LuIII as the most melanoma-lytic. This property was mapped to the LuIII capsid gene, and an efficiently melanomatropic chimeric virus shown to undergo three types of interaction with primary human melanoma cells: 1) complete lysis of cultures infected at very low multiplicities; 2) acute killing resulting from viral protein synthesis and DNA replication, without concomitant expansion of the infection, due to failure to export progeny virions efficiently; or 3) complete resistance that operates at an intracellular step following virion uptake, but preceding viral transcription. PMID:24074565

  10. Telomerase activity is frequently found in metaplastic and malignant human nasopharyngeal tissues

    PubMed Central

    Chang, J T-C; Liao, C-T; Jung, S-M; Wang, T-C V; See, L-C; Cheng, A-J

    2000-01-01

    Telomerase is a specialized ribonucleoprotein polymerase that directs the synthesis of telomere repeats at chromosome ends. Accumulating evidence has indicated that telomerase is stringently repressed in normal human somatic tissues but reactivated in cancers and immortal cells, suggesting that reactivation of telomerase plays an important role in carcinogenesis. In this study, the status of telomerase activity in diseased human nasopharyngeal lesions was determined by the telomeric repeat amplification protocol (TRAP). Fifty-four patients participated including 17 inflammation or hyperplasia, eight with squamous metaplasia, and 29 with different stages of carcinomas. Telomerase activity was detected in 1 of 17 (5.9%) inflammatory or lymphoid hyperplastic tissues, 3 of 8 (37.5%) squamous metaplastic, and 25 of 29 (86.2%) carcinoma tissues. The differences in telomerase expression in these groups is statistically significant (P< 0.001). Levels of telomerase activity correlated with tumour stage (P= 0.024). These results suggest that telomerase reactivation plays a role in the carcinogenesis of nasopharyngeal cancer. Since telomerase activity is found in the majority of nasopharyngeal cancers and a subset of metaplasia, this enzyme may be served as a reference to monitoring the status of abnormal nasopharyngeal tissues. © 2000 Cancer Research Campaign PMID:10864202

  11. Human Malignant Melanoma-Derived Progestagen-Associated Endometrial Protein Immunosuppresses T Lymphocytes In Vitro

    PubMed Central

    Ren, Suping; Chai, Lina; Wang, Chunyan; Li, Changlan; Ren, Qiquan; Yang, Lihua; Wang, Fumei; Qiao, Zhixin; Li, Weijing; He, Min; Riker, Adam I.; Han, Ying; Yu, Qun

    2015-01-01

    Progestagen-associated endometrial protein (PAEP) is a glycoprotein of the lipocalin family that acts as a negative regulator of T cell receptor-mediated activation. However, the function of tumor-derived PAEP on the human immune system in the tumor microenvironment is unknown. PAEP is highly expressed in intermediate and thick primary melanomas (Breslow’s 2.5mm or greater) and metastatic melanomas, correlating with its expression in daughter cell lines established in vitro. The current study investigates the role of melanoma cell-secreted PAEP protein in regulating T cell function. Upon the enrichment of CD3+, CD4+ and CD8+ T cells from human peripheral blood mononuclear cells, each subset was then mixed with either melanoma-derived PAEP protein or PAEP-poor supernatant of gene-silenced tumor cells. IL-2 and IFN-? secretion of CD4+ T cells significantly decreased with the addition of PAEP-rich supernatant. And the addition of PAEP-positive cell supernatant to activated lymphocytes significantly inhibited lymphocyte proliferation and cytotoxic T cell activity, while increasing lymphocyte apoptosis. Our result suggests that melanoma cell-secreted PAEP protein immunosuppresses the activation, proliferation and cytotoxicity of T lymphocytes, which might partially explain the mechanism of immune tolerance induced by melanoma cells within the tumor microenvironment. PMID:25785839

  12. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won [Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Wen, Jing [Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lim, Jong-Baeck [Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Bang, Seung Min; Park, Seung Woo [Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Si Young, E-mail: sysong@yuhs.a [Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.

  13. Highly efficient tumor transduction and antitumor efficacy in experimental human malignant mesothelioma using replicating gibbon ape leukemia virus.

    PubMed

    Kubo, S; Takagi-Kimura, M; Logg, C R; Kasahara, N

    2013-12-01

    Retroviral replicating vectors (RRVs) have been shown to achieve efficient tumor transduction and enhanced therapeutic benefit in a wide variety of cancer models. Here we evaluated two different RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), in human malignant mesothelioma cells. In vitro, both RRVs expressing the green fluorescent protein gene efficiently replicated in most mesothelioma cell lines tested, but not in normal mesothelial cells. Notably, in ACC-MESO-1 mesothelioma cells that were not permissive for AMLV-RRV, the GALV-RRV could spread efficiently in culture and in mice with subcutaneous xenografts by in vivo fluorescence imaging. Next, GALV-RRV expressing the cytosine deaminase prodrug activator gene showed efficient killing of ACC-MESO-1 cells in a prodrug 5-fluorocytosine dose-dependent manner, compared with AMLV-RRV. GALV-RRV-mediated prodrug activator gene therapy achieved significant inhibition of subcutaneous ACC-MESO-1 tumor growth in nude mice. Quantitative reverse transcription PCR demonstrated that ACC-MESO-1 cells express higher PiT-1 (GALV receptor) and lower PiT-2 (AMLV receptor) compared with normal mesothelial cells and other mesothelioma cells, presumably accounting for the distinctive finding that GALV-RRV replicates much more robustly than AMLV-RRV in these cells. These data indicate the potential utility of GALV-RRV-mediated prodrug activator gene therapy in the treatment of mesothelioma. PMID:24201868

  14. Radiation-induced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells

    SciTech Connect

    Schmidt-Ullrich, R.K.; Valerie, K.; Fogleman, P.B.; Walters, J. [Virginia Commonwealth Univ., Richmond, VA (United States)

    1996-01-01

    In an effort to identify events initiating up-regulation of epidermal growth factor receptor after single and repeated radiation exposures, we investigated the role of epidermal growth factor receptor, a receptor protein tyrosine kinase, in radiation-induced signal transduction. Human malignant mammary, MCF-7, and squamous, A431, cells showed low baseline phospho-tyrosine levels of epidermal growth factor receptor, permitting reproducible dose-dependent stimulation of epidermal growth factor receptor autophosphorylation after exposure to epidermal growth factor. MCF-7 cells exhibited a mean 2.3-fold increase (95% confidence interval: 1.91, 2.65; P < 0.0001) in levels of epidermal growth factor phosphorylation in response to exposures of 2 Gy, which was substantially less than the epidermal growth factor receptor Y phosphorylation induced by epidermal growth factor. A quantitatively similar radiation response was seen in A431 cells. In the dose range of 1 to 4 Gy, no clear dose response was seen. There was a rapid induction of radiation-induced epidermal growth factor receptor Y phosphorylation, starting within 2 min, with maximum values between 0.5 and 5 min after radiation exposure followed by a slower decline to baseline levels after 20 min. The data presented identify the epidermal growth factor receptor protein tyrosine kinase associated with the plasma membrane as one target for ionizing radiation in the dose range used in radiotherapy. 20 refs., 4 figs.

  15. Dasatinib synergizes with JSI-124 to inhibit growth and migration and induce apoptosis of malignant human glioma cells

    PubMed Central

    Premkumar, Daniel R.; Jane, Esther P.; Agostino, Naomi R.; Scialabba, Joseph L.; Pollack, Ian F.

    2010-01-01

    Background: Src family kinases (SFK) collectively regulate a variety of cellular functions in many cancer types, including proliferation, invasion, motility, survival, differentiation, and angiogenesis. Although Dasatinib (BMS-354825), an ATP-competitive, small molecule tyrosine kinase inhibitor, suppresses the activity of SFKs at nanomolar concentrations, IC50 values for antiproliferative effects in glioma cell lines were well above the clinically achievable range, suggesting the need to interfere with other components of receptor-induced downstream signaling in order to achieve an optimal therapeutic effect. Materials and Methods: The cytotoxic effects of combining Src and STAT3 inhibition on glioma cell lines were evaluated using assays to measure cell proliferation, apoptosis and migration. Western blotting and immunocytochemistry was used to monitor its effects on cell signaling and morphology. Results: Silencing Src and STAT3 expression each partially inhibited cell proliferation and migration. In addition, JSI-124 significantly enhanced the efficacy of dasatinib in vitro. Combination of dasatinib and JSI-124 achieved significant inhibition of migration in all cell lines, which correlated with the inhibition of Src and downstream mediators of adhesion (e.g. focal adhesion kinase). Cells exposed to dasatinib and JSI-124 exhibited morphological changes that were consistent with an upstream role for Src in regulating focal adhesion complexes. Conclusions: Targeting the Src and STAT pathways may contribute to the treatment of cancers that demonstrate increased levels of these signaling mediators, including malignant human glioma. Clinical studies in these tumor types are warranted. PMID:20808823

  16. Multiple dispersed spontaneous mutations: a novel pathway of mutation in a malignant human cell line.

    PubMed Central

    Harwood, J; Tachibana, A; Meuth, M

    1991-01-01

    We analyzed the nature of spontaneous mutations at the autosomal locus coding for adenine phosphoribosyltransferase in the human colorectal carcinoma cell line SW620 to establish whether distinctive mutational pathways exist that might underlie the more complex genome rearrangements arising in tumor cells. Point mutations occur at a low rate in aprt hemizygotes derived from SW620, largely as a result of base substitutions at G.C base pairs to yield transversions and transitions. However, a novel pathway is evident in the form of multiple dispersed mutations in which two errors, separated by as much as 1,800 bp, fall in the same mutant gene. Such mutations could be the result of error-prone DNA synthesis occurring during normal replication or during long-patch excision-repair of spontaneously arising DNA lesions. This process could also contribute to the chromosomal instability evident in these tumor cells. Images PMID:2038324

  17. Characterization of 17beta-hydroxysteroid dehydrogenase isoenzyme expression in benign and malignant human prostate.

    PubMed

    Elo, J P; Akinola, L A; Poutanen, M; Vihko, P; Kyllönen, A P; Lukkarinen, O; Vihko, R

    1996-03-28

    In the present study, expressions of 17beta-hydroxysteroid dehydrogenase (17HSD) types 1, 2, and 3, 5alpha-reductase type 2 and human androgen receptor mRNAs were determined in 12 benign prostatic hyperplasia and 17 prostatic carcinoma specimens. 17HSD type 2 was found to be the principle isoenzyme expressed in the prostate. Significantly higher expressions of 17HSD type 2 and 5alpha-reductase type 2 were detected in benign prostatic hyperplasia compared with the carcinoma specimens. Expression of the androgen receptor in the 2 groups was not significantly different. 17HSD type 3 mRNA was not detected in any of the specimens investigated. Only low constructive expression of the 2.3 kb mRNA of 17HSD type 1 was seen. Immunohistochemical analysis indicated that this did not lead to significant enzyme expression, only faint staining for the enzyme protein being detected, mainly in uroepithelial cells. No significant correlation was found between any of the mRNAs analysed, but the data on 5alpha-reductase type 2 mRNA support the presence of an increased proportion of 5alpha-dihydrotesterone in the hyperplastic prostate. In cultured PC-3 prostatic cancer cells and in the transiently transfected human embryonic kidney 293 cells, 17HSD type 2 was found exclusively to convert 5alpha-dihydrotestosterone and testosterone into the less potent 17-keto compounds 5alpha-androstanedione and 4-androstenedione, respectively. We suggest that the 17HSD type 2 isoenzyme plays a part in the metabolic pathway, resulting in the inactivation of testosterone and 5alpha-dihydrotestosterone locally in the prostate. The enzyme expressed in the prostate could, therefore, protect cells from excessive androgen action. PMID:8608963

  18. Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity.

    PubMed

    Russell, Jeffery S; Brady, Kristin; Burgan, William E; Cerra, Michael A; Oswald, Kelli A; Camphausen, Kevin; Tofilon, Philip J

    2003-11-01

    Rad51 is an essential component of the homologous DNA repair pathway and has been implicated as a determinant of cellular radiosensitivity. Gleevec is a relatively specific inhibitor of c-Abl, a tyrosine kinase that can play a role in the regulation Rad51. The aim of this study was to determine the effects of Gleevec on Rad51 levels and the radiosensitivity of two human glioma cell lines and a nonimmortalized normal human fibroblast cell line. Exposure of both glioma cell lines to radiation resulted in an increase in Rad51 expression; Gleevec treatment alone reduced Rad51 expression. When glioma cells were pretreated with Gleevec, radiation-induced Rad51 expression and nuclear foci formation were reduced. Accordingly, pretreatment of the glioma cells with Gleevec resulted in an enhancement in their radiosensitivity. These data indicate that Gleevec enhances radiation-induced tumor cell killing and suggest that the mechanism involves the reduction in Rad51 levels. In contrast to the glioma cell lines, radiation or Gleevec treatments had no effect on Rad51 expression or foci formation in the normal fibroblast cells. Consistent with these observations, Gleevec did not modify the radiosensitivity of the normal cell line. These results suggest that Rad51 expression is subject to different regulatory processes in the glioma and normal cell lines and further suggest that Rad51 may be an appropriate target for selectively enhancing the radiosensitivity of brain tumor cells. PMID:14612536

  19. Radiosensitization produced in vivo by once- vs. twice-weekly 2?2?-difluoro-2?-deoxycytidine (gemcitabine)

    Microsoft Academic Search

    Marc T Fields; Avraham Eisbruch; Daniel Normolle; Anas Orfali; Mary A Davis; Anthony T Pu; Theodore S Lawrence

    2000-01-01

    Purpose: Gemcitabine (2?2?-difluoro-2?-deoxycytidine, dFdCyd) is a potent radiosensitizer of rodent and human tumor cells. Our Phase I clinical trial using once-weekly dFdCyd as a radiosensitizer in the treatment of patients with Stage IV squamous cell head and neck cancer has produced a high rate of tumor response and significant normal mucosal toxicity. These findings raised the question of whether we

  20. Expression of the wt1 Wilms' tumor gene by normal and malignant human melanocytes.

    PubMed

    Rodeck, U; Bossler, A; Kari, C; Humphreys, C W; Györfi, T; Maurer, J; Thiel, E; Menssen, H D

    1994-10-01

    We report expression of the wt1 (Wilms' tumor) gene by cultured human melanoma cells. Using RNA polymerase chain reaction analysis, wt1 transcripts were detected in 7 of 9 melanoma cell lines but not in 5 normal melanocyte strains. In Northern blot analysis, steady-state wt1 mRNA levels were found in 2 of 4 melanoma lines but not in normal melanocytes. Sequence analysis of the wt1 cDNA expressed by melanoma cell line WM 902-B revealed the presence of 4 previously published splice variants but no evidence for mutations in the coding region. Previous work has shown that WT1 modulates transcription after binding to the early growth response (EGR)-1 sites present in the platelet-derived growth factor (PDGF)-A chain promoter; the PDGF-A chain gene is known to be expressed by various melanoma cell lines. Based on these findings, we studied the relationship of wt1 and PDGF-A chain gene expression in melanoma cell lines. Co-expression of the wt1 and the PDGF-A chain genes was observed in 2 melanoma cell lines with mutated p53 but not in 2 melanoma cell lines with wild-type p53; this result is consistent with a previous report showing that, in the context of absent or mutated p53, WT1 acts as a transcriptional activator, whereas in the presence of wild-type p53 it acts as a repressor. PMID:7927908

  1. New pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells.

    PubMed

    Netto, Chaquip D; da Silva, Alcides J M; Salustiano, Eduardo J S; Bacelar, Thiago S; Riça, Ingred G; Cavalcante, Moises C M; Rumjanek, Vivian M; Costa, Paulo R R

    2010-02-15

    A new pterocarpanquinone (5a) was synthesized through a palladium catalyzed oxyarylation reaction and was transformed, through electrophilic substitution reaction, into derivatives 5b-d. These compounds showed to be active against human leukemic cell lines and human lung cancer cell lines. Even multidrug resistant cells were sensitive to 5a, which presented low toxicity toward peripheral blood mononuclear cells (PBMC) cells and decreased the production of TNF-alpha by these cells. In the laboratory these pterocarpanquinones were reduced by sodium dithionite in the presence of thiophenol at physiological pH, as NAD(P)H quinone oxidoredutase-1 (NQO1) catalyzed two-electron reduction, and the resulting hydroquinone undergo structural rearrangements, leading to the formation of Michael acceptors, which were intercepted as adducts of thiophenol. These results suggest that these compounds could be activated by bioreduction. PMID:20117936

  2. Divalent Cations Control Cell-Substrate Adhesion and Laminin Expression in Normal and Malignant Human Melanocytes in Early and Late Stages of Cellular Differentiation

    Microsoft Academic Search

    Gordon E. Searles; Walter T. Dixon; Panakkezhum D. Thomas; Kowichi Jimbow

    1995-01-01

    Integrins are a class of adhesion molecules that depends on divalent cations for proper function. This study examined whether human normal melanocytes and malignant (metastatic) melanocytes with early and late stages of cellular differentiation (G361 and SK-MEL-23, respectively) would differ in integrin-mediated adhesion to fibronectin, laminin, as well as collagens type I and type IV, and whether divalent cations could

  3. Local interstitial delivery of z-butylidenephthalide by polymer wafers against malignant human gliomas

    PubMed Central

    Harn, Horng-Jyh; Lin, Shinn-Zong; Lin, Po-Cheng; Liu, Cyong-Yue; Liu, Po-Yen; Chang, Li-Fu; Yen, Ssu-Yin; Hsieh, Dean-Kuo; Liu, Fu-Chen; Tai, Dar-Fu; Chiou, Tzyy-Wen

    2011-01-01

    We have shown that the natural compound z-butylidenephthalide (Bdph), isolated from the chloroform extract of Angelica sinensis, has antitumor effects. Because of the limitation of the blood-brain barrier, the Bdph dosage required for treatment of glioma is relatively high. To solve this problem, we developed a local-release system with Bdph incorporated into a biodegradable polyanhydride material, p(CPP-SA; Bdph-Wafer), and investigated its antitumor effects. On the basis of in vitro release kinetics, we demonstrated that the Bdph-Wafer released 50% of the available Bdph by the sixth day, and the release reached a plateau phase (90% of Bdph) by the 30th day. To investigate the in situ antitumor effects of the Bdph-Wafer on glioblastoma multiforme (GBM), we used 2 xenograft animal models—F344 rats (for rat GBM) and nude mice (for human GBM)—which were injected with RG2 and DBTRG-05MG cells, respectively, for tumor formation and subsequently treated subcutaneously with Bdph-Wafers. We observed a significant inhibitory effect on tumor growth, with no significant adverse effects on the rodents. Moreover, we demonstrated that the antitumor effect of Bdph on RG2 cells was via the PKC pathway, which upregulated Nurr77 and promoted its translocation from the nucleus to the cytoplasm. Finally, to study the effect of the interstitial administration of Bdph in cranial brain tumor, Bdph-Wafers were surgically placed in FGF-SV40 transgenic mice. Our Bdph-Wafer significantly reduced tumor size in a dose-dependent manner. In summary, our study showed that p(CPP-SA) containing Bdph delivered a sufficient concentration of Bdph to the tumor site and effectively inhibited the tumor growth in the glioma. PMID:21565841

  4. Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection.

    PubMed

    Pinzone, Marilia Rita; Berretta, Massimiliano; Cacopardo, Bruno; Nunnari, Giuseppe

    2015-04-01

    The human gammaherpesvirus family includes Epstein-Barr virus (EBV) and human herpesvirus (HHV)-8, also known as Kaposi sarcoma-associated herpesvirus (KSHV). In human immunodeficiency virus (HIV)-infected patients, both EBV and KSHV have been implicated in the development of a wide range of tumors. KSHV-associated diseases include Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). EBV has been associated with the development of several malignancies, including Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). The introduction of highly active antiretroviral therapy (HAART) has dramatically modified the natural history of HIV infection, causing a decline in the incidence of acquired immunodeficiency syndrome (AIDS)-defining malignancies, including KS. However, it has had a less favorable impact on EBV-related malignancies and NHLs remain the most common tumors in the HAART era. In this review, we briefly summarize the pathogenesis, epidemiology, clinical features, and therapeutic approach to EBV- and KSHV-associated tumors in the setting of HIV infection. PMID:25843730

  5. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    SciTech Connect

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)] [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States)] [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-{kappa}B), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  6. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Mercapide, Javier; Anzanello, Fabio [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Le, Thuc T. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Johlfs, Mary G. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Fiscus, Ronald R. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Wilsch-Bräuninger, Michaela [Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden (Germany); Corbeil, Denis [Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Tatzberg 47–49, 01307 Dresden, Germany Technische Universitat Dresden, Dresden (Germany); Lorico, Aurelio, E-mail: alorico@roseman.edu [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States)

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ?40 nm; intermediates ?40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ? First report of release of prominin-1–containing microvesicles from cancer cells. ? Pro-metastatic role of prominin-1–containing microvesicles in FEMX-I melanoma. ? Down-regulation of prominin-1 results in decreased nuclear localization of ?-catenin. ? Wnt signaling as mediator of the pro-metastatic activity of prominin-1.

  7. A Gene Expression Model of Intrinsic Tumor Radiosensitivity: Prediction of Response and Prognosis After Chemoradiation

    SciTech Connect

    Eschrich, Steven A. [H Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Pramana, Jimmy [Netherlands Cancer Institute, Amsterdam (Netherlands); Zhang Hongling; Zhao Haiyan; Boulware, David; Lee, Ji-Hyun; Bloom, Gregory [H Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Rocha-Lima, Caio [Department of Medicine, University of Miami, Miami, FL (United States); Kelley, Scott; Calvin, Douglas P.; Yeatman, Timothy J. [H Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Begg, Adrian C. [Netherlands Cancer Institute, Amsterdam (Netherlands); Torres-Roca, Javier F. [H Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States)], E-mail: Javier.Torresroca@moffitt.org

    2009-10-01

    Purpose: Development of a radiosensitivity predictive assay is a central goal of radiation oncology. We reasoned a gene expression model could be developed to predict intrinsic radiosensitivity and treatment response in patients. Methods and Materials: Radiosensitivity (determined by survival fraction at 2 Gy) was modeled as a function of gene expression, tissue of origin, ras status (mut/wt), and p53 status (mut/wt) in 48 human cancer cell lines. Ten genes were identified and used to build a rank-based linear regression algorithm to predict an intrinsic radiosensitivity index (RSI, high index = radioresistance). This model was applied to three independent cohorts treated with concurrent chemoradiation: head-and-neck cancer (HNC, n = 92); rectal cancer (n = 14); and esophageal cancer (n = 12). Results: Predicted RSI was significantly different in responders (R) vs. nonresponders (NR) in the rectal (RSI R vs. NR 0.32 vs. 0.46, p = 0.03), esophageal (RSI R vs. NR 0.37 vs. 0.50, p = 0.05) and combined rectal/esophageal (RSI R vs. NR 0.34 vs. 0.48, p = 0.001511) cohorts. Using a threshold RSI of 0.46, the model has a sensitivity of 80%, specificity of 82%, and positive predictive value of 86%. Finally, we evaluated the model as a prognostic marker in HNC. There was an improved 2-year locoregional control (LRC) in the predicted radiosensitive group (2-year LRC 86% vs. 61%, p = 0.05). Conclusions: We validate a robust multigene expression model of intrinsic tumor radiosensitivity in three independent cohorts totaling 118 patients. To our knowledge, this is the first time that a systems biology-based radiosensitivity model is validated in multiple independent clinical datasets.

  8. Immunohistochemical expression of the glucose transporters Glut1 and Glut3 in human malignant melanomas and benign melanocytic lesions

    Microsoft Academic Search

    Paola Parente; Antonella Coli; Guido Massi; Antonella Mangoni; Manuela M Fabrizi; Giulio Bigotti

    2008-01-01

    BACKGROUND: Reported data indicate that cancer cells have increased rates of glucose metabolism, as determined by 18FDG-PET imaging in patients with malignancies. The results of many studies have demonstrated that the expression of glucose transporters, especially Glut-1, is increased in a variety of malignancies. This study was undertaken to assess the differential expression of Glut-1 and Glut-3 by benign and

  9. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    Microsoft Academic Search

    Yuichiro Ohshima; Ichiro Yajima; Kozue Takeda; Machiko Iida; Mayuko Kumasaka; Yoshinari Matsumoto; Masashi Kato; Benjamin Edward Rich

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor

  10. Persistence of Human Papillomavirus DNA in Benign and (Pre)malignant Skin Lesions from Renal Transplant Recipients

    PubMed Central

    Berkhout, Ron J. M.; Bouwes Bavinck, Jan N.; ter Schegget, Jan

    2000-01-01

    An extremely diverse group of human papillomavirus (HPV) types consisting of epidermodysplasia verruciformis (EV)-associated HPV types and other cutaneous HPV types (e.g., HPV types 2 and 3) is associated with nonmelanoma cancers and benign lesions of the skin. The frequent presence of multiple HPV types in single skin biopsy specimens of renal transplant recipients prompted us to develop PCR techniques for the detection of distinct (sub)groups of genotypically related cutaneous HPV types, i.e., three subgroups of EV-associated HPV types and two groups (A2 and A4) of other cutaneous HPV types. This approach generally allowed a reliable identification of HPV genotypes by direct sequencing of the PCR products, despite the frequent occurrence of multiple infections. The targeted spectrum of HPV types comprises 66 cutaneous HPV types including 21 putative novel HPV types. We also detected 17 putative novel HPV subtypes. We demonstrated that the skin of nearly all renal transplant recipients who developed various benign and (pre)malignant skin lesions was persistently infected with one or more EV-associated HPV types and/or HPV types belonging to groups A2 and A4. The frequency and distribution of EV-associated HPV and HPV types belonging to groups A2 and A4 were similar in biopsy specimens from hyperkeratotic papillomas (77.5%), squamous cell carcinomas (77.8%), and actinic keratoses (67.9%) but appeared to be lower in specimens of basal cell carcinomas (35.7%), benign lesions (38.5%), and clinically normal skin (32.3%). These findings suggest that renal transplant recipients are prone to persistent cutaneous HPV infection. Our data do not support the existence of high-risk cutaneous HPV types. PMID:10834958

  11. Fine scale quantification of HCG beta gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues

    PubMed Central

    Rull, K; Hallast, P; Uusküla, L; Jackson, J; Punab, M; Salumets, A; Campbell, RK; Laan, M

    2009-01-01

    BACKGROUND: HCG is produced by syncytiotrophoblast of placenta. It delays the apoptosis of corpus luteum and functions in implantation. Its possible role in male reproduction has been raised. HCG beta subunit is encoded by CGB, CGB5, CGB7 and CGB8 genes located at 19q13.3 in a common genome cluster with beta subunit non-coding CGB1 and CGB2. We conducted a sensitive quantification and comparison of CGB gene expression in human trophoblastic (blastocysts, n=6; normal/failed pregnancy, n=51) and non-malignant non-trophoblastic tissues (15 different tissue types, samples n=241). METHODS: Real-time RT-PCR. RESULTS: We showed a wide transcriptional window of CGB genes in normal pregnancy, a significant reduction in recurrent miscarriages, and a high expression (especially CGB1/CGB2) in ectopic and molar pregnancies. Expression was several orders of magnitude lower in the non-placental tissues, with the highest CGB levels being seen in testis, prostate, thymus, skeletal muscle and lung samples. The contribution of CGB1/CGB2 to the summarized expression of six CGB genes was not proportional to their gene dosage: 1/1000 to 1/10000. An interesting exception was the testis exhibiting a much higher CGB1/CGB2 to total CGB mRNA ratio of ?1/3, corresponding to gene dosage. CONCLUSIONS: The expressional profile of CGB genes, activated already in blastocyst stage, is associated with the status of pregnancy. The presence of CGB transcripts in testes, and in particular CGB1/CGB2 transcripts, may indicate a role in male reproductive tract. PMID:18048458

  12. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    PubMed Central

    Belyanskaya, Larisa L; Marti, Thomas M; Hopkins-Donaldson, Sally; Kurtz, Stefanie; Felley-Bosco, Emanuela; Stahel, Rolf A

    2007-01-01

    Background The incidence of malignant pleural mesothelioma (MPM) is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1) or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab) and TRAIL-R2 (Lexatumumab) and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM. PMID:17953743

  13. Long-term low-dose ?-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway.

    PubMed

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-05-01

    Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy ?-particles for 8 times in total and then further cultured for 1-2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1-2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of ?-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway. PMID:24746471

  14. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by ?-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  15. Interleukin-6 and oncostatin-M synergize with the PI3K/AKT pathway to promote aggressive prostate malignancy in mouse and human tissues

    PubMed Central

    Smith, Daniel A.; Kiba, Atsushi; Zong, Yang; Witte, Owen N.

