Science.gov

Sample records for radiosensitizes malignant human

  1. Akt signaling pathway: a target for radiosensitizing human malignant glioma

    PubMed Central

    Chautard, Emmanuel; Loubeau, Galle; Tchirkov, Andre; Chassagne, Jacques; Vermot-Desroches, Claudine; Morel, Laurent; Verrelle, Pierre

    2010-01-01

    Radiation therapy plays a central role in the treatment of glioblastoma, but it is not curative due to the high tumor radioresistance. Phosphatidyl-inositol 3-kinase/protein kinase B (Akt) and Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways serve to block the apoptosis process, keeping cells alive in very toxic environments such as chemotherapy or ionizing radiation. In the present study, from a panel of 8 human malignant glioma cell lines, investigations on the relationship between intrinsic radioresistance and Akt or STAT3 basal activation were done. Secondly, the impact of down-modulation of Akt or STAT3 signaling on in vitro intrinsic radiosensitivity was evaluated. Using a clonogenic cell survival assay, our results revealed a significant correlation between the basal Akt activation and the surviving fraction at 2 Gy (SF2). In contrast, no correlation was found between STAT3 activation and SF2. According to this, down-modulation of Akt with a specific chemical inhibitor (Akt inhibitor IV) demonstrated a significant enhancement of radiation sensitivity on glioma cells in a clonogenic survival assay. On the contrary, down-modulation of STAT3 signaling with a specific chemical inhibitor (JSI-124) or a neutralizing gp130 antibody failed to radiosensitize glioma cells. These data indicate that the Akt intercept node could be a more relevant therapeutic target than STAT3 for radiosensitizing human malignant glioma. PMID:20406894

  2. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing; Xiong Jie; Xie CongHua; Luo Zhiguo; Liu Shiquan; Zhou Yunfeng . E-mail: yfzhouwhu@163.com

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.

  3. Radiation-induced DNA damage and repair in cells of a radiosensitive human malignant glioma cell line

    SciTech Connect

    Allalunis-Turner, M.J.; Zia, P.K.Y.; Barron, G.M.

    1995-12-01

    The induction and repair of DNA double-strand breaks were studied in cells of two isogenic human malignant glioma cell lines which vary in their SF2 values by a factor of {approximately}30.M059J cells are radiosensitive (SF2 = 0.02) and lack the p350 component of DNA-dependent protein kinase (DNA-PK); M059K cells are radioresistant (SF2 = 0.64) and express normal levels of DNA-PK. Zero integrated field gel electrophoresis and alkaline sucrose gradient experiments indicated that equivalent numbers of DNA lesions were produced by ionizing radiation in M059J and M059K cells. To compare the capacity of both lines to repair sublethal damage, the split-dose recovery experiment after exposure to equitoxic doses of radiation was carried out. Significant sublethal damage repair was shown for M059K cells, with a 5.8-fold increase in relative survival peaking at 4 h, whereas M059J cells showed little repair activity. Electrophoresis studies indicated that more double-strand breaks were repaired by 30 min in M059K cells than in M059J cells. These results suggest that deficient DNA repair processes may be a major determinant of radiosensitivity in M059J cells. 24 refs., 5 figs., 2 tabs.

  4. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  5. Book Review: Human Radiosensitivity

    SciTech Connect

    Morgan, William F.

    2013-11-01

    This well written report reviews the evidence for variation in human sensitivity to ionizing radiation from epidemiological, clinical, animal, and experimental studies. The report also considers the mechanism(s) of radiation sensitivity and the ethical implications of current and potential knowledge that might be gained in the future. The report is concisely written, considers a large number of historical as well as recent studies, and features a ‘ bullet like ’ summary at the end of each chapter that captures the salient points.

  6. Intra-arterial bromodeoxyuridine radiosensitization of malignant gliomas

    SciTech Connect

    Hegarty, T.J.; Thornton, A.F.; Diaz, R.F.; Chandler, W.F.; Ensminger, W.D.; Junck, L.; Page, M.A.; Gebarski, S.S.; Hood, T.W.; Stetson, P.L. )

    1990-08-01

    In the 1950's it was first observed that mammalian cells exposed to the halogenated deoxyuridines were more sensitive to ultraviolet light and radiation than untreated cells. This prompted early clinical trials with bromodeoxyuridine (BUdR) which showed mixed results. More recently, several Phase I studies, while establishing the feasibility of continuous intravenous (IV) infusion of BUdR, have reported significant dose limiting skin and bone marrow toxicities and have questioned the optimal method of BUdR delivery. To exploit the high mitotic activity of malignant gliomas relative to surrounding normal brain tissue, we have developed a permanently implantable infusion pump system for safe, continuous intraarterial (IA) internal carotid BUdR delivery. Since July 1985, 23 patients with malignant brain tumors (18 grade 4, 5 grade 3) have been treated in a Phase I clinical trial using IA BUdR (400-600 mg/m2/day X 8 1/2 weeks) and focal external beam radiotherapy (59.4 Gy at 1.8 Gy/day in 6 1/2 weeks). Following initial biopsy/surgery the infusion pump system was implanted; BUdR infusion began 2 weeks prior to and continued throughout the 6 1/2 week course of radiotherapy. There have been no vascular complications. Side-effects in all patients have included varying degrees of anorexia, fatigue, ipsilateral forehead dermatitis, blepharitis, and conjunctivitis. Myelosuppression requiring dose reduction occurred in one patient. An overall Kaplan-Meier estimated median survival of 20 months has been achieved. As in larger controlled series, histologic grade and age are prognostically significant. We have shown in a Phase I study that IA BUdR radiosensitization is safe, tolerable, may lead to improved survival, and appears to be an efficacious primary treatment of malignant gliomas.

  7. Bryostatin-1 causes radiosensitization of BMG-1 malignant glioma cells through differential activation of protein kinase-C? not evident in the non-malignant AA8 fibroblasts.

    PubMed

    Dagur, Raghubendra Singh; Hambarde, Shashank; Chandna, Sudhir

    2015-03-01

    Bryostatin-1 (bryo-1), a non-phorbol ester, is known to sensitize mammalian cells against certain chemotherapeutic drugs. We assessed its ability to modify radiation response of mammalian cells using Chinese hamster fibroblasts AA8 cells and human malignant glioma BMG-1 cells. In the malignant glioma BMG-1 cell line, bryo-1 pre-treatment significantly enhanced radiation-induced growth inhibition and cytogenetic damage, and further reduced the clonogenic cell survival as compared to cells irradiated at the clinically relevant dose of 2Gy. PKC? expression increased significantly when bryo-1 pre-treated BMG-1 glioma cells were irradiated at 2Gy and induced prolonged ERK-1/2 activation associated with p21 overexpression. Silencing PKC? resulted in inhibition of bryo-1-induced radiosensitization. In contrast, bryo-1 failed to alter radiosensitivity (cell survival; growth inhibition; cytogenetic damage) or activate ERK1/2 pathway in the AA8 fibroblasts despite PKC? phosphorylation at its regulatory (Y155) domain, indicating alternate mechanisms in these non-malignant cells as compared to the glioma cells. This study suggests that bryo-1 may effectively enhance the radiosensitivity of malignant cells and warrants further in-depth investigations to evaluate its radiosensitizing potential in various cell types. PMID:25472878

  8. Microwave hyperthermia radiosensitized iridium-192 for recurrent brain malignancy

    SciTech Connect

    Borok, T.L.; Winter, A.; Laing, J.; Paglione, R.; Sterzer, F.; Sinclair, I.; Plafker, J. )

    1988-03-01

    Twenty-one patients whose solitary detectable biopsy proven recurrent brain malignancies produced Central Nervous System (CNS) symptoms warranting further intervention received 60-minute 43 degrees C (180 degree-minute) interstitial 2450 MHz microwave hyperthermia fractions. All received brain teletherapy prior to recurrence. The first 15 received no brachytherapy and served as a toxicity pilot. All 15 enjoyed neurologic improvement, 12 symptomatic improvement, and 12 objective response as mass reduction and/or tumor necrosis. The next 6 patients were selected with more favorable Karnofsky performance status, no known active malignancy elsewhere, and received afterloading Ir-192 interstitial implantation juxtaposed to radiosensitizing hyperthermia. Volume dose varied from 1000 to 2245 rad, and dose rate from 40 to 100 rad/hr. Dose selected varied as a function of pre-recurrence teletherapy dose, general condition, histologic type, and volume. Neurosurgical debulking, if technically indicated through no additional aperture or trauma, was permitted if consistent with preservation of neurological function. Six enjoyed neurologic improvement, symptom reduction, and objective tumor response; three remain alive, and one experienced transient improvement. Complications, histologic subtypes, autopsy findings, stereotactic approach, thermal monitoring methods and CT follow-up of objective response are presented along with computer dosimetry and isotherm chart. Our microtraumatic universal catheter technique for CT guided stereotactic biopsy, aspiration, decompression, thermal sensory loop, thermalization antennae, and brachytherapy without multiple trauma nor changing catheters is stressed. The rationale for combined modes peculiar to the CNS will be outlined.2+ Proposal for incorporating controlled-release ARA-C chemotherapy polymer micro-rods into the interstitial format will be offered.

  9. Radiation-induced apoptosis and cell cycle alterations in human carcinoma cell lines with different radiosensitivities.

    PubMed

    Hunkov, L; Chorvth, M; Duraj, J; Bartosov, Z; Sevckov, L; Sulikov, M; Chovancov, J; Sedlk, J; Chorvth, B; Boljeskov, E

    2000-01-01

    Radiosensitivity of examined human neoplastic cell lines was assessed with the aid of MTT assay. Differences between radiosensitive and radioresistant human neoplastic cell lines were as follow: a) radiation-induced apoptosis detected by flow cytometry was apparent in the most radiosensitive (i.e. CH-1 ovarian carcinoma cell line), but not in the radioresistant (i.e. SKOV-3 ovarian carcinoma) cell lines, b) radiation-induced G2/M arrest appeared early after irradiation (6 hours) in both the radioresistant SKOV-3 cells and in the radiosensitive CH-1 human ovarian carcinoma cell line, but a different pattern was observed 24 hours after irradiation with 2 Gy dose with G2/M arrest only in radiosensitive cell line. The radiosensitivity and resistance to radiation-induced apoptosis in the radioresistant human breast carcinoma MDA-MB-231 cell line were similar to those observed in SKOV-3 cells. These data suggest that radiation-induced apoptosis and cell cycle alterations can predict radiosensitivity at least in some examined human malignant cells in vitro. PMID:10870683

  10. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  11. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line

    SciTech Connect

    Lees-Miller, S.P.; Chan, D.W.; Godbout, R.; Day, R.S. III; Weinfield, M.; Barron, G.M.; Allalunis-Turner, J.

    1995-02-24

    The radiosensitive rodent mutant cell lines xrs-5 is defective in DNA double-strand break repair and lacks the Ku component of the DNA-activated protein kinase, DNA-PK. Here radiosensitive human cell lines were analyzed for DNA-PK activity and for the presence of related proteins. The radiosensitive human malignant glioma M059J cell line was found to be defective in DNA double-strand break repair, but fails to express the p350 subunit of DNA-PK. These results suggest that DNA-PK kinase activity is involved in DNA double-strand break repair. 36 refs., 4 figs., 1 tab.

  12. Hyaluronan in human malignancies

    SciTech Connect

    Sironen, R.K.; Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio ; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Department of Gynecology and Obstetrics, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio ; Kosma, V-M.

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  13. Radiosensitivity of malignant melanomas. Part II. Clinical studies

    SciTech Connect

    Trott, K.R.; von Lieven, H.; Kummermehr, J.; Skopal, D.; Lukacs, S.; Braun-Falco, O.; Kellerer, A.M.

    1981-01-01

    Forty-four lymph node or skin metastases of malignant melanomas received definite radiotherapy. Twenty were locally controlled for 2 or more years. Local control rate increased with dose. TCD-50 was about 1800 ret. The effectiveness of radiotherapy was more dependent on overall treatment time than on fraction size or number of fractions. Radiotherapy is suggested to decrease the high rate of locoregional failure of surgery of nodular melanomas in the foot and face.

  14. In vitro radiosensitivity of human leukemia cell lines

    SciTech Connect

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (anti n, D/sub 0/) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  15. Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture

    SciTech Connect

    Gantt, R.; Sanford, K.K.; Parshad, R.; Price, F.M.; Peterson, W.D. Jr.; Rhim, J.S.

    1987-03-01

    A deficiency in DNA repair, manifest as enhanced chromatid radiosensitivity during the G2 phase of the cell cycle, together with a proliferative stimulus such as that provided by active oncogenes may be necessary and sufficient for the malignant neoplastic transformation of human keratinocytes in culture. Normal epidermal keratinocytes established as continuous cell lines by transfection with pSV3-neo or infection with adeno 12-SV40 hybrid virus developed enhanced G2 chromatid radiosensitivity after 18 passages in culture. In contrast to cells from primary or secondary culture, these cells could be transformed to malignant neoplastic cells by infection with Kirsten murine sarcoma virus containing the Ki-ras oncogene or in one line by the chemical carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine; both of these agents produced a marked proliferative response. Cytological heterogeneity and karyotypic instability characterized the cells during their progression to neoplasia. These results are interpreted in terms of a mechanism for neoplastic transformation.

  16. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  17. In vitro radiosensitivity of human leukemia cell lines

    SciTech Connect

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (n, D0) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL50 (n . 1.3, D0 . 117 rad(1.17 Gy)), promyelocytic leukemia; K562 (n . 1.4, D0 . 165 rad(1.65 Gy)), erythroleukemia; 45 (n . 1.1, D0 . 147 rad(1.47 Gy)), acute lymphocyte leukemia; and 176 (n . 4.0, D0 . 76 rad(0.76 Gy)), acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  18. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province ; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  19. Association between cellular radiosensitivity and G1/G2 checkpoint proficiencies in human cholangiocarcinoma cell lines.

    PubMed

    Hematulin, Arunee; Sagan, Daniel; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Wongkham, Sopit

    2014-09-01

    Cholangiocarcinoma is a destructive malignancy with a poor prognosis and lack of effective medical treatment. Radiotherapy is an alternative treatment for patients with unresectable cholangiocarcinoma. However, there are limited data on the radiation responsiveness of individual cholangiocarcinoma cells, which is a key factor that influences radiation treatment outcome. In this study, we found that cholangiocarcinoma cell lines differ remarkably in their radiosensitivity. The variation of radiosensitivity of cholangiocarcinoma cells correlates with their p53 status and existing G1 and/or G2 checkpoint defects. We also demonstrated the potential of checkpoint kinase Chk1/2 inhibition on the enhancement of the radiosensitivity of cholangiocarcinoma cells. Thus, this study provides useful information for predicting radiation response and provides evidence for the enchantment of radiotherapeutic efficiency by targeting checkpoint kinase Chk1/2 in some subpopulations of cholangiocarcinoma patients. PMID:24969815

  20. Radiosensitization of human breast cancer cells to ultraviolet light by 5-fluorouracil

    PubMed Central

    SASAKI, KAZUHITO; TSUNO, NELSON H.; SUNAMI, EIJI; KAWAI, KAZUSHIGE; SHUNO, YASUTAKA; HONGO, KUMIKO; HIYOSHI, MASAYA; KANEKO, MANABU; MURONO, KOJI; TADA, NORIKO; NIREI, TAKAKO; KITAYAMA, JOJI; TAKAHASHI, KOKI; NAGAWA, HIROKAZU

    2011-01-01

    Ultraviolet light B (UVB) phototherapy is widely used to treat dermatological diseases and therefore may be a potential optional strategy in the treatment of a skin lesion infiltrated by a malignant tumor. Currently, little is known regarding the effect of UVB phototherapy on human breast cancer cells. The present study aimed to investigate the effect of UVB phototherapy, as well as the potential effect of 5-fluorouracil (5-FU), the first-line anticancer drug for breast cancer, on radiosensitizing MCF-7 human breast cancer cells, in an attempt to develop new therapeutic strategies for the treatment of locoregional recurrence of breast cancer. MCF-7 cells were incubated in the presence of 5-FU for 48 h, and UVB irradiation at 750 mJ/cm2 was administered in the midterm of 5-FU treatment. The viability of MCF-7 cells was analyzed by the trypan blue staining method. Apoptosis was quantified by flow cytometry and Hoechst 33258 staining. The cell cycle was evaluated by flow cytometry after the staining of cells with propidium iodide. The combination treatment of 5-FU and UVB resulted in a strong potentiation of the inhibitory effect of MCF-7 cell growth, dependent on the intra-S phase cell cycle arrest and induction of apoptosis, when compared to treatment with 5-FU or UVB alone. In conclusion, 5-FU sensitized human breast cancer cells to UVB phototherapy, and this combination therapy is an effective and promising strategy for the treatment of breast cancer, particularly for locoregional recurrence. PMID:22866105

  1. Andrographolide radiosensitizes human ovarian cancer SKOV3 xenografts due to an enhanced apoptosis and autophagy.

    PubMed

    Zhang, Chao; Qiu, Xingsheng

    2015-11-01

    Andrographolide (AND), a diterpenoid lactone isolated from Andrographis paniculata, has been shown to have radiosensitivity in several types of cancer. Whether AND can radiosensitize ovarian cancer remains unknown. The present study investigated the radiosensitizing effects of AND in human ovarian SKOV3 xenografts and examined the molecular mechanisms of AND-mediated radiosensitization. Nude mice bearing human ovarian SKOV3 were treated with AND to investigate the effects of drug administration on tumor growth, radiosensitivity, apoptosis, and autophagy. Subsequent Western blot analysis and monodansylcadaverine (MDC) staining (autophagy analysis) were used to determine the role of AND. Finally, the pathway of apoptosis was characterized by caspase-3 activity assay as well as TUNEL analysis. AND potently sensitized SKOV3 xenografts to radiation. Moreover, apoptosis and autophagy in radiation combined with drug-treated xenografts increased significantly compared with the simple drug or single radiation treatment. This result was associated with an increase in the Bax/Bcl-2 protein ratio and p-p53 expression after exposure to combination treatment. Meanwhile, the level of Beclin 1 and Atg5 and the conversion from LC3-I to LC3-II, three important proteins involved in autophagy, were increased. AND acts as a strong radiosensitizer in human ovarian SKOV3 xenografts in vivo by increasing the Bax/Bcl-2 protein ratio and promoting the activation of caspase-3, leading to enhanced apoptosis as well as autophagy. PMID:26014516

  2. Minimally cytotoxic doses of temozolomide produce radiosensitization in human glioblastoma cells regardless of MGMT expression1

    PubMed Central

    Bobola, Michael S.; Kolstoe, Douglas D.; Blank, A.; Silber, John R.

    2010-01-01

    Concurrent treatment with the methylating agent temozolomide (TMZ) during radiotherapy (RT) has yielded the first significant improvement in survival of adult glioblastomas (GBMs) in the last three decades. However, improved survival is observed in a minority of patients, most frequently those whose tumors display CpG methylation of the MGMT (O6-methylguanine-DNA methyltransferase) promoter, and adult GBMs remain invariably fatal. Some, though not all, pre-clinical studies have shown that TMZ can increase radiosensitivity in GBM cells that lack MGMT, the sole activity in human cells that removes O6-meG from DNA. Here, we systematically examined the TMZ dose dependence of radiation killing in established GBM cell lines that differ in ability to remove O6-meG or tolerate its lethality. Our results show that minimally cytotoxic doses of TMZ can produce dose-dependent radiosensitization in MGMT-deficient cells, MGMT-proficient cells, and MGMT-deficient cells that lack mismatch repair, a process that renders cells tolerant of the lethality of O6-meG. In cells that either possess or lack MGMT activity, radiosensitization requires exposure to TMZ before but not after radiation, and is accompanied by formation of double-strand breaks within 45 min of radiation. Moreover, suppressing alkyladenine-DNA glycosylase, the only activity in human cells that excises 3-meA from DNA, reduces the TMZ dose dependence of radiosensitization, indicating that radiosensitization is mediated by 3-meA as well as by O6-meG. These results provide novel information on which to base further mechanistic study of radiosensitization by TMZ in human GBM cells, and to develop strategies to improve the outcome of concurrent TMZ-RT. PMID:20457618

  3. Cell cycle and radiosensitivity of progeny of irradiated primary cultured human hepatocarcinoma cells

    PubMed Central

    Liu, Zhi-Zhong; Huang, Wen-Ying; Lin, Ju-Sheng; Li, Xiao-Sheng; Liang, Kuo-Huan; Huang, Jia-Long

    2005-01-01

    AIM: To evaluate the change of growth characteristics and radiosensitivity of irradiated primary cultured human hepatocarcinoma cells. METHODS: All tumor tissue samples were obtained from 39 hepatocarcinoma patients with a mean age of 49.6 years (range 22-76 years). We divided the samples into irradiated group and non-irradiated group and measured their plating efficiency (PE), population doubling time (PDT), radiosensitivity index SF2 and cell cycle. RESULTS: The PDT of primary culture of hepatocarcinoma cells was 91.06.6 h, PE was 12.01.4%, SF2 was 0.410.05%. The PDT of their irradiated progeny was 124.85.8 h, PE was 5.00.7%, SF2 was 0.650.09%. The primary cultured human hepatocarcinoma cells showed significant S reduction and G2 arrest in a dose-dependent manner. The progeny of irradiated primary cultured hepatocarcinoma cells grew more slowly and its radiosensitivity increased. CONCLUSION: The progeny of irradiated primary cultured human hepatocarcinoma cells grows more slowly and its radiosensitivity increases. PMID:16437612

  4. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-08-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  5. [The hemostatic homeostasis of patients with malignant neoplasms of the larynx, stomach and uterine cervix during radiotherapy and radiosensitization with metronidazole].

    PubMed

    Cekalina, S I; Berdov, B A; Guseva, L I

    1990-01-01

    In 90 patients with malignant neoplasia of larynx, stomach and cervix uteri the functional state of hemostasis was investigated within the process of radiotherapy and in radiotherapy and radiosensitization by metronidazole. Aim of this work is to answer the question if metronidazole affects the state of organism besides its effect on radiosensitivity of tumor tissue, especially the system of hemostasis, the impairment of which can not seldom result in thrombohemorrhagic complications in oncologic patients as is known. It was pointed out that the thrombophilic status of the blood of patients with stomach carcinoma continues to be unchanged and the patients are endangered for thrombosis potentially. In consequences of radiotherapy and doses of metronidazole the capacity for adhesion is decreased in thrombocytes of patients with laryngeal and cervical carcinomas to a high degree, whereby the thrombogenic potential of blood is reduced and with that the risk for origin of intravascular thrombosis. PMID:2101457

  6. Effect of Induced Host Anaemia on the Viability and Radiosensitivity of Murine Malignant Cells in vivo

    PubMed Central

    Hewitt, H. B.; Blake, Eileen R.

    1971-01-01

    Within 48 hours of the institution of severe phenylhydrazineinduced anaemia in mice bearing ascites tumours or generalised leukaemia, a substantial proportion of the malignant cells disappeared respectively from the peritoneal cavity or infiltrated liver. The results of radiobiological experiments permitting determination of the proportion of viable leukaemia cells which were severely hypoxic and relatively radioresistant in the livers of leukaemic mice, showed that induction of anaemia was associated with a several hundredfold increase in the proportion of such cells. The proportion of hypoxic cells was greatly reduced when the anaemic leukaemic mice were transfused with packed erythrocytes or allowed to breathe oxygen under high pressure. Similar experi - ments with solid sarcomas indicated that a high proportion of the tumour cells were hypoxic in non-anaemic mice breathing air. The hypoxic fraction was not significantly reduced when tumour-bearing mice were made severely anaemic during growth of the tumour and were later transfused. Thus, the hypoxic cells in leukaemic livers and those in solid tumours are markedly different in their capacity for oxygenation following the induction of relative hyperoxaemia. PMID:5115832

  7. Cancer stem cells and human malignant melanoma

    PubMed Central

    Schatton, Tobias; Frank, Markus H

    2010-01-01

    Summary Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma. PMID:18353142

  8. Cancer stem cells and human malignant melanoma.

    PubMed

    Schatton, Tobias; Frank, Markus H

    2008-02-01

    Cancer stem cells (CSC) have been identified in hematological malignancies and several solid cancers. Similar to physiological stem cells, CSC are capable of self-renewal and differentiation and have the potential for indefinite proliferation, a function through which they may cause tumor growth. Although conventional anti-cancer treatments might eradicate most malignant cells in a tumor, they are potentially ineffective against chemoresistant CSC, which may ultimately be responsible for recurrence and progression. Human malignant melanoma is a highly aggressive and drug-resistant cancer. Detection of tumor heterogeneity, undifferentiated molecular signatures, and increased tumorigenicity of melanoma subsets with embryonic-like differentiation plasticity strongly suggest the presence and involvement of malignant melanoma stem cells (MMSC) in the initiation and propagation of this malignancy. Here, we review these findings in the context of functional properties ascribed to melanocyte stem cells and CSC in other cancers. We discuss the association of deregulated signaling pathways, genomic instability, and vasculogenic mimicry phenomena observed in melanoma subpopulations in light of the CSC concept. We propose that a subset of MMSC may be responsible for melanoma therapy-resistance, tumor invasiveness, and neoplastic progression and that targeted abrogation of a MMSC compartment could therefore ultimately lead to stable remissions and perhaps cures of metastatic melanoma. PMID:18353142

  9. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    SciTech Connect

    Williams, Jerry R. Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-11-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses ({approx}2 Gy HDR, {approx}6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications.

  10. Chromosomal radiosensitivity of human immunodeficiency virus positive/negative cervical cancer patients in South Africa

    PubMed Central

    HERD, OLIVIA; FRANCIES, FLAVIA; KOTZEN, JEFFREY; SMITH, TRUDY; NXUMALO, ZWIDE; MULLER, XANTHENE; SLABBERT, JACOBUS; VRAL, ANNE; BAEYENS, ANS

    2016-01-01

    Cervical cancer is the second most common cancer amongst South African women and is the leading cause of cancer-associated mortality in this region. Several international studies on radiation-induced DNA damage in lymphocytes of cervical cancer patients have remained inconclusive. Despite the high incidence of cervical cancer in South Africa, and the extensive use of radiotherapy to treat it, the chromosomal radiosensitivity of South African cervical cancer patients has not been studied to date. Since a high number of these patients are human immunodeficiency virus (HIV)-positive, the effect of HIV infection on chromosomal radiosensitivity was also investigated. Blood samples from 35 cervical cancer patients (20 HIV-negative and 15 HIV-positive) and 20 healthy controls were exposed to X-rays at doses of 6 MV of 2 and 4 Gy in vitro. Chromosomal radiosensitivity was assessed using the micronucleus (MN) assay. MN scores were obtained using the Metafer 4 platform, an automated microscopic system. Three scoring methods of the MNScore module of Metafer were applied and compared. Cervical cancer patients had higher MN values than healthy controls, with HIV-positive patients having the highest MN values. Differences between groups were significant when using a scoring method that corrects for false positive and false negative MN. The present study suggested increased chromosomal radiosensitivity in HIV-positive South African cervical cancer patients. PMID:26549042

  11. Micronucleus formation in human tumour cells: lack of correlation with radiosensitivity.

    PubMed

    Bush, C; McMillan, T J

    1993-01-01

    The micronucleus (MN) test has been carefully characterized in four human tumour cell lines of widely differing radiosensitivity. Two radioresistant bladder carcinoma cell lines (MGH-U1 and RT112), one sensitive medulloblastoma cell line (D283MED) and a sensitive neuroblastoma cell line (HX142) were used. The number of MN per Gy of ionising radiation was 0.13 for HX142, 0.17 for D283MED, 0.21 for RT112 and 0.26 for MGH-U1. This does not rank the cell lines in the same order of radiosensitivity as clonogenic cell survival where the surviving fraction at 2 Gy (SF2) was 0.11 for HX142, 0.2 for D283MED, 0.62 for RT112 and 0.53 for MGH-U1. This discrepancy between MN formation and cell death leaves doubt as to the potential usefulness of the MN test as a rapid assay of radiosensitivity but it has potential implications for the mechanistic basis of radiosensitivity in these cells. PMID:8427770

  12. Monoclonal antibodies as therapeutics in human malignancies.

    PubMed

    Pandey, Manjari; Mahadevan, Daruka

    2014-03-01

    Monoclonal antibodies (mAbs) are a proven effective therapeutic modality in human malignancy. Several mAbs are approved to targets critical in aberrant oncogenic signaling within tumors and their microenvironment. These targets include secreted ligands (e.g., VEGF and HGH), their receptors (e.g., HER2 and VEGFR2), cell surface counter receptors and their receptor-bound ligands (e.g., PD1 and PD1L, respectively). The ability to genetically engineer the structure and/or functions of mAbs has significantly improved their effectiveness. Furthermore, advances in gene expression profiling, proteomics, deep sequencing and deciphering of complex signaling networks have revealed novel therapeutic targets. We review target selection, approved indications and the rationale for mAb utilization in solid and hematologic malignancies. We also discuss novel mAbs in early- and late-phase clinical trials that are likely to change the natural history of disease and improve survival. The future challenge is to design mAb-based novel trial designs for diagnostics and therapeutics for human malignancies. PMID:24754592

  13. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  14. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun; Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan ; Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han; Shih, Wen-Ling; Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  15. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor

    PubMed Central

    Wei, Dongping; Li, Hua; Yu, Jie; Sebolt, Jonathan T.; Zhao, Lili; Lawrence, Theodore S.; Smith, Peter G.; Morgan, Meredith A.; Sun, Yi

    2011-01-01

    Radiotherapy is used in locally advanced pancreatic cancers where it can improve survival in combination with gemcitabine. However, prognosis is still poor in this setting where more effective therapies remain needed. MLN4924 is an investigational small molecule currently in Phase I clinical trials. MLN4924 inhibits NAE (NEDD8 Activating Enzyme), a pivotal regulator of the E3 ubiquitin ligase SCF (SKP1, Cullins, and F-box protein), that has been implicated recently in DNA repair. In this study, we provide evidence that MLN4924 can be used as an effective radiosensitizer in pancreatic cancer. Specifically, MLN4924 (20100 nM) effectively inhibited cullin neddylation and sensitized pancreatic cancer cells to ionizing radiation in vitro with a sensitivity enhancement ratio (SER) of ~1.5. Mechanistically, MLN4924 treatment stimulated an accumulation of several SCF substrates, including CDT1, WEE1 and NOXA, in parallel with an enhancement of radiation-induced DNA damage, aneuploidy, G2/M phase cell cycle arrest and apoptosis. RNAi-mediated knockdown of CDT1 and WEE1 partially abrogated MLN4924-induced aneuploidy, G2/M arrest, and radiosensization, indicating a causal effect. Further, MLN4924 was an effective radiosensitizer in mouse xenograft models of human pancreatic cancer. Our findings offer proof of concept for use of MLN4924 as a novel class of radiosensitizer for the treatment of pancreatic cancer. PMID:22072567

  16. STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma.

    PubMed

    Oudraogo, Zangbwend Guy; Mller-Barthlmy, Mlanie; Kemeny, Jean-Louis; Dedieu, Vronique; Biau, Julian; Khalil, Toufic; Raoelfils, Lala Ines; Granzotto, Adeline; Pereira, Bruno; Beaudoin, Claude; Guissou, Innocent Pierre; Berger, Marc; Morel, Laurent; Chautard, Emmanuel; Verrelle, Pierre

    2016-01-01

    Radiotherapy is an essential component of glioma standard treatment. Glioblastomas (GBM), however, display an important radioresistance leading to tumor recurrence. To improve patient prognosis, there is a need to radiosensitize GBM cells and to circumvent the mechanisms of resistance caused by interactions between tumor cells and their microenvironment. STAT3 has been identified as a therapeutic target in glioma because of its involvement in mechanisms sustaining tumor escape to both standard treatment and immune control. Here, we studied the role of STAT3 activation on tyrosine 705 (Y705) and serine 727 (S727) in glioma radioresistance. This study explored STAT3 phosphorylation on Y705 (pSTAT3-Y705) and S727 (pSTAT3-S727) in glioma cell lines and in clinical samples. Radiosensitizing effect of STAT3 activation down-modulation by G6976 was explored. In a panel of 15 human glioma cell lines, we found that the level of pSTAT3-S727 was correlated to intrinsic radioresistance. Moreover, treating GBM cells with G6976 resulted in a highly significant radiosensitization associated to a concomitant pSTAT3-S727 down-modulation only in GBM cell lines that exhibited no or weak pSTAT3-Y705. We report the constitutive activation of STAT3-S727 in all GBM clinical samples. Targeting pSTAT3-S727 mainly in pSTAT3-Y705-negative GBM could be a relevant approach to improve radiation therapy. PMID:25736961

  17. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.

    PubMed

    Jin, Cheng; Bai, Ling; Wu, Hong; Tian, Furong; Guo, Guozhen

    2007-09-01

    Paclitaxel and etanidazole are hypoxic radiosensitizers that exhibit cytotoxic action at different mechanisms. The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel, etanidazole and paclitaxel+etanidazole were prepared by o/w and w/o/w emulsification-solvent evaporation method. The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). The drug encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The cellular uptake of nanoparticles for the human breast carcinoma cells (MCF-7) and the human carcinoma cervicis cells (HeLa) was evaluated by transmission electronic microscopy and fluorescence microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical shape with size between 80 and 150 nm. The EE was higher for paclitaxel and lower for etanidazole. The drug release was controlled over time. The cellular uptake of nanoparticles was observed. Co-culture of the two tumor cell lines with drug-loaded nanoparticles demonstrated that released drug effectively sensitized hypoxic tumor cells to radiation. The radiosensitization of paclitaxel+etanidazole nanoparticles was more significant than that of single drug-loaded nanoparticles. PMID:17509678

  18. Immunoprevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang1, Joshua W.; Hung, Chein-fu; Huh, Warner K.; Trimble, Cornelia L.; Roden, Richard B.S.

    2014-01-01

    Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen’s pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou’s cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. PMID:25488410

  19. Increasing radiosensitivity with the downregulation of cofilin-1 in U251 human glioma cells

    PubMed Central

    DU, HUA-QING; CHEN, LING; WANG, YING; WANG, LI-JUN; YAN, HUA; LIU, HONG-YI; XIAO, HONG

    2015-01-01

    The aim of the present study was to examine the association between cofilin-1 (CFL1) and radioresistance in human glioma U251 cells. CFL1 expression was downregulated and upregulated in U251 cells through the transfection of CFL1-small interfering (si)RNA and pcDNA3.1-CFL1, respectively. The radiosensitivity of U251 cells and established radioresistant U251 cells (RR-U251) was evaluated using cell viability, migration and invasion ability assays. Cell cycle distribution was also examined. The results showed that CFL1 expression was significantly increased in RR-U251 cells; in addition, the cell viability, migration and invasion ability of RR-U251 cells were significantly enhanced compared to those of the normal U251 cells, whereas the number of cells arrested in G2 phase was markedly decreased. In CFL1-silenced RR-U251 and CFL1-silenced U251 cells, the cell viability, migration and invasion abilities were significantly downregulated and the number of cells arrested in G2 phase was increased compared to that of the untransfected cells. In U251 cells overexpressing CFL1, cell viability, migration and invasion abilities were markedly upregulated and the number of cells arrested in G2 phase was decreased. In conclusion, the results of the present study suggested that downregulation of CFL1 may increase radiosensitivity in U251 cells. PMID:25529407

  20. Radiation-induced micronuclei in human fibroblasts in relation to clonogenic radiosensitivity.

    PubMed Central

    O'Driscoll, M. C.; Scott, D.; Orton, C. J.; Kiltie, A. E.; Davidson, S. E.; Hunter, R. D.; West, C. M.

    1998-01-01

    As part of our programme for developing predictive tests for normal tissue response to radiotherapy, we have investigated the efficacy of the cytokinesis-block micronucleus (MN) assay as a means of detecting interindividual differences in cellular radiosensitivity. A study was made of nine fibroblast strains established from vaginal biopsies of pretreatment cervical cancer patients and an ataxia telangiectasia (A-T) cell strain. Cells were irradiated in plateau phase, replated and treated with cytochalasin B 24 h later. MN formation was examined 72 h after irradiation as the number of MN in 100 binucleate cells. The method yielded low spontaneous MN yields (<7 per 100 cells), and mean induced MN frequencies after 3.5 Gy varied between cell strains from 18 to 144 per 100 cells. However, in repeat experiments, considerable intrastrain variability was observed (CV = 32%), with up to twofold differences in MN yields, although this was less than interstrain variability (CV = 62%). An analysis was made of the relationship between MN results and previously obtained clonogenic survival data. There was a significant correlation between MN yields and clonogenic survival. However, when the A-T strain was excluded from the analysis, the correlation lost significance, mainly because of one slow-growing strain which was the most sensitive to cell killing but had almost the lowest MN frequency. With current methodology, the MN assay on human fibroblasts does not appear to have a role in predictive testing of normal tissue radiosensitivity. PMID:9862564

  1. Initial radiation-induced DNA damage in human tumour cell lines: a correlation with intrinsic cellular radiosensitivity.

    PubMed Central

    Ruiz de Almodvar, J. M.; Nez, M. I.; McMillan, T. J.; Olea, N.; Mort, C.; Villalobos, M.; Pedraza, V.; Steel, G. G.

    1994-01-01

    The role of the initial DNA double-strand breaks (dsb) as a determinant of cellular radiosensitivity was studied in human breast and bladder cancer cell lines. Cell survival was measured by monolayer colony-forming assay as appropriate and differences in radiosensitivity were seen (alpha-values ranged from 0.12 to 0.54). After pulsed-field gel electrophoresis (PFGE) the initial slopes of dose-response curves were biphasic with a flattening of the curves above 30 Gy. When the frequency of DNA dsb induction was assessed using a mathematical model based on the DNA fragment size distribution into the gel lane, we found a statistically significant relationship between the number of DNA dsb induced and the corresponding alpha-values and fraction surviving after 2Gy (P = 0.0049 and P = 0.0031 respectively). These results support the view that initial damage is a major determinant of cell radiosensitivity. PMID:8123473

  2. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10?years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  3. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  4. Niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells

    PubMed Central

    Bridges, Kathleen A.; Toniatti, Carlo; Buser, Carolyn A.; Liu, Huifeng; Buchholz, Thomas A.; Meyn, Raymond E.

    2014-01-01

    The aim of this study was to assess niraparib (MK-4827), a novel poly(ADP-Ribose) polymerase (PARP) inhibitor, for its ability to radiosensitize human tumor cells. Human tumor cells derived from lung, breast and prostate cancers were tested for radiosensitization by niraparib using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of niraparib to alter the repair of radiation-induced DNA double strand breaks (DSBs) was determined using detection of ?-H2AX foci and RAD51 foci. Clonogenic survival analyses indicated that micromolar concentrations of niraparib radiosensitized tumor cell lines derived from lung, breast, and prostate cancers independently of their p53 status but not cell lines derived from normal tissues. Niraparib also sensitized tumor cells to H2O2 and converted H2O2-induced single strand breaks (SSBs) into DSBs during DNA replication. These results indicate that human tumor cells are significantly radiosensitized by the potent and selective PARP-1 inhibitor, niraparib, in the in vitro setting. The mechanism of this effect appears to involve a conversion of sublethal SSBs into lethal DSBs during DNA replication due to the inhibition of base excision repair by the drug. Taken together, our findings strongly support the clinical evaluation of niraparib in combination with radiation. PMID:24970803

  5. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells.

    PubMed

    Ke, Shaobo; Zhou, Fuxiang; Yang, Hui; Wei, Yuehua; Gong, Jun; Mei, Zijie; Wu, Lin; Yu, Haijun; Zhou, Yunfeng

    2015-03-01

    The functions of the high mobility group box 1 (HMGB1) in tumor cells include replenishing telomeric DNA and maintaining cell immortality. There is a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Our aim was to elucidate the relationship among HMGB1, telomere homeostasis and radiosensitivity in MCF-7 cells. In this study, we established stably transfected control (MCF-7-NC) and HMGB1 knockdown (MCF-7-shHMGB1) cell lines. The expression of HMGB1 mRNA and the relative telomere length were examined by real-time PCR. Radiosensitivity was detected by clonogenic assay. The protein expressions were determined by western blot analysis. The telomerase activity was detected by PCR-ELISA. Proliferation ability was examined by CCK-8 assay. Cell cycle and apoptosis were examined by flow cytometry. DNA damage foci were detected by immunofluorescence. ShRNA-mediated downregulation of HMGB1 expression increased the radiosensitivity of MCF-7 cells, and reduced the accumulation of hTERT and cyclin D1. Moreover, knockdown of HMGB1 in MCF-7 cells inhibited telomerase activity and cell proliferation, while increasing the extent of apoptosis. Downregulation of HMGB1 modulated telomere homeostasis by changing the level of telomere-binding proteins, such as TPP1 (PTOP), TRF1 and TRF2. This downregulation also inhibited the ATM and ATR signaling pathways. The current data demonstrate that knockdown of HMGB1 breaks telomere homeostasis, enhances radiosensitivity, and suppresses the repair of DNA damage in human breast cancer cells. These results suggested that HMGB1 might be a potential radiotherapy target in human breast cancer. PMID:25501936

  6. Hypomethylation of DNA from Benign and Malignant Human Colon Neoplasms

    NASA Astrophysics Data System (ADS)

    Goelz, Susan E.; Vogelstein, Bert; Hamilton, Stanley R.; Feinberg, Andrew P.

    1985-04-01

    The methylation state of DNA from human colon tissue displaying neoplastic growth was determined by means of restriction endonuclease analysis. When compared to DNA from adjacent normal tissue, DNA from both benign colon polyps and malignant carcinomas was substantially hypomethylated. With the use of probes for growth hormone, ? -globin, ? -chorionic gonadotropin, and ? -crystallin, methylation changes were detected in all 23 neoplastic growths examined. Benign polyps were hypomethylated to a degree similar to that in malignant tissue. These results indicate that hypomethylation is a consistent biochemical characteristic of human colonic tumors and is an alteration in the DNA that precedes malignancy.

  7. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna; Delic, Naomi C.; Hong, Angela; Zhang Mei; Rose, Barbara R.; Lyons, J. Guy

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  8. HPV16-E7 Expression Causes Fluorodeoxyuridine-mediated Radiosensitization in SW620 Human Colon Cancer Cells

    PubMed Central

    Axelson, Michael D; Davis, Mary A; Ethier, Stephen P; Lawrence, Theodore S

    1999-01-01

    Abstract We have reported that HT29 colon cancer cells, which are radiosensitized by fluorodeoxyuridine (FdUrd), exhibit a greater increase in cyclin E-dependent kinase activity and progress further into S phase in the presence of FdUrd than do SW620 colon cancer cells, which are only minimally sensitized by this drug (Cancer Res 56: 3203, 1996). Although these findings suggested that the ability to progress into S phase in the presence of FdUrd permits cells to be radiosensitized, we wished to test this hypothesis by attempting to drive SW620 human colon cells into S phase by transducing them with the HPV16-E7 gene. Two-parameter flow cytometry showed that E7-transduced cells progressed through S phase after radiation and FdUrd treatment more rapidly than SW620 parental cells. We found that E7-transduced SW620 cells were significantly radiosensitized by FdUrd (100 nmol/L, 14 hours) with an enhancement ratio for 2 clones of 1.47±0.03 and 1.51±0.14, compared with 1.24±0.04 in SW620 parental cells. These data strongly support the hypothesis that dysregulation of S-phase progression is an important factor in FdUrd-mediated radiosensitization. PMID:10933053

  9. Late ROS accumulation and radiosensitivity in SOD1-overexpressing human glioma cells.

    PubMed

    Gao, Zhen; Sarsour, Ehab H; Kalen, Amanda L; Li, Ling; Kumar, Maneesh G; Goswami, Prabhat C

    2008-12-01

    This study investigates the hypothesis that CuZn superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and the G(2)/M-checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell-cycle-phase distributions, and cyclin B1 expression. SOD1-overexpressing cells were radioresistant compared to wild-type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (approximately twofold) in DHE fluorescence beginning at 2 days postirradiation, which remained elevated at 8 days postirradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability and an increase in the percentage of cells with sub-G(1) DNA content. SOD1 overexpression enhanced radiation-induced G(2) accumulation within 24 h postirradiation, which was accompanied by a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after radiation exposure a "metabolic redox response" regulates radiosensitivity of human glioma cells. PMID:18790046

  10. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  11. c-MYC is a radiosensitive locus in human breast cells.

    PubMed

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-09-17

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  12. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells.

    PubMed

    Hsiao, Hung Tsung; Xing, Ligang; Deng, Xuelong; Sun, Xiaorong; Ling, C Clifton; Li, Gloria C

    2014-08-01

    The hypoxic microenvironment, an important feature of human solid tumors but absent in normal tissue, may provide an opportunity for cancer-specific gene therapy. The purpose of the present study was to investigate whether hypoxia-driven triple suicide gene TK/CD/UPRT expression enhances cytotoxicity to ganciclovir (GCV) and 5-fluorocytosine (5-FC), and sensitizes human colorectal cancer to radiation in vitro and in vivo. Stable transfectant of human colorectal HCT8 cells was established which expressed hypoxia-inducible vectors (HRE-TK/eGFP and HRE-CD/UPRT/mDsRed). Hypoxia-induced expression/function of TK, CD and UPRT was verified by western blot analysis, flow cytometry, fluorescent microscopy and cytotoxicity assay of GCV and 5-FC. Significant radiosensitization effects were detected after 5-FC and GCV treatments under hypoxic conditions. In the tumor xenografts, the distribution of TK/eGFP and CD/UPRT/mDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC and GCV in mice in combination with local irradiation resulted in tumor regression, as compared with prodrug or radiation treatments alone. Our data suggest that the hypoxia-inducible TK/GCV+CDUPRT/5-FC triple suicide gene therapy may have the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy. PMID:24912473

  13. Late ROS-accumulation and Radiosensitivity in CuZnSOD Overexpressing Human Glioma Cells

    PubMed Central

    Gao, Zhen; Sarsour, Ehab H.; Kalen, Amanda L.; Li, Ling; Kumar, Maneesh G.; Goswami, Prabhat C.

    2008-01-01

    This study investigates the hypothesis that CuZn-superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and G2/M checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell cycle phase distributions, and cyclin B1 expression. SOD1 overexpressing cells were radioresistant compared to wild type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (~2-fold) in DHE-fluorescence beginning at 2 d post-irradiation, which remained elevated at 8 d post-irradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability, and an increase in the percentage of cells with sub G1 DNA content. SOD1 overexpression enhanced radiation-induced G2-accumulation within 24 h post-irradiation, which was accompanied with a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after the radiation exposure a “metabolic redox-response” regulates radiosensitivity of human glioma cells. PMID:18790046

  14. Ultrastructure of human malignant diffuse mesothelioma.

    PubMed Central

    Suzuki, Y.; Kannerstein, M.

    1976-01-01

    Eleven cases of malignant diffuse mesotheliomas, histologically classified into two groups, epithelial (5 pleural and 3 peritoneal) and biphasic or mixed (2 pleural and 1 peritoneal) forms, were stuied by electron microscopy to elucidate their ultrastructural characteristics. The neoplastic cells of the epithelial forms were varied in ultrastructure, from well differentiated (marked by polarity, micovilli, glycogen granules, junctional structures, tonofilaments, intracellular vacuoles, and a basement membrane) to poorly differentiated (which lacked some of these epithelial characteristics). In four of eight instances in epithelial type tumors, nonepithelial or mesenchymal neoplastic cells were recognized. The biphasic or mixed cases included three major cell types: epithelial, atypical epithelial, and mesenchymal. It appeared that there were transitional forms among the three cell types. The observations support the concept that the neoplastic cell of malignant mesothelioma can differentiate into a number of cell lines. Images Figures 20 and 21 Figure 22 Figure 23 Figures 24 and 25 Figure 26 Figure 27A Figure 27B and C Figure 28 Figure 29 Figure 30 Figure 31 Figures 32 and 33 Figure 34 Figure 35 Figure 36 Figures 1-4 Figures 5 and 6 Figure 37 Figures 7-10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figures 17 and 18 Figure 19 PMID:998721

  15. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells

    PubMed Central

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  16. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells.

    PubMed

    Bache, Matthias; Mnch, Christin; Gttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8-2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 M. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 M under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  17. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  18. Photosensitizing and radiosensitizing effects of mitoxantrone: combined chemo-, photo-, and radiotherapy of DFW human melanoma cells.

    PubMed

    Sazgarnia, Ameneh; Montazerabadi, Ali Reza; Bahreyni-Toosi, Mohammad Hossein; Ahmadi, Amirhossein

    2013-11-01

    This study evaluated the effects of mitoxantrone (MX), an antitumor agent, as a sensitizer to both photodynamic and radiation therapy in DFW human melanoma cells. Cells were incubated with MX at different concentrations for 90 min and then exposed to non-coherent light at different fluence rates and/or X-ray ionizing radiation at different dose rates. Combinatorial effects of this chemo-, photo-, and radiotherapy were also evaluated. MX had no significant effects on viability at moderate doses but had a strong cytotoxic effect on cancer cells when used as a photosensitizer. MX also acted as a potent radiosensitizer. We observed a dose-dependent effect on cell viability in cells exposed to MX in combination with phototherapy and radiotherapy. Strong synergistic effects were observed for combinations of two or more treatment methods, which, in some cases, induced complete cell death. Thus, a combination of ionizing radiation with MX-mediated photodynamic therapy could serve as a new method for cancer therapy with fewer adverse side effects. PMID:23371053

  19. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  20. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound

    PubMed Central

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  1. [The effect of low-dose irradiation and of age on the in vitro radiosensitivity of human lymphocytes].

    PubMed

    Liubimova, N E; Vorobtsova, I E

    2008-01-01

    The effect of low-dose irradiation and of age on the radiosensitivity of human lymphocytes was studies in two groups: control (67 people) and exposed to uncontrolled low-dose irradiation in past (165 people). Radiosensitivity of lymphocytes was estimated by the level of chromosome aberrations induced in vitro by gamma-radiation Cs137 at the dose 1.5 Gy. In exposed children the frequency of induced chromosome aberrations was higher and in the exposed adults--lower in comparison to the coresponding controls. To investigate an age response of the number of chromosome aberrations three statistical approaches were used: the correlation analysis of individual data, the correlation analysis of means for 10-years intervals, the comparison of 3 age groups. In control group no significant alteration in the level of induced chromosome aberrations with age was found. However the significant negative correlation between these two parameters was revealed in exposed group, which likely is due to the opposite direction of differences in radiosensitivity of exposed children and adults from the corresponding controls. PMID:18666646

  2. Effect of restoration of retinoblastoma gene function on the radiosensitivity of cells of human tumor cell lines

    SciTech Connect

    Tsang, N.M.; Little, J.B.

    1994-11-01

    To assess the role of expression of the retinoblastoma (RB) gene on the sensitivity of cells to the cytotoxic effects of ionizing radiation, we transfected a normal RB gene into cells of RB{sup +} and RB{sup {minus}} osteosarcoma cell lines and an RB{sup {minus}} prostate carcinoma line and studied the radiosensitivity of the cells before and after transfection. Four transfected clones were isolated from the two RB{sup {minus}} tumor cell lines that expressed the product of the transfected normal RB gene and contained no mutations in the pocket and C-terminal regions by sequencing. A small increase in radiosensitivity was observed in cell lines transfected with the pDOL plasmid vector alone, containing the neo gene and a long terminal repeat (LTR) promoter. However, no significant change in radiosensitivity occurred in transfected cells expressing the normal RB gene compared to controls transfected with an RB{sup {minus}} plasmid. Based on this and other information, we conclude that RB gene function is not involved in the response of these human tumor cells to the cytotoxic effects of radiation. 38 refs., 5 figs., 4 tabs.

  3. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    SciTech Connect

    Hehlgans, Stephanie; Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden ; Eke, Iris; Cordes, Nils; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden; Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  4. Radiosensitivity of human ovarian carcinoma and melanoma cells to ?-rays and protons

    PubMed Central

    Keta, Otilija; Todorovi?, Danijela; Popovi?, Nataa; Kori?anac, Lela; Cuttone, Giacomo; Petrovi?, Ivan

    2014-01-01

    Introduction Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to ?-rays and protons. Material and methods Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 2.15 MeV, corresponding to the linear energy transfer of 4.7 0.2 keV/m. Irradiations with ?-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results Results showed that ?-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 0.01 for ?-rays and 0.81 0.01 for protons, while those for HTB140 cells were 0.93 0.01 for ?-rays and 0.86 0.01 for protons. Relative biological effectiveness of protons, being 2.47 0.22 for 59M and 2.08 0.36 for HTB140, indicated that protons provoked better cell elimination than ?-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to ?-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than ?-rays. The dissimilar response of these cells to radiation is related to their different features. PMID:25097591

  5. NOTCH mutations: multiple faces in human malignancies.

    PubMed

    Mao, Li

    2015-04-01

    NOTCH proteins have been implicated in multiple cellular functions, such as stem cell maintenance and cell fate determination. Initially identified as proto-oncogenes because they promote the development of certain types of leukemia, inactivating mutations of NOTCH were later reported. Together with the potential distinct functions of NOTCH family members, their ligands and associated niches, the precise roles of NOTCH in human cancers, particularly solid tumors, remain unsettled. In oral squamous cell carcinoma (OSCC), mutations of NOTCH1 are found in 10% to 15% tumors from Caucasian patients, mostly inactivating mutations. Recent studies of OSCC from Chinese patients, however, showed mutation rates of NOTCH1 about 50% with a considerable portion of potential activating mutations. These findings add another twist into the already complex picture of NOTCH alterations in human cancers, calling for further investigation to uncover what role exactly these molecules play in cancer initiation and progression to develop strategies targeting NOTCH signaling for cancer prevention and treatment. PMID:25712049

  6. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    SciTech Connect

    Li Ping; Zhang Qing; Torossian, Artour; Li Zhaobin; Xu Wencai; Lu Bo; Fu Shen

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used to investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have important therapeutic implication in the treatment of a subset of breast cancer patients with high expression of EGFR and deficient function of PTEN.

  7. Celecoxib Enhances the Radiosensitizing Effect of 7-Hydroxystaurosporine (UCN-01) in Human Lung Cancer Cell Lines

    SciTech Connect

    Kim, Young-Mee; Jeong, In-Hye; Pyo, Hongryull

    2012-07-01

    Purpose: 7-Hydroxystaurosporine (UCN-01), a Chk1-specific inhibitor, showed promising in vitro and in vivo chemo- or radiosensitizing activity. However, there have been concerns about its limited therapeutic efficacy and risk of side effects. A method of enhancing the treatment efficacy of UCN-01 while not increasing its side effects on normal tissue may therefore be required to apply this drug in clinical settings. Celecoxib is a cyclooxygenase-2 (COX-2)-specific inhibitor that downregulates ataxia telangiectasia and rad3-related (ATR) protein, an upstream kinase of Chk1. In this study, we investigated whether the addition of celecoxib can potentiate the radiosensitizing effect of UCN-01. Methods and Materials: The cooperative radiosensitizing effects and the underlying molecular mechanisms of UCN-01 plus celecoxib were determined by clonogenic assay, tumor growth delay assay, flow cytometry, and Western blotting. Synergism of the three agents combined (UCN-01 plus celecoxib plus radiation) were evaluated using median drug effect analysis and drug-independent action model analysis. Results: The combination of UCN-01 and celecoxib could induce synergistic cytotoxicity and radiosensitizing effects in in vitro and in vivo systems. The combination of both drugs also cooperatively inhibited IR-induced G{sub 2}/M arrest, and increased the G{sub 2} to mitotic transition. Conclusions: Combined treatment with UCN-01 and celecoxib can exert synergistically enhanced radiosensitizing effects via cooperative inhibition of the ionizing radiation-activated G{sub 2} checkpoint. We propose that this combination strategy may be useful in clinical applications of UCN-01 for radiotherapy of cancer patients.

  8. Radiosensitizing effect of misonidazole in acute and fractionated irradiation of a human osteosarcoma xenograft. [/sup 60/Co

    SciTech Connect

    Rofstad, E.K.; Brustad, T.

    1980-09-01

    The radiosensitizing effect of misonidazole (Ro-07-0582) in acute and fractionated irradiation of a human osteosarcoma grown in the athymic mutant nude mouse was studied. Tumor regrowth delay was used as a measure of response. The enhancement ratio of misonidazole was found to be 1.45 for an actue dose of 12.50 Gy and 1.25 for four fractions of 3.75 Gy, delivered over four consecutive days. It is concluded that the present osteosarcoma xenograft reoxygenated inadequately during the three day period which elapsed from the first to the fourth fraction of 3.75 Gy.

  9. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  10. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    SciTech Connect

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G. )

    1989-11-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity.

  11. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined. PMID:11414630

  12. Effect of Recombinant Human Endostatin on Radiosensitivity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Jiang Xiaodong; Dai Peng; Wu Jin; Song Daan; Yu Jinming

    2012-07-15

    Purpose: To observe the effects of recombinant human endostatin (RHES) on the radiosensitivity of non-small cell lung cancer (NSCLC). Methods and Materials: First, 10 hypoxia-positive cases of pathology-diagnosed NSCLC selected from 15 patients were used to determine the normalization window, a period during which RHES improves NSCLC hypoxia. Second, 50 hypoxia-positive cases of pathology-diagnosed NSCLC (Stages I-III) were randomly divided into a RHES plus radiotherapy group (25 cases) and a radiotherapy-alone group (25 cases). Intensity = modulated radiotherapy with a total dose of 60 Gy in 30 fractions for 6 weeks was adopted in the two groups. The target area included primary foci and metastatic lymph nodes. In the RHES plus radiotherapy group, RHES (15 mg/day) was intravenously given during the normalization window. Results: After RHES administration, the tumor-to=normal tissue radioactivity ratio and capillary permeability surface were first decreased and then increased, with their lowest points on the fifth day compared with the first day (all p < 0.01). Blood flow was first increased and then decreased, with the highest point on the fifth day, compared with the first and tenth day (all p < 0.01). In the RHES plus radiotherapy group and the radiotherapy-alone group, the total effective rates (complete response plus partial response) were 80% and 44% (p = 0.009), respectively. The median survival times were 21.1 {+-} 0.97 months and 16.5 {+-} 0.95 months (p = 0.004), respectively. The 1-year and 2-year local control rates were 78.9 {+-} 8.4% and 68.1 {+-} 7.8% (p = 0.027) and 63.6 {+-} 7.2% and 43.4 {+-} 5.7% (p = 0.022), respectively. The 1-year and 2-year overall survival rates were 83.3 {+-} 7.2% and 76.6 {+-} 9.3% (p = 0.247) and 46.3 {+-} 2.4% and 37.6 {+-} 9.1% (p = 0.218), respectively. Conclusion: The RHES normalization window is within about 1 week after administration. RHES combined with radiotherapy within the normalization window has better short-term therapeutic effects and local control rates and no severe adverse reactions in the treatment of NSCLC, but it failed to significantly improve the 1-year and 3-year overall survival rates.