    2013-01-01

    Chronic inflammation has been proposed as an etiological and progression factor in prostate cancer. In this study, we used a dissociated prostate tissue recombination system to interrogate the role of interleukin 6 (IL6) and the related cytokine oncostatin M (OSM) in the initiation and progression of prostate cancer. We identified that prostatic intraepithelial neoplasia (PIN) lesions induced by PTEN loss of function (PTENLOF) progress to invasive adenocarcinoma following paracrine expression of either cytokine. Increased expression of OSM was also able to drive progression of benign human epithelium when combined with constitutively activated AKT. Malignant progression in the mouse was associated with invasion into the surrounding mesenchyme and increased activation of STAT3 in PTENLOF grafts expressing IL6 or OSM. Collectively, our work indicates that pro-inflammatory cytokines such as IL6 or OSM could activate pathways associated with prostate cancer progression and synergize with cell autonomous oncogenic events to promote aggressive malignancy. PMID:23867565

  16. Malignant pheochromocytoma.

    PubMed

    Pande, A K

    1992-03-01

    We present an interesting case of paroxysmal hypertension in a young male caused by malignant pheochromocytoma. This patient, who had history of paroxysms of abdominal pain with severe hypertension, developed osseous metastasis in the first lumbar vertebra resulting in collapse of the vertebra and it caused paraplegia. The diagnosis of pheochromocytoma was confirmed on histopathology. PMID:1563860

  17. LFA-1-targeting Leukotoxin (LtxA; Leukothera(®)) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes.

    PubMed

    DiFranco, Kristina M; Johnson-Farley, Nadine; Bertino, Joseph R; Elson, David; Vega, Brian A; Belinka, Benjamin A; Kachlany, Scott C

    2015-06-01

    Leukotoxin (LtxA) is a protein secreted from the oral bacterium Aggregatibacter actinomycetemcomitans. LtxA binds to the ?2 integrin lymphocyte-associated function antigen-1 (LFA-1) on human white blood cells (WBCs), resulting in cell death. LtxA is currently under investigation as a novel therapy (Leukothera(®)) for treating hematologic malignancies and autoimmune diseases. We show here that LtxA has potent in vivo anti-lymphoma activity in mice. LtxA caused complete regression of B-cell tumors and promoted long-term survival of mice. The mechanism of LtxA-mediated killing of malignant lymphocytes was further examined. We found that LtxA kills malignant lymphocytes by a novel mechanism requiring the death receptor Fas and caspase-8, but not Fas ligand (FasL) or caspase-9. We also determined that LFA-1 and Fas are closely associated on the cell surface and this proximity of LFA-1 and Fas could explain how signaling through an integrin can lead to cell death. In addition to LFA-1, this work reveals a second surface protein, Fas, that is critical for LtxA-mediated cell death. Knowledge of the mechanism of cell death induced by LtxA will facilitate the development and understanding of this potent experimental therapeutic agent. PMID:25850729

  18. Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells

    Microsoft Academic Search

    Adrienne C Scheck; Krya Perry; Nicole C Hank; W Dennis Clark

    2006-01-01

    BACKGROUND: Flavonoid-rich extracts from the mature roots of Scutellaria baicalensis have been shown to exhibit antiproliferative effects on various cancer cell lines. We assessed the ability of an ethanolic extract of S. baicalensis root to inhibit the proliferation of malignant glioma cells. METHODS: Cell lines derived from primary and recurrent brain tumors from the same patient and cells selected for

  19. Functional characterization of malignant hyperthermia-associated RyR1 mutations in exon 44, using the human myotube model

    Microsoft Academic Search

    Markus Wehner; Henrik Rueffert; Fritjoff Koenig; Derk Olthoff

    2004-01-01

    Malignant hyperthermia (MH) is a pharmacogenetic disorder with an autosomal dominant inheritance. During exposure to triggering agents as volatile anaesthetics, affected individuals may develop a potentially fatal hypermetabolic syndrome caused by excessive calcium release from the sarcoplasmic reticulum in skeletal muscle. More than 60MH associated mutations were found in the gene of skeletal muscle ryanodine receptor (RyR1), but only some

  20. IKBKE Upregulation is Positively Associated with Squamous Cell Carcinoma of the Lung In Vivo and Malignant Transformation of Human Bronchial Epithelial Cells In Vitro

    PubMed Central

    Li, Wei; Chen, Yuqing; Zhang, Jiaxiu; Hong, Lei; Yuan, Nana; Wang, Xiaojing; Lv, Hezuo

    2015-01-01

    Background The I?B kinase inhibitor of ?B kinase epsilon (IKBKE) is overexpressed in several human cancers. Although IKBKE plays an important role in smoking-induced non-small cell lung cancer carcinogenesis, its role in squamous cell carcinoma of the lung (SCCL) remains unclear. Material/Methods IKBKE protein expression was assessed by immunohistochemistry in 288 paraffinized SCCL specimens (with adjacent squamous dysplastic and normal tissue). IKBKE mRNA expression was assessed by reverse transcription PCR in 66 fresh SCCL specimens (with adjacent squamous dysplastic and normal tissue). Separately, immortalized human bronchial epithelial cells were cultured in 7 groups: untreated control, ethanol-treated, and cigarette smoke condensate (CSC)-exposed for 10, 20, 30, 40, and 50 generations (P10, P20, P30, P40, and P50, respectively). Malignant transformation was assessed by serum resistance and colony formation assays. IKBKE protein and mRNA expression were detected by Western blotting and reverse transcription PCR, respectively. Results IKBKE protein expression showed a significant upward trend from normal bronchial epithelium to squamous cell dysplasia to SCCL. IKBKE protein expression in SCCL was significantly associated with smoking status, smoking index, degree of differentiation, and clinical stage. Current and former smokers displayed significantly higher IKBKE protein and mRNA expression than non-smokers. IKBKE protein and mRNA expression displayed a significant upward trend with the smoking index. P30, P40, and P50 CSC-exposed cells displayed malignant transformation with increasing IKBKE mRNA and protein expression from P20 through P50. Conclusions IKBKE upregulation is positively associated with SCCL and smoking indices as well as CSC-induced malignant transformation of human bronchial epithelial cells. PMID:26025939

  1. IKBKE Upregulation is Positively Associated with Squamous Cell Carcinoma of the Lung In Vivo and Malignant Transformation of Human Bronchial Epithelial Cells In Vitro.

    PubMed

    Li, Wei; Chen, Yuqing; Zhang, Jiaxiu; Hong, Lei; Yuan, Nana; Wang, Xiaojing; Lv, Hezuo

    2015-01-01

    BACKGROUND The I?B kinase inhibitor of ?B kinase epsilon (IKBKE) is overexpressed in several human cancers. Although IKBKE plays an important role in smoking-induced non-small cell lung cancer carcinogenesis, its role in squamous cell carcinoma of the lung (SCCL) remains unclear. MATERIAL AND METHODS IKBKE protein expression was assessed by immunohistochemistry in 288 paraffinized SCCL specimens (with adjacent squamous dysplastic and normal tissue). IKBKE mRNA expression was assessed by reverse transcription PCR in 66 fresh SCCL specimens (with adjacent squamous dysplastic and normal tissue). Separately, immortalized human bronchial epithelial cells were cultured in 7 groups: untreated control, ethanol-treated, and cigarette smoke condensate (CSC)-exposed for 10, 20, 30, 40, and 50 generations (P10, P20, P30, P40, and P50, respectively). Malignant transformation was assessed by serum resistance and colony formation assays. IKBKE protein and mRNA expression were detected by Western blotting and reverse transcription PCR, respectively. RESULTS IKBKE protein expression showed a significant upward trend from normal bronchial epithelium to squamous cell dysplasia to SCCL. IKBKE protein expression in SCCL was significantly associated with smoking status, smoking index, degree of differentiation, and clinical stage. Current and former smokers displayed significantly higher IKBKE protein and mRNA expression than non-smokers. IKBKE protein and mRNA expression displayed a significant upward trend with the smoking index. P30, P40, and P50 CSC-exposed cells displayed malignant transformation with increasing IKBKE mRNA and protein expression from P20 through P50. CONCLUSIONS IKBKE upregulation is positively associated with SCCL and smoking indices as well as CSC-induced malignant transformation of human bronchial epithelial cells. PMID:26025939

  2. Gene therapy and radiation of malignant glioma by targeting glioma specific lactate transporter

    Microsoft Academic Search

    Chaim B Colen

    2005-01-01

    Glioblastoma multiforme are highly malignant tumors that produce large amounts of lactate as a by-product of glucose consumption. We investigated inhibition of lactate efflux as a novel method to destructively alter the metabolite profile in these tumors to induce tumor-specific apoptosis and radiosensitization, thus adding a wing to our current growing armament of gene therapies against cancer. Thus, our main

  3. Gemcitabine and radiosensitization in human tumor cells

    Microsoft Academic Search

    Donna S. Shewach; Theodore S. Lawrence

    1996-01-01

    Summary  Gemcitabine is a nucleoside analogue with excellent clinical activity against solid tumors. Within the cell, gemcitabine is\\u000a rapidly phosphorylated to its active di-and triphosphate metabolites. Cytotoxicity with gemcitabine appears to be related\\u000a to multiple effects on DNA replication, where gemcitabine triphosphate can serve as both an inhibitor and substrate for DNA\\u000a synthesis. Gemcitabine diphosphate inhibits ribonucleotide reductase, producing decreases in

  4. Downregulation of the expression of B?cell lymphoma-extra large by RNA interference induces apoptosis and enhances the radiosensitivity of non?small cell lung cancer cells.

    PubMed

    Yang, Changbin; Huang, Wei; Yan, Ling; Wang, Yu; Wang, Weili; Liu, Dezhi; Zuo, Xiaojun

    2015-07-01

    B-cell lymphoma-extra large (Bcl-xL), an important member of anti-apoptotic Bcl-2 family, is involved in tumor progression and development. The overexpression of Bcl-xL is associated with radioresistance of human malignancies. The present study aimed to investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of Bcl-xL in the A549 non-small lung cancer (NSCLC) cell line, and its role in inducing the apoptosis and increasing the radiosensitivity of A549 cells. An siRNA expression vector, pSilencer4-CMVneo-short hairpin (sh)RNA, was constructed and stably transfected into A549 cells. The effects of Bcl-xL-shRNA on cell proliferation, apoptosis and the protein expression levels of associated proteins were assessed in vitro in the A549 cells. The radiosensitivity of the A549 cells was evaluated using a clonogenic cell survival assay. The results demonstrated that the sequence-specific siRNA targeting Bcl-xL efficiently and specifically downregulated the mRNA and protein expression levels of Bcl-xL. The RNA interference-mediated downregulation in the expression of Bcl-xL inhibited cell proliferation, induced apoptosis and reduced the radioresistance of the NSCLC cells. These findings suggested that Bcl-xL may be a promising therapeutic approach for the treatment of NSCLC. PMID:25683634

  5. Metallothionein-1 and -2 expression in cadmium- or arsenic-derived human malignant urothelial cells and tumor heterotransplants and as a prognostic indicator in human bladder cancer.

    PubMed

    Zhou, Xu Dong; Sens, Donald A; Sens, Mary Ann; Namburi, Venugopal B R K; Singh, Rajendra K; Garrett, Scott H; Somji, Seema

    2006-06-01

    The goal of this study was to determine if the expression of the metallothionein (MT)-1/2 proteins might serve as a biomarker for the development of bladder cancer. A retrospective analysis of MT-1/2 staining was performed on 343 tissue sections from patients referred for the diagnosis of bladder cancer. The specimens were subdivided into six categories: benign, dysplastic, low-grade cancer, high-grade cancer with no evidence of invasion, high-grade cancer with evidence of invasion, and carcinoma in situ. There was no expression of MT-1/2 in benign lesions and low-grade cancers, a low incidence of expression in dysplastic lesions and high-grade cancers with no evidence of muscle invasion, and a significantly increased incidence of MT-1/2 in high-grade cancers that had invaded the underlying matrix. The expression of MT-1/2 varied in intensity from sample to sample and was focal in its expression. It was concluded from these findings that MT-1/2 may be a prognostic marker for cancers that are progressing to invade the underlying stroma of the bladder wall. The expression of MT-1/2 was also determined in a cell culture model of human urothelium that had been malignantly transformed by Cd2+ and As3+ and shown to be capable of tumor formation in nude mice. It was demonstrated that the expression of MT-1/2 in the tumor heterotransplants was similar to the pattern found in archival specimens of high-grade bladder cancers. The MT-1/2 staining in the heterotransplants was focal in pattern, varied in intensity, and highest in the less differentiated cells of the tumor. These findings indicate that the cell culture model may serve to help define the role of MT-1/2 expression in bladder cancer invasion. PMID:16565513

  6. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells. PMID:17119452

  7. Myb Expression Is Higher in Malignant Human Colonic Carcinoma and Premalignant Adenomatous Polyps than in Normal Mucosa

    Microsoft Academic Search

    R. G. Ramsay; M. A. Thompson; J. A. Hayman; G. Reid; T. J. Gonda; R. H. Whitehead

    Expression of the protooncogene c-Myb protein was assessed in normal mucosa and in tumor samples resected from six patients. We found that the tumor samples always expressed higher levels of full length Myb protein than the normal tissue. This contrasts with the situation in c-myb-associated hemopoietic malignancies of the mouse and chicken, in which Myb proteins are generally amino or

  8. Epigenetic alteration by DNA-demethylating treatment restores apoptotic response to glucocorticoids in dexamethasone-resistant human malignant lymphoid cells

    PubMed Central

    2014-01-01

    Background Glucocorticoids (GCs) are often included in the therapy of lymphoid malignancies because they kill several types of malignant lymphoid cells. GCs activate the glucocorticoid receptor (GR), to regulate a complex genetic network, culminating in apoptosis. Normal lymphoblasts and many lymphoid malignancies are sensitive to GC-driven apoptosis. Resistance to GCs can be a significant clinical problem, however, and correlates with resistance to several other major chemotherapeutic agents. Methods We analyzed the effect of treatment with the cytosine analogue 5 aza-2’ deoxycytidine (AZA) on GC resistance in two acute lymphoblastic leukemia (T or pre-T ALL) cell lines- CEM and Molt-4- and a (B-cell) myeloma cell line, RPMI 8226. Methods employed included tissue culture, flow cytometry, and assays for clonogenicity, cytosine extension, immunochemical identification of proteins, and gene transactivation. High throughput DNA sequencing was used to confirm DNA methylation status. Conclusions Treatment of these cells with AZA resulted in altered DNA methylation and restored GC-evoked apoptosis in all 3 cell lines. In CEM cells the altered epigenetic state resulted in site-specific phosphorylation of the GR, increased GR potency, and GC-driven induction of the GR from promoters that lie in CpG islands. In RPMI 8226 cells, expression of relevant coregulators of GR function was altered. Activation of p38 mitogen-activated protein kinase (MAPK), which is central to a feed-forward mechanism of site-specific GR phosphorylation and ultimately, apoptosis, occurred in all 3 cell lines. These data show that in certain malignant hematologic B- and T-cell types, epigenetically controlled GC resistance can be reversed by cell exposure to a compound that causes DNA demethylation. The results encourage studies of application to in vivo systems, looking towards eventual clinical applications. PMID:24795534

  9. Expression of the 21,000 Molecular Weight ras Protein in a Spectrum of Benign and Malignant Human Mammary Tissues

    Microsoft Academic Search

    Noriaki Ohuchi; Ann Thor; David L. Page; Patricia Horan Hand; Susan A. Halter; Jeffrey Schlom

    1986-01-01

    Monoclonal antibodies RAP-5 and Y13-259, directed against the ras gene product (a protein with a molecular weight of 21,000 (p21)| have been used to evaluate rus p21 expression in malignant and benign mammary tissues as well as in the lesions of intermediate stature such as atypical hyperplasia using immunohistochemical assays. Invasive car cinoma demonstrated enhanced expression of ro.v p2l. with

  10. Modulation of oxygen consumption rate and vascular endothelial growth factor mRNA expression in human malignant glioma cells by hypoxia

    PubMed Central

    Allalunis-Turner, M J; Franko, A J; Parliament, M B

    1999-01-01

    Cellular responses to hypoxia include modulation of respiration rate and up-regulation of genes which encode for angiogenesis factors. We tested whether human malignant glioma cells vary in their response to hypoxic stress over the range of oxygen concentrations which exist in tumours. In five cell lines tested, decreased oxygen availability resulted in decreased rates of oxygen utilization, however substantial differences in the magnitude of the response were observed. Northern blot analysis was used to study induction of vascular endothelial growth factor mRNA in response to hypoxia. In two cell lines, modest hypoxia increased vascular endothelial growth factor mRNA levels compared with those of aerobic controls. In two additional cell lines, vascular endothelial growth factor mRNA was constituitively expressed under aerobic conditions and was not further increased by hypoxia. These findings demonstrate that differences in the response to hypoxia exist among human malignant glioma cell lines and suggest that therapies designed to exploit tumour hypoxia may have varying effects in tumours with different hypoxic stress responses. © 1999 Cancer Research Campaign PMID:10389985

  11. [Malignant pheochromocytoma].

    PubMed

    Pailler, J L; Vicq, P; Jancovici, R; Essoussi, J; Seigneuric, A

    1989-01-01

    A case of metastatic malignant pheochromocytoma which was operated on is discussed. The benefits derived from the most recent localizing techniques such as CT scan and MIBG scintigraphic scanning are stressed. In the case presented these enabled the adrenal tumor to be detected but also demonstrated the presence of a costal metastasis and two metastases in the axial skeleton. A therapeutic trial with MIBG at doses of 100 mCi per treatment only enabled a survival of a little more than one year to be achieved. PMID:2794545

  12. THE INFLUENCE OF METABOLIC FACTORS ON RADIOSENSITIVITY

    Microsoft Academic Search

    Ghys

    1963-01-01

    In rats injected intramuscularly with 25 mg\\/100 g testosterone ; propionate 8 hr before irradiation, the hormone had a radiosensitizing effect in ; males but not in females, on the basis of increased mortality rate. This was ; observed with radiation from fast (2-Mev) neutrons and the BETA emitter P\\/sup ; 32\\/, and with the radiomimetic drug Myleran. Diarrhea and

  13. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma

    SciTech Connect

    Xianjin Yi; Li Ding; Yizun Jin; Chuo Ni; Wenji Wang (Shanghai Medical Univ., Shanghai (China))

    1994-05-15

    Retinoblastoma is the most common intraocular malignant tumor in children. Previous investigations have reported that buthionine sulfoximine (BSO) can deplete intracellular glutathione (GSH) by specific inhibition and increase cellular radiosensitivity. The toxic effects, GSH depletion and radiosensitivity effects of BSO on retinoblastoma cells are reported in this paper. GSH content of retinoblastoma cell lines Y-79, So-Rb50 and retinoblastoma xenograft is 2.7 [+-] 1.3 X 1.0[sup [minus]12] mmol/cell, 1.4 [+-] 0.2 X 1.0[sup [minus]12] mmol/cell, and 2.8 [+-] 1.2 [mu]mol/g, respectively. The ID[sub 50] of BSO on Y-79 and So-Rb50 in air for 3 h exposure is 2.5 mM and 0.2 mM, respectively. GSH depletion by 0.1 mM BSO for 24 h on Y-79 cells and 0.01 mM BSO for 24 h on So-Rb50 cells is 16.35%, and 4.7% of control. GSH depletion in tumor and other organ tissues in retinoblastoma-bearing nude mice after BSO administration is differential. GSH depletion after BSO exposure in Y-79 cells in vitro decreases the Do value of retinoblastoma cells. The SER of 0.01 mM and 0.05 mM BSO for 24 h under hypoxic conditions is 1.21 and 1.36, respectively. Based on these observations, the authors conclude that BSO toxicity on retinoblastoma cells depends on the characteristics of the cell line and that BSO can increase hypoxic retinoblastoma cells' radiosensitivity in vitro. Further study of BSO radiosensitization on retinoblastoma in vivo using nude mouse xenografts is needed. 25 refs., 3 figs., 3 tabs.

  14. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid.

    PubMed

    Camphausen, Kevin; Cerna, David; Scott, Tamalee; Sproull, Mary; Burgan, William E; Cerra, Michael A; Fine, Howard; Tofilon, Philip J

    2005-04-10

    Valproic acid (VA) is a well-tolerated drug used to treat seizure disorders and has recently been shown to inhibit histone deacetylase (HDAC). Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we investigated the effects of VA on the radiosensitivity of human brain tumor cells grown in vitro and in vivo. The human brain tumor cell lines SF539 and U251 were used in our study. Histone hyperacetylation served as an indicator of HDAC inhibition. The effects of VA on tumor cell radiosensitivity in vitro were assessed using a clonogenic survival assay and gammaH2AX expression was determined as a measure of radiation-induced DNA double strand breaks. The effect of VA on the in vivo radioresponse of brain tumor cells was evaluated according to tumor growth delay analysis carried out on U251 xenografts. Irradiation at the time of maximum VA-induced histone hyperacetylation resulted in significant increases in the radiosensitivity of both SF539 and U251 cells. The radiosensitization was accompanied by a prolonged expression of gammaH2AX. VA administration to mice resulted in a clearly detectable level of histone hyperacetylation in U251 xenografts. Irradiation of U251 tumors in mice treated with VA resulted in an increase in radiation-induced tumor growth delay. Valproic acid enhanced the radiosensitivity of both SF539 and U251 cell lines in vitro and U251 xenografts in vivo, which correlated with the induction of histone hyperacetylation. Moreover, the VA-mediated increase in radiation-induced cell killing seemed to involve the inhibition of DNA DSB repair. PMID:15578701

  15. p53 and bcl2 expression in malignant and premalignant lesions of uterine cervix and their correlation with human papilloma virus 16 and 18

    PubMed Central

    Shukla, Shailaja; Dass, Jasmita; Pujani, Mukta

    2014-01-01

    Background and Objective: Persistent high risk human papilloma virus (HPV) infection is probably the best predictor of increased risk of cervical cancer, but expression of certain markers of cell proliferation and apoptosis have been studied. The present study was conducted to evaluate the expression of p53 and bcl2 in premalignant and malignant lesions of cervix and its correlation with HPV type 16 and 18. Materials and Methods: The study comprised of 35 cases (including 24 prospective cases and 11 retrospective cases) of premalignant and malignant lesions of the cervix. Slides were stained with Hematoxylin and Eosin and p53, bcl2 (immunohistochemistry), HPV 16 and HPV 18 (in situ hybridization). Results: p53 positivity was seen in 8/19 (42.1%) cases of cervical intraepithelial neoplasia (CIN) and 8/16 (50%) cases of carcinoma cervix, the difference not significant statistically. The difference in bcl2 expression in CIN versus carcinoma cervix (84.21% vs. 43.75%) was statistically significant (P = 0.030). There was no significant difference between p53 and bcl2 expression and the stage and grade of the tumors. Seven out of 19 cases of CIN (36.84%) were positive for HPV 16/18 infection and 8/16 cases (50%) of carcinoma cervix were HPV positive (P = 0.628). Conclusions: No significant association was found between HPV 16/18 infection and p53 and bcl2 expression in premalignant and malignant lesions of uterine cervix. Although, bcl2 staining showed a significant difference between CIN and carcinoma cervix, a larger case series is required to assess the association between HPV infection and overexpression of p53 and bcl2 proteins in these lesions. PMID:24665447

  16. Synergistic anticancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Kucuksayan, Ertan; Ozben, Tomris

    2012-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols used for testicular cancer; however, side-effects are common. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has been demonstrated to induce apoptosis in a number of malignancies. However, to date no study has been carried out to elucidate its anticancer activity and interaction with bleomycin in testicular cancer cells. In this study, we investigated and compared the effects of curcumin, bleomycin and hydrogen peroxide (H2O2) on apoptotic signaling pathways. Curcumin (20 µM), bleomycin (400 µg/ml) and H2O2 (400 µM) incubation for 24 h decreased the viability of NTera-2 cells, and increased caspase-3, -8 and -9 activities, Bax and cytoplasmic cytochrome c levels and decreased Bcl-2 levels. The concurrent use of curcumin with bleomycin induced caspase-3, -8 and -9 activities to a greater extent in NTera-2 cells than the use of each drug alone. Our observations suggest that the effects of curcumin and bleomycin on apoptotic signaling pathways are synergistic. Therefore, we propose to use curcumin together with bleomycin to decrease its therapeutic dose and, therefore, its side-effects. PMID:22469952

  17. Measurement of urinary beta core fragment of human chorionic gonadotrophin in women with vulvovaginal malignancy and its prognostic significance.

    PubMed Central

    Carter, P. G.; Iles, R. K.; Neven, P.; Ind, T. E.; Shepherd, J. H.; Chard, T.

    1995-01-01

    Tumours of the vulva and vagina are rare and there are relatively few studies of circulating markers in these conditions. The urinary measurement of the core fragment of the beta-subunit of hCG has been proposed as a useful tumour marker in non-trophoblastic gynaecological malignancies. This study describe the measurement of urinary beta-core in 50 patients with vulvovaginal malignancy. In contrast to other studies corrections were made for both the effect of urine concentration and the age of the patient. Each patient was followed up for at least 24 months, and at this time their status was correlated with their initial level of urinary beta-core. The sensitivity of beta-core was only 38%, but of those patients with elevated levels 90% had died within 24 months, while only 32% of those with normal levels had died. For both patients at initial presentation and those with recurrent disease, there was a highly significant difference in the survival curve between those with elevated beta-core levels and those with normal levels. This is similar to findings in cervical carcinoma, and suggests that for lower genital tract cancer the measurement of urinary beta-core may be valuable as a prognostic indicator, allowing a more informed approach to treatment and follow-up. PMID:7530986

  18. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    PubMed Central

    Wang, Ping; Xue, Yi-Xue; Yao, Yi-Long; Yu, Bo; Liu, Yun-Hui

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas. PMID:23593320

  19. A Mouse Model of Human Primitive Neuroectodermal Tumors Resulting from Microenvironmentally-Driven Malignant Transformation of Orthotopically Transplanted Radial Glial Cells

    PubMed Central

    Malchenko, Sergey; Sredni, Simone Treiger; Hashimoto, Hitoshi; Kasai, Atsushi; Nagayasu, Kazuki; Xie, Jianping; Margaryan, Naira V.; Seiriki, Kaoru; Lulla, Rishi R.; Seftor, Richard E. B.; Pachman, Lauren M.; Meltzer, Herbert Y.; Hendrix, Mary J. C.; Soares, Marcelo B.

    2015-01-01

    There is growing evidence and a consensus in the field that most pediatric brain tumors originate from stem cells, of which radial glial cells constitute a subtype. Here we show that orthotopic transplantation of human radial glial (RG) cells to the subventricular zone of the 3rd ventricle - but not to other transplantation sites - of the brain in immunocompromised NOD-SCID mice, gives rise to tumors that have the hallmarks of CNS primitive neuroectodermal tumors (PNETs). The resulting mouse model strikingly recapitulates the phenotype of PNETs. Importantly, the observed tumorigenic transformation was accompanied by aspects of an epithelial to mesenchymal transition (EMT)-like process. It is also noteworthy that the tumors are highly invasive, and that they effectively recruit mouse endothelial cells for angiogenesis. These results are significant for several reasons. First, they show that malignant transformation of radial glial cells can occur in the absence of specific mutations or inherited genomic alterations. Second, they demonstrate that the same radial glial cells may either give rise to brain tumors or differentiate normally depending upon the microenvironment of the specific region of the brain to which the cells are transplanted. In addition to providing a prospect for drug screening and development of new therapeutic strategies, the resulting mouse model of PNETs offers an unprecedented opportunity to identify the cancer driving molecular alterations and the microenvironmental factors that are responsible for committing otherwise normal radial glial cells to a malignant phenotype. PMID:25826270

  20. Malignant mesothelioma

    PubMed Central

    Ahmed, Ishtiaq; Ahmed Tipu, Salman; Ishtiaq, Sundas

    2013-01-01

    Malignant Mesothelioma (MM) is a rare but rapidly fatal and aggressive tumor of the pleura and peritoneum with limited knowledge of its natural history. The incidence has increased in the past two decades but still it is a rare tumor. Etiology of all forms of mesothelioma is strongly associated with industrial pollutants, of which asbestos is the principal carcinogen. Mesothelioma is an insidious neoplasm arising from mesothelial surfaces i.e., pleura (65%-70%), peritoneum (30%), tunica vaginalis testis, and pericardium (1%-2%). The diagnosis of peritoneal and Pleural mesothelioma is often delayed, due to a long latent period between onset and symptoms and the common and nonspecific clinical presentation. The definite diagnosis can only be established by diagnostic laparoscopy or open surgery along with biopsy to obtain histological examination and immunocytochemical analysis. Different treatment options are available but Surgery can achieve a complete or incomplete resection and Radical resection is the preferred treatment. Chemotherapy has an important role in palliative treatment. Photodynamic therapy is also an option under trial. Patients who successfully underwent surgical resection had a considerably longer median survival as well as a significantly higher 5-year survival. Source of Data/Study Selection: The data were collected from case reports, cross-sectional studies, Open-label studies and phase –II trials between 1973-2012. Data Extraction: Web sites and other online resources of American college of surgeons, Medline, NCBI and Medscape resource centers were used to extract data. Conclusion: Malignant Mesothelioma (MM) is a rare but rapidly fatal and aggressive tumor with limited knowledge of its natural history. The diagnosis of peritoneal and Pleural mesothelioma is often delayed, so level of index of suspicion must be kept high. PMID:24550969

  1. Fusion Toxin BLyS-Gelonin Inhibits Growth of Malignant Human B Cell Lines In Vitro and In Vivo

    PubMed Central

    Luster, Troy A.; Mukherjee, Ipsita; Carrell, Jeffrey A.; Cho, Yun Hee; Gill, Jeffrey; Kelly, Lizbeth; Garcia, Andy; Ward, Christopher; Oh, Luke; Ullrich, Stephen J.; Migone, Thi-Sau; Humphreys, Robin

    2012-01-01

    B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells. PMID:23056634

  2. The advent of precision therapy in gastrointestinal malignancies: Targeting the human epidermal growth factor receptor family in colorectal and esophagogastric cancer

    PubMed Central

    Desautels, Danielle; Harlos, Craig; Czaykowski, Piotr

    2014-01-01

    Until recently, systemic therapy for gastrointestinal malignancies was restricted to relatively noncancer-specific cytotoxic chemotherapy. Over the last 15 years targeted therapies have become available, most notably bevacizumab in the case of advanced colorectal cancer. Unfortunately, there are no predictive biomarkers to guide the use of this agent. In this review article, we describe the advent of “Precision Medicine” (in part, the use of patient-specific molecular markers to inform treatment) in gastrointestinal cancers: The use of monoclonal antibodies targeting epidermal growth factor receptor in advanced colorectal cancer, and human epidermal growth factor receptor 2-neu in advanced esophagogastric cancer. In both instances, biomarkers help in selecting appropriate patients for such treatment. PMID:25525412

  3. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5?M) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1?, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1?, IL-6, IL-8, TNF-?) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-?B, COX-2, STAT-3, iNOS, TNF-?) and angiogenesis (HIF-1?, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. PMID:25448439

  4. Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo

    SciTech Connect

    Zhuo, Enqing; He, Jiao; Wei, Ting; Zhu, Weiliang; Meng, Hui; Li, Yan [Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou (China)] [Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Guo, Linlang, E-mail: linlangg@yahoo.com [Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou (China)] [Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Zhang, Jian, E-mail: 13925091863@139.com [Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou (China)] [Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer First investigated the role of GnT-V on the radiosensitivity of NPC cells in vitro and in vivo. Black-Right-Pointing-Pointer The mechanisms of the changing radiosensitivity were also investigated. Black-Right-Pointing-Pointer In this study, more than one experiment methods were used to investigate a problem. -- Abstract: The purpose of this study was to investigate the role of GnT-V on radiosensitivity in human nasopharyngeal carcinoma (NPC) both in vitro and in vivo, and the possible mechanism. The GnT-V stably suppressed cell line CNE-2 GnT-V/2224 was constructed from CNE-2 by transfection. The radiosensitivity of the cells was studied by CCK-8 assay, flow-cytometry, caspases-3 activity analysis and tumor xenografts model. The expression of Bcl-2, Bax and Bcl-xl was analyzed with or without radiation. The results showed that down-regulation of GnT-V enhanced CNE-2 radiosensitivity. The underlying mechanisms may be link to the cell cycle G2-M arrest and the reduction of Bcl-2/Bax ratio. The results suggest that GnT-V may be a potential target for predicting NPC response to radiotherapy.

  5. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    Microsoft Academic Search

    J. T. Lett; K. I. Altman; U. K. Ehmann; A. B. Cox

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose

  6. Identification of Mre11 as a Target for Heat Radiosensitization

    PubMed Central

    Dynlacht, Joseph R.; Batuello, Christopher N.; Lopez, Jennifer T.; Kim, Kyung Keun; Turchi, John J.

    2011-01-01

    Thermal radiosensitization is believed to be mediated by an inhibition of double-strand break (DSB) repair, but the exact mechanism of radiosensitization remains to be elucidated. Previously, we demonstrated that proteins of the Mre11/Rad50/Nbs1 complex (MRN) translocate from the nucleus to the cytoplasm in cells have that been heated or heated and then irradiated; this finding led us to propose that heat radiosensitization was due at least in part to translocation of MRN. In the current study, we used leptomycin B to inhibit MRN translocation in heated, irradiated cells, but we found that heat radiosensitization was not altered. Thus enhanced radiosensitivity was not attributed to translocation of MRN proteins. To determine which of the MRN subunits contributed to heat radiosensitization, we compared the extent of heat radiosensitization in wild-type cells with that of cells hypomorphic for Mre11 or Nbs1 or cells in which the level of Rad50 was suppressed. We found that neither Nbs1 nor Rad50 is involved in heat radiosensitization, because a similar amount of heat radiosensitization was observed in cells deficient in those proteins compared to cells expressing normal levels. However, heat radiosensitization was not observed in A-TLD1 cells deficient in Mre11. Measurement of exonuclease activity of purified Mre11 heated at 42.5°C or 45.5°C indicated that the protein is very heat-labile. Immunoprecipitation of Mre11 from heated HeLa cells also revealed that hsp70 associates with Mre11 and that this association is maintained long after heating. Taken together, these findings implicate Mre11 as a target for heat radiosensitization and suggest that heat radiosensitization and inhibition of DSB repair may be mediated by heat-induced conformational changes in Mre11. PMID:21699368

  7. Daily rhythms of radiosensitivity of animals and several determining causes

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Malyutina, T. S.; Seraya, V. M.; Rodina, G. P.; Vatsek, A.; Rakova, A.

    1974-01-01

    Daily rhythms of radiosensitivity in rats and mice were determined by survival rates after acute total radiation at the same dosage at different times of the day. Radiosensitivity differed in animals of different species and varieties. Inbred mice exhibited one or two increases in radiosensitivity during the dark, active period of the day. These effects were attributed to periodic changes in the state of stem hematopoietic cells.

  8. Asbestos-related malignancy

    SciTech Connect

    Talcott, J.A.; Antman, K.H.

    1988-05-01

    Asbestos-associated malignancies have received significant attention in the lay and medical literature because of the increasing frequency of two asbestos-associated tumors, lung carcinoma and mesothelioma; the wide distribution of asbestos; its status as a prototype environmental carcinogen; and the many recent legal compensation proceedings, for which medical testimony has been required. The understanding of asbestos-associated carcinogenesis has increased through study of animal models, human epidemiology, and, recently, the application of modern molecular biological techniques. However, the detailed mechanisms of carcinogenesis remain unknown. A wide variety of malignancies have been associated with asbestos, although the strongest evidence for a causal association is confined to lung cancer and mesothelioma. Epidemiological studies have provided evidence that both the type of asbestos fiber and the industry in which the exposure occurs may affect the rates of asbestos-associated cancers. It has been shown that asbestos exerts a carcinogenic effect independent of exposure to cigarette smoking that, for lung cancers, is synergistically enhanced by smoking. Other questions remain controversial, such as whether pulmonary fibrosis necessarily precedes asbestos-associated lung cancer and whether some threshold level of exposure to asbestos (including low-dose exposures that may occur in asbestos-associated public buildings) may be safe. Mesothelioma, the most closely asbestos-associated malignancy, has a dismal natural history and has been highly resistant to therapy. However, investigational multi-modality therapy may offer benefit to some patients. 179 references.

  9. Fibroblast radiosensitivity versus acute and late normal skin responses in patients treated for breast cancer

    Microsoft Academic Search

    William A. Brock; Susan L. Tucker; Fady B. Geara; Ingela Turesson; Jennifer Wike; Jan Nyman; Lester J. Peters

    1995-01-01

    Purpose\\/Objective: To determine if the radiosensitivity of normal human skin fibroblasts, measured in early passage cultures, is significantly correlated with the degree of acute or late normal skin damage in patients treated for breast cancer with radiotherapy.Methods and Materials: In the 1970s, a series of breast cancer patients was treated at the Department of Oncology in Gothenburg, Sweden with postoperative

  10. C-Kit Expression, Angiogenesis, and Grading in Canine Mast Cell Tumour: A Unique Model to Study C-Kit Driven Human Malignancies

    PubMed Central

    Patruno, Rosa; Marech, Ilaria; Zizzo, Nicola; Nardulli, Patrizia; Introna, Marcello; Capriuolo, Gennaro; Rubini, Rosa Angela; Ribatti, Domenico; Gadaleta, Cosmo Damiano

    2014-01-01

    Canine cutaneous mast cell tumour (CMCT) is a c-Kit driven tumour sharing similar c-Kit aberrations found in human gastrointestinal stromal tumour. CMCT is classified into three forms: well- (G1), intermediately (G2) (more benign diseases), and poorly (G3) differentiated (malignant) forms. We assess a correlation between c-Kit status, grading, and angiogenesis in CMCTs to explore their potential significance in humans. C-Kit receptor (c-KitR) expression, microvascular density (MVD), and mast cell granulated and degranulated status density (MCGD and MCDD, resp.) were analyzed in 97 CMCTs, by means of histochemistry, immunohistochemistry double staining, and image analysis system. Data showed that predominantly diffuse cytoplasmic- and predominantly focal paranuclear- (Golgi-like) c-Kit protein (PDC-c-Kit and PFP-c-Kit, resp.) expression correlate with high MVD, G3 histopathological grade, and MCDD. Moreover, predominant cell membrane-c-KitR (PCM-c-KitR) expression status correlates with low MVD, G1-G2 histopathological grade, and MCGD. These findings underline the key role of c-Kit in the biopathology of canine MCTs, indicating a link between aberrant c-Kit expression, increased angiogenesis, and higher histopathological grade. CMCT seems to be a model to study contributions of c-Kit activated MCs in tumour angiogenesis and to evaluate the inhibition of MCs activation by means of c-Kit tyrosine kinase inhibitors, currently translated in humans. PMID:24900982

  11. c-Kit expression, angiogenesis, and grading in canine mast cell tumour: a unique model to study c-Kit driven human malignancies.

    PubMed

    Patruno, Rosa; Marech, Ilaria; Zizzo, Nicola; Ammendola, Michele; Nardulli, Patrizia; Gadaleta, Claudia; Introna, Marcello; Capriuolo, Gennaro; Rubini, Rosa Angela; Ribatti, Domenico; Gadaleta, Cosmo Damiano; Ranieri, Girolamo

    2014-01-01

    Canine cutaneous mast cell tumour (CMCT) is a c-Kit driven tumour sharing similar c-Kit aberrations found in human gastrointestinal stromal tumour. CMCT is classified into three forms: well- (G1), intermediately (G2) (more benign diseases), and poorly (G3) differentiated (malignant) forms. We assess a correlation between c-Kit status, grading, and angiogenesis in CMCTs to explore their potential significance in humans. C-Kit receptor (c-KitR) expression, microvascular density (MVD), and mast cell granulated and degranulated status density (MCGD and MCDD, resp.) were analyzed in 97 CMCTs, by means of histochemistry, immunohistochemistry double staining, and image analysis system. Data showed that predominantly diffuse cytoplasmic- and predominantly focal paranuclear- (Golgi-like) c-Kit protein (PDC-c-Kit and PFP-c-Kit, resp.) expression correlate with high MVD, G3 histopathological grade, and MCDD. Moreover, predominant cell membrane-c-KitR (PCM-c-KitR) expression status correlates with low MVD, G1-G2 histopathological grade, and MCGD. These findings underline the key role of c-Kit in the biopathology of canine MCTs, indicating a link between aberrant c-Kit expression, increased angiogenesis, and higher histopathological grade. CMCT seems to be a model to study contributions of c-Kit activated MCs in tumour angiogenesis and to evaluate the inhibition of MCs activation by means of c-Kit tyrosine kinase inhibitors, currently translated in humans. PMID:24900982

  12. Intraoral malignant melanoma.

    PubMed

    Babburi, Suresh; Subramanyam, R V; Aparna, V; Sowjanya, P

    2013-07-01

    Primary oral mucosal melanoma is a rare aggressive neoplasm and accounts for only 0.2-8% of all reported melanomas. It is a malignant neoplasm of melanocytes that may arise from a benign melanocytic lesion or de novo from melanocytes within normal skin or mucosa. It is considered to be the most deadly and biologically unpredictable of all human neoplasms, having the worst prognosis. In this article, we report a case of oral melanoma in a 52-year-old female patient with a chief complaint of black discolouration of the maxillary gingiva and palate. PMID:24249959

  13. Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells

    PubMed Central

    MATAYOSHI, SEN; CHIBA, SHUNMEI; LIN, YANFUI; ARAKAKI, KAZUNARI; MATSUMOTO, HIROFUMI; NAKANISHI, TAKAYA; SUZUKI, MIKIO; KATO, SEIYA

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer worldwide. Despite improvement in therapeutic strategies, the prognosis of advanced HNSCC remains poor. The extacellular lipid mediators known as lysophosphatidic acids (LPAs) have been implicated in tumorigenesis of HNSCC. LPAs activate G-protein-coupled receptors not only in the endothelial differentiation gene (Edg) family (LPA1, LPA2, LPA3) but also in the phylogenetically distant non-Edg family (LPA4, LPA5, LPA6). The distinct roles of these receptor isoforms in HNSCC tumorigenesis have not been clarified. In the present study, we investigated the effect of ectopic expression of LPA4 in SQ-20B, an HNSCC cell line, expressing a trivial level of endogenous LPA4. LPA (18:1) stimulated proliferation of SQ-20B cells, but did not affect proliferation of HEp-2, an SCC cell line expressing higher levels of LPA4, comparable to those of with LPA1. LPA-stimulated proliferation of SQ-20B cells was attenuated by Ki16425 and Rac1 inhibitor, but not by Y-27632. Infection with doxycycline-regulatable adenovirus vector expressing green fluorescent protein-tagged LPA4 (AdvLPA4G) abolished LPA-stimulated proliferation in SQ-20B cells with the accumulation of G2/M-phasic cells. Ectopic LPA4 induction further downregulated proliferation of Ki16425-treated SQ-20B cells, of which downregulation was partially recovered by LPA. Ectopic LPA4 induction also downregulated proliferation of Rac1 inhibitor-treated SQ-20B cells, however, LPA no longer recovered it. Finally, LPA-induced cell motility was suppressed by ectopic LPA4 expression as well as by Ki16425, Rac1 inhibitor or Y-27632. Our data suggest that LPA4 signaling potentially modulates malignant behavior of SQ-20B cells. LPA signaling, which is mediated by both Edg and non-Edg receptors, may be a determinant of malignant behavior of HNSCC and could therefore be a promising therapeutic target. PMID:23467751

  14. Differential ?2-adrenergic receptor expression defines the phenotype of non-tumorigenic and malignant human breast cell lines

    PubMed Central

    Rivero, Ezequiel M.; Galés, Céline; Sénard, Jean-Michel; Lüthy, Isabel A.

    2014-01-01

    Breast cancer is the most frequent malignancy in women. Several reports demonstrated that adrenergic receptors (ARs) are involved in breast cancer. Here we observed that epinephrine (Epi), an endogenous AR agonist, caused opposite effects in non-tumorigenic (MCF-10A and HBL-100) and tumor cells (MCF-7 and MDA-MB-231). Thus, Epi, in non-tumor breast cells, as well as isoproterenol (?-agonist), in all cell lines, maintained a benign phenotype, decreasing cell proliferation and migration, and stimulating cell adhesion. ?-AR expression and cAMP levels were higher in MCF-10A than in MCF-7 cells. ?2-AR knock-down caused a significant increase of cell proliferation and migration, and a decrease of cell adhesion both in basal and in Iso-stimulated conditions. Coincidently, ?2-AR over-expression induced a significant decrease of cell proliferation and migration, and an increase of cell adhesion. Therefore, ?2-AR is implied in cell phenotype and its agonists or antagonists could eventually complement cancer therapy. PMID:25375203

  15. T lymphocytes redirected against the ? light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells

    PubMed Central

    Vera, Juan; Savoldo, Barbara; Vigouroux, Stephane; Biagi, Ettore; Pule, Martin; Rossig, Claudia; Wu, Jessie; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Dotti, Gianpietro

    2006-01-01

    There has been interest in generating T cells expressing chimeric artificial receptors (CARs) targeting CD19/CD20 antigens to treat B-cell lymphomas. If successful, however, this approach would likely impair humoral immunity because T cells may persist long-term. Most low-grade lymphoma and chronic lymphocytic leukemia (B-CLL) cells express monoclonal immunoglobulins carrying either ? or ? light chains. We, therefore, explored whether T lymphocytes could be genetically modified to target the tumor-associated light chain, sparing B lymphocytes expressing the reciprocal light chain, and consequently reduce impairment of humoral immunity. We found that T lymphocytes expressing the anti-? light chain CAR showed cytotoxic activity against Ig?+ tumor cell lines and B-CLL cells both in vitro and in vivo. We also found that the incorporation of the CD28 endodomain within the CAR enhanced the in vitro and in vivo expansion of transgenic T cells after tumor-associated antigen stimulation. Free Ig?+ did not compromise the ability of redirected T lymphocytes to eliminate Ig?+ tumors because these free immunoglobulins served to sustain proliferation of CAR-CD28 transgenic T cells. Thus, adoptive transfer of T lymphocytes targeting the appropriate light chain could be a useful immunotherapy approach to treat B-lymphocyte malignancies that clonally express immunoglobulin without entirely compromising humoral immunity. PMID:16926291

  16. Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring

    PubMed Central

    2013-01-01

    Background Serum biomarkers can improve diagnosis and treatment of malignant pleural mesothelioma (MPM). However, the evaluation of potential new serum biomarker candidates is hampered by a lack of assay technologies for their clinical evaluation. Here we followed a hypothesis-driven targeted proteomics strategy for the identification and clinical evaluation of MPM candidate biomarkers in serum of patient cohorts. Results Based on the hypothesis that cell surface exposed glycoproteins are prone to be released from tumor-cells to the circulatory system, we screened the surfaceome of model cell lines for potential MPM candidate biomarkers. Selected Reaction Monitoring (SRM) assay technology allowed for the direct evaluation of the newly identified candidates in serum. Our evaluation of 51 candidate biomarkers in the context of a training and an independent validation set revealed a reproducible glycopeptide signature of MPM in serum which complemented the MPM biomarker mesothelin. Conclusions Our study shows that SRM assay technology enables the direct clinical evaluation of protein-derived candidate biomarker panels for which clinically reliable ELISA’s currently do not exist. PMID:24207061

  17. Long-term Cultures of Bone Marrow-Derived Human Mesenchymal Stem Cells Frequently Undergo Spontaneous Malignant Transformation

    Microsoft Academic Search

    Gro Vatne Røsland; Agnete Svendsen; Anja Torsvik; Ewa Sobala; Emmet McCormack; Heike Immervoll; Josef Mysliwietz; Roland Goldbrunner; Per Eystein Lønning; Rolf Bjerkvig; Christian Schichor

    2009-01-01

    Human mesenchymal stem cells (hMSC) aid in tissue main- tenance and repair by differentiating into specialized cell types. Due to this ability, hMSC are currently being evaluated for cell-based therapies of tissue injury and degenerative diseases. However, extensive expansion ex vivo is a prerequi- site to obtain the cell numbers required for human cell-based therapy protocols. Recent studies indicate that

  18. 1H- and (31)P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components.

    PubMed

    Lehnhardt, F G; Röhn, G; Ernestus, R I; Grüne, M; Hoehn, M

    2001-08-01

    In vitro NMR spectroscopy was performed on specimen of human brain tumors. From all patients, tissue samples of primary tumors and their first recurrences were examined. (31)P- and (1)H-spectra were recorded from samples of meningioma, astrocytoma and glioblastoma. A double extraction procedure of the tissue samples permitted acquisition of information from the membrane fraction and from the cytosolic fraction. (31)P-spectra were used to analyze the lipophilic fraction (phospholipids of the membrane) of the tissue extracts, while the (1)H-spectra reflected information on the metabolic alterations of the hydrophilic, cytosolic fraction of the tissue. The tumor types showed distinctive spectral patterns in both the (31)P- and the (1)H-spectra. Based on the total detectable (31)P signal, the level of phosphatidylcholine was about 34% lower in primary astrocytomas than in primary glioblastomas (p = 0.0003), whereas the level of sphingomyelin was about 45% lower in primary glioblastomas than in primary astrocytomas (p = 0.0061). A similar tendency of these phospholipids was observed when comparing primary and recurrent astrocytoma samples from the same individuals [+15% (p = 0.0103) and -23% (p = 0.0314) change, respectively]. (1)H-spectra of gliomas were characterized by an increase of the ratios of alanine, glycine and choline over creatine as a function of the degree of malignancy. In agreement with findings in the (31)P-spectra, the (1)H-spectra of recurrent astrocytomas showed metabolic profiles of increased malignancy in comparison to their primary occurrence. Since gliomas tend to increase in malignancy upon recurrence, this may reflect evolving tumor metabolism. (1)H-spectra of meningiomas showed the highest ratio of alanine over creatine accompanied by a near absence of myo-inositol. Phospholipid profiles of meningiomas showed higher fractional contents of phosphatidylcholine along with lower phosphatidylserine compared to astrocytomas, while higher phosphatidylethanolamine and sphingomyelin fractional contents distinguished meningiomas from glioblastomas. The extraction method being used in this study combined with high-resolution (1)H- and (31)P-MRS provides a wide range of biochemical information, which enables differentiation not only between tumor types but also between primary and recurrent gliomas, reflecting an evolving tumor metabolism. PMID:11477651

  19. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers12

    PubMed Central

    Wei, Dongping; Zhang, Qiang; Schreiber, Jason S.; Parsels, Leslie A.; Abulwerdi, Fardokht A.; Kausar, Tasneem; Lawrence, Theodore S.; Sun, Yi; Nikolovska-Coleska, Zaneta; Morgan, Meredith A.

    2015-01-01

    In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1), an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells. PMID:25749177

  20. Induction of calcium sensing receptor in human colon cancer cells by calcium, vitamin D and aquamin: Promotion of a more differentiated, less malignant and indolent phenotype.

    PubMed

    Singh, Navneet; Aslam, Muhammad N; Varani, James; Chakrabarty, Subhas

    2015-07-01

    The calcium sensing receptor (CaSR) is a robust promoter of differentiation in colonic epithelial cells and functions as a tumor suppressor. Cancer cells that do not express CaSR (termed CaSR null) are highly malignant while acquisition of CaSR expression in these cells circumvents the malignant phenotype. We hypothesize that chemopreventive agents mediate their action through the induction of CaSR. Here, we compare the effectiveness of Ca(2+), vitamin D, and Aquamin (a marine algae product containing Ca(2+), magnesium and detectable levels of 72 additional minerals) on the induction of CaSR in the CBS and HCT116 human colon carcinoma cell lines and the corresponding CaSR null cells isolated from these lines. All three agonists induced CaSR mRNA and protein expression and inhibited cellular proliferation in the parental and CaSR null cells. Aquamin was found to be most potent in this regard. Induction of CaSR expression by these agonists resulted in demethylation of the CaSR gene promoter with a concurrent increase in CaSR promoter reporter activity. However, demethylation per se did not induce CaSR transcription. Induction of CaSR expression resulted in a down-regulated expression of tumor inducers and up-regulated expression of tumor suppressors. Again, Aquamin was found to be most potent in these biologic effects. This study provides a rationale for the use of a multi-mineral approach in the chemoprevention of colon cancer and suggests that induction of CaSR may be a measure of the effectiveness of chemopreventive agents. © 2013 Wiley Periodicals, Inc. PMID:26076051

  1. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    SciTech Connect

    Fukumoto, Shinya; Hanazono, Kiwamu [Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan)] [Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Fu, Dah-Renn; Endo, Yoshifumi; Kadosawa, Tsuyoshi [Veterinary Oncology, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan)] [Veterinary Oncology, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Iwano, Hidetomo [Veterinary Biochemistry, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan)] [Veterinary Biochemistry, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Uchide, Tsuyoshi, E-mail: uchide@rakuno.ac.jp [Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan)] [Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan)

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM. These findings suggest that LAT1 could be a new therapeutic target for MM.

  2. Wogonin Induced Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Human Malignant Neuroblastoma Cells Via IRE1?-Dependent Pathway.

    PubMed

    Ge, Wenliang; Yin, Qiyou; Xian, Hua

    2015-07-01

    Wogonin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been reported to exhibit a variety of biological effects including anti-cancer effects. It has a pro-apoptotic role in many cancer types. However, the molecular mechanisms of wogonin in treating neuroblastoma remain elusive. In the present study, two malignant neuroblastoma cell lines (SK-N-BE2 and IMR-32 cells) were treated with different doses of wogonin (0-150 ?M). Wogonin showed significant cytotoxic effects in SK-N-BE2 and IMR-32 cells in a dose- and time-dependent manner. Treatment of SK-N-BE2 and IMR-32 cells with 75 ?? wogonin for 48 h significantly promoted apoptosis, the release of cytochrome c, altered the expression of certain members of Bcl-2 family (Bcl-2, Bax and Bid), and increased the activation of caspase-3, caspase-8, caspase-9, and PARP-1, which demonstrated that the cytotoxic effect of wogonin in SK-N-BE2 and IMR-32 cells is mediated by mitochondrial dysfunction. Moreover, wogonin induced the expression of endoplasmic reticulum (ER) stress-related proteins (GRP78/Bip and GRP94/gp96) and activation of caspase-12 and caspase-4 in SK-N-BE2 and IMR-32 cells. In addition, wogonin increase the expression of IRE1? and TRAF2, and phosphorylation of ASK1 and JNK in SK-N-BE2 and IMR-32 cells. Knockdown of IRE1? by siRNA not only markedly inhibited wogonin-induced up-regulation of IRE1? and TRAF2, and phosphorylation of ASK1 and JNK but also reduced wogonin-induced cytotoxic effects and mitochondrial dysfunction in SK-N-BE2 and IMR-32 cells. These results indicated that wogonin could induce apoptosis, mitochondrial dysfunction, and ER stress in SK-N-BE2 and IMR-32 cells by modulating IRE1?-dependent pathway. PMID:25740014

  3. Phase I study of recombinant human interleukin-2 for pediatric malignancies: feasibility of outpatient therapy. A Pediatric Oncology Group Study.

    PubMed

    Pais, R C; Abdel-Mageed, A; Ghim, T T; Ode, D; Melendez, E; Kim, H S; Findley, H; Ragab, A H

    1992-08-01

    Published data indicate that when recombinant interleukin-2 (rIL-2) is administered to children as a 15-min i.v. bolus, doses of 18 x 10(6) IU/m2 are poorly tolerated, requiring intensive care unit (ICU) management of IL-2-induced hypotension. We administered rIL-2 as a 1- or 2-h i.v. infusion to 11 children with malignancies refractory to conventional therapy. IL-2 was given every Monday/Wednesday/Friday for 3 weeks. Four children received 12 x 10(6) IU/m2/dose, four received 18 x 10(6) IU/m2/dose, and three received 24 x 10(6) IU/m2/dose (1 Cetus Unit = 6 IU). Fever, chills, flushing, nausea, vomiting, transient weight gain, and oliguria were observed at all three dose levels (not dose-limiting toxicities). Cardiovascular toxicity was significantly reduced compared to the bolus regimen. Mild hypotension was observed at all three dose levels; however, there was no severe dose-limiting hypotension. Because of reduced cardiovascular toxicity, IL-2 was safely administered on an outpatient basis. This regimen induced marginal transient increases in natural killer cell activity and lymphokine-activated killer cell activity. No measurable clinical tumor response was observed in any of the 11 children. The maximum-tolerated dose has not been reached. This regimen allows for a considerable cost reduction (outpatient care instead of ICU care) and safety, making further clinical trials on the use of IL-2 in children more feasible. PMID:1504055

  4. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    SciTech Connect

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  5. [Real-time PCR assay for detection and quantification of human adenoviruses in patients with haematological malignancies and symptoms of lower respiratory tract infection].

    PubMed

    Rynans, Sylwia; Dzieciatkowski, Tomasz; Krenke, Rafa?; Grabczak, Magdalena; Ko?kowska-Le?niak, Agnieszka; Przybylski, Maciej; Sulowsk, Agata; Chazan, Ryszarda; Warzocha, Krzysztof; M?ynarczyk, Grazyna

    2011-01-01

    Human adenoviruses (HAdV) are one of the im-portant infectious etiological factors that affect immunocompromised patients. Because of the large number of HAdV serotypes and their genomic variations, they present a lot of difficulty in laboratory diagnostics. The recent introduction of real-time PCR (qPCR)-based assays has opened new ways to rapid, specific, and highly sensitive HAdV detection. For detection and quantification of HAdV DNA we retrospectively tested serum and bronchoalveolar lavage fluid (BALF) samples obtained from a cohort of 60 adult patients with haematological malignancies presenting clinical and radiological symptoms of lower respiratory tract infections. Human adenoviruses DNA was detected by qPCR method, using primers targeting a conserved region of the adenoviral hexon gene and a specific TaqMan probe. Adenovirus infection occurred with a high incidence in our study group patients. Using qPCR we found that a 21,7% and 15,0% of patients had adenoviral DNA in BALF and serum samples, respectively. The high level of sensitivity, specificity and accuracy provided by real-time PCR assay are favorable for the use in the detection of adenoviral DNA in clinical specimens, especially in immunocompromised patients. PMID:21913485

  6. Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms.

    PubMed

    Enayetallah, Ahmed E; French, Richard A; Grant, David F

    2006-05-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a C-terminal epoxide hydrolase activity and an N-terminal phosphatase activity. Arachidonic acid epoxides, previously suggested to be involved in apoptosis, oncogenesis and cell proliferation, are generated by cytochrome P450 epoxygenases and are good substrates of the sEH C-terminal domain. In addition, the N-terminal phosphatase domain hydrolyzes isoprenoid mono- and pyrophosphates, which are involved in cell signaling and apoptosis. Here we provide a comprehensive analysis of the distribution of sEH, CYP2C8, 2C9 and 2J2 in human neoplastic tissues using tissue micro-arrays. The human neoplastic tissue micro-arrays provide a well-controlled side by side analysis of a wide array of neoplastic tissues and their surrounding normal tissue controls. Many of the neoplastic tissues showed altered expression of these enzymes as compared to normal tissues. Altered expression was not limited to the neoplastic tissues but also found in the surrounding non-neoplastic tissues. For example, sEH expression in renal and hepatic malignant neoplasms and surrounding non-neoplastic tissues was found to be significantly decreased, whereas expression was found to be increased in seminoma as compared to normal tissues. Our study warrants further investigation of the role of altered expression of these enzymes in neoplastic tissues. PMID:16957870

  7. Animal models of malignant mesothelioma.

    PubMed

    Kane, Agnes B

    2006-11-01

    Animal models of diffuse malignant mesothelioma have historically been used to assess carcinogenicity of various fiber types and to study the pathogenesis of this unusual neoplasm. Pleural and peritoneal mesotheliomas have been induced in rodents following exposure to erionite or asbestos fibers, radionuclides, particulate nickel compounds, and chemicals such as 3-methylcholanthrene. The role of SV40 virus as a cofactor with asbestos fibers in the development of diffuse malignant mesotheliomas in humans has been explored in animal models. SV40 virus alone induces mesotheliomas in hamsters. Generation of new transgenic mouse strains with targeted expression of SV40 large T and small t antigens in the mesothelium would be very useful for mechanistic studies. Human malignant mesotheliomas frequently show hypermethylation or deletions at the Cdkn2a/Arf and Cdkn2b gene loci and deletions or mutations at the NF2 gene locus. Heterozygous Nf2 (+/-) mice exposed to crocidolite asbestos fibers exhibited accelerated development of malignant mesotheliomas compared to wild-type littermates. Loss of the wild-type Nf2 allele, leading to biallelic inactivation, was observed in nine mesothelioma cell lines derived from Nf2 (+/-) mice. Similar to human malignant mesotheliomas, tumors from Nf2 (+/-) mice showed frequent homozygous deletions of the Cdkn2a/Arf locus and adjacent Cdkn2b tumor suppressor gene. As in the human disease, murine mesotheliomas also showed constitutive activation of Akt. This murine model of asbestos carcinogenesis recapitulates the molecular and histopathological features of the human disease and has significant implications for preclinical testing of novel preventive or therapeutic modalities. PMID:16920675

  8. Emerging role of microRNA-27a in human malignant glioma cell survival via targeting of prohibitin.

    PubMed

    Chen, Wei; Qi, Jun; Bao, Gang; Wang, Tuo; Du, Chang-Wang; Wang, Mao-De

    2015-07-01

    MicroRNAs (miRs) function as oncogenes and tumor suppressors, and have roles in most cellular processes. To date, the possible role of miR-27a, which is part of the miR-23a/27a/24-2 cluster, in malignant gliomas has remained elusive. Therefore, the present study aimed to explore the role of miR-27a in glioma and its potential target. Through transfection with miR-27a inhibitor or oligonucleotide mimics, the impact of miR-27a silencing or overexpression on the growth, apoptosis, cell cycle and invasiveness of U251 and U87MG cells was examined in vitro. The present study initially identified the potential target of miR-27a in glioma cells through a bioinformatics analysis, which was used for screening of the literature on the proteomics of gliomas. Prohibitin (PHB) was then confirmed as a target by absolute luciferase reporter assays, quantitative real-time polymerase chain reaction and western blot analysis. Treatment with miR-27a mimics oligonucleotides suppressed U251 cell proliferation, promoted apoptosis by inducing G2/M phase arrest, and impaired the invasive potential of U251 cells in vitro. In addition, miR-27a expression was downregulated in glioma tissues. A PHB-3'-untranslated region luciferase reporter assay confirmed PHB as a direct target gene of miR-27a. PHB mRNA expression was reversely correlated with levels of miR-27a in U251 cells. Overexpression of miR-27a in U251 cells at 72 h and 96 h post?transfection with miR-27a mimics significantly decreased PHB protein expression by 17.2% and 43.9%, respectively. In conclusion, miR-27a was shown to be a significant tumor suppressor by targeting and decreasing PHB protein expression in glioma U251 cells. miR-27a targeting of PHB may be a novel potential therapeutic strategy for glioma. PMID:25777779

  9. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo.