  13. Siltuximab (CNTO 328): a promising option for human malignancies

    PubMed Central

    Chen, Runzhe; Chen, Baoan

    2015-01-01

    Siltuximab (CNTO 328) is a promising antibody-drug conjugate targeting cytokine interleukin-6 (IL-6). It is highly binding to IL-6 and thus neutralizing IL-6 bioactivity and promoting death of tumor cell. In this review, we mainly focus on the mechanisms, clinical studies, and adverse effect of siltuximab in the treatment of human malignancies. We also provide our recommendations for siltuximab treatment in the future. PMID:26170629

  14. Eliminating malignant contamination from therapeutic human spermatogonial stem cells.

    PubMed

    Dovey, Serena L; Valli, Hanna; Hermann, Brian P; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A; Chu, Tianjiao; Sanfilippo, Joseph S; Orwig, Kyle E

    2013-04-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4-contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC-/CD49e- (putative spermatogonia) and EpCAM-/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC-/CD49e- fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to-nude mouse xenotransplantation. The EpCAM-/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  15. Poor Prognosis Associated With Human Papillomavirus α7 Genotypes in Cervical Carcinoma Cannot Be Explained by Intrinsic Radiosensitivity

    SciTech Connect

    Hall, John S.; Iype, Rohan; Armenoult, Lucile S.C.; Taylor, Janet; Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester ; Miller, Crispin J.; Davidson, Susan; Sanjose, Silvia de; Bosch, Xavier; Stern, Peter L.; West, Catharine M.L.

    2013-04-01

    Purpose: To investigate the relationship between human papillomavirus (HPV) genotype and outcome after radiation therapy and intrinsic radiosensitivity. Methods and Materials: HPV genotyping was performed on cervix biopsies by polymerase chain reaction using SPF-10 broad-spectrum primers, followed by deoxyribonucleic acid enzyme immunoassay and genotyping by reverse hybridization line probe assay (LiPA{sub 25}) (version 1) (n=202). PapilloCheck and quantitative reverse transcription-polymerase chain reaction were used to genotype cervix cancer cell lines (n=16). Local progression-free survival after radiation therapy alone was assessed using log-rank and Cox proportionate hazard analyses. Intrinsic radiosensitivity was measured as surviving fraction at 2 Gy (SF2) using clonogenic assays. Results: Of the 202 tumors, 107 (53.0%) were positive for HPV16, 29 (14.4%) for HPV18, 9 (4.5%) for HPV45, 23 (11.4%) for other HPV genotypes, and 22 (10.9%) were negative; 11 (5.5%) contained multiple genotypes, and 1 tumor was HPV X (0.5%). In 148 patients with outcome data, those with HPVα9-positive tumors had better local progression-free survival compared with α7 patients in univariate (P<.004) and multivariate (hazard ratio 1.54, 95% confidence interval 1.11-1.76, P=.021) analyses. There was no difference in the median SF2 of α9 and α7 cervical tumors (n=63). In the cell lines, 9 were α7 and 4 α9 positive and 3 negative. There was no difference in SF2 between α9 and α7 cell lines (n=14). Conclusion: The reduced radioresponsiveness of α7 cervical tumors is not related to intrinsic radiosensitivity.

  16. Expression of human protection of telomere 1 correlates with telomere length and radiosensitivity in the human laryngeal cancer Hep-2 cell line

    PubMed Central

    LEI, HAN; FENG, DALI; ZHOU, FUXIANG; XU, HUI; TANG, TIAN; YU, HAIJUN; XIE, CONGHUA; ZHOU, YUNFENG

    2015-01-01

    The close association between telomere length and radiosensitivity has been established by several studies. There is also a hypothesis that telomere length may be regulated by human protection of telomere 1 (hPOT1) in human carcinoma cells. In the present study, the hPOT1 level between the radioresistant Hep-2R cells and the wild-type were compared, and the results showed that the hPOT1 gene was upregulated in the radioresistant Hep-2R cell lines compared with the wild-type. This suggested that the expression level of hPOT1 correlates with radiosensitivity. Additionally, an hPOT1-directed short hairpin (sh)RNA plasmid was constructed and transferred into the Hep-2R cells, which lead to telomere shortening, an increase in apoptosis and markedly decreased growth of the RNAi-Hep-2R cell line. These results demonstrate that hPOT1-directed shRNAs are associated with telomere length and radiosensitivity, and maybe a potent sensitizer for laryngeal cancer radiotherapy. PMID:26622642

  17. Hyper-radiosensitivity and induced radioresistance and bystander effects in rodent and human cells as a function of radiation quality.

    PubMed

    Cherubini, R; De Nadal, V; Gerardi, S

    2015-09-01

    In the past two decades, a body of experimental evidences in vitro has shown the presence of a plethora of phenomena occurring after low-dose irradiation [including hypersensitivity and induced radioresistance (IRR), adaptive response, bystander effect (BE) and genomic instability], which might imply a non-linear behaviour of cancer risk curves in the low-dose region and question the validity of the linear no-threshold model for cancer risk assessment in such a dose region. In this framework, a systematic investigation have been undertaken on non-linear effects at low doses as a function of different radiation quality and cellular radiosensitivity and in terms of different biological end points. The present article reports the recent results on hyper-radiosensitivity and IRR and BE phenomena, in terms of clonogenic survival in V79 Chinese hamster cells and T98G human glioblastoma cells irradiated with protons and carbon ions with different energy, as a function of dose (and fluence). PMID:25953796

  18. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    SciTech Connect

    Serakinci, Nedime . E-mail: nserakinci@health.sdu.dk; Christensen, Rikke; Graakjaer, Jesper; Cairney, Claire J.; Keith, W. Nicol; Alsner, Jan; Saretzki, Gabriele; Kolvraa, Steen

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses for phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.

  19. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma.

    PubMed

    Jiang, Li; Lv, Xiaoxing; Li, Jing; Li, Jinqing; Li, Xueyong; Li, Wangzhou; Li, Yuejun

    2012-10-01

    Dysregulation of microRNA-21 plays critical roles in tumor initiation and progression. The purpose of this study was to investigate the status of microRNA-21 expression in human cutaneous malignant melanoma and determine its clinical significance. TaqMan(®) real-time RT-PCR assay was performed to examine the expression of microRNA-21 in 10 cases of dysplastic nevi, 86 cases of primary cutaneous melanomas, 10 cases of melanoma metastases. The correlation of microRNA-21 expression with clinicopathological factors or prognosis of patients with cutaneous melanoma was statistically analyzed. Additionally, the effects of microRNA-21 expression on growth, apoptosis and chemo- or radiosensitivity of melanoma cells were also investigated by transfection of microRNA-21 inhibitor. We firstly showed that increased levels of microRNA-21 expression were shown from dysplastic nevi to primary cutaneous melanomas to melanoma metastases. Moreover, high miR-21 expression was found to be correlated with Breslow thickness and advanced clinical stage. Patients with high microRNA-21 expression showed shorter 5-year disease-free or overall survival than those with low microRNA-21 expression. Furthermore, multivariate regression analysis showed that the status of microRNA-21 expression was an independent prognostic factor for overall survival of patients. Antisense-mediated microRNA-21 inhibition could significantly suppress growth, increase apoptosis and enhance chemo- or radiosensitivity of human cutaneous melanoma cells by inducing the increased Bax/Bcl-2 ratio. Thus, the status of microRNA-21 might be an independent prognostic factor for patients with cutaneous melanoma, and microRNA-21 has the potential of being a novel molecular target for the treatment of human cutaneous melanoma. PMID:22130252

  20. Inhibition of human positive cofactor 4 radiosensitizes human esophageal squmaous cell carcinoma cells by suppressing XLF-mediated nonhomologous end joining

    PubMed Central

    Qian, D; Zhang, B; Zeng, X-L; Le Blanc, J M; Guo, Y-H; Xue, C; Jiang, C; Wang, H-H; Zhao, T-S; Meng, M-B; Zhao, L-J; Hao, J-H; Wang, P; Xie, D; Lu, B; Yuan, Z-Y

    2014-01-01

    Radiotherapy has the widest application to esophageal squamous cell carcinoma (ESCC) patients. Factors associated with DNA damage repair have been shown to function in cell radiosensitivity. Human positive cofactor 4 (PC4) has a role in nonhomologous end joining (NHEJ) and is involved in DNA damage repair. However, the clinical significance and biological role of PC4 in cancer progression and cancer cellular responses to chemoradiotherapy (CRT) remain largely unknown. The aim of the present study was to investigate the potential roles of PC4 in the radiosensitivity of ESCC. In this study, we showed that knockdown of PC4 substantially increased ESCC cell sensitivity to ionizing radiation (IR) both in vitro and in vivo and enhanced radiation-induced apoptosis and mitotic catastrophe (MC). Importantly, we demonstrated that silencing of PC4 suppressed NHEJ by downregulating the expression of XLF in ESCC cells, whereas reconstituting the expression of XLF protein in the PC4-knockdown ESCC cells restored NHEJ activity and radioresistance. Moreover, high expression of PC4 positively correlated with ESCC resistance to CRT and was an independent predictor for short disease-specific survival of ESCC patients in both of our cohorts. These findings suggest that PC4 protects ESCC cells from IR-induced death by enhancing the NHEJ-promoting activity of XLF and could be used as a novel radiosensitivity predictor and a promising therapeutic target for ESCCs. PMID:25321468

  1. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. Kinsella, Michael T.; Seo, Yuji; Berk, Gregory

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  2. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells

    PubMed Central

    Eder, Stefan; Lamkowski, Andreas; Priller, Markus; Port, Matthias; Steinestel, Konrad

    2015-01-01

    Background Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an important cofactor in the p53-mediated DNA damage response pathway upon ionizing radiation (IR) and exerts anti-apoptotic effects also independent of p53 pathway activation. Furthermore, hnRNP K is overexpressed in various neoplasms including malignant melanoma (MM). Here, we investigate the role of hnRNP K in the radioresistance of MM cells. Methods and results Our results show cytoplasmic expression of hnRNP K in human MM surgical specimens, but not in benign nevi, and a quick dose- and time-dependent upregulation in response to IR accompanied by cytoplasmic redistribution of the protein in the IPC-298 cellular tumor model carrying an activating NRAS mutation (p.Q61L). SiRNA-based knockdown of hnRNP K induced a delayed decline in γH2AX/53BP1-positive DNA repair foci upon IR. Pharmacological interference with MAPK signaling abrogated ERK phosphorylation, diminished cellular hnRNP K levels, impaired γH2AX/53BP1-foci repair and proliferative capability and increased apoptosis comparable to the observed hnRNP K knockdown phenotype in IPC-298 cells. Conclusion Our results indicate that pharmacological interference with MAPK signaling increases vulnerability of NRAS-mutant malignant melanoma cells to ionizing radiation along with downregulation of endogenous hnRNP K and point towards a possible use for combined MEK inhibition and localized radiation therapy of MM in the NRAS-mutant setting where BRAF inhibitors offer no clinical benefit. PMID:26136337

  3. Radiosensitization of Human Vascular Endothelial Cells Through Hsp90 Inhibition With 17-N-Allilamino-17-Demethoxygeldanamycin

    SciTech Connect

    Kabakov, Alexander E. Makarova, Yulia M.; Malyutina, Yana V.

    2008-07-01

    Purpose: In addition to invasive tumor cells, endothelial cells (ECs) of the tumor vasculature are an important target for anticancer radiotherapy. The purpose of the present work is to investigate how 17-N-allilamino-17-demethoxygeldanamycin (17AAG), known as an anticancer drug inhibiting heat shock protein 90 (Hsp90), modifies radiation responses of human vascular ECs. Methods and Materials: The ECs cultured from human umbilical veins were exposed to {gamma}-irradiation, whereas some EC samples were pretreated with growth factors and/or 17AAG. Postirradiation cell death/survival and morphogenesis were assessed by means of terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick end labeling or annexin V staining and clonogenic and tube-formation assays. The 17AAG-affected expression and phosphorylation of radioresistance-related proteins were probed by means of immunoblotting. Dominant negative or constitutively activated Akt was transiently expressed in ECs to manipulate Akt activity. Results: It was found that nanomolar concentrations of 17AAG sensitize ECs to relatively low doses (2-6 Gy) of {gamma}-irradiation and abolish the radioprotective effects of vascular endothelial growth factor and basic fibroblast growth factor. The drug-induced radiosensitization of ECs seems to be caused by prevention of Hsp90-dependent phosphorylation (activation) of Akt that results in blocking the radioprotective phosphatidylinositol 3-kinase/Akt pathway. Conclusions: Clinically achievable concentrations of 17AAG can decrease the radioresistance intrinsic to vascular ECs and minimize the radioprotection conferred upon them by tumor-derived growth factors. These findings characterize 17AAG as a promising radiosensitizer for the tumor vasculature.

  4. Radiosensitivity of human prostate cancer cells can be modulated by inhibition of 12-lipoxygenase.

    PubMed

    Lvey, J; Nie, D; Tvri, J; Kenessey, I; Tmr, J; Kandouz, M; Honn, K V

    2013-07-28

    Nearly 30% of prostate cancer (PCa) patients treated with potentially curative doses relapse at the sites of irradiation. How some tumor cells acquire radioresistance is poorly understood. The platelet-type 12-lipoxygenases (12-LOX)-mediated arachidonic acid metabolism is important in PCa progression. Here we show that 12-LOX confers radioresistance upon PCa cells. Treatment with 12-LOX inhibitors baicalein or BMD122 sensitizes PCa cells to radiation, without radiosensitizing normal cells. 12-LOX inhibitors and radiation, when combined, have super additive or synergistic inhibitory effects on the colony formation of both androgen-dependent LNCaP and androgen-independent PC-3 PCa cells. In vivo, the combination therapy significantly reduced tumor growth. PMID:23523613

  5. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells.

    PubMed

    Meidanchi, Alireza; Akhavan, Omid; Khoei, Samideh; Shokri, Ali A; Hajikarimi, Zahra; Khansari, Nakisa

    2015-01-01

    Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy. PMID:25492003

  6. (Malignant transformation of diploid human fibroblasts by transfection of onocogenes)

    SciTech Connect

    McCormick, J.J.

    1991-01-01

    MSU-1.0 cells are fibroblasts which were originally derived from human foreskin. Through use of sequential clonal selection, we have isolated strains exhibiting increasingly transformed phenotypes, until deriving a strain that forms malignant tumors in athymic mice. We are using these cells to study the transformation process. In this reporting period, we have examined the role of the different ras genes in transformation of these cells, generated cell strains from 18 human soft tissue sarcomas in order to examine their growth factor responses and oncogene expression patterns, used carcinogen treatment to generate transformed MSU cells from the original nontransformed parent cell line, and examined if the specific ras gene activated determined the specific type of sarcoma induced. 6 figs., 8 tabs.

  7. Levels of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with the intrinsic radiosensitivity of cervical cancers.

    PubMed Central

    Herring, C. J.; West, C. M.; Wilks, D. P.; Davidson, S. E.; Hunter, R. D.; Berry, P.; Forster, G.; MacKinnon, J.; Rafferty, J. A.; Elder, R. H.; Hendry, J. H.; Margison, G. P.

    1998-01-01

    A study was made of the relationship between the intrinsic radiosensitivity of human cervical tumours and the expression of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (HAP1). The radiosensitivity of clonogenic cells in tumour biopsies was measured as surviving fraction at 2 Gy (SF2) using a soft agar assay. HAP1 expression levels were determined after staining of formalin-fixed paraffin-embedded tumour sections with a rabbit antiserum raised against recombinant HAP1. Both measurements were obtained on pretreatment biopsy material. All 25 tumours examined showed positive staining for HAP1, but there was heterogeneity in the level of expression both within and between tumours. The average coefficients of variation for intra- and intertumour heterogeneity were 62% and 82% respectively. There was a moderate but significant positive correlation between the levels of HAP1 expression and SF2 (r = 0.60, P = 0.002). Hence, this study shows that there is some relationship between intrinsic radiosensitivity and expression of a DNA repair enzyme in cervical carcinomas. The results suggest that this type of approach may be useful in the development of rapid predictive tests of tumour radiosensitivity. Images Figure 1 Figure 2 PMID:9820167

  8. Radiosensitivity of human clonogenic myeloma cells and normal bone marrow precursors: Effect of different dose rates and fractionation

    SciTech Connect

    Glueck, S.; Van Dyk, J.; Messner, H.A. )

    1994-03-01

    Evaluation of radiation dose rate and fractionation effects on clonogenic myeloma cells was carried out. The radiosensitivity of clonogenic myeloma cells was evaluated for seven human myeloma cell lines. The lines were maintained in liquid suspension culture. Following radiation, cells were plated in semisolid medium using methylcellulose as viscous support. Radiation doses up to 12 Gy were delivered at dose rates of 0.05 and 0.5 Gy/min by a [sup 60]Co source. Each total dose was administered either as a single dose or in multiple fractions of 2 Gy. The data were analyzed according to the linear quadratic and multi target model of irradiation. Clonogenic progenitors of the seven myeloma cell lines differed in their radiosensitivity as measured by multiple parameters. The differences were mainly observed at low dose. The most effective cytoreduction was seen when radiation was administered in a single fraction at high dose rate. The cytoreductive effect on clonogenic myeloma cells was compared for clinically practiced total body irradiation (TBI) schedules delivered either in a single or in multiple fractions without causing significant pulmonary toxicity. The administration of 12 Gy delivered in six fractions of 2 Gy resulted in a superior reduction of clonogenic cells compared to a single fraction of 5 Gy. The preparation of bone marrow transplant recipients with multiple myeloma using fractionated radiation with a total dose of 12 Gy appears to afford better ablation than a single dose of 5 Gy while maintaining a low incidence of pulmonary toxicity. 20 refs., 4 figs., 4 tabs.

  9. Human RGM249-Derived Small RNAs Potentially Regulate Tumor Malignancy

    PubMed Central

    Shimizu, Mika; Shinoda, Waka; Tsuno, Satoshi; Sato, Reina; Wang, Xinhui; Jo, Jun-ichiro; Tabata, Yasuhiko; Hasegawa, Junichi

    2013-01-01

    The human noncoding RNA gene RGM249 has been shown to regulate the degree of cancer cell differentiation. In this study, we investigated the effects of 3 microRNA-like molecules digested from RGM249 on the loss of malignant properties in cancer cells in immunodeficient KSN/Slc mice. We utilized small interfering RNAs (siRNAs) alone or in combination with a cationized drug delivery system (DDS) consisting of atelocollagen or gelatin hydrogel microspheres. The results demonstrated growth inhibition and apoptosis and the inhibition of both neovascularization and metastasis, indicating that the DDSs effectively infiltrated the majority of tumor cells in vivo. Systemic administration of the 3 siRNAs inhibited the metastatic ability of malignant cells. Cotransfection of these siRNAs exerted a regulatory effect upon the genes involved in differentiation, pluripotency, and proliferation in cancer cells. These results suggest that RGM249-derived oligonucleotides may be involved in the regulation of metastasis, proliferation, and differentiation in vivo, and that the tested siRNAs may therefore represent a new anticancer therapeutic approach. PMID:23988019

  10. The role of human papilloma virus in urological malignancies.

    PubMed

    Heidegger, Isabel; Borena, Wegene; Pichler, Renate

    2015-05-01

    Human papillomavirus (HPV) is associated with cancer of the cervix uteri, penis, vulva, vagina, anus and oropharynx. However, the role of HPV infection in urological tumors is not yet clarified. HPV appears not to play a major causative role in renal and testicular carcinogenesis. However, HPV infection should be kept in mind regarding cases of prostate cancer, as well as in a sub-group of patients with bladder cancer with squamous differentiation. Concerning the role of HPV in penile cancer incidence, it is a recognized risk factor proven in a large number of studies. This short review provides an update regarding recent literature on HPV in urological malignancies, thereby, also discussing possible limitations on HPV detection in urological cancer. PMID:25964524

  11. Raman spectroscopic identification of normal and malignant human stomach cells

    NASA Astrophysics Data System (ADS)

    Yang, Jipeng; Guo, Jianyu; Wu, Liangping; Sun, Zhenrong; Cai, Weiying; Wang, Zugeng

    2005-12-01

    Micro-Raman spectroscopy is employed to identify the normal and malignant human stomach cells. For the cancer cell, the reduced intensity of the Raman peak at 1250 cm^(-1) indicates that the protein secondary structure transforms from ?-sheet or disordered structures to ?-helical, while the increased intensity of the symmetric PO2 stretching vibration mode at 1094 cm^(-1) shows the increased DNA content. The ratio of the intensity at 1315 cm^(-1) to that at 1340 cm^(-1) reduces from 1.8 for the normal cell to 1.1 for the cancer cell in the course of canceration, and the ratio of the intensity at 1655 cm^(-1) to that at 1450 cm^(-1) increases from 1.00 for the cancer cell to 1.26 for the normal cell which indicates that the canceration of stomach cell may induce saturation of the lipid chain.

  12. Centrosome amplification induced by survivin suppression enhances both chromosome instability and radiosensitivity in glioma cells

    PubMed Central

    Saito, T; Hama, S; Izumi, H; Yamasaki, F; Kajiwara, Y; Matsuura, S; Morishima, K; Hidaka, T; Shrestha, P; Sugiyama, K; Kurisu, K

    2008-01-01

    Glioblastoma is characterised by invasive growth and a high degree of radioresistance. Survivin, a regulator of chromosome segregation, is highly expressed and known to induce radioresistance in human gliomas. In this study, we examined the effect of survivin suppression on radiosensitivity in malignant glioma cells, while focusing on centrosome aberration and chromosome instability (CIN). We suppressed survivin by small interfering RNA transfection, and examined the radiosensitivity using a clonogenic assay and a trypan blue exclusion assay in U251MG (p53 mutant) and D54MG (p53 wild type) cells. To assess the CIN status, we determined the number of centrosomes using an immunofluorescence analysis, and the centromeric copy number by fluorescence in situ hybridisation. As a result, the radiosensitisation differed regarding the p53 status as U251MG cells quickly developed extreme centrosome amplification (=CIN) and enhanced the radiosensitivity, while centrosome amplification and radiosensitivity increased more gradually in D54MG cells. TUNEL assay showed that survivin inhibition did not lead to apoptosis after irradiation. This cell death was accompanied by an increased degree of aneuploidy, suggesting mitotic cell death. Therefore, survivin inhibition may be an attractive therapeutic target to overcome the radioresistance while, in addition, proper attention to CIN (centrosome number) is considered important for improving radiosensitivity in human glioma. PMID:18195712

  13. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  14. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  15. Greatwall promotes cell transformation by hyperactivating AKT in human malignancies

    PubMed Central

    Vera, Jorge; Lartigue, Lydia; Vigneron, Suzanne; Gadea, Gilles; Gire, Veronique; Del Rio, Maguy; Soubeyran, Isabelle; Chibon, Frederic; Lorca, Thierry; Castro, Anna

    2015-01-01

    The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies. DOI: http://dx.doi.org/10.7554/eLife.10115.001 PMID:26613407

  16. Greatwall promotes cell transformation by hyperactivating AKT in human malignancies.

    PubMed

    Vera, Jorge; Lartigue, Lydia; Vigneron, Suzanne; Gadea, Gilles; Gire, Veronique; Del Rio, Maguy; Soubeyran, Isabelle; Chibon, Frederic; Lorca, Thierry; Castro, Anna

    2015-01-01

    The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies. PMID:26613407

  17. Vorinostat(SAHA) Promotes Hyper-Radiosensitivity in Wild Type p53 Human Glioblastoma Cells.

    PubMed

    Diss, Eric; Nalabothula, NarasimhaRao; Nguyen, Duc; Chang, Elizabeth; Kwok, Young; Carrier, France

    2014-01-15

    Glioblastoma multiforme (GBM) is a very aggressive and locally invasive tumor. The current standard of care is partial brain radiation therapy (60 Gy) concurrently with the alkylating agent temozolomide (TMZ). However, patients' survival remains poor (6-12 months) mainly due to local and diffuse (distant) recurrence. The possibility to promote hyper radiosensitivity (HRS) with low dose radiation may contribute to improve outcome. Here, we evaluated the effect of Vorinostat(SAHA) and TMZ on glioblastoma cells' sensitivity to low dose radiation. Clonogenic survivals were performed on D54 (p53 and PTEN wild type) and U118 (p53 and PTEN mutants) cells exposed to clinically relevant doses of Vorinostat(SAHA) and TMZ and increasing radiation doses. Apoptosis was measured by the activation of caspase-3 and the role of p53 and PTEN were evaluated with the p53 inhibitor pifithrin ? and the PI3K/AKT pathway inhibitor LY29002. Vorinostat(SAHA) promoted HRS at doses as low as 0.25 Gy in the D54 but not the U118 cells. Killing efficiency was associated with caspase-3 activation, delayed H2AX phosphorylation and abrogation of a radiation -induced G2 arrest. Inhibiting p53 function with pifithrin ? prevented the promotion of HRS by Vorinostat(SAHA). Moreover, LY29002, a PI-3K inhibitor, restored promotion of HRS by Vorinostat(SAHA) in the p53 mutant U118 cells to levels similar to the p53 wild type cells. TMZ also promoted HRS at doses as low as 0.15 Gy. These finding indicate that HRS can be promoted in p53 wild type glioblastoma cells through a functional PTEN to delay DNA repair and sensitize cells to low dose radiation. Promotion of HRS thus appears to be a viable approach for GBM that could be used as a basis to develop new Phase I/II studies. PMID:25379568

  18. VorinostatSAHA Promotes Hyper-Radiosensitivity in Wild Type p53 Human Glioblastoma Cells

    PubMed Central

    Diss, Eric; Nalabothula, NarasimhaRao; Nguyen, Duc; Chang, Elizabeth; Kwok, Young; Carrier, France

    2014-01-01

    Glioblastoma multiforme (GBM) is a very aggressive and locally invasive tumor. The current standard of care is partial brain radiation therapy (60 Gy) concurrently with the alkylating agent temozolomide (TMZ). However, patients survival remains poor (6-12 months) mainly due to local and diffuse (distant) recurrence. The possibility to promote hyper radiosensitivity (HRS) with low dose radiation may contribute to improve outcome. Here, we evaluated the effect of VorinostatSAHA and TMZ on glioblastoma cells sensitivity to low dose radiation. Clonogenic survivals were performed on D54 (p53 and PTEN wild type) and U118 (p53 and PTEN mutants) cells exposed to clinically relevant doses of VorinostatSAHA and TMZ and increasing radiation doses. Apoptosis was measured by the activation of caspase-3 and the role of p53 and PTEN were evaluated with the p53 inhibitor pifithrin ? and the PI3K/AKT pathway inhibitor LY29002. VorinostatSAHA promoted HRS at doses as low as 0.25 Gy in the D54 but not the U118 cells. Killing efficiency was associated with caspase-3 activation, delayed H2AX phosphorylation and abrogation of a radiation -induced G2 arrest. Inhibiting p53 function with pifithrin ? prevented the promotion of HRS by VorinostatSAHA. Moreover, LY29002, a PI-3K inhibitor, restored promotion of HRS by VorinostatSAHA in the p53 mutant U118 cells to levels similar to the p53 wild type cells. TMZ also promoted HRS at doses as low as 0.15 Gy. These finding indicate that HRS can be promoted in p53 wild type glioblastoma cells through a functional PTEN to delay DNA repair and sensitize cells to low dose radiation. Promotion of HRS thus appears to be a viable approach for GBM that could be used as a basis to develop new Phase I/II studies. PMID:25379568

  19. Cathepsin L suppression increases the radiosensitivity of human glioma U251 cells via G2/M cell cycle arrest and DNA damage

    PubMed Central

    Zhang, Qing-qing; Wang, Wen-juan; Li, Jun; Yang, Neng; Chen, Gang; Wang, Zhong; Liang, Zhong-qin

    2015-01-01

    Aim: Cathepsin L is a lysosomal cysteine protease that plays important roles in cancer tumorigenesis, proliferation and chemotherapy resistance. The aim of this study was to determine how cathepsin L regulated the radiosensitivity of human glioma cells in vitro. Methods: Human glioma U251 cells (harboring the mutant type p53 gene) and U87 cells (harboring the wide type p53 gene) were irradiated with X-rays. The expression of cathepsin L was analyzed using Western blot and immunofluorescence assays. Cell survival and DNA damage were evaluated using clonogenic and comet assays, respectively. Flow cytometry was used to detect the cell cycle distribution. Apoptotic cells were observed using Hoechst 33258 staining and fluorescence microscopy. Results: Irradiation significantly increased the cytoplasmic and nuclear levels of cathepsin L in U251 cells but not in U87 cells. Treatment with the specific cathepsin L inhibitor Z-FY-CHO (10 ?mol/L) or transfection with cathepsin L shRNA significantly increased the radiosensitivity of U251 cells. Both suppression and knockdown of cathepsin L in U251 cells increased irradiation-induced DNA damage and G2/M phase cell cycle arrest. Both suppression and knockdown of cathepsin L in U251 cells also increased irradiation-induced apoptosis, as shown by the increased levels of Bax and decreased levels of Bcl-2. Conclusion: Cathepsin L is involved in modulation of radiosensitivity in human glioma U251 cells (harboring the mutant type p53 gene) in vitro. PMID:26095040

  20. Mechanism of binding of the radiosensitizers metronidazole and misonidazole (RO-07-0582) to bovine and human serum albumin: a proton NMR study

    SciTech Connect

    Sulkowska, A.; Lubas, B.; Wilczok, T.

    1981-01-01

    High-resolution proton NMR spectra of the radiosensitizer metronidazole and its derivative misonidazole (RO-07-0582) were measured in D/sub 2/O at resonance frequency 60 MHz and interpreted in the aliphatic and aromatic regions. The linewidths of the NMR peaks attributed to individual fragments of nitroimidazole molecules were then analyzed in the presence of bovine and human serum albumin. With increasing concentration of serum albumin, a selectively larger broadening of the lines attributable to the protons of the aliphatic moieties than of those of the imidazole rings was observed for both compounds. This broadening for misonidazole strongly depends on the ionic strength of the solution. The results indicate a specific immobilization of the molecules of both radiosensitizers during their interaction with serum albumin and the involvement of the aliphatic chains of misonidazole and metronidazole as the primary binding sites.

  1. Adenovirus-mediated siRNA targeting NOB1 inhibits tumor growth and enhances radiosensitivity of human papillary thyroid carcinoma in vitro and in vivo.

    PubMed

    Meng, Wei; Wang, Pei-Song; Liu, Jia; Xue, Shuai; Wang, Gui-Min; Meng, Xian-Ying; Chen, Guang

    2014-12-01

    NIN1/RPN12 binding protein 1 homolog (NOB1), a ribosome assembly factor, plays critical roles in tumor progression and development. Previously, we reported that overexpression of NOB1 is correlated with the prognosis of patients with papillary thyroid carcinoma (PTC). Little is known, however, concerning its role in PTC. The aims of the present study were to investigate the association of NOB1 expression with tumor growth and radiosensitivity of human PTC. A recombinant adenovirus expression vector carrying NOB1 was constructed and then infected into the human PTC cell line TPC-1. Cell proliferation, cell cycle distribution, apoptosis, migration and invasion in vitro and tumor growth in vivo were determined after downregulation of NOB1 by RNAi. Additionally, the in vitro and in vivo radiosensitivity of PTC cells was determined by clonogenic cell survival assay and a mouse xenograft model, respectively. The results showed that downregulation of NOB1 expression using RNAi in TPC-1 cells significantly inhibited cell proliferation, migration and invasion and induced cell apoptosis in vitro, and suppressed tumor growth in vivo, as well as enhanced the in vitro and in vivo radiosensitivity of PTC cells. Moreover, our results also showed that downregulation of NOB1 was able to significantly activate constitutive phosphorylation of p38 MAPK, which might contribute to the inhibition of PTC cell growth. These findings suggest that NOB1 may be a potential therapeutic target for the treatment of PTC. PMID:25231838

  2. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  3. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    SciTech Connect

    Chen Wenshu; Yu Yichu; Lee Yijang; Chen, J.-H.; Hsu, H.-Y.; Chiu, S.-J.

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.

  4. Assessment of the proliferative activity and radiosensitivity of human tumours using the cytokinesis-block micronucleus assay.

    PubMed Central

    Shibamoto, Y.; Shibata, T.; Miyatake, S.; Oda, Y.; Manabe, T.; Ohshio, G.; Yagi, K.; Streffer, C.; Takahashi, M.; Abe, M.

    1994-01-01

    We established an in vitro cytokinesis-block micronucleus assay of human tumours for estimation of the proportion of cells undergoing mitosis (the dividing fraction, DF), the time for the number of nuclei to double and the radiosensitivity in terms of the micronucleus frequency, based on a concept described previously. Under certain conditions, the nuclear number doubling time (NNDT) was considered to represent the potential doubling time. Tumour specimens obtained at surgery were disaggregated into single-cell suspensions and were directly cultured in the presence of cytochalasin B with or without irradiation. At various intervals, the percentage of multinucleate cells (the plateau value represented the DF), the average number of nuclei per cell and the number of micronuclei in binucleate cells were determined. DF and NNDT values were obtained in 58 of the 73 tumours investigated, and the micronucleus frequency was obtained in 54 of these 58 tumours. The DF ranged from 4.1% to 71% and the NNDT ranged from 3.1 to 83 days. A DF > or = 20% was associated with a higher recurrence rate in patients undergoing curative operation. A correlation was found between the NNDT and the time to relapse in patients with recurrent disease. The average number of micronuclei per binucleate cell at 2 Gy of irradiation (after subtraction of the value at 0 Gy) ranged from 0.052 to 0.35. Tumours which produced more micronuclei after irradiation showed a better response to radiotherapy. This assay can be readily performed on human tumours and appears to have promise as a predictive assay for radiation therapy. PMID:8018543

  5. Assessment of the proliferative activity and radiosensitivity of human tumours using the cytokinesis-block micronucleus assay.

    PubMed

    Shibamoto, Y; Shibata, T; Miyatake, S; Oda, Y; Manabe, T; Ohshio, G; Yagi, K; Streffer, C; Takahashi, M; Abe, M

    1994-07-01

    We established an in vitro cytokinesis-block micronucleus assay of human tumours for estimation of the proportion of cells undergoing mitosis (the dividing fraction, DF), the time for the number of nuclei to double and the radiosensitivity in terms of the micronucleus frequency, based on a concept described previously. Under certain conditions, the nuclear number doubling time (NNDT) was considered to represent the potential doubling time. Tumour specimens obtained at surgery were disaggregated into single-cell suspensions and were directly cultured in the presence of cytochalasin B with or without irradiation. At various intervals, the percentage of multinucleate cells (the plateau value represented the DF), the average number of nuclei per cell and the number of micronuclei in binucleate cells were determined. DF and NNDT values were obtained in 58 of the 73 tumours investigated, and the micronucleus frequency was obtained in 54 of these 58 tumours. The DF ranged from 4.1% to 71% and the NNDT ranged from 3.1 to 83 days. A DF > or = 20% was associated with a higher recurrence rate in patients undergoing curative operation. A correlation was found between the NNDT and the time to relapse in patients with recurrent disease. The average number of micronuclei per binucleate cell at 2 Gy of irradiation (after subtraction of the value at 0 Gy) ranged from 0.052 to 0.35. Tumours which produced more micronuclei after irradiation showed a better response to radiotherapy. This assay can be readily performed on human tumours and appears to have promise as a predictive assay for radiation therapy. PMID:8018543

  6. Establishment of a human malignant fibrous mesothelioma cell line and the biological characteristics compared with malignant epithelial mesothelioma cell line.

    PubMed

    Ishiwata, Iwao; Ishiwata, Emiko; Hirano, Takashi

    2008-08-01

    Two human malignant mesothelioma cell lines, which we designated "epithelial mesothelioma cells" and "fibrous mesothelioma cells", were established from the pleural fluid containing malignant mesothelial cells of a 72-year-old Japanese man. These cell lines were separated by the colonial techniques from the initiation of the primary cultures and grew well without interruption for 12 years. They were characterized as producing hyaluronic acid. These cell lines displayed different biological characteristics, including morphology, heterotransplantability and genetics using with BAC array CGH. The epithelial mesothelioma cells were epithelial in shape and transplantable into the subcutis of nude mice, while the cells of the fibrous mesothelioma line were fibroblast-like and transplantable into the submucosa of Hamster's cheek pouches but not into the subcutis of nude mice. The mesotheliomas are classified into three types: epithelial mesothelioma, fibrous mesothelioma and mixed type. The gene copy number losses observed on 9p21.3, 9p21.2, 9p21.1, among others may be a major mechanism of malignant mesothelioma carcinogenesis. We considered and supported the combination theory for the histogenesis of malignant mesothelioma. PMID:18667024

  7. Role of human papillomavirus and its detection in potentially malignant and malignant head and neck lesions: updated review.

    PubMed

    Chaudhary, Ajay Kumar; Singh, Mamta; Sundaram, Shanthy; Mehrotra, Ravi

    2009-01-01

    Head and neck malignancies are characterized by a multiphasic and multifactorial etiopathogenesis. Tobacco and alcohol consumption are the most common risk factors for head and neck malignancy. Other factors, including DNA viruses, especially human papilloma virus (HPV), may also play a role in the initiation or development of these lesions. The pathways of HPV transmission in the head and neck mucosal lesions include oral-genital contact, more than one sexual partner and perinatal transmission of HPV to the neonatal child. The increase in prevalence of HPV infection in these lesions may be due to wider acceptance of oral sex among teenagers and adults as this is perceived to be a form of safe sex. The prevalence of HPV in benign lesions as well as malignancies has been assessed by many techniques. Among these, the polymerase chain reaction is the most sensitive method. Review of literature reveals that HPV may be a risk factor for malignancies, but not in all cases. For confirmation of the role of HPV in head and neck squamous cell carcinoma, large population studies are necessary in an assortment of clinical settings. Prophylactic vaccination against high-risk HPV types eventually may prevent a significant number of cervical carcinomas. Of the two vaccines currently available, Gardasil (Merck & Co., Inc.) protects against HPV types 6, 11, 16 and 18, while the other vaccine, Cervarix (GlaxoSmithKline, Rixensart, Belgium) protects against HPV types 16 and 18 only. However, the HPV vaccine has, to the best of our knowledge, not been tried in head and neck carcinoma. The role of HPV in etiopathogenesis, prevalence in benign and malignant lesions of this area and vaccination strategies are briefly reviewed here. PMID:19555477

  8. Radiosensitivity of nall human melanoma transplanted into nude mice: repair, reoxygenation and dose fractionation. [Gamma radiation

    SciTech Connect

    Guichard, M.; Malaise, E.P.

    1982-06-01

    Split dose and fractionated ..gamma..-rays experiments have been performed on a human melanoma transplanted into nude mice using an in vitro colony assay. Repair of potentially lethal damage observed after a single dose of 20 Gy was found to no longer occur when 7 daily doses of 2.5 Gy were administered. In split-dose experiments, the increase in survival level probably can not be explained by repair of sublethal damage. When a single high dose of radiation is administered a certain reoxygenation is observed; however, there is no reoxygenation when low radiation doses are delivered daily.

  9. Normal human colon cells suppress malignancy when fused with colon cancer cells

    SciTech Connect

    Johnson, T.L.; Moyer, M.P. )

    1990-11-01

    Normal human colon mucosa cells and cells obtained from histologically normal tissues near that cancer were fused with human colon cancer cells. Resultant hybrid populations of normal and malignant cell fusions behaved as nonmalignant cells in culture, were unable to grow in soft agar, did not express tumor-associated antigens, and were nontumorigenic in nude mice. Autofusion of the cancer cell population led to a phenotype intermediate between normal and malignant cells. That is, the cultures had a much lower plating efficiency in soft agar, and the tumors had a longer latency and slower growth rate in nude mice. This is the first cell culture system to demonstrate that normal epithelial cells can suppress malignancy of their autologous cancer cells, and is a prelude to more extensive studies of genetic events involved in malignant conversion of human colonic epithelium.

  10. Differential effects of phorbol ester on the in vitro invasiveness of malignant and non-malignant human fibroblast cells.

    PubMed

    Fridman, R; Lacal, J C; Reich, R; Bonfil, D R; Ahn, C H

    1990-01-01

    The effect of the phorbol ester tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) on cell invasion was studied using an in vitro assay for cell invasion through a reconstituted basement membrane matrix (Matrigel). TPA inhibited the invasiveness of malignant human fibrosarcoma HT1080 cells. In contrast, WI-38 lung fibroblasts, which show a very low invasive capacity, were stimulated (3-fold) to invade Matrigel after exposure to TPA for 48 hours. The inhibitory or stimulatory effects of TPA on cell invasion were correlated with a decrease or an increase in cell motility and collagenase IV activity, respectively. Synthetic diacylglycerols partially mimicked the inhibitory action of TPA on HT1080 cells but failed to stimulate WI-38 cell invasion. Immunoblots demonstrated that in both cell lines the alpha and beta isoforms of protein kinase C were equally down-regulated after a 5 hour exposure to TPA despite the basal low level of protein kinase C polypeptide in the malignant cells. Thus, whereas in WI-38 cells induction of an invasive behavior could be observed in the absence of protein kinase C, in the malignant cells disappearance of the kinase was associated with a non-invasive phenotype. PMID:2153689

  11. Human cytomegalovirus viral load in tumor and peripheral blood samples of patients with malignant gliomas.

    PubMed

    Priel, Eldar; Wohl, Anton; Teperberg, Michal; Nass, Dvora; Cohen, Zvi R

    2015-02-01

    Malignant gliomas are the most common primary brain tumors in adults. The disease has no known etiology, progresses rapidly, and is fatal despite current therapies. Human cytomegalovirus (HCMV) is a beta herpes virus that is trophic for glial cells and infects 50% to 90% of the adult human population. HCMV-mediated disease in immunosuppressed patients has highlighted the possible role of this virus in the development of other diseases, particularly inflammatory diseases such as vascular diseases, autoimmune diseases, and certain malignancies. Sensitive detection of viral DNA, mRNA, and antigens in tumor tissues, as well as seroepidemiologic evidence, suggest a link between HCMV and several human malignancies. HCMV gene products are proposed to dysregulate multiple cellular pathways involved in oncogenesis, such as cell cycle regulation, apoptosis, migration, and angiogenesis. These theories, currently being researched, suggest that HCMV acts as an oncomodulator in malignancies. We investigated the association between HCMV infection and reactivation, and malignant gliomas. An open, matched case-control, parallel group pilot study was performed in a tertiary referral center. The HCMV viral load in peripheral blood and tumor samples of 19 patients newly diagnosed with glioblastoma multiforme was compared with a matched control cohort comprising 19 patients newly diagnosed with non-malignant brain tumors. There was no significant correlation between peripheral blood and tumor tissue HCMV viral load in patients with glioblastoma multiforme compared to the control cohort. The findings of the present study did not support an oncomodulatory role for HCMV in malignant gliomas. PMID:25443081

  12. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  13. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human

    PubMed Central

    Kushwah, Rahul; Guezguez, Borhane; Lee, Jung Bok; Hopkins, Claudia I; Bhatia, Mickie

    2014-01-01

    The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation. PMID:25252682

  14. Increased radiosensitivity of stimulator cells in the human mixed leucocyte culture reaction and the secondary response of primed lymphocytes.

    PubMed Central

    Chen, S N; Duquesnoy, R J

    1981-01-01

    In chessboard mixed leucocyte culture (MLR) experiments we have identified three unrelated healthy blood donors of lymphocytes which showed low stimulatory capacity with apparently MLR-incompatible and HLA-D-non-identical responder lymphocytes. This was due to increased sensitivity to X-irradiation of stimulators which was demonstrable in both MLR and secondary PLT responses. On the other hand, lymphocytes from these donors exhibited normal radiosensitivity when tested as responders in MLR and phytohaemagglutinin- and pokeweed mitogen-induced blastogenesis. The results of family studies of a low stimulator donor suggested that the radiosensitivity of stimulator cells may be under some genetic control which is probably not linked to HLA. PMID:6458428

  15. In vitro measurements of ultraweak luminescence of human malignant tumors and healthy tissues

    NASA Astrophysics Data System (ADS)

    Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Pozniak, V.; Dziczek, D.; Michniewicz, Z.; Jackowski, M.; Raczynska, A. M.; Winczakiewicz, J.

    2001-07-01

    In vitro measurements of levels of ultraweak luminescence were carried out using healthy and malignant tissues obtained from 63 patients undergoing surgical operations for cancers of colon, stomach and breast. The results obtained support recent reports that there is a difference in mean intensities of the ultraweak luminescence emitted from healthy and malignant tissues. This work demonstrates, however, that because of a large scatter among the intensities detected for samples obtained from different patients the differences found for the mean intensities cannot serve as a parameter for differentiating between the malignant and normal human tissues.

  16. Malignancies in human immunodeficiency virus infected patients in India: Initial experience in the HAART era

    PubMed Central

    Sharma, Surendra K.; Soneja, Manish; Ranjan, Sanjay

    2015-01-01

    Background & objectives: Limited data are available on malignancies in human immunodeficiency virus (HIV)-infected patients from India. We undertook this study to assess the frequency and spectrum of malignancies in HIV-infected adult patients during the first eight years of highly active antiretroviral therapy (HAART) rollout under the National ART Programme at a tertiary care centre in New Delhi, India. Methods: Retrospective analysis of records of patients registered at the ART clinic between May 2005 and December 2013 was done. Results: The study included 2598 HIV-infected adult patients with 8315 person-years of follow up. Malignancies were diagnosed in 26 patients with a rate of 3.1 (IQR 2.1-4.5) cases per 1000 person-years. The median age for those diagnosed with malignancy was 45 (IQR 36-54) yr, which was significantly (P<0.01) higher compared with those not developing malignancies 35 (IQR 30-40) yr. The median baseline CD4+ T-cell count in patients with malignancy was 135 (IQR 68-269) cells/l compared to 164 (IQR 86-243) cells/l in those without malignancies. AIDS-defining cancers (ADCs) were seen in 19 (73%) patients, while non-AIDS-defining cancers (NADCs) were observed in seven (27%) patients. Malignancies diagnosed included non-Hodgkin's lymphoma (16), carcinoma cervix (3), Hodgkin's lymphoma (2), carcinoma lung (2), hepatocellular carcinoma (1), and urinary bladder carcinoma (1). One patient had primary central nervous system lymphoma. There was no case of Kaposi's sarcoma. Interpretation & conclusions: Malignancies in HIV-infected adult patients were infrequent in patients attending the clinic. Majority of the patients presented with advanced immunosuppression and the ADCs, NHL in particular, were the commonest malignancies. PMID:26658591

  17. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin; School of Life Science, Southwest University, Chongqing 400715 ; Cai, Shaoxi; Yang, Li; College of Pharmacy, Jinan University, Guangzhou 510632 ; Yu, Shuhui; Library of Southwest University, Chongqing 400715 ; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul; Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  18. Adenoviral-E2F-1 radiosensitizes p53{sup wild-type} and p53{sup null} human prostate cancer cells

    SciTech Connect

    Nguyen, Khanh H.; Hachem, Paul; Khor, L.-Y.; Salem, Naji; Hunt, Kelly K.; Calkins, Peter R.; Pollack, Alan . E-mail: Alan.Pollack@fccc.edu

    2005-09-01

    Purpose: E2F-1 is a transcription factor that enhances the radiosensitivity of various cell lines by inducing apoptosis. However, there are conflicting data concerning whether this enhancement is mediated via p53 dependent pathways. Additionally, the role of E2F-1 in the response of human prostate cancer to radiation has not been well characterized. In this study, we investigated the effect of Adenoviral-E2F-1 (Ad-E2F-1) on the radiosensitivity of p53{sup wild-type} (LNCaP) and p53{sup null} (PC3) prostate cancer cell lines. Methods and Materials: LNCaP and PC3 cells were transduced with Ad-E2F-1, Adenoviral-Luciferase (Ad-Luc) control vector, or Adenoviral-p53 (Ad-p53). Expression of E2F-1 and p53 was examined by Western blot analysis. Annexin V and caspase 3 + 7 assays were performed to estimate the levels of apoptosis. Clonogenic survival assays were used to determine overall cell death. Statistical significance was determined by analysis of variance, using the Bonferroni method to correct for multiple comparisons. Results: Western blot analysis confirmed the efficacy of transductions with Ad-E2F-1 and Ad-p53. Ad-E2F-1 transduction significantly enhanced apoptosis and decreased clonogenic survival in both cell lines. These effects were compounded by the addition of RT. Although E2F-1-mediated radiosensitization was independent of p53 status, this effect was more pronounced in p53{sup wild-type} LNCaP cells. When PC3 cells were treated with Ad-p53 in combination with RT and Ad-E2F-1, there was at least an additive reduction in clonogenic survival. Conclusions: Our results suggest that Ad-E2F-1 significantly enhances the response of p53{sup wild-type} and p53{sup null} prostate cancer cells to radiation therapy, although radiosensitization is more pronounced in the presence of p53. Ad-E2F-1 may be a useful adjunct to radiation therapy in the treatment of prostate cancer.

  19. Radiosensitizing effects of misonidazole and SR 2508 on a human melanoma tranplanted in nude mice: influence on repair of potentially lethal damage

    SciTech Connect

    Guichard, M.; Malaise, E.P.

    1982-03-01

    The radiosensitizing effects of misonidazole and SR 2508 (1 mg/g) were compared on a human melanoma (Na11) containing 85% hypoxic cells transplanted into nude mice. For both drugs, the enhancement ratios (ER) were 1.7 after immediate plating and 2.1 after delayed plating. This difference in ERs is related to a lack of PLD repair in tumors in the presence of the sensitizer. The effect of misonidazole was also investigated in another human melanoma (Be11) containing 40% hypoxic cells. After immediate plating, the Er was similar to that observed with the Na11 tumor (1.7)m but PLD repair was not reduced. A comparative analysis of the influence of misonidazole on the response (survival curve - PLD repair) of Na11 melanoma to different ionizing radiations was attempted.

  20. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    SciTech Connect

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  1. SWI/SNF chromatin remodeling and human malignancies.

    PubMed

    Masliah-Planchon, Julien; Biche, Ivan; Guinebretire, Jean-Marc; Bourdeaut, Franck; Delattre, Olivier

    2015-01-01

    The SWI/SNF complexes, initially identified in yeast 20 years ago, are a family of multi-subunit complexes that use the energy of adenosine triphosphate (ATP) hydrolysis to remodel nucleosomes. Chromatin remodeling processes mediated by the SWI/SNF complexes are critical to the modulation of gene expression across a variety of cellular processes, including stemness, differentiation, and proliferation. The first evidence of the involvement of these complexes in carcinogenesis was provided by the identification of biallelic, truncating mutations of the SMARCB1 gene in malignant rhabdoid tumors, a highly aggressive childhood cancer. Subsequently, genome-wide sequencing technologies have identified mutations in genes encoding different subunits of the SWI/SNF complexes in a large number of tumors. SWI/SNF mutations, and the subsequent abnormal function of SWI/SNF complexes, are among the most frequent gene alterations in cancer. The mechanisms by which perturbation of the SWI/SNF complexes promote oncogenesis are not fully elucidated; however, alterations of SWI/SNF genes obviously play a major part in cancer development, progression, and/or resistance to therapy. PMID:25387058

  2. Leukemia derived growth factors produced by human malignant T-lymphoid cell lines.

    PubMed

    Uittenbogaart, C H; Nishanian, P G; Anisman, D J; Erikson, T K; Fahey, J L

    1986-03-01

    An autocrine (noninterleukin 2) growth factor, which we term leukemia derived growth factor (LDGF), has previously been found in the culture supernatant of the human malignant T-lymphoid cell line MOLT-4f. We now show that two other human malignant T-lymphoid cell lines, CCRF-CEM and CCRF-HSB-2 also produce such a factor. All three factors, i.e., the LDGF from MOLT-4f, CCRF-CEM, and CCRF-HSB-2 are similar to each other both in biological activity and in physicochemical characteristics. In addition to their autocrine activity, these LDGFs stimulate the growth of other malignant T-lymphoid cell lines, but they do not stimulate B-lymphoblastoid or myeloid cell lines. The results therefore suggest that these LDGFs are T-cell specific. PMID:3080240

  3. The potential value of the neutral comet assay and ?H2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines

    PubMed Central

    Zhao, Jin; Guo, Zhong; Zhang, Hong; Wang, Zhenhua; Song, Lei; Ma, Jianxiu; Pei, Shuyan; Wang, Chenjing

    2013-01-01

    Background Carbon ions (12C6+) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The assessment of tumour radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. The aim of the current study was to evaluate the potential value of the neutral comet assay and ?H2AX foci assay in assessing 12C6+ radiosensitivity of tumour cells. Materials and methods The doses of 12C6+ and X-rays used in the present study were 2 and 4 Gy. The survival fraction, DNA double-strand breaks (DSB) and repair kinetics of DSB were assayed with clonogenic survival, neutral comet assay and ?H2AX foci assay in human cervical carcinoma HeLa cells, hepatoma HepG2 cells, and mucoepidermoid carcinoma MEC-1 cells at the time points of 0.5, 4, 16 and 24 h after 12C6+ and X-rays irradiation. Results The survival fraction for 12C6+ irradiation was much more inhibited than for X-rays (p < 0.05) in all three tumour cell lines tested. Substantial amounts of residual damage, assessed by the neutral comet assay, were present after irradiation (p < 0.05). The highest residual damage was observed at 0.5 or 4 h, both for 12C6+ and X-ray irradiation. However, the residual damage in HeLa and MEC-1 cells was higher for 12C6+ than X-rays (p < 0.05). The strongest induction of ?H2AX foci was observed after 30 min, for all three tumour cell lines (p < 0.01). The franction of ?H2AX foci persisted for at least 24 h after 12C6+ irradiation; in HeLa cells and MEC-1 was higher than after X-ray irradiation (p < 0.05). The correlation coefficients between the clonogenic survival, neutral comet assay and ?H2AX foci assay were not statistically significant, except for some tumour cells at individual irradiation doses and types. Conclusions Our study demonstrated that the neutral comet assay and ?-H2AX foci assay could be used to assess the radiosensitivity of 12C6+ in human tumour cells. PMID:24133390

  4. Overexpression of FRAT1 is associated with malignant phenotype and poor prognosis in human gliomas.

    PubMed

    Guo, Geng; Zhong, Cheng-liang; Liu, Yang; Mao, Xing-gang; Zhang, Zheng; Jin, Ji; Liu, Jing; Yang, Liu; Mao, Jin-ming; Guo, Yu-hong; Zhao, Yuan-li

    2015-01-01

    Glioma is the most common malignancy of the central nervous system. Approximately 40 percent of intracranial tumors are diagnosed as gliomas. Difficulties in treatment are associated closely with the malignant phenotype, which is characterized by excessive proliferation, relentless invasion, and angiogenesis. Although the comprehensive treatment level of brain glioma is continuously progressing, the outcome of this malignancy has not been improved drastically. Therefore, the identification of new biomarkers for diagnosis and therapy of this malignancy is of significant scientific and clinical value. FRAT1 is a positive regulator of the Wnt/?-catenin signaling pathway and is overexpressed in many human tumors. In the present study, we investigated the expression status of FRAT1 in 68 patients with human gliomas and its correlation with the pathologic grade, proliferation, invasion, angiogenesis, and prognostic significance. These findings suggest that FRAT1 may be an important factor in the tumorigenesis and progression of glioma and could be explored as a potential biomarker for pathological diagnosis, an indicator for prognosis, and a target for biological therapy of malignancy. PMID:25922553

  5. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang; Tretiakova, Maria; Zhang Zhongfa; Li Yan; Wang Xiaozhen; Zhu, Julie Xiaohong; Gao Yuanhong; Mai Weiyuan; Furge, Kyle; Qian Chaonan; Amato, Robert; Butler, E. Brian

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  6. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  7. GFA and S 100 protein levels as an index for malignancy in human gliomas and neurinomas.

    PubMed

    Jacque, C M; Kujas, M; Poreau, A; Raoul, M; Collier, P; Racadot, J; Baumann, N

    1979-03-01

    Human glia-specific proteins S 100 and GFA were quantitated by use of a rocket immunoelectrophoresis technique with monospecific antisera. No relation was found between the S 100 protein content of an astrocytoma and its degree of neoplasia. However, the lower the GFA protein content of the astrocytoma, the more malignant it was. Similarly, the more malignant a neurinoma was, the lower was its S 100 protein content. Therefore, the levels of these proteins might be used as indexes of neoplastic dedifferentiation. PMID:216839

  8. Malignant Transformation of Hymenolepis nana in a Human Host.

    PubMed

    Muehlenbachs, Atis; Bhatnagar, Julu; Agudelo, Carlos A; Hidron, Alicia; Eberhard, Mark L; Mathison, Blaine A; Frace, Michael A; Ito, Akira; Metcalfe, Maureen G; Rollin, Dominique C; Visvesvara, Govinda S; Pham, Cau D; Jones, Tara L; Greer, Patricia W; Vélez Hoyos, Alejandro; Olson, Peter D; Diazgranados, Lucy R; Zaki, Sherif R

    2015-11-01

    Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer. PMID:26535513

  9. Telomerase activity in benign and malignant human thyroid tissues.

    PubMed Central

    Cheng, A. J.; Lin, J. D.; Chang, T.; Wang, T. C.