    PubMed

    Kwon, Su-Jung; Lee, Seul-Ki; Na, Juri; Lee, Shin-Ai; Lee, Han-Sae; Park, Ji-Hye; Chung, June-Key; Youn, Hyewon; Kwon, Jongbum

    2015-02-01

    Radiotherapy treats cancer by inducing DNA double-strand breaks (DSB) in tumor cells using ionizing radiation. However, DNA repair in tumor cells often leads to radioresistance and unsuccessful outcome. Inhibition of DNA repair by targeting repair proteins can increase radiosensitivity of tumor cells. The BRG1 chromatin remodeling enzyme assists DSB repair by stimulating ?-H2AX formation and BRG1 binding to acetylated histones at DSBs via bromodomain (BRD) is critical for this activity. Here, we show that ectopic expression of BRG1-BRD inhibited ?-H2AX and DSB repair after irradiation and increased the radiosensitivity in various human cancer cells, including HT29 colon cancer. Dimerization of BRG1-BRD, increasing its chromatin binding affinity, aggravated the defects in ?-H2AX and DSB repair and further enhanced the radiosensitivity. While little affecting the upstream ATM activation, BRG1-BRD in irradiated HT29 cells inhibited the recruitment of 53BP1 to damaged chromatin, the downstream event of ?-H2AX, and compromised the G2-M checkpoint and increased apoptosis. Importantly, in a xenograft mouse model, BRG1-BRD increased the radiosensitivity of HT29 tumors, which was further enhanced by dimerization. These data suggest that BRG1-BRD radiosensitizes tumor cells by a dominant negative activity against BRG1, which disrupts ?-H2AX and its downstream 53BP1 pathways, leading to inefficient DNA repair, G2-M checkpoint defect, and increased apoptosis. This work therefore identifies BRG1-BRD as a novel tumor radiosensitizer and its action mechanism, providing the first example of chromatin remodeler as a target for improving cancer radiotherapy. PMID:25504753

  10. Enhancement of radiosensitivity by dual inhibition of the HER family with ZD1839 ('Iressa') and trastuzumab ('Herceptin')

    SciTech Connect

    Fukutome, Mika [Department of Radiology, Tokyo Women's Medical University, School of Medicine, Tokyo (Japan)]. E-mail: fukutome@rad.twmu.ac.jp; Maebayashi, Katsuya [Department of Radiology, Tokyo Women's Medical University, School of Medicine, Tokyo (Japan); Nasu, Sachiko [Department of Radiology, Tokyo Women's Medical University, School of Medicine, Tokyo (Japan); Seki, Kaori [Department of Radiology, Tokyo Women's Medical University, School of Medicine, Tokyo (Japan); Mitsuhashi, Norio [Department of Radiology, Tokyo Women's Medical University, School of Medicine, Tokyo (Japan)

    2006-10-01

    Purpose: The aims of this study were twofold: (1) to examine the effects of dual inhibition of 2 members of the HER family, the epidermoid growth factor receptor (EGFR) and HER2/neu, by gefitinib (ZD1839) and trastuzumab on radiosensitivity; and (2) to explore the molecular mechanism of radiosensitization especially focusing on the survival signal transduction pathways by using A431 human vulvar squamous carcinoma cells expressing EGFR and HER2/neu. Methods and Materials: The effects of inhibitors on Radiation-induced activation of EGFR and/or HER2/neu, and the intracellular proteins that are involved in their downstream signaling, were quantified by the Western blot. Radiosensitizing effects by the blockage of EGFR and/or HER2/neu were determined by a clonogenic assay. Results: Radiation-induced activation of the EGFR and HER2/neu was inhibited with ZD1839 and/or trastuzumab. ZD1839 also inhibited Radiation-induced phosphorylation of HER2/neu. Radiation in combination with the HER family inhibitors inhibited the activation of Akt and MEK1/2, the downstream survival signaling of the HER family. ZD1839 enhanced radiosensitivity with a dose-modifying factor (DMF) (SF3) of 1.45 and trastuzumab did so with a DMF (SF3) of 1.11. Simultaneous blockade of EGFR and HER2/neu induced a synergistic radiosensitizing effect with a DMF (SF3) of 2.29. Conclusions: The present data suggest that a dual EGFR and HER2/neu targeting may have potential for radiosensitization in tumors in which both of these pathways are active.

  11. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Department of Neurogenetics, Academic Medical Center, Amsterdam (Netherlands); Berg, Jaap van den [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Stalpers, Lukas J.A. [Department of Radiotherapy, Academic Medical Center, Amsterdam (Netherlands); Lafleur, M. Vincent M. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Leenstra, Sieger [Department of Neurosurgery, Academic Medical Center, Amsterdam (Netherlands); Slotman, Ben J. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Hulsebos, Theo J.M. [Department of Neurogenetics, Academic Medical Center, Amsterdam (Netherlands); Sminia, Peter [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)], E-mail: p.sminia@vumc.nl

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  12. Glial fibrillary acidic protein promoters direct adenovirus early 1A gene and human telomerase reverse transcriptase promoters direct sodium iodide symporter expression for malignant glioma radioiodine therapy.

    PubMed

    Li, Wei; Tan, Jian; Wang, Peng; Li, Ning; Li, Chengxia

    2015-01-01

    Malignant glioma can be treated with radioiodine following transfection with human sodium iodide symporter (hNIS) gene. Ad-Tp-E1A-Gp-NIS is engineered with human telomerase reverse transcriptase (hTERT) and glial fibrillary acidic protein (GFAP) promoters to express early region 1A (E1A) and hNIS genes, which may be useful in targeted gene therapy. The Ad-Tp-E1A-Gp-NIS was constructed and purified using the E1A and hNIS genes regulated by the hTERT and GFAP promoters, respectively. Glioma cells were infected by Ad-Tp-E1A-Gp-NIS. Selective replication ability of Ad-Tp-E1A-Gp-NIS was then evaluated by plaque forming assay, transgene expression by Western blot, (125)I-iodide uptake and efflux, clonogenicity following (131)I-iodide treatment in the tumor cells, and radioiodine therapy using nude mouse model. The Ad-Tp-E1A-Gp-NIS could selectively replicate; the hNIS gene was successfully expressed under the GFAP promoter. Western blot analyses using E1A- and hNIS-specific antibodies revealed two bands of approximately 40 and 70 kDa. In addition, the cells showed about 93.4 and 107.1 times higher (125)I uptake in U251 and U87 cells than in the control cells, respectively. Clonogenic assay indicated that >90% of cells transfected with Ad-Tp-E1A-Gp-NIS were killed. The Ad-Tp-E1A-Gp-NIS-transfected and 2 mCi (131)I-injected U87 xenograft nude mice survived the longest among the three groups. Ad-Tp-E1A-Gp-NIS has a good ability of selective replication and strong antitumor selectivity. An effective therapy of (131)I was achieved activity in malignant glioma cells after induction of tumor-specific iodide uptake activity by GFAP promoter-directed hNIS gene expression in vitro and in vivo. PMID:25410753

  13. Malignant transformation of human colon epithelial cells by benzo[c]phenanthrene dihydrodiolepoxides as well as 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine

    SciTech Connect

    Herbst, Uta [Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Fuchs, Judith Iris [Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Teubner, Wera [Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Steinberg, Pablo [Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal (Germany)]. E-mail: steinber@rz.uni-potsdam.de

    2006-04-15

    Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) ingested with food have repeatedly been suggested to be involved in the malignant transformation of colon epithelial cells. In order to test this hypothesis, HCEC cells (SV40 large T antigen-immortalized human colon epithelial cells) were incubated with a racemic mixture of benzo[c]phenanthrene dihydrodiol epoxides (B[c]PhDE), extremely potent carcinogenic PAH metabolites in vivo, or with 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), the N-hydroxylated metabolite of the most abundant HCA in cooked meat. First, it was shown that HCEC cells express sulfotransferase 1A1, which is needed to metabolize N-OH-PhIP to the corresponding N-sulfonyloxy derivative, the direct precursor molecule of genotoxic nitrenium ions. Thereafter, exponentially growing HCEC cells were exposed five times to 0.1 {mu}g (0.37 nmol) B[c]PhDE/ml for 30 min or 0.72 {mu}g (3 nmol) N-OH-PhIP/ml for 24 h. Chemically treated HCEC cells showed an enhanced saturation density and grew faster than the corresponding solvent-treated cell cultures. After five treatment cycles, HCEC{sup B[c]PhDE} as well as HCEC {sup N-OH-PhIP} cells lost cell-cell contact inhibition and started piling up and forming foci in the culture flasks. Furthermore, HCEC{sup B[c]PhDE} and HCEC {sup N-OH-PhIP} cells were injected i.m. into SCID mice. Within 6 weeks after injection, eight animals out of eight injected with HCEC{sup B[c]PhDE} or HCEC {sup N-OH-PhIP} cells developed tumors at the site of injection, thus demonstrating the high tumorigenic potential of the HCEC{sup B[c]PhDE} and HCEC {sup N-OH-PhIP} cell cultures. Taken together, we show for the first time that the abovementioned active PAH metabolites as well as N-OH-PhIP are indeed able to malignantly transform human colon epithelial cells in vitro.

  14. Sleeping Beauty Transposon?mediated Engineering of Human Primary T Cells for Therapy of CD19+ Lymphoid Malignancies

    Microsoft Academic Search

    Xin Huang; Hongfeng Guo; Johnthomas Kang; Suet Choi; Tom C Zhou; Syam Tammana; Christopher J Lees; Michael Milone; Bruce L Levine; Jakub Tolar; Carl H June; R Scott McIvor; John E Wagner; Bruce R Blazar; Xianzheng Zhou

    2008-01-01

    We have reported earlier that the non?viral Sleeping Beauty (SB) transposon system can mediate genomic integration and long?term reporter gene expression in human primary peripheral blood (PB) T cells. In order to test whether this system can be used for genetically modifying both PB T cells and umbilical cord blood (UCB) T cells as graft?versus?leukemia effector cells, an SB transposon

  15. PTEN gene transfer in human malignant glioma: sensitization to irradiation and CD95L-induced apoptosis

    Microsoft Academic Search

    Wolfgang Wick; Frank B Furnari; Ulrike Naumann; Webster K Cavenee; Michael Weller

    1999-01-01

    The tumor suppressor gene PTEN (MMAC1, TEP1) encodes a dual-specificity phosphatase and is considered a progression-associated target of genetic alterations in human gliomas. Recently, it has been reported that the introduction of wild type PTEN into glioma cells containing endogenous mutant PTEN alleles (U87MG, LN-308), but not in those which retain wild-type PTEN (LN-18, LN-229), causes growth suppression and inhibits

  16. On the mechanism of salivary gland radiosensitivity

    SciTech Connect

    Konings, Antonius W.T. [Department of Radiation and Stress Cell Biology, University of Groningen, Groningen (Netherlands)]. E-mail: a.w.t.konings@med.rug.nl; Coppes, Rob P. [Department of Radiation and Stress Cell Biology, University of Groningen, Groningen (Netherlands); Department of Radiation Oncology, University Hospital Groningen, Groningen (Netherlands); Vissink, Arjan [Department of Oral and Maxillofacial Surgery, University Hospital, Groningen (Netherlands)

    2005-07-15

    Purpose: To contribute to the understanding of the enigmatic radiosensitivity of the salivary glands by analysis of appropriate literature, especially with respect to mechanisms of action of early radiation damage, and to supply information on the possibilities of amelioration of radiation damage to the salivary glands after radiotherapy of head-and-neck cancer. Methods and Materials: Selected published data on the mechanism of salivary gland radiosensitivity and radioprotection were studied and analyzed. Results: From a classical point of view, the salivary glands should not respond as rapidly to radiation as they appear to do. Next to the suggestion of massive apoptosis, the leakage of granules and subsequent lysis of acinar cells was suggested to be responsible for the acute radiation-induced function loss of the salivary glands. The main problem with these hypotheses is that recently performed assays show no cell loss during the first days after irradiation, while saliva flow is dramatically diminished. The water secretion is selectively hampered during the first days after single-dose irradiation. Literature is discussed that shows that the compromised cells suffer selective radiation damage to the plasma membrane, disturbing signal transduction primarily affecting watery secretion. Although the cellular composition of the submandibular gland and the parotid gland are different, the damage response is very alike. The acute radiation-induced function loss in both salivary glands can be ameliorated by prophylactic treatment with specific receptor agonists. Conclusions: The most probable mechanism of action, explaining the enigmatic high radiosensitivity for early effects, is selective radiation damage to the plasma membrane of the secretory cells, disturbing muscarinic receptor stimulated watery secretion. Later damage is mainly due to classical mitotic cell death of progenitor cells, leading to a hampered replacement capacity of the gland for secretory cells, but is also caused by damage to the extracellular environment, preventing proper cell functioning.

  17. Clinical radiobiology of malignant melanoma.

    PubMed

    Bentzen, S M; Overgaard, J; Thames, H D; Overgaard, M; Vejby Hansen, P; von der Maase, H; Meder, J

    1989-11-01

    Tumor-control probability (TCP) was analyzed in a series of 121 patients having 239 histologically proven recurrent or metastatic malignant melanomas. These were treated with fractionated radiotherapy with various doses per fraction, total doses, and overall times. Cutaneous lesions (127, 53%) were treated with electron beams, and more deeply seated tumors (112, 47%) with 60Co or 4-8 MV X-rays. The fraction size was highly variable, and this permitted determination of the alpha/beta ratio in the multifraction linear-quadratic model, which was estimated at 0.57 Gy with 95% confidence limits [-1.07, 2.5] Gy. Treatment time had no demonstrable influence on TCP. Thus this tumor exhibits the fractionation sensitivity characteristic of a late-responding normal tissue, suggesting that an adequate fractionation schedule for malignant melanomas would be characterized by larger-than-conventional doses per fraction, possibly about 6 Gy per fraction. This is consistent with the conclusions of other authors. Tumor size, evaluated as mean tumor diameter, S, had a major impact on TCP: the number of target cells increased as a power function of S with exponent 0.72 (95% confidence limits [0.49, 0.94]. In fact, a considerable amount of the heterogeneity in the dose-response data could be removed by accounting for size. Thus, the weak or absent dose response became highly significant. When a patient had multiple lesions, the responses of these to radiotherapy tended to be similar, thus implying that results were significantly influenced by a "hidden parameter" (such as inherent radiosensitivity or immunological status). A test of the predictive value of the TCP-model was performed in a different series of 183 cutaneous and lymph node malignant melanomas. The observed dose-response relationship in this data set was in good agreement with the model prediction. A chi-square test for goodness-of-fit showed that the variation between predicted and observed results could be explained by the binomial variation on quantal response data. PMID:2587808

  18. Resibufogenin Induces G1-Phase Arrest through the Proteasomal Degradation of Cyclin D1 in Human Malignant Tumor Cells

    PubMed Central

    Ichikawa, Masami; Sowa, Yoshihiro; Iizumi, Yosuke; Aono, Yuichi; Sakai, Toshiyuki

    2015-01-01

    Huachansu, a traditional Chinese medicine prepared from the dried toad skin, has been used in clinical studies for various cancers in China. Resibufogenin is a component of huachansu and classified as bufadienolides. Resibufogenin has been shown to exhibit the anti-proliferative effect against cancer cells. However, the molecular mechanism of resibufogenin remains unknown. Here we report that resibufogenin induces G1-phase arrest with hypophosphorylation of retinoblastoma (RB) protein and down-regulation of cyclin D1 expression in human colon cancer HT-29 cells. Since the down-regulation of cyclin D1 was completely blocked by a proteasome inhibitor MG132, the suppression of cyclin D1 expression by resibufogenin was considered to be in a proteasome-dependent manner. It is known that glycogen synthase kinase-3? (GSK-3?) induces the proteasomal degradation of cyclin D1. The addition of GSK-3? inhibitor SB216763 inhibited the reduction of cyclin D1 caused by resibufogenin. These effects on cyclin D1 by resibufogenin were also observed in human lung cancer A549 cells. These findings suggest that the anti-proliferative effect of resibufogenin may be attributed to the degradation of cyclin D1 caused by the activation of GSK-3?. PMID:26121043

  19. Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors

    PubMed Central

    Mazzoleni, Stefania; Jachetti, Elena; Morosini, Sara; Grioni, Matteo; Piras, Ignazio Stefano; Pala, Mauro; Bulfone, Alessandro; Freschi, Massimo

    2013-01-01

    Abstract The relevant social and economic impact of prostate adenocarcinoma, one of the leading causes of death in men, urges critical improvements in knowledge of the pathogenesis and cure of this disease. These can also be achieved by implementing in vitro and in vivo preclinical models by taking advantage of prostate cancer stem cells (PCSCs). The best-characterized mouse model of prostate cancer is the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. TRAMP mice develop a progressive lesion called prostatic intraepithelial neoplasia that evolves into adenocarcinoma (AD) between 24 and 30 weeks of age. ADs often metastasize to lymph nodes, lung, bones, and kidneys. Eventually, approximately 5% of the mice develop an androgen-independent neuroendocrine adenocarcinoma. Here we report the establishment of long-term self-renewing PCSC lines from the different stages of TRAMP progression by application of the neurosphere assay. Stage-specific prostate cell lines were endowed with the critical features expected from malignant bona fide cancer stem cells, namely, self-renewal, multipotency, and tumorigenicity. Notably, transcriptome analysis of stage-specific PCSCs resulted in the generation of well-defined, meaningful gene signatures, which identify distinct stages of human tumor progression. As such, TRAMP-derived PCSCs represent a novel and valuable preclinical model for elucidating the pathogenetic mechanisms leading to prostate adenocarcinoma and for the identification of molecular mediators to be pursued as therapeutic targets. PMID:23884639

  20. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    Microsoft Academic Search

    Zhouguang Hui; Maria Tretiakova; Zhongfa Zhang; Yan Li; Xiaozhen Wang; Julie Xiaohong Zhu; Yuanhong Gao; Weiyuan Mai; Kyle Furge; Chao-Nan Qian; Robert Amato; E. Brian Butler; Bin Tean Teh; Bin S. Teh

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human

  1. Radioinduced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome

    Microsoft Academic Search

    Steve Heymann; Suzette Delaloge; Arslane Rahal; Olivier Caron; Thierry Frebourg; Lise Barreau; Corinne Pachet; Marie-Christine Mathieu; Hugo Marsiglia; Céline Bourgier

    2010-01-01

    BACKGROUND: There are no specific recommendations for the management of breast cancer patients with germ-line p53 mutations, an exceptional genetic condition, particularly regarding postoperative radiotherapy. Preclinical data suggested that p53 mutations conferred enhanced radiosensitivity in vitro and in vivo and the few clinical observations showed that Li-Fraumeni families were at a higher risk of secondary radio-induced malignancies. METHODS: We reviewed

  2. Phenethyl isothiocyanate inhibits in vivo growth of subcutaneous xenograft tumors of human malignant melanoma A375.S2 cells.

    PubMed

    Ni, Wei-Ya; Lu, Hsu-Feng; Hsu, Shu-Chun; Hsiao, Yu-Ping; Liu, Kuo-Ching; Liu, Jia-You; Ji, Bin-Chuan; Hsueh, Shu-Ching; Hung, Fang-Ming; Shang, Hung-Sheng; Chung, Jing-Gung

    2014-01-01

    Numerous studies have shown that phenethyl isothiocyanate (PEITC) induces apoptosis of different types of human cancer cell lines, however, there are no reports showing that PEITC inhibits tumor growth in a xenograft model of melanoma in nude mice. We investigated effects of PEITC on the growth of xenografted A375.S2 cell tumors in nude BALB/c mice. A375.S2 cancer cells were inoculated subcutaneously into the lower flanks of mice. Seven days post-inoculation, mice having one palpable tumor were randomly divided into three groups and injected intraperitoneally with PEITC (0, 20 and 40 mg/kg). PEITC reduced tumor weight but total body weight was unaffected. These in vivo results provide support for further investigations to determine the potential use of PEITC as an anticancer drug. PMID:25189905

  3. 2-(4-Chlorophenyl)benzo-1,4-quinone induced ROS-signaling inhibits proliferation in human non-malignant prostate epithelial cells.

    PubMed

    Chaudhuri, Leena; Sarsour, Ehab H; Goswami, Prabhat C

    2010-11-01

    Polychlorinated biphenyls (PCBs) and their metabolites are environmental chemical contaminants which can produce reactive oxygen species (ROS) by auto-oxidation of di-hydroxy PCBs as well as the reduction of quinones and redox-cycling. We investigate the hypothesis that 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3), induced ROS-signaling inhibits cellular proliferation. Monolayer cultures of exponentially growing asynchronous human non-malignant prostate epithelial cells (RWPE-1) were incubated with 0-6 ?M of 4-Cl-BQ and harvested at the end of 72 h of incubation to assess antioxidant enzyme expression, cellular ROS levels, cell growth, and cell cycle phase distributions. 4-Cl-BQ decreased manganese superoxide dismutase (MnSOD) activity, protein, and mRNA levels. 4-Cl-BQ treatment increased dihydroethidium (DHE) fluorescence, which was suppressed in cells pretreated with polyethylene glycol conjugated superoxide dismutase (PEG-SOD). The increase in ROS levels was associated with a decrease in cell growth, and an increase in the percentage of S-phase cells. These effects were suppressed in cells pretreated with PEG-SOD. 4-Cl-BQ treatment did not change the protein levels of phosphorylated H2AX at the end of 72 h of incubation, suggesting that the inhibition in cell growth and accumulation of cells in S-phase at the end of the treatments were probably not due to 4-Cl-BQ induced DNA double strand break. These results demonstrate that MnSOD activity and ROS-signaling perturb proliferation in 4-Cl-BQ treated in vitro cultures of human prostate cells. PMID:20163859

  4. The hydroxyl functional group of N-(4-hydroxyphenyl)retinamide mediates cellular uptake and cytotoxicity in premalignant and malignant human epithelial cells

    PubMed Central

    Hail, Numsen; Chen, Ping; Wempe, Michael F.

    2010-01-01

    In a previous study, we demonstrated that the anticancer synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) redox cycles at the mitochondrial enzyme dihydroorotate dehydrogenase to trigger anomalous reactive oxygen species (ROS) production and attendant apoptosis in transformed human epithelial cells. Furthermore, we speculated that the hydroxyl functional group of 4HPR was required for this prooxidant property. In this study, we investigated the role of the hydroxyl functional group in 4HPR's in vitro cytotoxicity. Using 4HPR, its primary in vivo metabolite N-(4-methoxyphenyl)retinamide (4MPR), and the synthetic derivative N-(4-trifluromethylphenyl)retinamide (4TPR), we examined the prooxidant and apoptotic effects, as well as the cellular uptake, of these three N-(4-substituted-phenyl)retinamides in premalignant and malignant human skin, prostate, and breast epithelial cells. Compared to 4HPR, both 4MPR and 4TPR were ineffective in promoting conspicuous cellular ROS production, mitochondrial disruption, or DNA fragmentation in these transformed cells. Interestingly, both 4MPR and 4TPR were not particularly cell permeant relative to 4HPR in skin or breast epithelial cells, which implicated an additional role for the hydroxyl functional group in 4HPR's cellular uptake. Moreover, the short-term uptake of 4HPR was directly proportional to cell size, but this characteristic, in obvious contrast to cellular bioenergetic status and/or dihydroorotate dehydrogenase expression, was not fundamentally influential in the overall sensitivity to the promotion of cellular ROS production and apoptosis induction by this agent. Together, these results strongly implicate the hydroxyl functional group in the cytotoxic effects of 4HPR. PMID:20923701

  5. Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells

    PubMed Central

    Hail, Numsen; Chen, Ping; Kepa, Jadwiga J.

    2010-01-01

    Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR's effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR's cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ?0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR's apoptogenic signaling in transformed human prostate epithelial cells. PMID:19421858

  6. Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1?.

    PubMed

    Yang, Xi; Zhu, Hongcheng; Ge, Yangyang; Liu, Jia; Cai, Jing; Qin, Qin; Zhan, Liangliang; Zhang, Chi; Xu, Liping; Liu, Zheming; Yang, Yan; Yang, Yuehua; Ma, Jianxin; Cheng, Hongyan; Sun, Xinchen

    2014-10-01

    Hypoxia is a widespread phenomenon present in many human solid tumors and is associated with a poor prognosis and therapy resistance. Here, we tested the feasibility of melittin, a major component of bee venom, on radiosensitization of hypoxic head and neck squamous cell carcinoma (HNSCC). CNE-2 and KB cells were treated with melittin and radiation response was determined. Cell viability, cytotoxicity and apoptosis induction were examined by CCK-8 assay, colony formation assay, and flow cytometry. Expression of hypoxia-inducible factor 1-alpha (HIF-1?) and vascular endothelial growth factor (VEGF) proteins were assessed using western blotting. Additionally, we also examined the effect of melittin on tumor growth and radiosensitivity in vivo using a xenograft model of HNSCC. Treatment with melittin resulted in cell growth inhibition, induction of cell apoptosis, and reduction of HIF-1? and VEGF expression, which has been linked to hypoxia cell radioresistance. In addition, intraperitoneal injection of melittin significantly reduced the growth of HNSCC tumors in CNE-2 tumor-bearing mice. These data suggest that melittin enhances radiosensitivity of HNSCC under hypoxia condition, and this is associated with the suppression of HIF-1? expression. Melittin appears to be a potential radiotherapy sensitization agent due to its significant antihypoxia activity. PMID:25053591

  7. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells.

    PubMed

    Generalov, Roman; Kuan, Woo Boon; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2015-05-01

    Nanoparticulates responsive to X-rays offer increased efficacy of radiation therapy. However, successful demonstrations of such nanoparticle use are limited so far due to lack of significant radiosensitizing effects or poor nanoparticle stability in a biological system. Zinc oxide (ZnO) is the most promising biocompatible material for medicinal applications. In this paper, we report preparation and characterization of scintillating ZnO/SiO2 core-shell nanoparticles. The ZnO/SiO2 nanoparticles absorb ultraviolet (UV) radiation (below 360nm) and emit green fluorescence (400-750nm, maximum 550nm). Under X-ray irradiation (200kVp), the nanoparticles scintillate emitting luminescence in the region 350-700nm (maximum 420nm). The synthesized ZnO/SiO2 nanoparticles are stable in a biologically relevant environment (water and cell growth medium). The potential of the ZnO/SiO2 nanoparticles for radiosensitization is demonstrated in human prostate adenocarcinoma cell lines (LNCaP and Du145). The nanoparticles enhance radiation-induced reduction in cell survival about 2-fold for LNCaP and 1.5-fold for Du145 cells. Radiosensitizing effect can be attributed to X-ray-induced radiocatalysis by the nanoparticles. PMID:25829130

  8. MicroRNA-449a Enhances Radiosensitivity in CL1-0 Lung Adenocarcinoma Cells

    PubMed Central

    Liu, Yi-Jyun; Lin, Yu-Fen; Chen, Yi-Fan; Luo, En-Ching; Sher, Yuh-Ping; Tsai, Mong-Hsun; Chuang, Eric Y.; Lai, Liang-Chuan

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer, but it often fails because of the relative non-susceptibility of lung cancer cells to radiation. MicroRNAs (miRNAs) have been reported to modulate the radiosensitivity of lung cancer cells and have the potential to improve the efficacy of radiotherapy. The purpose of this study was to identify a miRNA that can adjust radiosensitivity in lung adenocarcinoma cells. Two lung adenocarcinoma cell lines (CL1-0 and CL1-5) with different metastatic ability and radiosensitivity were used. In order to understand the regulatory mechanisms of differential radiosensitivity in these isogenic tumor cells, both CL1-0 and CL1-5 were treated with 10 Gy radiation, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The changes in expression of miRNA upon irradiation were examined using Illumina Human microRNA BeadChips. Twenty-six miRNAs were identified as having differential expression post-irradiation in CL1-0 or CL1-5 cells. Among these miRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Overexpression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation. PMID:23614048

  9. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    SciTech Connect

    Guttmann, David M.; Hart, Lori [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Du, Kevin [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Seletsky, Andrew [Department of Biology, Drexel University, Philadelphia, Pennsylvania (United States); Koumenis, Constantinos, E-mail: koumenis@xrt.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and ?H2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  10. Human epidemiology: a review of fiber type and characteristics in the development of malignant and nonmalignant disease.

    PubMed

    Merchant, J A

    1990-08-01

    Consideration of the human epidemiology of diseases arising from exposure to naturally occurring and man-made mineral fibers encompasses the several forms of asbestos (chrysotile, crocidolite, amosite, anthophyllite, tremolite-actinolite), other naturally occurring silicates (talc, sepiolite, erionite, attapulgite, vermiculite, and wollastonite), and man-made mineral fibers (glass continuous filament, glass/rock/slag insulation wools, ceramic and other refractory fibers, and glass microfibers). The diseases arising from exposures to some of these fibers include pleural thickening (plaques, diffuse pleural thickening, and calcification), pulmonary fibrosis, lung cancers, mesothelioma of the pleura and peritoneum, and other cancers). Risk factors important in assessing these diseases include assessment of latency, duration of exposure, cumulative exposure, fiber origin and characteristics (length and diameter), other possible confounding occupational or environmental exposures, and smoking. Methodological issues commonly presenting problems in evaluation of these data include assessment of the adequacy of environmental exposures, particularly in regard to fiber identification, distribution, and concentration over the duration of exposure, and the adequacy of study design to detect health effects (disease frequency, latency, and cohort size). Research priorities include further assessment and standardization of pleural thickening relative to fiber exposure, uniform mesothelioma surveillance, further epidemiological assessment of certain silicate and man-made mineral fiber cohorts with emphasis given to assessment of tremolite and small diameter glass and ceramic fibers. Further assessment of possible health risks of the general public should await improved definition of relevant fiber exposure in ambient air. PMID:2272325

  11. Ependymomas, malignant tumors of pancreatic islets, and osteosarcomas induced in hamsters by BK virus, a human papovavirus.

    PubMed

    Corallini, A; Altavilla, G; Cecchetti, M G; Fabris, G; Grossi, M P; Balboni, P G; Lanza, G; Barbanti-Brodano, G

    1978-09-01

    BK virus (BKV), a human papovavirus, was inoculated iv into 3-week-old Syrian golden hamsters. Between 2 1/2 and 9 months after inoculation, 82% of the animals developed tumors. The induced neoplasms were ependymoma, carcinoma of the pancreatic islets, osteosarcoma, adenocarcinoma, angiosarcoma, angioma, lymphoma, and seminoma. Hypersecretion of insulin, glucagon, C-peptide, and calcitonin was detected in tumors of pancreatic islets. BKV etiology of tumors was supported by the following evidence: 1) No tumors with BKV-specific markers appeared in animals given injections of buffer, animals inoculated with BKV neutralized by anti-BKV-specific serum, or uninoculated controls; 2) BKV tumor (T) antigen was detected by immunofluorescence and complement fixation tests in tumors of animals inoculated with infectious BKV and in transplanted tumors; 3) antibodies to BKV T-antigen were detected in sera of animals bearing primary or transplanted tumors; 4) BKV could be activated by Sendai virus-mediated fusion of neoplastic cells with susceptible Vero cells; and 5) no endogenous hamster oncornaviruses were found in tumors. PMID:211243

  12. A comparative study on non-confluent and confluent human malignant brain cancer metabolic response to He-Ne laser exposures: evidence for laser enhanced cellular production of H2O2 and laser induced bystander effect

    Microsoft Academic Search

    Darrell B. Tata; Ronald W. Waynant

    2009-01-01

    Continuous wave He-Ne laser exposures (Intensity = 35 mW\\/cm2, lambda=632.8nm, Fluence range: 1J\\/cm2 to 50 J\\/cm2) on non-confluent and fully confluent human malignant glioblastoma cells was found to increase the cellular production levels of H2O2. Modulations in the cellular metabolic activity were detected (through the MTS assay) three days after the laser irradiation. The metabolic activity was found to be

  13. CD133, CD15\\/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

    Microsoft Academic Search

    Cristina Patru; Luciana Romao; Pascale Varlet; Laure Coulombel; Eric Raponi; Josette Cadusseau; François Renault-Mihara; Cécile Thirant; Nadine Leonard; Alain Berhneim; Maria Mihalescu-Maingot; Jacques Haiech; Ivan Bièche; Vivaldo Moura-Neto; Catherine Daumas-Duport; Marie-Pierre Junier; Hervé Chneiweiss

    2010-01-01

    BACKGROUND: Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies. METHODS: We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. RESULTS: A long-term self-renewal capacity was

  14. Change in radiosensitivity of rats during hypokinetic stress

    NASA Technical Reports Server (NTRS)

    Chernov, I. P.

    1980-01-01

    The laws governing stress modification of radiation sickness in relation to hypokinetic stress were investigated. It was found that gamma irradiation (800 rad) of rats on the third day of exposure to hypokinesia increased the radiosensitivity of the animals which was determined by the survival rate and the dynamics of body weight and the weight of some internal organs. The same radiation dose was given on the 20th day of hypokinesia and on the third day of recovery from the 20 day hypokinesia decreased the radiosensitivity of rats. It is concluded that the variations in the radiosensitivity observed may be due to a stress effect of hypokinesia.

  15. Silencing Fibronectin Extra Domain A Enhances Radiosensitivity in Nasopharyngeal Carcinomas Involving an FAK/Akt/JNK Pathway

    SciTech Connect

    Ou Juanjuan; Pan Feng; Geng Peiliang; Wei Xing; Xie Ganfeng; Deng Jia; Pang Xueli [Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liang Houjie, E-mail: lianghoujie@sina.com [Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2012-03-15

    Purpose: Fibronectin extra domain A (EDA) is known to play important roles in angiogenesis, lymphangiogenesis, and metastasis in malignant tumors. The present study examined the effect of EDA on the radioresistance potential of nasopharyngeal carcinoma (NPC). Methods and Materials: EDA expression levels in blood samples and tumor tissues of NPC patients were tested by enzyme-linked immunosorbent assay and immunohistochemistry. Radiosensitivity was tested by colony survival assay. Apoptosis was determined by flow cytometry. The expressions of EDA, cleaved caspase 9, cleaved caspase 3, cleaved PARP, Bcl-2, and the levels of phosphorylated FAK, Akt, and JNK were measured by Western blot. Xenografts were used to confirm the effect of EDA on radiosensitivity in vivo. Results: EDA levels in blood samples of advanced NPC patients were much higher than those in early-stage patients. In tumor tissues, the positive expressions of EDA in NPC tumor tissues were shown to be correlated with the differentiation degrees of cancer cells and lymph node metastases. Additionally, the expression of EDA is positively correlated with the expression of antiapoptotic gene (Bcl2), but negatively correlated with the expressions of apoptotic genes (cleaved caspase-3, cleaved caspase-9, cleaved PARP). In vitro, EDA-silenced NPC cells CNE-2 shows substantially enhanced radiosensitivity with lower colony survival and more apoptosis in response to radiation. In vivo, EDA-silenced xenografts were more sensitive to radiation. At the molecular level, FAK/Akt/JNK signaling was demonstrated to be inactivated in EDA-silenced CNE-2 cells. Conclusions: EDA strongly affected the radiosensitivity of NPC cells. FAK/Akt/JNK signaling was found to be a potential signaling mediating EDA function.

  16. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)] [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)] [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)] [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)] [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States) [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  17. Can Drugs Enhance Hypofractionated Radiotherapy? A Novel Method of Modeling Radiosensitization Using In Vitro Data

    SciTech Connect

    Ohri, Nitin; Dicker, Adam P. [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lawrence, Yaacov Richard, E-mail: yaacovla@gmail.com [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Center for Translational Research in Radiation Oncology, Sheba Medical Center, Tel Hashomer (Israel)

    2012-05-01

    Purpose: Hypofractionated radiotherapy (hRT) is being explored for a number of malignancies. The potential benefit of giving concurrent chemotherapy with hRT is not known. We sought to predict the effects of combined modality treatments by using mathematical models derived from laboratory data. Methods and Materials: Data from 26 published clonogenic survival assays for cancer cell lines with and without the use of radiosensitizing chemotherapy were collected. The first three data points of the RT arm of each assay were used to derive parameters for the linear quadratic (LQ) model, the multitarget (MT) model, and the generalized linear quadratic (gLQ) model. For each assay and model, the difference between the predicted and observed surviving fractions at the highest tested RT dose was calculated. The gLQ model was fitted to all the data from each RT cell survival assay, and the biologically equivalent doses in 2-Gy fractions (EQD2s) of clinically relevant hRT regimens were calculated. The increase in cell kill conferred by the addition of chemotherapy was used to estimate the EQD2 of hRT along with a radiosensitizing agent. For comparison, this was repeated using conventionally fractionated RT regimens. Results: At a mean RT dose of 8.0 Gy, the average errors for the LQ, MT, and gLQ models were 1.63, 0.83, and 0.56 log units, respectively, favoring the gLQ model (p < 0.05). Radiosensitizing chemotherapy increased the EQD2 of hRT schedules by an average of 28% to 82%, depending on disease site. This increase was similar to the gains predicted for the addition of chemotherapy to conventionally fractionated RT. Conclusions: Based on published in vitro assays, the gLQ equation is superior to the LQ and MT models in predicting cell kill at high doses of RT. Modeling exercises demonstrate that significant increases in biologically equivalent dose may be achieved with the addition of radiosensitizing agents to hRT. Clinical study of this approach is warranted.

  18. Synergistic Effects of the Green Tea Extract Epigallocatechin-3-gallate and Taxane in Eradication of Malignant Human Prostate Tumors1

    PubMed Central

    Stearns, Mark E; Wang, Min

    2011-01-01

    We have examined whether epigallocatechin-3-gallate (EGCG), and extract of green tea, in combination with taxane (i.e., paclitaxel and docetaxel), exerts a synergistic activity in blocking human prostate PC-3ML tumor cell growth in vitro and in vivo. Growth assays in vitro revealed that the IC50 values were ?30 µM, ?3 nM, and ?6 nM, for EGCG, paclitaxel and docetaxel, respectively. Isobolograms generated from the data clearly indicated that EGCG in combination with paclitaxel or docetaxel had an additive effect in blocking tumor cell growth. EGCG combined with taxane also had an additive effect to increase the expression of apoptotic genes, (p53, p73, p21, and caspase 3) and the percent apoptosis observed in vitro and in tumor modeling studies in severe combined immunodeficient mice. The tumor modeling studies clearly showed that EGCG plus taxane injected intraperitoneally (i.p.) induced a significant increase in apoptosis rates (TUNEL assays) and eliminated preexisting tumors generated from PC-3ML cells implanted i.p., increasing disease-free survival rates to greater than 90%. More importantly, the combination therapy (i.p. biweekly) blocked metastases after intravenous injection of PC-3ML cells through the tail vein. In mice treated with EGCG plus taxane, the disease-free survival rates increased from 0% (in untreated mice) to more than 70% to 80% in treated mice. Taken together, these data demonstrate for the first time that EGCG in combination with taxane may provide a novel therapeutic treatment of advanced prostate cancer. PMID:21633670

  19. Sequential hTERT knockdown and apigenin treatment inhibited invasion and proliferation and induced apoptosis in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cells.

    PubMed

    Chakrabarti, Mrinmay; Banik, Naren L; Ray, Swapan K

    2013-09-01

    Human telomerase reverse transcriptase (hTERT) plays a key role in conferring immortality to human malignant neuroblastomas. We first determined differential expression of hTERT in four human malignant neuroblastoma SH-SY5Y, SK-N-DZ, SK-N-BE2, and IMR-32 cell lines. We then used SK-N-DZ and SK-N-BE2 cell lines, which showed the highest expression of hTERT, to investigate the therapeutic effects of sequential hTERT knockdown and apigenin (APG) treatment. We performed cell invasion assay and studied alterations in expression of matrix metalloproteinases and cell cycle regulatory molecules after this combination therapy. We also investigated induction of apoptosis by using in situ Wright staining, Annexin V staining, and Western blotting. Sequential hTERT knockdown and APG treatment significantly downregulated expression of hTERT so as to cause over 90 % inhibition of cell invasion and 70 % induction of apoptosis in both SK-N-DZ and SK-N-BE2 cell lines. Western blotting demonstrated downregulation of the molecules involved in cell invasion and proliferation, but upregulation of the cell cycle inhibitor and apoptosis-inducing molecules. In conclusion, our current results clearly showed that sequential hTERT knockdown and APG treatment could be a promising therapeutic strategy for effective inhibition of invasion and proliferation and induction of apoptosis in hTERT overexpressing malignant neuroblastoma cells. PMID:23417743

  20. From Melanocyte to Metastatic Malignant Melanoma

    PubMed Central

    Bandarchi, Bizhan; Ma, Linglei; Navab, Roya; Seth, Arun; Rasty, Golnar

    2010-01-01

    Malignant melanoma is one of the most aggressive malignancies in human and is responsible for almost 60% of lethal skin tumors. Its incidence has been increasing in white population in the past two decades. There is a complex interaction of environmental (exogenous) and endogenous, including genetic, risk factors in developing malignant melanoma. 8–12% of familial melanomas occur in a familial setting related to mutation of the CDKN2A gene that encodes p16. The aim of this is to briefly review the microanatomy and physiology of the melanocytes, epidemiology, risk factors, clinical presentation, historical classification and histopathology and, more in details, the most recent discoveries in biology and genetics of malignant melanoma. At the end, the final version of 2009 AJCC malignant melanoma staging and classification is presented. PMID:20936153

  1. Honokiol as a Radiosensitizing Agent for Colorectal cancers.

    PubMed

    He, Zhiyun; Subramaniam, Dharmalingam; Zhang, Zhongtao; Zhang, Youcheng; Anant, Shrikant

    2013-12-01

    Radioresistance is a frustrating obstacle for patients with colorectal cancers (CRCs) undergoing radiotherapy. There is an urgent need to find an effective agent to increase the sensitivity of CRCs to radiation. Honokiol, an active compound purified from Magnolia, was found to radiosensitize colorectal cancer cells both in vitro and in vivo. However, the mechanisms control important signaling that enhances radiosensitivity is currently unknown. In this study, we have reviewed important signaling pathways that are closely related to radiosensitization, such as cell cycle arrest, tumor angiogenesis, JAK/STAT3 signaling pathway and Mismatch repair. Studies show that honokiol can interfere with these pathways at different levels. With overall analysis, it may bring light on finding the possible mechanism by which honokiol acts as a radiosensitizing agent for CRCs. PMID:24307888

  2. Gene therapy for hematological malignancies

    Microsoft Academic Search

    G. D. Schmidt-Wolf; I. G. H. Schmidt-Wolf

    2003-01-01

    .   Since cancer is the result of genetic mutations, it should be well suited for correction through gene therapy. Hematological\\u000a malignancies in which human gene transfer has been performed are leukemias, lymphomas, graft-versushost disease after allogeneic\\u000a bone marrow transplantation in leukemia, and multiple myeloma. Gene therapy may be used to induce or enhance an antitumor\\u000a immunological reaction, to correct a

  3. Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis

    PubMed Central

    Huang, Emina H.; Hynes, Mark J.; Zhang, Tao; Ginestier, Christophe; Dontu, Gabriela; Appelman, Henry; Fields, Jeremy Z.; Wicha, Max S.; Boman, Bruce M.

    2009-01-01

    Although the concept that cancers originate from stem cells (SC) is becoming scientifically accepted, mechanisms by which SC contribute to tumor initiation and progression are largely unknown. For colorectal cancer (CRC), investigation of this problem has been hindered by a paucity of specific markers for identification and isolation of SC from normal and malignant colon. Accordingly, aldehyde dehydrogenase 1 (ALDH1) was investigated as a possible marker for identifying colonic SC and for tracking them during cancer progression. Immunostaining showed that ALDH1+ cells are sparse and limited to the normal crypt bottom, where SCs reside. During progression from normal epithelium to mutant (APC) epithelium to adenoma, ALDH1+ cells increased in number and became distributed farther up the crypt. CD133+ and CD44+ cells, which are more numerous and broadly distributed in normal crypts, showed similar changes during tumorigenesis. Flow cytometric isolation of cancer cells based on enzymatic activity of ALDH (Aldefluor assay) and implantation of these cells in nonobese diabetic–severe combined immunodeficient mice (a) generated xenograft tumors (Aldefluor? cells did not), (b) generated them after implanting as few as 25 cells, and (c) generated them dose dependently. Further isolation of cancer cells using a second marker (CD44+ or CD133+ serially) only modestly increased enrichment based on tumor-initiating ability. Thus, ALDH1 seems to be a specific marker for identifying, isolating, and tracking human colonic SC during CRC development. These findings also support our original hypothesis, derived previously from mathematical modeling of crypt dynamics, that progressive colonic SC overpopulation occurs during colon tumorigenesis and drives CRC development. PMID:19336570

  4. Phase I Study of GC1008 (Fresolimumab): A Human Anti-Transforming Growth Factor-Beta (TGF?) Monoclonal Antibody in Patients with Advanced Malignant Melanoma or Renal Cell Carcinoma

    PubMed Central

    Morris, John C.; Tan, Antoinette R.; Olencki, Thomas E.; Shapiro, Geoffrey I.; Dezube, Bruce J.; Reiss, Michael; Hsu, Frank J.; Berzofsky, Jay A.; Lawrence, Donald P.

    2014-01-01

    Background In advanced cancers, transforming growth factor-beta (TGF?) promotes tumor growth and metastases and suppresses host antitumor immunity. GC1008 is a human anti-TGF? monoclonal antibody that neutralizes all isoforms of TGF?. Here, the safety and activity of GC1008 was evaluated in patients with advanced malignant melanoma and renal cell carcinoma. Methods In this multi-center phase I trial, cohorts of patients with previously treated malignant melanoma or renal cell carcinoma received intravenous GC1008 at 0.1, 0.3, 1, 3, 10, or 15 mg/kg on days 0, 28, 42, and 56. Patients achieving at least stable disease were eligible to receive Extended Treatment consisting of 4 doses of GC1008 every 2 weeks for up to 2 additional courses. Pharmacokinetic and exploratory biomarker assessments were performed. Results Twenty-nine patients, 28 with malignant melanoma and 1 with renal cell carcinoma, were enrolled and treated, 22 in the dose-escalation part and 7 in a safety cohort expansion. No dose-limiting toxicity was observed, and the maximum dose, 15 mg/kg, was determined to be safe. The development of reversible cutaneous keratoacanthomas/squamous-cell carcinomas (4 patients) and hyperkeratosis was the major adverse event observed. One malignant melanoma patient achieved a partial response, and six had stable disease with a median progression-free survival of 24 weeks for these 7 patients (range, 16.4–44.4 weeks). Conclusions GC1008 had no dose-limiting toxicity up to 15 mg/kg. In patients with advanced malignant melanoma and renal cell carcinoma, multiple doses of GC1008 demonstrated acceptable safety and preliminary evidence of antitumor activity, warranting further studies of single agent and combination treatments. Trial Registration Clinicaltrials.gov NCT00356460 PMID:24618589

  5. Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors

    PubMed Central

    Deng, Xinzhu; Michaelson, David; Tchieu, Jason; Cheng, Jin; Rothenstein, Diana; Feldman, Regina; Lee, Sang-gyu; Fuller, John; Haimovitz-Friedman, Adriana; Studer, Lorenz; Powell, Simon; Fuks, Zvi; Hubbard, E. Jane Albert; Kolesnick, Richard

    2015-01-01

    Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ?20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell?progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2?M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models. PMID:26120834

  6. Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes

    PubMed Central

    2014-01-01

    Background Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute to CNT carcinogenesis. Methods Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period of 6 months at the physiologically relevant concentration of 0.02 ?g/cm2 surface area dose. Chronic SWCNT-exposed cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro, and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control. Results We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin. Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified specific stem cell surface markers CD24low and CD133high that are associated with SWCNT-induced CSC formation and tumorigenesis. Conclusions Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of the carcinogenic potential of SWCNT and related nanoparticles. PMID:24885671

  7. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    SciTech Connect

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  8. Genome-wide siRNA Screen Identifies the Radiosensitizing Effect of Downregulation of MASTL and FOXM1 in NSCLC.

    PubMed

    Nagel, Remco; Stigter-van Walsum, Marijke; Buijze, Marijke; van den Berg, Jaap; van der Meulen, Ida H; Hodzic, Jasmina; Piersma, Sander R; Pham, Thang V; Jiménez, Connie R; van Beusechem, Victor W; Brakenhoff, Ruud H

    2015-06-01

    Lung cancer is the most common cancer worldwide and on top of that has a very poor prognosis, which is reflected by a 5-year survival rate of 5% to 15%. Radiotherapy is an integral part of most treatment regimens for this type of tumor, often combined with radiosensitizing cytotoxic drugs. In this study, we identified many genes that could potentially be exploited for targeted radiosensitization using a genome-wide siRNA screen in non-small cell lung cancer (NSCLC) cells. The screen identified 433 siRNAs that potentially sensitize lung cancer cells to radiation. Validation experiments showed that knockdown of expression of Forkhead box M1 (FOXM1) or microtubule-associated serine/threonine kinase-like (MASTL) indeed causes radiosensitization in a panel of NSCLC cells. Strikingly, this effect was not observed in primary human fibroblasts, suggesting that the observed radiosensitization is specific for cancer cells. Phosphoproteomics analyses with and without irradiation showed that a number of cell-cycle-related proteins were significantly less phosphorylated after MASTL knockdown in comparison to the control, while there were no changes in the levels of phosphorylation of DNA damage response proteins. Subsequent analyses showed that MASTL knockdown cells respond differently to radiation, with a significantly shortened G2-M phase arrest and defects in cytokinesis, which are followed by a cell-cycle arrest. In summary, we have identified many potential therapeutic targets that could be used for radiosensitization of NSCLC cells, with MASTL being a very promising and druggable target to combine with radiotherapy. Mol Cancer Ther; 14(6); 1434-44. ©2015 AACR. PMID:25808837

  9. MicroRNA-18a enhances the radiosensitivity of cervical cancer cells by promoting radiation-induced apoptosis.

    PubMed

    Liu, Sha; Pan, Xiaofen; Yang, Qin; Wen, Lu; Jiang, Yao; Zhao, Yingchao; Li, Guiling

    2015-06-01

    Evidence has demonstrated that microRNAs (miRNAs) are important in the regulation of cellular radiosensitivity of various types of human cancer. The aim of this study was to examine the role of miR-18a in regulating the radiosensitivity of cervical cancer, in order to understand the underlying mechanism and to assess the potential of miR-18a as a biomarker for predicting radiosensitivity. The expression of miR-18a was investigated in 48 cervical cancer patients. The results revealed that miR-18a expression was significantly higher in radiosensitive patients than in radioresistant patients by RT-qPCR (P<0.05). Transient transfection experiments showed that miR-18a was upregulated by the miR-18a mimic and downregulated by the miR-18a inhibitor in the SiHa and HeLa cells. Without irradiation treatment, a similar growth was observed in the cells with or without transfection of miR-18a. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Hoechst staining assays showed that miR-18a had no effect on the proliferation and apoptosis of cervical cancer cells after transfection. However, the upregulation of miR-18a suppressed the level of ataxia-telangiectasia mutated and attenuated DNA double-strand break repair after irradiation, which re-sensitized the cervical cancer cells to radiotherapy by promoting apoptosis. Taken together, these results demonstrated that miR-18a is a potential molecule predictor of radiosensitivity in cervical cancer patients and played an important role in the response to radiotherapy. PMID:25963391

  10. Expression of various protection of telomeres 1 variants is associated with telomere length and radiosensitivity in colon and gastric adenocarcinoma cells in vitro

    PubMed Central

    LEI, HAN; ZHOU, FU-XIANG; XU, HUI; PENG, XIAO-HONG; ZHANG, ZHI-GUO; WANG, WEN-BO; YU, HAI-JUN; XIE, CONG-HUA; ZHOU, YUN-FENG

    2015-01-01

    Protection of telomeres 1 (POT1) is a telomere-binding protein, which binds to the single-stranded DNA extensions of telomeres and regulates telomere length. Different POT1 mRNA variants were examined and compared with telomere length and radiosensitivity in colon and gastric adenocarcinoma cells. POT1 production and telomere lengths were assessed using 10 human cancer cell lines by quantitative polymerase chain reaction (qPCR). POT1 mRNA levels, which were relatively stable, were significantly correlated with telomere length in gastric cancer cells and colon cancer cells, except for HT29 (P<0.01). POT1 v5 indexes were closely associated with radiosensitivity in colon cancer cells and gastric cancer cells (P<0.05). In conclusion, POT1 may be a good marker for the examination of cell-specific telomere length and radiosensitivity.

  11. Rheumatic Diseases and Malignancies

    PubMed Central

    BOJINCA, Violeta; JANTA, Iustina

    2012-01-01

    ABSTRACT There are many studies which demonstrate a higher risk for malignancy in patients with rheumatic diseases. There have been a number of possible explanations for the differences in the risk of certain malignancies in patients with rheumatic disease, compared with general population, but a clear mechanism is difficult to identify. Rheumatoid syndromes may be associated with malignancy as paraneoplastic conditions, which can antedate the neoplasm diagnosis. On the other hand, autoimmune rheumatic diseases have a higher risk of malignancy by themselves or because of the immunosuppressant treatments. PMID:23482881

  12. Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine.

    PubMed

    Dote, Hideaki; Cerna, David; Burgan, William E; Carter, Donna J; Cerra, Michael A; Hollingshead, Melinda G; Camphausen, Kevin; Tofilon, Philip J

    2005-06-15

    Aberrant DNA hypermethylation is a frequent finding in tumor cells, which has suggested that inhibition of DNA methylation may be an effective cancer treatment strategy. Because DNA methylation affects gene expression and chromatin structure, parameters considered to influence radioresponse, we investigated the effects of the DNA methylation inhibitor zebularine on the radiosensitivity of human tumor cells. Three human tumor cell lines were used in this study (MiaPaCa, DU145, and U251) and the methylation status of three genes frequently hypermethylated in tumor cells (RASSF1A, HIC-1, and 14-3-3sigma) was determined as a function of zebularine exposure. Zebularine resulted in DNA demethylation in a time-dependent manner, with the maximum loss of methylation detected by 48 hours. Treatment of cells with zebularine for 48 hours also resulted in an increase in radiosensitivity with dose enhancement factors of >1.5. As a measure of radiation-induced DNA damage, gammaH2AX expression was determined. Whereas zebularine had no effect on radiation-induced gammaH2AX foci at 1 hour, the number of gammaH2AX foci per cell was significantly greater in the zebularine-treated cells at 24 hours after irradiation, suggesting the presence of unrepaired DNA damage. Zebularine administration to mice reactivated gene expression in U251 xenografts; irradiation of U251 tumors in mice treated with zebularine resulted in an increase in radiation-induced tumor growth delay. These results indicate that zebularine can enhance tumor cell radiosensitivity in vitro and in vivo and suggest that this effect may involve an inhibition of DNA repair. PMID:15958643

  13. Does risk for ovarian malignancy algorithm excel human epididymis protein 4 and ca125 in predicting epithelial ovarian cancer: A meta-analysis

    PubMed Central

    2012-01-01

    Backgrounds Risk for Ovarian Malignancy Algorithm (ROMA) and Human epididymis protein 4 (HE4) appear to be promising predictors for epithelial ovarian cancer (EOC), however, conflicting results exist in the diagnostic performance comparison among ROMA, HE4 and CA125. Methods Remote databases (MEDLINE/PUBMED, EMBASE, Web of Science, Google Scholar, the Cochrane Library and ClinicalTrials.gov) and full texts bibliography were searched for relevant abstracts. All studies included were closely assessed with the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2). EOC predictive value of ROMA was systematically evaluated, and comparison among the predictive performances of ROMA, HE4 and CA125 were conducted within the same population. Sensitivity, specificity, DOR (diagnostic odds ratio), LR?±?(positive and negative likelihood ratio) and AUC (area under receiver operating characteristic-curve) were summarized with a bivariate model. Subgroup analysis and sensitivity analysis were used to explore the heterogeneity. Results Data of 7792 tests were retrieved from 11 studies. The overall estimates of ROMA for EOC predicting were: sensitivity (0.89, 95% CI 0.84-0.93), specificity (0.83, 95% CI 0.77-0.88), and AUC (0.93, 95% CI 0.90-0.95). Comparison of EOC predictive value between HE4 and CA125 found, specificity: HE4 (0.93, 95% CI 0.87-0.96)?>?CA125 (0.84, 95% CI 0.76-0.90); AUC: CA125 (0.88, 95% CI 0.85-0.91)?>?HE4 (0.82, 95% CI 0.78-0.85). Comparison of OC predictive value between HE4 and CA125 found, AUC: CA125 (0.89, 95% CI 0.85-0.91)?>?HE4 (0.79, 95% CI 0.76-0.83). Comparison among the three tests for EOC prediction found, sensitivity: ROMA (0.86, 95%CI 0.81-0.91)?>?HE4 (0.80, 95% CI 0.73-0.85); specificity: HE4 (0.94, 95% CI 0.90-0.96)?>?ROMA (0.84, 95% CI 0.79-0.88)?>?CA125 (0.78, 95%CI 0.73-0.83). Conclusions ROMA is helpful for distinguishing epithelial ovarian cancer from benign pelvic mass. HE4 is not better than CA125 either for EOC or OC prediction. ROMA is promising predictors of epithelial ovarian cancer to replace CA125, but its utilization requires further exploration. PMID:22712526

  14. Enhanced radiosensitization of p53 mutant cells by oleamide

    SciTech Connect

    Lee, Yoon-Jin [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chung, Da Yeon [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Su-Jae [Laboratory of Experimental Radiation Therapeutics, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Ja Jhon, Gil [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Laboratory of Experimental Radiation Therapeutics, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Division of Molecular Life Science, Ewha Woman's University, Seoul (Korea, Republic of); Lee, Yun-Sil [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)]. E-mail: yslee@kcch.re.kr

    2006-04-01

    Purpose: Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. Methods and Materials: NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Results: Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Conclusions: Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  15. Radiosensitivity of cultured insect cells: I. Lepidoptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five lepidopteran insect cell lines representing five different genera has been investigated. These lines are: (1) TN-368, Trichoplusia ni; (2) IPLB-SF-1254, Spodoptera frugiperda; (3) IPLB-1075, Heliothis zea; (4) MRRL-CHl, clone GVl, Manduca sexta; and (5) IAL-PID2, Plodia interpunctella. The cell lines grew at different rates and had population doubling times that ranged from 19 to 52 hr. All of the lines are highly heteroploid and have approximate chromosome numbers near or above 100. The chromosomes are very small. All of the lines are extremely radioresistant; cell populations are able to recover from 260 kVp X-ray exposures up to and including 400 Gy, the highest dose examined. Cell survival curves were obtainable for only the TN-368 and IPLB-SF-1254 lines. The TN-368 cells displayed a biphasic survival response with D/sub 0/, d/sub q/, and n values of 65.7 and 130.2 Gy, 9.0 and -36.1 Gy, and 1.2 and 0.8, respectively, for the steep and shallow portions of the curve. The IPLB-SF-1254 cells had a D/sub 0/ of 63.9 Gy. D/sub q/ of 19.0 Gy, and n value of 1.4. These studies provide definitive evidence of the radioresistance of lepidopteran cells, and suggest that this radioresistance is a characteristic of lepidopteran insects.