    1998-01-01

    Telomerase is a specialized ribonucleoprotein polymerase that directs the synthesis of telomerase repeats at chromosome ends. Accumulating evidence has indicated that telomerase is stringently repressed in normal human somatic tissues but reactivated in cancers and immortal cells, suggesting that activation of telomerase activity plays a role in carcinogenesis and immortalization. In this work, the status of telomerase activity during the development of human thyroid cancer was determined using telomeric repeat amplification protocol (TRAP) in 14 nodular hyperplasia, 14 adenomas, 23 papillary carcinomas and 11 follicular carcinomas. Positive telomerase activity was detected in 2 of 14 nodular hyperplasias (14%), 4 of 14 adenomas (29%), 12 of 23 papillary carcinomas (52%) and 10 of 11 follicular carcinomas (91%). The cancers that are negative for telomerase activity are mostly in early stage (stage I or II). These results suggest that telomerase reactivation plays a role during the development of thyroid cancer. Images Figure 1 PMID:9649130

  10. Malignant conversion of chemically transformed normal human cells.

    PubMed Central

    Milo, G E; Li, D; Casto, B C; Theil, K; Shuler, C; Noyes, I; Chen, J

    1996-01-01

    Two structurally unrelated chemicals, aflatoxin B1 and propane sultone, transformed human foreskin cells to a stage of anchorage-independent growth. Isolation from agar and repopulation in monolayer culture of these transformed cells was followed by transfection with a cDNA library, which resulted in cells that exhibited an altered epithelioid morphology. Chemically transformed/nontransfected cells and transfected normal cells did not undergo a significant morphological change. These epithelioid-appearing, transfected cells, when inoculated into nude mice, form progressively growing tumors. The tumors are histopathologically interpreted as carcinomas. All of the first generation tumors in the surrogate hosts exhibited characteristic rates of growth similar to those of transplants of spontaneous human tumors. In the second generation of tumor xenografts, the progressively growing tumors derived from the transfected cells exhibited a more rapid rate of growth. Southern analysis and reverse transcription PCR confirmed that a 1.3-kb genetic element was integrated into the genome and was actively being transcribed. Examination of the metaphase chromosomes in normal human cells revealed that the genetic element responsible for this conversion was located at site 31-32 of the q arm of chromosome 7. The DNA sequence of this 1.3-kb genetic element contains a coding region for 79 amino acids and a long 3'-untranslated region and appears to be identical to CATR1.3 isolated from tumors produced by methyl methanesulfonate-converted, nontransplantable human tumor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8643558

  11. Zebrafish as a Model for the Study of Human Myeloid Malignancies.

    PubMed

    Lu, Jeng-Wei; Hsieh, Meng-Shan; Liao, Heng-An; Yang, Yi-Ju; Ho, Yi-Jung; Lin, Liang-In

    2015-01-01

    Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies. PMID:26064935

  12. Zebrafish as a Model for the Study of Human Myeloid Malignancies

    PubMed Central

    Lu, Jeng-Wei; Hsieh, Meng-Shan; Liao, Heng-An; Yang, Yi-Ju; Ho, Yi-Jung; Lin, Liang-In

    2015-01-01

    Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies. PMID:26064935

  13. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers

    PubMed Central

    Mendillo, Marc L.; Santagata, Sandro; Koeva, Martina; Bell, George W.; Hu, Rong; Tamimi, Rulla M.; Fraenkel, Ernest; Ince, Tan A.; Whitesell, Luke; Lindquist, Susan

    2012-01-01

    SUMMARY Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their non-transformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications. PMID:22863008

  14. Cysteine protease inhibitors isolated from human malignant melanoma tissue.

    PubMed

    Tsushima, H; Sumi, H; Hamanaka, K; Toki, N; Sato, H; Mihara, H

    1985-12-01

    Cysteine protease inhibitors that specifically reacted with several cysteine proteases were found in KSCN extract of human melanoma tissue. From 30 gm of the tissue, approximately 593.5 U inhibitor was obtained. The inhibitors were adsorbed on a papain-Sepharose column and could be eluted with 10 mmol/L phosphate buffer, pH 6.0, containing NaCl or KCl, or with 20 mmol/L acetate buffer, pH 4.0, containing KSCN. They revealed a strong inhibitory activity for cysteine proteases such as ficin, papain, and cathepsin B, but did not react with cysteine protease bromelain or serine protease trypsin. No immunologic relationship was confirmed between the inhibitor and other well-known plasma inhibitors such as alpha 1-antitrypsin, alpha 2-macroglobulin, alpha 1-antichymotrypsin, antithrombin III, C1-in-activator, and alpha 2-plasmin inhibitor. With Sephadex G-100, two main peaks of molecular weight 40,000 and 10,000 were detected in the KSCN extract of the human melanoma tissue. However, the inhibitors revealed three molecular weights of 10,000, 25,000, and 80,000 when estimated by Sephadex G-100 gel filtration after papain-Sepharose affinity chromatography. On the other hand, the molecular weights of the inhibitors changed to two peaks of 25,000 and 10,000 on rechromatography with a papain-Sepharose column. PMID:3934299

  15. On the radiosensitivity of man in space.

    PubMed

    Esposito, R D; Durante, M; Gialanella, G; Grossi, G; Pugliese, M; Scampoli, P; Jones, T D

    2001-01-01

    Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical model of radiation-induced myelopoiesis which includes the effect of microgravity on bone marrow kinetics. It is assumed that cellular radiosensitivity is not modified by the space environment, but repopulation rates of stem and stromal cells are reduced as a function of time in weightlessness. A realistic model of the space radiation environment, including the HZE component, is used to simulate the radiation damage. A dedicated computer code was written and applied to solar particle events and to the mission to Mars. The results suggest that altered myelopoiesis and lymphopoiesis in microgravity might increase human radiosensitivity in space. PMID:11642296

  16. Gemcitabine suppresses malignant ascites of human pancreatic cancer: correlation with VEGF expression in ascites.

    PubMed

    Kuwahara, Kenichi; Sasaki, Tamito; Kobayashi, Kensou; Noma, Bunjirou; Serikawa, Masahiro; Iiboshi, Tomohiro; Miyata, Hideki; Kuwada, Yukio; Murakami, Masateru; Yamasaki, Souichirou; Kariya, Kenji; Morinaka, Kenji; Chayama, Kazuaki

    2004-01-01

    It has been reported that vascular endothelial growth factor (VEGF) is a potent angiogenic factor that also has the ability to increase vascular permeability. VEGF plays an important role in the development of malignant ascites in various cancers. Gemcitabine has been prescribed for patients with inoperable human pancreatic ductal carcinoma as a first-line chemotherapy. However, the response rates of patients with malignant ascites who were undergoing systemic chemotherapy were extremely limited. In the present study, we investigated the role of VEGF and the effects of gemcitabine on malignant ascites of human pancreatic ductal carcinoma. As an in vitro assay, the human pancreatic cancer cell line (SUIT-2) was incubated in DMEM supplemented with serially diluted concentrations of gemcitabine for 24 h. The expression levels of VEGF in culture media were assayed using an enzyme-linked immunosorbent assay (ELISA). As an in vivo assay, a cell suspension (1 x 10(7) cells in 100 microliters PBS) was injected into the intraperitoneal region. The mice were randomly divided into two groups (control and treated with gemcitabine). The mice were sacrificed four weeks after inoculation, the ascites volume was measured, and the extent of peritoneal dissemination was examined. The expression levels of VEGF and CD31 in peritoneal nodules were examined by immunohistochemistry. In addition, secreted VEGF protein levels were quantified using ELISA. The results show that VEGF levels in the culture medium decreased in response to gemcitabine in a dose-dependent manner. The ascites formation and peritoneal dissemination within mice were suppressed by the treatment with gemcitabine. Immunohistochemical analysis suggested that expression of VEGF and CD31 in peritoneal nodules was suppressed by gemcitabine treatment, and the VEGF protein level in ascites was significantly decreased by gemcitabine (p<0.05). These results suggest that gemcitabine controls malignant ascites and peritoneal dissemination, either directly or indirectly, via VEGF. Moreover, intraperitoneal administration of gemcitabine may be a useful therapeutic approach for patients with malignant ascites in pancreatic carcinoma. PMID:14654905

  17. High prevelance of human parvovirus infection in patients with malignant tumors.

    PubMed

    Li, Yasha; Dong, Yanming; Jiang, Jun; Yang, Yongbo; Liu, Kaiyu; Li, Yi

    2012-03-01

    It is well known that the immunity of patients with malignant tumors decreases significantly. An increased parvovirus B19 (B19) infection rate has been observed in immunocompromised hosts. However, only a small amount of literature regarding the risk of human parvovirus infection in patients with malignant tumors is available. To evaluate the correlation of human parvovirus infection with malignant tumors, 288 serum samples from patients with malignant tumors were screened for B19 DNA by nested-PCR. The serum samples, 156 of which were from known clinicopathological cancer patients, were subjected to analysis of the seropositive rate of human bocavirus (HBoV), hepatitis B virus (HBV) and transfusion transmitted virus (TTV) by PCR. A total of 800 normal population sera and 941 aspirate samples from children with respiratory tract infections were used as controls for the detection of B19 and HBoV, respectively. Pairwise comparison between cancerous serum and control samples, and the correlation between parvovirus infection and clinicopathological variables, including gender and cancer type, were evaluated using the ?2 test, Fisher's exact test or the t-test. P<0.05 was considered to indicate a statistically significant difference. The overall prevalence of B19 DNA in cancer patients was 50.69% (146/288), which was significantly higher than that of the healthy controls with 4.5% (36/800) (?2 test, P<0.0001). Similar results were obtained for HBoV with a 39.74% (62/156) prevalence in cancer patients. However, the infection prevalence of HBV and TTV in the cancer patients was 5.13 (8/156) and 6.41% (10/156), respectively (P<0.0001), which was much less than that of B19 and HBoV. These results revealed that a high risk of B19 and HBoV infection occurred in cancer patients, and a potential correlation exists between parvovirus infection and occurrence of malignant tumors. PMID:22740966

  18. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  19. Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase.

    PubMed

    Zhong, W; Oberley, L W; Oberley, T D; St Clair, D K

    1997-01-30

    Manganese superoxide dismutase (MnSOD) has been previously shown to suppress the malignant phenotype of human melanoma and breast cancer cells. To test the possible role of MnSOD in glioma malignancy, MnSOD was overexpressed in wild type human glioma U118 cells and subcloned U118-9 cells by transfection of human MnSOD cDNA. The MnSOD-transfected cell lines demonstrated expression of exogenous (plasmid) MnSOD mRNA, increase in MnSOD immunoreactive protein, and a three- to eightfold increase in MnSOD enzymatic activity. The MnSOD overexpressing cell lines became less malignant as demonstrated by requiring a higher serum concentration to grow in vitro and much slower tumor growth in nude mice than the parental and neo control cell lines. These findings further support the hypothesis that MnSOD may be a tumor suppressor gene in a wide variety of human tumors. PMID:9053845

  20. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    PubMed Central

    Huang, Tzuu-Yuan; Hsu, Che-Wen; Chang, Weng-Cheng; Wang, Miin-Yau; Wu, June-Fu; Hsu, Yi-Chiang

    2012-01-01

    Demethoxycurcumin (DMC; a curcumin-related demethoxy compound) has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71??M) and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP), DNA fragmentation, caspase activation, and NF-?B transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways. PMID:22454662

  1. Histochemical analysis of testis specific gene 13 in human normal and malignant tissues.

    PubMed

    Zhao, Hu; Lai, Xiaofeng; Xu, Xinyuan; Sui, Ke; Bu, Xin; Ma, Wenqiang; Li, Di; Guo, Kai; Xu, Jinke; Yao, Libo; Li, Wei; Su, Jin

    2015-12-01

    Testis-specific gene 13 (TSGA13) is abundantly expressed in testis. As previous studies of TSGA13 expression pattern have all been based on mRNA analysis, it is imperative to investigate its actual protein expression. Here, we first examined TSGA13 gene tree and protein homology among species, and found that TSGA13 is relatively well conserved. Next, we detected its protein expression in normal human tissues as well as in a limited number of malignant tumors by immunohistochemistry (IHC). It was demonstrated that, in addition to testis, high expression of TSGA13 could also be observed in multiple normal tissues, including stomach, larynx, spleen, bladder, tonsil, liver and thyroid. Notably, most types of human carcinoma tissues displayed reduced expression of TSGA13 rather than their adjacent normal tissues except glioblastoma and lung cancer. Hence, the data from the current study strongly suggest the association between TSGA13 and tumor malignancy. PMID:26111495

  2. Histone deacetylation as a target for radiosensitization.

    PubMed

    Cerna, David; Camphausen, Kevin; Tofilon, Philip J

    2006-01-01

    Due to an increase in the understanding of molecular radiobiology, strategies for enhancing tumor radiosensitivity have begun to focus on targeting the molecules and processes that regulate cellular radioresponse. Toward this end, histone acetylation has begun to receive considerable attention as a potential target for radiosensitization. Histone acetylation, which is determined by the competing actions of histone acetylases (HATs) and histone deacetylases (HDACs), plays a role in regulating chromatin structure and gene expression--two parameters that have long been considered determinants of radioresponse. As a means of modifying histone acetylation status, considerable effort has been put into the development of inhibitors of HDAC activity, which is often aberrant in tumor cells. This has led to the generation of a relatively large number of structurally diverse compounds that inhibit HDAC activity and result in histone hyperacetylation, and importantly, are applicable to patient treatment. Whereas a number of these HDAC inhibitors have antitumor activity in preclinical cancer models when delivered as single agents, recent studies have indicated that these compounds also significantly enhance tumor cell radiosensitivity. A structurally diverse set of HDAC inhibitors have been shown to enhance the in vitro radiosensitivity of human tumor cell lines generated from a spectrum of solid tumors. Moreover, HDAC inhibitors increased the radiosensitivity of human tumor xenografts. Although the mechanism responsible for this radiosensitization has not been definitely elucidated, data suggest that inhibiting the repair of radiation-induced DNA damage may be involved. Whereas HDAC inhibitors are currently in clinical trials as single modalities and in combination with chemotherapeutic agents, recent results suggest that these compounds may also enhance the antitumor effectiveness of radiotherapy. PMID:16782459

  3. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming

    2008-02-01

    Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.

  4. Dielectric spectroscopy of normal and malignant human lung cells at ultra-high frequencies

    NASA Astrophysics Data System (ADS)

    Egot-Lemaire, S.; Pijanka, J.; Sul-Suso, J.; Semenov, S.

    2009-04-01

    Microwave techniques for biomedical applications aimed at cancer treatment or diagnosis, either by imaging or spectroscopy, are promising. Their use relies on knowledge of the dielectric properties of tissues, especially on a detectable difference between malignant and normal tissues. As most studies investigated the dielectric properties of ex vivo tissues, there is a need for better biophysical understanding of human tissues in their living state. As an essential component of tissues, cells represent valuable objects of analysis. The approach developed in this study is an investigation at cell level. Its aim was to compare human lung normal and malignant cells by dielectric spectroscopy in the beginning of the microwave range, where such information is of substantial biomedical importance. These cells were embedded in small and low-conductivity agarose hydrogels and laid on an open-ended coaxial probe connected to a vector network analyser operated from 200 MHz to 2 GHz. The comparison between normal and malignant cells was drawn using the variation of measured dielectric properties and fitting the measurements using the Maxwell-Wagner equation. Both methods revealed slight differences between the two cell lines, which were statistically significant regarding conductivities of composite gels and cells.

  5. NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro

    PubMed Central

    Wang, Wen-juan; Long, Lin-mei; Yang, Neng; Zhang, Qing-qing; Ji, Wen-jun; Zhao, Jiang-hu; Qin, Zheng-hong; Wang, Zhong; Chen, Gang; Liang, Zhong-qin

    2013-01-01

    Aim: NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor and shows dramatic effects on gliomas. The aim of this study was to investigate the effects of NVP-BEZ235 on the radiosensitivity and autophagy of glioma stem cells (GSCs) in vitro. Methods: Human GSCs (SU-2) were tested. The cell viability and survival from ionizing radiation (IR) were evaluated using MTT and clonogenic survival assay, respectively. Immunofluorescence assays were used to identify the formation of autophagosomes. The apoptotic cells were quantified with annexin V-FITC/PI staining and flow cytometry, and observed using Hoechst 33258 staining and fluorescence microscope. Western blot analysis was used to analyze the expression levels of proteins. Cell cycle status was determined by measuring DNA content after staining with PI. DNA repair in the cells was assessed using a comet assay. Results: Treatment of SU-2 cells with NVP-BEZ235 (10320 nmol/L) alone suppressed the cell growth in a concentration-dependent manner. A low concentration of NVP-BEZ235 (10 nmol/L) significantly increased the radiation sensitivity of SU-2 cells, which could be blocked by co-treatment with 3-MA (50 ?mol/L). In NVP-BEZ235-treated SU-2 cells, more punctate patterns of microtubule-associated protein LC3 immunoreactivity was observed, and the level of membrane-bound LC3-II was significantly increased. A combination of IR with NVP-BEZ235 significantly increased the apoptosis of SU-2 cells, as shown in the increased levels of BID, Bax, and active caspase-3, and decreased level of Bcl-2. Furthermore, the combination of IR with NVP-BEZ235 led to G1 cell cycle arrest. Moreover, NVP-BEZ235 significantly attenuated the repair of IR-induced DNA damage as reflected by the tail length of the comet. Conclusion: NVP-BEZ235 increases the radiosensitivity of GSCs in vitro by activating autophagy that is associated with synergistic increase of apoptosis and cell-cycle arrest and decrease of DNA repair capacity. PMID:23603977

  6. Silencing NFBD1/MDC1 enhances the radiosensitivity of human nasopharyngeal cancer CNE1 cells and results in tumor growth inhibition

    PubMed Central

    Wang, Z; Zeng, Q; Chen, T; Liao, K; Bu, Y; Hong, S; Hu, G

    2015-01-01

    NFBD1 functions in cell cycle checkpoint activation and DNA repair following ionizing radiation (IR). In this study, we defined the NFBD1 as a tractable molecular target to radiosensitize nasopharyngeal carcinoma (NPC) cells. Silencing NFBD1 using lentivirus-mediated shRNA-sensitized NPC cells to radiation in a dose-dependent manner, increasing apoptotic cell death, decreasing clonogenic survival and delaying DNA damage repair. Furthermore, downregulation of NFBD1 inhibited the amplification of the IR-induced DNA damage signal, and failed to accumulate and retain DNA damage-response proteins at the DNA damage sites, which leaded to defective checkpoint activation following DNA damage. We also implicated the involvement of NFBD1 in IR-induced Rad51 and DNA-dependent protein kinase catalytic subunit foci formation. Xenografts models in nude mice showed that silencing NFBD1 significantly enhanced the antitumor activity of IR, leading to tumor growth inhibition of the combination therapy. Our studies suggested that a combination of gene therapy and radiation therapy may be an effective strategy for human NPC treatment. PMID:26247734

  7. Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis.

    PubMed

    Alonso-Gonzlez, Carolina; Gonzlez, Alicia; Martnez-Campa, Carlos; Menndez-Menndez, Javier; Gmez-Arozamena, Jos; Garca-Vidal, Angela; Cos, Samuel

    2016-01-01

    Enhancing the radiosensitivity of cancer cells is one of the most important tasks in clinical radiobiology. Endocrine therapy and radiotherapy are two cancer treatment modalities which are often given together in patients with locally-advanced breast cancer and positive hormone-receptor status. Oncostatic actions of melatonin are relevant on estrogen-dependent mammary tumors. In the present study, we wanted to evaluate the effects of the combination of ionizing radiation and melatonin on proteins involved in estrogen biosynthesis in breast cancer cells. We demonstrated a role of melatonin in mediating the sensitization of human breast cancer cells to the ionizing radiation by decreasing around 50% the activity and expression of proteins involved in the synthesis of estrogens in these cells. Thus, melatonin pretreatment before radiation reduces the amount of active estrogens at cancer cell level. Melatonin 1?nM induced a 2-fold change in p53 expression as compared to radiation alone. The regulatory action of melatonin on p53 could be a link between melatonin and its modulatory action on the sensitivity of breast cancer cells to ionizing radiation. These findings may have implications for designing clinical trials using melatonin and radiotherapy. PMID:26497762

  8. Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast.

    PubMed

    Bostrm, Pia; Sainio, Annele; Kakko, Tanja; Savontaus, Mikko; Sderstrm, Mirva; Jrvelinen, Hannu

    2013-01-01

    The small extracellular matrix proteoglycan decorin which possesses a potent antitumor activity has been shown to be present in various amounts in the stroma of several tumors including those of the breast. Regarding decorin in breast malignancies the published data are conflicting, i.e., whether breast cancer cells express it or not. Here, we first compared decorin gene expression levels between healthy human breast tissue and selected types of human breast cancer using GeneSapiens databank. Next, we localized decorin mRNA in tissue specimen of normal human breast, intraductal breast papillomas and various histologic types of human breast cancer using in situ hybridization (ISH) with digoxigenin-labeled RNA probes for decorin. We also examined the effect of decorin transduction on the behavior of cultured human breast cancer MCF7 cells. Analysis of GeneSapiens databank revealed that in various human breast cancers decorin expression is significant. However, ISH results clearly demonstrated that human breast cancer cells independently of the type of the cancer do not express decorin mRNA. This was also true for papilloma-forming cells of the human breast. Indeed, decorin gene expression in healthy human breast tissue as well as in benign and malignant tumors of human breast was shown to take place solely in cells of the original stroma. Decorin transduction using decorin adenoviral vector in decorin-negative MCF7 cells resulted in a significant decrease in the proliferation of these cells and changed cell cohesion. Decorin-transduced MCF7 cells also exhibited increased apoptosis. In conclusion, our study shows that in human breast tissue only cells of the original stroma are capable of decorin gene expression. Our study also shows that transduction of decorin in decorin-negative human breast cancer cells markedly modulates the growth pattern of these cells. PMID:23007289

  9. Effects of gemcitabine on radiosensitization, apoptosis, and Bcl-2 and Bax protein expression in human pancreatic cancer xenografts in nude mice.

    PubMed

    Shen, Z T; Wu, X H; Wang, L; Li, B; Zhu, X X

    2015-01-01

    The aim of this study was to evaluate the radiosensitizing effects of gemcitabine towards human pancreatic cancer xenografts. A human pancreatic cancer xenograft model was established in nude mice, 36 of which were randomly divided into 6 treatment groups. Tumors were measured every 2 days, and the tumor volumes, growth delays, and inhibition rates were compared to evaluate the gemcitabine enhancement factor. The apoptotic index was determined by terminal deoxynucleotidyl transferase dUTP nick end-labeling assay, and apoptosis inhibitory protein Bcl-2 and apoptosis-related protein Bax expression were detected by immunohistochemistry. Compared with the control group, xenograft growth was significantly inhibited in the 25 (G25) and 50 mg/kg gemcitabine (G50) groups (P < 0.05). In the 25 (G25R) and 50 (G50R) mg/kg gemcitabine + radiotherapy groups, local tumor growth was significantly inhibited, with inhibition rates of 88.22 and 91.23%, respectively, significantly higher than those of the simple radiotherapy (SR), G25, and G50 groups (44.11, 72.88, and 77.53%, respectively; P < 0.05). The tumor growth delay in the G25R and G50R groups were 9 and 15 days, respectively, higher than the SR, G25, and G50 groups (each 4 days, P < 0.05). The apoptosis of tumor cells in the intervention groups significantly increased, and the apoptotic index among the intervention groups exhibited significant differences (P < 0.05). The immunohistochemical results indicated that Bcl-2 was downregulated to different degrees in the intervention groups, whereas Bax was upregulated (P < 0.05). Therefore, gemcitabine appears to enhance the radiotherapeutic sensitivity of human pancreatic cancer xenografts significantly. PMID:26634526

  10. High prevelance of human parvovirus infection in patients with malignant tumors

    PubMed Central

    LI, YASHA; DONG, YANMING; JIANG, JUN; YANG, YONGBO; LIU, KAIYU; LI, YI

    2012-01-01

    It is well known that the immunity of patients with malignant tumors decreases significantly. An increased parvovirus B19 (B19) infection rate has been observed in immunocompromised hosts. However, only a small amount of literature regarding the risk of human parvovirus infection in patients with malignant tumors is available. To evaluate the correlation of human parvovirus infection with malignant tumors, 288 serum samples from patients with malignant tumors were screened for B19 DNA by nested-PCR. The serum samples, 156 of which were from known clinicopathological cancer patients, were subjected to analysis of the seropositive rate of human bocavirus (HBoV), hepatitis B virus (HBV) and transfusion transmitted virus (TTV) by PCR. A total of 800 normal population sera and 941 aspirate samples from children with respiratory tract infections were used as controls for the detection of B19 and HBoV, respectively. Pairwise comparison between cancerous serum and control samples, and the correlation between parvovirus infection and clinicopathological variables, including gender and cancer type, were evaluated using the ?2 test, Fishers exact test or the t-test. P<0.05 was considered to indicate a statistically significant difference. The overall prevalence of B19 DNA in cancer patients was 50.69% (146/288), which was significantly higher than that of the healthy controls with 4.5% (36/800) (?2 test, P<0.0001). Similar results were obtained for HBoV with a 39.74% (62/156) prevalence in cancer patients. However, the infection prevalence of HBV and TTV in the cancer patients was 5.13 (8/156) and 6.41% (10/156), respectively (P<0.0001), which was much less than that of B19 and HBoV. These results revealed that a high risk of B19 and HBoV infection occurred in cancer patients, and a potential correlation exists between parvovirus infection and occurrence of malignant tumors. PMID:22740966

  11. Radiosensitivity of Human Fibroblasts is Associated With Amino Acid Substitution Variants in Susceptible Genes And Correlates With The Number of Risk Alleles

    SciTech Connect

    Alsbeih, Ghazi . E-mail: galsbeih@kfshrc.edu.sa; El-Sebaie, Medhat; Al-Harbi, Najla; Al-Buhairi, Muneera; Al-Hadyan, Khaled; Al-Rajhi, Nasser

    2007-05-01

    Purpose: Genetic predictive markers of radiosensitivity are being sought for stratifying radiotherapy for cancer patients and risk assessment of radiation exposure. We hypothesized that single nucleotide polymorphisms in susceptible genes are associated with, and the number of risk alleles has incremental effect on, individual radiosensitivity. Methods and Materials: Six amino acid substitution variants (ATM 1853 Asp/Asn G>A, p53 72 Arg/Pro G>C, p21 31 Ser/Arg C>A, XRCC1 399 Arg/Gln G>A, XRCC3 241 Thr/Met C>T, and TGF{beta}1 10 Leu/Pro T>C) were genotyped by direct sequencing in 54 fibroblast strains of different radiosensitivity. Results: The clonogenic survival fraction at 2 Gy range was 0.15-0.50 (mean, 0.34, standard deviation, 0.08). The mean survival fraction at 2 Gy divided the cell strains into radiosensitive (26 cases) and normal (28 controls). A significant association was observed between the survival fraction at 2 Gy and ATM 1853 Asn, XRCC3 241 Met, and TGF{beta}1 10 Leu alleles (p = 0.05, p = 0.02, and p = 0.02, respectively). The p53 72 Arg allele showed a borderline association (p = 0.07). The number of risk alleles increased with increasing radiosensitivity, and the group comparison showed a statistically significant difference between the radiosensitive and control groups (p {<=}0.001). Conclusion: The results of our study have shown that single nucleotide polymorphisms in susceptible genes influence cellular radiation response and that the number of risk alleles has a combined effect on radiosensitivity. Individuals with multiple risk alleles could be more susceptible to radiation effects than those with fewer risk alleles. These results may have implications in predicting normal tissue reactions to radiotherapy and risk assessment of radiation exposure.

  12. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies

    PubMed Central

    Sato, Akinori

    2015-01-01

    The human immunodeficiency virus protease inhibitor ritonavir has recently been shown to have antineoplastic activity, and its use in urological malignancies is under investigation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibiting their degradation and efflux from cancer cells and thereby enhancing their antineoplastic activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, due to their novel mechanisms of action, are expected to be effective against malignancies that are refractory to current treatment strategies. Further investigations using ritonavir are expected to find new uses for clinically available drugs in the treatment of urological malignancies as well as many other types of cancer. PMID:25914545

  13. A molecular targeting against nuclear factor-?B, as a chemotherapeutic approach for human malignant mesothelioma

    PubMed Central

    Nishikawa, Sho; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jang, Hyosun; Jung, Kyungsook; Amagai, Yosuke; Ahn, Ginae; Okamoto, Noriko; Ishizaka, Saori; Matsuda, Hiroshi

    2014-01-01

    Chronic inflammation due to the absorption of asbestos is an important cause of mesothelioma. Although the increased prevalence of mesothelioma is a serious problem, the development of effective chemotherapeutic agents remains incomplete. As the nuclear factor-?B (NF-?B) pathway contributes to malignant transformation of various types of cells, we explored NF-?B activity in three different pathological types of malignant mesothelioma cells, and evaluated the therapeutic potential of a recently reported NF-?B inhibitor, IMD-0354. NF-?B was constantly activated in MSTO-211H, NCI-H28, and NCI-H2052 cells, and the proliferation of these cell lines was inhibited by IMD-0354. D-type cyclins were effectively suppressed in mixed tissue type MSTO-211H, leading to cell cycle arrest at sub G1/G1 phase. IMD-0354 reduced cyclin D3 in both epithelial tissue type NCI-H28 and sarcomatoid tissue type NCI-H2052. In a sphere formation assay, IMD-0354 effectively decreased the number and diameter of MSTO-211H spheres. Preincubation of MSTO-211H cells with IMD-0354 delayed tumor formation in transplanted immunodeficient mice. Furthermore, administration of IMD-0354 markedly rescued the survival rate of mice that received intrathoracic injections of MSTO-211H cells. These results indicate that a targeted drug against NF-?B might have therapeutic efficacy in the treatment of human malignant mesothelioma. PMID:24510578

  14. Is DNA polymerase beta important in thermal radiosensitization?

    PubMed

    Raaphorst, G P; Yang, D P; Niedbala, G

    2004-03-01

    Thermal radiosensitization was tested in a pair of mouse cells (MB+ wild-type and MB-, DNA polymerase beta knockout cells) and in human breast carcinoma cells (MCF7 wild-type and C716 transfected to give elevated DNA polymerase beta expression). Results showed that neither reducing DNA polymerase beta (involved in base excision repair) nor increasing it had any significant effect on thermal radiosensitization. The data indicated that polymerase beta was not involved in thermal radiosensitization, and since hyperthermia is known as a radiation damage repair inhibitor, other repair pathways might be involved and need to be explored. PMID:15195508

  15. Radiosensitive effect of curcumin on thyroid cancer cell death induced by radioiodine-131

    PubMed Central

    Hosseini, Seyed Amir Hossein

    2014-01-01

    Curcumin is a natural product widely consumed by humans. It has many biological properties. In this study, we investigated the radiosensitive effect of curcumin on thyroid cancer cells against cellular toxicity induced by 131-I. Human thyroid cancer and human non-malignant fibroblast cells (HFFF2) were treated with 131-I and/or curcumin at different concentrations (5, 10 and 25 g/ml) for 48 h. The cell proliferation was measured by determination of the surviving cells by using MTT assay. Our results showed that curcumin increased the killing effect of 131-I on thyroid cancer cells, while it exerted no toxicity on HFFF2 cells. This result shows a promising effect of curcumin on the enhancement of therapeutic effects of 131-I in patients. PMID:26109883

  16. Ocrelizumab, a humanized monoclonal antibody against CD20 for inflammatory disorders and B-cell malignancies.

    PubMed

    Hutas, Gabor

    2008-11-01

    Biogen Idec Inc, Genentech Inc, Roche Holding AG and Chugai Pharmaceutical Co Ltd are developing ocrelizumab, a humanized mAb against CD20, for the potential treatment of inflammatory disorders and B-cell malignancies. Ocrelizumab is undergoing phase III clinical trials for rheumatoid arthritis and lupus nephritis, and phase II trials for multiple sclerosis and hematological cancer. Previously, ocrelizumab was also being developed for the treatment of systemic lupus erythematosus (SLE) and neuromyelitis optica; however, development for SLE has been discontinued. No development has been reported for neuromyelitis optica and as of January 2007, this indication had been removed from the company pipeline. PMID:18951300

  17. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells.

    PubMed

    Mezzapelle, Rosanna; Rrapaj, Eltjona; Gatti, Elena; Ceriotti, Chiara; Marchis, Francesco De; Preti, Alessandro; Spinelli, Antonello E; Perani, Laura; Venturini, Massimo; Valtorta, Silvia; Moresco, Rosa Maria; Pecciarini, Lorenza; Doglioni, Claudio; Frenquelli, Michela; Crippa, Luca; Recordati, Camilla; Scanziani, Eugenio; de Vries, Hilda; Berns, Anton; Frapolli, Roberta; Boldorini, Renzo; D'Incalci, Maurizio; Bianchi, Marco E; Crippa, Massimo P

    2016-01-01

    Malignant Mesothelioma is a highly aggressive cancer, which is difficult to diagnose and treat. Here we describe the molecular, cellular and morphological characterization of a syngeneic system consisting of murine AB1, AB12 and AB22 mesothelioma cells injected in immunocompetent BALB/c mice, which allows the study of the interplay of tumor cells with the immune system. Murine mesothelioma cells, like human ones, respond to exogenous High Mobility Group Box 1 protein, a Damage-Associated Molecular Pattern that acts as a chemoattractant for leukocytes and as a proinflammatory mediator. The tumors derived from AB cells are morphologically and histologically similar to human MM tumors, and respond to treatments used for MM patients. Our system largely recapitulates human mesothelioma, and we advocate its use for the study of MM development and treatment. PMID:26961782

  18. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells

    PubMed Central

    Mezzapelle, Rosanna; Rrapaj, Eltjona; Gatti, Elena; Ceriotti, Chiara; Marchis, Francesco De; Preti, Alessandro; Spinelli, Antonello E.; Perani, Laura; Venturini, Massimo; Valtorta, Silvia; Moresco, Rosa Maria; Pecciarini, Lorenza; Doglioni, Claudio; Frenquelli, Michela; Crippa, Luca; Recordati, Camilla; Scanziani, Eugenio; de Vries, Hilda; Berns, Anton; Frapolli, Roberta; Boldorini, Renzo; D’Incalci, Maurizio; Bianchi, Marco E.; Crippa, Massimo P.

    2016-01-01

    Malignant Mesothelioma is a highly aggressive cancer, which is difficult to diagnose and treat. Here we describe the molecular, cellular and morphological characterization of a syngeneic system consisting of murine AB1, AB12 and AB22 mesothelioma cells injected in immunocompetent BALB/c mice, which allows the study of the interplay of tumor cells with the immune system. Murine mesothelioma cells, like human ones, respond to exogenous High Mobility Group Box 1 protein, a Damage-Associated Molecular Pattern that acts as a chemoattractant for leukocytes and as a proinflammatory mediator. The tumors derived from AB cells are morphologically and histologically similar to human MM tumors, and respond to treatments used for MM patients. Our system largely recapitulates human mesothelioma, and we advocate its use for the study of MM development and treatment. PMID:26961782

  19. Insulin-Like Growth Factor-Type 1 Receptor Inhibitor NVP-AEW541 Enhances Radiosensitivity of PTEN Wild-Type but Not PTEN-Deficient Human Prostate Cancer Cells

    SciTech Connect

    Isebaert, Sofie F.; Swinnen, Johannes V.; McBride, William H.; Haustermans, Karin M.

    2011-09-01

    Purpose: During the past decade, many clinical trials with both monoclonal antibodies and small molecules that target the insulin-like growth factor-type 1 receptor (IGF-1R) have been launched. Despite the important role of IGF-1R signaling in radioresistance, studies of such agents in combination with radiotherapy are lagging behind. Therefore, the aim of this study was to investigate the effect of the small molecule IGF-1R kinase inhibitor NVP-AEW541 on the intrinsic radioresistance of prostate cancer cells. Methods and Materials: The effect of NVP-AEW541 on cell proliferation, cell viability, IGF-1R signaling, radiosensitivity, cell cycle distribution, and double strand break repair was determined in three human prostate cancer cell lines (PC3, DU145, 22Rv1). Moreover, the importance of the PTEN pathway status was explored by means of transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Results: NVP-AEW541 inhibited cell proliferation and decreased cell viability in a time-and dose-dependent manner in all three cell lines. Radiosensitization was observed in the PTEN wild-type cell lines DU145 and 22Rv1 but not in the PTEN-deficient PC3 cell line. NVP-AEW541-induced radiosensitization coincided with downregulation of phospho-Akt levels and high levels of residual double strand breaks. The importance of PTEN status in the radiosensitization effect was confirmed by transfection experiments with constitutively active Akt or inactive kinase-dead Akt. Conclusions: NVP-AEW541 enhances the effect of ionizing radiation in PTEN wild-type, but not in PTEN-deficient, prostate cancer cells. Proper patient selection based on the PTEN status of the tumor will be critical to the achievement of optimal results in clinical trials in which the combination of radiotherapy and this IGF-1R inhibitor is being explored.

  20. Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-fixed, embedded tissue.

    PubMed Central

    Porter, P. L.; Gown, A. M.; Kramp, S. G.; Coltrera, M. D.

    1992-01-01

    p53 is a nuclear protein believed to play an important role, through mutation and overexpression, in the progression of human malignant tumors. The authors employed a monoclonal antibody, 1801, and investigated overexpression of p53 in a series of 255 malignant and benign tumors, using deparaffinized sections of methacarn-fixed tissue. Overall, immunohistochemically detected p53 overexpression was found in 39% of malignant tumors, with considerable variation within individual tumor types (34% of breast carcinomas, 92% of ovarian carcinomas, 33% of soft tissue sarcomas). Homogenous, heterogenous, and focal immunostaining patterns were noted. With rare exceptions, no immunostaining of any benign tumors was noted. No immunostaining was found in adjacent, benign tissues, or in a series of fetal tissues. This is the first demonstration of widespread p53 overexpression in alcohol-fixed, embedded tissue and confirms the major role played by p53 in human malignancies. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1731521

  1. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

    PubMed Central

    2013-01-01

    Background It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity. Methods Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells. Results Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2-phases. They also arrested the growth of HTB68 cells at S- and G2-phase, respectively. Moreover, derivatives 2, 5, and 6 markedly induced apoptosis (≥ 90%) in both HTB66 and HTB68. Conclusions Computer-derived syringic acid derivatives possess selective anti-mitogenic activity on human malignant melanoma cells that may be attributed to perturbation of cell cycle, induction of apoptosis and inhibition of various 26S proteasomal activities. PMID:23958424

  2. Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Shinzawa, Hideyuki; Takenaka, Tatsuji; Furihata, Chie; Sato, Hidetoshi

    2010-01-01

    The Raman spectroscopic technique enables the observation of intracellular molecules without fixation or labeling procedures in situ. Raman spectroscopy is a promising technology for diagnosing cancers-especially lung cancer, one of the most common cancers in humans-and other diseases. The purpose of this study was to find an effective marker for the identification of cancer cells and their malignancy using Raman spectroscopy. We demonstrate a classification of cultured human lung cancer cells using Raman spectroscopy, principal component analysis (PCA), and linear discrimination analysis (LDA). Raman spectra of single, normal lung cells, along with four cancer cells with different pathological types, were successfully obtained with an excitation laser at 532 nm. The strong appearance of bands due to cytochrome c (cyt-c) indicates that spectra are resonant and enhanced via the Q-band near 550 nm with excitation light. The PCA loading plot suggests a large contribution of cyt-c in discriminating normal cells from cancer cells. The PCA results reflect the nature of the original cancer, such as its histological type and malignancy. The five cells were successfully discriminated by the LDA.

  3. Clinical significance of the integrin α6β4 in human malignancies

    PubMed Central

    Stewart, Rachel L.; O’Connor, Kathleen L.

    2015-01-01

    Integrin α6β4 is a cellular adhesion molecule that binds to laminins in the extracellular matrix and nucleates the formation of hemidesmosomes. During carcinoma progression, integrin α6β4 is released from hemidesmosomes, where it can then signal to facilitate multiple aspects of tumor progression including sustaining proliferative signaling, tumor invasion and metastasis, evasion of apoptosis, and stimulation of angiogenesis. The integrin achieves these ends by cooperating with growth factor receptors including EGFR, ErbB-2, and c-Met to amplify downstream pathways such as PI3K, AKT, MAPK and the Rho family small GTPases. Furthermore, it dramatically alters the transcriptome toward a more invasive phenotype by controlling promoter DNA demethylation of invasion and metastasis-associated proteins, such as S100A4 and autotaxin, and upregulates and activates key tumor promoting transcription factors such as the NFATs and NFkB. Expression of integrin α6β4 has been studied in many human malignancies where its overexpression is associated with aggressive behavior and a poor prognosis. This review provides an assessment of integrin α6β4 expression patterns and their prognostic significance in human malignancies, and describes key signaling functions of integrin α6β4 that contribute to tumor progression. PMID:26121317

  4. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells

    PubMed Central

    Halder, Babli; Singh, Shruti; Thakur, Suman S.

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  5. Epigenetic Regulation of Inflammatory Cytokines and Associated Genes in Human Malignancies

    PubMed Central

    Yasmin, Rehana; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  6. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells.

    PubMed

    Halder, Babli; Singh, Shruti; Thakur, Suman S

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  7. Recent developments in radiosensitization.

    PubMed

    Linam, Justin; Yang, Li-Xi

    2015-05-01

    Radiation therapy is essential for local tumor control for many types of cancer histologies. Technological advancements in recent years have allowed for precise irradiation of target tissues while minimizing the dose to non-target tissues. To enhance radiation damage to cancer cells and further limit the radiation effects on normal tissue, researchers have explored compounds that specifically target cancer cells and make them more sensitive to ionizing radiation. Recent radiosensitization research has focused on promising compounds that alter hypoxia, inhibit topoisomerases, interfere with microtubules, and activate caspases, among other mechanisms. Many such compounds have shown impressive results in pre-clinical trials against a variety of cell types, but their safety, efficacy and practicability in clinical trials remains to be demonstrated. This review seeks to provide an overview of recent research in radiosensitization, detailing some of the more successful compounds, and illustrating avenues for future research. PMID:25964520

  8. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines

    PubMed Central

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-01-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy. PMID:26206198

  9. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines.

    PubMed

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-08-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy. PMID:26206198

  10. Expression of p21/sup ras/ in normal and malignant human tissues: lack of association with proliferation and malignancy

    SciTech Connect

    Chesa, P.G.; Rettig, W.J.; Melamed, M.R.; Old, L.J.; Niman, H.L.

    1987-05-01

    Proteins encoded by cellular ras oncogenes (p21/sup ras) are expressed in a wide variety of malignant tumors, including carcinomas, lymphomas, and neuroectodermal tumors. The function of p21/sup ras/ in these tumors and the distribution and role of p21/sup ras/ in corresponding normal tissues are unclear. This immunohistochemical study examined the relationship between p21/sup ras/ expression and malignant transformation, cellular differentiation, and proliferative activity in vivo. p21/sup ras/ was found to be widely expressed in normal tissues, but within those tissues expression was often sharply restricted to cells at specific stages of differentiation; terminally differentiated cells generally showed stronger reactivity with antibodies to p21/sup ras/ than did rapidly proliferating cells. Fetal and adult tissues had corresponding patterns of p21/sup ras/ expression, and the distribution of p21/sup ras/ in neoplasms paralleled the pattern in normal tissue from which they were derived. Thus, p21/ras/ seems to play a role in many fully differentiated cell types, and levels of p21/sup ras/ expression do not correlate with proliferative activity in normal cells or, in contrast to past reports, with the transformed phenotype.

  11. Circadian rhythmometry of mammalian radiosensitivity

    NASA Technical Reports Server (NTRS)

    Haus, E.; Halberg, F.; Loken, M. K.; Kim, Y. S.

    1974-01-01

    In the case of human bone marrow, the largest number of mitoses is seen in the evening in diurnally active men, mitotic activity being at a minimum in the morning. The opposite pattern is observed for nocturnal animals such as rats and mice on a regimen of light during the daytime alternating with darkness during the night hours. The entirety of these rhythms plays an important role in the organism's responses to environmental stimuli, including its resistance to potentially harmful agents. Conditions under which circadian rhythms can be observed and validated by inferential statistical means are discussed while emphasizing how artifacts of the laboratory environment can be shown to obscure circadian periodic variations in radiosensitivity.

  12. In vivo study of breast carcinoma radiosensitization by targeting eIF4E

    SciTech Connect

    Yang, Hua; Li, Li-Wen; Department of Bioscience, College of Life Sciences, Northwest University, No. 229 North Taibai Road, Xi'an 710069 ; Shi, Mei; Wang, Jian-Hua; Xiao, Feng; Zhou, Bin; Diao, Li-Qiong; Long, Xiao-Li; Liu, Xiao-Li; Xu, Lin

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer eIF4E is associated with the formation and progression for breast cancer. Black-Right-Pointing-Pointer pSecX-t4EBP1 can downregulated the expression of eIF4E in direct binding. Black-Right-Pointing-Pointer We transfected pSecX-t4EBP1 into a mouse xenograft model. Black-Right-Pointing-Pointer It can significantly inhibit tumor growth and enhance the radiosensitivity. Black-Right-Pointing-Pointer The possible mechanism is downregulation of HIF-1{alpha} expression. -- Abstract: Background: Eukaryotic initiation factor eIF4E, an important regulator of translation, plays a crucial role in the malignant transformation, progression and radioresistance of many human solid tumors. The overexpression of this gene has been associated with tumor formation in a wide range of human malignancies, including breast cancer. In the present study, we attempted to explore the use of eIF4E as a therapeutic target to enhance radiosensitivity for breast carcinomas in a xenograft BALB/C mice model. Materials and methods: Ninety female BALB/C mice transfected with EMT-6 cells were randomly divided into six groups: control, irradiation (IR), pSecX-t4EBP1, pSecX-t4EBP1 + irradiation, pSecX and pSecX + irradiation. At the end of the experiments, all mice were sacrificed, the xenografts were harvested to measure the tumor volume and mass, and the tumor inhibition rates were calculated. Apoptosis was detected with a flow cytometric assay. Immunohistochemistry was used to detect the expression of HIF-1{alpha}. Results: The xenografts in pSecX-t4EBP1 mice showed a significantly delayed growth and smaller tumor volume, with a higher tumor inhibition rate compared with the control and pSecX groups. A similar result was obtained in the pSecX-t4EBP1 + IR group compared with IR alone and pSecX + irradiation. The expression of HIF-1{alpha} in the tumor cells was significantly decreased, while the apoptosis index was much higher. Conclusions: pSecX-t4EBP1 can significantly inhibit tumor growth and enhance the radiosensitivity of breast carcinoma xenografts in BALB/C mice. This is possibly associated with the downregulation of HIF-1{alpha} expression, which suggests that pSecX-t4EBP1 may serve as an ideal molecular target for the radiosensitization of breast carcinoma.

  13. Tumor suppressor gene alterations of spontaneously malignant transformed cells from human embryonic muscle in vitro.

    PubMed

    Wang, Xianyao; Li, Wenyu; Zheng, Jiakun; Chen, Qiang; Zou, Haiying; Ma, Lian; Lin, Guangyu; Huang, Tianhua; Huang, Ge; Yang, Liye

    2010-08-01

    Recent research has shown that mesenchymal stem cells (MSCs) which were cultured for long time could transform malignantly, the transformation mechanism is not clear yet, it might be associated with the activation of oncogenes and inactivation of tumor suppressor genes. In our initial investigation, we found that the cells arising from human embryonic muscle could spontaneously transform into malignancy in vitro and we obtained 6 immortalized cell lines. In this study, polymerase chain reaction (PCR) was used to assay several tumor suppressor genes of these cell lines, and homozygous deletions within chromosomal band 9p2l including MTAP (methylthioadenosine phosphorylase), p16 and p15 were detected. PCR products of p53 exons 7 and 8 of these novel tumor cell lines were assayed by sequencing, and the results showed high prevalence of mutations in these regions, the mutation rate reached as high as 8% in exon 7 and 14% in exon 8, and all of them were point mutations, the intron 7 changed more significantly, including piece deletion, insertion, frameshift and point mutation, it showed almost no similarity to that of the wt p53 sequence, that was totally different from other p53 mutation data published. All the mutation sequences were identical in 6 cell lines, this suggest that there may be a common mutation mechanism and strong selective advantage in these novel tumor cell lines over long-term culture. In conclusion, our research shows that the inactivation of tumor suppressor genes may play an important role in the process of malignant transformation of embryonic muscle cells in vitro. PMID:20596646

  14. A thiol protease inhibitor released from cultured human malignant melanoma cells.

    PubMed

    Nishida, Y; Sumi, H; Mihara, H

    1984-08-01

    A thiol protease inhibitor (TPI) was found in culture media of human malignant melanoma cells (Bowes) at 1.5 to 2.3 units/day/flask (full sheet, 75 sq cm). This amount well exceeded that for cultured nonmalignant cells (human fetal lung fibroblasts). In the intracellular region of the melanoma cells, TPI activity was localized mainly in the cytosol fraction. The difference in specific activities between the intracellular and extracellular TPI and the TPI accumulation in the culture media indicated that cultured melanoma cells release TPI. Partial purification and characterization of the TPI by column chromatography using Sephadex G-150, papain-Sepharose, and Sephadex G-50, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed two distinct TPIs with molecular weights of 56,000 and 9,800 to 10,800. The latter (main) TPI had a high specificity for thiol proteases and was heat stable (60 degrees for 60 min), like previously reported normal human TPIs. The inhibitor, however, differed from normal human TPIs in that it had a lower molecular weight than any normal TPI, was unable to inhibit bromelain, and exhibited a mosaic pattern; namely, the low-molecular-weight TPI resembled liver-type TPI but the pH stability curve resembled serum-type TPI. The thiol protease, cathepsin B, was not detected in culture media of this human melanoma cell line. PMID:6378366

  15. The p21-Dependent Radiosensitization of Human Breast Cancer Cells by MLN4924, an Investigational Inhibitor of NEDD8 Activating Enzyme

    PubMed Central

    Wang, Gongxian; Sun, Yi

    2012-01-01

    Radiotherapy is a treatment choice for local control of breast cancer. However, intrinsic radioresistance of cancer cells limits therapeutic efficacy. We have recently validated that SCF (SKP1, Cullins, and F-box protein) E3 ubiquitin ligase is an attractive radiosensitizing target. Here we tested our hypothesis that MLN4924, a newly discovered investigational small molecule inhibitor of NAE (NEDD8 Activating Enzyme) that inactivates SCF E3 ligase, could act as a novel radiosensitizing agent in breast cancer cells. Indeed, we found that MLN4924 effectively inhibited cullin neddylation, and sensitized breast cancer cells to radiation with a sensitivity enhancement ratio (SER) of 1.75 for SK-BR-3 cells and 1.32 for MCF7 cells, respectively. Mechanistically, MLN4924 significantly enhanced radiation-induced G2/M arrest in SK-BR-3 cells, but not in MCF7 cells at early time point, and enhanced radiation-induced apoptosis in both lines at later time point. However, blockage of apoptosis by Z-VAD failed to abrogate MLN4924 radiosensitization, suggesting that apoptosis was not causally related. We further showed that MLN4924 failed to enhance radiation-induced DNA damage response, but did cause minor delay in DNA damage repair. Among a number of tested SCF E3 substrates known to regulate growth arrest, apoptosis and DNA damage response, p21 was the only one showing an enhanced accumulation in MLN4924-radiation combination group, as compared to the single treatment groups. Importantly, p21 knockdown via siRNA partialy inhibited MLN4924-induced G2/M arrest and radiosensitization, indicating a causal role played by p21. Our study suggested that MLN4924 could be further developed as a novel class of radiosensitizer for the treatment of breast cancer. PMID:22457814

  16. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  17. Optimization of radioimmunotherapy using human malignant melanoma multicell spheroids as a model

    SciTech Connect

    Kwok, C.S.; Crivici, A.; MacGregor, W.D.; Unger, M.W. )

    1989-06-15

    In vitro multicell spheroids from a human melanoma cell line and the human colon cancer cell line HT29, used as control, have been established as a model of poorly vascularized micrometastases in vivo. The antimelanoma monoclonal antibody 96.5 was radiolabeled with 131I at specific radioactivities from 1.85 to 3.96 GBq/mg. Cytotoxicity of 131I-96.5 to the spheroids, at an initial size of 300 microns in diameter, was investigated as a function of concentration of 131I-96.5 in the incubation medium, specific radioactivity, and treatment time. Spheroid growth delay and clonogenic survival of cells disaggregated from the spheroids at various times after treatment were used as end points. Therapeutic effects increased with the concentration of 131I-96.5 within the range 0.2 to 2 mg/liter (0.34 to 3.4 GBq/liter) at a fixed specific radioactivity. The effects increased with specific radioactivity at a fixed concentration of 131I-96.5. Difference in therapeutic effect was also observed between treatment times of 8 and 24 h. Radiation doses to the melanoma spheroids varied from 10 to 16 Gy. Unlabeled 96.5 at 2 mg/liter or 131I-iodide at 1.7 GBq/liter did not affect the growth of the melanoma spheroids. The HT29 spheroids, however, only suffered slight cytotoxicity at 1 or 2 mg/liter of 131I-96.5 and for a treatment time of 24 h despite comparable radiosensitivity of HT29 cells and melanoma cells to high-dose-rate radiation. Similar cytotoxicity was observed in the HT29 group treated with 131I-iodide at 1.7 GBq/liter. Present findings therefore demonstrate preferential and adequate killing of the melanoma spheroids by 131I-96.5 at 0.5 mg/liter and 3.96 GBq/mg in 8 h.

  18. Selective growth inhibition of a human malignant melanoma cell line by sesame oil in vitro.

    PubMed

    Smith, D E; Salerno, J W

    1992-06-01

    Ayurveda, an ancient and comprehensive system of natural medicine, recommends regular topical application to the skin of sesame oil, above all other oils, as a health-promoting procedure. We examined the effect of sesame oil and several other vegetable oils and their major component fatty acids on the proliferation rate of human normal and malignant melanocytes growing at similar rates in serum-free media. We found that sesame and safflower oils, both of which contain large amounts of linoleate in triglyceride form, selectively inhibited malignant melanoma growth over normal melanocytes whereas coconut, olive and mineral oils, which contain little or no linoleate as triglyceride, did not. These oils were tested at a range of 10-300 micrograms/ml. We found that of the fatty acids tested, only linoleic acid was selectively inhibitory while palmitic and oleic were not. These fatty acids were tested in the range of 3-100 micrograms/ml. These results suggest that certain vegetable oils rich in linoleic acid, such as the sesame oil, recommended for topical use by Ayurveda, may contain selective antineoplastic properties which are similar to those demonstrated for essential polyunsaturated fatty acids and their metabolites. This suggests that whole vegetable oils may have potential clinical usefulness. PMID:1502251

  19. P16INK4a MEDIATED SUPPRESSION OF TELOMERASE IN NORMAL AND MALIGNANT HUMAN BREAST CELLS

    PubMed Central

    Bazarov, Alexey V.; van Sluis, Marjolein; Hines, Curtis; Bassett, Ekaterina; Beliveau, Alain; Campeau, Eric; Mukhopadhyay, Rituparna; Lee, Won Jae; Melodyev, Sonya; Zaslavsky, Yuri; Lee, Leonard; Rodier, Francis; Chicas, Agustin; Lowe, Scott W.; Benhattar, Jean; Ren, Bing; Campisi, Judith; Yaswen, Paul

    2010-01-01

    Summary The cyclin-dependent kinase inhibitor p16INK4a (CDKN2A) is an important tumor-suppressor gene frequently inactivated in human tumors. p16 suppresses the development of cancer by triggering an irreversible arrest of cell proliferation termed cellular senescence. Here, we describe another anti-oncogenic function of p16 in addition to its ability to halt cell cycle progression. We show that transient expression of p16 stably represses the hTERT gene, encoding the catalytic subunit of telomerase, in both normal and malignant breast epithelial cells. Short-term p16 expression increases the amount of histone H3 trimethylated on lysine 27 (H3K27) bound to the hTERT promoter, resulting in transcriptional silencing, likely mediated by polycomb complexes. Our results indicate that transient p16 exposure may prevent malignant progression in dividing cells by irreversible repression of genes, such as hTERT, whose activity is necessary for extensive self-renewal. PMID:20569236

  20. Transforming growth factor-? enhances invasion and metastasis in Ras-transfected human malignant epidermal keratinocytes.

    PubMed

    Davies, Maria; Prime, Stephen S; Eveson, John W; Price, Nicky; Ganapathy, Anu; D'Mello, Anita; Paterson, Ian C

    2012-04-01

    Transforming growth factor-? (TGF-?) is known to act as a tumour suppressor early in carcinogenesis, but then switches to a pro-metastatic factor in some late stage cancers. However, the actions of TGF-? are context dependent, and it is currently unclear how TGF-? influences the progression of human squamous cell carcinoma (SCC). This study examined the effect of overexpression of TGF-?1 or TGF-?2 in Ras-transfected human malignant epidermal keratinocytes that represent the early stages of human SCC. In vitro, the proliferation of cells overexpressing TGF-?1 or TGF-?2 was inhibited by exogenous TGF-?1; cells overexpressing TGF-?1 also grew more slowly than controls, but the growth rate of TGF-?2 overexpressing cells was unaltered. However, cells that overexpressed either TGF-?1 or TGF-?2 were markedly more invasive than controls in an organotypic model of SCC. The proliferation of the invading TGF-?1 overexpressing cells in the organotypic assays was higher than controls. Similarly, tumours formed by the TGF-?1 overexpressing cells following transplantation to athymic mice were larger than tumours formed by control cells and proliferated at a higher rate. Our results demonstrate that elevated expression of either TGF-?1 or TGF-?2 in cells that represent the early stages in the development of human SCC results in a more aggressive phenotype. PMID:22414291

  1. Radioprotection of Human Cell Nuclear DNA by Polyamines: Radiosensitivity of Chromatin is Influenced by Tightly Bound Spermine

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Newton, Gerald L.; Olive, Peggy L.; Fahey, Robert C.

    1999-01-01

    The polyamines putrescine (PUT) and spermine (SPM) were examined for their ability to protect human cell Deoxyribonucleic Acid (DNA) against the formation of radiation-induced double-strand breaks (DSBs). As observed previously, under conditions where polyamines were shown to be almost completely absent, association with nuclear matrix protein into a nucleoid, and organization into chromatin structure, protected DNA from induction of DSBs by factors of 4.5 and 95, respectively. At concentrations below 1 mM, PUT or SPM provided equivalent levels of protection to deproteinized nuclear DNA, consistent with their capacity to scavenge radiation-induced radicals. At constant ionic strength, 5 mM SPM protected deproteinized DNA and nucleoid DNA and DNA in nuclear chromatin by factors of 100 and 26, respectively. At 5 mM, SPM provided 15 times greater protection of deproteinized DNA than did PUT. Under physiologically relevant conditions, 5 mM SPM protected DNA in the intact nucleus from the induction of DSBs by a factor of 2 relative to DNA in the absence of SPM. Studies of SPM binding during cellular fractionation revealed that a significant fraction of the cellular SPM is tightly bound in the nucleus but can be removed by extended washing. Thus the association of SPM with nuclear chromatin appears to be a significant contributor to the resistance of the cell's DNA to the induction of DSBs.

  2. Frequency analysis of multispectral photoacoustic images for differentiating malignant region from normal region in excised human prostate

    NASA Astrophysics Data System (ADS)

    Sinha, Saugata; Rao, Navalgund A.; Valluru, Keerthi S.; Chinni, Bhargava K.; Dogra, Vikram S.; Helguera, Maria

    2014-03-01

    Frequency domain analysis of the photoacoustic (PA) radio frequency signals can potentially be used as a tool for characterizing microstructure of absorbers in tissue. This study investigates the feasibility of analyzing the spectrum of multiwavelength PA signals generated by excised human prostate tissue samples to differentiate between malignant and normal prostate regions. Photoacoustic imaging at five different wavelengths, corresponding to peak absorption coefficients of deoxyhemoglobin, whole blood, oxyhemoglobin, water and lipid in the near infrared (NIR) (700 nm - 1000 nm) region, was performed on freshly excised prostate specimens taken from patients undergoing prostatectomy for biopsy confirmed prostate cancer. The PA images were co-registered with the histopathology images of the prostate specimens to determine the region of interest (ROI) corresponding to malignant and normal tissue. The calibrated power spectrum of each PA signal from a selected ROI was fit to a linear model to extract the corresponding slope, midband fit and intercept parameters. The mean value of each parameter corresponding to malignant and adjacent normal prostate ROI was calculated for each of the five wavelengths. The results obtained for 9 different human prostate specimens, show that the mean values of midband fit and intercept are significantly different between malignant and normal regions. In addition, the average midband fit and intercept values show a decreasing trend with increasing wavelength. These preliminary results suggest that frequency analysis of multispectral PA signals can be used to differentiate malignant region from the adjacent normal region in human prostate tissue.

  3. Accelerated malignant conversion of human HBL-100 cells by the v-Ki-ras oncogene

    SciTech Connect

    Saint-Ruf, C.; Nardeux, P.; Estrade, S.; Brouty-Boye, D.; Lavialle, C.; Cassingena, R. ); Rhim, J.S. )

    1988-05-01

    The human epithelial HBL-100 cell line harbors SV{sub 40} genetic information and has an unlimited growth potential. Despite displaying properties characteristic of transformation since its early in vitro passages, it is capable of producing progressively growing tumors in nude mice only after long-term culture. This a reproducible phenomenon and apparently not the consequence of a selection of preexisting malignant cells. Superinfection of early passage nontumorigenic HBL-100 cells with Kirsten murine sarcoma virus, which contains a Ki-ras oncogene having undergone multiple activating events, induces morphologic alterations and rapidly converts the cells to neoplastic cells, further supporting the hypothesis of multistep carcinogenesis. The HBL-100 cell line might be useful in defining the oncogenes representative of different families, which are able to complement SV{sub 40} in this system.

  4. FTIR microscopic comparative study on normal, premalignant, and malignant tissues of human intenstine

    NASA Astrophysics Data System (ADS)

    Mordechai, Shaul; Argov, Shmuel; Salman, Ahmad O.; Cohen, Beny; Ramesh, Jagannathan; Erukhimovitch, Vitaly; Goldstein, Jed; Sinelnikov, Igor

    2000-07-01

    Fourier-Transform Infrared Spectroscopy (FTIR) employs a unique approach to optical diagnosis of tissue pathology based on the characteristic molecular vibrational spectra of the tissue. The architectural changes in the cellular and sub-cellular levels developing in abnormal tissue, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in infrared spectroscopy. The biological systems we have studied include normal, premalignant (polyp) and malignant human colonic tissues from three patients. Our method is based on microscopic infrared study (FTIR-microscopy) of thin tissue specimens and a direct comparison with normal histopathological analysis, which serves as a `gold' reference. The normal intestine tissue has a stronger absorption than polyp and cancerous types over a wide region in all three cases. The detailed analysis showed that there is a significant decrease in total phosphate and creatine contents for polyp and cancerous tissue types in comparison to the controls.

  5. Novel GHRH antagonists suppress the growth of human malignant melanoma by restoring nuclear p27 function.

    PubMed

    Szalontay, Luca; Schally, Andrew V; Popovics, Petra; Vidaurre, Irving; Krishan, Awtar; Zarandi, Marta; Cai, Ren-Zhi; Klukovits, Anna; Block, Norman L; Rick, Ferenc G

    2014-01-01

    Malignant melanoma is the deadliest form of skin cancer; the treatment of advanced and recurrent forms remains a challenge. It has recently been reported that growth hormone-releasing hormone (GHRH) receptor is involved in the pathogenesis of melanoma. Therefore, we investigated the effects of our new GHRH antagonists on a human melanoma cancer cell line. Antiproliferative effects of GHRH antagonists, MIA-602, MIA-606 and MIA-690, on the human melanoma cell line, A-375, were studied in vitro using the MTS assay. The effect of MIA-690 (5 ?g/day 28 d) was further evaluated in vivo in nude mice bearing xenografts of A-375. Subcellular localization of p27 was detected with Western blot and immunofluorescent staining. MIA-690 inhibited the proliferation of A-375 cells in a dose-dependent manner (33% at 10 ?M, and 19.2% at 5 ?M, P < 0 .05 vs. control), and suppressed the growth of xenografted tumors by 70.45% (P < 0.05). Flow cytometric analysis of cell cycle effects following the administration of MIA-690 revealed a decrease in the number of cells in G2/M phase (from 19.7% to 12.9%, P < 0.001). Additionally, Western blot and immunofluorescent studies showed that exposure of A-375 cells to MIA-690 triggered the nuclear accumulation of p27. MIA-690 inhibited tumor growth in vitro and in vivo, and increased the translocation of p27 into the nucleus thus inhibiting progression of the cell cycle. Our findings indicate that patients with malignant melanoma could benefit from treatment regimens, which combine existing chemotherapy agents and novel GHRH-antagonists. PMID:25486366

  6. [Radiosensitization induced by vemurafenib].

    PubMed

    Ducassou, A; David, I; Delannes, M; Chevreau, C; Sibaud, V

    2013-01-01

    The recent use of vemurafenib, a specific inhibitor of BRAF, has led to a significant improvement in disease-free survival and overall survival of patients treated for a BRAF-mutated metastatic melanoma. This new class of drugs is not devoid of side effects, including skin effects. In particular, its association with concomitant radiotherapy should be taken into consideration, vemurafenib appearing to be radiosensitizer. The radiation oncologist must be aware of this potential toxicity, which is not uncommon in clinical practice. PMID:23810304

  7. Detection of human polyomaviruses MCPyV, HPyV6, and HPyV7 in malignant and non-malignant tonsillar tissues.

    PubMed

    Saláková, Martina; Košlabová, Eva; Vojtěchová, Zuzana; Tachezy, Ruth; Šroller, Vojtěch

    2016-04-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare skin malignancy. Human polyomavirus six and seven (HPyV6 and HPyV7) were identified on a skin but have not been associated with any pathology. The serology data suggest that infection with polyomaviruses occurs in childhood and they are widespread in population. However, the site of persistent infection has not been identified. Altogether, 103 formalin-fixed paraffin-embedded (FFPE) specimens and five fresh frozen tissues (FF) of non-malignant tonsils and 97 FFPE and 15 FF samples of tonsillar carcinomas were analyzed by qPCR for the presence of MCPyV, HPyV6, and HPyV7 DNA. All MCPyV DNA positive FF tissues were screened for the expression of early viral transcripts. Overall prevalence of MCPyV, HPyV6, and HPyV7 in non-malignant tonsillar tissues was 10.2%, 4.6%, and, 0.9%, respectively. The prevalence of MCPyV DNA in non-malignant tonsils increased with age (P < 0.05). While the prevalence of MCPyV DNA was significantly higher in the tumors than non-malignant tissues (35.7% vs. 10.2%) (P < 0.001), the prevalence of HPyV6 DNA (5.4% vs. 4.6%) and HPyV7 DNA (1.8% vs. 0.9%) were comparable. In all MCPyV DNA positive FF tissues early transcripts were detected. MCPyV, HPyV6, and HPyV7 DNAs were found in tonsils, suggesting that the tonsils may be a site of viral latency. The viral load was low indicating that only a fraction of cells are infected. The higher prevalence of MCPyV DNA was detected in tonsillar tumors but there was no difference in the viral load between tumor and healthy tissues. J. Med. Virol. 88:695-702, 2016. © 2015 Wiley Periodicals, Inc. PMID:26381295

  8. Apoptotic effects of ?-mangostin from the fruit hull of Garcinia mangostana on human malignant glioma cells.

    PubMed

    Chang, Hui-Fang; Huang, Wen-Tsung; Chen, Hui-Ju; Yang, Ling-Ling

    2010-01-01

    Gliomas are a common type of primary brain tumor with glioblastoma multiforme accounting for the majority of human brain tumors. In this paper, high grade human malignant glioblastomas (MGs) including U87 MG and GBM 8401 were used to evaluate the antitumor effects of ?-mangostin, a xanthone derivative isolated and purified from the hull of the tropical fruit Garcinia mangostana. The ?-mangostin showed potent antiproliferative activity toward MGs in dose- and time-dependent manners. In addition, flow cytometric analysis of cell morphology in the apoptotic cells revealed an increase in hypodiploid cells in ?-mangostin treated U87 MG and GBM 8401 cells, while significant enhancement of intracellular peroxide production was detected in the same ?-mangostin treated cells by DCHDA assay and DiOC(6)(3) stain. g-Mangostin induced apoptosis, which in turn mediates cytotoxicity in human MG cells was prevented by the addition of catalase. Naturally derived medicines and herbal therapies are drawing increasing attention in regard to the treatment of many health issues, and this includes the testing of new phytochemicals or nutrients for brain tumor patients. This has led to ?-mangostin being identified as a potential leading compound for the development of an anti-brain tumor agent. PMID:21139533

  9. Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies

    PubMed Central

    2011-01-01

    Micro-RNAs (miRs) are important regulators of mRNA and protein expression; the ability of miR expression profilings to distinguish different cancer types and classify their sub-types has been well-described. They also represent a novel biological entity with potential value as tumour biomarkers, which can improve diagnosis, prognosis, and monitoring of treatment response for human cancers. This endeavour has been greatly facilitated by the stability of miRs in formalin-fixed paraffin-embedded (FFPE) tissues, and their detection in circulation. This review will summarize some of the key dysregulated miRs described to date in human epithelial malignancies, and their potential value as molecular bio-markers in FFPE tissues and blood samples. There remain many challenges in this domain, however, with the evolution of different platforms, the complexities of normalizing miR profiling data, and the importance of evaluating sufficiently-powered training and validation cohorts. Nonetheless, well-conducted miR profiling studies should contribute important insights into the molecular aberrations driving human cancer development and progression. PMID:22128797

  10. Optical delineation of human malignant melanoma using second harmonic imaging of collagen

    PubMed Central

    Thrasivoulou, C.; Virich, G.; Krenacs, T.; Korom, I.; Becker, D. L.

    2011-01-01

    Skin cancer incidence has increased exponentially over the last three decades. In 2008 skin cancer caused 2280 deaths in the UK, with 2067 due to malignant melanoma. Early diagnosis can prevent mortality, however, conventional treatment requires multiple procedures and increasing treatment times. Second harmonic generation (SHG) imaging could offer diagnosis and demarcation of melanoma borders non-invasively at presentation thereby short-cutting the excision biopsy stage. To test the efficacy and accuracy of SHG imaging of collagen in skin and to delineate the borders of skin cancers, unstained human melanoma biopsy sections were imaged using SHG microscopy. Comparisons with sister sections, stained with H&E or Melan-A were made for correlation of invasion borders. Fresh ex vivo normal human and rat skin was imaged through its whole thickness using SHG to demonstrate this technique is transferable to in vivo tissues. SHG imaging demonstrated detailed collagen distribution in normal skin, with total absence of SHG signal (fibrillar collagen) within the melanoma-invaded tissue. The presence or absence of signal changes dramatically at the borders of the melanoma, accurately demarcating the edges that strongly correlated with H&E and Melan-A defined borders (p<0.002). SHG imaging of ex vivo human and rat skin demonstrated collagen architecture could be imaged through the full thickness of the skin. We propose that SHG imaging could be used for diagnosis and accurate demarcation of melanoma borders on presentation and therefore potentially reduce mortality rates. PMID:21559140

  11. Benzamide and nicotinamide radiosensitizers

    SciTech Connect

    Lee, W.W.; Brown, J.M.; Grange, E.W.; Martinez, A.P.

    1993-06-01

    A method to destroy hypoxic tumor cells in a warmblooded animal is described, which method comprises: (a) administering to said warmblooded animal a compound of the formula: wherein X is O or S; Z is H, OR, SR or NHR in which R is H, hydrocarbyl (1-6C) including cyclic and unsaturated hydrocarbyl, optionally substituted with 1 or 2 substituents selected from the group consisting of halo, hydroxy, epoxy, alkoxy, alkylthio, amino including morpholino, acyloxy and acylamido and their thio analogs, alkylsulfonyl or alkylphosphonyl, carboxy or alkoxycarbonyl, or carbamyl or alkylcarbamyl, and in which R can optionally be interrupted by a single ether (-O-) linkage; or Z os O(CO)R, NH(CO)R, O(SO)R, or O(POR)R in which R is as above defined, in an amount effective to radiosensitize said hypoxic tumor cells, (b) followed by, after a time period to provide maximum radiosensitization, irradiating said tumor cells with a dose of radiation effective to destroy said cells.

  12. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  13. The role of cell cycle redistribution in radiosensitization: Implications regarding the mechanism of fluorodeoxyuridine radiosensitization

    SciTech Connect

    McGinn, C.J.; Kunugi, fK.A.; Kinsella, T.J.

    1994-11-15

    Radiosensitization has previously been demonstrated in a human colon cancer cell line (HT-29) following a 2 h exposure to low, clinically relevant concentrations (0.05-0.5 {mu}M) of fluorodeoxyuridine (FdUrd) (15). The sensitizer enhancement ratio value (measured at 10% survival) plateaued at {approx} 1.7 between 16 and 32 h following removal of drug. Parallel studies investigating the effect of FdUrd on the distribution of cells throughout the cell cycle found that the percentage of cells in early S-phase increased to {approx} 70% during the same period that maximal radiosensitization was noted. As a follow-up to these findings, experiments have been designed to investigate the contribution of this early S-phase delay to radiosensitization. Synchronized populations of Ht-29 cells have been obtained with three separate techniques. Two involve the induction of a reversible metaphase arrest J(with high pressure N{sub 2}O or colcemid) followed by a shakeoff of mitotic cells. The third uses a plant amino acid, mimosine, to induce a reversible block at the G{sub 1}/S boundary. Flow cytometry was used to analyze the degree of synchrony based on bromodeoxyuridine (BrdUrd) uptake and propidium iodide (PI) staining. Radiation survival curves were obtained on these synchronized populations to investigate changes in radiosensitivity through the cell cycle. Additionally, levels of thymidylate synthase (TS), the primary target of FdUrd cytotoxicity, were measured in each phase of the cell cycle using the TS 106 monoclonal antibody against human TS. Synchronization with mitotic shakeoff produced relatively pure populations of cells in G{sub 1}; however, the degree of synchrony in early S-phase was limited both by cells remaining in G;{sub 1} and by cells progressing into late S-phase. These techniques failed to reveal increased radiosensitivity in early S-phase at 10% survival. 36 refs., 4 figs., 2 tabs.

  14. The claudin family of proteins in human malignancy: a clinical perspective

    PubMed Central

    Ding, Lei; Lu, Zhe; Lu, Qun; Chen, Yan-Hua

    2013-01-01

    Tight junctions, or zonula occludens, are the most apical component of the junctional complex and provide one form of cell–cell adhesion in epithelial and endothelial cells. Nearly 90% of malignant tumors are derived from the epithelium. Loss of cell–cell adhesion is one of the steps in the progression of cancer to metastasis. At least three main tight junction family proteins have been discovered: occludin, claudin, and junctional adhesion molecule (JAM). Claudins are the most important structural and functional components of tight junction integral membrane proteins, with at least 24 members in mammals. They are crucial for the paracellular flux of ions and small molecules. Overexpression or downregulation of claudins is frequently observed in epithelial-derived cancers. However, molecular mechanisms by which claudins affect tumorigenesis remain largely unknown. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies, including pancreatic, colonic, lung, ovarian, thyroid, prostate, esophageal, and breast cancers. In this review, we will give the readers an overall picture of the changes in claudin expression observed in various cancers and their mechanisms of regulation. Downregulation of claudins contributes to epithelial transformation by increasing the paracellular permeability of nutrients and growth factors to cancerous cells. In the cases of upregulation of claudin expression, the barrier function of the cancerous epithelia changes, as they often display a disorganized arrangement of tight junction strands with increased permeability to paracellular markers. Finally, we will summarize the literature suggesting that claudins may become useful biomarkers for cancer detection and diagnosis as well as possible therapeutic targets for cancer treatment. PMID:24232410

  15. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma

    PubMed Central

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-01-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  16. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma.

    PubMed

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-05-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  17. Effect of nutritional and enzymatic methionine deprivation upon human normal and malignant cells in tissue culture.

    PubMed

    Kreis, W; Baker, A; Ryan, V; Bertasso, A

    1980-03-01

    Human embryonic lung fibroblasts (F-136-35-56) capable of growing in medium containing DL-homocysteine instead of L-methionine and human acute lymphoblastic leukemia cells (CCRF-HSB-2) with absolute methionine requirement exhibited dose-dependent growth inhibition when semipurified L-methionine-degrading enzyme (L-methioninase, EC 4.4.1.11) was added to the tissue cultures. When D-homocystine was added to the cultures together with L-methioninase (0.1 units/ml, which completely degraded the available L-methionine in tissue culture), the F-136-35-56 cells continued to grow whereas the CCRF-HSB-2 cells were completely inhibited. In mixed cultures of the two cell lines with added L-methioninase + D-homocystine or L-methioninase + L-homocysteine thiolactone, the normal fibroblasts grew and synthesized DNA vigorously, whereas the lymphocytic malignant cells lost their viability completely and died within 3 to 4 days. PMID:6937240

  18. Loss of Canonical Smad4 Signaling Promotes KRAS Driven Malignant Transformation of Human Pancreatic Duct Epithelial Cells and Metastasis

    PubMed Central

    Leung, Lisa; Radulovich, Nikolina; Zhu, Chang-Qi; Wang, Dennis; To, Christine; Ibrahimov, Emin; Tsao, Ming-Sound

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death in North America. Activating KRAS mutations and Smad4 loss occur in approximately 90% and 55% of PDAC, respectively. While their roles in the early stages of PDAC development have been confirmed in genetically modified mouse models, their roles in the multistep malignant transformation of human pancreatic duct cells have not been directly demonstrated. Here, we report that Smad4 represents a barrier in KRAS-mediated malignant transformation of the near normal immortalized human pancreatic duct epithelial (HPDE) cell line model. Marked Smad4 downregulation by shRNA in KRASG12V expressing HPDE cells failed to cause tumorigenic transformation. However, KRAS-mediated malignant transformation occurred in a new HPDE-TGF-? resistant (T?R) cell line that completely lacks Smad4 protein expression and is resistant to the mito-inhibitory activity of TGF-?. This transformation resulted in tumor formation and development of metastatic phenotype when the cells were implanted orthotopically into the mouse pancreas. Smad4 restoration re-established TGF-? sensitivity, markedly increased tumor latency by promoting apoptosis, and decreased metastatic potential. These results directly establish the critical combination of the KRAS oncogene and complete Smad4 inactivation in the multi-stage malignant transformation and metastatic progression of normal human HPDE cells. PMID:24386371

  19. Lack of decorin expression by human bladder cancer cells offers new tools in the therapy of urothelial malignancies.

    PubMed

    Sainio, Annele; Nyman, Marie; Lund, Riikka; Vuorikoski, Sanna; Bostrm, Pia; Laato, Matti; Bostrm, Peter J; Jrvelinen, Hannu

    2013-01-01

    Decorin, a multifunctional small leucine-rich extracellular matrix proteoglycan, has been shown to possess potent antitumour activity. However, there is some uncertainty whether different cancer cells express decorin in addition to non-malignant stromal cells. In this study we clarified decorin expression by human bladder cancer cells both in vivo and in vitro. In addition, the effect of adenovirus-mediated decorin expression on human bladder cancer cells in vitro was examined. We first demonstrated using the publicly available GeneSapiens databank that decorin gene expression is present in both normal and malignant human bladder tissues. However, when we applied in situ hybridization with digoxigenin-labeled RNA probes for decorin on human bladder carcinoma tissue samples derived from a large radical cystectomy patient cohort (n = 199), we unambiguously demonstrated that invasive and non-invasive bladder carcinoma cells completely lack decorin mRNA. The cancer cells were also negative for decorin immunoreactivity. Instead, decorin expression was localized solely to original non-malignant stromal areas of bladder tissue. In accordance with the aforementioned results, human bladder cancer cells in vitro were also negative for decorin expression as shown by RT-qPCR analyses. The lack of decorin expression by bladder cancer cells was shown not to be due to the methylation of the proximal promoter region of the decorin gene. When bladder cancer cells were transfected with a decorin adenoviral vector, their proliferation was significantly decreased. In conclusion, we have shown that human bladder cancer cells are totally devoid of decorin expression. We have also shown that adenovirus-mediated decorin gene transduction of human bladder cancer cell lines markedly inhibits their proliferation. Thus, decorin gene delivery offers new potential therapeutic tools in urothelial malignancies. PMID:24146840

  20. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  1. Various Statistical Methods in Use for Evaluating Human Malignant Gastric Specimens

    PubMed Central

    Enchev, Ventzeslav; Vukov, Mircho

    1998-01-01

    This paper presents the use of certain statistical methods (comparison of means independent samples t?test, multiple linear regression analysis, multiple logistic regression analysis, analysis of clusters, etc.) included in the SPSS Statistical Package used to classify the patients quantitatively evaluated after a subtotal resection of their stomachs. The group consisted of 40 patients subdivided into two groups: primary neoplasia of the stomach (20 patients), and corresponding lymphogenic deposits in the abdominal perigastric lymph nodes (20 patients). Paraffin?embedded tissue sections (thickness 45m) prepared as consecutive hematoxylin?eosin?stained slides were morphometrically measured by a rotation of a graduated eyepiece?micrometer; thus, we obtained the minor and major axes lengths of the elliptic nuclear profiles and the minor and major caliper diameters of the corresponding cellular profiles. These four variables were used to determine the dynamic changes in quantitative features of human gastric lesions when passing from normal histological structures, through hyperplastic processes (chronic gastritis), gastric precancer (ulcers and polyps with or without malignancy) till the development of primary carcinomas and their corresponding lymphogeneous metastases. Besides the increased cytomorphometrical measures, we also noted an opportunity to classify the patients according to these data as well as to add to the knowledge of our consultation system for clinical aid and use, recently published in the literature. PMID:9692683

  2. ?-lapachone suppresses the proliferation of human malignant melanoma cells by targeting specificity protein 1.

    PubMed

    Bang, Woong; Jeon, Young-Joo; Cho, Jin Hyoung; Lee, Ra Ham; Park, Seon-Min; Shin, Jae-Cheon; Choi, Nag-Jin; Choi, Yung Hyun; Cho, Jung-Jae; Seo, Jae-Min; Lee, Seung-Yeop; Shim, Jung-Hyun; Chae, Jung-Il

    2016-02-01

    ?-lapachone (?-lap), a novel natural quinone derived from the bark of the Pink trumpet tree (Tabebuia avellanedae) has been demonstrated to have anticancer activity. In this study, we investigated whether ?-lap exhibits anti-proliferative effects on two human malignant melanoma (HMM) cell lines, G361 and SK-MEL-28. The effects of ?-lap on the HMM cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)?5-(3-carboxymethoxyphenyl)?2-(4-sulfophenyl-2H-tetrazolium (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, AnnexinV and Dead cell assay, mitochondrial membrane potential (MMP) assay and western blot analysis. We demonstrated that ?-lap significantly induced apoptosis and suppressed cell viability in the HMM cells. Intriguingly, the transcription factor specificity protein1 (Sp1) was significantly downregulated by ?-lap in a dose- and time-dependent manner. Furthermore, ?-lap modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and apoptosis-associated proteins. Taken together, our findings indicated that ?-lap modulates Sp1 transactivation and induces apoptotic cell death through the regulation of cell cycle- and apoptosis-associated proteins. Thus, ?-lap may be used as a promising anticancer drug for cancer prevention and may improve the clinical outcome of patients with cancer. PMID:26718788

  3. Telomerase activity and human papillomavirus in malignant, premalignant and benign cervical lesions.

    PubMed Central

    Mutirangura, A.; Sriuranpong, V.; Termrunggraunglert, W.; Tresukosol, D.; Lertsaguansinchai, P.; Voravud, N.; Niruthisard, S.

    1998-01-01

    The purpose of this study was to define a correlation between telomerase activity and human papillomavirus (HPV) in normal control tissue and in benign, premalignant and malignant cervical lesions. Telomerase activity was detectable in 33 out of 34 cases of squamous-cell carcinoma, five out of six cases of microinvasive carcinoma, 8 out of 20 cases and two out of six cases of high- and low-grade squamous intraepithelial lesions (SILs) respectively. The higher frequency of positive telomerase in invasive carcinoma compared with SILs was observed in both HPV-associated and non-associated groups. Whereas 92.6% of HPV-positive and 100% of HPV-negative invasive lesions expressed telomerase, only 50% of HPV-positive and 25% of HPV-negative SILs did. Interestingly, telomerase activity was also detectable in 13 out of 28 cases of benign lesions regardless of the presence of HPV. In conclusion, there may be two roles of telomerase in the cervix. The first one would present in benign lesions; the second is associated with cancer development and activated during the late stage of multistep carcinogenesis in both HPV-positive and -negative groups. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9764586

  4. Monoclonal antibody localization of A and B isoantigens in normal and malignant fixed human tissues.

    PubMed

    Ernst, C; Thurin, J; Atkinson, B; Wurzel, H; Herlyn, M; Stromberg, N; Civin, C; Koprowski, H

    1984-12-01

    The expression of human blood group A and B isoantigens in normal and malignant tissues from stomach, colon, and pancreas was analyzed in an immunoperoxidase assay using monoclonal antibodies specific for these isoantigens. Appropriate isoantigen expression was demonstrated in the normal epithelium from the stomach, pancreas, and proximal but not distal colon of blood group A, AB, or B patients. Half of all gastric carcinomas and of proximal colon carcinomas showed complete loss of isoantigen, whereas the adjacent mucosa in these cases continued to express appropriate isoantigen. Isoantigen expression was completely lost in only 13% of pancreatic carcinomas tested. Neither A nor B isoantigen was detected in normal epithelium from the distal colon. By contrast, 85% of carcinomas derived from this site showed reexpression of isoantigen. Inappropriate expression of A isoantigen was detected in pancreatic carcinomas (2/5) but not in gastric or colon carcinomas (0/21). Inappropriate expression of B substance was not detected in any tissue (0/38). Interestingly, differential binding of antibodies to Type 1 versus Type 2 and/or difucosyl versus monofucosyl blood group B substances was manifested by differences in intensity of staining for endothelium and red blood cells. PMID:6507589

  5. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.

    PubMed Central

    Gaidano, G; Ballerini, P; Gong, J Z; Inghirami, G; Neri, A; Newcomb, E W; Magrath, I T; Knowles, D M; Dalla-Favera, R

    1991-01-01

    We have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direct sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsies; 17/27 cell lines) and its leukemic counterpart L3-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (i) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (ii) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (iii) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemic form L3-type B-cell acute lymphoblastic leukemia. Images PMID:2052620

  6. Immunohistochemical detection of the multidrug transport protein P170 in human normal tissues and malignant lymphomas.

    PubMed

    Pileri, S A; Sabattini, E; Falini, B; Tazzari, P L; Gherlinzoni, F; Michieli, M G; Damiani, D; Zucchini, L; Gobbi, M; Tsuruo, T

    1991-08-01

    Two monoclonal antibodies, MRK16 and C219, both directed at the 170 kDa P-glycoprotein multidrug resistance agent, were applied to frozen sections or cytospin preparations from normal human tissues and 60 non-Hodgkin's malignant lymphomas. Adrenal gland, kidney, liver and pancreas were always stained by the reagents, albeit with slightly different patterns. Brain capillaries as well as macrophages and some elements of the bone marrow, peripheral blood, ovarian stroma and colonic, gastric and jejunal mucosa were positive in all examined preparations. There were differences in the staining patterns with the two antibodies. Among the 60 non-Hodgkin's lymphomas, 25 contained a number of positive cells, which ranged from 2% to 100%. No correlation was seen between the expression of P170 and histological type, stage, clinical symptoms or growth fraction. A close relationship was shown between the presence of P170 positive elements and the clinical course of the disease (P less than 0.001). PMID:1684559

  7. Characterization of Two Human Skeletal Calsequestrin Mutants Implicated in Malignant Hyperthermia and Vacuolar Aggregate Myopathy.

    PubMed

    Lewis, Kevin M; Ronish, Leslie A; Ros, Eduardo; Kang, ChulHee

    2015-11-27

    Calsequestrin 1 is the principal Ca(2+) storage protein of the sarcoplasmic reticulum of skeletal muscle. Its inheritable D244G mutation causes a myopathy with vacuolar aggregates, whereas its M87T "variant" is weakly associated with malignant hyperthermia. We characterized the consequences of these mutations with studies of the human proteins in vitro. Equilibrium dialysis and turbidity measurements showed that D244G and, to a lesser extent, M87T partially lose Ca(2+) binding exhibited by wild type calsequestrin 1 at high Ca(2+) concentrations. D244G aggregates abruptly and abnormally, a property that fully explains the protein inclusions that characterize its phenotype. D244G crystallized in low Ca(2+) concentrations lacks two Ca(2+) ions normally present in wild type that weakens the hydrophobic core of Domain II. D244G crystallized in high Ca(2+) concentrations regains its missing ions and Domain II order but shows a novel dimeric interaction. The M87T mutation causes a major shift of the ?-helix bearing the mutated residue, significantly weakening the back-to-back interface essential for tetramerization. D244G exhibited the more severe structural and biophysical property changes, which matches the different pathophysiological impacts of these mutations. PMID:26416891

  8. Human Cytomegalovirus Antigens in Malignant Gliomas as Targets for Adoptive Cellular Therapy

    PubMed Central

    Landi, Daniel; Hegde, Meenakshi; Ahmed, Nabil

    2014-01-01

    Malignant gliomas are the most common primary brain tumor in adults, with over 12,000 new cases diagnosed in the United States each year. Over the last decade, investigators have reliably identified human cytomegalovirus (HCMV) proteins, nucleic acids, and virions in most high-grade gliomas, including glioblastoma (GBM). This discovery is significant because HCMV gene products can be targeted by immune-based therapies. In this review, we describe the current level of understanding regarding the presence and role in pathogenesis of HCMV in GBM. We describe our success detecting and expanding HCMV-specific cytotoxic T lymphocytes to kill GBM cells and explain how these cells can be used as a platform for enhanced cellular therapies. We discuss alternative approaches that capitalize on HCMV infection to treat patients with HCMV-positive tumors. Adoptive cellular therapy for HCMV-positive GBM has been tried in a small number of patients with some benefit, but we reason why, to date, these approaches generally fail to generate long-term remission or cure. We conjecture how cellular therapy for GBM can be improved and describe the barriers that must be overcome to cure these patients. PMID:25505736

  9. Function and significance of MicroRNAs in benign and malignant human stem cells.

    PubMed

    Utikal, Jochen; Abba, Mohammed; Novak, Daniel; Moniuszko, Marcin; Allgayer, Heike

    2015-12-01

    MicroRNAs now not only represent a significant mechanism for post-transcriptional gene regulation, but have come to be appreciated as molecules with far reaching tentacles affecting diverse processes and pathologies by modulating amongst others, cellular gene expression, epigentic mechanisms, complex signaling cascades, cell-cell communication, the immune system and microenvironmental interactions between several cell types, tissues and organ systems. In this review, we systematically reflect on the impact of miRNAs on all types of benign and malignant human stem cells, looking at the roles they play in maintaining or changing the stem cell state, and review how aberrations of their expression and function within diverse types of stem cells orchestrate carcinogenesis and metastasis. As a conclusion, we consider it striking to see how similar some miR-driven mechanisms are between different types of stem cells and cancer cells, and how this might support hypotheses of miR-driven embryologic pathway reactivation in metastasis or propose putative functions of miRs in important novel cross-topic fields such as obesity and cancer. PMID:26192966

  10. Preliminary micro-Raman images of normal and malignant human skin cells

    NASA Astrophysics Data System (ADS)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Chen, Michael X.

    2006-02-01

    Micro-Raman spectroscopy covering a frequency range from 200 to 4000 cm -1 was used to image human skin melanocytes and keratinocytes with a spatial resolution of 0.5 ?m. The cells were either cultivated on glass microscope slides or were located within thin sections of skin biopsies mounted on low fluorescence BaF II. A commercially available system was used to obtain the spectra utilizing a x100 long working distance objective with a numerical aperture of 0.8, and a cooled CCD. Both 633 and 515 nm excitations were tried, although the latter proved to be more effcient at producing Raman emission mostly due to the 1/? 4 dependence in light scattering. Fluorescence emission from the cells was surprisingly low. The excitation power at the sample was kept below about 2 mW to avoid damaging the cells; this was the limiting factor on how quickly a Raman image could be obtained. Despite this diffculty we were able to obtain Raman images with rich information about the spectroscopic and structural features within the cytoplasm and cell nuclei. Differences were observed between the Raman images of normal and malignant cells. Spectra from purified DNA, RNA, lipids, proteins and melanin were obtained and these spectra were compared with the skin cell spectra with the aim of understanding how they are distributed over a cell and how the distribution changes between different cells.

  11. Serological analysis of cell surface antigens of malignant human brain tumors

    PubMed Central

    Pfreundschuh, Michael; Shiku, Hiroshi; Takahashi, Toshitada; Ueda, Ryuzo; Ransohoff, Joseph; Oettgen, Herbert F.; Old, Lloyd J.

    1978-01-01

    Sera from 30 patients with astrocytoma were tested for antibody reacting with cell surface antigens of cultured autologous astrocytoma cells. Ten percent of the patients had antibody detectable by mixed hemadsorption assays, ?50% by immune adherence and protein A assays, and 100% by anti-C3-mixed hemadsorption assays. Absorption analysis of reactive sera with autologous, allogeneic, and xenogeneic cells permitted the definition of three classes of astrocytoma cell surface antigens. Class I antigens showed an absolute restriction to autologous astrocytoma cells. Class II antigens were shared by all astrocytomas tested and could be detected also on neuroblastoma, sarcoma, and some (but not all) melanoma cell lines; these antigens were not found on cell lines derived from carcinomas or normal tissues. Class III antigens were widely distributed on cultured normal and malignant cells of human and animal origin. In this series, sera from 2 patients recognized class I antigens, 4 patients' serum recognized class II antigens, and 13 patients' sera recognized class III antigens. Absorption tests have shown that the AJ (class II) antigen of astrocytoma is serologically related to the previously described AH (class II) antigen of melanoma; in tests of nine melanoma cell lines, there was a correspondence between the AJ and AH phenotypes. This method of autologous typing provides a way to classify the cell surface antigens of astrocytomas and to assess the clinical significance of humoral immunity to these antigens. PMID:283420

  12. Analysis and significance of the malignant 'eclipse' during the progression of primary cutaneous human melanomas.

    PubMed

    Kerbel, R S; Kobayashi, H; Graham, C H; Lu, C

    1996-04-01

    Why is it that primary melanomas which are less than 0.76 mm in thickness are almost always curable by surgery whereas thicker lesions are associated with a worse prognosis? Put in another way, why is it that such small increases in tumor thickness beyond 0.76 mm are often associated with the eventual formation of distant metastases and death? Part of the answer lies in the dramatic qualitative changes which can accompany small increases in the size of primary human melanomas. Thus, primary melanomas less than 0.76 mm in thickness usually contain very low proportions of metastatically competent tumor cells, whereas slightly thicker lesions can contain very high proportions of such cells, resulting from a selective growth advantage of the latter in the dermal mesenchyme. This overgrowth process is akin to a 'malignant eclipse' phenomenon (by analogy with a solar eclipse). We have been studying the causes of the malignant eclipse in melanoma, for which there are at least four possibilities: 1) an increase in autocrine, mitogenic growth factors by melanoma cells; 2) a decreased rate of apoptosis in the same population; 3) an acquired resistance to paracrine growth inhibitory factors; and 4) an increased ability to induce an angiogenic response. Evidence exists for all four possibilities. Our experimental approach to studying this problem has relied heavily on the use of cell lines obtained from early stage radial growth phase or vertical growth phase lesions which have a clinical-like inability to grow progressively in nude mice, and variants obtained from such lines which are aggressively tumorigenic. Using such paired lines, and other experimental systems, we have obtained evidence that shows early stage melanoma cell lines may be deficient in inducing angiogenesis, are highly sensitive to the growth inhibitory effects of a plethora of cytokines, including transforming growth factor beta, interleukin-6, and oncostatin M, and are more sensitive to undergoing spontaneous apoptosis in several conditions including when growth in anchor-age-independent, 3-dimensional tissue culture. How this information may impact tumor prognosis and the design and effects of new strategies to treat melanoma, especially antiangiogenesis strategies, is discussed. PMID:9627714

  13. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions. PMID:24637629

  14. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy

    PubMed Central

    Okada, Kazue; Kimura, Taichi; Piao, Jinhua; Tanaka, Shinya; Shinohara, Yasuro

    2015-01-01

    Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, ?2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response. PMID:26132161

  15. Modulation of human leukocyte antigen and intracellular adhesion molecule-1 surface expression in malignant and nonmalignant human thyroid cells by cytokines in the context of extracellular matrix.

    PubMed

    Miller, A; Kraiem, Z; Sobel, E; Lider, O; Lahat, N

    2000-11-01

    Interactions between malignant cells and their environment are achieved via cell-surface receptors and adhesion molecules. The extracellular matrix (ECM) and ECM-bound cytokines modulate the expression of cell-surface molecules on target malignant cells, which may lead to changes in their susceptibility to cytolysis, in their ability to present antigens, and in the induction of local immune-cell activation and patrol. Eventually, these alterations may culminate in either the destruction, or escape and proliferation, of the tumor. We studied the effects of the ECM and its components in a "naive" form or following binding of the inflammatory cytokines interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) on the surface expression of human leukocyte antigen (HLA) class-I, HLA class-II (HLA-DR), and intracellular adhesion molecule-1 (ICAM-1), on nonmalignant and malignant thyroid cells. The basal expression of HLA class-I molecules was not significantly changed either by naive ECM and its components or by ECM-bound cytokines. ECM synergized with IFNgamma and TNFalpha in inducing HLA-DR molecules on nonmalignant and malignant thyrocytes, with higher HLA-DR levels on the malignant cells. The laminin component, in particular, synergized with IFNgamma. Basal ICAM-1 expression on nonneoplastic cells was not significantly affected by the cytokines when grown in the absence of ECM, but was significantly upregulated when cells were cultured on ECM. In contrast, in malignant thyrocyte cultures, ECM significantly attenuated IFNgamma- and TNFalpha-mediated enhancement of ICAM-1 expression. We concluded that signals derived from ECM-embedded cytokines participate in the regulation of key thyroid cell surface molecules and, thus, may affect the final outcome of human thyroid malignancies. PMID:11128721

  16. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization

    PubMed Central

    Rath, Barbara H; Wahba, Amy; Camphausen, Kevin; Tofilon, Philip J

    2015-01-01

    Toward developing a model system for investigating the role of the microenvironment in the radioresistance of glioblastoma (GBM), human glioblastoma stem-like cells (GSCs) were grown in coculture with human astrocytes. Using a trans-well assay, survival analyses showed that astrocytes significantly decreased the radiosensitivity of GSCs compared to standard culture conditions. In addition, when irradiated in coculture, the initial level of radiation-induced ?H2AX foci in GSCs was reduced and foci dispersal was enhanced suggesting that the presence of astrocytes influenced the induction and repair of DNA double-strand breaks. These data indicate that astrocytes can decrease the radiosensitivity of GSCs in vitro via a paracrine-based mechanism and further support a role for the microenvironment as a determinant of GBM radioresponse. Chemokine profiling of coculture media identified a number of bioactive molecules not present under standard culture conditions. The gene expression profiles of GSCs grown in coculture were significantly different as compared to GSCs grown alone. These analyses were consistent with an astrocyte-mediated modification in GSC phenotype and, moreover, suggested a number of potential targets for GSC radiosensitization that were unique to coculture conditions. Along these lines, STAT3 was activated in GSCs grown with astrocytes; the JAK/STAT3 inhibitor WP1066 enhanced the radiosensitivity of GSCs under coculture conditions and when grown as orthotopic xenografts. Further, this coculture system may also provide an approach for identifying additional targets for GBM radiosensitization. PMID:26518290

  17. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    PubMed Central

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia. PMID:26539529

  18. Malignant mesothelioma.

    PubMed

    Moore, Alastair J; Parker, Robert J; Wiggins, John

    2008-01-01

    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10-20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis. PMID:19099560

  19. Radioimmunoassay for human pancreatic ribonuclease and measurement of serum immunoreactive pancreatic ribonuclease in patients with malignant tumors

    SciTech Connect

    Kurihara, M.; Ogawa, M.; Ohta, T.; Kurokawa, E.; Kitahara, T.; Murata, A.; Matsuda, K.; Kosaki, G.; Watanabe, T.; Wada, H.

    1984-05-01

    A method for radioimmunoassay of human pancreatic RNase was developed. The method is sensitive, reproducible, and specific. Almost no cross-reactivity exists between human pancreatic and liver RNases. A good correlation was observed between the serum concentration of pancreatic RNase as measured by radioimmunoassay and its enzymatic activity using polycytidylic acid as substrate. The concentration of serum pancreatic RNase correlates well with age, blood urea nitrogen, and albumin contents but does not correlate with serum amylase activity. Using the data of 52 patients with malignant tumors except pancreatic cancer, serum RNase level could be expressed by a multiple regression equation: Immunoreactive RNase content in pancreatic cancer was elevated in patients with complications from renal failure. Serum pancreatic RNase contents in patients with pancreatic cancer measured by radioimmunoassay agreed well with the values calculated using the equation derived from the data of patients with other malignant tumors.

  20. EPSTEIN-BARR VIRUS-NEGATIVE HUMAN MALIGNANT T-CELL LINES

    PubMed Central

    Kaplan, Joseph; Shope, Thomas C.; Peterson, Ward D.

    1974-01-01

    Two lymphoblastoid lines, CCRF-CEM and HSB-2, with properties of malignant cells, derived from children with leukemia secondary to lymphosarcoma, have T-cell properties and lack Epstein-Barr virus antigens. PMID:4363409

  1. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer

    PubMed Central

    Karnak, David; Engelke, Carl G.; Parsels, Leslie A.; Kausar, Tasneem; Wei, Dongping; Robertson, Jordan R.; Marsh, Katherine B.; Davis, Mary A.; Zhao, Lili; Maybaum, Jonathan; Lawrence, Theodore S.; Morgan, Meredith A.

    2014-01-01

    Purpose While the addition of radiation to chemotherapy improves survival in patients with locally advanced pancreatic cancer, more effective therapies are urgently needed. Thus, we investigated the radiosensitizing efficacy of the novel drug combination of Wee1 and PARP1/2 [poly (ADP-ribose) polymerase 1/2] inhibitors (AZD1775 and olaparib, respectively) in pancreatic cancer. Experimental Design Radiosensitization of AsPC-1 or MiaPaCa-2 human pancreatic cancer cells was assessed by clonogenic survival and tumor growth assays. Mechanistically, the effects of AZD1775, olaparib, and radiation on cell cycle, DNA damage (?H2AX) and HRR (homologous recombination repair) were determined. Results Treatment of AsPC-1 and MiaPaCa-2 cells with either AZD1775 or olaparib caused modest radiosensitization while treatment with the combination significantly increased radiosensitization. Radiosensitization by the combination of AZD1775 and olaparib was associated with G2 checkpoint abrogation and persistent DNA damage. In addition, AZD1775 inhibited HRR activity and prevented radiation-induced Rad51 focus formation. Finally, in vivo, in MiaPaCa-2-derived xenografts, olaparib did not radiosensitize, while AZD1775 produced moderate, yet significant, radiosensitization (P<0.05). Importantly, the combination of AZD1775 and olaparib produced highly significant radiosensitization (P<0.0001) evidenced by a 13-day delay in tumor volume doubling (vs radiation alone) and complete eradication of 20% of tumors. Conclusions Taken together, these results demonstrate the efficacy of combined inhibition of Wee1 and PARP inhibitors for radiosensitizing pancreatic cancers and support the model that Wee1 inhibition sensitizes cells to PARP inhibitor-mediated radiosensitization through inhibition of HRR and abrogation of the G2 checkpoint, ultimately resulting in unrepaired, lethal DNA damage and radiosensitization. PMID:25117293

  2. The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells12

    PubMed Central

    Seol, Ho Jun; Smith, Christian A; Salhia, Bodour; Rutka, James T

    2009-01-01

    The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue. PMID:19956392

  3. Mistletoe lectin-I augments antiproliferative effects of the PPARgamma agonist rosiglitazone on human malignant melanoma cells.

    PubMed

    Freudlsperger, Christian; Dahl, Anka; Hoffmann, Juergen; Reinert, Siegmar; Schumacher, Udo

    2010-09-01

    As malignant melanoma cells are highly resistant to conventional chemotherapy, survival rates after tumor spread remain poor and hence there is an urgent need for new therapeutic options. For both mistletoe lectin-I (ML-I) and the thiazolidinediones as synthetic ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma) an antiproliferative effect on malignant melanoma cells has previously been shown. Hence, the aim of this study was to investigate whether the combination of ML-I and the PPARgamma ligand rosiglitazone is more efficacious in the treatment of malignant melanoma cells than either agent alone. Proliferation of three human melanoma cell lines treated with ML-I, rosiglitazone and the combination of both was measured in a broad concentration range (0.0001-100 microg/mL) using the XTT cell proliferation assay. Combined application tremendously increased the antiproliferative effect on all three melanoma cell lines compared with single agent treatment. In comparison with the single use of rosiglitazone, the combination with ML-I significantly increased the inhibition of cell growth by 51-79% and in comparison with the single use of ML-I by 9-32%, respectively. In conclusion, this study shows that the combination of ML-I with rosiglitazone significantly augments their antiproliferative effect on malignant melanoma cells in comparison with their single agent application, which might be a promising tool for further therapeutic studies. PMID:20812278

  4. Virus-like particles for the prevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    As compared to peptide/protein-based vaccines, naked DNA vectors and even traditional attenuated or inactived virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform because they offer a combination of safety, ease of production, and both high density B cell epitope display and intracellular presentation of T cell epitopes that induce potent humoral and cellular immune responses respectively. Indeed, human papillomavirus (HPV) vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil®, Merck & Co.) or insect cells (Cervarix®, GlaxoSmithKline) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. These HPV vaccines however have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1 VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. Here we examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design. PMID:23414405

  5. Altered expression of G/sub 1/-specific genes in human malignant myeloid cells

    SciTech Connect

    Calabretta, B.; Venturelli, D.; Kaczmarek, L.; Narni, F.; Talpaz, M.; Anderson, B.; Beran, M.; Baserga, R.

    1986-03-01

    The authors have studied the expression of cell-cycle genes specific to the G/sub 1/ (2A9, 2F1, 4F1, c-myc) and S (histone H3) phases of the cell cycle in normal and malignant human myeloid cycling cells. The levels of expression were determined by measuring the amounts of specific RNA in blot hybridization assays. Levels of expression of the G/sub 1/ genes were compared to the level of expression of the S-phase-specific H3 gene. In a normal asynchronous system provided by the bone marrow cells of three normal donors, the expressions of the four G/sub 1/-specific genes 2A9, 2F1, 4F1, and c-myc, and of the S-phase-specific gene H3 were in ratios that differed little from one individual to another. In the total RNA of eight patients in the chronic phase of chronic myelogenous leukemia, a high level of expression of G/sub 1/ cell-cycle genes was paralleled by a high level of expression of the S-phase H3 gene, simply reflecting and increase in the fraction of proliferating cells. In patients with acute myelogenous leukemia (AML), the RNA levels of 2F1 and 4F1 paralleled the expression of H3. However, in 9 of 10 patients with AML they found that the expression of c-myc was elevated with respect to H3 expression. Two important conclusions can be drawn from these findings: (i) increased levels of a G/sub 1/-specific RNA in a tumor may not indicate overexpression of that gene but may instead simply reflect the fraction of proliferating cells; and (ii) in some patients with AML, however, the expression of certain G/sub 1/ genes is truly deregulated and might contribute to the impairment of proliferative control that is associated with this phenotype.

  6. p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia

    SciTech Connect

    Gaidano, G.; Ballerini, P.; Gong, J.Z.; Inghirami, G.; Knowles, D.M.; Dalla-Favera, R. ); Neri, A, Centro Malattie del Sangue G. Marcora, Milan ); Newcomb, E.W. ); Magrath, I.T. )

    1991-06-15

    The authors have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direst sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsoes; 17/27 cell lines) and its leukemic counterpart L{sub 3}-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (1) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (2) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (3) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemia form L{sub 3}-type B-cell acute lymphoblastic leukemia.

  7. Methionine requirement and replacement by homocysteine in tissue cultures of selected rodent and human malignant and normal cells.

    PubMed

    Kreis, W; Goodenow, M

    1978-08-01

    An absolute methionine requirement for cell growth in culture was observed in four experimental rodent neoplasms, namely, P815/ara-C, L1210, lymphoma 5178Y, and Walker 256. Normal human fibroblast (F-136-35-56) and the human malignant cell lines HeLa and mammary adenocarcinoma (AlAb) cells in culture showed equal growth in 0.1 mM L-methionine or 0.1 to 0.4 mM DL-homocysteine. A human pancreas adenocarcinoma (Capan-1) had somewhat more stringent requirements for DL-homocysteine, whereas a human lung adenocarcinoma (A-549) responded poorly, and a human acute lymphoblastic leukemia (CCRF-HSB-2) responded not at all to equimolar or excess DL-homocysteine in the absence of L-methionine. These differences in requirement for methionine and the ability or inability to replace methionine by homocysteine indicate that a general discrimination between benign and malignant tissues on the grounds of their methionine requirement is not possible for human cells. PMID:667821

  8. The involvement of xanthohumol in the expression of annexin in human malignant glioblastoma cells.

    PubMed

    Festa, M; Caputo, M; Cipolla, C; D'Acunto, Cw; Rossi, Ag; Tecce, Mf; Capasso, A

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant and resistant tumor of the central nervous system in humans and new therapeutic strategies are urgently required. Recently, we have shown that the potential chemotherapeutic polyphenol xanthohumol (XH), isolated from Humulus Lupulus, induces apoptosis of human T98G glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. Then we have found, by western blotting and microscopic analysis, that XH up-regulates cytosolic levels of ANXA1 and induces translocation of the protein on the cell membrane of T98G cells in a time-dependent manner with significant effects observed after 24 h. On the basis of the above evidence, the aim of this work was to investigate the role of intracellular and cell membrane localized ANXA1 in GBM cells. RT-PCR analysis has shown that XH up-regulates mRNA levels of ANXA1 after 16 h treatment. To demonstrate the involvement of ANXA1 in apoptosis of GBM cells we down-regulated ANXA1 expression with small interfering RNA (siRNA) and then analysed apoptosis in the presence and absence of apoptotic stimuli. Importantly, apoptosis induced by XH was reduced in siRNA-ANXA1 transfected cells where western blot analysis shows a significant reduction of ANXA1 protein levels. To investigate the role of ANXA1 expression on the cell membrane of T98G cells as potential "eat-me" signal we studied phagocytosis of apoptotic cells by human macrophages. We incubated apoptotic T98G cells with human blood monocyte derived macrophages (M=). After co-incubation period we analysed the percentage of M= phagocytosing the apoptotic cells by cytofluorimetric FACS analysis and by confocal microscopy. Our results show that XH induces phagocytosis of apoptotic T98G cells by human M= in a concentration-effect manner, a processes that is dependent on caspase mediated apoptosis. ANXA1 acts as an "eat-me" signal on the cell membrane of T98G cells, and interestingly, apoptotic siRNA-ANXA1 transfected cells are not completely ingested by M=. These results were confirmed by incubating apoptotic cells with a neutralizing anti-ANXA1 antiboby and ANXA1 membrane depletion by EDTA washing. ANXA1 was also detected in supernatants of apoptotic cells and the incubation of enriched supernatants enhanced the percentage of phagocytosis by M=. These results demonstrated that ANXA1 is involved both in the apoptosis and phagocytosis of glioblastoma cells. This study shows a possible role of ANXA1 in maintenance of brain homeostasis and may lead to novel therapeutic approaches for neuro-inflammatory diseases and chemotherapy targets in the treatment of glioblastoma multiforme. PMID:23407460

  9. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  10. Toll-like receptors in the pathogenesis of human B cell malignancies

    PubMed Central

    2014-01-01

    Toll-like receptors (TLRs) are important players in B-cell activation, maturation and memory and may be involved in the pathogenesis of B-cell lymphomas. Accumulating studies show differential expression in this heterogeneous group of cancers. Stimulation with TLR specific ligands, or agonists of their ligands, leads to aberrant responses in the malignant B-cells. According to current data, TLRs can be implicated in malignant transformation, tumor progression and immune evasion processes. Most of the studies focused on multiple myeloma and chronic lymphocytic leukemia, but in the last decade the putative role of TLRs in other types of B-cell lymphomas has gained much interest. The aim of this review is to discuss recent findings on the role of TLRs in normal B cell functioning and their role in the pathogenesis of B-cell malignancies. PMID:25112836

  11. Non-malignant disease mortality in meat workers: a model for studying the role of zoonotic transmissible agents in non-malignant chronic diseases in humans

    PubMed Central

    Johnson, E S; Zhou, Y; Sall, M; Faramawi, M El; Shah, N; Christopher, A; Lewis, N

    2007-01-01

    Background Current research efforts have mainly concentrated on evaluating the role of substances present in animal food in the aetiology of chronic diseases in humans, with relatively little attention given to evaluating the role of transmissible agents that are also present. Meat workers are exposed to a variety of transmissible agents present in food animals and their products. This study investigates mortality from non-malignant diseases in workers with these exposures. Methods A cohort mortality study was conducted between 1949 and 1989, of 8520 meat workers in a union in Baltimore, Maryland, who worked in manufacturing plants where animals were killed or processed, and who had high exposures to transmissible agents. Mortality in meat workers was compared with that in a control group of 6081 workers in the same union, and also with the US general population. Risk was estimated by proportional mortality and standardised mortality ratios (SMRs) and relative SMR. Results A clear excess of mortality from septicaemia, subarachnoid haemorrhage, chronic nephritis, acute and subacute endocarditis, functional diseases of the heart, and decreased risk of mortality from pre-cerebral, cerebral artery stenosis were observed in meat workers when compared to the control group or to the US general population. Conclusions The authors hypothesise that zoonotic transmissible agents present in food animals and their products may be responsible for the occurrence of some cases of circulatory, neurological and other diseases in meat workers, and possibly in the general population exposed to these agents. PMID:17604337

  12. Shape-dependent regulation of proliferation in normal and malignant human cells and its alteration by interferon

    SciTech Connect

    Kulesh, D.A.; Greene, J.J.

    1986-06-01

    The relationship between cell morphology, proliferation, and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes by plating onto plastic surfaces coated with poly(2-hydroxyethyl methacrylate). Poly(2-hydroxyethyl methacrylate) can precisely vary the shape of cells without toxicity. Cell proliferation was quantitated by cell counts and labeling indices were determined by autoradiography. The normal JHU-1 foreskin fibroblasts and IMR-90 lung fibroblasts exhibited contact-inhibited growth with a saturation density of 2.9 X 10(5) and 2.0 X 10(5) cells/cm2, respectively. These cells also exhibited stringent dependency on cell shape with a mitotic index of less than 3% at poly(2-hydroxyethyl methacrylate) concentrations at which the cells were rounded versus a labeling index of 75-90% when the cells were flat. The malignant bladder carcinoma line RT-4 exhibited partial contact-inhibited growth. Its dependency on cell shape was less stringent than that of normal cells with a mitotic index of 37-40% when rounded and 79% when flat. The malignant fibrosarcoma line, HT1080, was not contact inhibited and was entirely shape independent with a mitotic index of 70-90% regardless of cell shape. Treatment of HT1080 cells with low concentration of human fibroblast interferon (less than 40 units/ml) restored shape-dependent proliferation while having little effect on normal cells. Subantiproliferative doses of interferon were also shown to restore contact-inhibited proliferation control to malignant cells previously lacking it.

  13. Increased age of transformed mouse neural progenitor/stem cells recapitulates age-dependent clinical features of human glioma malignancy

    PubMed Central

    Mikheev, Andrei M.; Ramakrishna, Rohan; Stoll, Elizabeth A.; Mikheeva, Svetlana A.; Beyer, Richard P.; Plotnik, David A.; Schwartz, Jeffrey L.; Rockhill, Jason K.; Silber, John R.; Born, Donald E.; Kosai, Yoshito; Horner, Philip J.; Rostomily, Robert C.