  16. Radiosensitization of uterine cancer cell lines by cytotoxic agents.

    PubMed

    Nguyen, H N; Sevin, B U; Averette, H E; Gottlieb, C; Perras, J; Donato, D; Penalver, M

    1993-01-01

    Radiotherapy remains an integral part of uterine cancer therapy. Overcoming radioresistant tumors by sensitizers continues to be a prime objective in radiotherapy research. In this study, the effects of five cytotoxic agents on two radiosensitive and four radioresistant uterine cancer cell lines were investigated. The ATP bioluminescence was used to measure surviving fractions. Data analysis was done using the linear quadratic model and radiosensitivity index D. Both AN3 and SKUT1B were radiosensitive with Ds of 1.73 and 1.72 Gy, respectively. The resistant cell lines had the following D values: AE7, 3.50; ECC, 6.61; HEC1A, 4.59; and HEC1B, 13.49 Gy. The average radiosensitization effects for various drugs were measured by reduction of D: DXR 45 +/- 7, DDP 40 +/- 9, 5FU 55 +/- 10, MITO 59 +/- 14, and HU 1.7 +/- 7%. Except for HU, Wilcoxon analyses revealed that these sensitizing effects were significant with P < 0.02. In summary, Adriamycin, 5-fluorouracil, cisplatin, and mitomycin-C have the potential to be radiosensitizers in uterine cancer cell lines. PMID:8423017

  17. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)] [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Yoo, Young-Do [Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)] [Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Park, Won-Bong [Division of Natural Science, Seoul Women's University, Seoul 139-774 (Korea, Republic of)] [Division of Natural Science, Seoul Women's University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of)] [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of); Park, Gil Hong, E-mail: ghpark@korea.ac.kr [Department of Biochemistry, College of Medicine, Korea University, Seoul (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)] [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  18. Chronic Hyperglycemia Induces Trans-Differentiation of Human Pancreatic Stellate Cells and Enhances the Malignant Molecular Communication with Human Pancreatic Cancer Cells

    PubMed Central

    Kiss, Katalin; Baghy, Kornélia; Spisák, Sándor; Szanyi, Szilárd; Tulassay, Zsolt; Zalatnai, Attila; Löhr, J.-Matthias; Jesenofsky, Ralf; Kovalszky, Ilona; Firneisz, Gábor

    2015-01-01

    Background Diabetes mellitus is linked to pancreatic cancer. We hypothesized a role for pancreatic stellate cells (PSC) in the hyperglycemia induced deterioration of pancreatic cancer and therefore studied two human cell lines (RLT-PSC, T3M4) in hyperglycemic environment. Methodology/Principal Findings The effect of chronic hyperglycemia (CHG) on PSCs was studied using mRNA expression array with real-time PCR validation and bioinformatic pathway analysis, and confirmatory protein studies. The stress fiber formation (IC: ?SMA) indicated that PSCs tend to transdifferentiate to a myofibroblast-like state after exposure to CHG. The phosphorylation of p38 and ERK1/2 was increased with a consecutive upregulation of CDC25, SP1, cFOS and p21, and with downregulation of PPAR? after PSCs were exposed to chronic hyperglycemia. CXCL12 levels increased significantly in PSC supernatant after CHG exposure independently from TGF-?1 treatment (3.09-fold with a 2.73-fold without TGF-?1, p<0.05). The upregualtion of the SP1 transcription factor in PSCs after CHG exposure may be implicated in the increased CXCL12 and IGFBP2 production. In cancer cells, hyperglycemia induced an increased expression of CXCR4, a CXCL12 receptor that was also induced by PSC’s conditioned medium. The receptor-ligand interaction increased the phosphorylation of ERK1/2 and p38 resulting in activation of MAP kinase pathway, one of the most powerful stimuli for cell proliferation. Certainly, conditioned medium of PSC increased pancreatic cancer cell proliferation and this effect could be partially inhibited by a CXCR4 inhibitor. As the PSC conditioned medium (normal glucose concentration) increased the ERK1/2 and p38 phosphorylation, we concluded that PSCs produce other factor(s) that influence(s) pancreatic cancer behaviour. Conclusions Hyperglycemia induces increased CXCL12 production by the PSCs, and its receptor, CXCR4 on cancer cells. The ligand-receptor interaction activates MAP kinase signaling that causes increased cancer cell proliferation and migration. PMID:26010611

  19. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  20. The effect of imatinib mesylate on the proliferation, invasive ability, and radiosensitivity of retinoblastoma cell lines

    PubMed Central

    de Moura, L R; Marshall, J-C; Di Cesare, S; Fernandes, B F; Antecka, E; Burnier, M N

    2013-01-01

    Purpose Our aim was to evaluate the potential effect of imatinib mesylate (IM), a small molecule that specifically inhibits the tyrosine quinase receptors, on the proliferation and invasive abilities of two human retinoblastoma (Rb) cell lines. Furthermore, the ability of IM to radiosensitize Rb cells was evaluated. The potential targets of IM (C-kit, PDGRF-? and -?, and c-Abl) were also investigated in these cell lines. Methods Two human Rb cell lines (WERI-RB-1 and Y79) were cultured under normal growth conditions. An MTT-based proliferation assay and a Matrigel invasion assay were performed with and without exposure to 10??M of IM. The cells were also irradiated with graded dosages of 0, 2, 4, 6, 8, and 10?Gy with and without IM and their proliferations rates were analyzed. Western blot and immunocytochemical analysis of cytospins were performed to evaluate the expression of C-kit, PDGRF-? and -?, and c-Abl. Results When IM was added to both cell lines a statistically significant (P<0.05) reduction in proliferation and invasive ability were observed. Exposure to IM also significantly increased the radiosensitivity of both Rb cell lines. The c-Abl expression was strongly positive, PDGRF-? and -? expression were also positive but the C-kit expression was negative in both cell lines. Conclusions These results indicate that Gleevec may be useful as an adjuvant treatment in Rb patients, specially those considered for radiation therapy. PMID:23154488

  1. Malignant cancer and invasive placentation

    PubMed Central

    D'Souza, Alaric W.; Wagner, Günter P.

    2014-01-01

    Cancer metastasis is an invasive process that involves the transplantation of cells into new environments. Since human placentation is also invasive, hypotheses about a relationship between invasive placentation in eutherian mammals and metastasis have been proposed. The relationship between metastatic cancer and invasive placentation is usually presented in terms of antagonistic pleiotropy. According to this hypothesis, evolution of invasive placentation also established the mechanisms for cancer metastasis. Here, in contrast, we argue that the secondary evolution of less invasive placentation in some mammalian lineages may have resulted in positive pleiotropic effects on cancer survival by lowering malignancy rates. These positive pleiotropic effects would manifest themselves as resistance to cancer cell invasion. To provide a preliminary test of this proposal, we re-analyze data from Priester and Mantel (Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst 1971;47:1333-44) about malignancy rates in cows, horses, cats and dogs. From our analysis we found that equines and bovines, animals with less invasive placentation, have lower rates of metastatic cancer than felines and canines in skin and glandular epithelial cancers as well as connective tissue sarcomas. We conclude that a link between type of placentation and species-specific malignancy rates is more likely related to derived mechanisms that suppress invasion rather than different degrees of fetal placental aggressiveness. PMID:25324490

  2. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    PubMed Central

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    Background The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Methods Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. Results In addition to G2/M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G1 population of cells with functional p53 but accumulation of both G1 and G2/M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G2/M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. Conclusion In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified. PMID:16887021

  3. Interleukin6 Production in high-Grade B Lymphomas: Correlation With the Presence of Malignant Immunoblasts in Acquired Immunodeficiency Syndrome and in Human Immunodeficiency Virus-Seronegative Patients

    Microsoft Academic Search

    D. Emilie; J. Coumbaras; M. Raphael; H. J. Deleclbse; C. Gisselbrecht; J. F. Michiels; J. Van Damme; T. Taga; T. Kishimoto; M. C. Crevon; P. Galanaud

    1992-01-01

    NTERLEUKIN-6 (IL-6) is a pleiotropic cytokine with a I number of effects on cells of the B-lymphocyte lineage.' It is a major factor involved in the terminal differentiation of normal B lymphocytes. A number of reports have also outlined its role as a growth factor for Epstein-Barr virus (EBV)-infected and malignant lymphocytes. On the one hand, IL-6 is produced by

  4. Pyrazine, 2-ethylpyridine, and 3-ethylpyridine are cigarette smoke components that alter the growth of normal and malignant human lung cells, and play a role in multidrug resistance development.

    PubMed

    Liu, Min; Poo, Wak-Kim; Lin, Yu-Ling

    2015-02-01

    Lung cancer is one of the few human diseases for which the primary etiological agent, cigarette smoke (CS), has been described; however, the precise role of individual cigarette smoke toxicant in tumor development and progression remains to be elusive. The purpose of this study was to assess in vitro the effects of previously identified cigarette smoke components, pyrazine, 2-ethylpyridine, and 3-ethylpyridine, on non-tumorigenic (MRC5) and adenocarcinomic (A549) human lung cell lines. Our data showed that the administration of three cigarette smoke components in combination perturbed the proliferation of both normal and adenocarcinomic cells. Study of malignant cells revealed that CS components were cytotoxic at high concentration (10(-6) M) and stimulatory in a dose-dependent manner at lower concentrations (10(-8) M to 10(-10) M). This adverse effect was enhanced when adenocarcinomic cells were maintained in hypoxia resembling intratumoral environment. Furthermore, exposure to pyrazine, 2-ethylpyridine, and 3-ethylpyridine induced oxidative stress in both normal and malignant cells. Finally, assessment of P-gp activity revealed that multidrug resistance was induced in CS component exposed adenocarcinomic lung cells and the induction was augmented in hypoxia. Taken together, pyrazine, 2-ethylpyridine, and 3-ethylpyridine adversely altered both normal and diseased lung cells in vitro and data collected from this study may help lung cancer patients to understand the importance of quitting smoking during lung cancer treatment. PMID:25449333

  5. Imaging malignant and apparent malignant transformation of benign gynaecological disease.

    PubMed

    Lee, A Y; Poder, L; Qayyum, A; Wang, Z J; Yeh, B M; Coakley, F V

    2010-12-01

    Common benign gynaecological diseases, such as leiomyoma, adenomyosis, endometriosis, and mature teratoma, rarely undergo malignant transformation. Benign transformations that may mimic malignancy include benign metastasizing leiomyoma, massive ovarian oedema, decidualization of endometrioma, and rupture of mature teratoma. The aim of this review is to provide a contemporary overview of imaging findings in malignant and apparent malignant transformation of benign gynaecological disease. PMID:21070909

  6. Chemoembolization of hepatic malignancy

    Microsoft Academic Search

    Carin F. Gonsalves; Daniel B. Brown

    2009-01-01

    Treatment of primary and secondary hepatic malignancies with transarterial chemoembolization represents an essential component\\u000a of interventional oncology. This article discusses patient selection, procedure technique, results, and complications associated\\u000a with transarterial chemoembolization.

  7. Chemoembolization of hepatic malignancy

    Microsoft Academic Search

    Carin F. Gonsalves; Daniel B. Brown

    Treatment of primary and secondary hepatic malignancies with transarterial chemoembolization (TACE) represents an essential\\u000a component of interventional oncology. This article discusses patient selection, procedure technique, results, and complications\\u000a associated with TACE.

  8. Brain Malignancies Steering Committee

    Cancer.gov

    The Brain Malignancy Steering Committee evaluates and prioritizes concepts for phase 3 and large phase 2 therapeutic clinical trials to be conducted in the NCI National Clinical Trials Network (NCTN).

  9. Gynecologic malignancy in pregnancy

    PubMed Central

    Ji, Yong Il

    2013-01-01

    Gynecologic malignancy during pregnancy is a stressful problem. For the diagnosis and treatment of malignancy during pregnancy, a multidisciplinary approach is needed. Patients should be advised about the benefits and risk of treatment. When selecting a treatment for malignancy during pregnancy, the physiologic changes that occur with the pregnancy should be considered. Various diagnostic procedures that do not harm the fetus can be used. Laparoscopic surgery or laparotomy may be safely performed. The staging approach and treatment should be standard. Systemic chemotherapy during the first trimester should be delayed if possible. Radiation therapy should preferably start postpartum. Although delivery should be delayed preferably until after 35 weeks of gestation, termination of pregnancy may be considered when immediate treatment is required. Subsequent pregnancies do not increase the risk of malignancy recurrence. PMID:24328018

  10. Neuroleptic Malignant Syndrome

    MedlinePLUS

    ... to be useful. What is the prognosis? Early identification of and treatment for individuals with neuroleptic malignant ... http://www.rarediseases.org Tel: 203-744-0100 Voice Mail 800-999-NORD (6673) Fax: 203-798- ...

  11. Asbestos-related malignancy

    SciTech Connect

    Antmann, K.; Aisner, J.

    1986-01-01

    This book contains 20 chapters. Some of the chapter titles are: The Radiology of Asbestosis and Related Neoplasms; Computed Tomography and Malignant Mesothelioma; Radiation Therapy for Pleural Mesothelioma; and Radiation Therapy of Peritoneal Mesothelioma.

  12. Malignant liver tumors.

    PubMed

    Levy, Angela D

    2002-02-01

    The primary hepatic malignancies are a diverse group of neoplasms with distinctive clinical and pathologic features. Imaging of the primary hepatic malignancies continues to be challenging. Ultrasonography, CT scanning, and MR imaging play complementary roles in the evaluation of these patients. Many [figure: see text] of these neoplasms have distinctive imaging features that may permit diagnosis. In most instances, however, biopsy is required for definitive diagnosis and treatment planning. PMID:11933586

  13. Malignant mixed mullerian tumors

    Microsoft Academic Search

    J. Ruiz Tovar; M. E. Reguero Callejas; J. I. Arano Bermejo; L. F. Capote Armas; F. González-Palacios Martínez; L. Cabañas Navarro

    2006-01-01

    Malignant mixed mullerian tumours (MMMTs) are rare neoplasms, highly aggressive and with an extremely poor prognosis, usually\\u000a arising in elderly postmenopausal women and presenting at an advanced stage. MMMTs derive from the mullerian mesodermus that\\u000a differentiates in epithelial and stromal elements, both malignant elements.\\u000a \\u000a The clinic pathological features of 3 uterine MMMTs are reported here. The patients ranged in age

  14. [Malignant nail tumors].

    PubMed

    Haneke, E

    2014-04-01

    Because of the large number of different tissues making up the distal phalanx of fingers and toes, a large variety of malignant tumors can be found in and around the nail apparatus. Bowen disease is probably the most frequent nail malignancy. It is usually seen as a verrucous plaque of the nail fold and nail bed in persons above the age of 40 years. It slowly grows over a period of years or even decades before degenerating to an invasive squamous cell carcinoma. The latter may also occur primarily often as a weeping onycholysis. The next most frequent nail malignancy is ungual melanoma. Those arising from the matrix are usually pigmented and often start with a longitudinal melanonychia whereas those originating from the nail bed remain amelanotic, are often nodular and mistaken for an ingrown nail in an elderly person. The treatment of choice for in situ and early invasive subungual melanomas is generous extirpation of the nail apparatus whereas distal amputation is only indicated for advanced melanomas. In addition to these frequent nail malignancies, nail-specific carcinomas, malignant vascular and osseous tumors, other sarcomas, nail involvement in malignant systemic disorders and metastases may occur. In most cases, they cannot be diagnosed accurately on clinical grounds. Therefore, a high degree of suspicion is necessary in all isolated or single-digit proliferations that do not respond to conservative treatment. PMID:24718507

  15. Malignant pirates of the immune system.

    PubMed

    Rui, Lixin; Schmitz, Roland; Ceribelli, Michele; Staudt, Louis M

    2011-10-01

    At great human cost, cancer is the largest genetic experiment ever conducted. This review highlights how lymphoid malignancies have genetically perverted normal immune signaling and regulatory mechanisms for their selfish oncogenic goals of unlimited proliferation, perpetual survival and evasion of the immune response. PMID:21934679

  16. Eighth annual Juan del Regato lecture. Chemical modifiers of radiosensitivity--theory and reality: a review

    SciTech Connect

    Fowler, J.F.

    1985-04-01

    In this review the poor clinical gains from hyperbaric oxygen (HBO) and misonidazole (MISO) are discussed critically. The biggest factor reducing clinical gains is almost certainly reoxygenation. Other possible reasons include vasoconstrictive self-limitation of HBO and neurotoxicity of MISO, so that the radiosensitization of any hypoxic cells in human tumors was not adequate. Nevertheless, there have been some positive clinical results, so that hypoxic cells can sometimes be a problem in some tumors, especially those of the head and neck, even after multiple fraction radiotherapy. While hypoxic cell radioresistance is obviously only one form of radioresistance it is a large factor of resistance when hypoxic cells are present. Current developments are briefly reviewed: the new clinical sensitizers Ro-03-8799 and SR-2508 which should be 3 to 10 times more efficient than MISO if viable hypoxic cells are present; and methods of measuring which human tumors might have significant numbers of hypoxic viable cells. 77 references.

  17. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes

    Microsoft Academic Search

    Christian Nicolaj Andreassen; Jan Alsner; Marie Overgaard; Jens Overgaard

    2003-01-01

    Background and purposeSingle nucleotide polymorphisms (SNPs) in genes related to the biological response to radiation injury may affect clinical normal tissue radiosensitivity. This study investigates whether seven selected SNPs in five candidate genes influence risk of subcutaneous fibrosis and telangiectasia after radiotherapy.

  18. Ulnar malignant peripheral nerve sheath tumour diagnosis in a mixed-breed dog as a model to study human: histologic, immunohistochemical, and clinicopathologic study

    PubMed Central

    2013-01-01

    Canine Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are uncommonly reported in the ulnar, since they are underestimated relative to the more common spindle cell tumours of soft tissue. In dogs, MPNST accounts for 27% of nervous system tumours. In man, MPNST represents 5-10% of all soft tissue sarcomas and is often associated with neurofibromatosis type 1 (NF-1).An 8-year-old, 9 kg, female mixed-breed dog with a subcutaneous mass on the upper right side of the ulnar region was presented to the small animal research and teaching hospital of Tehran University. The dog was anorexic with general weakness. The mass (7 × 4 cm) was removed surgically and processed routinely. Microscopically, the mass was composed of highly cellular areas with a homogeneous population of round or spindle cells, high cellular pleomorphism, high mitotic index and various morphologic patterns. Furthermore, spindle cells arranged in densely or loosely sweeping fascicles, interlacing whorls, or storiform patterns together with wavy cytoplasm, nuclear palisades, and round cells were arranged in sheets or cords with a meshwork of intratumoral nerve fibers. In addition, in this case the presence of neoplastic cells within the blood vessels was observed. Immunohistochemically, tumor was positive for vimentin and S-100 protein. The histopathologic features coupled with the S-100 and vimentin immunoreactivity led to a diagnosis of malignant neurofibroma. To the best of our knowledge, primary ulnar MPNST has not been reported in animals. This is the first documentation of an ulnar malignant peripheral nerve sheath tumour in a dog. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1310907815984587 PMID:23688209

  19. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells.

    PubMed

    Premkumar, Daniel R; Jane, Esther P; Pollack, Ian F

    2015-01-01

    Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas. PMID:25482928

  20. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)] [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany)] [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)] [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)] [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)] [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  1. Disturbance of redox status enhances radiosensitivity of hepatocellular carcinoma

    PubMed Central

    Sun, Chao; Wang, Zhen-hua; Liu, Xiong-xiong; Yang, Li-na; Wang, Yali; Liu, Yang; Mao, Ai-hong; Liu, Yuan-yuan; Zhou, Xin; Di, Cui-xia; Gan, Lu; Zhang, Hong

    2015-01-01

    Aims: High constitutive expression of Nrf2 has been found in many types of cancers, and this high level of Nrf2 also favors resistance to drugs and radiation. Here we investigate how isoliquiritigenin (ISL), a natural antioxidant, inhibits the Nrf2-dependent antioxidant pathway and enhances the radiosensitivity of HepG2 cells and HepG2 xenografts. Results: Treatment of HepG2 cells with ISL for 6 h selectively enhanced transcription and expression of Keap1. Keap1 effectively induced ubiquitination and degradation of Nrf2, and inhibited translocation of Nrf2 to the nucleus. Consequently, expression of Nrf2 downstream genes was reduced, and the Nrf2-dependent antioxidant system was suppressed. Endogenous ROS was higher than before ISL treatment, causing redox imbalance and oxidative stress in HepG2 cells. Moreover, pretreatment with ISL for 6 h followed by X-ray irradiation significantly increased ?-H2AX foci and cell apoptosis, and reduced clonogenic potential compared with cells irradiated with X-rays alone. In addition, HepG2 xenografts, ISL, and X-ray co-treatments induced greater apoptosis and tumor growth inhibition, when compared with X-ray treatments alone. Additionally, HepG2 xenografts, in which Nrf2 was expressed at very low levels due to ectopic expression of Keap1, showed that ISL-mediated radiosensitization was Keap1 dependent. Innovation and Conclusions: ISL inhibited the Nrf2-antioxidant pathway by increasing the levels of Keap1 and ultimately inducing oxidative stress via disturbance of the redox status. The antioxidant ISL possessed pro-oxidative properties, and enhanced the radiosensitivity of liver cancer cells, both in vivo and in vitro. Taken together, these results demonstrated the effectiveness of using ISL to decrease radioresistance, suggesting that ISL could be developed as an adjuvant radiosensitization drug. Disturbance of redox status could be a potential target for radiosensitization.

  2. Comparison of the radiosensitivity of interleukin-2 production between species, between tissues, and between young and old individuals

    SciTech Connect

    Peterson, W.J.; Akagawa, T.; Anderson, D.G.; Makinodan, T.

    1985-04-01

    The radiosensitivity of interleukin-2 (IL-2) production was assessed of (a) peripheral blood mononuclear cells (PBMC) of young humans, dogs, and mice (C57BL/6); (b) PBMC and splenic cells of young mice; and (c) PBMC of young and old humans and the splenic cells of young and old mice. The results indicate that (a) large differences in radiosensitivity exist between the PBMC of humans, dogs, and mice (e.g., the radiation doses which resulted in 37% remaining IL-2 activity (D37) of human, dog, and mouse PBMC were 3771, greater than 10,000, and 1398 rads, respectively); (b) only a small difference exists between the PBMC and splenic cells of mice; and (c) no difference exists between the PBMC of young and old humans and between splenic cells of young and old mice. Topological abnormalities, as judged by scanning electron microscopic analysis, could not be detected in dog PBMC after their exposure to 1800 rads, but could be detected in mouse PBMC after their exposure to 400 rads.

  3. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

    PubMed Central

    2010-01-01

    Background Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies. Methods We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. Results A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide. Conclusions Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies. PMID:20181261

  4. Malignant peritoneal mesothelioma

    PubMed Central

    Munkholm-Larsen, Stine; Cao, Christopher Q; Yan, Tristan D

    2009-01-01

    Malignant mesothelioma is a highly aggressive neoplasm. The incidence of malignant mesothelioma is increasing worldwide. Diffuse malignant peritoneal mesothelioma (DMPM) represents one-fourth of all mesotheliomas. Association of asbestos exposure with DMPM has been observed, especially in males. The great majority of patients present with abdominal pain and distension, caused by accumulation of tumors and ascitic fluid. In the past, DMPM was considered a pre-terminal condition; therefore attracted little attention. Patients invariably died from their disease within a year. Recently, several prospective trials have demonstrated a median survival of 40 to 90 mo and 5-year survival of 30% to 60% after combined treatment using cytoreductive surgery and perioperative intraperitoneal chemotherapy. This remarkable improvement in survival has prompted new search into the medical science related to DMPM, a disease previously ignored as uninteresting. This review article focuses on the key advances in the epidemiology, diagnosis, staging, treatments and prognosis of DMPM that have occurred in the past decade. PMID:21160794

  5. Surveillance for gastrointestinal malignancies

    PubMed Central

    Tiwari, Ashish K; Laird-Fick, Heather S; Wali, Ramesh K; Roy, Hemant K

    2012-01-01

    Gastrointestinal (GI) malignancies are notorious for frequently progressing to advanced stages even in the absence of serious symptoms, thus leading to delayed diagnoses and dismal prognoses. Secondary prevention of GI malignancies through early detection and treatment of cancer-precursor/premalignant lesions, therefore, is recognized as an effective cancer prevention strategy. In order to efficiently detect these lesions, systemic application of screening tests (surveillance) is needed. However, most of the currently used non-invasive screening tests for GI malignancies (for example, serum markers such as alpha-fetoprotein for hepatocellular carcinoma, and fecal occult blood test, for colon cancer) are only modestly effective necessitating the use of highly invasive endoscopy-based procedures, such as esophagogastroduodenoscopy and colonoscopy for screening purposes. Even for hepatocellular carcinoma where non-invasive imaging (ultrasonography) has become a standard screening tool, the need for repeated liver biopsies of suspicious liver nodules for histopathological confirmation can’t be avoided. The invasive nature and high-cost associated with these screening tools hinders implementation of GI cancer screening programs. Moreover, only a small fraction of general population is truly predisposed to developing GI malignancies, and indeed needs surveillance. To spare the average-risk individuals from superfluous invasive procedures and achieve an economically viable model of cancer prevention, it’s important to identify cohorts in general population that are at substantially high risk of developing GI malignancies (risk-stratification), and select suitable screening tests for surveillance in these cohorts. We herein provide a brief overview of such high-risk cohorts for different GI malignancies, and the screening strategies that have commonly been employed for surveillance purpose in them. PMID:22969223

  6. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  7. Effects of tetrandrine on glioma cell malignant phenotype via inhibition of ADAM17.

    PubMed

    Wu, Zhichao; Wang, Guangzhi; Xu, Shaoqian; Li, Yang; Tian, Yu; Niu, Hongshuang; Yuan, Fei; Zhou, Fenggang; Hao, Zhen; Zheng, Yongri; Li, Qingsong; Wang, Jianjiao

    2014-03-01

    Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from the root of Hang-Fang-Chi (Stephania tetrandra S. Moore), exhibits broad pharmacological effects, including antitumor activity in various malignant neoplasms. Recently, the beneficial effects of TET on cytotoxicity towards tumor cells, radiosensitization, circumventing multidrug resistance, normal tissue radioprotection, and antiangiogenesis have been examined extensively. However, the potential molecular mechanisms of the effect on glioma of TET are yet unknown. This study is explored to evaluate whether TET can inhibit cell proliferation, invasion, and the possible underlying mechanisms in glioma U87 cell. In the present study, cell proliferation was determined by using the Cell Counting Kit-8 (CCK-8) viability assay. The invasion and migration were evaluated by means of wound-scratch assay and Matrigel-Transwell methods. The mRNA expression and protein expression of ADAM metallopeptidase domain 17 (ADAM17) in glioma cell lines and glioma samples were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Moreover, the expression of epidermal growth factor receptor (EGFR)/p-EGFR and AKT/p-AKT was studied to clarify the molecular mechanism. Our results suggested that TET inhibited cell proliferation in a dose- and time-dependent manner, and cell migration and invasion in vitro. In addition, our results indicated that ADAM17 expression significantly increased in glioma compared to nontumored human brain tissue and according to the histopathological grade of glioma. Western blot analysis showed that protein expressions of ADAM17, p-EGFR, and p-AKT were inhibited by TET in U87 cells. These data also suggest that suppression of ADAM17 and downregulation of EGFR-phosphoinositide-3-kinase (PI3K)-AKT signaling pathways may contribute to TET-induced decrease of proliferation, migration, and invasiveness. PMID:24185966

  8. Giant malignant insulinoma

    PubMed Central

    Karavias, Dimitrios; Habeos, Ioannis; Maroulis, Ioannis; Kalogeropoulou, Christina; Tsamandas, Athanasios; Chaveles, Ioannis

    2015-01-01

    Insulinomas are the most common pancreatic neuroendocrine tumors. Most insulinomas are benign, small, intrapancreatic solid tumors and only large tumors have a tendency for malignancy. Most patients present with symptoms of hypoglycemia that are relieved with the administration of glucose. We herein present the case of a 75-year-old woman who presented with an acute hypoglycemic episode. Subsequent laboratory and radiological studies established the diagnosis of a 17-cm malignant insulinoma, with local invasion to the left kidney, lymph node metastasis, and hepatic metastases. Patient symptoms, diagnostic and imaging work-up and surgical management of both the primary and the metastatic disease are reviewed. PMID:25960993

  9. Giant malignant insulinoma.

    PubMed

    Karavias, Dimitrios; Habeos, Ioannis; Maroulis, Ioannis; Kalogeropoulou, Christina; Tsamandas, Athanasios; Chaveles, Ioannis; Karavias, Dionissios

    2015-05-01

    Insulinomas are the most common pancreatic neuroendocrine tumors. Most insulinomas are benign, small, intrapancreatic solid tumors and only large tumors have a tendency for malignancy. Most patients present with symptoms of hypoglycemia that are relieved with the administration of glucose. We herein present the case of a 75-year-old woman who presented with an acute hypoglycemic episode. Subsequent laboratory and radiological studies established the diagnosis of a 17-cm malignant insulinoma, with local invasion to the left kidney, lymph node metastasis, and hepatic metastases. Patient symptoms, diagnostic and imaging work-up and surgical management of both the primary and the metastatic disease are reviewed. PMID:25960993

  10. Hops (Humulus lupulus) inhibits oxidative estrogen metabolism and estrogen-induced malignant transformation in human mammary epithelial cells (MCF-10A).