    2012-01-01

    Increasing age is the most robust predictor of greater malignancy and treatment resistance in human gliomas. However, the adverse association of clinical course with aging is rarely considered in animal glioma models, impeding delineation of the relative importance of organismal versus progenitor cell aging in the genesis of glioma malignancy. To address this limitation, we implanted transformed neural stem/progenitor cells (NSPCs), the presumed cells of glioma origin, from 3 and 18month old mice into 3 and 20-month host animals. Transplantation with progenitors from older animals resulted in significantly shorter (p ? 0.0001) median survival in both 3month (37.5 vs 83 days) and 20-month (38 vs 67 days) hosts, indicating that age-dependent changes intrinsic to NSPCs rather than host animal age accounted for greater malignancy. Subsequent analyses revealed that increased invasiveness, genomic instability, resistance to therapeutic agents and tolerance to hypoxic stress accompanied aging in transformed NSPCs. Greater tolerance to hypoxia in older progenitor cells, as evidenced by elevated HIF-1 promoter reporter activity and hypoxia response gene (HRG) expression, mirror the upregulation of HRGs in cohorts of older vs younger glioma patients revealed by analysis of gene expression databases, suggesting that differential response to hypoxic stress may underlie age-dependent differences in invasion, genomic instability and treatment resistance. Our study provides strong evidence that progenitor cell aging is responsible for promoting the hallmarks of age-dependent glioma malignancy and that consideration of progenitor aging will facilitate development of physiologically and clinically relevant animal models of human gliomas. PMID:22958206

  14. TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo

    PubMed Central

    Zhang, Qifang; Hossain, Dewan Md Sakib; Nechaev, Sergey; Kozlowska, Anna; Zhang, Wang; Liu, Yong; Kowolik, Claudia M.; Swiderski, Piotr; Rossi, John J.; Forman, Stephen; Pal, Sumanta; Bhatia, Ravi; Raubitschek, Andrew

    2013-01-01

    STAT3 operates in both cancer cells and tumor-associated immune cells to promote cancer progression. As a transcription factor, it is a highly desirable but difficult target for pharmacologic inhibition. We have recently shown that the TLR9 agonists CpG oligonucleotides can be used for targeted siRNA delivery to mouse immune cells. In the present study, we demonstrate that a similar strategy allows for targeted gene silencing in both normal and malignant human TLR9+ hematopoietic cells in vivo. We have developed new human cell-specific CpG(A)-STAT3 siRNA conjugates capable of inducing TLR9-dependent gene silencing and activation of primary immune cells such as myeloid dendritic cells, plasmacytoid dendritic cells, and B cells in vitro. TLR9 is also expressed by several human hematologic malignancies, including B-cell lymphoma, multiple myeloma, and acute myeloid leukemia. We further demonstrate that oncogenic proteins such as STAT3 or BCL-XL are effectively knocked down by specific CpG(A)-siRNAs in TLR9+ hematologic tumor cells in vivo. Targeting survival signaling using CpG(A)-siRNAs inhibits the growth of several xenotransplanted multiple myeloma and acute myeloid leukemia tumors. CpG(A)-STAT3 siRNA is immunostimulatory and nontoxic for normal human leukocytes in vitro. The results of the present study show the potential of using tumoricidal/immunostimulatory CpG-siRNA oligonucleotides as a novel 2-pronged therapeutic strategy for hematologic malignancies. PMID:23287859

  15. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    SciTech Connect

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-04-11

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer.

  16. MED12 Alterations in Both Human Benign and Malignant Uterine Soft Tissue Tumors

    PubMed Central

    Prot, Galle; Croce, Sabrina; Ribeiro, Agns; Lagarde, Pauline; Velasco, Valrie; Neuville, Agns; Coindre, Jean-Michel; Stoeckle, Eberhard; Floquet, Anne; MacGrogan, Gatan; Chibon, Frdric

    2012-01-01

    The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/?-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and ?-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors. PMID:22768200

  17. MED12 alterations in both human benign and malignant uterine soft tissue tumors.

    PubMed

    Prot, Galle; Croce, Sabrina; Ribeiro, Agns; Lagarde, Pauline; Velasco, Valrie; Neuville, Agns; Coindre, Jean-Michel; Stoeckle, Eberhard; Floquet, Anne; MacGrogan, Gatan; Chibon, Frdric

    2012-01-01

    The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/?-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and ?-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors. PMID:22768200

  18. Synergistic mitosis-arresting effects of arsenic trioxide and paclitaxel on human malignant lymphocytes.

    PubMed

    Duan, Xu-Fang; Wu, Ying-Li; Xu, Han-Zhang; Zhao, Meng; Zhuang, Han-Yi; Wang, Xiao-Dong; Yan, Hua; Chen, Guo-Qiang

    2010-01-01

    The treatment outcome of acute lymphoblastic leukemia (ALL) has improved steadily over the last 50 years. However, the cure rates are unlikely to be raised further with current therapies. Since increasing the dosage of chemotherapeutic agents could also elevate toxicity, a solution to how one could achieve maximum therapeutic effect with the minimum dosage possible is imminent. One possibility is the employment of combination drug therapies. Arsenic trioxide (ATO) is a widely used drug for acute promyelocytic leukemia (APL). Its combination with other drugs presented therapeutic activities in malignant cancers other than APL. Considering the fact that ATO induces mitotic arrest prior to apoptosis induction, we attempted to investigate the potential anti-cancer effects of ATO in combination with the microtubule-stabilizing agent, paclitaxel (PTX), using malignant lymphocytes as in vitro models. Three malignant lymphocytic cell lines and primary cells were treated with ATO and/or PTX. Using the Chou-Talalay analysis for evaluation of combined effect of ATO and PTX, we found a synergistic effect of the two drugs in the inhibition of cell growth. We also found that the combination of ATO and PTX at low concentrations synergistically induced mitotic arrest followed by apoptosis in malignant lymphocytes, which increased phosphorylated cyclin-dependent kinase 1 (Cdk1) on Thr(161) and promoted the dysregulated activation of Cdk1. The ATO/PTX combination also significantly enhanced the activation of spindle checkpoint by inducing the formation of the inhibitory checkpoint complex BubR1/Cdc20. Our study provided the first in vitro demonstration that low concentrations of ATO and PTX synergistically induce mitotic arrest in malignant lymphocytes. PMID:19781537

  19. Enhanced antitumor efficacy of fiber-modified, midkine promoter-regulated oncolytic adenovirus in human malignant mesothelioma.

    PubMed

    Takagi-Kimura, Misato; Yamano, Tomoki; Tamamoto, Atsuko; Okamura, Nobutaka; Okamura, Haruki; Hashimoto-Tamaoki, Tomoko; Tagawa, Masatoshi; Kasahara, Noriyuki; Kubo, Shuji

    2013-11-01

    Oncolytic virotherapy using adenoviruses has potential for therapeutic benefits in malignant mesothelioma. However, the downregulation of coxsackie virus/adenovirus receptor (CAR) expression is frequently a critical rate-limiting factor that impedes the effectiveness of adenovirus serotype 5 (Ad5)-based vectors in many cancer types. We evaluated CAR (Ad5 receptor) and CD46 (adenovirus serotype 35 [Ad35] receptor) expression in six human malignant mesothelioma cell lines. Very low CAR expression was observed in MSTO-211H and NCI-H2052 cells, whereas the other cell lines showed strong expression. In contrast, CD46 was highly expressed in all mesothelioma cell lines. On this basis, we replaced the CAR binding sequence of Ad5 with the CD46 binding sequence of Ad35 in the replication-defective adenoviruses and the tumor-specific midkine promoter-regulated oncolytic adenoviruses. By this fiber modification, the infectivity, virus progeny production, and in vitro cytocidal effects of the adenoviruses were significantly enhanced in low CAR-expressing MSTO-211H and NCI-H2052 cells, also resulting in similar or even higher levels in high CAR-expressing mesothelioma cell lines. In MSTO-211H xenograft models, the fiber-modified oncolytic adenovirus significantly enhanced antitumor effect compared to its equivalent Ad5-based vector. Our data demonstrate that Ad35 fiber modification of binding tropism in a midkine promoter-regulated oncolytic Ad5 vector confers transductional targeting to oncolytic adenoviruses, thereby facilitating more effective treatment of malignant mesothelioma. PMID:23962292

  20. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}.

    PubMed

    Neijenhuis, Sari; Verwijs-Janssen, Manon; van den Broek, Lenie J; Begg, Adrian C; Vens, Conchita

    2010-11-01

    Ionizing radiation (IR) is an effective anticancer treatment, although failures still occur. To improve radiotherapy, tumor-targeted strategies are needed to increase radiosensitivity of tumor cells, without influencing normal tissue radiosensitivity. Base excision repair (BER) and single-strand break repair (SSBR) contribute to the determination of sensitivity to IR. A crucial protein in BER/SSBR is DNA polymerase ? (pol?). Aberrant pol? expression is commonly found in human tumors and leads to inhibition of BER. Here, we show that truncated pol? variant (pol?-?)-expressing cells depend on homologous recombination (HR) for survival after IR, indicating that a considerable fraction of pol?-?-induced lesions are subject to repair by HR. Increased sensitization was found not to result from involvement in DNA-dependent protein kinase-dependent nonhomologous end joining, the other major double-strand break repair pathway. Caffeine and the ATM inhibitor Ku55933 cause pol?-?-dependent radiosensitization. Consistent with the observed HR dependence and the known HR-modulating activity of ATM, pol?-?-expressing cells showed increased radiosensitization after BRCA2 knockdown that is absent under ATM-inhibited conditions. Our data suggest that treatment with HR modulators is a promising therapeutic strategy for exploiting defects in the BER/SSBR pathway in human tumors. PMID:20978197

  1. Cellular and Molecular Mechanisms Underlying Oxygen-Dependent Radiosensitivity

    PubMed Central

    Liu, Chao; Lin, Qun; Yun, Zhong

    2015-01-01

    Molecular oxygen has long been recognized as a powerful radiosensitizer that enhances the cell-killing efficiency of ionizing radiation. Radiosensitization by oxygen occurs at very low concentrations with the half-maximum radiosensitization at approximately 3 mmHg. However, robust hypoxia-induced signal transduction can be induced at <15 mmHg and can elicit a wide range of cellular responses that will affect therapy response as well as malignant progression. Great strides have been made, especially since the 1990s, toward identification and characterization of the oxygen-regulated molecular pathways that affect tumor response to ionizing radiation. In this review, we will discuss the current advances in our understanding of oxygen-dependent molecular modification and cellular signal transduction and their impact on tumor response to therapy. We will specifically address mechanistic distinctions between radiobiological hypoxia (0–3 mmHg) and pathological hypoxia (3–15 mmHg). We also propose a paradigm that hypoxia increases radioresistance by maintaining the cancer stem cell phenotype. PMID:25938770

  2. PME-1 protects ERK pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma

    PubMed Central

    Puustinen, Pietri; Junttila, Melissa R.; Vanhatupa, Sari; Sablina, Anna A.; Hector, Melissa E.; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C.; Westermarck, Jukka

    2010-01-01

    ERK/MAPK pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies, however the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A (PP2A) promotes basal ERK pathway activity, and is required for efficient growth factor response. Mechanistically PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and PKC. In malignant glioblastoma, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (N=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells, and suggest important functional role for PME-1 in the disease progression of human astrocytic gliomas. PMID:19293187

  3. Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies.

    PubMed

    Nemunaitis, J; Singer, J W; Buckner, C D; Hill, R; Storb, R; Thomas, E D; Appelbaum, F R

    1988-08-01

    The use of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) following autologous marrow transplantation for lymphoid malignancies was explored in a phase I/II dose escalation study. rhGM-CSF given as a 2-hour infusion daily for 14 days was well tolerated at doses up to 240 micrograms/m2/day. When compared with 86 disease-matched and treatment-matched historical controls, patients receiving greater than or equal to 60 micrograms/m2/day rhGM-CSF recovered neutrophil and platelet counts more rapidly, had fewer days with fever, and were discharged from the hospital sooner. PMID:3042050

  4. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    SciTech Connect

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  5. Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies

    PubMed Central

    Sansone, Pasquale; Bromberg, Jacqueline

    2012-01-01

    The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058

  6. Establishment and characterization of a human malignant mesothelioma cell line (HMMME).

    PubMed

    Ishiwata, Isamu; Ishiwata, Chieko; Anzo, Mitsuru; Minami, Rie; Kiguchi, Kazushige; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2003-12-01

    A cell line designated "HMMME" was established from the pleural fluids of a malignant mesothelioma patient. This line grew well without interruption for 12 years and was subcultured over 200 times. The cells were spindle and roundish in shape and displayed a monolayer sheet in an epithelial pavement cell arrangement. They were neoplastic, had pleomorphic features, and easily formed multilayering without contact inhibition. The cell cytoplasm was strongly positive against anti-vimentin, anti-calretinin and anti-pan-keratin, but negative against anti-BerEP4. The cells proliferated rapidly, and the population doubling time was about 42 hours. Their chromosome number showed a wide distribution of aneuploidy with a mode in the diploid range; many marker chromosomes were observed. The cultured cells were easily transplanted into the subcutaneous of nude mice and produced a tumor classified as a malignant mesothelioma. PMID:15147043

  7. Inhibition of CXCR4 by LY2624587, a Fully Humanized Anti-CXCR4 Antibody Induces Apoptosis of Hematologic Malignancies

    PubMed Central

    Peng, Sheng-Bin; Zhang, Xiaoyi; Paul, Donald; Kays, Lisa M.; Ye, Ming; Vaillancourt, Peter; Dowless, Michele; Stancato, Louis F.; Stewart, Julie; Uhlik, Mark T.; Long, Haiyan; Chu, Shaoyou; Obungu, Victor H.

    2016-01-01

    SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies. PMID:26954567

  8. Activating FGFR3 mutations cause mild hyperplasia in human skin, but are insufficient to drive benign or malignant skin tumors

    PubMed Central

    Duperret, Elizabeth K; Oh, Seung Ja; McNeal, Andrew; Prouty, Stephen M; Ridky, Todd W

    2014-01-01

    Fibroblast growth factor receptor 3 (FGFR3) activating mutations are drivers of malignancy in several human tissues, including bladder, lung, cervix, and blood. However, in skin, these mutations are associated predominantly with benign, common epidermal growths called seborrheic keratoses (SKs). How epidermis resists FGFR3 mediated transformation is unclear, but previous studies have suggested that FGFR3 activation in skin keratinocytes may serve a tumor-suppressive role by driving differentiation and antagonizing Ras signaling. To define the role of FGFR3 in human normal and neoplastic epidermis, and to directly test the hypothesis that FGFR3 antagonizes Ras, we engineered human skin grafts in vivo with mutant active FGFR3 or shRNA FGFR3 knockdown. We show that FGFR3 active mutants drive mild hyperproliferation, but are insufficient to support benign or malignant tumorigenesis, either alone, or in combination with G1S checkpoint release. This suggests that additional cell-intrinsic or stromal cues are required for formation of benign SKs with FGFR3 mutations. Further, FGFR3 activation does not alter the growth kinetics or differentiation status of engineered human epidermal SCCs driven by Ras, and FGFR3 protein itself is dispensable for Ras-driven SCC. To extend these findings to patients, we examined a uniquely informative human tumor in which SCC developed in continuity with a SK, raising the hypothesis that one of the tumors evolved from the other. However, mutational analysis from each tumor indicates that the overlapping SK and SCC evolved independently and supports our conclusion that FGFR3 activation is insufficient to drive SCC. PMID:24626198

  9. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells.

    PubMed Central

    Petersen, O W; Rnnov-Jessen, L; Howlett, A R; Bissell, M J

    1992-01-01

    Normal human breast epithelial cells show a high degree of phenotypic plasticity in monolayer culture and express many traits that otherwise characterize tumor cells in vivo. Paradoxically, primary human breast carcinoma cells are difficult to establish in culture: most outgrowths arise from the normal tissue surrounding the tumor. These characteristics have posed major obstacles to the establishment of simple reliable criteria for mammary epithelial transformation in culture. In the present study, we show that a reconstituted basement membrane (BM) can be used to culture all normal human breast epithelial cells and a subset of human breast carcinoma cells. The two cell types can be readily distinguished by virtue of the ability of normal cells to reexpress a structurally and functionally differentiated phenotype within BM. Twelve specimens of normal breast tissue and 2 normal breast epithelial cell lines (total 14 samples) embedded in BM as single cells were able to form multicellular spherical colonies with a final size close to that of true acini in situ. Sections of mature spheres revealed a central lumen surrounded by polarized luminal epithelial cells expressing keratins 18 and 19 and sialomucin at the apical membrane. Significantly, two-thirds of normal spheres deposited a visible endogenous type IV collagen-containing BM even though they were in contact with exogenously provided BM. Growth was arrested completely within the same time period. In contrast, none of 6 carcinoma cell lines or 2 cultures of carcinoma from fresh samples (total 8 samples) responded to BM by growth regulation, lumen formation, correct polarity, or deposition of endogenous BM. These findings may provide the basis of a rapid assay for discriminating normal human breast epithelial cells from their malignant counterparts. Furthermore, we propose that the ability to sense BM appropriately and to form three-dimensional organotypic structures may be the function of a class of "suppressor" genes that are lost as cells become malignant. Images PMID:1384042

  10. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  11. The evaluation of human papillomavirus and p53 gene mutation in benign and malignant conjunctiva and eyelid lesions.

    PubMed

    Joanna, Reszec; Renata, Zalewska; Witold, Pepi?ski; Ma?gorzata, Skawronska; Bernaczyk, Piotr; Chyczewski, Lech

    2010-12-01

    Papillomas and squamous cell carcinomas are the most common conjunctival and eyelid lesions. The etiology is still unclear and recently human papillomavirus infection and p53 gene mutation have been taken into consideration. The aim of our study was the evaluation of HPV DNApresence and p53 gene mutation in 45 benign and 38 malignant squamous lesions of the conjunctiva and eyelid. For HPV detection PCR-RFLP and immunohistochemical reaction were used; for p53 gene mutation PCR-SSCP was used. Only 8.8% papillomas, 9.1% squamous cell cancers and 3.7% basal cell cancers (using PCR-RFLP method) and 26.6% papillomas, 7.4% squamous cell cancers and 9.1% basal cell cancers (using immunohisto-chemical reaction) were HPV positive. p53 gene mutation was evaluated in 24.4% papillomas, 54.5% squamous cell cancers and 22.2% basal cell cancers; most commonly in 6 and 7 exon. Human papillomavirus infection, opposite to p53 gene mutation, is not a significant etiological factor of the benign and malignant conjunctival and eyelid lesions development. PMID:21478094

  12. An Antibody-based Multifaceted Approach Targeting the Human Transferrin Receptor for the Treatment of B-cell Malignancies

    PubMed Central

    Daniels, Tracy R.; Ortiz-Sánchez, Elizabeth; Luria-Pérez, Rosendo; Quintero, Rafaela; Helguera, Gustavo; Bonavida, Benjamin; Martínez-Maza, Otoniel; Penichet, Manuel L.

    2013-01-01

    Summary We previously developed an antibody-avidin fusion protein (ch128.1Av) targeting the human transferrin receptor 1 (TfR1, also known as CD71), which demonstrates direct in vitro cytotoxicity against malignant hematopoietic cells. This cytotoxicity is attributed to its ability to decrease the level of TfR1 leading to lethal iron deprivation. We now report that ch128.1Av shows the ability to bind the Fc γ receptors and the complement component C1q, suggesting that it is capable of eliciting Fcmediated effector functions such as antibody-dependent cellmediated cytotoxicity and complement-mediated cytotoxicity. In addition, in 2 disseminated multiple myeloma xenograft mouse models, we show that a single dose of ch128.1Av results in significant antitumor activity, including long-term survival. It is interesting to note that the parental antibody without avidin (ch128.1) also shows remarkable in vivo anticancer activity despite its limited in vitro cytotoxicity. Finally, we demonstrate that ch128.1Av is not toxic to pluripotent hematopoietic progenitor cells using the long-term cell-initiating culture assay suggesting that these important progenitors would be preserved in different therapeutic approaches, including the in vitro purging of cancer cells for autologous transplantation and in vivo passive immunotherapy. Our results suggest that ch128.1Av and ch128.1 may be effective in the therapy of human multiple myeloma and potentially other hematopoietic malignancies. PMID:21654517

  13. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17?-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor ?. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant human tissue, revealing a role for GPER in estrogen-induced breast physiology and pathology. PMID:24718936

  14. The malignant progression effects of regorafenib in human colon cancer cells.

    PubMed

    Tomida, Chisato; Aibara, Kana; Yamagishi, Naoko; Yano, Chiaki; Nagano, Hikaru; Abe, Tomoki; Ohno, Ayako; Hirasaka, Katsuya; Nikawa, Takeshi; Teshima-Kondo, Shigetada

    2015-01-01

    A number of anti-angiogenic drugs targeting vascular endothelial growth factor receptors (VEGF-R) have developed and enabled significant advances in cancer therapy including colorectal cancer. However, acquired resistance to the drugs occurs, leading to disease progression, such as invasion and metastasis. How tumors become the resistance and promote their malignancy remains fully uncertain. One of possible mechanisms for the resistance and the progression may be the direct effect of VEGF-R inhibitors on tumor cells expressing VEGF-R. We investigated here the direct effect of a VEGF-R-targeting agent, regorafenib, which is the first small molecule inhibitor of VEGF-Rs for the treatment of patients with colorectal cancer, on phenotype changes in colon cancer HCT116 cells. Treatment of cells with regorafenib for only 2 days activated cell migration and invasion, while vehicle-treated control cells showed less activity. Intriguingly, chronic exposure to regorafenib for 90 days dramatically increased migration and invasion activities and induced a resistance to hypoxia-induced apoptosis. These results suggest that loss of VEGF signaling in cancer cells may induce the acquired resistance to VEGF/VEGF-R targeting therapy by gaining two major malignant phenotypes, apoptosis resistance and activation of migration/invasion. PMID:26399347

  15. NANOG promoter methylation and expression correlation during normal and malignant human germ cell development

    PubMed Central

    Nettersheim, Daniel; Bierman, Katharina; Gillis, Ad JM; Steger, Klaus; Looijenga, Leendert HJ

    2011-01-01

    Testicular germ cell tumors are the most frequent malignant tumors in young Caucasian males, with increasing incidence. The actual model of tumorigenesis is based on the theory that a block in maturation of fetal germ cells lead to formation of the intratubular germ cell neoplasia unclassified. Early fetal germ cells and undifferentiated germ cell tumors express pluripotency markers such as the transcription factor NANOG. It has been demonstrated that epigenetic modifications, such as promoter DNA methylation, are able to silence gene expression in normal and cancer cells. Here we show that OCT3/4-SOX2 mediated expression of NANOG can be silenced by methylation of promoter CpG-sites. We found that global methylation of DNA decreased from fetal spermatogonia to mature sperm. In contrast, CpGs in the NANOG promoter were found hypomethylated in spermatogonia and hypermethylated in sperm. This selective repression might reflect the cells need to suppress pluripotency in order to prevent malignant transformation. Finally, methylation of CpGs in the NANOG promoter in germ cell tumors and derived cell lines correlated to differentiation state. PMID:20930529

  16. Combination of Intensive Chemotherapy and Anticancer Vaccines in the Treatment of Human Malignancies: The Hematological Experience

    PubMed Central

    Liseth, Knut; Ersvr, Elisabeth; Hervig, Tor; Bruserud, ystein

    2010-01-01

    In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients. PMID:20625438

  17. Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience.

    PubMed

    Liseth, Knut; Ersvaer, Elisabeth; Hervig, Tor; Bruserud, ystein

    2010-01-01

    In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients. PMID:20625438

  18. Revealing the inherent heterogeneity of human malignancies by variant consensus strategies coupled with cancer clonal analysis

    PubMed Central

    2014-01-01

    Tumors are heterogeneous in composition. They are composed of cancer cells proper, along with stromal elements that collectively form a microenvironment, all of which are necessary to nurture the malignant process. In addition, many of the stromal cells are modified to support the unique needs of the malignant state. Tumors are composed of a variety of clones or subpopulations of cancer cells, which may differ in karyotype, growth rate, expression of cell surface markers, sensitivity to therapeutics, etc. New tools and methods to provide an improved understanding of tumor clonal architecture are needed to guide therapy. The subclonal structure and transcription status of underlying somatic mutations reveal the trajectory of tumor progression in patients with cancer. Approaching the analysis of tumors to reveal clonal complexity in a quantitative manner should facilitate better characterization and therapeutic assignments. The challenge is the interpretation of massive amounts of data from next generation sequencing (NGS) experiments to find what is truly meaningful for improving the understanding of basic cancer biology, as well as therapeutic assignments and outcomes. To meet this need, a methodology named CloneViz was developed and utilized for the identification of serial clonal mutations. Whole exome sequencing (WES) on an Illumina HiSeq 2500 was performed on paired tumor and normal samples from a Multiple Myeloma (MM) patient at presentation, then first and second relapse. Following alignment, a consensus strategy for variant selection was employed along with computational linkage to a formal tumor clonality analysis based on visualization and quantitative methods. PMID:25350589

  19. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  20. Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells.

    PubMed

    Nguyen, Dzung H; Tangvoranuntakul, Pam; Varki, Ajit

    2005-07-01

    Humans are genetically incapable of producing the mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc), due to an inactivating mutation in the enzyme synthesizing it. Despite this, human cells and tissues appear capable of metabolically incorporating Neu5Gc from exogenous sources, including dietary red meat and dairy products. All normal humans studied are now shown to have circulating Abs against Neu5Gc, with marked differences in isotype levels. The question arises whether such Abs can adversely affect Neu5Gc-expressing human cells or tissues. In this study, we show that although normal human PBMC do not incorporate Neu5Gc during in vitro incubation, activated T cells do. Primary human leukemia cells and human leukemic cell lines are even more efficient at incorporation. Human sera containing naturally high levels of anti-Neu5Gc IgG Abs (hereafter abbreviated GcIg) deposited complement on Neu5Gc-expressing leukemic cells and activated T cells, but not on normal cells. The binding of GcIg resulted in complement-mediated cytotoxicity, which was inhibited by heat inactivation. Low anti-Neu5Gc IgG-containing human sera did not mediate any of these effects. Mixed killing assays confirmed the 15-fold selective killing of leukemic cells over PBMC by GcIg following Neu5Gc feeding. This approach could potentially serve as novel way to target malignant cells for death in vivo using either natural Abs or anti-Neu5Gc Abs prepared for this purpose. Further studies are needed to determine whether deposition of natural GcIg and complement can also target healthy proliferating immune cells for death in vivo following incorporation of dietary Neu5Gc. PMID:15972653

  1. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy.

    PubMed

    Lambert, D W; Wood, I S; Ellis, A; Shirazi-Beechey, S P

    2002-04-22

    Healthy colonocytes derive 60-70% of their energy supply from short-chain fatty acids, particularly butyrate. Butyrate has profound effects on differentiation, proliferation and apoptosis of colonic epithelial cells by regulating expression of various genes associated with these processes. We have previously shown that butyrate is transported across the luminal membrane of the colonic epithelium via a monocarboxylate transporter, MCT1. In this paper, using immunohistochemistry and in situ hybridisation histochemistry, we have determined the profile of MCT1 protein and mRNA expression along the crypt to surface axis of healthy human colonic tissue. There is a gradient of MCT1 protein expression in the apical membrane of the cells along the crypt-surface axis rising to a peak in the surface epithelial cells. MCT1 mRNA is expressed along the crypt-surface axis and is most abundant in cells lining the crypt. Analysis of healthy colonic tissues and carcinomas using immunohistochemistry and Western blotting revealed a significant decline in the expression of MCT1 protein during transition from normality to malignancy. This was reflected in a corresponding reduction in MCT1 mRNA expression, as measured by Northern analysis. Carcinoma samples displaying reduced levels of MCT1 were found to express the high affinity glucose transporter, GLUT1, suggesting that there is a switch from butyrate to glucose as an energy source in colonic epithelia during transition to malignancy. The expression levels of MCT1 in association with GLUT1 could potentially be used as determinants of the malignant state of colonic tissue. PMID:11953883

  2. A diagnostic evaluation of serum human telomerase reverse transcriptase mRNA as a novel tumor marker for gynecologic malignancies.

    PubMed

    Miura, Norimasa; Kanamori, Yasunobu; Takahashi, Masakuni; Sato, Reina; Tsukamoto, Tomoe; Takahashi, Shunsaku; Harada, Tomomi; Sano, Akiko; Shomori, Kohei; Harada, Tasuku; Kigawa, Junzou; Ito, Hisao; Terakawa, Naoki; Hasegawa, Junichi; Shiota, Goshi

    2007-03-01

    Human telomerase reverse transcriptase (hTERT) and epidermal growth factor receptor (EGFR) play an important role in many cancers including gynecological cancers. We previously reported the usefulness of a quantitative highly sensitive detection method for hTERT mRNA in the serum of cancer patients. By this method, we attempted to elucidate the diagnostic evaluation of serum hTERT mRNA for gynecologic malignancies. In 174 female patients with gynecological lesions (47 with ovarian lesions, 63 with uterine lesions, 2 with malignancies in other gynecological lesions, and 62 benign lesions) and 20 healthy individuals, we measured serum hTERT mRNA and EGFR mRNA by using the newly developed real-time quantitative RT-PCR. We examined their sensitivity and specificity in cancer diagnosis, clinical significance in comparison with conventional tumor markers, and their correlations with the clinical parameters by using multivariate analyses. Serum hTERT mRNA showed higher values in patients with gynecologic cancers than in those with benign diseases and healthy individuals. The hTERT mRNA level independently correlated with the presence of cancers (P=0.004 for both ovarian and uterine cancer) and clinical stage (P<0.001). The sensitivity and specificity of hTERT mRNA in cancer diagnosis was 74.4% and 74.1%, respectively. The hTERT mRNA level showed a significant correlation with CA125 by Pearson's relative test (P=0.035) and with histological findings in ovarian cancer by the Friedman test (P<0.004). EGFR mRNA did not display any differences between the diseases. hTERT mRNA is useful for diagnosing gynecologic cancer and is superior to conventional tumor markers. Therefore, serum hTERT mRNA is a novel and available biomarker for gynecologic malignancies. PMID:17273731

  3. Selective inactivation of DNA-dependent protein kinase with antisense oligodeoxynucleotides: consequences for the rejoining of radiation-induced DNA double-strand breaks and radiosensitivity of human cancer cell lines.

    PubMed

    Sak, Ali; Stuschke, Martin; Wurm, Reinhard; Schroeder, Gisela; Sinn, Brigitte; Wolf, Gudrun; Budach, Volker

    2002-11-15

    The inhibition of DNA-dependent protein kinase activity with antisense-oligodeoxynucleotide (As-ODN) and its consequences for the rejoining of DNA-double-strand breaks (Dsbs) and radiation sensitivity was studied in human non-small cell lung cancer (NSCLC) cell lines. Cells were transfected with As-ODNs specific for the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). In comparison, cells were treated with Wortmannin, a potent but nonspecific inhibitor of DNA-PK activity. As-ODN efficiently reduced the kinase activity with an IC50 of about 100-200 IC50 of Wortmannin was at approximately 5-10 micro M. Treatment of cells with 300 nM As-ODN increased the fraction of residual Dsb at 4 h after irradiation by a factor of 4.4, 2.6, and 1.7 in A549, H460, and H661 cells, respectively. The respective values after treatment with 20 micro M Wortmannin were 5.3, 4.3, and 2.2. Inhibition of DNA-PK activity by As-ODN and Wortmannin also decreased the surviving fraction of the NSCLC cell lines. These data show that kinase activity of DNA-PKcs can be specifically inhibited with As-ODN as effective as Wortmannin and results in marked inhibition of DNA-Dsb rejoining and radiosensitization of NSCLC cell lines. PMID:12438258

  4. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles

    PubMed Central

    Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang

    2013-01-01

    Background Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. Methods In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using ?H2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Results Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of ?H2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. Conclusions These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe. PMID:23519742

  5. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    SciTech Connect

    Tangutoori, S; Kumar, R; Sridhar, S; Korideck, H; Makrigiorgos, G; Cormack, R

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischer Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing effect as free olaparib. DOD 1R21CA16977501, A. David Mazzone Awards Program 2012PD164.

  6. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    PubMed Central

    Zhang, Yonghong; Sun, Xinlin; Huang, Min; Ke, Yiquan; Wang, Jihui; Liu, Xiao

    2015-01-01

    Background In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs) exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas. Materials and methods In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo. Results In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01). In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model. Conclusion The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic. PMID:26089644

  7. Alcohol metabolism by oral streptococci and interaction with human papillomavirus leads to malignant transformation of oral keratinocytes.

    PubMed

    Tao, Lin; Pavlova, Sylvia I; Gasparovich, Stephen R; Jin, Ling; Schwartz, Joel

    2015-01-01

    Poor oral hygiene, ethanol consumption, and human papillomavirus (HPV) are associated with oral and esophageal cancers. However, the mechanism is not fully known. This study examines alcohol metabolism in Streptococcus and its interaction with HPV-16 in the malignant transformation of oral keratinocytes. The acetaldehyde-producing strain Streptococcus gordonii V2016 was analyzed for adh genes and activities of alcohol and aldehyde dehydrogenases. Streptococcus attachment to immortalized HPV-16 infected human oral keratinocytes, HOK (HPV/HOK-16B), human oral buccal keratinocytes, and foreskin keratinocytes was studied. Acetaldehyde, malondialdehyde, DNA damage, and abnormal proliferation among keratinocytes were also quantified. We found that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB, and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol, and ethanol, respectively. S. gordonii V2016 did not show a detectable aldehyde dehydrogenase. AdhE is the major alcohol dehydrogenase in S. gordonii. Acetaldehyde and malondialdehyde production from permissible Streptococcus species significantly increased the bacterial attachment to keratinocytes, which was associated with an enhanced expression of furin to facilitate HPV infection and several malignant phenotypes including acetaldehyde adduct formation, abnormal proliferation, and enhanced migration through integrin-coated basement membrane by HPV-infected oral keratinocytes. Therefore, expression of multiple alcohol dehydrogenases with no functional aldehyde dehydrogenase contributes to excessive production of acetaldehyde from ethanol by oral streptococci. Oral Streptococcus species and HPV may cooperate to transform oral keratinocytes after ethanol exposure. These results suggest a significant clinical interaction, but further validation is warranted. PMID:25427911

  8. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy

    PubMed Central

    Ganti, Ketaki; Broniarczyk, Justyna; Manoubi, Wiem; Massimi, Paola; Mittal, Suruchi; Pim, David; Szalmas, Anita; Thatte, Jayashree; Thomas, Miranda; Tomai?, Vjekoslav; Banks, Lawrence

    2015-01-01

    Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM) at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression. PMID:26147797

  9. The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies

    PubMed Central

    Sobolewski, Cyril; Cerella, Claudia; Dicato, Mario; Ghibelli, Lina; Diederich, Marc

    2010-01-01

    It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups. PMID:20339581

  10. Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies.

    PubMed

    Conticello, Concetta; Martinetti, Daniela; Adamo, Luana; Buccheri, Simona; Giuffrida, Raffaella; Parrinello, Nunziatina; Lombardo, Laura; Anastasi, Gabriele; Amato, Gabriella; Cavalli, Maide; Chiarenza, Annalisa; De Maria, Ruggero; Giustolisi, Rosario; Gulisano, Massimo; Di Raimondo, Francesco

    2012-11-01

    Disulfiram (DSF) is an aldehyde dehydrogenase inhibitor currently used for the treatment of alcoholism. Here, we show that multiple myeloma (MM) cell lines and primary cells from newly diagnosed and relapsed/resistant patients affected by MM, acute myeloid and lymphoblastic leukemia are significantly sensitive to DSF alone and in combination with copper. These effects are present at doses lower than those achievable in vivo after DSF standard administration. The cytotoxic effect achieved by this treatment is comparable to that obtained by conventional chemotherapy and is absent in normal hematopoietic cells. In addition, we found that DSF plus copper induces loss of mitochondrial membrane potential, triggers reactive oxygen species (ROS) production and activates executioner caspases. DSF-copper-induced apoptosis and caspases activation are strongly reversed by antioxidant N-acetylcysteine, thus indicating a critical role of ROS. These results might suggest the use of the old drug DSF, alone or in combination with copper, in the treatment of hematological malignancies. PMID:22322883

  11. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice

    PubMed Central

    Elkabets, Moshe; Gifford, Ann M.; Scheel, Christina; Nilsson, Bjorn; Reinhardt, Ferenc; Bray, Mark-Anthony; Carpenter, Anne E.; Jirstrm, Karin; Magnusson, Kristina; Ebert, Benjamin L.; Pontn, Fredrik; Weinberg, Robert A.; McAllister, Sandra S.

    2011-01-01

    Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution or contributions to responder tumor growth have been elusive. Here, we have demonstrated that Sca1+cKit hematopoietic BMCs of mouse hosts bearing instigating tumors promote the growth of responding tumors that form with a myofibroblast-rich, desmoplastic stroma. Such stroma is almost always observed in malignant human adenocarcinomas and is an indicator of poor prognosis. We then identified granulin (GRN) as the most upregulated gene in instigating Sca1+cKit BMCs relative to counterpart control cells. The GRN+ BMCs that were recruited to the responding tumors induced resident tissue fibroblasts to express genes that promoted malignant tumor progression; indeed, treatment with recombinant GRN alone was sufficient to promote desmoplastic responding tumor growth. Further, analysis of tumor tissues from a cohort of breast cancer patients revealed that high GRN expression correlated with the most aggressive triple-negative, basal-like tumor subtype and reduced patient survival. Our data suggest that GRN and the unique hematopoietic BMCs that produce it might serve as novel therapeutic targets. PMID:21266779

  12. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    PubMed

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs. PMID:26526988

  13. Photodynamic therapy of human malignant tumors: a comparative study between photohem and tetrasulfonated aluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Litvin, Grigory D.; Astrakhankina, Tamara A.

    1996-01-01

    The analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs, urinary bladder, rectum and other locations has been made. During 1992-1995 543 tumoral foci in 146 patients have been treated with PDT. All patients were previously treated with conventional techniques without effect or they were not treated due to contraindications either because of severe accompanying diseases or because of old age. A part of the patients had PDT because of recurrences or intradermal metastases in 1-2 years after surgical, radial or combined treatment. Two home-made preparations were used as photosensitizers: Photohem (hematoporphyrine derivative) and Photosense (aluminum sulfonated phthalocyanine). Light sources were: the argon pumped dye laser ('Innova-200,' 'Coherent') and home-made laser devices: copper-vapor laser-pumped dye laser ('Yakhroma-2,' Frjazino), gas-discharge unit 'Xenon' (wavelength 630 nm), gold-vapor laser (wavelength 627.8 nm) for Photohem; while for Photosense sessions we used solid-state laser on ittrium aluminate 'Poljus-1' (wavelength 670 mn). Up to now we have follow-up control data within 2 months and 3 years. Positive effect of PDT was seen in 92.4% of patients including complete regression of tumors in 62.3% and partial -- in 30.1%. Currently, this new perspective technique of treating malignant neoplasms is successfully being used in Russia; new photosensitizers and light sources for PDT and fluorescent tumour diagnostics are being developed as well.

  14. MicroRNA-3151 inactivates TP53 in BRAF-mutated human malignancies.

    PubMed

    Lankenau, Malori A; Patel, Ravi; Liyanarachchi, Sandya; Maharry, Sophia E; Hoag, Kevin W; Duggan, Megan; Walker, Christopher J; Markowitz, Joseph; Carson, William E; Eisfeld, Ann-Kathrin; de la Chapelle, Albert

    2015-12-01

    The B-Raf proto-oncogene serine/threonine kinase (BRAF) gene is the most frequently mutated gene in malignant melanoma (MM) and papillary thyroid cancer (PTC) and is causally involved in malignant cell transformation. Mutated BRAF is associated with an aggressive disease phenotype, thus making it a top candidate for targeted treatment strategies in MM and PTC. We show that BRAF mutations in both MM and PTC drive increased expression of oncomiR-3151, which is coactivated by the SP1/NF-?B complex. Knockdown of microRNA-3151 (miR-3151) with short hairpin RNAs reduces cell proliferation and increases apoptosis of MM and PTC cells. Using a targeted RNA sequencing approach, we mechanistically determined that miR-3151 directly targets TP53 and other members of the TP53 pathway. Reducing miR-3151's abundance increases TP53's mRNA and protein expression and favors its nuclear localization. Consequently, knockdown of miR-3151 also leads to caspase-3-dependent apoptosis. Simultaneous inhibition of aberrantly activated BRAF and knockdown of miR-3151 potentiates the effects of sole BRAF inhibition with the BRAF inhibitor vemurafenib and may provide a novel targeted therapeutic approach in BRAF-mutated MM and PTC patients. In conclusion, we identify miR-3151 as a previously unidentified player in MM and PTC pathogenesis, which is driven by BRAF-dependent and BRAF-independent mechanisms. Characterization of TP53 as a downstream effector of miR-3151 provides evidence for a causal link between BRAF mutations and TP53 inactivation. PMID:26582795

  15. Identification of cancer stem cell markers in human malignant mesothelioma cells

    SciTech Connect

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi; Okamoto, Toshihiro; Aoe, Keisuke; Okabe, Kazunori; Mimura, Yusuke; Fujimoto, Nobukazu; Kishimoto, Takumi; Yamada, Taketo; Xu, C. Wilson; Morimoto, Chikao; Drug Development Program, Nevada Cancer Institute, Las Vegas, NV

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  16. Malignant hypertension

    MedlinePLUS

    ... hypertension; Arteriolar nephrosclerosis; Nephrosclerosis - arteriolar; Hypertension - malignant; High blood pressure - malignant ... affects a small number of people with high blood pressure, including children and adults. It is more common ...

  17. Anogenital malignancies and pre-malignancies.

    PubMed

    Henquet, C J M

    2011-08-01

    Anogenital pre-malignancies and malignancies are frequently encountered. Aetiopathogenetically, human papillomavirus (HPV) infection plays a critical role. However, there is a variable degree of association of HPV infection with the development of anogenital malignancies. In this context, the high level of clinically unapparent HPV infection should be considered. Therefore, the question arises if the association with HPV is always causative. Besides HPV, pre-existent lichen sclerosus is also an important aetiopathologic factor in the development of anogenital malignancies. Common anogenital pre-malignancies comprise Bowen's disease (BD), Bowenoid papulosis (BP) and erythroplasia of Queyrat (EQ). From a clinical point of view, these are clearly different entities, but from a histopathological point of view, BD, BP and EQ are indistinguishable. They all represent forms of squamous intraepithelial neoplasia (IN). Intraepithelial neoplasia (IN) is not only restricted to squamous variants, but also includes non-squamous IN, Paget's disease (PD) and melanoma in situ. The risk of developing anogenital (pre)malignancies or other tumours is higher in immunocompromised and immunodeficient patients, in particular those suffering from human immunodeficiency virus (HIV) infection. Such risk factors will affect treatment and follow-up modalities. Regarding prophylactic measures, a relatively recent but very important development is the availability of HPV vaccination on a large scale. Momentarily, the effects of such vaccination, on a population-based scale, are not yet clear but will become apparent in the near future. Management of anogenital pre-malignancies and malignancies should be tailor-made and may be organized in a multidisciplinary fashion. PMID:21272092

  18. Involvement of autophagy in recombinant human arginase-induced cell apoptosis and growth inhibition of malignant melanoma cells.

    PubMed

    Wang, Ziyu; Shi, Xunlong; Li, Yubin; Zeng, Xian; Fan, Jiajun; Sun, Yun; Xian, Zongshu; Zhang, Guoping; Wang, Shaofei; Hu, Haifeng; Ju, Dianwen

    2014-03-01

    Recombinant human arginase (rhArg) has been developed for arginine derivation therapy of cancer and is currently in clinical trials for a variety of malignant solid tumors. In this study, we reported for the first time that rhArg could induce obvious autophagy in human melanoma cells; inhibition of autophagy by chloroquine (CQ) significantly increased rhArg-induced cell apoptosis and growth inhibition of A375 cells. A significant increase in mitochondrial membrane potential loss and elevated intracellular reactive oxygen species (ROS) levels were detected in A375 cells after rhArg treatment when compared with control. Membrane transition inhibitor cyclosporine A blocked autophagy and accelerated cell death induced by rhArg, indicating that rhArg induced autophagy via mitochondria pathway. Furthermore, antioxidant N-acetyl-L-cysteine suppressed rhArg-induced autophagy and rescued cells from cell growth inhibition, suggesting that ROS played an important role in rhArg-induced A375 cell growth inhibition and autophagy. Akt/mTOR signaling pathway was involved in autophagy induced by rhArg in a time-dependent manner. Moreover, rhArg could induce ERK1/2 activation in a dose- and time-dependent manner and rhArg-induced autophagy was attenuated when p-ERK1/2 was inhibited by MEK 1/2 inhibitor, U0126. Taken together, this study provides new insight into the molecular mechanism of autophagy involved in rhArg-induced cell apoptosis and growth inhibition, which facilitates the development of rhArg in combination with CQ as a potential therapy for malignant melanoma. PMID:23917632

  19. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    PubMed Central

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; Żmijewski, Michał A.

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  20. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    PubMed

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ?-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer. PMID:25336096

  1. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D? Against Human Malignant Melanoma Cell Lines.

    PubMed

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; ?mijewski, Micha? A

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D? (1,25(OH)?D?) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)?D? required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)?D?. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D? or D? was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  2. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.

  3. Cystathionine ?-synthase-derived hydrogen sulfide is involved in human malignant hyperthermia.

    PubMed

    Vellecco, Valentina; Mancini, Antonio; Ianaro, Angela; Calderone, Vincenzo; Attanasio, Chiara; Cantalupo, Anna; Andria, Barbara; Savoia, Gennaro; Panza, Elisabetta; Di Martino, Antonietta; Cirino, Giuseppe; Bucci, Mariarosaria

    2016-01-01

    Hydrogen sulfide is an endogenous gasotransmitter and its mechanism of action involves activation of ATP-sensitive K(+) channels and phosphodiesterase inhibition. As both mechanisms are potentially involved in malignant hyperthermia (MH), in the present study we addressed the involvement of the L-cysteine/hydrogen sulfide pathway in MH. Skeletal muscle biopsies obtained from 25 MH-susceptible (MHS) and 56 MH-negative (MHN) individuals have been used to perform the invitro contracture test (IVCT). Quantitative real-time PCR (qPCR) and Western blotting studies have also been performed. Hydrogen sulfide levels are measured in both tissue samples and plasma. In MHS biopsies an increase in cystathionine ?-synthase (CBS) occurs, as both mRNA and protein expression compared with MHN biopsies. Hydrogen sulfide biosynthesis is increased in MHS biopsies (0.1280.12 compared with 0.9430.13 nmol/mg of protein per min for MHN and MHS biopsies, respectively; P<0.01). Addition of sodium hydrosulfide (NaHS) to MHS samples evokes a response similar, in the IVCT, to that elicited by either caffeine or halothane. Incubation of MHN biopsies with NaHS, before caffeine or halothane challenge, switches an MHN to an MHS response. In conclusion we demonstrate the involvement of the L-cysteine/hydrogen sulfide pathway in MH, giving new insight into MH molecular mechanisms. This finding has potential implications for clinical care and could help to define less invasive diagnostic procedures. PMID:26460077

  4. Agonist antibody that induces human malignant cells to kill one another.

    PubMed

    Yea, Kyungmoo; Zhang, Hongkai; Xie, Jia; Jones, Teresa M; Lin, Chih-Wei; Francesconi, Walter; Berton, Fulvia; Fallahi, Mohammad; Sauer, Karsten; Lerner, Richard A

    2015-11-10

    An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call "receptor pleiotropism" in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-?, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate. PMID:26487683

  5. Microwave-induced local hyperthermia in combination with radiotherapy of human malignant tumors

    SciTech Connect

    U, R.; Noell, K.T.; Woodward, K.T.; Worde, B.T.; Fishburn, R.I.; Miller, L.S.

    1980-02-15

    Since 1976, two groups of patients have been treated with local microwave hyperthermia immediately following ionizing radiation. Group A patients had measurable multiple lesions assigned radiotherapy only, microwave hyperthermia only, or combined treatment. Ionizing radiation in 200 to 600 rad fractions was used 2 to 5 times per week to a total of 1800 to 4200 rad in 5 to 14 fractions. Group B patients had combination treatment only, with radiation fractions of 200 to 600 rad 2 to 5 times per week to a total of 200 to 4800 rad total in 6 to 20 fractions. Both groups received hyperthermia (42 to 44 C) 2 to 3 times per week, maximum ten sessions in four weeks. The 19 patients treated have had squamous cell carcinoma, adenocarcinoma, malignant melanoma, plasmacytoma, epithelioid sarcoma, and undifferentiated carcinoma. After more than 150 hyperthermia sessions, we find: (1) local hyperthermia with microwave alone or in combination with ionizing radiation can be used with excellent normal tissue tolerance provided local tissue temperatures are carefully monitored and controlled; (2) a higher level of heat induction in tumor tissue as compared to surrounding normal tissues; and (3) repeated hyperthermia at 42 to 43.5 C for 45 minutes per session immediately following photon irradiation yields a favorable therapeutic result, occasionally dramatic. Local microwave hyperthermia in combination withradiotherapy offers the possibility of substantial impact on clinical cancer therapy, whether of curative or palliative intent.

  6. Radiotherapy of malignant melanoma

    SciTech Connect

    Cooper, J.S.

    1985-04-01

    The role of radiotherapy in the treatment of malignant melanoma is limited, and surgery generally forms the mainstay of medical practice. However, there are some circumstances in which radiotherapy should be considered the treatment of choice. Symptomatic metastatic lesions in bone or brain can effectively be palliated in a substantial proportion of instances. At the current stage of our knowledge, conventionally fractionated treatment of such lesions forms the standard against which other treatments should be measured. In contrast, metastatic lesions to skin or lymph nodes that do not overlie critical normal structures probably are better treated by high-dose-per-fraction techniques. Radiotherapy may play a definitive role in the treatment of lentigo maligna. The precise optimal energy of the beam to be used remains to be defined. Slightly more penetrating radiation appears to be required for lentigo maligna melanomas. Here, too, the optimal energy remains to be defined. The treatment of nonlentigenous melanomas primarily by radiotherapy is unproved in my opinion. Certainly, the data from the Princess Margaret Hospital is exciting, but I believe it must be corroborated by a well-designed trial before it can be accepted without question. Future directions in treatment of malignant melanoma are likely to include further trials of unconventional fractionation and the use of radiosensitizing agents in conjunction with radiotherapy. The time for dermatologists and radiation therapists to cooperate in such studies is at hand.

  7. Zingipain, A cysteine protease from Zingiber ottensii Valeton rhizomes with antiproliferative activities against fungi and human malignant cell lines.

    PubMed

    Karnchanatat, Aphichart; Tiengburanatam, Nathachai; Boonmee, Apaporn; Puthong, Songchan; Sangvanich, Polkit

    2011-01-01

    The objective of this study was to investigate the activity of a protein identified as cysteine protease, purified from Zingiber ottensii Valeton rhizomes, in terms of antiproliferation against fungi, bacteria, and human malignant cell lines. By means of buffer extraction followed by (NH(4))(2)SO(4) precipitation and ion-exchange chromatography, the obtained dominant protein (designated F50) was submitted to non-denaturing and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), where a single band and three bands were revealed from eletrophoretic patterns, respectively. It could be concluded at this point that the F50 was potentially a heterotrimer or heterodimer composed of either two small (?13.8 and ?15.2kD) subunits or these two together with a larger (?32.5kD) one. In-gel digestion was carried out for the most intense band from reducing SDS-PAGE, and to the resulting material was applied liquid chromatography (LC)-mass spectroscopy (MS)/MS. The main F50 subunit was found to contain fragments with 100% similarity to zingipain-1, a cysteine protease first discovered in Zingiber officinale. The activity corresponding to the identified data, cysteine protease, was then confirmed in the F50 by azocasein assay and a positive result was obtained. The F50 then was further investigated for antiproliferation against three plant pathogenic fungi species by disk diffusion test, four bacterial species by direct exposure in liquid culture and dish diffusion tests, and five human malignant cell lines by tissue culture assay. It was found that a dose of 23.6g F50/0.3cm(2) of paper disk exhibited the best inhibitory effect against Collectotrichum cassiicola, while lesser effects were found in Exserohilum turicicum and Fusarium oxysporum, respectively. No inhibitory effect against bacterial proliferation was detected in all studied bacterial strains. However, relatively strong antiproliferative effects were found against five human cell lines, with IC50 values ranging from 1.13g/mL (hepatoma cancer; HEP-G2) to 5.37g/mL (colon cancer; SW620). By periodic acid-Schiff's staining and phenol-sulfuric acid assay, the F50 was determined as a glycoprotein containing 26.301.01% (by weight) of carbohydrate. Thus, a new glycoprotein with protease activity was successfully identified in Zingiber ottensii rhizome. The glycoprotein also contained antiproliferative activity against some plant pathogenic fungi and human cancer cell lines. PMID:21442550

  8. Neovibsanin B inhibits human malignant brain tumor cell line proliferation and induces apoptosis

    PubMed Central

    Cui, Yi-Fen; Yuan, Xiao-Lin; Fan, Wen-Hai; Li, Sheng-Fan; Deng, Yu-Qin; Zhang, Qing; Zhang, Chun-lei; Yang, Zhen

    2015-01-01

    The present study was designed to examine the effect of neovibsanin B on glioma cell viability, apoptosis and on the survival time in mice bearing tumor xenografts. The results demonstrated that neovibsanin B significantly reduced the cell viability of GL261-NS and GL261-AC cells in a dose-dependent manner. However the inhibition of proliferation was more significant in GL261-NS cells. The IC50 value of neovibsanin B against GL261-NS and GL261-AC cells is 5 and 25 nM, respectively. The inhibitory effect of neovibsanin B on cell growth was more effective than that of vincristine (VCR) (P < 0.05). We also observed a significant decrease in sphere-forming ability of GL261-NS cells on treatment with neovibsanin B. The number of colonies formed by GL261-NS cells on treatment with neovibsanin B, VCR and DMSO were 3.34 1.02, 12.53 3.46 and 61.34 9.89% respectively after 7 days. The flow cytometry revealed a marked increase in apoptotic cell death of GL261-NS cells on treatment with neovibsanin B. The western blots showed a significant decrease in the level of activated caspase-3 on treatment with neovibsanin B after 24 h. In addition, neovibsanin B increased the median survival time of glioma-bearing mice (P < 0.05). Therefore, neovibsanin B effectively inhibits glioma cell viability by inducing apoptosis, and can be a potent therapeutic agent for the treatment of malignant glioma. PMID:26131273

  9. Histone H2B monoubiquitination: roles to play in human malignancy.

    PubMed

    Cole, Alexander J; Clifton-Bligh, Roderick; Marsh, Deborah J

    2015-02-01

    Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20-RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy. PMID:24891457

  10. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    PubMed

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n?=?10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed to improve the visibility of photoacoustic signals emitted from deeply-located lesions. PMID:25379674

  11. Human exposure to polyhalogenated hydrocarbons and incidence of selected malignancies -central European experience.

    PubMed

    Bencko, V; Rames, J; Ondrusova, M; Plesko, I; Jurickova, L; Trnovec, T

    2009-01-01

    This paper describes results of two ecological studies design to analyze the incidence of selected malignancies in two populations exposed to polychlorinated hydrocarbons, mostly PCBs and TCDDs/Fs by comparing data available in the National Cancer Registry of the Slovak Republic and National Oncological Registry of the Czech Republic databases for the Slovak Republic (approximately 5M inhabitants) and the Czech Republic (10,3 M inhabitants) to the data relevant for the population of Michalovce District, the Slovak Republic (approximately 112,000 inhabitants) and Uherske Hradiste, the Czech Republic (146,000 inhabitants). Those districts are recognized as PCB-contaminated areas due to production and industrial use of PCBs. Data were analyzed for the 10-year period 1987-1996. The age adjusted world standard ratio (WSR) incidence of thyroid, pancreatic, breast, ovarian, bladder, and brain tumors in females and thyroid, pancreatic, breast, bladder, brain, prostate and testicular tumors in males were compared. Neither PCBs nor TCDDs/Fs appear to contribute to the observed significantly lower incidence of breast and prostate cancer in the Michalovce District and lower bladder cancer incidence in Uherske Hradiste District. However, anti-estrogenic and anti-androgenic properties have been described for hydroxylated and methylsulfonyl PCB metabolites. These properties could contribute to a mechanism through which these metabolites might modulate the development of breast, prostate and bladder cancer. The results of our analysis points to substantial potential problems of risk assessment for cancer incidence in populations exposed to xenobiotics, or more generally, as it relates to a wide spectrum of confoundings of cancer risk factors. PMID:19469657

  12. Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging

    PubMed Central

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed to improve the visibility of photoacoustic signals emitted from deeply-located lesions. PMID:25379674

  13. Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, sporadic colorectal neoplasia, pulmonary carcinomas and malignant non-Hodgkin's lymphomas in humans.

    PubMed Central

    Kossakowska, A. E.; Huchcroft, S. A.; Urbanski, S. J.; Edwards, D. R.

    1996-01-01

    Matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) play essential roles in the remodelling of the extracellular matrix (ECM). Results of in vivo and in vitro studies suggest that the balance between MMPs and TIMPs is altered in neoplasia, contributing to the invasive and metastatic properties of malignant tumours. In this study we have analysed the expression of five MMP genes and TIMP-1 and TIMP-2 in 37 benign and malignant lesions of human breast using Northern blot analysis. MMP-9 (92 kDa gelatinase) and MMP-11 (stromelysin 3) were most consistently expressed by carcinomas. Based on detection of either MMP-9 or MMP-11 mRNAs, we were able to distinguish between malignant and benign disease with a predictive accuracy of 90% with 94% sensitivity and 85% specificity. Subsequently, these results were compared with results for carcinomas of colon and lung and malignant non-Hodgkin's lymphomas (NHL). Elevated MMP-9 and TIMP-1 expression was observed in all four systems. MMP-11 characterised all carcinomas as well as carcinomas in situ but was not detectable in NHL. Our data therefore argue that there are remarkably similar patterns of specific functions involved in ECM remodelling that correlate with malignancy in different human tumours of different histogenesis. However, MMP-11 expression is a characteristic of tumours of epithelial origin that is not found in lymphoid neoplasia. Thus it suggests that MMP-11 may play a regulatory role in the invasion and metastasis of carcinomas. Images Figure 1 PMID:8645587

  14. Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer.

    PubMed

    Du, Juan; Cieslak, John A; Welsh, Jessemae L; Sibenaller, Zita A; Allen, Bryan G; Wagner, Brett A; Kalen, Amanda L; Doskey, Claire M; Strother, Robert K; Button, Anna M; Mott, Sarah L; Smith, Brian; Tsai, Susan; Mezhir, James; Goswami, Prabhat C; Spitz, Douglas R; Buettner, Garry R; Cullen, Joseph J

    2015-08-15

    The toxicity of pharmacologic ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Because pancreatic cancer cells are sensitive to H2O2 generated by ascorbate, they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacologic ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in nontumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacologic ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacologic ascorbate as a radiosensitizer in the treatment of pancreatic cancer. PMID:26081808

  15. DOK, a cell line established from human dysplastic oral mucosa, shows a partially transformed non-malignant phenotype.

    PubMed

    Chang, S E; Foster, S; Betts, D; Marnock, W E

    1992-12-01

    There are many reports of cell lines being established from human oral squamous-cell carcinomas but apparently none of cell lines from dysplastic or "pre-malignant" oral mucosa. We describe here the isolation and characterization of a cell line, DOK (dysplastic oral keratinocyte), from a piece of dorsal tongue showing epithelial dysplasia. The tissue was obtained from a 57-year-old man who was a heavy smoker prior to the appearance of a white patch on his tongue. Eleven years later a squamous-cell carcinoma developed at the site and was excised. Subsequently the remaining dysplasia was removed, and it was from a piece of this that the primary cell cultures which eventually gave rise to DOK were initiated. The DOK line has been single-cell cloned and is apparently immortal. It grows in the absence of 3T3 feeder cells, is anchorage-dependent for growth and is non-tumorigenic in nude mice. The keratin profile of the cells shows a striking similarity to that of the original tongue dysplasia. The karyotype of DOK is aneuploid and complex. By PCR and oligonucleotide hybridization on dot blots, codons 12, 13 and 61 of Ha-ras, Ki-ras and N-ras in DNA extracted from DOK cells were shown to be normal. Immunohistochemistry showed no abnormal, i.e., elevated expression of the onco-suppressor protein p53. Because of its origin and partially transformed phenotype, DOK presents an opportunity to study whether specific carcinogens associated with tobacco and areca nut can cause malignant transformation of oral keratinocytes in vitro. PMID:1459732

  16. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    SciTech Connect

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  17. Prognostic Role of MicroRNA-200c-141 Cluster in Various Human Solid Malignant Neoplasms

    PubMed Central

    Li, Xiao-yang; Li, Hui; Bu, Jie; Xiong, Liang; Guo, Hong-bin; Liu, Li-hong; Xiao, Tao

    2015-01-01

    The miR-200 family has emerged recently as a noticeable marker for predicting cancer prognosis and tumor progression. We aimed to review the evidence of miR-200c-141 genomic cluster as prognostic biomarkers in cancers. The results suggested that high level of miR-200c had no significant impact on OS (HR = 1.14 [0.771.69], P = 0.501) and DFS/PFS (HR = 0.72 [0.451.14], P = 0.161). Stratified analyses revealed that high miR-200c expression was significantly related to poor OS in serum/plasma (HR = 2.12 [1.622.77], P = 0.000) but not in tissues (HR = 0.89 [0.581.37], P = 0.599). High miR-200c expression was significantly associated with favorable DFS/PFS in tissues (HR = 0.56 [0.430.73], P = 0.000) but worse DFS/PFS in serum/plasma (HR = 1.90 [1.083.36], P = 0.027). For miR-141, we found that high miR-141 expression predicted no significant impact on OS (HR = 1.18 [0.741.88], P = 0.482) but poor DFS/PFS (HR = 1.11 [1.041.20], P = 0.003). Similarly, subgroup analyses showed that high miR-141 expression predicted poor OS in serum/plasma (HR = 4.34 [2.308.21], P = 0.000) but not in tissues (HR = 1.00 [0.921.09], P = 0.093). High miR-141 expression was significantly associated with worse DFS/PFS in tissues (HR = 1.12 [1.041.20], P = 0.002) but not in serum/plasma (HR = 0.90 [0.441.83], P = 0.771). Our findings indicated that, compared to their tissue counterparts, the expression level of miR-200c and miR-141 in peripheral blood may be more effective for monitoring cancer prognosis. High miR-141 expression was better at predicting tumor progression than survival for malignant tumors. PMID:26556949

  18. T24 human bladder carcinoma cells with activated Ha-ras protooncogene: Nontumorigenic cells susceptible to malignant transformation with carcinogen

    SciTech Connect

    Senger, D.R.; Perruzzi, C.A.; Ali, I.U. )

    1988-07-01

    A comparative analysis of T24 human bladder carcinoma cells and N-methyl-N{prime}-nitro-N-nitrosoguanidine (MeNNG)-transformed derivatives (MeNNG-T24) revealed the following: (i) The presence of an activated c-Ha-ras gene (in the absence of the normal allele) is sufficient to confer upon T24 cells a tumor-associated phenotype. (ii) MeNNG-transformed T24 cells not only acquire tumor-associated (in vitro) traits (growth in soft agar and rhodamine retention) but, are highly tumorigenic in nude mice. (iii) It is possible to render T24 cells tumorigenic by chemical transformation; therefore, the reason that T24 cells lack tumorigenicity is not because of possible incompatibilities between these cells and nude mice but, in fact, because T24 cells are not malignant. (iv) The loss of expression of a transformation-related M{sub r} 67,000 phosphoprotein by MeNNG-T24 cells after explanation of these cells from nude mouse tumors to in vitro culture indicates that culture conditions can be responsible for rapid phenotypic conversion of human tumor cell lines.

  19. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans

    PubMed Central

    Bauer, Alexander T.; Suckau, Jan; Frank, Kathrin; Desch, Anna; Goertz, Lukas; Wagner, Andreas H.; Hecker, Markus; Goerge, Tobias; Umansky, Ludmila; Beckhove, Philipp; Utikal, Jochen; Gorzelanny, Christian; Diaz-Valdes, Nancy; Umansky, Viktor

    2015-01-01

    Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation. PMID:25977583

  20. T24 human bladder carcinoma cells with activated Ha-ras protooncogene: nontumorigenic cells susceptible to malignant transformation with carcinogen.

    PubMed Central

    Senger, D R; Perruzzi, C A; Ali, I U

    1988-01-01

    A comparative analysis of T24 human bladder carcinoma cells and N-methyl-N'-nitro-N-nitrosoguanidine (MeNNG)-transformed derivatives (MeNNG-T24 cells) revealed the following: (i) The presence of an activated c-Ha-ras gene (in the absence of the normal allele) is insufficient to confer upon T24 cells a tumor-associated phenotype. (ii) MeNNG-transformed T24 cells not only acquire tumor-associated (in vitro) traits (growth in soft agar and rhodamine retention) but, are highly tumorigenic in nude mice. (iii) It is possible to render T24 cells tumorigenic by chemical transformation; therefore, the reason that T24 cells lack tumorigenicity is not because of possible incompatibilities between these cells and nude mice but, in fact, because T24 cells are not malignant. (iv) The loss of expression of a transformation-related Mr 67,000 phosphoprotein by MeNNG-T24 cells after explantation of these cells from nude mouse tumors to in vitro culture indicates that culture conditions can be responsible for rapid phenotypic conversion of human tumor cell lines. Images PMID:3293049

  1. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    SciTech Connect

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.

  2. Malignancies, Particularly B-Cell Lymphomas, Are a Frequent Cause of Mortality in Human Immunodeficiency Virus-1 Patients Despite Highly Active Antiretroviral Therapy

    PubMed Central

    Griffin, Daniel O.; Metzger, Michael; Poeth, Kaitlin; Deng, Kathy; Dharsee, Arif; Rico, Juan Carlos; McGowan, Joseph

    2015-01-01

    Human immunodeficiency virus (HIV)-1-infected individuals are affected by diseases at rates above those of their HIV-negative peers despite the increased life expectancy of the highly active antiretroviral therapy era. We followed a cohort of approximately 2000 HIV-1-infected patients for 5 years. The most frequent cause of death in this HIV-1-infected cohort was malignancy, with 39% of all classified deaths due to cancer. Among the cancer deaths, B-cell lymphomas were the most commonly seen malignancy, representing 34% of all cancer deaths. These lymphomas were very aggressive with a median survival of <2 months from time of diagnosis. PMID:26566539

  3. Malignancies, Particularly B-Cell Lymphomas, Are a Frequent Cause of Mortality in Human Immunodeficiency Virus-1 Patients Despite Highly Active Antiretroviral Therapy.

    PubMed

    Griffin, Daniel O; Metzger, Michael; Poeth, Kaitlin; Deng, Kathy; Dharsee, Arif; Rico, Juan Carlos; McGowan, Joseph

    2015-12-01

    Human immunodeficiency virus (HIV)-1-infected individuals are affected by diseases at rates above those of their HIV-negative peers despite the increased life expectancy of the highly active antiretroviral therapy era. We followed a cohort of approximately 2000 HIV-1-infected patients for 5 years. The most frequent cause of death in this HIV-1-infected cohort was malignancy, with 39% of all classified deaths due to cancer. Among the cancer deaths, B-cell lymphomas were the most commonly seen malignancy, representing 34% of all cancer deaths. These lymphomas were very aggressive with a median survival of <2 months from time of diagnosis. PMID:26566539

  4. Bipolar cellular morphology of malignant melanoma in unstained human melanoma skin tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Wenkai; Yang, Chia-Yi; Yang, Haw

    2009-03-01

    Microstructures of unstained human melanoma skin tissues have been examined by multimodal nonlinear optical microscopy. The polarized shape of the individual melanoma cell can be readily recognized-a phenotype that has been identified in laboratory cultures as characteristic of proliferating melanocytes but has not been demonstrated in clinical instances. The results thus provide snapshots of invading melanoma cells in their native environment and suggest a practical means of connecting in vitro laboratory studies to in vivo processes.

  5. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update

    PubMed Central

    Sultana, Misbah; Qazi, Aamer; Qazi, Mahmood Husain; Parveen, Gulshan; Waquar, Sulayman; Ashraf, Abdul Basit; Rasool, Mahmood

    2016-01-01

    Cancer originates from genetic mutations accumulation. Cancer stem cells have been depicted as tumorigenic cells that can differentiate and self-renew. Cancer stem cells are thought to be resistant to conventional therapy like chemotherapy and radiation therapy. Radiation therapy and chemotherapy damage carcinomic DNA cells. Because of the ability of cancer stem cells to self-renew and reproduce malignant tumors, they are the subject of intensive research. In this review, CSCs radioresistant mechanisms which include DNA damage response and natural radiosensitizers have been summed up. Reactive oxygen species play an important role in different physiological processes. ROS scavenging is responsible for regulation of reactive oxygen species generation. A researcher has proved that microRNAs regulate tumor radiation resistance. Ionizing radiation does not kill the cancer cells; rather, IR just slows down the signs and symptoms. Ionizing radiation damages DNA directly/indirectly. IR is given mostly in combination with other chemo/radiotherapies. We briefly described here the behavior of cancer stem cells and radioresistance therapies in cancer treatment. To overcome radioresistance in treatment of cancer, strategies like fractionation modification, treatment in combination, inflammation modification, and overcoming hypoxic tumor have been practiced. Natural radiosensitizers, for example, curcumin, genistein, and quercetin, are more beneficial than synthetic compounds. PMID:26998418

  6. Human BK PolyomavirusThe Potential for Head and Neck Malignancy and Disease

    PubMed Central

    Burger-Calderon, Raquel; Webster-Cyriaque, Jennifer

    2015-01-01

    Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future. PMID:26184314

  7. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease.

    PubMed

    Burger-Calderon, Raquel; Webster-Cyriaque, Jennifer

    2015-01-01

    Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future. PMID:26184314

  8. Repair of chromosome damage induced by X-irradiation during G/sub 2/ phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G/sub 2/ phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or ..beta..-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G/sub 2/ phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H/sub 2/O/sub 2/, or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G/sub 2/ phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  9. The human Bosniak model applied to a cat with renal cystadenoma. A classification to differentiate benign and malignant cystic renal masses via computed tomography and ultrasound.

    PubMed

    Baloi, P; Del Chicca, F; Ruetten, M; Gerber, B

    2015-01-01

    A 13-year-old domestic shorthair cat was presented with weight loss and azotemia. Abdominal ultrasound revealed a large cystic space- occupying lesion with multiple septae in the left kidney. A core needle biopsy yielded a renal cystadenoma originating from the epithelial cells. This report describes the clinical, ultrasonographic and computed tomographic features and the growth progression of a renal cystadenoma. We describe the first attempt to apply the human Bosniak classification to a cat with renal cystic neoplasia to differentiate between benign and malignant lesions. Cystadenoma should be a differential diagnosis in cases of renal cystic space-occupying lesions. Other differentials, imaging features to differentiate benign and malignant lesions and the risk of malignant transformation will be discussed. PMID:25599531

  10. Knowledge of human papillomavirus and its association with head and neck benign and malignant lesions in a group of dental patients in pakistan.

    PubMed

    Gichki, Abdul Samad; Buajeeb, Waranun; Doungudomdacha, Sombhun; Khovidhunkit, Siribang-On Pibooniyom

    2015-01-01

    Human papillomaviruses (HPVs) remain a serious world health problem due to their association with cervical and head and neck cancers. While over 100 HPV types have been identified, only a few subtypes are associated with malignancies. HPV 16 and 18 are the most prevalent oncogenic types in head and neck cancers. Although it has been proven that some subsets of benign and malignant head and neck lesions are associated with HPV, the general population have very little awareness and knowledge of their association with HPV. Therefore, the purpose of this study was to determine the knowledge of HPV and its links with head and neck benign and malignant lesions in a group of Pakistani dental patients who attended the Dental Department of the Sandeman provincial hospital in Quetta, Pakistan. One hundred and ninety-two patients were recruited and requested to answer a questionnaire. It was revealed that there was a low level of knowledge about HPV and its association with head and neck benign and malignant lesions among the participants. This result suggested that more education regarding the relationship of HPV in inducing head and neck benign and malignant lesions is required in this group of patients. PMID:25743835

  11. Distinct Host Cell Fates for Human Malignant Melanoma Targeted by Oncolytic Rodent Parvoviruses

    PubMed Central

    Vollmers, Ellen M.; Tattersall, Peter

    2013-01-01

    The rodent parvoviruses are known to be oncoselective, and lytically infect many transformed human cells. Because current therapeutic regimens for metastatic melanoma have a low response rates and have little effect on improving survival, this disease is a prime candidate for novel approaches to therapy, including oncolytic parvoviruses. Screening of low-passage, patient-derived melanoma cell lines for multiplicity-dependent killing by a panel of five rodent parvoviruses, identified LuIII as the most melanoma-lytic. This property was mapped to the LuIII capsid gene, and an efficiently melanomatropic chimeric virus shown to undergo three types of interaction with primary human melanoma cells: 1) complete lysis of cultures infected at very low multiplicities; 2) acute killing resulting from viral protein synthesis and DNA replication, without concomitant expansion of the infection, due to failure to export progeny virions efficiently; or 3) complete resistance that operates at an intracellular step following virion uptake, but preceding viral transcription. PMID:24074565

  12. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors.

    PubMed

    Leten, Cindy; Trekker, Jesse; Struys, Tom; Roobrouck, Valerie D; Dresselaers, Tom; Vande Velde, Greetje; Lambrichts, Ivo; Verfaillie, Catherine M; Himmelreich, Uwe

    2016-01-01

    Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents. PMID:26880961

  13. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    PubMed Central

    Leten, Cindy; Trekker, Jesse; Struys, Tom; Roobrouck, Valerie D.; Dresselaers, Tom; Vande Velde, Greetje; Lambrichts, Ivo; Verfaillie, Catherine M.; Himmelreich, Uwe

    2016-01-01

    Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents. PMID:26880961

  14. Malignant human cell transformation of Marcellus Shale gas drilling flow back water.

    PubMed

    Yao, Yixin; Chen, Tingting; Shen, Steven S; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350

  15. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck; Bang, Seung Min; Park, Seung Woo; Song, Si Young

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment in view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.

  16. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    SciTech Connect

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  17. MicroRNA-495 suppresses human renal cell carcinoma malignancy by targeting SATB1

    PubMed Central

    Lv, Cai; Bai, Zhiming; Liu, Zhenxiang; Luo, Pengcheng; Zhang, Jie

    2015-01-01

    Deregulated expression of miRNAs is related to progression and initiation of human cancers. Although miR-495 has identified in various tumors, its expression and function in renal cell carcinoma (RCC) is still unknown. In this study, we found that the expression of miR-495 was downregulated in RCC cell lines and tissues. Ectopic expression of miR-495 induced G0/G1 phase arrest and suppressed cell proliferation and migration in RCC cell lines. We further validated SATB1 was a direct target of miR-495 in RCC. In addition, re-expression of SATB1 reversed the miR-495-induced inhibition of cell proliferation and migration. These data suggest that miR-495 functions as a tumor suppressor and may be a promising therapeutic target in RCC in the future. PMID:26692942

  18. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  19. Effect of single-dose x irradiation on the growth curves of a human malignant melanoma transplanted into nude mice

    SciTech Connect

    Spang-Thomsen, M.; Visfeldt, J.; Nielsen, A.

    1981-01-01

    A human malignant melanoma transplanted into nude mice was exposed to single-dose x irradiation. Experimental growth data described mathematically according to a transformed Gompertz function were used to determine the effect of irradiation on growth delay, growth rate, and tumor shrinkage. The radiation-induced changes in the histology of the tumors were also described. The results showed that irradiation induced a dose-dependent growth delay; this parameter was therefore found suitable for the assessment of relative therapeutic effect. The treatment also induced a dose-dependent reduction in growth rate during regrowth. As a result of this effect on growth rate, extrapolation of tumor shrinkage to the time of treatment became directly misleading as a measure of the effect of the treatment. From this it can be deduced that in therapeutic studies where treatment induces nonparallel posttherapeutic growth curves, growth delay for various tumors and therapies cannot be compared directly. The transformed Gompertz function proved to be extremely well suited for evaluating these conditions.

  20. Dasatinib synergizes with JSI-124 to inhibit growth and migration and induce apoptosis of malignant human glioma cells

    PubMed Central

    Premkumar, Daniel R.; Jane, Esther P.; Agostino, Naomi R.; Scialabba, Joseph L.; Pollack, Ian F.

    2010-01-01

    Background: Src family kinases (SFK) collectively regulate a variety of cellular functions in many cancer types, including proliferation, invasion, motility, survival, differentiation, and angiogenesis. Although Dasatinib (BMS-354825), an ATP-competitive, small molecule tyrosine kinase inhibitor, suppresses the activity of SFKs at nanomolar concentrations, IC50 values for antiproliferative effects in glioma cell lines were well above the clinically achievable range, suggesting the need to interfere with other components of receptor-induced downstream signaling in order to achieve an optimal therapeutic effect. Materials and Methods: The cytotoxic effects of combining Src and STAT3 inhibition on glioma cell lines were evaluated using assays to measure cell proliferation, apoptosis and migration. Western blotting and immunocytochemistry was used to monitor its effects on cell signaling and morphology. Results: Silencing Src and STAT3 expression each partially inhibited cell proliferation and migration. In addition, JSI-124 significantly enhanced the efficacy of dasatinib in vitro. Combination of dasatinib and JSI-124 achieved significant inhibition of migration in all cell lines, which correlated with the inhibition of Src and downstream mediators of adhesion (e.g. focal adhesion kinase). Cells exposed to dasatinib and JSI-124 exhibited morphological changes that were consistent with an upstream role for Src in regulating focal adhesion complexes. Conclusions: Targeting the Src and STAT pathways may contribute to the treatment of cancers that demonstrate increased levels of these signaling mediators, including malignant human glioma. Clinical studies in these tumor types are warranted. PMID:20808823

  1. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2

    PubMed Central

    Li, Haiyan; An, Jiahui; Wu, Mengying; Zheng, Qidi; Gui, Xin; Li, Tianming; Pu, Hu; Lu, Dongdong

    2015-01-01

    Long non-coding RNA HOTAIR predicts negative tumor prognosis and exhibits oncogenic activity. Herein, we demonstrate HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Mechanistically, HOTAIR reduces the recuritment of the CREB, P300, RNA polII onto the SETD2 promoter region that inhibits SETD2 expression and its phosphorylation. Thereby, the SETD2 binding capacity to substrate histone H3 is weakened, triggering a reduction of trimethylation on histone H3 thirty-sixth lysine, and thereby the H3K36me3–hMSH2-hMSH6-SKP2 complex is also decreased. Strikingly, the complex occupancy on chromosome is depressed, preventing from mismatch DNA repair. While reducing the degradation capacity of Skp2 for aging histone H3 bound to damaged DNA, the aging histone repair is impaired. Furthermore, that the damaged DNA escaped to repair can causes microsatellite instability(MSI) and abnormal expression of cell cycle related genes that may trigger the hepatocarcinogenesis. This study provides evidence for HOTAIR to promote tumorigenesis via downregulating SETD2 in liver cancer stem cells. PMID:26172293

  2. Preferential cytotoxicity of bortezomib toward highly malignant human liposarcoma cells via suppression of MDR1 expression and function.

    PubMed

    Hu, Yamei; Wang, Lingxian; Wang, Lu; Wu, Xuefeng; Wu, Xudong; Gu, Yanhong; Shu, Yongqian; Sun, Yang; Shen, Yan; Xu, Qiang

    2015-02-15

    Liposarcoma is the most common soft tissue sarcoma with a high risk of relapse. Few therapeutic options are available for the aggressive local or metastatic disease. Here, we report that the clinically used proteasome inhibitor bortezomib exhibits significantly stronger cytotoxicity toward highly malignant human liposarcoma SW872-S cells compared with its parental SW872 cells, which is accompanied by enhanced activation of apoptotic signaling both in vitro and in vivo. Treatment of cells with Jun-N-terminal kinase (JNK) inhibitor SP60015 or the translation inhibitor cycloheximide ameliorated this enhanced apoptosis. Bortezomib inhibited MDR1 expression and function more effectively in SW872-S cells than in SW872 cells, indicating that the increased cytotoxicity relies on the degree of proteasome inhibition. Furthermore, the pharmacological or genetic inhibition of sarco/endoplasmic reticulum calcium-ATPase (SERCA) 2, which is highly expressed in SW872-S cells, resulted in partial reversal of cell growth inhibition and increase of MDR1 expression in bortezomib-treated SW872-S cells. These results show that bortezomib exhibits preferential cytotoxicity toward SW872-S cells possibly via highly expressed SERCA2-associated MDR1 suppression and suggest that bortezomib may serve as a potent agent for treating advanced liposarcoma. PMID:25576094

  3. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    SciTech Connect

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  4. Health Disparities in the Immunoprevention of Human Papillomavirus Infection and Associated Malignancies.

    PubMed

    Bakir, Amira H; Skarzynski, Martin

    2015-01-01

    Human papillomavirus (HPV) causes roughly 1.6% of the plus 1.6 million cases of cancer that are diagnosed in the United States each year. Despite the proven safety and efficacy of available vaccines, HPV remains the most common sexually transmitted infection. Underlying the high prevalence of HPV infection is the poor adherence to the Centers for Disease Control recommendation to vaccinate all 11- to 12-year-old males and females. In fact, only about 38 and 14% of eligible females and males, respectively, receive the complete, three-dose immunization. The many factors associated with missed HPV vaccination opportunities - including race, age, family income, and patient education - contribute to widespread disparities in vaccine completion and related health outcomes. Beyond patient circumstance, however, research indicates that the rigor and consistency of recommendation by primary care providers also plays a significant role in uptake of HPV immunization. Health disparities data are of vital importance to HPV vaccination campaigns because they can provide insight into how to address current problems and allocate limited resources where they are most needed. Furthermore, even modest gains in populations with low vaccination rates may yield great benefits because HPV immunization has been shown to provide herd immunity, indirect protection for non-immunized individuals achieved by limiting the spread of an infectious agent through a population. However, the impact of current HPV vaccination campaigns is hindered by stagnant immunization rates, which remain far below target levels despite a slow overall increase. Furthermore, gains in immunization are not equally distributed across gender, age, demographic, and socioeconomic divisions within the recommended group of vaccine recipients. To achieve the greatest impact, public health campaigns should focus on improving immunization coverage where it is weakest. They should also explore more subtle but potentially significant determinants of HPV vaccine initiation and completion, such as the attitudes of parents and healthcare providers and factors that exacerbate HPV-related health outcomes, including smoking and human immunodeficiency virus-mediated immunosuppression. Optimizing the efficacy of vaccination campaigns will require a health disparities approach that both identifies and remedies the underlying causes of population differences in HPV vaccination. PMID:26734596

  5. Health Disparities in the Immunoprevention of Human Papillomavirus Infection and Associated Malignancies

    PubMed Central

    Bakir, Amira H.; Skarzynski, Martin

    2015-01-01

    Human papillomavirus (HPV) causes roughly 1.6% of the plus 1.6 million cases of cancer that are diagnosed in the United States each year. Despite the proven safety and efficacy of available vaccines, HPV remains the most common sexually transmitted infection. Underlying the high prevalence of HPV infection is the poor adherence to the Centers for Disease Control recommendation to vaccinate all 11- to 12-year-old males and females. In fact, only about 38 and 14% of eligible females and males, respectively, receive the complete, three-dose immunization. The many factors associated with missed HPV vaccination opportunities – including race, age, family income, and patient education – contribute to widespread disparities in vaccine completion and related health outcomes. Beyond patient circumstance, however, research indicates that the rigor and consistency of recommendation by primary care providers also plays a significant role in uptake of HPV immunization. Health disparities data are of vital importance to HPV vaccination campaigns because they can provide insight into how to address current problems and allocate limited resources where they are most needed. Furthermore, even modest gains in populations with low vaccination rates may yield great benefits because HPV immunization has been shown to provide herd immunity, indirect protection for non-immunized individuals achieved by limiting the spread of an infectious agent through a population. However, the impact of current HPV vaccination campaigns is hindered by stagnant immunization rates, which remain far below target levels despite a slow overall increase. Furthermore, gains in immunization are not equally distributed across gender, age, demographic, and socioeconomic divisions within the recommended group of vaccine recipients. To achieve the greatest impact, public health campaigns should focus on improving immunization coverage where it is weakest. They should also explore more subtle but potentially significant determinants of HPV vaccine initiation and completion, such as the attitudes of parents and healthcare providers and factors that exacerbate HPV-related health outcomes, including smoking and human immunodeficiency virus-mediated immunosuppression. Optimizing the efficacy of vaccination campaigns will require a health disparities approach that both identifies and remedies the underlying causes of population differences in HPV vaccination. PMID:26734596

  6. Search for new and novel chemotherapeutics for the treatment of human malignancies.

    PubMed

    Kamal, Ahmed; Azeeza, Shaik; Bharathi, E Vijaya; Malik, M Shaheer; Shetti, Rajesh V C R N C

    2010-05-01

    One of the hallmarks of cancer is the uncontrolled cell proliferation which causes more deaths among the human diseases throughout the globe. One in eight deaths worldwide are due to cancer, it is the second and third leading cause of death in economically developed and developing countries, respectively. As it is caused by both external and internal factors, a balanced approach to cancer control includes prevention, early detection, and effective treatment. In the treatment of cancer, chemotherapy is one of the practical methods and is widely used employing drugs that can destroy cancer cells by impeding their growth and reproduction. Despite the great strides made in the treatment of cancer over the past 50 years, it continues to be a major health concern and therefore, extensive efforts have been devoted to search for new scaffolds to develop chemotherapeutics. In this perspective, over the past two decades from this laboratory extensive efforts have been made in the development of new chemotherapeutic agents for the treatment of cancer. In this review, glimpses on types of current chemotherapeutic agents based on their action of inhibition and the new molecules that are being developed based on the scaffolds such as pyrrolo[2,1-c][1,4]benzodiazepines, podophyllotoxins, benzothiadiazine 1,1-dioxides, naphthalimides and monastrol across the world as well as in this laboratory have been articulated. PMID:20370699

  7. Rabbit antiserum to human thymocyte membranes: specificity for normal and malignant T-lymphocytes.

    PubMed

    Gross, N; Bron, C

    1978-08-01

    An antiserum was obtained by immunization of rabbits with human thymocyte membrane fractions. After appropriate absorptions, the antiserum was shown to detect specifically a population of T-cells. When tested by complement-mediated cytotoxicity the antiserum lysed 95% of thymocytes, 65% of normal PBL and 45% of tonsillar lymphocytes. It was also cytotoxic for three different T-cell lines (MOLT-4, CCRF-CEM and CCRF-HSB-2). When peripheral or tonsillar lymphocytes were separated into populations enriched in B- and T-cells, the percentage of cells lysed by the antiserum correlated well with the proportion of E-rosetting cells. Treatment of PBL with the antiserum and complement resulted in an increase of SmIg-positive B-cells in the residual cell fraction, which could no longer form E-rosettes. Treatment of PBL with the antiserum alone completely inhibited the E-rosette formation. The cytotoxic index on PBL from patients with various lymphoid disorders always correlated with the proportion of T-cells as assessed by E-rosette formation. Finally, the absorptive capacity of thymocytes for the antiserum was ten times higher as compared to that of PBL or tonsil cells. PMID:309811

  8. Rabbit antiserum to human thymocyte membranes: specificity for normal and malignant T-lymphocytes.

    PubMed Central

    Gross, N; Bron, C

    1978-01-01

    An antiserum was obtained by immunization of rabbits with human thymocyte membrane fractions. After appropriate absorptions, the antiserum was shown to detect specifically a population of T-cells. When tested by complement-mediated cytotoxicity the antiserum lysed 95% of thymocytes, 65% of normal PBL and 45% of tonsillar lymphocytes. It was also cytotoxic for three different T-cell lines (MOLT-4, CCRF-CEM and CCRF-HSB-2). When peripheral or tonsillar lymphocytes were separated into populations enriched in B- and T-cells, the percentage of cells lysed by the antiserum correlated well with the proportion of E-rosetting cells. Treatment of PBL with the antiserum and complement resulted in an increase of SmIg-positive B-cells in the residual cell fraction, which could no longer form E-rosettes. Treatment of PBL with the antiserum alone completely inhibited the E-rosette formation. The cytotoxic index on PBL from patients with various lymphoid disorders always correlated with the proportion of T-cells as assessed by E-rosette formation. Finally, the absorptive capacity of thymocytes for the antiserum was ten times higher as compared to that of PBL or tonsil cells. PMID:309811

  9. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue.

    PubMed Central

    Nagle, R. B.; Hao, J.; Knox, J. D.; Dalkin, B. L.; Clark, V.; Cress, A. E.

    1995-01-01

    The progression of prostate carcinoma may be influenced by the biochemical nature of the basal lamina surrounding the primary carcinoma cells. As a first step toward understanding this process, the composition and structure of the basal lamina in normal prostate, prostatic intraepithelial neoplasia, and human carcinoma were determined. In addition, a comparison was made between the attachments of the normal basal cell to its underlying basal lamina and those made by primary prostate carcinoma. The normal basal cells form both focal adhesions and hemidesmosomal-like structures as observed by transmission electron microscopy. The normal basal cells exhibited a polarized distribution of hemidesmosomal associated proteins including BP180, BP230, HD1, plectin, laminin-gamma 2(B2t), collagen VII, and the corresponding integrin laminin receptors alpha 6 beta 1 and alpha 6 beta 4. The expression and distribution pattern of these proteins were retained in the prostate intraepithelial neoplasia lesions. In contrast, the carcinoma cells uniformly lacked hemidesmosomal structures, the integrin alpha 6 beta 4, BP180, laminin-gamma 2 (B2t), and collagen VII but did express BP230 (30%), plectin, HD1 (15%), and the integrin laminin receptors alpha 3 beta 1 and alpha 6 beta 1. These results suggest that, although a detectable basal lamina structure is present in carcinoma, its composition and cellular attachments are abnormal. The loss of critical cellular attachments may play a role in influencing the progression potential of prostate carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7778688

  10. New pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells.

    PubMed

    Netto, Chaquip D; da Silva, Alcides J M; Salustiano, Eduardo J S; Bacelar, Thiago S; Ria, Ingred G; Cavalcante, Moises C M; Rumjanek, Vivian M; Costa, Paulo R R

    2010-02-15

    A new pterocarpanquinone (5a) was synthesized through a palladium catalyzed oxyarylation reaction and was transformed, through electrophilic substitution reaction, into derivatives 5b-d. These compounds showed to be active against human leukemic cell lines and human lung cancer cell lines. Even multidrug resistant cells were sensitive to 5a, which presented low toxicity toward peripheral blood mononuclear cells (PBMC) cells and decreased the production of TNF-alpha by these cells. In the laboratory these pterocarpanquinones were reduced by sodium dithionite in the presence of thiophenol at physiological pH, as NAD(P)H quinone oxidoredutase-1 (NQO1) catalyzed two-electron reduction, and the resulting hydroquinone undergo structural rearrangements, leading to the formation of Michael acceptors, which were intercepted as adducts of thiophenol. These results suggest that these compounds could be activated by bioreduction. PMID:20117936

  11. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer. PMID:23978847

  12. Household Chemical Exposures and the Risk of Canine Malignant Lymphoma, a Model for Human Non-Hodgkins Lymphoma

    PubMed Central

    Takashima-Uebelhoer, Biki B.; Barber, Lisa G.; Zagarins, Sofija E.; Procter-Gray, Elizabeth; Gollenberg, Audra L.; Moore, Antony S.; Bertone-Johnson, Elizabeth R.

    2011-01-01

    Background Epidemiologic studies of companion animals offer an important opportunity to identify risk factors for cancers in animals and humans. Canine malignant lymphoma (CML) has been established as a model for non-Hodgkins lymphoma (NHL). Previous studies have suggested that exposure to environmental chemicals may relate to development of CML. Methods We assessed the relation of exposure to flea and tick control products and lawn-care products and risk of CML in a case-control study of dogs presented to a tertiary-care veterinary hospital (20002006). Cases were 263 dogs with biopsy-confirmed CML. Controls included 240 dogs with benign tumors and 230 dogs undergoing surgeries unrelated to cancer. Dog owners completed a 10-page questionnaire measuring demographic, environmental, and medical factors. Results After adjustment for age, weight, and other factors, use of specific lawn care products was associated with greater risk of CML. Specifically, the use of professionally applied pesticides was associated with a significant 70% higher risk of CML (odds ratio(OR)=1.7; 95% confidence interval (CI)=1.12.7). Risk was also higher in those reporting use of self-applied insect growth regulators (OR = 2.7; 95% CI=1.16.8). The use of flea and tick control products was unrelated to risk of CML. Conclusions Results suggest that use of some lawn care chemicals may increase the risk of CML. Additional analyses are needed to evaluate whether specific chemicals in these products may be related to risk of CML, and perhaps to human NHL as well. PMID:22222006

  13. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed in vitro to carbon ions and argon ions at the HIRFL

    NASA Astrophysics Data System (ADS)

    Jing, Xigang; Li, Wenjian; Wang, Zhuanzi; Wei, Wei; Guo, Chuanling; Lu, Dong; Yang, Jianshe

    2009-05-01

    Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with ?-rays, 12C 6+ and 36Ar 18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to ?-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keV?m -112C 6+ ions, and 2.9 for both of the two cell lines of 512 keV?m -136Ar 18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.

  14. Local interstitial delivery of z-butylidenephthalide by polymer wafers against malignant human gliomas

    PubMed Central

    Harn, Horng-Jyh; Lin, Shinn-Zong; Lin, Po-Cheng; Liu, Cyong-Yue; Liu, Po-Yen; Chang, Li-Fu; Yen, Ssu-Yin; Hsieh, Dean-Kuo; Liu, Fu-Chen; Tai, Dar-Fu; Chiou, Tzyy-Wen

    2011-01-01

    We have shown that the natural compound z-butylidenephthalide (Bdph), isolated from the chloroform extract of Angelica sinensis, has antitumor effects. Because of the limitation of the blood-brain barrier, the Bdph dosage required for treatment of glioma is relatively high. To solve this problem, we developed a local-release system with Bdph incorporated into a biodegradable polyanhydride material, p(CPP-SA; Bdph-Wafer), and investigated its antitumor effects. On the basis of in vitro release kinetics, we demonstrated that the Bdph-Wafer released 50% of the available Bdph by the sixth day, and the release reached a plateau phase (90% of Bdph) by the 30th day. To investigate the in situ antitumor effects of the Bdph-Wafer on glioblastoma multiforme (GBM), we used 2 xenograft animal modelsF344 rats (for rat GBM) and nude mice (for human GBM)which were injected with RG2 and DBTRG-05MG cells, respectively, for tumor formation and subsequently treated subcutaneously with Bdph-Wafers. We observed a significant inhibitory effect on tumor growth, with no significant adverse effects on the rodents. Moreover, we demonstrated that the antitumor effect of Bdph on RG2 cells was via the PKC pathway, which upregulated Nurr77 and promoted its translocation from the nucleus to the cytoplasm. Finally, to study the effect of the interstitial administration of Bdph in cranial brain tumor, Bdph-Wafers were surgically placed in FGF-SV40 transgenic mice. Our Bdph-Wafer significantly reduced tumor size in a dose-dependent manner. In summary, our study showed that p(CPP-SA) containing Bdph delivered a sufficient concentration of Bdph to the tumor site and effectively inhibited the tumor growth in the glioma. PMID:21565841

  15. Connexin 30 expression inhibits growth of human malignant gliomas but protects them against radiation therapy

    PubMed Central

    Artesi, Maria; Kroonen, Jerome; Bredel, Markus; Nguyen-Khac, Minh; Deprez, Manuel; Schoysman, Laurent; Poulet, Christophe; Chakravarti, Arnab; Kim, Hyunsoo; Scholtens, Denise; Seute, Tatjana; Rogister, Bernard; Bours, Vincent; Robe, Pierre A.

    2015-01-01

    Background Glioblastomas remain ominous tumors that almost invariably escape treatment. Connexins are a family of transmembrane, gap junction-forming proteins, some members of which were reported to act as tumor suppressors and to modulate cellular metabolism in response to cytotoxic stress. Methods We analyzed the copy number and expression of the connexin (Cx)30 gene gap junction beta-6 (GJB6), as well as of its protein immunoreactivity in several public and proprietary repositories of glioblastomas, and their influence on patient survival. We evaluated the effect of the expression of this gap junction protein on the growth, DNA repair and energy metabolism, and treatment resistance of these tumors. Results The GJB6 gene was deleted in 25.8% of 751 analyzed tumors and mutated in 15.8% of 158 tumors. Cx30 immunoreactivity was absent in 28.9% of 145 tumors. Restoration of Cx30 expression in human glioblastoma cells reduced their growth in vitro and as xenografts in the striatum of immunodeficient mice. Cx30 immunoreactivity was, however, found to adversely affect survival in 2 independent retrospective cohorts of glioblastoma patients. Cx30 was found in clonogenic assays to protect glioblastoma cells against radiation-induced mortality and to decrease radiation-induced DNA damage. This radioprotection correlated with a heat shock protein 90–dependent mitochondrial translocation of Cx30 following radiation and an improved ATP production following this genotoxic stress. Conclusion These results underline the complex relationship between potential tumor suppressors and treatment resistance in glioblastomas and single out GJB6/Cx30 as a potential biomarker and target for therapeutic intervention in these tumors. PMID:25155356

  16. Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation.

    PubMed Central

    Weller, M; Malipiero, U; Aguzzi, A; Reed, J C; Fontana, A

    1995-01-01

    The majority of human malignant glioma cells express Fas/APO-1 and are susceptible to Fas/APO-1 antibody-mediated apoptosis in vitro. The sensitivity of Fas/APO-1-positive glioma cell lines to Fas/APO-1 antibody-mediated killing correlates inversely with the constitutive expression of the antiapoptotic protooncogene bcl-2. Here we report that BCL-2 protein expression of human glial tumors in vivo correlates with malignant transformation in that BCL-2 immunoreactive glioma cells were more abundant in WHO grade III/IV gliomas than in grade I/II gliomas. Fas/APO-1 antibody-sensitive human glioma cell lines stably transfected with a murine bcl-2 cDNA acquired resistance to Fas/APO-1 antibody-mediated apoptosis. Forced expression of bcl-2 also attenuated TNF alpha-mediated cytotoxicity of glioma cell lines in the presence of actinomycin D and cycloheximide and conferred partial protection from irradiation and the cancer chemotherapy drugs, cisplatin and BCNU. Preexposure of the glioma cell lines to the cytokines, IFN gamma and TNF alpha, which sensitize for Fas/APO-1-dependent killing, partially overcame bcl-2-mediated rescue from apoptosis, suggesting that multimodality immunotherapy involving cytokines and Fas/APO-1 targeting might eventually provide a promising approach to the treatment of human malignant gliomas. Images PMID:7539458

  17. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation.

    PubMed

    Xue, Lian; Yu, Dong; Furusawa, Yoshiya; Okayasu, Ryuichi; Tong, Jian; Cao, Jianping; Fan, Saijun

    2009-11-01

    High linear energy transfer (LET) radiation shows different biological effects from low-LET radiation. The complex nature of high LET radiation-induced damage, especially the clustered DNA damage, brings about slow repair of DNA double strand breaks (DSBs), which finally lead to higher lethality and chromosome aberration. Ionizing radiation (IR) induced DNA DSBs are repaired by both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR) pathways in mammalian cells. The novel function of ataxia telangiectasia-mutated (ATM) protein is its involvement in the DSB repair of slow kinetics for "dirty" breaks rejoining by NHEJ, this suggests that ATM may play a more important role in high LET radiation-induced DNA damage. We show here that KU55933, an ATM inhibitor could distinctly lower the clonogenic survival in normal human skin fibroblast cells exposed to carbon ion radiation and dramatically impair the normal process for DSB repair. We also implicated the involvement of ATM in the two pathways of DNA DSB repair, with DNA-PKcs and Rad51 as the representative proteins. The phosphorylation of DNA-PKcs at Thr-2609 with both immunoblotting and immunofluorescent staining indicated an ATM-dependent change, while for Rad51, KU55933 pretreatment could postpone the formation of nuclear Rad51 foci. Interestingly, we also found that pretreatment with chloroquine, an ATM stimulator could protect cells from carbon ion radiation only at lower doses. For doses over 1Gy, protection was no longer observed. There was a dose-dependent increase for ATM kinase activity, with saturation at about 1Gy. Chloroquine pretreatment prior to 1Gy of carbon ion radiation did not enhance the autophosphorylation of ATM at serine 1981. The function of ATM in G2/M checkpoint arrest facilitated DSB repair in high-LET irradiation. Our results provide a possible mechanism for the direct involvement of ATM in DSB repair by high-LET irradiation. PMID:19583974

  18. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene.

    PubMed

    Pietras, R J; Poen, J C; Gallardo, D; Wongvipat, P N; Lee, H J; Slamon, D J

    1999-03-15

    The management of human breast cancer frequently includes radiation therapy as an important intervention, and improvement in the clinical efficacy of radiation is desirable. Overexpression of the HER-2 growth factor receptor occurs in 25-30% of human breast cancers and correlates with poor clinical outcome, including earlier local relapse following conservative surgery accompanied by radiation therapy. In breast cancer cells with overexpression of HER-2 receptor, recombinant humanized monoclonal antibodies (rhuMAbs) to HER-2 receptors (rhuMAb HER-2) decrease cell proliferation in vitro and reduce tumor formation in nude mice. Therapy with rhuMAb HER-2 enhances tumor sensitivity to radiation at doses of 1-5 Gy, exceeding remission rates obtained with radiation alone. This benefit is specific to cells with HER-2 overexpression and does not occur in cells without overexpression. Treatment of cells with radiation (2-4 Gy) alone provokes a marked increase in unscheduled DNA synthesis, a measure of DNA repair, but HER-2-overexpressing cells treated with a combination of rhuMAb HER-2 and radiation demonstrate a decrease of unscheduled DNA synthesis to 25-44% of controls. Using an alternate test of DNA repair, i.e., radiation-damaged or undamaged reporter DNA, we introduced a cytomegalovirus-driven beta3-galactosidase into HER-2-overexpressing breast cancer cells that had been treated with rhuMAb HER-2 or control. At 24 h posttransfection, the extent of repair assayed by measuring reporter DNA expression was high after exposure to radiation alone but significantly lower in cells treated with combined radiation and rhuMAb HER-2 therapy. To further characterize effects of rhuMAb HER-2 and the combination of antibody and radiation on cell growth, analyses of cell cycle phase distribution were performed. Antibody reduces the fraction of HER-2-overexpressing breast cancer cells in S phase at 24 and 48 h. Radiation treatment is also known to promote cell cycle arrest, predominantly at G1, with low S-phase fraction at 24 and 48 h. In the presence of rhuMAb HER-2, radiation elicits a similar reduction in S phase at 24 h, but a significant reversal of this arrest appears to begin 48 h postradiation exposure. The level of S-phase fraction at 48 h is significantly greater than that found at 24 h with the combined antibody-radiation therapy, suggesting that early escape from cell cycle arrest in the presence of antireceptor antibody may not allow sufficient time for completion of DNA repair in HER-2-overexpressing cells. Because it is well known that failure of adequate p21WAF1 induction after DNA damage is associated with failure of cell cycle arrest, we also assessed the activity of this critical mediator of the cellular response to DNA damage. The results show induction of p21WAF1 transcripts and protein product at 6, 12, and 24 h after radiation treatment; however, increased levels of p21WAF1 transcript and protein are not sustained in HER-2-overexpressing cells exposed to radiation in the presence of rhuMAb HER-2. Although transcript and protein levels increase at 6-12 h, they are both diminished by 24 h. Levels of p21WAF1 transcript and protein at 24 h are significantly lower than in cells treated by radiation without antibody. A reduction in the basal level of p21WAF1 transcript also occurred after 12-24 h exposure to antibody alone. The effect of HER-2 antibody may be related to tyrosine phosphorylation of p21WAF1 protein. Tyrosine phosphorylation of p21WAF1 is increased after treatment with radiation alone, but phosphorylation is blocked by combined treatment with antireceptor antibody and radiation. This dysregulation of p21WAF1 in HER-2-overexpressing breast cells after treatment with rhuMAb HER-2 and radiation appears to be independent of p53 expression levels but does correlate with reduced levels of mdm2 protein. (ABSTRACT TRUNCATED) PMID:10096569

  19. Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine DNA methyltransferase.

    PubMed

    Fukai, Junya; Koizumi, Fumiaki; Nakao, Naoyuki

    2014-01-01

    Temozolomide (TMZ), a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT), a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL), which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance. PMID:25111384

  20. PDGF-BB Mediates the Tropism of Human Mesenchymal Stem Cells for Malignant Gliomas

    PubMed Central

    Hata, Nobuhiro; Shinojima, Naoki; Gumin, Joy; Yong, Raymund; Marini, Frank; Andreeff, Michael; Lang, Frederick F.

    2009-01-01

    OBJECTIVE Bone marrow-derived human mesenchymal stem cells (hMSCs) are capable of localizing to gliomas after systemic delivery and can be used in glioma therapy. However, the mechanism underlying the tropism of hMSCs for gliomas remains unclear. In vitro studies suggest that platelet derived growth factor (PDGF-BB) may mediate this tropism. However, a causal role of PDGF-BB has not been demonstrated in vivo. Therefore, we tested the hypothesis that PDGF-BB mediates the attraction of hMSCs to gliomas in vitro and in vivo. METHODS & RESULTS In vitro invasion assays showed that significantly more hMSCs migrated toward glioma cells (U87 or LN229) engineered to secrete high levels of PDGF-BB compared with low-secreting gliomas. Anti-PDGF-BB-neutralizing antibody abrogated this increase in migration. Pretreatment of hMSCs with inhibitory antibodies against PDGF receptor-? also reduced hMSC migration. To demonstrate that PDGF-BB mediates the localization of hMSCs in vivo, hMSCs-Ad-Luc were injected into the carotid artery of mice harboring orthotopic 7 day old U87-PDGF-BB-high secreting or U87-PDGF-BB-low secreting xenografts and analyzed by bioluminescence imaging. Statistically significant increases in hMSCs were seen within PDGF-BB-high xenografts compared with PDGF-BB-low xenografts. To control for PDGF-BB-induced differences in tumor size and vascularity, gfp-labeled hMSCs were injected into the carotid arteries of animals harboring 4-day old PDGF-BB-high secreting xenografts or 7-day old PDGF-BB-low secreting xenografts. At these times tumors had similar size and vessel density. Statistically significant more hMSCs localized to PDGF-BB-high secreting xenografts compared with PDGF-BB-low secreting xenografts. Pretreatment of hMSCs with anti-PDGFR-?-inhibitory antibodies decreased the localization of hMSCs in this intracranial model. CONCLUSION PDGF-BB increases the attraction of hMSCs for gliomas in vitro and in vivo, and this tropism is mediated via PDGF-? receptors on hMSCs. These finding can be exploited for advancing hMSC treatment. PMID:20023545

  1. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in FEMX-I melanoma. ► Down-regulation of prominin-1 results in decreased nuclear localization of β-catenin. ► Wnt signaling as mediator of the pro-metastatic activity of prominin-1.

  2. Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation

    PubMed Central

    Egidy, Giorgia; Jul, Sophia; Boss, Philippe; Bernex, Florence; Geffrotin, Claudine; Vincent-Naulleau, Silvia; Horak, Vratislav; Sastre-Garau, Xavier; Panthier, Jean-Jacques

    2008-01-01

    Background Metastatic melanoma is a severe disease. Few experimental animal models of metastatic melanoma exist. MeLiM minipigs exhibit spontaneous melanoma. Cutaneous and metastatic lesions are histologically similar to human's. However, most of them eventually spontaneously regress. Our purpose was to investigate whether the MeLiM model could reveal markers of malignancy in human melanocytic proliferations. Results We compared the serial analysis of gene expression (SAGE) between normal pig skin melanocytes and melanoma cells from an early pulmonary metastasis of MeLiM minipigs. Tag identification revealed 55 regulated genes, including GNB2L1 which was found upregulated in the melanoma library. In situ hybridisation confirmed GNB2L1 overexpression in MeLiM melanocytic lesions. GNB2L1 encodes the adaptor protein RACK1, recently shown to influence melanoma cell lines tumorigenicity. We studied the expression of RACK1 by immunofluorescence and confocal microscopy in tissues specimens of normal skin, in cutaneous and metastatic melanoma developped in MeLiM minipigs and in human patients. In pig and human samples, the results were similar. RACK1 protein was not detected in normal epidermal melanocytes. By contrast, RACK1 signal was highly increased in the cytoplasm of all melanocytic cells of superficial spreading melanoma, recurrent dermal lesions and metastatic melanoma. RACK1 partially colocalised with activated PKC??. In pig metastases, additional nuclear RACK1 did not associate to BDNF expression. In human nevi, the RACK1 signal was low. Conclusion RACK1 overexpression detected in situ in human melanoma specimens characterized cutaneous and metastatic melanoma raising the possibility that RACK1 can be a potential marker of malignancy in human melanoma. The MeLiM strain provides a relevant model for exploring mechanisms of melanocytic malignant transformation in humans. This study may contribute to a better understanding of melanoma pathophysiology and to progress in diagnosis. PMID:18442364

  3. Malignant epignathus.

    PubMed

    Rayudu, Harijan Hanumantha; Reddy, Kilashnath; Lakshmi, Kasa; Varma, Santhosh

    2011-07-01

    Report of a neonate with a huge mass protruding from the oral cavity. The mass has originated from the base of the tongue. Successful excision and histopathological examination revealed it to be a malignant epignathus. PMID:21897571

  4. Malignant teratoma

    MedlinePLUS

    ... is often located in the front chest area (mediastinum). Most malignant teratomas can spread throughout the body, ... Diseases of the diaphragm, chest wall, pleura, and mediastinum. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  5. Malignant hyperthermia

    PubMed Central

    Rosenberg, Henry; Davis, Mark; James, Danielle; Pollock, Neil; Stowell, Kathryn

    2007-01-01

    Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stresses such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:5,000 to 1:50,000100,000 anesthesias. However, the prevalence of the genetic abnormalities may be as great as one in 3,000 individuals. MH affects humans, certain pig breeds, dogs, horses, and probably other animals. The classic signs of MH include hyperthermia to marked degree, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. Early recognition of the signs of MH, specifically elevation of end-expired carbon dioxide, provides the clinical diagnostic clues. In humans the syndrome is inherited in autosomal dominant pattern, while in pigs in autosomal recessive. The pathophysiologic changes of MH are due to uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation. Due to ATP depletion, the muscle membrane integrity is compromised leading to hyperkalemia and rhabdomyolysis. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 90 mutations have been identified in the RYR-1 gene located on chromosome 19q13.1, and at least 25 are causal for MH. Diagnostic testing relies on assessing the in vitro contracture response of biopsied muscle to halothane, caffeine, and other drugs. Elucidation of the genetic changes has led to the introduction, on a limited basis so far, of genetic testing for susceptibility to MH. As the sensitivity of genetic testing increases, molecular genetics will be used for identifying those at risk with greater frequency. Dantrolene sodium is a specific antagonist of the pathophysiologic changes of MH and should be available wherever general anesthesia is administered. Thanks to the dramatic progress in understanding the clinical manifestation and pathophysiology of the syndrome, the mortality from MH has dropped from over 80% thirty years ago to less than 5%. PMID:17456235

  6. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    SciTech Connect

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-{kappa}B), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  7. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas.

    PubMed

    Ding, Mao-Hua; Wang, Zhen; Jiang, Lei; Fu, Hua-Lin; Gao, Jie; Lin, Xian-Bin; Zhang, Chun-Lei; Liu, Zhen-Yang; Shi, Yi-Fei; Qiu, Guan-Zhong; Ma, Yue; Cui, Da-Xiang; Hu, Guo-Han; Jin, Wei-Lin

    2015-07-01

    Malignant meningiomas are a rare meningioma subtype and tend to have post-surgical recurrence. Significant endeavors have been taken to identify functional therapeutic targets to halt the growth of this aggressive cancer. We have recently discovered that RIZ1 is downregulated in high-grade meningiomas, and RIZ1 overexpression inhibits proliferation while promoting cell apoptosis of the IOMM-Lee malignant meningioma cell line. In this report, we show that the N-terminal PR domain of RIZ1 alone possessed growth-inhibitory activity and anticancer activity in primary human meningioma cells. Interestingly, the effects seem to be dependent on differential RIZ1 protein levels. Transducible TAT-RIZ1-PR protein could also inhibit meningioma tumor growth in nude mice models. We further demonstrate that PR protein exerts histone methyltransferase activity. A microarray analysis of TAT-RIZ1-PR-treated human malignant meningioma cells reveals 969 differentially expressed genes and 848 alternative splicing exons. Moreover, c-Myc and TXNIP, two putative downstream targets of H3K9 methylation, may be involved in regulating RIZ1 tumor-suppressive effects. The reciprocal relationship between RIZ1 and c-Myc was then validated in primary meningioma cells and human tumor samples. These findings provide insights into RIZ1 tumor suppression mechanisms and suggest that TAT-RIZ1-PR protein is a potential new epigenetic therapeutic agent for advanced meningiomas. PMID:25934289

  8. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.

    PubMed

    Jima, Dereje D; Zhang, Jenny; Jacobs, Cassandra; Richards, Kristy L; Dunphy, Cherie H; Choi, William W L; Au, Wing Yan; Srivastava, Gopesh; Czader, Magdalena B; Rizzieri, David A; Lagoo, Anand S; Lugar, Patricia L; Mann, Karen P; Flowers, Christopher R; Bernal-Mizrachi, Leon; Naresh, Kikkeri N; Evens, Andrew M; Gordon, Leo I; Luftig, Micah; Friedman, Daphne R; Weinberg, J Brice; Thompson, Michael A; Gill, Javed I; Liu, Qingquan; How, Tam; Grubor, Vladimir; Gao, Yuan; Patel, Amee; Wu, Han; Zhu, Jun; Blobe, Gerard C; Lipsky, Peter E; Chadburn, Amy; Dave, Sandeep S

    2010-12-01

    A role for microRNA (miRNA) has been recognized in nearly every biologic system examined thus far. A complete delineation of their role must be preceded by the identification of all miRNAs present in any system. We elucidated the complete small RNA transcriptome of normal and malignant B cells through deep sequencing of 31 normal and malignant human B-cell samples that comprise the spectrum of B-cell differentiation and common malignant phenotypes. We identified the expression of 333 known miRNAs, which is more than twice the number previously recognized in any tissue type. We further identified the expression of 286 candidate novel miRNAs in normal and malignant B cells. These miRNAs were validated at a high rate (92%) using quantitative polymerase chain reaction, and we demonstrated their application in the distinction of clinically relevant subgroups of lymphoma. We further demonstrated that a novel miRNA cluster, previously annotated as a hypothetical gene LOC100130622, contains 6 novel miRNAs that regulate the transforming growth factor-? pathway. Thus, our work suggests that more than a third of the miRNAs present in most cellular types are currently unknown and that these miRNAs may regulate important cellular functions. PMID:20733160

  9. Fine scale quantification of HCG beta gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues

    PubMed Central

    Rull, K; Hallast, P; Uuskla, L; Jackson, J; Punab, M; Salumets, A; Campbell, RK; Laan, M

    2009-01-01

    BACKGROUND: HCG is produced by syncytiotrophoblast of placenta. It delays the apoptosis of corpus luteum and functions in implantation. Its possible role in male reproduction has been raised. HCG beta subunit is encoded by CGB, CGB5, CGB7 and CGB8 genes located at 19q13.3 in a common genome cluster with beta subunit non-coding CGB1 and CGB2. We conducted a sensitive quantification and comparison of CGB gene expression in human trophoblastic (blastocysts, n=6; normal/failed pregnancy, n=51) and non-malignant non-trophoblastic tissues (15 different tissue types, samples n=241). METHODS: Real-time RT-PCR. RESULTS: We showed a wide transcriptional window of CGB genes in normal pregnancy, a significant reduction in recurrent miscarriages, and a high expression (especially CGB1/CGB2) in ectopic and molar pregnancies. Expression was several orders of magnitude lower in the non-placental tissues, with the highest CGB levels being seen in testis, prostate, thymus, skeletal muscle and lung samples. The contribution of CGB1/CGB2 to the summarized expression of six CGB genes was not proportional to their gene dosage: 1/1000 to 1/10000. An interesting exception was the testis exhibiting a much higher CGB1/CGB2 to total CGB mRNA ratio of ?1/3, corresponding to gene dosage. CONCLUSIONS: The expressional profile of CGB genes, activated already in blastocyst stage, is associated with the status of pregnancy. The presence of CGB transcripts in testes, and in particular CGB1/CGB2 transcripts, may indicate a role in male reproductive tract. PMID:18048458

  10. Quinalizarin enhances radiosensitivity of nasopharyngeal carcinoma cells partially by suppressing SHP-1 expression.

    PubMed

    Pan, Xiaofen; Meng, Rui; Yu, Zhonghua; Mou, Jingjing; Liu, Sha; Sun, Ziyi; Zou, Zhenwei; Wu, Gang; Peng, Gang

    2016-03-01

    The purpose of this study was to investigate the influence of quinalizarin on the radiosensitivity of nasopharyngeal carcinoma (NPC) cells and the relevant underlying mechanisms. Human NPC cell lines CNE-1, CNE-2 and 5-8F were treated with quinalizarin and then irradiated with different X-rays doses. Cell viability, survival, DNA double-strand breaks (DSB), apoptosis, cell cycle distribution, expression of SHP-1 and other related proteins were detected with MTT assay, colony formation assay, immunofluorescent assay, flow cytometry and western blot analysis, respectively. We also examined how the effects of quinalizarin were affected by SHP-1-overexpression by lentivirus transfection. Quinalizarin at 25M enhanced radiosensitivity of NPC cells. This increased radiosensitivity was due to inhibition of cell viability, which delayed DSB repair as seen by significantly increased ?-H2AX foci, promoting apoptosis by 34% in CNE-1 and 9% in CNE-2 cells compared to controls and changing cell cycle distribution in CNE-1, but not CNE-2 cells. Quinalizarin treatment obviously decreased SHP-1 protein expression. Overexpressing SHP-1 partially reversed the radiosensitive effect of quinalizarin. Quinalizarin inhibited binding of p65 and the promoter of SHP-1, and decreased the activities of SHP-1 promoter and SHP-1. Quinalizarin enhanced radiosensitivity of NPC cells partially by suppressing SHP-1 expression. PMID:26781335

  11. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    SciTech Connect

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-03-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  12. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by ?-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. 2000 Cancer Research Campaign PMID:10993658

  13. Probing human malignant T cells with lectins: a comparison with their surface antigen patterns defined by monoclonal antibodies.