    PubMed

    Hemachandra, L P; Madhubhani, P; Chandrasena, R; Esala, P; Chen, Shao-Nong; Main, Matthew; Lankin, David C; Scism, Robert A; Dietz, Birgit M; Pauli, Guido F; Thatcher, Gregory R J; Bolton, Judy L

    2012-01-01

    Long-term exposure to estrogens including those in traditional hormone replacement therapy (HRT) increases the risk of developing hormone-dependent cancers. As a result, women are turning to over-the-counter (OTC) botanical dietary supplements, such as black cohosh (Cimicifuga racemosa) and hops (Humulus lupulus), as natural alternatives to HRT. The two major mechanisms which likely contribute to estrogen and/or HRT cancer risk are: the estrogen receptor-mediated hormonal pathway; and the chemical carcinogenesis pathway involving formation of estrogen quinones that damage DNA and proteins, hence initiating and promoting carcinogenesis. Because, OTC botanical HRT alternatives are in widespread use, they may have the potential for chemopreventive effects on estrogen carcinogenic pathways in vivo. Therefore, the effect of OTC botanicals on estrogen-induced malignant transformation of MCF-10A cells was studied. Cytochrome P450 catalyzed hydroxylation of estradiol at the 4-position leads to an o-quinone believed to act as the proximal carcinogen. Liquid chromatography/tandem mass spectrometry analysis of estradiol metabolites showed that 4-hydroxylation was inhibited by hops, whereas black cohosh was without effect. Estrogen-induced expression of CYP450 1B1 and CYP450 1A1 was attenuated by the hops extract. Two phenolic constituents of hops (xanthohumol, XH; 8-prenylnaringenin, 8-PN) were tested: 8-PN was a potent inhibitor, whereas XH had no effect. Finally, estrogen-induced malignant transformation of MCF-10A cells was observed to be significantly inhibited by hops (5 ?g/mL) and 8-PN (50 nmol/L). These data suggest that hops extracts possess cancer chemopreventive activity through attenuation of estrogen metabolism mediated by 8-PN. PMID:21997247

  11. A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies

    PubMed Central

    2013-01-01

    Background Dinaciclib, a small-molecule, cyclin-dependent kinase inhibitor, inhibits cell cycle progression and proliferation in various tumor cell lines in vitro. We conducted an open-label, dose-escalation study to determine the safety, tolerability, and bioactivity of dinaciclib in adults with advanced malignancies. Methods Dinaciclib was administered starting at a dose of 0.33 mg/m2, as a 2-hour intravenous infusion once weekly for 3 weeks (on days 1, 8, and 15 of a 28-day cycle), to determine the maximum administered dose (MAD), dose-limiting toxicities (DLTs), recommended phase 2 dose (RP2D), and safety and tolerability. Pharmacodynamics of dinaciclib were assessed using an ex vivo phytohemagglutinin lymphocyte stimulation assay and immunohistochemistry staining for retinoblastoma protein phosphorylation in skin biopsies. Evidence of antitumor activity was assessed by sequential computed tomography imaging after every 2 treatment cycles. Results Forty-eight subjects with solid tumors were treated. The MAD was found to be 14 mg/m2 and the RP2D was determined to be 12 mg/m2; DLTs at the MAD included orthostatic hypotension and elevated uric acid. Forty-seven (98%) subjects reported adverse events (AEs) across all dose levels; the most common AEs were nausea, anemia, decreased appetite, and fatigue. Dinaciclib administered at the RP2D significantly inhibited lymphocyte proliferation, demonstrating a pharmacodynamic effect. Ten subjects treated at a variety of doses achieved prolonged stable disease for at least 4 treatment cycles. Conclusions Dinaciclib administered every week for 3 weeks (on days 1, 8, and 15 of a 28-day cycle) was generally safe and well tolerated. Initial bioactivity and observed disease stabilization support further evaluation of dinaciclib as a treatment option for patients with advanced solid malignancies. Trial registration ClinicalTrials.gov # NCT00871663 PMID:24131779

  12. Raw Single-Wall Carbon Nanotubes Induce Oxidative Stress and Activate MAPKs, AP-1, NF-?B, and Akt in Normal and Malignant Human Mesothelial Cells

    PubMed Central

    Pacurari, Maricica; Yin, Xuejun J.; Zhao, Jinshun; Ding, Ming; Leonard, Steve S.; Schwegler-Berry, Diane; Ducatman, Barbara S.; Sbarra, Deborah; Hoover, Mark D.; Castranova, Vincent; Vallyathan, Val

    2008-01-01

    Background Single-wall carbon nanotubes (SWCNTs), with their unique physicochemical and mechanical properties, have many potential new applications in medicine and industry. There has been great concern subsequent to preliminary investigations of the toxicity, biopersistence, pathogenicity, and ability of SWCNTs to translocate to subpleural areas. These results compel studies of potential interactions of SWCNTs with mesothelial cells. Objective Exposure to asbestos is the primary cause of malignant mesothelioma in 80–90% of individuals who develop the disease. Because the mesothelial cells are the primary target cells of asbestos-induced molecular changes mediated through an oxidant-linked mechanism, we used normal mesothelial and malignant mesothelial cells to investigate alterations in molecular signaling in response to a commercially manufactured SWCNT. Methods In the present study, we exposed mesothelial cells to SWCNTs and investigated reactive oxygen species (ROS) generation, cell viability, DNA damage, histone H2AX phosphorylation, activation of poly(ADP-ribose) polymerase 1 (PARP-1), stimulation of extracellular signal-regulated kinase (ERKs), Jun N-terminal kinases (JNKs), protein p38, and activation of activator protein-1 (AP-1), nuclear factor ?B (NF-?B), and protein serine-threonine kinase (Akt). Results Exposure to SWCNTs induced ROS generation, increased cell death, enhanced DNA damage and H2AX phosphorylation, and activated PARP, AP-1, NF-?B, p38, and Akt in a dose-dependent manner. These events recapitulate some of the key molecular events involved in mesothelioma development associated with asbestos exposure. Conclusions The cellular and molecular findings reported here do suggest that SWCNTs can cause potentially adverse cellular responses in mesothelial cells through activation of molecular signaling associated with oxidative stress, which is of sufficient significance to warrant in vivo animal exposure studies. PMID:18795165

  13. Hops (Humulus lupulus) inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A)

    PubMed Central

    Madhubhani, L.P.; Hemachandra, P.; Esala, R.; Chandrasena, P.; Chen, Shao-Nong; Main, Matthew; Lankin, David C.; Scism, Robert A.; Dietz, Birgit M.; Pauli, Guido F.; Thatcher, Gregory R. J.; Bolton, Judy L.

    2011-01-01

    Long-term exposure to estrogens including those in traditional hormone replacement therapy (HRT) increases the risk of developing hormone-dependent cancers. As a result, women are turning to over-the-counter (OTC) botanical dietary supplements such as black cohosh (Cimicifuga racemosa) and hops (Humulus lupulus) as natural alternatives to HRT. The two major mechanisms which likely contribute to estrogen and/or HRT cancer risk are: the estrogen receptor (ER) mediated hormonal pathway; and, the chemical carcinogenesis pathway involving formation of estrogen quinones that damage DNA and proteins, hence initiating and promoting carcinogenesis. Since OTC botanical HRT alternatives are in widespread use they may have the potential for chemopreventive effects on estrogen carcinogenic pathways in vivo. Therefore the effect of OTC botanicals on estrogen-induced malignant transformation of MCF-10A cells was studied. Cytochrome P450 catalyzed hydroxylation of estradiol at the 4-position leads to an o-quinone believed to act as the proximal carcinogen. LC-MS/MS analysis of estradiol metabolites showed that 4-hydroxylation was inhibited by hops, whereas black cohosh was without effect. Estrogen-induced expression of CYP450 1B1 and CYP450 1A1 was attenuated by the hops extract. Two phenolic constituents of hops (xanthohumol, XH; and 8-prenylnaringenin, 8-PN) were tested: 8-PN was a potent inhibitor whereas XH had no effect. Finally, estrogen-induced malignant transformation of MCF-10A cells was observed to be significantly inhibited by hops (5 ?g/mL) and 8-PN (50 nM). These data suggest that hops extracts possess cancer chemopreventive activity through attenuation of estrogen metabolism mediated by 8-PN. PMID:21997247

  14. Malignant melanoma of lingual gingiva with ipsilateral submandibular lymph node metastasis: a case report

    Microsoft Academic Search

    L. Krishna Prasad; P. Srinivasa Chakravarthi; K. Naga Neelima Devi; M. Sridhar; Y. Ram Kumar; D. Yesuratnam

    2009-01-01

    Malignant melanoma is a neoplasm of epidermal melanocytes. It is one of the most biologically unpredictable and deadly of\\u000a all human neoplasms. However, malignant melanoma in the oral cavity is a rare malignancy, accounting for 0.2% to 8% of all\\u000a melanomas. It has a grave prognosis, with a 5 year survival of 10–20%. We present a case of malignant melanoma

  15. Malignant gastric ghrelinoma with hyperghrelinemia.

    PubMed

    Tsolakis, Apostolos V; Portela-Gomes, Guida M; Stridsberg, Mats; Grimelius, Lars; Sundin, Anders; Eriksson, Barbro K; Oberg, Kjell E; Janson, Eva T

    2004-08-01

    A characteristic feature of neuroendocrine tumors is production and release of peptide hormone. Ghrelin is a 28-amino acid hormone that stimulates GH release. In this paper, we describe a patient with a metastasizing gastric neuroendocrine tumor displaying intense immunoreactivity for ghrelin and extremely high circulating levels of ghrelin. Tumor tissue biopsies from the primary tumor and one liver metastasis were examined by immunohistochemistry. Ghrelin and several other hormones and tumor markers were measured in blood. The clinical course of the patient was followed. Tumor tissue biopsies showed immunoreactivity for cytokeratin, chromogranin A, human synaptic vesicle protein 2, synaptophysin, and ghrelin. Grossly elevated circulating levels of total ghrelin, 2100 microg/liter (reference interval < 5 microg/liter) and active ghrelin, 28 microg/liter (reference interval < 0.1 microg/liter) were found at presentation. Chromogranin A, chromogranin B, and calcitonin levels were also increased. Both total and active ghrelin increased, despite treatment, during follow-up of the patient. We have identified and characterized a patient with a malignant gastric neuroendocrine tumor secreting ghrelin as the main hormone. This might be a new tumor entity of the stomach, and it is suggested that patients with malignant gastric neuroendocrine tumors should be investigated for ghrelin production. PMID:15292299

  16. Down-regulation of c-Myc following MEK\\/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors

    Microsoft Academic Search

    Francesco Marampon; Carmela Ciccarelli; Bianca M Zani

    2006-01-01

    BACKGROUND: Expression of c-myc proto-oncogene is inappropriate in a wide range of human tumors, and is a downstream target of Ras\\/Raf\\/ERK pathway, which promotes c-Myc stability by enhancing c-Myc expression and activity. The aim of this study was to investigate whether the oncogenic phenotype in the human muscle-derived Rhabdomyosarcoma (RD) cell line and in non muscle-derived human tumor cell lines

  17. AZD5438, an Inhibitor of Cdk1, 2, and 9, Enhances the Radiosensitivity of Non-Small Cell Lung Carcinoma Cells

    SciTech Connect

    Raghavan, Pavithra; Tumati, Vasu; Yu Lan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)] [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Chan, Norman [Departments of Medical Biophysics and Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Ontario (Canada)] [Departments of Medical Biophysics and Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Ontario (Canada); Tomimatsu, Nozomi [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)] [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Burma, Sandeep [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States) [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Comprehensive Cancer Center, Dallas, Texas (United States); Bristow, Robert G. [Departments of Medical Biophysics and Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Ontario (Canada)] [Departments of Medical Biophysics and Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Ontario (Canada); Saha, Debabrata, E-mail: debabrata.saha@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States) [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Comprehensive Cancer Center, Dallas, Texas (United States)

    2012-11-15

    Purpose: Radiation therapy (RT) is one of the primary modalities for treatment of non-small cell lung cancer (NSCLC). However, due to the intrinsic radiation resistance of these tumors, many patients experience RT failure, which leads to considerable tumor progression including regional lymph node and distant metastasis. This preclinical study evaluated the efficacy of a new-generation cyclin-dependent kinase (Cdk) inhibitor, AZD5438, as a radiosensitizer in several NSCLC models that are specifically resistant to conventional fractionated RT. Methods and Materials: The combined effect of ionizing radiation and AZD5438, a highly specific inhibitor of Cdk1, 2, and 9, was determined in vitro by surviving fraction, cell cycle distribution, apoptosis, DNA double-strand break (DSB) repair, and homologous recombination (HR) assays in 3 NSCLC cell lines (A549, H1299, and H460). For in vivo studies, human xenograft animal models in athymic nude mice were used. Results: Treatment of NSCLC cells with AZD5438 significantly augmented cellular radiosensitivity (dose enhancement ratio rangeing from 1.4 to 1.75). The degree of radiosensitization by AZD5438 was greater in radioresistant cell lines (A549 and H1299). Radiosensitivity was enhanced specifically through inhibition of Cdk1, prolonged G{sub 2}-M arrest, inhibition of HR, delayed DNA DSB repair, and increased apoptosis. Combined treatment with AZD5438 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.2-1.7. Conclusions: This study supports the evaluation of newer generation Cdk inhibitors, such as AZD5438, as potent radiosensitizers in NSCLC models, especially in tumors that demonstrate variable intrinsic radiation responses.

  18. Effects of connective tissue growth factor (CTGF) gene silencing on the radiosensitivity of glioblastoma

    PubMed Central

    Han, Na; Shahveranov, Allahverdi; Cheng, Yi; Qin, Kai; Yu, Shi-Ying; Zhang, Meng-Xian

    2014-01-01

    The effects of connective tissue growth factor (CTGF) gene silencing on the radiosensitivity of glioblastoma cells (GBM) were investigated. The lentivirus-mediated short hairpin RNA (shRNA) expression vector targeting CTGF was constructed and transinfected into U87MG human GBM cell line. The CTGF gene expression in U87MG cells was significantly down-regulated. After irradiation with 6 MV X-rays at a dose rate of 2.5 Gy/min, the clonogenicity, proliferation and migration of U87MG cells were assayed in vitro. The survival, proliferation and migration of U87MG cells were all remarkably inhibited by CTGF silencing (p < 0.05 vs control). Our results demonstrate that CTGF is important for GBM and CTGF gene silencing can be a potential tool to enhance the sensitivity of GBM to radiotherapy. PMID:25356109

  19. Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation.

    PubMed

    Gilles, Manon; Brun, Emilie; Sicard-Roselli, Cécile

    2014-11-01

    The purpose of this work was to study the influence of gold nanoparticles (GNP) coating on hydroxyl radical (HO) production under ionizing radiation. Though radiosensitizing mechanisms are still unknown, radical oxygen species are likely to be involved, especially HO. We synthesized six different types of GNP, choosing relevant ligands such as polyethylene glycol or human serum albumin. A great attention was paid to characterize these GNP in terms of size, charge and number of atoms in the coating. Our results show that functionalization dramatically decreases HO production, which is correlated to reduced plasmidic DNA damages. These findings are of high importance as GNP translation from fundamental research to applied medicine requires their functionalization to increase blood circulation time and specific cancerous cells addressing. We suggest that to keep GNP efficient for radiotherapy, a wispy coating is required. PMID:25454667

  20. Gynaecological malignancies in Qatar.

    PubMed

    Ejeckam, G C; Abdulla, F; el-Sakka, M; Dauleh, W; Haseeb, F

    1994-12-01

    Gynaecological malignancies constitute 6.88% (144 of 2092) of all malignant lesions in Qatar over a 15 year period (1979-1993). Cancer of the cervix was the most common with 54.86% followed by ovarian cancer 22.91%, endometrium 15.97%, vulva and vagina 2.75% and 2.08% respectively. Malignancies of the corpus uteri were rare. No tumours of the Fallopian tubes were registered during the study period. Early marriage, frequent coitus started early in life and increasing number of pregnancies were predisposing factors for the genesis of cancer of the cervix. As in some other developing countries, cervical and ovarian neoplasms tend to occur in the younger age group. Germ cell and gonadal stromal tumours were rare in Qatar and this may suggest rarity of these tumours in women of Arab and Indian subcontinent descent. Increasing number of pregnancies seems to protect against ovarian cancer. Abortions and age at menarche do not influence the incidence of gynaecological malignancies. Our findings provide an adequate data base for planning of gynaecological cancer education, screening programmes and resource allocation in Qatar. PMID:7705247

  1. Malignant Catarrhal Fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malignant catarrhal fever (MCF) is a frequently fatal viral disease of ruminant species, particularly cattle, bison, and deer. Clinical signs vary between species. Two major epidemiologic types of MCF exist, and are defined by the ruminant species that serve as natural reservoir hosts for infection...

  2. Malignant tumors of childhood

    SciTech Connect

    Brooks, B.J.

    1986-01-01

    This book contains 34 papers about malignant tumors. some of the titles are: Invasive Cogenital Mesoblastic Nephroma, Leukemia Update, Unusual Perinatal Neoplasms, Lymphoma Update, Gonadal Germ Cell Tumors in Children, Nutritional Status and Cancer of Childhood, and Chemotherapy of Brain tumors in Children.

  3. MOLECULAR EVENTS ASSOCIATED WITH ARSENIC-INDUCED MALIGNANT TRANSFORMATION OF HUMAN PROSTATIC EPITHELIAL CELLS: ABERRANT GENOMIC DNA METHYLATION AND K-RAS ONCOGENE ACTIVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous studies link arsenic exposure to human cancers in a variety of tissues, including the prostate. Our prior work showed that chronic arsenic exposure of the non-tumorigenic, human prostate epithelial cell line, RWPE-1, to low levels of (5 microM) sodium arsenite for 29 weeks resulted in malig...

  4. Radiation inactivation of human prostate cancer cells: The role of apoptosis

    SciTech Connect

    Algan, O.; Stobbe, C.C.; Helt, A.M. [Fox Chase Cancer Center, Philadelphia, PA (United States)] [and others

    1996-09-01

    Radiation induced apoptosis detected by gel electrophoresis was measured in cells of three human prostate carcinoma cell lines and compared to their intrinsic radiosensitivities as measured by clonogenic assays. The intrinsic radiosensitivities of each cell line were defined by their alpha and beta coefficients and their surviving fraction at 2 Gy, derived from complete survival curves.

  5. Growth Inhibition and Radiosensitization of Glioblastoma and Lung Cancer Cells by Small Interfering RNA Silencing of Tumor Necrosis Factor Receptor-Associated Factor 2

    Microsoft Academic Search

    Min Zheng; Susan E. Morgan-Lappe; Jie Yang; Katrina M. Bockbrader; Deepika Pamarthy; Dafydd Thomas; Stephen W. Fesik

    Radiotherapy combined with chemotherapy is the treatment of choice for glioblastoma and locally advanced lung cancer, but radioresistance of these two types of cancer remains a significant therapeutic hindrance. To identify molecular target(s) for radiosensitization, we screened a small interfer- ing RNA (siRNA) library targeting all protein kinases and E3 ubiquitin ligases in the human genome and identified tumor necrosis

  6. Is Radiosensitivity Associated to Different Types of Blood Groups? (A cytogenetic study)

    PubMed Central

    Elahimanesh, Farideh; Shabestani Monfared, Ali; Khosravifarsani, Meysam; Akhavan Niaki, Haleh; Abedian, Zeinab; Hajian-Tilaki, Karimollah; Borzouisileh, Sajad; Seyfizadeh, Nayer; Amiri, Mehrangiz

    2013-01-01

    Many biological factors affect radiosensitivity. In this study, radiosensitivity among the different blood groups was investigated. Peripheral blood sample of 95 healthy people were divided into two parts. One part was irradiated with 2 Gy Co-60 gamma rays and the second one was considered as control. Then all the samples were studied by cytokinesis-blocked micronucleus assay (CBMN assay). Our study showed that the radiosensitivity index of A+ and O+ groups was significantly higher and lower than other blood groups, respectively. It seems that blood type can be used as a radiosensitivity index for determining the given dose to radiotherapy, although extensive studies are necessary. PMID:24551803

  7. Cellular radiosensitivity and complication risk after curative radiotherapy

    Microsoft Academic Search

    John Peacock; Anita Ashton; Judith Bliss; Cyd Bush; John Eady; Caroline Jackson; Roger Owen; Jane Regan; John Yarnold

    2000-01-01

    Purpose: To test for an association between in vitro fibroblast radiosensitivity and complication risk in a case-control study of breast cancer patients treated under standard conditions in a clinical trial of radiotherapy dose fractionation.Patients and methods: A cohort of patients participating in a randomised clinical trial of radiotherapy dose fractionation was selected on the basis of treatment-induced changes in the

  8. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing

    Microsoft Academic Search

    Søren M. Bentzen

    1997-01-01

    A critical appraisal is given of the possible benefit from a reliable pre-treatment knowledge of individual normal-tissue sensitivity to radiotherapy. The considerations are in part, but not exclusively, based on the recent experience with in vitro colony-forming assays of the surviving fraction at 2 Gy, the SF2. Three strategies are reviewed: (1) to screen for rare cases with extreme radiosensitivity,

  9. The role of p53 in chemosensitivity and radiosensitivity

    Microsoft Academic Search

    Wafik S El-Deiry

    2003-01-01

    The role of p53 as a central mediator of the DNA damage and other cellular stress responses is well established. The ultimate growth-suppressive function of p53 in part explains its ability to confer chemosensitivity and radiosensitivity upon tumor cells. Recent work in the field has added complexity to our understanding, in terms of identifying novel regulators of p53 stability and

  10. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  11. Malignant melanoma...133 Chapter 12

    E-print Network

    Paxton, Anthony T.

    NICR/NCRI Malignant melanoma...133 Chapter 12: Malignant melanoma (C43) KEY FINDINGS - INCIDENCE During 2000-2004 incidence rates for melanoma increased with increasing affluence. o Male incidence rates and 60 female deaths from malignant melanoma in Ireland. o Among males mortality rates increased

  12. Pembrolizumab in Treating Patients With Malignant Mesothelioma

    ClinicalTrials.gov

    2015-04-24

    Biphasic Mesothelioma; Epithelioid Mesothelioma; Peritoneal Malignant Mesothelioma; Pleural Biphasic Mesothelioma; Pleural Epithelioid Mesothelioma; Pleural Malignant Mesothelioma; Pleural Sarcomatoid Mesothelioma; Recurrent Peritoneal Malignant Mesothelioma; Recurrent Pleural Malignant Mesothelioma; Sarcomatoid Mesothelioma

  13. Malignant degeneration of pulmonary juvenile-onset recurrent respiratory papillomatosis.

    PubMed

    Knepper, Benjamin R; Eklund, Meryle J; Braithwaite, Kiery A

    2015-07-01

    Juvenile-onset recurrent respiratory papillomatosis (JORRP) is a rare disease associated with the human papilloma virus (HPV) in which papillomas form along the aerodigestive tract in children. Pulmonary involvement is uncommon, but associated with worse clinical outcomes, including the rare complication of malignant transformation. We present a patient with JORRP in which lung disease underwent malignant transformation during adolescence. Our goal is to raise awareness of the potential for malignant transformation in children, as well as to familiarize pediatric radiologists with imaging features of malignant lung disease in JORRP. We advocate for the identification of the subgroup of JORPP patients with pulmonary disease who, due to increased risk for malignant transformation, may benefit from closer clinical and imaging surveillance by a multidisciplinary team. PMID:25487719

  14. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles.

    PubMed

    Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2015-08-01

    The epidermal growth factor receptor deletion variant EGFRvIII is known to be expressed in a subset of patients with glioblastoma (GBM) tumors that enhances tumorigenicity and also accounts for radiation and chemotherapy resistance. Targeting the EGFRvIII deletion mutant may lead to improved GBM therapy and better patient prognosis. Multifunctional magnetic nanoparticles serve as a potential clinical tool that can provide cancer cell targeted drug delivery, imaging, and therapy. Our previous studies have shown that an EGFRvIII-specific antibody and cetuximab (an EGFR- and EGFRvIII-specific antibody), when bioconjugated to IONPs (EGFRvIII-IONPs or cetuximab-IONPs respectively), can simultaneously provide sensitive cancer cell detection by magnetic resonance imaging (MRI) and targeted therapy of experimental GBM. In this study, we investigated whether cetuximab-IONPs can additionally allow for the radiosensitivity enhancement of GBM. Cetuximab-IONPs were used in combination with single (10 Gy × 1) or multiple fractions (10 Gy × 2) of ionizing radiation (IR) for radiosensitization of EGFRvIII-overexpressing human GBM cells in vitro and in vivo after convection-enhanced delivery (CED). A significant GBM antitumor effect was observed in vitro after treatment with cetuximab-IONPs and subsequent single or fractionated IR. A significant increase in overall survival of nude mice implanted with human GBM xenografts was found after treatment by cetuximab-IONP CED and subsequent fractionated IR. Increased DNA double strands breaks (DSBs), as well as increased reactive oxygen species (ROS) formation, were felt to represent the mediators of the observed radiosensitization effect with the combination therapy of IR and cetuximab-IONPs treatment. PMID:25981803

  15. Regional differences in radiosensitivity across the rat cervical spinal cord

    SciTech Connect

    Bijl, Hendrik P. [Department of Radiation Oncology, University Hospital Groningen, Groningen (Netherlands)]. E-mail: h.p.bijl@rt.azg.nl; Luijk, Peter van [Department of Radiation Oncology, University Hospital Groningen, Groningen (Netherlands); Kernfysisch Versneller Instituut, Groningen (Netherlands); Coppes, Rob P. [Department of Radiation Oncology, University Hospital Groningen, Groningen (Netherlands); Department of Radiation and Stress Cell Biology, University of Groningen, Groningen (Netherlands); Schippers, Jacobus M. [Kernfysisch Versneller Instituut, Groningen (Netherlands); Konings, Antonius W.T. [Department of Radiation and Stress Cell Biology, University of Groningen, Groningen (Netherlands); Kogel, Albert J. van der [Department of Radiation Oncology, University Medical Center Nijmegen, Nijmegen (Netherlands)

    2005-02-01

    Purpose: To study regional differences in radiosensitivity within the rat cervical spinal cord. Methods and materials: Three types of inhomogeneous dose distributions were applied to compare the radiosensitivity of the lateral and central parts of the rat cervical spinal cord. The left lateral half of the spinal cord was irradiated with two grazing proton beams, each with a different penumbra (20-80% isodoses): lateral wide (penumbra = 1.1 mm) and lateral tight (penumbra = 0.8 mm). In the third experiment, the midline of the cord was irradiated with a narrow proton beam with a penumbra of 0.8 mm. The irradiated spinal cord length (CT-2) was 20 mm in all experiments. The animals were irradiated with variable single doses of unmodulated protons (150 MeV) with the shoot-through method, whereby the plateau of the depth-dose profile is used rather than the Bragg peak. The endpoint for estimating isoeffective dose (ED{sub 50}) values was paralysis of fore and/or hind limbs within 210 days after irradiation. Histology of the spinal cords was performed to assess the radiation-induced tissue damage. Results: High-precision proton irradiation of the lateral or the central part of the spinal cord resulted in a shift of dose-response curves to higher dose values compared with the homogeneously irradiated cervical cord to the same 20-mm length. The ED{sub 50} values were 28.9 Gy and 33.4 Gy for the lateral wide and lateral tight irradiations, respectively, and as high as 71.9 Gy for the central beam experiment, compared with 20.4 Gy for the homogeneously irradiated 20-mm length of cervical cord. Histologic analysis of the spinal cords showed that the paralysis was due to white matter necrosis. The radiosensitivity was inhomogeneously distributed across the spinal cord, with a much more radioresistant central white matter (ED{sub 50} = 71.9 Gy) compared with lateral white matter (ED{sub 50} values = 28.9 Gy and 33.4 Gy). The gray matter did not show any noticeable lesions, such as necrosis or hemorrhage, up to 80 Gy. All lesions induced were restricted to white matter structures. Conclusions: The observed large regional differences in radiosensitivity within the rat cervical spinal cord indicate that the lateral white matter is more radiosensitive than the central part of the white matter. The gray matter is highly resistant to radiation: no lesions observable by light microscopy were induced, even after a single dose as high as 80 Gy.

  16. Epigenetics in the hematologic malignancies.

    PubMed

    Fong, Chun Yew; Morison, Jessica; Dawson, Mark A

    2014-12-01

    A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting. PMID:25472952

  17. [Isolated malignant mediastinal lymphadenopathy].

    PubMed

    Riquet, M; Bagan, P; Fabre-Guillevin, E; Scotté, F; Cazes, A; Le Pimpec-Barthes, F

    2010-02-01

    Mediastinal adenopathies without pulmonary disease may be benign, lymphomatous or the metastases from intra- or extrathoracic malignancy or more rarely metastases with unknown primary site. We observed 507 patients with isolated mediastinal adenopathies: benign, lymphomatous and metastatic disease represented 41.4% (210/507), 26.8% (136/507), 31.8% (161/507) of them, respectively. Management of the latter was the most challenging. Surgery was generally diagnostic, restricted to confirming the metastatic process, because of too numerous and disseminated or unresectable lymph nodes in 84% of patients (135/161). However, radical surgery consisting in lymphadenectomy proved effective in case of mediastinal lymph node malignancy without other extra- and intrathoracic disease. We observed long-term good results in such cases, which also was demonstrated by case reports in the literature. We suggest that including surgery in the multimodality treatment of mediastinal metastatic lymph nodes may be advisable in selected patients. PMID:20207295

  18. Esophageal tuberculosis mimicking malignancy.

    PubMed

    Geusens, E; Verschakelen, J A; Flamaing, J; Bogaert, J; Ponette, E; Decramer, M; Baert, A L

    1996-01-01

    A case of pulmonary and esophageal tuberculosis in an 82-year-old female is presented. Esophageal tuberculosis is very rarely seen in Europe and the United States, but the disease is still endemic in India. The major differential diagnosis is esophageal malignancy. Findings that can suggest the diagnosis are tracheo-esophageal fistula formation, enlarged, centrally necrotizing lymph nodes, and a micronodular lung pattern. PMID:8797957

  19. Stents in Tracheobronchial Malignancy

    Microsoft Academic Search

    H.-J. Wagner

    \\u000a Malignant obstructions of the tracheobronchial system usually derive from cancer of the trachea or bronchus. However, infiltration\\u000a from tumors arising from adjacent organs (e.g., lymph nodes, esophageal cancer) can cause airway stenosis as well. For non-small\\u000a cell lung cancer the only curative approach is resection. However, many bronchial cancers are not resectable at the time of\\u000a diagnosis. Therefore, palliative measures

  20. Malignant spinal cord compression

    Microsoft Academic Search

    Madhuri Yalamanchili; Glenn J. Lesser

    2003-01-01

    Opinion statement  Malignant spinal cord compression is one of the most dreaded complications of cancer. If untreated, it can lead to worsening\\u000a neurologic function culminating in paralysis and sphincter incontinence. The most challenging aspect in the management of\\u000a this complication is early diagnosis because the single most important factor determining outcome is the level of neurologic\\u000a function at initiation of therapy.

  1. Malignant Catatonia Mimicking Pheochromocytoma

    PubMed Central

    Li, Dailin

    2013-01-01

    Malignant catatonia is an unusual and highly fatal neuropsychiatric condition which can present with clinical and biochemical manifestations similar to those of pheochromocytoma. Differentiating between the two diseases is essential as management options greatly diverge. We describe a case of malignant catatonia in a 20-year-old male who presented with concurrent psychotic symptoms and autonomic instability, with markedly increased 24-hour urinary levels of norepinephrine at 1752?nmol/day (normal, 89–470?nmol/day), epinephrine at 1045?nmol/day (normal, <160?nmol/day), and dopamine at 7.9??mol/day (normal, 0.4–3.3??mol/day). The patient was treated with multiple sessions of electroconvulsive therapy, which led to complete clinical resolution. Repeat urine collections within weeks of this presenting event revealed normalization or near normalization of his catecholamine and metanephrine levels. Malignant catatonia should be considered in the differential diagnosis of the hypercatecholamine state, particularly in a patient who also exhibits concurrent catatonic features. PMID:24251048

  2. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies

    PubMed Central

    Neidhart, Jeffrey D.; Ramanathan, Ramesh K.; Bassett, Dawn; Neidhart, James A.; Choi, Chung Hang J.; Chow, Warren; Chung, Vincent; Forman, Stephen J.; Garmey, Edward; Hwang, Jungyeon; Kalinoski, D. Lynn; Koczywas, Marianna; Longmate, Jeffrey; Melton, Roger J.; Morgan, Robert; Oliver, Jamie; Peterkin, Joanna J.; Ryan, John L.; Schluep, Thomas; Synold, Timothy W.; Twardowski, Przemyslaw; Davis, Mark E.; Yen, Yun

    2013-01-01

    Summary Patients with advanced solid malignancies were enrolled to an open-label, single-arm, dose-escalation study, in which CRLX101 was administered intravenously over 60 min among two dosing schedules, initially weekly at 6, 12, and 18 mg/m2 and later bi-weekly at 12, 15, and 18 mg/m2. The maximum tolerated dose (MTD) was determined at 15 mg/m2 bi-weekly, and an expansion phase 2a study was completed. Patient samples were obtained for pharmacokinetic (PK) and pharmacodynamic (PD) assessments. Response was evaluated per RECIST criteria v1.0 every 8 weeks. Sixty-two patients (31 male; median age 63 years, range 39-79) received treatment. Bi-weekly dosing was generally well tolerated with myelosuppression being the dose-limiting toxicity. Among all phase 1/2a patients receiving the MTD (n=44), most common grade 3/4 adverse events were neutropenia and fatigue. Evidence of systemic plasma exposure to both the polymer-conjugated and unconjugated CPT was observed in all treated patients. Mean elimination unconjugated CPT Tmax values ranged from 17.7 to 24.5 h, and maximum plasma concentrations and areas under the curve were generally proportional to dose for both polymer-conjugated and unconjugated CPT. Best overall response was stable disease in 28 patients (64 %) treated at the MTD and 16 (73 %) of a subset of NSCLC patients. Median progression-free survival (PFS) for patients treated at the MTD was 3.7 months and for the subset of NSCLC patients was 4.4 months. These combined phase 1/2a data demonstrate encouraging safety, pharmacokinetic, and efficacy results. Multinational phase 2 clinical development of CRLX101 across multiple tumor types is ongoing. PMID:23397498

  3. Targeted radiosensitization of ETS fusion-positive prostate cancer through PARP1 inhibition.

    PubMed

    Han, Sumin; Brenner, J Chad; Sabolch, Aaron; Jackson, Will; Speers, Corey; Wilder-Romans, Kari; Knudsen, Karen E; Lawrence, Theodore S; Chinnaiyan, Arul M; Feng, Felix Y

    2013-10-01

    ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose) polymerase 1 (PARP1) in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07) fold (mean ± SEM) and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03) relative to ERG-negative cells (P < .05). Neutral and alkaline COMET assays and immunofluorescence microscopy assessing ?-H2AX foci showed increased short- and long-term efficiencies of DNA repair, respectively, following radiation that was preferentially reversed by PARP1 inhibition. These findings were verified in an in vivo xenograft model. Our findings demonstrate that ERG overexpression confers radiation resistance through increased efficiency of DNA repair following radiation that can be reversed through inhibition of PARP1. These results motivate the use of PARP1 inhibitors as radiosensitizers in patients with localized ETS fusion-positive cancers. PMID:24204199

  4. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  5. Reversion of malignancy in human gastric cancer MKN-45 cells through the transfection of transforming growth factor-? type II receptor gene

    Microsoft Academic Search

    Hong Sun; Wei Kang Shi; Zhen Yao

    1996-01-01

    Human gastric cancer MKN-45 cells which are resistant to TGF-? growth inhibition and possess TGF-? type I and type III receptors, but not type II receptors, have been used as a model system to reconstitute these cancer cells with TGF-? RII cDNA. The results of these experiments indicated that the reexpression of TGF-? RII gene in MKN-45 cells can restore

  6. Homogeneously Staining Chromosomal Regions Contain Amplified Copies of an Abundantly Expressed Cellular Oncogene (c-myc) in Malignant Neuroendocrine Cells from a Human Colon Carcinoma

    Microsoft Academic Search

    Kari Alitalo; Manfred Schwab; C. C. Lin; Harold E. Varmus; J. Michael Bishop

    1983-01-01

    Two human neuroendocrine tumor cell lines derived from a colon carcinoma contain either numerous double minute chromosomes (COLO 320 DM) or a homogeneously staining marker chromosome (COLO 320 HSR). We found amplification and enhanced expression of the cellular oncogene c-myc in both COLO 320 DM and HSR cells, and we were able to show that the homogeneously staining regions of

  7. Targeting of the EGFR/?1 integrin connecting proteins PINCH1 and Nck2 radiosensitizes three-dimensional SCC cell cultures.

    PubMed

    Rossow, Lydia; Eke, Iris; Dickreuter, Ellen; Cordes, Nils

    2015-07-01

    Epidermal growth factor receptor (EGFR) signaling plays an important role in tumor cell resistance to therapy. In addition to ligand binding, mutual and cooperative interactions of EGFR with integrin cell adhesion receptors critically influence proper downstream signaling through a number of bridging adapter proteins. In the present study, we analyzed the role of two of these adapter proteins, called PINCH1 and Nck2, for cellular radioresistance in combination with EGFR-targeting using the monoclonal antibody cetuximab. siRNA-mediated knockdown of PINCH1 or Nck2 resulted in enhanced radiosensitivity of 3D grown human squamous cell carcinoma cell lines FaDu (head and neck) and A431 (epidermis) comparable with effects seen after cetuximab treatment. Combination of knockdown and cetuximab did not result in additive nor synergistic effects regarding clonogenic radiation survival. Modifications in MAPK, Akt and FAK phosphorylation occurred upon cetuximab treatment as well as PINCH1 or Nck2 depletion. We further found this tumor cell radiosensitization to be due to attenuated repair of DNA double strand breaks and altered Rad50 and Nbs1 expression but without changes in other DNA repair proteins such as ATM, DNA-PK and Mre11. Our data suggest that the adaptor proteins PINCH1 and Nck2 critically contribute to cellular radioresistance and proper EGFR signaling in 3D lrECM grown human squamous cell carcinoma cells. Further investigations are warranted to identify the intracellular signaling network controlled by EGFR, PINCH1 and Nck2. PMID:26004008

  8. The Local Cytokine and Chemokine Milieu within Malignant Effusions

    Microsoft Academic Search

    Djordje Atanackovic; Yanran Cao; Ji-Won Kim; Stephan Brandl; Ina Thom; Christiane Faltz; York Hildebrandt; Katrin Bartels; Andreas de Weerth; Susanna Hegewisch-Becker; Dieter Kurt Hossfeld; Carsten Bokemeyer

    2008-01-01

    Background\\/Aims: Malignant effusions offer a unique opportunity for the study of interactions between the human immune system and cancer. We have recently demonstrated that malignant effusions are characterized by an accumulation of T cells expressing chemokine receptors such as CCR4, which is commonly found on Th2 cells. In contrast, effector T cells expressing chemokine receptors typical for Th1 cells, such

  9. DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases1

    PubMed Central

    Williams, Terence M; Galbán, Stefanie; Li, Fei; Heist, Kevin A; Galbán, Craig J; Lawrence, Theodore S; Holland, Eric C; Thomae, Tami L; Chenevert, Thomas L; Rehemtulla, Alnawaz; Ross, Brian D

    2013-01-01

    PURPOSE: The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. EXPERIMENTAL DESIGN: We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. RESULTS: AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. CONCLUSION: DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM. PMID:23544166

  10. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)] [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  11. Radiosensitization of glioma cells by modulation of Met signalling with the hepatocyte growth factor neutralizing antibody, AMG102

    PubMed Central

    Buchanan, Ian M; Scott, Tamalee; Tandle, Anita T; Burgan, William E; Burgess, Teresa L; Tofilon, Philip J; Camphausen, Kevin

    2011-01-01

    Abstract The hepatocyte growth factor (HGF)/Met signalling pathway is up-regulated in many cancers, with downstream mediators playing a role in DNA double strand break repair. Previous studies have shown increased radiosensitization of tumours through modulation of Met signalling by genetic methods. We investigated the effects of the anti-HGF monoclonal antibody, AMG102, on the response to ionizing radiation in a model of glioblastoma multiforme in vitro and in vivo. Radiosensitivity was evaluated in vitro in the U-87 MG human glioma cell line. Met activation was measured by Western blot, and the effect on survival following radiation was evaluated by clonogenic assay. Mechanism of cell death was evaluated by apoptosis and mitotic catastrophe assays. DNA damage was quantitated by ?H2AX foci and neutral comet assay. Growth kinetics of subcutaneous tumours was used to assess the effects of AMG102 on in vivo tumour radiosensitivity. AMG102 inhibited Met activation after irradiation. An enhancement of radiation cell killing was shown with no toxicity using drug alone. Retention of ?H2AX foci at 6 and 24 hrs following the drug/radiation combination indicated an inhibition of DNA repair following radiation, and comet assay confirmed DNA damage persisting over the same duration. At 48 and 72 hrs following radiation, a significant increase of cells undergoing mitotic catastrophe was seen in the drug/radiation treated cells. Growth of subcutaneous tumours was slowed in combination treated mice, with an effect that was greater than additive for each modality individually. Modulation of Met signalling with AMG102 may prove a novel radiation sensitizing strategy. Our data indicate that DNA repair processes downstream of Met are impaired leading to increased cell death through mitotic catastrophe. PMID:20629992

  12. Radiosensitization of glioma cells by modulation of Met signalling with the hepatocyte growth factor neutralizing antibody, AMG102.

    PubMed

    Buchanan, Ian M; Scott, Tamalee; Tandle, Anita T; Burgan, William E; Burgess, Teresa L; Tofilon, Philip J; Camphausen, Kevin

    2011-09-01

    The hepatocyte growth factor (HGF)/Met signalling pathway is up-regulated in many cancers, with downstream mediators playing a role in DNA double strand break repair. Previous studies have shown increased radiosensitization of tumours through modulation of Met signalling by genetic methods. We investigated the effects of the anti-HGF monoclonal antibody, AMG102, on the response to ionizing radiation in a model of glioblastoma multiforme in vitro and in vivo. Radiosensitivity was evaluated in vitro in the U-87 MG human glioma cell line. Met activation was measured by Western blot, and the effect on survival following radiation was evaluated by clonogenic assay. Mechanism of cell death was evaluated by apoptosis and mitotic catastrophe assays. DNA damage was quantitated by ?H2AX foci and neutral comet assay. Growth kinetics of subcutaneous tumours was used to assess the effects of AMG102 on in vivo tumour radiosensitivity. AMG102 inhibited Met activation after irradiation. An enhancement of radiation cell killing was shown with no toxicity using drug alone. Retention of ?H2AX foci at 6 and 24 hrs following the drug/radiation combination indicated an inhibition of DNA repair following radiation, and comet assay confirmed DNA damage persisting over the same duration. At 48 and 72 hrs following radiation, a significant increase of cells undergoing mitotic catastrophe was seen in the drug/radiation treated cells. Growth of subcutaneous tumours was slowed in combination treated mice, with an effect that was greater than additive for each modality individually. Modulation of Met signalling with AMG102 may prove a novel radiation sensitizing strategy. Our data indicate that DNA repair processes downstream of Met are impaired leading to increased cell death through mitotic catastrophe. PMID:20629992

  13. Enhanced Expression of the Human Gene N-myc Consequent to Amplification of DNA May Contribute to Malignant Progression of Neuroblastoma

    Microsoft Academic Search

    Manfred Schwab; Jay Ellison; Michael Busch; Werner Rosenau; Harold E. Varmus; J. Michael Bishop

    1984-01-01

    Previous studies had revealed that DNA with partial similarity to the myc oncogene (N-myc) is frequently amplified in human neuroblastoma cell lines and neuroblastoma tumors. We show here for one patient that N-myc amplification is confined to the neuroblastoma tumor and is not present in normal tissue. N-myc mRNA ≈ 4.0 kilobases in size is detectable in neuroblastoma cell lines

  14. Presence of Simian Virus 40 DNA Sequences in Human Lymphoid and Hematopoietic Malignancies and Their Relationship to Aberrant Promoter Methylation of Multiple Genes

    Microsoft Academic Search

    Narayan Shivapurkar; Takao Takahashi; Jyotsna Reddy; Yingye Zheng; Victor Stastny; Robert Collins; Shinichi Toyooka; Makato Suzuki; Gunjan Parikh; Sheryl Asplund; Steven H. Kroft; Charles Timmons; Robert W. McKenna; Ziding Feng; Adi F. Gazdar

    2004-01-01

    The simian polyoma virus SV40 has been detected in specific human tumors including non-Hodgkin's lymphomas, although a causative role for the virus has not been convincingly demonstrated. Aberrant methylation of CpG islands in promoter regions is a frequent method of silencing tumor suppressor genes (TSGs) in cancers and may be induced by oncogenic vi- ruses. We investigated the relationship between

  15. Distribution of the Burkitt's lymphoma-associated antigen (BLA) in normal human tissue and malignant lymphoma as defined by immunohistological staining with monoclonal antibody 38.13

    Microsoft Academic Search

    Gorm Pallesen; Jesper Zeuthen

    1987-01-01

    The distribution of the Burkitt's lymphoma-associated antigen (BLA) or globotriaosylceramide (Pk antigen) in normal human tissues and in 194 haematopoietic neoplasms was demonstrated by immunoperoxidase labelling of frozen tissue sections with monoclonal antibody 38.13. Staining was seen in most tissues of the body and was most pronounced in the epithelial compartments. In normal lymphoid tissue only dendritic reticulum cells, sinus-lining

  16. A study of the role of apoptotic cell death and cell cycle events mediating the mechanism of action of 6-hydroxycoumarin-3-carboxylatosilver in human malignant hepatic cells

    Microsoft Academic Search

    Bhumika Thati; Andy Noble; Bernadette S. Creaven; Maureen Walsh; Malachy McCann; Kevin Kavanagh; Michael Devereux; Denise A. Egan

    2007-01-01

    Previously our research group has studied the anti-proliferative effects of a series of hydroxylated derivatives and silver (I) complexes of coumarin-3-carboxylic acid (C-3-COOH) using two human-derived carcinoma cell lines (A-498 and Hep-G2). Results obtained suggested that both hydroxylation and complexation with silver served to significantly augment the cytotoxic properties of C-3-COOH, to yield a compound, namely 6-hydroxycoumarin-3-carboxylatosilver (6-OH-C-COO-Ag) which could

  17. Silencing of Peroxiredoxin 2 and Aberrant Methylation of 33 CpG Islands in Putative Promoter Regions in Human Malignant Melanomas

    Microsoft Academic Search

    Junichi Furuta; Yoshimasa Nobeyama; Yoshihiro Umebayashi; Fujio Otsuka; Kanako Kikuchi; Toshikazu Ushijima

    2006-01-01

    Aberrant methylation of promoter CpG islands (CGI) is involved in silencing of tumor suppressor genes and is also a potential cancer biomarker. Here, to identify CGIs aber- rantly methylated in human melanomas, we did a genome- wide search using methylation-sensitive representational difference analysis. CGIs in putative promoter regions of 34 genes (ABHD9, BARHL1, CLIC5, CNNM1, COL2A1, CPT1C, DDIT4L, DERL3, DHRS3,

  18. Radiofrequency ablation followed by resection of malignant liver tumors

    Microsoft Academic Search

    Charles H Scudamore; Shung I Lee; Emma J Patterson; Andrzej K Buczkowski; Laura V July; Stephen W Chung; Anne R Buckley; Stephen G. F Ho; David A Owen

    1999-01-01

    BACKGROUND: Radiofrequency ablation (RFA) has recently been used to treat liver tumors, but few clinical reports have described the pathological characteristics of radiofrequency ablation in human specimens. This study delineates the gross pathologic and histochemical changes induced by RFA in benign and malignant human liver tissue and confirms the tumor necrosis described in early clinical reports.METHODS:Ten patients with metastatic tumors

  19. Stepwise genetic changes associated with progression of nontumorigenic HPV-18 immortalized human prostate cancer-derived cell line to a malignant phenotype.

    PubMed

    Hukku, B; Mally, M; Cher, M L; Peehl, D M; Kung, H; Rhim, J S

    2000-07-15

    Cytogenetics, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH) were used to identify genes that are involved in the development and progression of prostate cancer. For that purpose, we chose a cell line established in vitro from a prostatic adenocarcinoma which was nontumorigenic in nude mice and followed its progression to a tumorigenic cell line. Stepwise changes were observed in the cell line as it became tumorigenic. The composite karyotype at the nontumorigenic stage (CA-HPV-10) was 68 approximately 77,XXY,-(1, 9, 13, 14, 19, 22),+(4, 5, 11, 18, 20, 21),+(del(1) (q23q31)=M1 (two copies), +der(9)t(1;9)(q24 approximately q31;p23)=M5(two copies), der(14)t(14;?)(q10;?)=M17 in the majority of metaphases. These two derivative chromosomes were also observed a previous study. Our CGH analysis clearly showed that this deleted region in M1 is, in fact, translocated with derivative M5 and, in reality, is amplified. The cell line established from nodule (SCID 5019 p11), showed a number of new changes, as described; however, the most significant change was amplification of the 8q23 approximately qter region, harboring c-myc. This region was translocated with chromosomes 2, 4, and 16 as der(2)t(2;8)(q33;q23)=M12, der(4)t(4;8)(q34;q23)=M11, and der(16)t(8;16)(q24;q21)=M9. We deduce from our study that amplification of c-myc and other genes in the 8q23 approximately qter region were important in progression but did not lead to tumorigenicity. The population that became tumorigenic (SCID 5019 II) showed almost all of the same changes in the karyotype as observed in the nodular cell line; the only significant change was the appearance of der(11)t(4;11)(q32;q22)=M7 and the addition of another copy of t(3q;7p)=M2. These new changes lead to loss of chromosomes 3p, 4pter approximately q34, 6, 7q21 approximately qter, 11q22 approximately qter, and 18q, and gain of 3q, 7p, 8q23 approximately qter, and 11pter approximately q22, before the cell line became tumorigenic. The clonal selection of the population is proven by the presence of a number of the same derivative chromosomes in both the nodular and tumorigenic cell line. As it progressed to tumorigenicity, some of the same changes observed in the original study re-appear at different stages of malignancy, although it was absent in the nontumorigenic cell line. These are: der(16)t(8;16)(q24;q21)=M9 in the nodular cell line and der(11)t(4;11)(q32;q22)=M7 in the tumorigenic cell line. In our system, amplification of c-myc and other genes in der(2)t(2;8)(q33;q23)=M12,der(4) t(4;8)(q34;q23)=M11 together with the presence of der(16)t(8;16)(q24;q21)=M9 and der(11)t(4;11)(q32;q22)=M5 makes the cell line tumorigenic. It is either nontumorigenic, with the presence of a marker equivalent to der(16)=M9 and der(11)=M7 observed in the original study, and only nodular (SCID 5019 p11, present study), with the presence of number of markers with c-myc amplification (M9, M11, and M12). There is accumulation of all the above-mentioned changes in the same cell before it becomes tumorigenic. PMID:10942801

  20. Tritium toxicity: age-dependent radiosensitivity of mouse testes

    SciTech Connect

    Bhatia, A.L.

    1985-06-01

    As a radiation hazard of biological significance tritium has largely been ignored because of its rapid turnover from the body, its low average beta energy, and short range in the tissue. In all the available reports of the investigations, little research effort has been noticed on the age-specific consequences of HTO-irradiation of mammals in the perinatal to pubertal stages of life as compared to the adult stages. The present study is an attempt to evaluate qualitative and quantitatively the age dependent radio-sensitivity of mice testes to tritium toxicity.

  1. UV laser radiosensitivity of normal and tumoral chromatin

    NASA Astrophysics Data System (ADS)

    Radu, Liliana; Mihailescu, Ion N.; Preoteasa, V.; Radulescu, Irina; Gostian, Doina; Hening, Alexandru; Radu, S.

    1998-07-01

    A normal and a tumoral chromatin radiosensitivity to an UV laser radiation was determined. The characteristics of these chromatin samples were established by the analysis of the absorption and emission spectra of chromatin complexes with a specific DNA ligand-ethidium bromide, by Scatchard representations of ligand binding to chromatin and by the Forster energy transfer efficiency determination between two fluorescent ligands coupled at chromatin: dansyl chloride and acridine orange. The effects of excimer laser beam with (lambda) equals 248 nm on chromatin structure were analyzed by the above methods and also by the establishment of the intrinsic chromatin fluorescence and of the excited state lifetimes of a specific DNA ligand.

  2. Antiangiogenic Agents in Myeloid Malignancies

    Microsoft Academic Search

    Magda Melchert; Alan F. List

    The role of angiogenesis in the development and progression of solid tumors has been well established over the 1980s and 1990s.\\u000a Through more recent investigations, it has become increasingly clear that neovascularization within the bone marrow of patients\\u000a with hematologic malignancies is of primary importance in the development and progression of these disorders. Evidence of\\u000a malignant angiogenesis in myeloid malignancies

  3. Pharmacokinetics and biodistribution of radioimmunoconjugates of anti-CD19 antibody and single-chain Fv for treatment of human B-cell Malignancy

    Microsoft Academic Search

    Quanzhi Li; Wendy Hudson; Duo Wang; Erica Berven; Fatih M. Uckun; John H. Kersey

    1998-01-01

    The comparative advantages and disadvantages of intact antibodies and single-chain Fv as immunotoxins and radioimmunoconjugates\\u000a have been widely discussed but not directly compared. In this study, the in vivo properties of anti-CD19 B43 monoclonal antibody\\u000a and its derived single-chain Fv (FVS191) were studied in athymic nude mice bearing CD19-positive human lymphomas. B43 mab\\u000a and FVS191 were labeled with iodine-125 using

  4. [Malignant keratoma: Harlequin fetus].

    PubMed

    Larguèche, K; Lâarif, Z; Ajroud, C; Oueslati, H

    2009-01-01

    Harlequin fetus, with an incidence of about 1 in 300.000 births, is an extremely severe form of congenital ichtyosis. We report a case of malignant keratoma: a male infant was born at 40 weeks' gestational age. The parents were first cousins. This infant was covered with massive thick, waxy, plate-like scales and deep fissures. There was striking facial distortion including severe eclabium and ectropion. The baby was transferred to the Neonatal Intensive Care Unit but he died at 2 days of age. There is limited information regarding the course and prognosis of neonates affected with Harlequin ichthyosis because most affected patients die within the first days or weeks of life. However, it is now evident that these infants, may have extended survival potential with intensive supportive measures as well as the addition of retinoids. Prenatal diagnosis for malignant keratoma had been performed by fetal skin biopsy and electron microscopic observation at 19-23 weeks estimated gestational age. In 2005, ABCA12 was identified as the causative gene for this disease. It has now become possible to make DNA-based prenatal diagnosis for Harlequin ichthyosis by chorionic villus or amniotic fluid sampling procedures in the earlier stages of pregnancy with a lower risk to fetal health and with a reduced burden on the mothers. PMID:19353943

  5. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad; Verma, Ankit; Ahamed, Maqusood; Ahmed, Mukhtar; Alhadlaq, Hisham A

    2013-01-01

    The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles. PMID:23493450

  6. Some Observations on Spontaneous Sister Chromatid Exchange Frequencies and Cell Cycle Progression in Stimulated Lymphocytes of Patients With Different Malignancies

    Microsoft Academic Search

    P. K. Gadhia; Salil Vaniawala; Meonis Pithawala

    KEYWORDS Human lymphocytes; Malignancies; Spontaneous SCE rates; Cell cycle progression ABSTRACT Total 23 patients with different malignancies viz. Ca. Lung (5), Ca. Uterine & Cervix (5), Ca. Head & Neck (5), Sarcomas (5) and Malignant Melanoma (3); were studied for spontaneous sister chromatid exchange frequencies (SCE) as well as cell cycle progression. All blood samples were collected prior to chemotherapy

  7. Silence of MACC1 expression by RNA interference inhibits proliferation, invasion and metastasis, and promotes apoptosis in U251 human malignant glioma cells.

    PubMed

    Sun, Longfeng; Li, Gang; Dai, Bing; Tan, Wei; Zhao, Hongwen; Li, Xiaofei; Wang, Aiping

    2015-09-01

    The overexpression of metastasis?associated in colon cancer 1 (MACC1) has been demonstrated not only in colon cancer, but also in various other types of cancer. Gliomas are the most common type of intracranial tumors, and recent studies have reported MACC1 to be involved in human glioma progression. The present study aimed to investigate the effects of MACC1 expression silencing in glioma cells using RNA interference, in order to determine the underlying biological mechanisms of glioma progression, including proliferation, apoptosis, invasion and metastasis. The expression levels of MACC1 were determined in various types of U251 glioma cells using western blot analyses. MACC1?specific short hairpin RNA (shRNA) was used to silence the expression of MACC1 in the U251 cells. The results obtained following MACC1 silencing demonstrated a significant inhibition of cell proliferation, invasion and migration, as well as a marked enhancement of apoptosis. MACC1 shRNA?induced inhibition of cell proliferation was observed by colony forming and MTT assays, and cell apoptosis was measured using flow cytometry and Hoechst staining. In addition, inhibition of cell invasion and migration was assessed using wound healing and transwell assays. Western blotting and fluorescence?activated cell sorting (FACS) revealed a G0/G1 phase cell cycle arrest regulated by cyclins D1 and E; cell apoptosis regulated by caspase?3; and cell invasion and migration regulated by matrix metalloproteinases 2 and 9, respectively. The present study demonstrated that the expression levels of MACC1 were significantly correlated with the biological processes underlying glioma cell proliferation, invasion and metastasis. Therefore, MACC1 may serve as a promising novel therapeutic target in human glioma. Notably, the inhibition of MACC1 expression by shRNA may prove to be an effective genetic therapeutic strategy for glioma treatment. PMID:26043756

  8. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  9. Radiosensitivity of testicular cells in the prepubertal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Eerdenburg, F.J.C.M. van [Univ. of Utrecht (Netherlands); Huiskamp, R.; Bas, R.J. [Netherlands Energy Research Foundation ECN, Petten (Netherlands); Jong, F.H. de [Erasmus Univ., Rotterdam (Netherlands); Davids, J.A.G. [Lonbar Petrilaan, Overveen (Netherlands)

    1994-09-01

    The effects of total-body X-irradiation on the prepubertal testis of the CBA/P mouse have been studied. At either day 14 or day 29 post partum male mice were exposed to single doses of X-rays ranging from 15-6.0 Gy. At 1 week after irradiation the repopulation index method was used to study the radiosensitivity of the spermatogonial stem cells. A D{sub 0} value of 1.8 Gy was determined for the stem cells at day 14 post partum as well as for the stem cells at day 29 post partum, indicating that the radiosensitivity of the spermatogonial stem cells in the prepubertal mouse testis is already comparable to that observed in the adult mouse. One, 2 or 3 weeks after irradiation total cell number per testis of Sertoli cells, Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelium and perivascular cells were determined using the disector method. The Sertoli cells and interstitial cell types appeared to be relatively radioresistant during the prepubertal period. No significant changes in plasma testosterone levels were found, indicating that there is no Leydig cell dysfunction after exposure to doses up to 6 Gy during the prepubertal period. Taken together, the radioresponse of the prepubertal mouse testis is comparable to that of the adult mouse testis. 38 refs., 6 figs., 1 tab.

  10. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium

    PubMed Central

    Moding, Everett J.; Lee, Chang-Lung; Castle, Katherine D.; Oh, Patrick; Mao, Lan; Zha, Shan; Min, Hooney D.; Ma, Yan; Das, Shiva; Kirsch, David G.

    2014-01-01

    Cells isolated from patients with ataxia telangiectasia are exquisitely sensitive to ionizing radiation. Kinase inhibitors of ATM, the gene mutated in ataxia telangiectasia, can sensitize tumor cells to radiation therapy, but concern that inhibiting ATM in normal tissues will also increase normal tissue toxicity from radiation has limited their clinical application. Endothelial cell damage can contribute to the development of long-term side effects after radiation therapy, but the role of endothelial cell death in tumor response to radiation therapy remains controversial. Here, we developed dual recombinase technology using both FlpO and Cre recombinases to generate primary sarcomas in mice with endothelial cell–specific deletion of Atm to determine whether loss of Atm in endothelial cells sensitizes tumors and normal tissues to radiation. Although deletion of Atm in proliferating tumor endothelial cells enhanced the response of sarcomas to radiation, Atm deletion in quiescent endothelial cells of the heart did not sensitize mice to radiation-induced myocardial necrosis. Blocking cell cycle progression reversed the effect of Atm loss on tumor endothelial cell radiosensitivity. These results indicate that endothelial cells must progress through the cell cycle in order to be radiosensitized by Atm deletion. PMID:25036710

  11. Small-molecule survivin inhibitor YM155 enhances radiosensitization in esophageal squamous cell carcinoma by the abrogation of G2 checkpoint and suppression of homologous recombination repair

    PubMed Central

    2014-01-01

    Background Survivin is overexpressed in cancer cells and plays a crucial role in apoptosis evasion. YM155, a small-molecule inhibitor of survivin, could enhance the cytotoxicity of various DNA-damaging agents. Here, we evaluated the radiosensitizaion potential of YM155 in human esophageal squamous cell carcinoma (ESCC). Methods Cell viability was determined by CCK8 assay. The radiosensitization effect of YM155 was evaluated by clonogenic survival and progression of tumor xenograft. Cell cycle progression was determined by flow cytometric analysis. Radiation-induced DNA double strand break (DSB) and homologous recombination repair (HRR) were detected by the staining of ?-H2AX and RAD51, respectively. E