    PubMed

    Richard, Y; Boumsell, L; Lemerle, J; Valensi, F; Bernard, A

    1982-01-01

    Tumor cells from 40 children and 13 adults with T cell malignancies were assessed for staining with fluorescinated peanut agglutinin (PNA) and soybean agglutinin (SBA). These cell populations had also been characterized for surface surface antigens using a series of monoclonal antibodies (Mo. Ab.) that permit an assignment of malignant cells to discrete stages of normal T cell differentiation. We had previously shown a clear correspondence between lectin- and Mo. Ab-defined cell compartments within thymuses from normal children and T cells in peripheral blood. We report here that the pattern of reactivity of malignant T cells populations with lectins correlates closely the degree of maturation, as assessed by Mo. Ab. Thus, utilization of lectins together with Mo. Ab., can be clinically useful to characterize T cell malignancies. This observation shows that, in spite of a high degree of heterogeneity of malignant T cell populations from one patient to the other, in their pattern of surface antigens, these populations seem essentially to conform to the scheme of normal T cell differentiation. PMID:6981736

  14. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    SciTech Connect

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  15. Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

    PubMed Central

    Arooj, Syeda; Nazir, Samina; Nadhman, Akhtar; Ahmad, Nafees; Muhammad, Bakhtiar; Ahmad, Ishaq; Mazhar, Kehkashan

    2015-01-01

    Summary The use of photoactive nanoparticles (NPs) such as zinc oxide (ZnO) and its nanocomposites has become a promising anticancer strategy. However, ZnO has a low photocatalytic decomposition rate and the incorporation of metal ions such as silver (Ag) improves their activity. Here different formulations of ZnO:Ag (1, 3, 5, 10, 20 and 30% Ag) were synthesized by a simple co-precipitation method and characterized by powder X-ray diffraction, scanning electron microscopy, Rutherford back scattering and diffuse reflectance spectroscopy for their structure, morphology, composition and optical band gap. The NPs were investigated with regard to their different photocatalytic cytotoxic effects in human malignant melanoma (HT144) and normal (HCEC) cells. The ZnO:Ag nanocomposites killed cancer cells more efficiently than normal cells under daylight exposure. Nanocomposites having higher Ag content (10, 20 and 30%) were more toxic compared to low Ag content (1, 3 and 5%). For HT144, under daylight exposure, the IC50 values were ZnO:Ag (10%): 23.37 ?g/mL, ZnO:Ag (20%): 19.95 ?g/mL, and ZnO:Ag (30%): 15.78 ?g/mL. ZnO:Ag (30%) was toxic to HT144 (IC50: 23.34 ?g/mL) in dark as well. The three nanocomposites were further analyzed with regard to their ability to generate reactive oxygen species (ROS) and induce lipid peroxidation. The particles led to an increase in levels of ROS at cytotoxic concentrations, but only HT144 showed strongly induced MDA level. Finally, NPs were investigated for the ROS species they generated in vitro. A highly significant increase of 1O2 in the samples exposed to daylight was observed. Hydroxyl radical species, HO, were also generated to a lesser extent. Thus, the incorporation of Ag into ZnO NPs significantly improves their photo-oxidation capabilities. ZnO:Ag nanocomposites could provide a new therapeutic option to selectively target cancer cells. PMID:25821698

  16. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis.

    PubMed

    Lukic, Natalija; Visentin, Rmy; Delhaye, Myriam; Frossard, Jean-Louis; Lescuyer, Pierre; Dumonceau, Jean-Marc; Farina, Annarita

    2014-05-01

    Proteomics is a key tool in the identification of new bile biomarkers for differentiating malignant and nonmalignant biliary stenoses. Unfortunately, the complexity of bile and the presence of molecules interfering with protein analysis represent an obstacle for quantitative proteomic studies in bile samples. The simultaneous need to introduce purification steps and minimize the use of pre-fractionation methods inevitably leads to protein loss and limited quantifications. This dramatically reduces the chance of identifying new potential biomarkers. In the present study, we included differential centrifugation as a preliminary step in a quantitative proteomic workflow involving iTRAQ labeling, peptide fractionation by OFFGEL electrophoresis and LC-MS/MS, to compare protein expression in bile samples collected from patients with malignant or nonmalignant biliary stenoses. A total of 1267 proteins were identified, including a set of 322 newly described bile proteins, mainly belonging to high-density cellular fractions. The subsequent comparative analysis led to a 5-fold increase in the number of quantified proteins over previously published studies and highlighted 104 proteins overexpressed in malignant samples. Finally, immunoblot verifications performed on a cohort of 8 malignant (pancreatic adenocarcinoma, n=4; cholangiocarcinoma, n=4) and 5 nonmalignant samples (chronic pancreatitis, n=3; biliary stones, n=2) confirmed the results of proteomic analysis for three proteins: olfactomedin-4, syntenin-2 and Ras-related C3 botulinum toxin substrate 1. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. PMID:23872482

  17. Hemostasis and malignancy.

    PubMed

    Francis, J L; Biggerstaff, J; Amirkhosravi, A

    1998-01-01

    There is considerable evidence that the hemostatic system is involved in the growth and spread of malignant disease. There is an increased incidence of thromboembolic disease in patients with cancers and hemostatic abnormalities are extremely common in such patients. Antihemostatic agents have been successfully used to treat a variety of experimental tumors, and several clinical trials in humans have been initiated. Although metastasis is undoubtedly multifactorial, intravascular coagulation activation and peritumor fibrin deposition seem to be important. The mechanisms by which hemostatic activation facilitates the malignant process remain to be completely elucidated. Of central importance may be the presence on malignant cells of tissue factor and urokinase receptor. Recent studies have suggested that these proteins, and others, may be involved at several stages of metastasis, including the key event of neovascularization. Tissue factor, the principal initiator of coagulation, may have additional roles, outside of fibrin formation, that are central to the biology of some solid tumors. PMID:9579631

  18. Malignant hyperthermia.

    PubMed Central

    Ben Abraham, R.; Adnet, P.; Glauber, V.; Perel, A.

    1998-01-01

    Malignant hyperthermia is a rare autosomal dominant trait that predisposes affected individuals to great danger when exposed to certain anaesthetic triggering agents (such as potent volatile anaesthetics and succinylcholine). A sudden hypermetabolic reaction in skeletal muscle leading to hyperthermia and massive rhabdomyolysis can occur. The ultimate treatment is dantrolene sodium a nonspecific muscle relaxant. Certain precautions should be taken before anaesthesia of patients known to be susceptible to malignant hyperthermia. These include the prohibition of the use of triggering agents, monitoring of central body temperature and expired CO2, and immediate availability of dantrolene. In addition, careful cleansing of the anaesthesia machine of vapours of halogenated agents is recommended. If these measures are taken, the chances of an MH episode are greatly reduced. When malignant hyperthermia-does occur in the operating room, prompt recognition and treatment usually prevent a potentially fatal outcome. The most reliable test to establish susceptibility to malignant hyperthermia is currently the in vitro caffeine-halothane contracture test. It is hoped that in the future a genetic test will be available. PMID:9538480

  19. Hematologic malignancies

    SciTech Connect

    Hoogstraten, B.

    1986-01-01

    The principle aim of this book is to give practical guidelines to the modern treatment of the six important hematologic malignancies. Topics considered include the treatment of the chronic leukemias; acute leukemia in adults; the myeloproliferative disorders: polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis/agnogenic myeloid metaplasia; Hodgkin's Disease; non-Hodgkin's lymphoma; and Multiple Myeloma.

  20. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer.

    PubMed

    Wang, Tianzhen; Wang, Guangyu; Hao, Dapeng; Liu, Xi; Wang, Dong; Ning, Ning; Li, Xiaobo

    2015-01-01

    RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-?B and ?-catenin) in regulating hallmarks of cancer has also been discussed. PMID:26123544

  1. Radiosensitivity of CD45RO{sup +} memory and CD45RO{sup {minus}} naive T cells in culture

    SciTech Connect

    Uzawa, Akiko; Suzuki, Gen; Nakata, Yukiko; Akashi, Makoto; Ohyama, Harumi; Akanuma, Atsuo

    1994-01-01

    Radiosensitivities of various human T-cell subsets were investigated by a proliferation assay and by a single-cell gel electrophoresis assay. Each T-cell subset was purified using a cell sorter and was induced to proliferate by ionomycin and interleukin 2. Unsorted T cells showed biphasic dose-survival curves, indicating the heterogeneity of T cells in terms of radiosensitivity. Purified CD4{sup +} helper and CD8{sup +} killer T cells showed similar biphasic dose-survival curves. Hence both T-cell subsets were composed of cells of different radiosensitivity. The T-cell subsets belonging to different activation stages such as CD45RO{sup +} memory and CD45RO{sup {minus}} naive T cells had different dose-survival curves. The former was more radiosensitive than the latter. The high radiosensitivity of CD45RO{sup +} cells was also demonstrated by single-cell gel electrophoresis after irradiation. This is the first demonstration that a particular cell surface marker on T cells is correlated with greater radiosensitivity. 27 refs., 7 figs., 1 tab.

  2. ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer.

    PubMed

    Theophilou, Georgios; Lima, Kssio M G; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Martin, Francis L

    2016-01-01

    Surgical management of ovarian tumours largely depends on their histo-pathological diagnosis. Currently, screening for ovarian malignancy with tumour markers in conjunction with radiological investigations has a low specificity for discriminating benign from malignant tumours. Also, pre-operative biopsy of ovarian masses increases the risk of intra-peritoneal dissemination of malignancy. Intra-operative frozen section, although sufficiently accurate in differentiating tumours according to their histological type, increases operation times. This results in increased surgery-related risks to the patient and additional burden to resource allocation. We set out to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, combined with chemometric analysis can be applied to discriminate between normal, borderline and malignant ovarian tumours and classify ovarian carcinoma subtypes according to the unique spectral signatures of their molecular composition. Formalin-fixed, paraffin-embedded ovarian tissue blocks were de-waxed, mounted on Low-E slides and desiccated before being analysed using ATR-FTIR spectroscopy. Chemometric analysis in the form of principal component analysis (PCA), successive projection algorithm (SPA) and genetic algorithm (GA), followed by linear discriminant analysis (LDA) of the obtained spectra revealed clear segregation between benign versus borderline versus malignant tumours as well as segregation between different histological tumour subtypes, when these approaches are used in combination. ATR-FTIR spectroscopy coupled with chemometric analysis has the potential to provide a novel diagnostic approach in the accurate diagnosis of ovarian tumours assisting surgical decision making to avoid under-treatment or over-treatment, with minimal impact to the patient. PMID:26090781

  3. Ocular penetration, toxicity, and radiosensitization effects of two hypoxic cell radiosensitizers on retinoblastoma

    SciTech Connect

    Rootman, J.; Gallie, B.; Kumi, C.; Bussanich, N.; Rogers, B.; Palcic, B.

    1986-11-01

    Two new radiosensitizing drugs, SR-2508 and SR-2555, were studied for their in vivo toxicity and absorption properties. For both drugs, 100 mg dissolved in 0.5 mL of normal saline resulted in the maximum acceptable level of toxicity when injected subconjunctivally in rabbit eyes as determined by ocular and histopathologic changes. SR-2508 showed higher ocular and systemic absorption than SR-2555. The radiosensitizing ability of these drugs was studied using Chinese hamster ovary cells and the retinoblastoma cell line, V79c6. Results of the in vitro radiation experiments indicate that both drugs are comparable with misonidazole in their radiosensitizing ability, with SR-2508 being slightly more effective than SR-2555. Because of their relative high ocular absorption and low toxicity in comparison with misonidazole, these two drugs, particularly SR-2508, may be of clinical value and could be considered for adjunctive use as radiosensitizers of hypoxic tumors such as retinoblastoma.

  4. IKBKE Upregulation is Positively Associated with Squamous Cell Carcinoma of the Lung In Vivo and Malignant Transformation of Human Bronchial Epithelial Cells In Vitro

    PubMed Central

    Li, Wei; Chen, Yuqing; Zhang, Jiaxiu; Hong, Lei; Yuan, Nana; Wang, Xiaojing; Lv, Hezuo

    2015-01-01

    Background The I?B kinase inhibitor of ?B kinase epsilon (IKBKE) is overexpressed in several human cancers. Although IKBKE plays an important role in smoking-induced non-small cell lung cancer carcinogenesis, its role in squamous cell carcinoma of the lung (SCCL) remains unclear. Material/Methods IKBKE protein expression was assessed by immunohistochemistry in 288 paraffinized SCCL specimens (with adjacent squamous dysplastic and normal tissue). IKBKE mRNA expression was assessed by reverse transcription PCR in 66 fresh SCCL specimens (with adjacent squamous dysplastic and normal tissue). Separately, immortalized human bronchial epithelial cells were cultured in 7 groups: untreated control, ethanol-treated, and cigarette smoke condensate (CSC)-exposed for 10, 20, 30, 40, and 50 generations (P10, P20, P30, P40, and P50, respectively). Malignant transformation was assessed by serum resistance and colony formation assays. IKBKE protein and mRNA expression were detected by Western blotting and reverse transcription PCR, respectively. Results IKBKE protein expression showed a significant upward trend from normal bronchial epithelium to squamous cell dysplasia to SCCL. IKBKE protein expression in SCCL was significantly associated with smoking status, smoking index, degree of differentiation, and clinical stage. Current and former smokers displayed significantly higher IKBKE protein and mRNA expression than non-smokers. IKBKE protein and mRNA expression displayed a significant upward trend with the smoking index. P30, P40, and P50 CSC-exposed cells displayed malignant transformation with increasing IKBKE mRNA and protein expression from P20 through P50. Conclusions IKBKE upregulation is positively associated with SCCL and smoking indices as well as CSC-induced malignant transformation of human bronchial epithelial cells. PMID:26025939

  5. Effect of Antisense Oligodeoxynucleotides Glucose Transporter-1 on Enhancement of Radiosensitivity of Laryngeal Carcinoma

    PubMed Central

    Yan, Sen-Xiang; Luo, Xing-Mei; Zhou, Shui-Hong; Bao, Yang-Yang; Fan, Jun; Lu, Zhong-Jie; Liao, Xin-Biao; Huang, Ya-Ping; Wu, Ting-Ting; Wang, Qin-Ying

    2013-01-01

    Purpose: Laryngeal carcinomas always resist to radiotherapy. Hypoxia is an important factor in radioresistance of laryngeal carcinoma. Glucose transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngeal carcinoma. Methods: We assessed the effect of GLUT-1 expression on radioresistance of laryngeal carcinoma and the effect of GLUT-1 expressions by antisense oligodeoxynucleotides (AS-ODNs) on the radiosensitivity of laryngeal carcinoma in vitro and in vivo. Results: After transfection of GLUT-1 AS-ODNs: MTS assay showed the survival rates of radiation groups were reduced with the prolongation of culture time (p<0.05); Cell survival rates were significantly reduced along with the increasing of radiation dose (p<0.05). There was significant difference in the expression of GLUT-1mRNA and protein in the same X-ray dose between before and after X-ray radiation (p<0.05). In vivo, the expressions of GLUT-1 mRNA and protein after 8Gy radiation plus transfection of GLUT-1 AS-ODNs were significant decreased compared to 8Gy radiation alone (p<0.001). Conclusion: Radioresistance of laryngeal carcinoma may be associated with increased expression of GLUT-1 mRNA and protein. GLUT-1 AS-ODNs may enhance the radiosensitivity of laryngeal carcinoma mainly by inhibiting the expression of GLUT-1. PMID:23983599

  6. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro.

    PubMed

    Wang, Wenjuan; Long, Linmei; Wang, Long; Tan, Caihong; Fei, Xifeng; Chen, Leisong; Huang, Qiang; Liang, Zhongqin

    2016-02-28

    The presence of glioma stem cells (GSCs) in tumor is relevant for glioma treatment resistance. This study assessed whether knockdown of Cathepsin L can influence GSC growth, tumor radiosensitivity, and clinical outcome. Protein levels of Cathepsin L and stem cell markers (CD133 and Nestin) were analyzed in samples from 90 gliomas of different WHO grades and 6 normal brain tissues by immunohistochemistry. Two glioma stem cell lines with overexpressed Cathepsin L were stably transfected with Cathepsin L short hairpin RNA expression vectors. The effects of Cathepsin L inhibition on radiosensitivity, self-renewal, stemness, DNA damage, and apoptosis were evaluated. In addition, an intracranial animal model and subcutaneous tumor xenografts in nude mice were used to assess tumor response to Cathepsin L inhibition in vivo. Our results proved that expressions of Cathepsin L and CD133, but not of Nestin, correlated with malignant grades of glioma tissues. GSCs with high Cathepsin L and CD133 co-expression were extraordinarily radioresistant. Cathepsin L inhibition with radiotherapy significantly reduced GSC growth, promoted apoptosis, and improved radiosensitivity. Knockdown of Cathepsin L resulted in a dramatic reduction of CD133 expression, as well as the decreased phosphorylation of DNA repair checkpoint proteins (ATM and DNA-PKcs). Furthermore, combination of Cathepsin L inhibition and radiotherapy potently blocked tumor growth and decreased blood vessel formation in vivo. Taken together, these findings suggest Cathepsin L as a promising therapeutic target for clinical therapy in GBM patients. PMID:26706414

  7. ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma

    PubMed Central

    Thayyullathil, Faisal; Rahman, Anees; Pallichankandy, Siraj; Patel, Mahendra; Galadari, Sehamuddin

    2014-01-01

    Malignant gliomas are extremely resistant to therapies that induce apoptosis, but are less resistant to therapies that induce autophagy. Therefore, drugs targeting autophagy are promising in the management of malignant gliomas. In this study, we investigated the anti-glioma potential of curcumin in vitro, and further examined the molecular mechanisms of curcumin-induced cell death in human malignant glioma. Here, we provide evidence that curcumin is cytotoxic against human malignant glioma cell lines, and the mechanism of cell death caused by curcumin is associated with features of autophagy. Curcumin suppresses the growth of human malignant glioma cells via ROS-dependent prostate apoptosis response-4 (Par-4) induction and ceramide generation. Extracellular supplementation of antioxidants such as glutathione and N-acetylcysteine to glioma cells abrogated the Par-4 induction, ceramide generation, and in turn, prevented curcumin-induced autophagic cell death. Moreover, tumor cells transfected with Par-4 gene sensitized the curcumin-induced autophagic cell death. Overall, this study describes a novel signaling pathway by which curcumin induces ROS-dependent Par-4 activation and ceramide generation, leading to autophagic cell death in human malignant glioma cells. PMID:25349781

  8. Underexpression of LKB1 tumor suppressor is associated with enhanced Wnt signaling and malignant characteristics of human intrahepatic cholangiocarcinoma

    PubMed Central

    Wang, Jinghan; Zhang, Keqiang; Wang, Jinhui; Wu, Xiwei; Liu, Xiyong; Li, Bin; Zhu, Yan; Yu, Yong; Cheng, Qingbao; Hu, Zhenli; Guo, Chao; Hu, Shuya; Mu, Bing; Tsai, Chun-Hao; Li, Jie; Smith, Lynne; Yang, Lu; Liu, Qi; Chu, Peiguo; Chang, Vincent; Zhang, Baihe; Wu, Mengchao; Jiang, Xiaoqing; Yen, Yun

    2015-01-01

    Intrahepatic cholangiocarcinoma (ICC) is a rare and highly aggressive malignancy. In this study, we identified the presence of gene deletion and missense mutation leading to inactivation or underexpression of liver kinase B1 (LKB1) tumor suppressor and excluded the involvement of LKB1 gene hypermethylation in ICC tissues. Immunohistochemical analysis showed that LKB1 was underexpressed in a portion of 326 ICC tissues compared to their adjacent normal tissues. By statistical analysis underexpression of LKB1 in ICC tissues significantly correlated with poor survival and malignant disease characteristics in ICC patients. Moreover, we showed that knockdown of LKB1 significantly enhanced growth, migration, and invasion of three LKB1-competent ICC cell lines. Global transcriptional profiling analysis identified multiple malignancy-promoting genes, such as HIF-1α, CD24, Talin1, Vinculin, Wnt5, and signaling pathways including Hedgehog, Wnt/β-catenin, and cell adhesion as novel targets of LKB1 underexpression in ICC cells. Furthermore, knockdown of LKB1 gene expression dramatically enhanced Wnt/β-catenin signaling in ICC cells, while an inverse correlation between LKB1 and nuclear β-catenin was observed in ICC tissues. Our findings suggest a novel mechanism for ICC carcinogenesis in which LKB1 underexpression enhances multiple signaling pathways including Wnt/β-catenin to promote disease progression. PMID:26056085

  9. Expression of tumour associated antigens in normal, benign and malignant human mammary epithelial tissue: a comparative immunohistochemical study.

    PubMed

    Croce, M V; Colussi, A G; Price, M R; Segal-Eiras, A

    1997-01-01

    Breast carcinoma cells may express a variety of clinically relevant epitopes, some of which are associated with aberrant glycosylation of MUC1 mucin molecules, as well as determinants which are commonly expressed on their normal molecular counterparts. The present investigation is primarily an immunochemical analysis of MUC1 epitopes and other tumour associated antigenic determinants, as defined by their reaction with monoclonal antibodies and expressed in normal, benign and malignant epithelia. It was determined that malignant tissues of the breast expressed MUC1 mucin, as well as the Le(y) hapten and CEA, at different intensities, cellular distribution and patterns and percentages of positively stained cells. Conversely, benign tissues expressed a low intensity of MUC1 which was restricted to apical cell surface membranes and lumen debris; a similar pattern was found in some normal breast sections. It was concluded that MUC1 mucin exhibits heterogeneous antigenicity (as defined by its reactivity with a panel of related anti-MUC1 monoclonal antibodies) which is predominantly related to the progression of malignant disease. Le(y) is a marker of breast neoplasia, while CEA was found on only a small proportion of tumours. These immunohistochemical findings are considered in the context of improving breast cancer diagnosis and therapy. PMID:9494522

  10. The radiosensitivity index predicts for overall survival in glioblastoma

    PubMed Central

    Ahmed, Kamran A.; Chinnaiyan, Prakash; Fulp, William J.; Eschrich, Steven; Torres-Roca, Javier F.; Caudell, Jimmy J.

    2015-01-01

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04–92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08–2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19–3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker. PMID:26451615

  11. The radiosensitivity index predicts for overall survival in glioblastoma.

    PubMed

    Ahmed, Kamran A; Chinnaiyan, Prakash; Fulp, William J; Eschrich, Steven; Torres-Roca, Javier F; Caudell, Jimmy J

    2015-10-27

    We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04-92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08-2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19-3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker. PMID:26451615

  12. Microbiome and Malignancy

    PubMed Central

    Plottel, Claudia S.; Blaser, Martin J.

    2011-01-01

    Current knowledge is insufficient to explain why only a proportion of individuals exposed to environmental carcinogens or carrying a genetic predisposition to cancer develop disease. Clearly, other factors must be important and one such element that has recently received attention is the human microbiome, the residential microbes including Bacteria, Archaea, Eukaryotes, and viruses that colonize humans. Here, we review principles and paradigms of microbiome-related malignancy, as illustrated by three specific microbial-host interactions. We review the effects of the microbiota on local and adjacent-neoplasia, present the estrobolome model of distant effects, and discuss the complex interactions with a latent virus leading to malignancy. These are separate facets of a complex biology interfacing all the microbial species we harbor from birth onward toward early reproductive success and eventual senescence. PMID:22018233

  13. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma

    SciTech Connect

    Xianjin Yi; Li Ding; Yizun Jin; Chuo Ni; Wenji Wang )

    1994-05-15

    Retinoblastoma is the most common intraocular malignant tumor in children. Previous investigations have reported that buthionine sulfoximine (BSO) can deplete intracellular glutathione (GSH) by specific inhibition and increase cellular radiosensitivity. The toxic effects, GSH depletion and radiosensitivity effects of BSO on retinoblastoma cells are reported in this paper. GSH content of retinoblastoma cell lines Y-79, So-Rb50 and retinoblastoma xenograft is 2.7 [+-] 1.3 X 1.0[sup [minus]12] mmol/cell, 1.4 [+-] 0.2 X 1.0[sup [minus]12] mmol/cell, and 2.8 [+-] 1.2 [mu]mol/g, respectively. The ID[sub 50] of BSO on Y-79 and So-Rb50 in air for 3 h exposure is 2.5 mM and 0.2 mM, respectively. GSH depletion by 0.1 mM BSO for 24 h on Y-79 cells and 0.01 mM BSO for 24 h on So-Rb50 cells is 16.35%, and 4.7% of control. GSH depletion in tumor and other organ tissues in retinoblastoma-bearing nude mice after BSO administration is differential. GSH depletion after BSO exposure in Y-79 cells in vitro decreases the Do value of retinoblastoma cells. The SER of 0.01 mM and 0.05 mM BSO for 24 h under hypoxic conditions is 1.21 and 1.36, respectively. Based on these observations, the authors conclude that BSO toxicity on retinoblastoma cells depends on the characteristics of the cell line and that BSO can increase hypoxic retinoblastoma cells' radiosensitivity in vitro. Further study of BSO radiosensitization on retinoblastoma in vivo using nude mouse xenografts is needed. 25 refs., 3 figs., 3 tabs.

  14. Allyl isothiocyanate triggers G2/M phase arrest and apoptosis in human brain malignant glioma GBM 8401 cells through a mitochondria-dependent pathway.

    PubMed

    Chen, Nian-Gu; Chen, Kuan-Tin; Lu, Chi-Cheng; Lan, Yu-Hsuan; Lai, Cheng-Hung; Chung, Yang-Tsung; Yang, Jai-Sing; Lin, Yung-Chang

    2010-08-01

    Isothiocyanates (ITCs) are present as glucosinolates in various cruciferous vegetables. Allyl isothiocyanate (AITC) is one of the common naturally occurring isothiocyanates. Recent studies have shown that AITC significantly inhibited survival of leukemia HL-60, bladder cancer UM-UC-3 and colon cancer HT-29 cells in vitro. In this study, we demonstrate that AITC significantly decreased proliferation and viability of human brain malignant glioma GBM 8401 cells in a dose-dependent manner with IC50 9.25+/-0.69 microM for 24 h-treatment. The analysis of cell cycle distribution also showed that AITC induced significantly G2/M arrest and sub-G1 phase (apoptotic population) in GBM 8401 cells. AITC markedly reduced the CDK1/cyclin B activity and protein levels by CDK1 activity assay and Western blot analysis. AITC-induced apoptotic cell death and this evidence was confirmed by morphological assessment and DAPI staining. Pretreatment with specific inhibitors of caspase-3 (Z-DEVE-FMK) and -9 (Z-LEHD-FMK) significantly reduced caspase-3 and -9 activity in GBM 8401 cells. Western blot analysis and colorimetric assays also displayed that AITC caused a time-dependent increase in cytosolic cytochrome c, pro-caspase-9, Apaf-1, AIF, Endo G and the stimulated caspase-9 and -3 activity. Our results suggest that AITC is a potent anti-human brain malignant glioma drug and it shows a remarkable action on cell cycle arrest before commitment for apoptosis is reached. PMID:20596632

  15. Up-regulation of human cervical cancer proto-oncogene contributes to hepatitis B virus-induced malignant transformation of hepatocyte by down-regulating E-cadherin

    PubMed Central

    Li, Junfeng; Dai, Xiaopeng; Zhang, Hongfei; Zhang, Wei; Sun, Shihui; Gao, Tongtong; Kou, Zhihua; Yu, Hong; Guo, Yan; Du, Lanying; Jiang, Shibo; Zhang, Jianying; Zhou, Yusen

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most fatal human malignancies, Human cervical cancer proto-oncogene (HCCR) aberrantly expressed in a number of malignant tumors, including HCC. HCC is associated with Hepatitis B virus (HBV) infection in a large percentage of cases. To explore the regulation and function of HCCR expression in the development of HCC, we detected HCCR expression in HBV expressing hepatocytes. Results showed that the expression of HCCR was higher in HBV-expressing hepatocytes than that in control cells. Examining different components of HBV revealed that the HBx promotes HCCR expression in hepatocytes via the T-cell factor (TCF)/?-catenin pathway. HCCR expression in HBx transgenic mice increased with as the mice aged and developed tumors. We also found that overexpression of HCCR in hepatocytes promoted cell proliferation, migration, and invasion and reduced cell adhesion. Suppressing HCCR expression abolished the effect of HBx-induced hepatocyte growth. In addition, HCCR represses the expression of E-cadherin by inhibition its promoter activity, which might correlate with the effects of HCCR in hepatocytes. Taken together, these results demonstrate that HBx-HCCR-E-cadherin regulation pathway might play an important role in HBV-induced hepatocarcinogenesis. They also imply that HCCR is a potential risk marker for HCC and/or a potential therapeutic target. PMID:26470691

  16. Malignant transformation of human gastric epithelium cells via reactive oxygen species production and Wnt/β-catenin pathway activation following 40-week exposure to ochratoxin A.

    PubMed

    Jia, Xin; Cui, Jinfeng; Meng, Xinxing; Xing, Lingxiao; Shen, Haitao; Wang, Juan; Liu, Jing; Wang, Yuan; Lian, Weiguang; Zhang, Xianghong

    2016-03-01

    Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogenic to humans. We previously demonstrated that OTA treatment induced oxidative damage in human gastric epithelium cells (GES-1) in vitro. In this study, we found that long-term OTA treatment could result in increased proliferation, migration, and invasion abilities of GES-1 cells and induce anchorage-independent growth of cells in soft agar. Inoculation of OTA-treated GES-1 cells resulted in the formation of tumor xenografts in Balb/c nude mice in vivo, confirming that long-term OTA treatment can induce the malignant transformation of GES-1 cells. In addition, we found that long-term OTA treatment induced oxidative stress and activated the Wnt/β-catenin pathway, including the nuclear transition of β-catenin and the upregulation of the downstream molecules of the pathway. Finally, pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) inhibited ROS formation and activation of the Wnt pathway in OTA-transformed GES-1 cells, which decreased the tumor formation abilities of these cells after inoculation in nude mice. These findings suggest that long-term OTA exposure induces the malignant transformation of GES-1 cells via intracellular ROS production and activation of the Wnt/β-catenin signaling pathway. PMID:26721203

  17. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family

    PubMed Central

    SUZUKI, OSAMU; ABE, MASAFUMI; HASHIMOTO, YUKO

    2015-01-01

    To determine the biological roles of cell surface glycosylation, we modified the surface glycosylation of human malignant lymphoma cell lines using glycosylation inhibitors. The O-glycosylation inhibitor, benzyl-?-GalNAc (BZ) enhanced the fibronectin adhesion of HBL-8 cells, a human Burkitt's lymphoma cell line, and of H-ALCL cells, a human anaplastic large cell lymphoma cell line, both of which were established in our laboratory. The N-glycosylation inhibitor, tunicamycin (TM) inhibited the surface expression of Phaseolus vulgaris leukoagglutinating (L-PHA) lectin- and Canavalia ensiformis (ConA) lectin-reactive oligosaccharides in the HBL-8 cell line. Assay of the adhesion of HBL-8 cells to fibronectin showed that fibronectin adhesion is mediated by the integrin very late antigen (VLA)-4 and that not only BZ but also TM treatment enhanced HBL-8 cell adhesion to fibronectin. Furthermore, although BZ treatment also enhanced H-ALCL cell adhesion to fibronectin, this effect was not mediated by VLA-5 or the RGD sequence of fibronectin. We also showed that H-ALCL cell adhesion to galectin-3 was enhanced by pre-treatment with neuraminidase, which cleaves cell surface sialic acid. Additionally, H-ALCL cell adhesion to galectin-3 was inhibited by pre-treatment with the RGD peptide suggesting that cell adhesion to galectin-3 is mediated by integrin (VLA-5). Furthermore, H-ALCL cell invasion of galectin-1 and galectin-3 was inhibited by pre-treatment with the RGD peptide. Therefore, cell adhesion to and invasion of galectin-1 and galectin-3 are integrin-dependent. In addition to these findings, cell adhesion to galectin-3 was markedly inhibited by treatment with ?-lactose compared to treatment with sucrose. Therefore, interactions between integrins and galectin-3 may be mediated through ?-galactose that is linked to glycans of integrins. AZA1, an inhibitor of Ras homolog oncoprotein (Rho) GTPase family proteins, RAS-related C3 botulinus toxin substrate 1 (Rac 1) and Cell division control protein 42 homolog (Cdc42) markedly inhibited cell invasion of galectin-1 and galectin-3 suggesting that Rac 1 and Cdc42 may be involved in the regulation of H-ALCL cell invasion of galectins. In conclusion, artificial modification of cell surface glycosylation revealed the biological roles of glycosylation in the adhesion to and invasion of the extracellular matrix (ECM) by human malignant lymphoma cell lines. These findings will provide new insight into the glycobiology of human malignant lymphoma. PMID:26497328

  18. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family.

    PubMed

    Suzuki, Osamu; Abe, Masafumi; Hashimoto, Yuko

    2015-12-01

    To determine the biological roles of cell surface glycosylation, we modified the surface glycosylation of human malignant lymphoma cell lines using glycosylation inhibitors. The O-glycosylation inhibitor, benzyl-α-GalNAc (BZ) enhanced the fibronectin adhesion of HBL-8 cells, a human Burkitt's lymphoma cell line, and of H-ALCL cells, a human anaplastic large cell lymphoma cell line, both of which were established in our laboratory. The N-glycosylation inhibitor, tunicamycin (TM) inhibited the surface expression of Phaseolus vulgaris leukoagglutinating (L-PHA) lectin- and Canavalia ensiformis (ConA) lectin-reactive oligosaccharides in the HBL-8 cell line. Assay of the adhesion of HBL-8 cells to fibronectin showed that fibronectin adhesion is mediated by the integrin very late antigen (VLA)-4 and that not only BZ but also TM treatment enhanced HBL-8 cell adhesion to fibronectin. Furthermore, although BZ treatment also enhanced H-ALCL cell adhesion to fibronectin, this effect was not mediated by VLA-5 or the RGD sequence of fibronectin. We also showed that H-ALCL cell adhesion to galectin-3 was enhanced by pre-treatment with neuraminidase, which cleaves cell surface sialic acid. Additionally, H-ALCL cell adhesion to galectin-3 was inhibited by pre‑treatment with the RGD peptide suggesting that cell adhesion to galectin-3 is mediated by integrin (VLA-5). Furthermore, H-ALCL cell invasion of galectin-1 and galectin-3 was inhibited by pre-treatment with the RGD peptide. Therefore, cell adhesion to and invasion of galectin-1 and galectin-3 are integrin-dependent. In addition to these findings, cell adhesion to galectin-3 was markedly inhibited by treatment with β-lactose compared to treatment with sucrose. Therefore, interactions between integrins and galectin-3 may be mediated through β-galactose that is linked to glycans of integrins. AZA1, an inhibitor of Ras homolog oncoprotein (Rho) GTPase family proteins, RAS-related C3 botulinus toxin substrate 1 (Rac 1) and Cell division control protein 42 homolog (Cdc42) markedly inhibited cell invasion of galectin-1 and galectin-3 suggesting that Rac 1 and Cdc42 may be involved in the regulation of H-ALCL cell invasion of galectins. In conclusion, artificial modification of cell surface glycosylation revealed the biological roles of glycosylation in the adhesion to and invasion of the extracellular matrix (ECM) by human malignant lymphoma cell lines. These findings will provide new insight into the glycobiology of human malignant lymphoma. PMID:26497328

  19. Oroxylin A induces autophagy in human malignant glioma cells via the mTOR-STAT3-Notch signaling pathway.

    PubMed

    Zou, Meijuan; Hu, Chen; You, Qidong; Zhang, Aixia; Wang, Xuerong; Guo, Qinglong

    2015-11-01

    Autophagy is a tightly-regulated catabolic pathway involving degradation of cellular proteins, cytoplasm and organelles. Recent evidence suggests that autophagy plays a potential role in cell death as a tumor suppressor and that its induction especially in combination with apoptosis could be beneficial. It remains unclear if all cancer cells behave the same mechanism when autophagy is induced. Although mammalian target of rapamycin (mTOR) is well known as a negative regulator of autophagy, the relationship between signal transducer and activator of transcription 3 (STAT3) and autophagy has not yet been investigated. Oroxylin A, a natural mono-flavonoid extracted from Scutellariae radix, is a promising therapeutic agent for treating multiple cancers. Here we investigated the mechanism underlying the effect of oroxylin A on malignant glioma cells. We showed that oroxylin A inhibited the proliferation of malignant glioma cells by inducing autophagy in a dose- and time-dependent manner. Oroxylin A treatment inhibits the AKT and ERK activation and the downstream phosphorylation level of mTOR and STAT3. In addition, oroxylin A treatment decreases the expression of Notch-1 and myeloid cell leukemia-1 (Mcl-1) but upregulates Beclin 1, the key autophagy-related protein. 3-MA (autophagy inhibitor) or knockdown of Beclin 1 partially can rescue cells from oroxylin A-induced autophagic cell death. In contrast, knockdown of STAT3 aggravates oroxylin A-induced autophagic cell death. Our data reveal an important role of autophagy in enhancing cell death induced by oroxylin A and conclude that oroxylin A exerts anti-malignant glioma proficiency by inducing autophagy via the ERK/AKT-mTOR-STAT3-Notch signaling cascade. PMID:25213258

  20. Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks.

    PubMed

    Martin, N T; Nakamura, K; Paila, U; Woo, J; Brown, C; Wright, J A; Teraoka, S N; Haghayegh, S; McCurdy, D; Schneider, M; Hu, H; Quinlan, A R; Gatti, R A; Concannon, P

    2014-01-01

    The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, ?-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis. PMID:24651433

  1. Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks

    PubMed Central

    Martin, N T; Nakamura, K; Paila, U; Woo, J; Brown, C; Wright, J A; Teraoka, S N; Haghayegh, S; McCurdy, D; Schneider, M; Hu, H; Quinlan, A R; Gatti, R A; Concannon, P

    2014-01-01

    The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, ?-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis. PMID:24651433

  2. Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole-imidazole polyamide, which targets an E-box motif.

    PubMed

    Taniguchi, Masashi; Fujiwara, Kyoko; Nakai, Yuji; Ozaki, Toshinori; Koshikawa, Nobuko; Toshio, Kojima; Kataba, Motoaki; Oguni, Asako; Matsuda, Hiroyuki; Yoshida, Yukihiro; Tokuhashi, Yasuaki; Fukuda, Noboru; Ueno, Takahiro; Soma, Masayoshi; Nagase, Hiroki

    2014-01-01

    Gene amplification and/or overexpression of the transcription factor c-MYC, which binds to the E-box sequence (5'-CACGTG-3'), has been observed in many human tumors. In this study, we have designed 5 pyrrole-imidazole (PI) polyamides recognizing E-box, and found that, among them, Myc-6 significantly suppresses malignant phenotypes of human osteosarcoma MG63 cells both in vitro and in vivo. Intriguingly, knockdown of the putative Myc-6 target MALAT1 encoding long noncoding RNA remarkably impaired cell growth of MG63 cells. Collectively, our present findings strongly suggest that Myc-6 exerts its tumor-suppressive ability at least in part through the specific down-regulation of MALAT1. PMID:24918046

  3. [Malignant peritoneal mesothelioma].

    PubMed

    Scripcariu, V; Dajbog, Elena; Lefter, L; Ferariu, D; Pricop, Adriana; Grigoraş, M; Dragomir, Cr

    2006-01-01

    Mesothelioma is a neoplasm originating from the mesothelial surface lining cells of the serous human cavities. It may involve the pleura, less frequently the peritoneum rarely, the pericardium, the tunica vaginalis testis and ovarian epithelium. Asbestos has been widely used in industry. A causal relationship between asbestos exposure and pleural, peritoneal and pericardial malign mesothelioma was suggested, the risk of cancer being correlated to cumulate exposure. Studies from National Cancer Institute, USA, show that the malignant mesothelioma is a rare and aggressive asbestos related malignancy. The symptomatology is insidious and poses difficult problems in diagnosis and treatment. This paper presents the case of a 59 year old patient with malignant peritoneal mesothelioma who worked almost 40 years as an electrician, exposed to asbestos fibers. He was hospitalized for important weight loss, abdominal pain and tiredness being diagnosed after imaging tests with a giant tumor, localized at the abdominal upper level, which seems to originate from the spleen's superior pole. During surgery we discovered a tumor with cystic parts, intense vascularized, which turn to be adherent in the upper side to the lower face of the left midriff cupola, to the spleen superior pole and 1/3 middle level of the great gastric curve. It was performed surgical ablation of the tumor, splenectomy with favorable postoperative evolution, the patient being now under chemotherapy treatment. PMID:17283842

  4. Genetics and biology of human ovarian teratomas. III. Cytogenetics and origins of malignant ovarian germ cell tumors.

    PubMed

    Hoffner, L; Shen-Schwarz, S; Deka, R; Chakravarti, A; Surti, U

    1992-08-01

    This report presents cytogenetic data on three cases of malignant ovarian germ cell tumors. All were diagnosed as malignant teratoma; case 1 with yolk sac elements; case 2 with elements of endodermal sinus tumor, embryonal carcinoma, and choriocarcinoma; and case 3 with yolk sac elements and embryonal carcinoma. Metaphase cells from each tumor, and normal tissue from the host, were karyotyped and scored for centromeric heteromorphisms in an attempt to determine the mechanism of origin. The karyotypes were 79,XXX,+1,+3,-6,+8,+12,+14,-15,+17, +20,+21,+22;49,XX,+8,+12,+22; and 48,XX,+3,+14, respectively. The analysis of centromeric heteromorphisms and DNA fingerprints of host and teratoma using the M13 probe revealed that one case originated from a germ cell before the first meiotic division. Normal host tissue was not available in case 2, but several centromeric markers were heterozygous in the tumor, indicating either meiosis I error or complete failure of germ cell meiosis. In the third case the centromeric heteromorphisms that were heterozygous in the host appeared to be homozygous for certain chromosomes and heterozygous for others in the tumor. These results suggest that germ cell teratomas could arise by the fusion of two ova. PMID:1521236

  5. Malignant hyperthermia.

    PubMed

    Kim, Dong-Chan

    2012-11-01

    Malignant hyperthermia (MH) is an uncommon, life-threatening pharmacogenetic disorder of the skeletal muscle. It presents as a hypermetabolic response in susceptible individuals to potent volatile anesthetics with/without depolarizing muscle relaxants; in rare cases, to stress from exertion or heat stress. Susceptibility to malignant hyperthermia (MHS) is inherited as an autosomally dominant trait with variable expression and incomplete penetrance. It is known that the pathophysiology of MH is related to an uncontrolled rise of myoplasmic calcium, which activates biochemical processes resulting in hypermetabolism of the skeletal muscle. In most cases, defects in the ryanodine receptor are responsible for the functional changes of calcium regulation in MH, and more than 300 mutations have been identified in the RYR1 gene, located on chromosome 19q13.1. The classic signs of MH include increase of end-tidal carbon dioxide, tachycardia, skeletal muscle rigidity, tachycardia, hyperthermia and acidosis. Up to now, muscle contracture test is regarded as the gold standard for the diagnosis of MHS though molecular genetic test is used, on a limited basis so far to diagnose MHS. The mortality of MH is dramatically decreased from 70-80% to less than 5%, due to an introduction of dantrolene sodium for treatment of MH, early detection of MH episode using capnography, and the introduction of diagnostic testing for MHS. This review summarizes the clinically essential and important knowledge of MH, and presents new developments in the field. PMID:23198031

  6. The human Rgr oncogene is overexpressed in T cell malignancies and induces transformation by acting as a GEF for Ras and Ral

    PubMed Central

    Osei-Sarfo, Kwame; Martello, Laura; Ibrahim, Sherif; Pellicer, Angel

    2011-01-01

    The Ras superfamily of GTPases is involved in the modification of many cellular processes including cellular motility, proliferation and differentiation. Our laboratory has previously identified the RalGDS related (Rgr) oncogene in a DMBA-induced rabbit squamous cell carcinoma and its human orthologue, hRgr. In the present study, we analyzed the expression levels of the human hRgr transcript in a panel of human hematopoietic malignancies and found that a truncated form (diseased-truncated; Dtr-hrgr) was significantly overexpressed in many T-cell derived neoplasms. Although the Rgr proto-oncogene belongs to the RalGDS family of guanine nucleotide exchange factors (GEFs), we show that upon the introduction of hRgr into fibroblast cell lines it is able to elicit the activation of both Ral and Ras GTPases. Moreover, in vitro guanine nucleotide exchange assays confirm that hRgr promotes Ral and Ras activation through GDP dissociation, which is a critical characteristic of GEF proteins. hRgr has guanine nucleotide exchange activity for both small GTPases and this activity was reduced when a point mutation within the catalytic domain (CDC25) of the protein, (cd) Dtr-hRgr, was utilized. These observations prompted the analysis of the biological effects of hRgr and (cd) hRgr expression in cultured cells. Here, we show that hRgr increases proliferation in low serum, increases invasion, reduces anchorage dependence, and promotes the progression into S phase of the cell cycle; properties that are abolished or severely reduced in the presence of the catalytic dead mutant. We conclude that the ability of hRgr to activate both Ral and Ras is responsible for its transformation-inducing phenotype and it could be an important contributor in the development of some T cell malignancies. PMID:21441953

  7. Non-AIDS definings malignancies among human immunodeficiency virus-positive subjects: Epidemiology and outcome after two decades of HAART era.

    PubMed

    Brugnaro, Pierluigi; Morelli, Erika; Cattelan, Francesca; Petrucci, Andrea; Panese, Sandro; Eseme, Franklyn; Cavinato, Francesca; Barelli, Andrea; Raise, Enzo

    2015-08-12

    Highly active antiretroviral therapy (HAART) for human immunodeficiency virus (HIV) infection has been widely available in industrialized countries since 1996; its widespread use determined a dramatic decline in acquired immunodeficiency syndrome (AIDS)-related mortality, and consequently, a significant decrease of AIDS-defining cancers. However the increased mean age of HIV-infected patients, prolonged exposure to environmental and lifestyle cancer risk factors, and coinfection with oncogenic viruses contributed to the emergence of other malignancies that are considered non-AIDS-defining cancers (NADCs) as a relevant fraction of morbidity and mortality among HIV-infected people twenty years after HAART introduction. The role of immunosuppression in the pathogenesis of NADCs is not well defined, and future researches should investigate the etiology of NADCs. In the last years there is a growing evidence that intensive chemotherapy regimens and radiotherapy could be safely administrated to HIV-positive patients while continuing HAART. This requires a multidisciplinary approach and a close co-operation of oncologists and HIV-physicians in order to best manage compliance of patients to treatment and to face drug-related side effects. Here we review the main epidemiological features, risk factors and clinical behavior of the more common NADCs, such as lung cancer, hepatocellular carcinoma, colorectal cancer and anal cancer, Hodgkin's lymphoma and some cutaneous malignancies, focusing also on the current therapeutic approaches and preventive screening strategies. PMID:26279983

  8. Non-AIDS definings malignancies among human immunodeficiency virus-positive subjects: Epidemiology and outcome after two decades of HAART era

    PubMed Central

    Brugnaro, Pierluigi; Morelli, Erika; Cattelan, Francesca; Petrucci, Andrea; Panese, Sandro; Eseme, Franklyn; Cavinato, Francesca; Barelli, Andrea; Raise, Enzo

    2015-01-01

    Highly active antiretroviral therapy (HAART) for human immunodeficiency virus (HIV) infection has been widely available in industrialized countries since 1996; its widespread use determined a dramatic decline in acquired immunodeficiency syndrome (AIDS)-related mortality, and consequently, a significant decrease of AIDS-defining cancers. However the increased mean age of HIV-infected patients, prolonged exposure to environmental and lifestyle cancer risk factors, and coinfection with oncogenic viruses contributed to the emergence of other malignancies that are considered non-AIDS-defining cancers (NADCs) as a relevant fraction of morbidity and mortality among HIV-infected people twenty years after HAART introduction. The role of immunosuppression in the pathogenesis of NADCs is not well defined, and future researches should investigate the etiology of NADCs. In the last years there is a growing evidence that intensive chemotherapy regimens and radiotherapy could be safely administrated to HIV-positive patients while continuing HAART. This requires a multidisciplinary approach and a close co-operation of oncologists and HIV-physicians in order to best manage compliance of patients to treatment and to face drug-related side effects. Here we review the main epidemiological features, risk factors and clinical behavior of the more common NADCs, such as lung cancer, hepatocellular carcinoma, colorectal cancer and anal cancer, Hodgkins lymphoma and some cutaneous malignancies, focusing also on the current therapeutic approaches and preventive screening strategies. PMID:26279983

  9. Alterations in vitamin D signaling pathway in gastric cancer progression: a study of vitamin D receptor expression in human normal, premalignant, and malignant gastric tissue

    PubMed Central

    Wen, Yanghui; Da, Mingxu; Zhang, Yongbin; Peng, Lingzhi; Yao, Jibin; Duan, Yaoxing

    2015-01-01

    Amount of studies in cells and animal models have proved vitamin D has multifarious antitumor effects. However, epidemiological studies showed inconsistent result on gastric cancer. The antitumor role is mainly mediated by the vitamin D receptor (VDR). Our hypothesis is that VDR may be abnormally (poorly) expressed in gastric cancer tissue. Present study is aimed at discovering and analyzing VDR expression in a series of human gastric tissues, including normal, premalignant, and malignant gastric tissue, and correlated VDR to the clinicopathological parameters of gastric cancer patients. VDR expression was detected by immunohistochemistry. The χ2 test was used to analyze the VDR expression as well as the relationship between VDR and the clinicopathological factors of gastric cancer patients. Compared with normal (82.61%) and premalignant tissues (73.64%), VDR was lower expressed in cancer tissues (57.61%), with a statistically significant difference (P = 0.001). Among cancer tissues, VDR was higher expressed in well and moderate differentiated tissues contrasted with tissues with poor differentiation, and higher expressed in small tumors (< 5 cm) compared with large tumors (≥ 5 cm), with a statistically significant difference respectively (P = 0.016, P = 0.009). A decline linear trend appeared when analyzing the statistical difference of VDR expression among normal, premalignant, and malignant gastric tissues. VDR expression has been on the decline from the premalignant stage, finally low expressed in gastric cancer tissues, especial in poorly differentiated tissues. VDR could be a potential prognostic factor for patients with gastric cancer. PMID:26722516

  10. Involvement of p53 mutation and mismatch repair proteins dysregulation in NNK-induced malignant transformation of human bronchial epithelial cells.

    PubMed

    Shen, Ying; Zhang, Shuilian; Huang, Xiaobin; Chen, Kailin; Shen, Jing; Wang, Zhengyang

    2014-01-01

    Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers. PMID:25215298

  11. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    PubMed Central

    Wang, Ping; Xue, Yi-Xue; Yao, Yi-Long; Yu, Bo; Liu, Yun-Hui

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas. PMID:23593320

  12. Malignant hyperthermia.

    PubMed

    Bandschapp, Oliver; Girard, Thierry

    2012-01-01

    Malignant hyperthermia (MH) is a subclinical myopathy, usually triggered by volatile anaesthetics and depolarising muscle relaxants. Clinical symptoms are variable, and the condition is sometimes difficult to identify. Nevertheless, rapid recognition and specific as well as symptomatic treatment are crucial to avoid a lethal outcome. Molecular genetic investigations have confirmed the skeletal muscle type ryanodine receptor to be the major MH locus with more than 70% of MH families carrying a mutation in this gene. There is no screening method to test for MH, as current tests are invasive (open muscle biopsy) or restricted to MH families with known MH-associated mutations (molecular genetic testing). The prevalence of the MH trait is unknown, because the clinical penetrance after contact with triggering agents is very variable. More recently, MH mutations have been associated with rhabdomyolysis following statin therapy or with non-pharmacological triggering, such as exertional heat stroke. PMID:22851008

  13. Genotype analysis of the human endostatin variant p.D104N in benign and malignant adrenocortical tumors

    PubMed Central

    de Paula Mariani, Beatriz Marinho; Trarbach, Ericka Barbosa; Ribeiro, Tamaya Castro; Pereira, Maria Adelaide Albergaria; Mendonca, Berenice Bilharinho; Fragoso, Maria Candida Barisson Villares

    2012-01-01

    OBJECTIVE: Endostatin is a potent endogenous inhibitor of angiogenesis. It is derived from the proteolytic cleavage of collagen XVIII, which is encoded by the COL18A1 gene. A polymorphic COL18A1 allele encoding the functional polymorphism p.D104N impairs the activity of endostatin, resulting in a decreased ability to inhibit angiogenesis. This polymorphism has been previously analyzed in many types of cancer and has been considered a phenotype modulator in some benign and malignant tumors. However, these data are controversial, and different results have been reported for the same tumor types, such as prostate and breast cancer. The purpose of this study was to genotype the p.D104N variant in a cohort of pediatric and adult patients with adrenocortical tumors and to determine its possible association with the biological behavior of adrenocortical tumors. METHODS: DNA samples were obtained from 38 pediatric and 56 adult patients (0.675 yrs) with adrenocortical tumors. The DNA samples were obtained from peripheral blood, frozen tissue or paraffin-embedded tumor blocks when blood samples or fresh frozen tissue samples were unavailable. Restriction fragment length polymorphism analysis was used to genotype the patients and 150 controls. The potential associations of the p.D104N polymorphism with clinical and histopathological features and oncologic outcome (age of onset, tumor size, malignant tumor behavior, and clinical syndrome) were analyzed. RESULTS: Both the patient group and the control group were in HardyWeinberg equilibrium. The frequencies of the p.D104N polymorphism in the patient group were 81.9% (DD), 15.9% (DN) and 2.2% (NN). In the controls, these frequencies were 80.6%, 17.3% and 2.0%, respectively. We did not observe any association of this variant with clinical or histopathological features or oncologic outcome in our cohort of pediatric and adult patients with adrenocortical tumors. PMID:22358232

  14. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells

    SciTech Connect

    Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat; Dang, Nam H.; Morimoto, Chikao

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSC properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.

  15. Malignant mesothelioma

    PubMed Central

    Ahmed, Ishtiaq; Ahmed Tipu, Salman; Ishtiaq, Sundas

    2013-01-01

    Malignant Mesothelioma (MM) is a rare but rapidly fatal and aggressive tumor of the pleura and peritoneum with limited knowledge of its natural history. The incidence has increased in the past two decades but still it is a rare tumor. Etiology of all forms of mesothelioma is strongly associated with industrial pollutants, of which asbestos is the principal carcinogen. Mesothelioma is an insidious neoplasm arising from mesothelial surfaces i.e., pleura (65%-70%), peritoneum (30%), tunica vaginalis testis, and pericardium (1%-2%). The diagnosis of peritoneal and Pleural mesothelioma is often delayed, due to a long latent period between onset and symptoms and the common and nonspecific clinical presentation. The definite diagnosis can only be established by diagnostic laparoscopy or open surgery along with biopsy to obtain histological examination and immunocytochemical analysis. Different treatment options are available but Surgery can achieve a complete or incomplete resection and Radical resection is the preferred treatment. Chemotherapy has an important role in palliative treatment. Photodynamic therapy is also an option under trial. Patients who successfully underwent surgical resection had a considerably longer median survival as well as a significantly higher 5-year survival. Source of Data/Study Selection: The data were collected from case reports, cross-sectional studies, Open-label studies and phase II trials between 1973-2012. Data Extraction: Web sites and other online resources of American college of surgeons, Medline, NCBI and Medscape resource centers were used to extract data. Conclusion: Malignant Mesothelioma (MM) is a rare but rapidly fatal and aggressive tumor with limited knowledge of its natural history. The diagnosis of peritoneal and Pleural mesothelioma is often delayed, so level of index of suspicion must be kept high. PMID:24550969

  16. [Aggressive behavior and radiosensitivity in rats'].

    PubMed

    Nadareishvili, K Sh; Todua, F T; Nikolaishvili, M M; Iordanishvili, G S; Ormotsadze, G L; Melitauri, N N; Nadareishvili, D K; Kazakhshvili, M R

    2007-01-01

    This paper aims to present the study of rats' individual radiosensitivity dependence on their individual aggressiveness. On total irradiation in sublethal doses (1.0, 1.5 and 3.5 Gy) and in doses close to LD50/30 (6, 7 and 8 Gy) there was investigated comparative radiosensitivity of non-aggressive and aggressive rats of Wistar line, as well as that of non-aggressive individuals during provoked aggressiveness by means of blocking serotonin synthesis with intraperitoneal (i/p) injection of 400 mg/kg of parachlorphenylalanine (pCPA). Muricidity served as a criterion for aggressiveness and as a criterion of radiosensitivity--cumulative function of survival, the changes of behavior in "Open feald", serotonine and catecholamine content in various brain structures and the dose dependence on the radiation modification of muricidity. It has been found that after 1 Gy total X-irradiation the rats do not lose aggressiveness. Nevertheless the ethalogical parameters change in considerable degree. In the doses of 1.5 and 3.5 Gy muricidity is eluminated in 15-18 and 5-9 days, correspondingly. I/p injection of pCPA after the elimination of aggressiveness provokes transient muricidity in the same terms and duration as it is in case of non-aggressive rats. The elimination of muricidity is associated with changes in content and distribution of biogenic amines in various structures of brain, as well as with reduction of locomotor and reference-research activity, on the one hand and with an increase of emotionality and stereotype activity, on the other hand. After X-irradiation in 6, 7 and 8 Gy the regression coefficients of the dependence of functions type of survival on irradiation dose in aggressive rats is significantly reliable both in comparison with non-aggressive rats and animals with provoked aggressiveness. The change of mortality-rate per unit of changing irradiation dose not depend on blocking of serotonin synthesis, which deficit is one of the distinct determinant of aggressiveness, on the one hand, and higher radiosensitivity, on the other hand. The obtained data allow to suppose that elimination of muricidity after the irradiation of rats in the sublethal doses is conditioned not only by the consequenses of radiation damage of neurobiological structures responsible for the organization of aggressive behavior but the activation of serotonergic system in the process of restitution after radiation trauma. On the other hand, higher radiosensitivity of aggressive rats compared with non-aggressive ones is connected with low serotonin content, thiols and some other biologically active substances which are endogenous radioprotectors determining individual radioresistance. PMID:17953436

  17. The Origin of Malignant Malaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...

  18. Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo

    SciTech Connect

    Zhuo, Enqing; He, Jiao; Wei, Ting; Zhu, Weiliang; Meng, Hui; Li, Yan; Guo, Linlang; Zhang, Jian

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer First investigated the role of GnT-V on the radiosensitivity of NPC cells in vitro and in vivo. Black-Right-Pointing-Pointer The mechanisms of the changing radiosensitivity were also investigated. Black-Right-Pointing-Pointer In this study, more than one experiment methods were used to investigate a problem. -- Abstract: The purpose of this study was to investigate the role of GnT-V on radiosensitivity in human nasopharyngeal carcinoma (NPC) both in vitro and in vivo, and the possible mechanism. The GnT-V stably suppressed cell line CNE-2 GnT-V/2224 was constructed from CNE-2 by transfection. The radiosensitivity of the cells was studied by CCK-8 assay, flow-cytometry, caspases-3 activity analysis and tumor xenografts model. The expression of Bcl-2, Bax and Bcl-xl was analyzed with or without radiation. The results showed that down-regulation of GnT-V enhanced CNE-2 radiosensitivity. The underlying mechanisms may be link to the cell cycle G2-M arrest and the reduction of Bcl-2/Bax ratio. The results suggest that GnT-V may be a potential target for predicting NPC response to radiotherapy.

  19. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers12

    PubMed Central

    Wei, Dongping; Zhang, Qiang; Schreiber, Jason S.; Parsels, Leslie A.; Abulwerdi, Fardokht A.; Kausar, Tasneem; Lawrence, Theodore S.; Sun, Yi; Nikolovska-Coleska, Zaneta; Morgan, Meredith A.

    2015-01-01

    In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1), an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells. PMID:25749177

  20. The glycosylation state of the precursors of the cathepsin B-like proteinase from human malignant ascitic fluid: possible implication in the secretory pathway of these proenzymes.

    PubMed

    Pagano, M; Dalet-Fumeron, V; Engler, R

    1989-04-01

    We have investigated the structure of the carbohydrate moiety of the precursors of the cathepsin B-like proteinase (PCBt). The largest precursor has an apparent molecular size (Mr) of 45-47 Kd and it contains 3 N-linked oligosaccharide chains which were Endo beta N acetylglucosaminidase H (Endo H)-resistant forms. On the other hand, these chains were sequentially removed by Endo beta N acetylglucosaminidase F (Endo F). Both results indicate a complex type structure for these oligosaccharides. As usual in these cases, sialic acids were also found. In the deglycosylated state, PCBt has a Mr value of 36 Kd closely related to the 35.9 Kd Mr for human Pro CB, deduced from the cDNa sequence. These findings may explain the extracellular location of PCBt in malignancy: complex oligosaccharides are in most cases associated with secretory or membrane bound glycoproteins. On the contrary, mannose-rich types are involved in the lysosomal routage. PMID:2713820

  1. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.

    PubMed

    Das, Koushik; Mishra, Subhash C

    2015-08-01

    This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast. PMID:26267509

  2. Exposure to the polyester PET precursorterephthalic acid induces and perpetuates DNA damage-harboring non-malignant human breast cells

    PubMed Central

    Luciani-Torres, Maria Gloria; Moore, Dan H.; Dairkee, Shanaz H.

    2015-01-01

    Identification of early perturbations induced in cells from non-cancerous breast tissue is critical for understanding possible breast cancer risk from chemical exposure. We have demonstrated previously that exposure to the ubiquitous xenoestrogens, bisphenol A (BPA) and methyl paraben, promotes the hallmarks of cancer in non-malignant human high-risk donor breast epithelial cells (HRBECs) isolated from several donors. Here we show that terephthalic acid (TPA), a major chemical precursor of polyethylene terephthalate (PET) containers used for the storage of food and beverages, increased the ER?: ER? ratio in multiple HRBEC samples, suggesting an estrogenic effect. Although, like BPA and methyl paraben, TPA also promoted resistance to tamoxifen-induced apoptosis, unlike these chemicals instead of inducing an increased S-phase fraction, TPA treatment arrested cell proliferation. DNA-PK, ATM and members of the MRN complex, known to be involved in DNA damage sensor and effector proteins, were elevated indicating induction of DNA strand breaks. Early DNA damage checkpoint response, mediated through p53/p21, led to G1 arrest in TPA-exposed cells. Removal of TPA from the growth medium resulted in the rapid induction of BCL2, increasing the ratio of anti-: pro-apoptotic proteins, together with overexpression of Cyclin A/CDK2 proteins. Consequently, despite elevated p53pSer15 and H2AXpSer139, indicating sustained DNA damage, TPA exposed cells resumed robust growth rates seen prior to TPA exposure. The propensity for the perpetuation of DNA aberrations that activate DNA damage pathways in non-malignant breast cells justifies careful consideration of human exposure to TPA, particularly at vulnerable life stages. PMID:25411358

  3. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. PMID:25448439

  4. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. PMID:25448439

  5. Exposure to the polyester PET precursor--terephthalic acid induces and perpetuates DNA damage-harboring non-malignant human breast cells.

    PubMed

    Luciani-Torres, Maria Gloria; Moore, Dan H; Goodson, William H; Dairkee, Shanaz H

    2015-01-01

    Identification of early perturbations induced in cells from non-cancerous breast tissue is critical for understanding possible breast cancer risk from chemical exposure. We have demonstrated previously that exposure to the ubiquitous xenoestrogens, bisphenol A (BPA) and methyl paraben, promotes the hallmarks of cancer in non-malignant human high-risk donor breast epithelial cells (HRBECs) isolated from several donors. Here we show that terephthalic acid (TPA), a major chemical precursor of polyethylene terephthalate (PET) containers used for the storage of food and beverages, increased the ER?: ER? ratio in multiple HRBEC samples, suggesting an estrogenic effect. Although, like BPA and methyl paraben, TPA also promoted resistance to tamoxifen-induced apoptosis, unlike these chemicals instead of inducing an increased S-phase fraction, TPA treatment arrested cell proliferation. DNA-PK, ATM and members of the MRN complex, known to be involved in DNA damage sensor and effector proteins, were elevated indicating induction of DNA strand breaks. Early DNA damage checkpoint response, mediated through p53/p21, led to G1 arrest in TPA-exposed cells. Removal of TPA from the growth medium resulted in the rapid induction of BCL2, increasing the ratio of anti-: pro-apoptotic proteins, together with overexpression of Cyclin A/CDK2 proteins. Consequently, despite elevated p53(pSer15) and H2AX(pSer139), indicating sustained DNA damage, TPA exposed cells resumed robust growth rates seen prior to TPA exposure. The propensity for the perpetuation of DNA aberrations that activate DNA damage pathways in non-malignant breast cells justifies careful consideration of human exposure to TPA, particularly at vulnerable life stages. PMID:25411358

  6. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor

    PubMed Central

    Ng, Patrick P.; Helguera, Gustavo; Daniels, Tracy R.; Lomas, Simon Z.; Rodriguez, Jose A.; Schiller, Gary; Bonavida, Benjamin; Morrison, Sherie L.; Penichet, Manuel L.

    2006-01-01

    We have previously reported that an anti-human transferrin receptor IgG3-avidin fusion protein (anti-hTfR IgG3-Av) inhibits the proliferation of an erythroleukemia-cell line. We have now found that anti-hTfR IgG3-Av also inhibits the proliferation of additional human malignant B and plasma cells. Anti-hTfR IgG3-Av induces internalization and rapid degradation of the TfR. These events can be reproduced in cells treated with anti-hTfR IgG3 cross-linked with a secondary Ab, suggesting that they result from increased TfR cross-linking. Confocal microscopy of cells treated with anti-hTfR IgG3-Av shows that the TfR is directed to an intracellular compartment expressing the lysosomal marker LAMP-1. The degradation of TfR is partially blocked by cysteine protease inhibitors. Furthermore, cells treated with anti-hTfR IgG3-Av exhibit mitochondrial depolarization and activation of caspases 9, 8, and 3. The mitochondrial damage and cell death can be prevented by iron supplementation, but cannot be fully blocked by a pan-caspase inhibitor. These results suggest that anti-hTfR IgG3-Av induces lethal iron deprivation, but the resulting cell death does not solely depend on caspase activation. This report provides insights into the mechanism of cell death induced by anti-TfR Abs such as anti-hTfR IgG3-Av, a molecule that may be useful in the treatment of B-cell malignancies such as multiple myeloma. PMID:16804109

  7. Dinaciclib, a Cyclin-Dependent Kinase Inhibitor Promotes Proteasomal Degradation of Mcl-1 and Enhances ABT-737-Mediated Cell Death in Malignant Human Glioma Cell Lines.

    PubMed

    Jane, Esther P; Premkumar, Daniel R; Cavaleri, Jonathon M; Sutera, Philip A; Rajasekar, Thatchana; Pollack, Ian F

    2016-02-01

    The prognosis for malignant glioma, the most common brain tumor, is still poor, underscoring the need to develop novel treatment strategies. Because glioma cells commonly exhibit genomic alterations involving genes that regulate cell-cycle control, there is a strong rationale for examining the potential efficacy of strategies to counteract this process. In this study, we examined the antiproliferative effects of the cyclin-dependent kinase inhibitor dinaciclib in malignant human glioma cell lines, with intact, deleted, or mutated p53 or phosphatase and tensin homolog on chromosome 10; intact or deleted or p14ARF or wild-type or amplified epidermal growth factor receptor. Dinaciclib inhibited cell proliferation and induced cell-cycle arrest at the G2/M checkpoint, independent of p53 mutational status. In a standard 72-hour 3-[4,5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium (MTS) assay, at clinically relevant concentrations, dose-dependent antiproliferative effects were observed, but cell death was not induced. Moreover, the combination of conventional chemotherapeutic agents and various growth-signaling inhibitors with dinaciclib did not yield synergistic cytotoxicity. In contrast, combination of the Bcl-2/Bcl-xL inhibitors ABT-263 (4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide) or ABT-737 (4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl]amino]-3-nitrophenyl]sulfonylbenzamide) with dinaciclib potentiated the apoptotic response induced by each single drug. The synergistic killing by ABT-737 with dinaciclib led to cell death accompanied by the hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential; the release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor; phosphatidylserine exposure on the plasma membrane surface and activation of caspases and poly ADP-ribose polymerase. Mechanistic studies revealed that dinaciclib promoted proteasomal degradation of Mcl-1. These observations may have important clinical implications for the design of experimental treatment protocols for malignant human glioma. PMID:26585571

  8. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    SciTech Connect

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation. • Luteolin inhibited chronic Cr(VI)-induced inflammation. • Luteolin inhibited chronic Cr(VI)-induced angiogenesis.

  9. Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells.

    PubMed

    Matayoshi, Sen; Chiba, Shunmei; Lin, Yanfui; Arakaki, Kazunari; Matsumoto, Hirofumi; Nakanishi, Takaya; Suzuki, Mikio; Kato, Seiya

    2013-05-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer worldwide. Despite improvement in therapeutic strategies, the prognosis of advanced HNSCC remains poor. The extacellular lipid mediators known as lysophosphatidic acids (LPAs) have been implicated in tumorigenesis of HNSCC. LPAs activate G-protein-coupled receptors not only in the endothelial differentiation gene (Edg) family (LPA1, LPA2, LPA3) but also in the phylogenetically distant non-Edg family (LPA4, LPA5, LPA6). The distinct roles of these receptor isoforms in HNSCC tumorigenesis have not been clarified. In the present study, we investigated the effect of ectopic expression of LPA4 in SQ-20B, an HNSCC cell line, expressing a trivial level of endogenous LPA4. LPA (18:1) stimulated proliferation of SQ-20B cells, but did not affect proliferation of HEp-2, an SCC cell line expressing higher levels of LPA4, comparable to those of with LPA1. LPA-stimulated proliferation of SQ-20B cells was attenuated by Ki16425 and Rac1 inhibitor, but not by Y-27632. Infection with doxycycline-regulatable adenovirus vector expressing green fluorescent protein-tagged LPA4 (AdvLPA4G) abolished LPA-stimulated proliferation in SQ-20B cells with the accumulation of G2/M-phasic cells. Ectopic LPA4 induction further downregulated proliferation of Ki16425-treated SQ-20B cells, of which downregulation was partially recovered by LPA. Ectopic LPA4 induction also downregulated proliferation of Rac1 inhibitor-treated SQ-20B cells, however, LPA no longer recovered it. Finally, LPA-induced cell motility was suppressed by ectopic LPA4 expression as well as by Ki16425, Rac1 inhibitor or Y-27632. Our data suggest that LPA4 signaling potentially modulates malignant behavior of SQ-20B cells. LPA signaling, which is mediated by both Edg and non-Edg receptors, may be a determinant of malignant behavior of HNSCC and could therefore be a promising therapeutic target. PMID:23467751

  10. Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells

    PubMed Central

    MATAYOSHI, SEN; CHIBA, SHUNMEI; LIN, YANFUI; ARAKAKI, KAZUNARI; MATSUMOTO, HIROFUMI; NAKANISHI, TAKAYA; SUZUKI, MIKIO; KATO, SEIYA

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer worldwide. Despite improvement in therapeutic strategies, the prognosis of advanced HNSCC remains poor. The extacellular lipid mediators known as lysophosphatidic acids (LPAs) have been implicated in tumorigenesis of HNSCC. LPAs activate G-protein-coupled receptors not only in the endothelial differentiation gene (Edg) family (LPA1, LPA2, LPA3) but also in the phylogenetically distant non-Edg family (LPA4, LPA5, LPA6). The distinct roles of these receptor isoforms in HNSCC tumorigenesis have not been clarified. In the present study, we investigated the effect of ectopic expression of LPA4 in SQ-20B, an HNSCC cell line, expressing a trivial level of endogenous LPA4. LPA (18:1) stimulated proliferation of SQ-20B cells, but did not affect proliferation of HEp-2, an SCC cell line expressing higher levels of LPA4, comparable to those of with LPA1. LPA-stimulated proliferation of SQ-20B cells was attenuated by Ki16425 and Rac1 inhibitor, but not by Y-27632. Infection with doxycycline-regulatable adenovirus vector expressing green fluorescent protein-tagged LPA4 (AdvLPA4G) abolished LPA-stimulated proliferation in SQ-20B cells with the accumulation of G2/M-phasic cells. Ectopic LPA4 induction further downregulated proliferation of Ki16425-treated SQ-20B cells, of which downregulation was partially recovered by LPA. Ectopic LPA4 induction also downregulated proliferation of Rac1 inhibitor-treated SQ-20B cells, however, LPA no longer recovered it. Finally, LPA-induced cell motility was suppressed by ectopic LPA4 expression as well as by Ki16425, Rac1 inhibitor or Y-27632. Our data suggest that LPA4 signaling potentially modulates malignant behavior of SQ-20B cells. LPA signaling, which is mediated by both Edg and non-Edg receptors, may be a determinant of malignant behavior of HNSCC and could therefore be a promising therapeutic target. PMID:23467751

  11. Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring

    PubMed Central

    2013-01-01

    Background Serum biomarkers can improve diagnosis and treatment of malignant pleural mesothelioma (MPM). However, the evaluation of potential new serum biomarker candidates is hampered by a lack of assay technologies for their clinical evaluation. Here we followed a hypothesis-driven targeted proteomics strategy for the identification and clinical evaluation of MPM candidate biomarkers in serum of patient cohorts. Results Based on the hypothesis that cell surface exposed glycoproteins are prone to be released from tumor-cells to the circulatory system, we screened the surfaceome of model cell lines for potential MPM candidate biomarkers. Selected Reaction Monitoring (SRM) assay technology allowed for the direct evaluation of the newly identified candidates in serum. Our evaluation of 51 candidate biomarkers in the context of a training and an independent validation set revealed a reproducible glycopeptide signature of MPM in serum which complemented the MPM biomarker mesothelin. Conclusions Our study shows that SRM assay technology enables the direct clinical evaluation of protein-derived candidate biomarker panels for which clinically reliable ELISAs currently do not exist. PMID:24207061

  12. Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells

    PubMed Central

    Scheck, Adrienne C; Perry, Krya; Hank, Nicole C; Clark, W Dennis

    2006-01-01

    Background Flavonoid-rich extracts from the mature roots of Scutellaria baicalensis have been shown to exhibit antiproliferative effects on various cancer cell lines. We assessed the ability of an ethanolic extract of S. baicalensis root to inhibit the proliferation of malignant glioma cells. Methods Cell lines derived from primary and recurrent brain tumors from the same patient and cells selected for resistance to the chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) were used to identify antiproliferative effects of this extract when used alone and in conjunction with BCNU. Results and discussion Results indicated that Scutellaria baicalensis not only inhibits cellular growth in recurrent and drug resistant brain tumor cell lines, but also demonstrates an increased inhibitory effect when used in conjunction with BCNU. Conclusion The results of this study support the efficacy of S. baicalensis as an anticancer agent for glioblastomas multiforme and a potential adjuvant treatment to current chemotherapeutic agents used in the treatment of both primary and recurrent GBMs. Further studies of the effects of individual flavonoids alone and in combination with each other and with currently used therapies are needed. PMID:16914050

  13. Estramustine: A novel radiation enhancer in human carcinoma cells

    SciTech Connect

    Ryu, S.; Gabel, M.; Khil, M.S.

    1994-08-30

    Estramustine (EM), an antimicrotubule agent, binds microtubule-associated proteins, causes spindle disassembly, and arrests cells at the late G{sub 2}/M phase of the cell cycle. Since cells in the G{sub 2}/M phase are the most radiosensitive and some human cancer cells contain high level of EM-binding protein, experiments were carried out to determine whether radiation sensitization could be obtained in human carcinoma cells. Cells containing a high level of EM-binding protein such as prostate carcinoma (DU-145), breast carcinoma (MCF-7), and malignant glioma (U-251) were used to demonstrate radiosensitization. Cervical carcinoma (HeLa-S{sub 3}) and colon carcinoma (HT-29) cells which are not known to contain EM-binding protein were also employed. Cell survival was assayed by the colony forming ability of single plated cells in culture to obtain dose-survival curves. Pretreatment of DU-145, MCF-7, and U-251 cells to a nontoxic concentration (5 {mu}M) of EM for more than one cell cycle time, substantially enhanced the radiation-induced cytotoxicity. The sensitizer enhancement ratio of these cells ranged from 1.35-1.52. The magnitude of the enhancement was dependent on the drug concentration and exposure time. The rate of cell accumulation in G{sub 2}/M phase, as determined by flow cytometry, increased with longer treatment time in the cell lines which showed radiosensitization. Other antimicrotubule agents such as taxol and vinblastine caused minimal or no radiosensitization at nontoxic concentrations. The data provide a radiobiological basis for using EM as a novel radiation enhancer, with the property of tissue selectivity. 29 refs., 4 figs., 1 tab.

  14. [Malignant melanoma].

    PubMed

    Champeau, F; Verola, O

    1998-08-01

    Malignant melanoma is the most serious skin tumor and its incidence is doubling every ten years. Ultraviolet rays represent the main environmental cause of melanoma. Among the constitutional factors identified, two clinicopathological forms of naevus are considered to be important epidemiological precursors: acquired dysplastic naevi and congenital giant naevi. Four clinical and histological types are distinguished: SSM (Superficial Spreading Melanoma), NM (Nodular Melanoma), LMM (Lentigo Maligna Melanoma), arising from Dubreuilh melanosis, ALM (Acral Lentiginous Melanoma). Thickness constitutes the essential prognostic factor. Clinical examination is the only recommended standard assessment. Chest x-ray is useful, and acts as a reference for subsequent follow-up. Other complementary investigations are requested as a function of clinical signs. Treatment is exclusively surgical. The lateral resection margins are 0.5 cm for melanoma in situ, 1 cm for melanomas less than 1 mm thick, 2 cm for melanomas between 1 and 4 mm thick, and 3 cm for melanomas thicker than 4 mm. Chemotherapy is mainly used in the treatment of metastatic melanoma. There is no indication for radiotherapy apart from palliative treatment of nonsurgical metastases. New therapies such as immunotherapy and gene therapy are under investigation. PMID:9926473

  15. [Malignant hyperthermia].

    PubMed

    Metterlein, T; Schuster, F; Graf, B M; Anetseder, M

    2014-12-01

    Malignant hyperthermia (MH) is a rare hereditary, mostly subclinical myopathy. Trigger substances, such as volatile anesthetic agents and the depolarizing muscle relaxant succinylcholine can induce a potentially fatal metabolic increase in predisposed patients caused by a dysregulation of the myoplasmic calcium (Ca) concentration. Mutations in the dihydropyridine ryanodine receptor complex in combination with the trigger substances are responsible for an uncontrolled release of Ca from the sarcoplasmic reticulum. This leads to activation of the contractile apparatus and a massive increase in cellular energy production. Exhaustion of the cellular energy reserves ultimately results in local muscle cell destruction and subsequent cardiovascular failure. The clinical picture of MH episodes is very variable. Early symptoms are hypoxia, hypercapnia and cardiac arrhythmia whereas the body temperature rise, after which MH is named, often occurs later. Decisive for the course of MH episodes is a timely targeted therapy. Following introduction of the hydantoin derivative dantrolene, the previously high mortality of fulminant MH episodes could be reduced to well under 10?%. An MH predisposition can be detected using the invasive in vitro contracture test (IVCT) or mutation analysis. Few elaborate diagnostic procedures are in the developmental stage. PMID:25384957

  16. Expression of hPNAS-4 Radiosensitizes Lewis Lung Cancer

    SciTech Connect

    Zeng Hui; Yuan Zhu; Zhu Hong; Li Lei; Shi Huashan; Wang Zi; Fan Yu; Deng Qian; Zeng Jianshuang; He Yinbo; Xiao Jianghong; Li Zhiping

    2012-11-15

    Purpose: This study aimed to transfer the hPNAS-4 gene, a novel apoptosis-related human gene, into Lewis lung cancer (LL2) and observe its radiosensitive effect on radiation therapy in vitro and in vivo. Methods and Materials: The hPNAS-4 gene was transfected into LL2 cells, and its expression was detected via western blot. Colony formation assay and flow cytometry were used to detect the growth and apoptosis of cells treated with irradiation/PNAS-4 in vitro. The hPNAS-4 gene was transferred into LL2-bearing mice through tail vein injection of the liposome/gene complex. The tumor volumes were recorded after radiation therapy. Proliferating cell nuclear antigen (PCNA) immunohistochemistry staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were performed to detect the tumor cell growth and apoptosis in vivo. Results: The hPNAS-4 gene was successfully transferred into LL2 cells and tumor tissue, and its overexpressions were confirmed via western blot analysis. Compared with the control, empty plasmid, hPNAS-4, radiation, and empty plasmid plus radiation groups, the hPNAS-4 plus radiation group more significantly inhibited growth and enhanced apoptosis of LL2 cells in vitro and in vivo (P<.05). Conclusions: The hPNAS-4 gene was successfully transferred into LL2 cells and tumor tissue and was expressed in both LL2 cell and tumor tissue. The hPNAS-4 gene therapy significantly enhanced growth inhibition and apoptosis of LL2 tumor cells by radiation therapy in vitro and in vivo. Therefore, it may be a potential radiosensitive treatment of radiation therapy for lung cancer.

  17. Silencing CDK4 radiosensitizes breast cancer cells by promoting apoptosis

    PubMed Central

    2013-01-01

    Background The discovery of molecular markers associated with various breast cancer subtypes has greatly improved the treatment and outcome of breast cancer patients. Unfortunately, breast cancer cells acquire resistance to various therapies. Mounting evidence suggests that resistance is rooted in the deregulation of the G1 phase regulatory machinery. Methods To address whether deregulation of the G1 phase regulatory machinery contributes to radiotherapy resistance, the MCF10A immortalized human mammary epithelial cell line, ER-PR-Her2+ and ER-PR-Her2- breast cancer cell lines were irradiated. Colony formation assays measured radioresistance, while immunocytochemistry, Western blots, and flow cytometry measured the cell cycle, DNA replication, mitosis, apoptosis, and DNA breaks. Results Molecular markers common to all cell lines were overexpressed, including cyclin A1 and cyclin D1, which impinge on CDK2 and CDK4 activities, respectively. We addressed their potential role in radioresistance by generating cell lines stably expressing small hairpin RNAs (shRNA) against CDK2 and CDK4. None of the cell lines knocked down for CDK2 displayed radiosensitization. In contrast, all cell lines knocked down for CDK4 were significantly radiosensitized, and a CDK4/CDK6 inhibitor sensitized MDA-MB-468 to radiation induced apoptosis. Our data showed that silencing CDK4 significantly increases radiation induced cell apoptosis in cell lines without significantly altering cell cycle progression, or DNA repair after irradiation. Our results indicate lower levels of phospho-Bad at ser136 upon CDK4 silencing and ionizing radiation, which has been shown to signal apoptosis. Conclusion Based on our data we conclude that knockdown of CDK4 activity sensitizes breast cancer cells to radiation by activating apoptosis pathways. PMID:23886499

  18. C-Kit Expression, Angiogenesis, and Grading in Canine Mast Cell Tumour: A Unique Model to Study C-Kit Driven Human Malignancies

    PubMed Central

    Patruno, Rosa; Marech, Ilaria; Zizzo, Nicola; Nardulli, Patrizia; Introna, Marcello; Capriuolo, Gennaro; Rubini, Rosa Angela; Ribatti, Domenico; Gadaleta, Cosmo Damiano

    2014-01-01

    Canine cutaneous mast cell tumour (CMCT) is a c-Kit driven tumour sharing similar c-Kit aberrations found in human gastrointestinal stromal tumour. CMCT is classified into three forms: well- (G1), intermediately (G2) (more benign diseases), and poorly (G3) differentiated (malignant) forms. We assess a correlation between c-Kit status, grading, and angiogenesis in CMCTs to explore their potential significance in humans. C-Kit receptor (c-KitR) expression, microvascular density (MVD), and mast cell granulated and degranulated status density (MCGD and MCDD, resp.) were analyzed in 97 CMCTs, by means of histochemistry, immunohistochemistry double staining, and image analysis system. Data showed that predominantly diffuse cytoplasmic- and predominantly focal paranuclear- (Golgi-like) c-Kit protein (PDC-c-Kit and PFP-c-Kit, resp.) expression correlate with high MVD, G3 histopathological grade, and MCDD. Moreover, predominant cell membrane-c-KitR (PCM-c-KitR) expression status correlates with low MVD, G1-G2 histopathological grade, and MCGD. These findings underline the key role of c-Kit in the biopathology of canine MCTs, indicating a link between aberrant c-Kit expression, increased angiogenesis, and higher histopathological grade. CMCT seems to be a model to study contributions of c-Kit activated MCs in tumour angiogenesis and to evaluate the inhibition of MCs activation by means of c-Kit tyrosine kinase inhibitors, currently translated in humans. PMID:24900982

  19. Triptolide induced DNA damage in A375.S2 human malignant melanoma cells is mediated via reduction of DNA repair genes.

    PubMed

    Chueh, Fu-Shin; Chen, Yung-Liang; Hsu, Shu-Chun; Yang, Jai-Sing; Hsueh, Shu-Ching; Ji, Bin-Chuan; Lu, Hsu-Feng; Chung, Jing-Gung

    2013-02-01

    Numerous studies have demonstrated that triptolide induces cell cycle arrest and apoptosis in human cancer cell lines. However, triptolide-induced DNA damage and inhibition of DNA repair gene expression in human skin cancer cells has not previously been reported. We sought the effects of triptolide on DNA damage and associated gene expression in A375.S2 human malignant melanoma cells in vitro. Comet assay, DAPI staining and DNA gel electrophoresis were used for examining DNA damage and results indicated that triptolide induced a longer DNA migration smear based on single cell electrophoresis and DNA condensation and damage occurred based on the examination of DAPI straining and DNA gel electrophoresis. The real-time PCR technique was used to examine DNA damage and repair gene expression (mRNA) and results indicated that triptolide led to a decrease in the ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA-1), p53, DNA-dependent serine/threonine protein kinase (DNA-PK) and O6-methylguanine-DNA methyltransferase (MGMT) mRNA expression. Thus, these observations indicated that triptolide induced DNA damage and inhibited DNA damage and repair-associated gene expression (mRNA) that may be factors for triptolide-mediated inhibition of cell growth in vitro in A375.S2 cells. PMID:23233170

  20. Asbestos-related malignancy

    SciTech Connect

    Talcott, J.A.; Antman, K.H.

    1988-05-01

    Asbestos-associated malignancies have received significant attention in the lay and medical literature because of the increasing frequency of two asbestos-associated tumors, lung carcinoma and mesothelioma; the wide distribution of asbestos; its status as a prototype environmental carcinogen; and the many recent legal compensation proceedings, for which medical testimony has been required. The understanding of asbestos-associated carcinogenesis has increased through study of animal models, human epidemiology, and, recently, the application of modern molecular biological techniques. However, the detailed mechanisms of carcinogenesis remain unknown. A wide variety of malignancies have been associated with asbestos, although the strongest evidence for a causal association is confined to lung cancer and mesothelioma. Epidemiological studies have provided evidence that both the type of asbestos fiber and the industry in which the exposure occurs may affect the rates of asbestos-associated cancers. It has been shown that asbestos exerts a carcinogenic effect independent of exposure to cigarette smoking that, for lung cancers, is synergistically enhanced by smoking. Other questions remain controversial, such as whether pulmonary fibrosis necessarily precedes asbestos-associated lung cancer and whether some threshold level of exposure to asbestos (including low-dose exposures that may occur in asbestos-associated public buildings) may be safe. Mesothelioma, the most closely asbestos-associated malignancy, has a dismal natural history and has been highly resistant to therapy. However, investigational multi-modality therapy may offer benefit to some patients. 179 references.

  1. Immunotherapy for Gastrointestinal Malignancies

    PubMed Central

    Toomey, Paul G.; Vohra, Nasreen A.; Ghansah, Tomar; Sarnaik, Amod A.; Pilon-Thomas, Shari A.

    2016-01-01

    Background Gastrointestinal (GI) cancers are the most common human tumors encountered worldwide. The majority of GI cancers are unresectable at the time of diagnosis, and in the subset of patients undergoing resection, few are cured. There is only a modest improvement in survival with the addition of modalities such as chemotherapy and radiation therapy. Due to an increasing global cancer burden, it is imperative to integrate alternative strategies to improve outcomes. It is well known that cancers possess diverse strategies to evade immune detection and destruction. This has led to the incorporation of various immunotherapeutic strategies, which enable reprogramming of the immune system to allow effective recognition and killing of GI tumors. Methods A review was conducted of the results of published clinical trials employing immunotherapy for esophageal, gastroesophageal, gastric, hepatocellular, pancreatic, and colorectal cancers. Results Monoclonal antibody therapy has come to the forefront in the past decade for the treatment of colorectal cancer. Immunotherapeutic successes in solid cancers such as melanoma and prostate cancer have led to the active investigation of immunotherapy for GI malignancies, with some promising results. Conclusions To date, monoclonal antibody therapy is the only immunotherapy approved by the US Food and Drug Administration for GI cancers. Initial trials validating new immunotherapeutic approaches, including vaccination-based and adoptive cell therapy strategies, for GI malignancies have demonstrated safety and the induction of antitumor immune responses. Therefore, immunotherapy is at the forefront of neoadjuvant as well as adjuvant therapies for the treatment and eradication of GI malignancies. PMID:23302905

  2. Taxonomic and developmental aspects of radiosensitivity

    SciTech Connect

    Harrison, F.L.; Anderson, S.L.

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stages being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms` responses to radiation.

  3. On the mechanism of salivary gland radiosensitivity

    SciTech Connect

    Konings, Antonius W.T. . E-mail: a.w.t.konings@med.rug.nl; Coppes, Rob P.; Vissink, Arjan

    2005-07-15

    Purpose: To contribute to the understanding of the enigmatic radiosensitivity of the salivary glands by analysis of appropriate literature, especially with respect to mechanisms of action of early radiation damage, and to supply information on the possibilities of amelioration of radiation damage to the salivary glands after radiotherapy of head-and-neck cancer. Methods and Materials: Selected published data on the mechanism of salivary gland radiosensitivity and radioprotection were studied and analyzed. Results: From a classical point of view, the salivary glands should not respond as rapidly to radiation as they appear to do. Next to the suggestion of massive apoptosis, the leakage of granules and subsequent lysis of acinar cells was suggested to be responsible for the acute radiation-induced function loss of the salivary glands. The main problem with these hypotheses is that recently performed assays show no cell loss during the first days after irradiation, while saliva flow is dramatically diminished. The water secretion is selectively hampered during the first days after single-dose irradiation. Literature is discussed that shows that the compromised cells suffer selective radiation damage to the plasma membrane, disturbing signal transduction primarily affecting watery secretion. Although the cellular composition of the submandibular gland and the parotid gland are different, the damage response is very alike. The acute radiation-induced function loss in both salivary glands can be ameliorated by prophylactic treatment with specific receptor agonists. Conclusions: The most probable mechanism of action, explaining the enigmatic high radiosensitivity for early effects, is selective radiation damage to the plasma membrane of the secretory cells, disturbing muscarinic receptor stimulated watery secretion. Later damage is mainly due to classical mitotic cell death of progenitor cells, leading to a hampered replacement capacity of the gland for secretory cells, but is also caused by damage to the extracellular environment, preventing proper cell functioning.

  4. Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing ??+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies.

    PubMed

    Muccio, Letizia; Bertaina, Alice; Falco, Michela; Pende, Daniela; Meazza, Raffaella; Lopez-Botet, Miguel; Moretta, Lorenzo; Locatelli, Franco; Moretta, Alessandro; Chiesa, Mariella Della

    2016-03-01

    We analyzed the impact of human cytomegalovirus infection on the development of natural killer cells in 27 pediatric patients affected by hematological malignancies, who had received a HLA-haploidentical hematopoietic stem cell transplantation, depleted of both ?/?+ T cells and B cells. In line with previous studies in adult recipients of umbilical cord blood transplantation, we found that human cytomegalovirus reactivation accelerated the emergence of mature natural killer cells. Thus, most children displayed a progressive expansion of a memory-like natural killer cell subset expressing NKG2C, a putative receptor for human cytomegalovirus, and CD57, a marker of terminal natural killer cell differentiation. NKG2C(+)CD57(+) natural killer cells were detectable by month 3 following hematopoietic stem cell transplantation and expanded until at least month 12. These cells were characterized by high killer Ig-like receptors (KIRs) and leukocyte inhibitory receptor 1 (LIR-1) and low Siglec-7, NKG2A and Interleukin-18R? expression, killed tumor targets and responded to cells expressing HLA-E (a NKG2C ligand). In addition, they were poor Interferon-? producers in response to Interleukin-12 and Interleukin-18. The impaired response to these cytokines, together with their highly differentiated profile, may reflect their skewing toward an adaptive condition specialized in controlling human cytomegalovirus. In conclusion, in pediatric patients receiving a type of allograft different from umbilical cord blood transplantation, human cytomegalovirus also induced memory-like natural killer cells, possibly contributing to controlling infections and reinforcing anti-leukemia effects. PMID:26659918

  5. Wogonin Induced Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Human Malignant Neuroblastoma Cells Via IRE1?-Dependent Pathway.

    PubMed

    Ge, Wenliang; Yin, Qiyou; Xian, Hua

    2015-07-01

    Wogonin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been reported to exhibit a variety of biological effects including anti-cancer effects. It has a pro-apoptotic role in many cancer types. However, the molecular mechanisms of wogonin in treating neuroblastoma remain elusive. In the present study, two malignant neuroblastoma cell lines (SK-N-BE2 and IMR-32 cells) were treated with different doses of wogonin (0-150 ?M). Wogonin showed significant cytotoxic effects in SK-N-BE2 and IMR-32 cells in a dose- and time-dependent manner. Treatment of SK-N-BE2 and IMR-32 cells with 75 ?? wogonin for 48 h significantly promoted apoptosis, the release of cytochrome c, altered the expression of certain members of Bcl-2 family (Bcl-2, Bax and Bid), and increased the activation of caspase-3, caspase-8, caspase-9, and PARP-1, which demonstrated that the cytotoxic effect of wogonin in SK-N-BE2 and IMR-32 cells is mediated by mitochondrial dysfunction. Moreover, wogonin induced the expression of endoplasmic reticulum (ER) stress-related proteins (GRP78/Bip and GRP94/gp96) and activation of caspase-12 and caspase-4 in SK-N-BE2 and IMR-32 cells. In addition, wogonin increase the expression of IRE1? and TRAF2, and phosphorylation of ASK1 and JNK in SK-N-BE2 and IMR-32 cells. Knockdown of IRE1? by siRNA not only markedly inhibited wogonin-induced up-regulation of IRE1? and TRAF2, and phosphorylation of ASK1 and JNK but also reduced wogonin-induced cytotoxic effects and mitochondrial dysfunction in SK-N-BE2 and IMR-32 cells. These results indicated that wogonin could induce apoptosis, mitochondrial dysfunction, and ER stress in SK-N-BE2 and IMR-32 cells by modulating IRE1?-dependent pathway. PMID:25740014

  6. Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells

    PubMed Central

    Silva, Isabel Gonçalves; Gibbs, Bernhard F.; Bardelli, Marco; Varani, Luca; Sumbayev, Vadim V.

    2015-01-01

    The T cell immunoglobulin and mucin domain 3 (Tim-3) is a plasma membrane-associated receptor which is involved in a variety of biological responses in human immune cells. It is highly expressed in most acute myeloid leukaemia (AML) cells and therefore may serve as a possible target for AML therapy. However, its biochemical activities in primary human AML cells remain unclear. We therefore analysed the total expression and surface presence of the Tim-3 receptor in primary human AML blasts and healthy primary human leukocytes isolated from human blood. We found that Tim-3 expression was significantly higher in primary AML cells compared to primary healthy leukocytes. Tim-3 receptor molecules were distributed largely on the surface of primary AML cells, whereas in healthy leukocytes Tim-3 protein was mainly expressed intracellularly. In primary human AML blasts, both Tim-3 agonistic antibody and galectin-9 (a Tim-3 natural ligand) significantly upregulated mTOR pathway activity. This was in line with increased accumulation of hypoxia-inducible factor 1 alpha (HIF-1α) and secretion of VEGF and TNF-α. Similar results were obtained in primary human healthy leukocytes. Importantly, in both types of primary cells, Tim-3-mediated effects were compared with those induced by lipopolysaccharide (LPS) and stem cell factor (SCF). Tim-3 induced comparatively moderate responses in both AML cells and healthy leukocytes. However, Tim-3, like LPS, mediated the release of both TNF-α and VEGF, while SCF induced mostly VEGF secretion and did not upregulate TNF-α release. PMID:26413815

  7. Radioimmunotherapy of malignancies

    SciTech Connect

    Reilly, R.M. )

    1991-05-01

    The critical issues in radioimmunotherapy are highlighted, and novel ways of improving the therapeutic indexes of radioimmunotherapeutic agents are outlined. The use of radioactively labeled monoclonal antibodies to treat malignant tumors has been investigated in animals and humans. Radionuclides suitable for labeling antibodies for such use include iodine 125, iodine 131, yttrium 90, rhenium 188, and copper 67. Radiobiological factors to be considered in radioimmunotherapy include the size and density of the tumor and the ability of a radiolabeled antibody to penetrate the tumor nodule. The dose of radiation required to destroy a tumor varies; however, the whole-body dose must not exceed 200 rads to avoid irreversible toxicity to the bone marrow. Despite the theoretical inadequacy of radiation doses to tumors indicated by conventional dosimetry, responses have been observed in animals and humans. More reliable and accurate dosimetric methods are under development. The induction of human antimouse antibodies can alter the pharmacokinetics of radiolabeled antibodies. Improving the therapeutic index of radioimmunotherapeutic agents may be achieved through regional therapy, administering a secondary antibody to improve clearance, combining radioimmunotherapy with external-beam irradiation, using an avidin-biotin conjugate system to deliver the radiolabeled antibodies, and addressing the problem of tumor antigen heterogeneity. Researchers are working to reduce or eliminate the clinical problems associated with radioimmunotherapy. Hematologic malignancies, such as lymphomas, are more likely than solid tumors to respond satisfactorily. 110 refs.

  8. Radiosensitization of TPGS-emulsified docetaxel-loaded poly(lactic-co-glycolic acid) nanoparticles in CNE-1 and A549 cells.

    PubMed

    Shi, Wei; Yuan, Yin; Chu, Min; Zhao, Shuang; Song, Qingle; Mu, Xiaoqian; Xu, Shuangbing; Zhang, Zhiping; Yang, Kunyu

    2016-03-01

    Docetaxel is among the most effective radiosensitizers. It is widely used as radiosensitizer in many tumors, including head and neck carcinoma. Nevertheless, poor solubility and severe hypersensitivity limit its clinical use and its therapeutic effect remains to be improved. In this study, docetaxel-loaded polymeric nanoparticles were prepared by nanoprecipitation method to be new radiosensitizer with lower side effects and higher efficacy. The physiochemical characteristics of the nanoparticles were studied. Two human tumor cell lines which are resistant to radiotherapy were used in this research. We have compared the radioenhancement efficacy of docetaxel-loaded nanoparticles with docetaxel in A549 and CNE-1 cells. Compared with docetaxel, radiosensitization of docetaxel-loaded nanoparticles was improved significantly (sensitization enhancement ratio in A549 increased 1.24-fold to 1.68-fold when the radiation was applied 2 h after the drug, p < 0.01, sensitization enhancement ratio in CNE-1 increased 1.32-fold to 1.61-fold, p < 0.05). We explored the mechanisms for the radiosensitization efficiency and the difference between docetaxel and docetaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, promoted apoptosis and the role of D-alpha-tocopheryl polyethylene glycol 1000 succinate which will enhance the cell uptake and inhibit the multiple drug resistance. Moreover, the radiosensitization efficacy of docetaxel-loaded nanoparticles was more prominent than docetaxel. In conclusion, tocopheryl polyethylene glycol 1000 succinate-emulsified docetaxel-loaded PLGA nanoparticles were more efficacious and fewer adverse effects were observed than with the commercial docetaxel formulation. Thus, PLGA nanoparticles hold promise as a radiosensitizing agent. PMID:26608458

  9. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    SciTech Connect

    Fukumoto, Shinya; Hanazono, Kiwamu; Fu, Dah-Renn; Endo, Yoshifumi; Kadosawa, Tsuyoshi; Iwano, Hidetomo; Uchide, Tsuyoshi

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM. These findings suggest that LAT1 could be a new therapeutic target for MM.

  10. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  11. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo.

    PubMed

    Kwon, Su-Jung; Lee, Seul-Ki; Na, Juri; Lee, Shin-Ai; Lee, Han-Sae; Park, Ji-Hye; Chung, June-Key; Youn, Hyewon; Kwon, Jongbum

    2015-02-01

    Radiotherapy treats cancer by inducing DNA double-strand breaks (DSB) in tumor cells using ionizing radiation. However, DNA repair in tumor cells often leads to radioresistance and unsuccessful outcome. Inhibition of DNA repair by targeting repair proteins can increase radiosensitivity of tumor cells. The BRG1 chromatin remodeling enzyme assists DSB repair by stimulating ?-H2AX formation and BRG1 binding to acetylated histones at DSBs via bromodomain (BRD) is critical for this activity. Here, we show that ectopic expression of BRG1-BRD inhibited ?-H2AX and DSB repair after irradiation and increased the radiosensitivity in various human cancer cells, including HT29 colon cancer. Dimerization of BRG1-BRD, increasing its chromatin binding affinity, aggravated the defects in ?-H2AX and DSB repair and further enhanced the radiosensitivity. While little affecting the upstream ATM activation, BRG1-BRD in irradiated HT29 cells inhibited the recruitment of 53BP1 to damaged chromatin, the downstream event of ?-H2AX, and compromised the G2-M checkpoint and increased apoptosis. Importantly, in a xenograft mouse model, BRG1-BRD increased the radiosensitivity of HT29 tumors, which was further enhanced by dimerization. These data suggest that BRG1-BRD radiosensitizes tumor cells by a dominant negative activity against BRG1, which disrupts ?-H2AX and its downstream 53BP1 pathways, leading to inefficient DNA repair, G2-M checkpoint defect, and increased apoptosis. This work therefore identifies BRG1-BRD as a novel tumor radiosensitizer and its action mechanism, providing the first example of chromatin remodeler as a target for improving cancer radiotherapy. PMID:25504753

  12. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    SciTech Connect

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-07-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +- 0.2, compared with an oxygen enhancement ratio of 3.3 +- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD/sub 50/ was estimated to be 125 to 150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit.

  13. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    SciTech Connect

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-07-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit.

  14. Radiosensitization in prostate cancer: mechanisms and targets

    PubMed Central

    2013-01-01

    Prostate cancer is the second most commonly diagnosed cancer in American men over the age of 45 years and is the third most common cause of cancer related deaths in American men. In 2012 it is estimated that 241,740 men will be diagnosed with prostate cancer and 28,170 men will succumb to prostate cancer. Currently, radiation therapy is one of the most common definitive treatment options for localized prostate cancer. However, significant number of patients undergoing radiation therapy will develop locally persistent/recurrent tumours. The varying response rates to radiation may be due to 1) tumor microenvironment, 2) tumor stage/grade, 3) modality used to deliver radiation, and 4) dose of radiation. Higher doses of radiation has not always proved to be effective and have been associated with increased morbidity. Compounds designed to enhance the killing effects of radiation, radiosensitizers, have been extensively investigated over the past decade. The development of radiosensitizing agents could improve survival, improve quality of life and reduce costs, thus benefiting both patients and healthcare systems. Herin, we shall review the role and mechanisms of various agents that can sensitize tumours, specifically prostate cancer. PMID:23351141

  15. High levels of MDM2 are not correlated with the presence of wild-type p53 in human malignant mesothelioma cell lines.

    PubMed Central

    Ungar, S.; Van de Meeren, A.; Tammilehto, L.; Linnainmaa, K.; Mattson, K.; Gerwin, B. I.

    1996-01-01

    Prior analysis of 20 human mesothelioma cell lines for p53 status revealed only two mutations and one p53 null cell line, although p53 expression was detected in most cell lines. In addition, mRNA and protein expression of the retinoblastoma gene product in human mesothelioma cell lines is similar to normal controls. We have tested for p53 induction after exposure to ionising radiation and demonstrate this induction and, to a lesser extent, p21(WAF1) induction, in both normal mesothelial cells and p53-positive mesothelioma cell lines. We postulated that high levels of MDM2 might alter p53 and retinoblastoma tumour-suppressor function in mesothelioma. However, Southern blot analysis for mdm2 indicated that no amplification had occurred in 18 mesothelioma cell lines tested. Steady-state mRNA and protein levels also did not indicate overexpression. These results indicate that high levels of MDM2 are not responsible for inactivating the functions of wild-type p53 or the retinoblastoma gene product during the pathogenesis of malignant mesothelioma. Images Figure 2 Figure 3 Figure 4 PMID:8932331

  16. Design and synthesis of a MAO-B-selectively activated prodrug based on MPTP: a mitochondria-targeting chemotherapeutic agent for treatment of human malignant gliomas.

    PubMed

    Sharpe, Martyn A; Han, Junyan; Baskin, Alexandra M; Baskin, David S

    2015-04-01

    Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO-B-selectively activated prodrug, N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propanamide (MP-MUS), for the treatment of gliomas based on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The design of neutral MP-MUS involved the use of a seeker molecule capable of binding to mitochondrial MAO-B, which is up-regulated ?fourfold in glioma cells. Once the binding occurs, MP-MUS is converted into a positively charged moiety, P(+) -MUS, which accumulates inside mitochondria at a theoretical maximal value of 1000:1 gradient. The LD50 of MP-MUS against glioma cells is 75 ?M, which is two- to threefold more potent than temozolomide, a primary drug for gliomas. Importantly, MP-MUS was found to be selectively toxic toward glioma cells. In the concentration range of 150-180 ?M MP-MUS killed 90-95 % of glioma cells, but stimulated the growth of normal human astrocytes. Moreover, maturation of MP-MUS is highly dependent on MAO-B, and inhibition of MAO-B activity with selegiline protected human glioma cells from apoptosis. PMID:25677185

  17. Formation of spherical cancer stem-like cell colonies with resistance to chemotherapy drugs in the human malignant fibrous histiocytoma NMFH-1 cell line

    PubMed Central

    DENG, LIANG; LI, DEJIAN; GU, WENGUANG; LIU, AIGUO; CHENG, XIANGYANG

    2015-01-01

    Various human cancers have been revealed to contain cancer stem-like cells (CSCs) and the spherical colonies that possess stem-like properties and cancer-initiating abilities. Malignant fibrous histiocytoma (MFH) is a common soft-tissue sarcoma, and is considered to be a myxoma due to the observed high-grade lesions. In the present study, the spherical colonies were isolated from a human MFH cell line NMFH-1 using the sphere culture system. These colonies demonstrated stem-like properties, with the ability of self-renewal and strong drug-resistance to doxorubicin and cisplatin. In addition, verapamil, an adenosine triphosphate binding cassette protein transporter protein (ABCG2) inhibitor, enhanced the efficacy of the aforementioned chemotherapy agents. These colonies also demonstrated an increased expression of embryonic stem genes, including Oct3/4, signal transducer and activator of transcription 3, sex determining region Y-box 10 and ABCG2, and stem cell-associated surface markers, such as cluster of differentiation (CD)44 and CD133. These results indicated that NMFH-1 lesions contain cancer stem-like cell populations that demonstrate strong drug resistance, and verapamil enhanced the efficacy of the chemotherapy agents. PMID:26722334

  18. Autophagy Induction by Endothelial-Monocyte Activating Polypeptide II Contributes to the Inhibition of Malignant Biological Behaviors by the Combination of EMAP II with Rapamycin in Human Glioblastoma

    PubMed Central

    Ma, Jun; Meng, Fanjie; Li, Shuai; Liu, Libo; Zhao, Lini; Liu, Yunhui; Hu, Yi; Li, Zhen; Yao, Yilong; Xi, Zhuo; Teng, Hao; Xue, Yixue

    2015-01-01

    This study aims to investigate the effect of endothelial-monocyte activating polypeptide II (EMAP II) on human glioblastoma (GBM) cells and glioblastoma stem cells (GSCs) as well as its possible mechanisms. In this study, EMAP II inhibited the cell viability and decreased the mitochondrial membrane potential in human GBM cells and GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) blocked these effects. Autophagic vacuoles were formed in these cells after EMAP II treatment and this phenomenon was blocked by 3-MA. In addition, the up-regulation of microtubule-associated protein-1 light chain-3 (LC3)-II and the down-regulation of autophagic degraded substrate p62/SQSTM1 caused by EMAP II were observed. Cells treated with EMAP-II inhibited the PI3K/Akt/mTOR signal pathway, and PI3K/Akt agonist insulin-like growth factor-1 (IGF-1) blocked the effect of EMAP II on the expression of LC3-II and p62/SQSTM1. Cells exposed to EMAP-II experienced mitophagy and ER stress. Furthermore, the inhibition of cell proliferation, migration and invasion of GBM cells and GSCs were more remarkable by the combination of EMAP II and rapamycin than either agent alone in vitro and in vivo. The current study demonstrated that the cytotoxicity of EMAP II in human GBM cells and GSCs was induced by autophagy, accompanied by the inhibition of PI3K/Akt/mTOR signal pathway, mitophagy and ER stress. The combination of EMAP II with rapamycin demonstrated the inhibitory effect on the malignant biological behaviors of human GBM cells and GSCs in vitro and in vivo. PMID:26648842

  19. Differential expression of the human homologue of drosophila discs large oncosuppressor in histologic samples from human papillomavirus-associated lesions as a marker for progression to malignancy.

    PubMed

    Cavatorta, Ana Laura; Fumero, Gastn; Chouhy, Diego; Aguirre, Roxana; Nocito, Ana La; Giri, Adriana A; Banks, Lawrence; Gardiol, Daniela

    2004-09-01

    High-risk HPVs play a causal role in the development of cervical cancer, and their E6 oncoproteins target h-Dlg for ubiquitin-mediated proteolysis. The h-Dlg oncosuppressor is associated with cell-cell interactions, and deregulation of these structures leads to defective cell adhesion, loss of cell polarity and unregulated proliferation. We evaluated the contribution of this E6 activity in the progression to malignancy in HPV infections by analyzing h-Dlg expression in HPV-associated lesions. We analyzed h-Dlg in cervical, laryngeal, vulvar, colon and kidney histologic samples by Dlg immunohistochemistry. HPV association was ascertained by a PCR-colorimetric method. Although Dlg was certainly expressed in intraepithelial cervical, vulvar and laryngeal HPV-associated lesions, its cellular and tissue distribution patterns were altered compared to normal tissue. However, marked reduction in Dlg levels was observed in HPV-positive invasive cervical carcinomas. To elucidate whether the loss of Dlg was significant for carcinogenesis in general, we investigated Dlg expression in tumors not associated with HPV. In colon and kidney carcinomas, Dlg was expressed, albeit with a different pattern of distribution with respect to the normal tissue. The loss of Dlg may be considered a late-stage marker in cervical carcinogenesis, but alterations in its expression and localization take place during the different dysplastic stages. Dlg downregulation and/or alterations in its localization may contribute to transformation and may explain some of the characteristics of the malignant cells, such as loss of polarity and high migration ability. PMID:15221964

  20. Malignant transformation of human colon epithelial cells by benzo[c]phenanthrene dihydrodiolepoxides as well as 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine

    SciTech Connect

    Herbst, Uta; Fuchs, Judith Iris; Teubner, Wera; Steinberg, Pablo . E-mail: steinber@rz.uni-potsdam.de

    2006-04-15

    Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) ingested with food have repeatedly been suggested to be involved in the malignant transformation of colon epithelial cells. In order to test this hypothesis, HCEC cells (SV40 large T antigen-immortalized human colon epithelial cells) were incubated with a racemic mixture of benzo[c]phenanthrene dihydrodiol epoxides (B[c]PhDE), extremely potent carcinogenic PAH metabolites in vivo, or with 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), the N-hydroxylated metabolite of the most abundant HCA in cooked meat. First, it was shown that HCEC cells express sulfotransferase 1A1, which is needed to metabolize N-OH-PhIP to the corresponding N-sulfonyloxy derivative, the direct precursor molecule of genotoxic nitrenium ions. Thereafter, exponentially growing HCEC cells were exposed five times to 0.1 {mu}g (0.37 nmol) B[c]PhDE/ml for 30 min or 0.72 {mu}g (3 nmol) N-OH-PhIP/ml for 24 h. Chemically treated HCEC cells showed an enhanced saturation density and grew faster than the corresponding solvent-treated cell cultures. After five treatment cycles, HCEC{sup B[c]PhDE} as well as HCEC {sup N-OH-PhIP} cells lost cell-cell contact inhibition and started piling up and forming foci in the culture flasks. Furthermore, HCEC{sup B[c]PhDE} and HCEC {sup N-OH-PhIP} cells were injected i.m. into SCID mice. Within 6 weeks after injection, eight animals out of eight injected with HCEC{sup B[c]PhDE} or HCEC {sup N-OH-PhIP} cells developed tumors at the site of injection, thus demonstrating the high tumorigenic potential of the HCEC{sup B[c]PhDE} and HCEC {sup N-OH-PhIP} cell cultures. Taken together, we show for the first time that the abovementioned active PAH metabolites as well as N-OH-PhIP are indeed able to malignantly transform human colon epithelial cells in vitro.

  1. Molecularly Targeted Agents as Radiosensitizers in Cancer TherapyFocus on Prostate Cancer

    PubMed Central

    Alcorn, Sara; Walker, Amanda J.; Gandhi, Nishant; Narang, Amol; Wild, Aaron T.; Hales, Russell K.; Herman, Joseph M.; Song, Danny Y.; DeWeese, Theodore L.; Antonarakis, Emmanuel S.; Tran, Phuoc T.

    2013-01-01

    As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer. PMID:23863691

  2. Let-7b overexpression leads to increased radiosensitivity of uveal melanoma cells.

    PubMed

    Zhou, Yixiong; Zhang, Leilei; Fan, Jiayan; Jia, Renbin; Song, Xin; Xu, Xiaofang; Dai, Liyan; Zhuang, Ai; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Uveal melanoma (UM) is an intraocular malignant tumor in adults that is characterized by rapid progression and recurrence. Irradiation has become the primary therapy for UM patients who are not candidates for surgery. However, after large-dose fraction irradiation treatment, some patients undergo subsequent enucleation because of radiotherapy-related complications. This situation has raised concerns on how to optimize the effectiveness of radiation treatment. Recent investigations of microRNAs are changing our understanding of UM tumor biology and are helping to identify novel targets for radiotherapy. The radioresistant UM cell lines OM431 and OCM1 were selected and exposed to irradiation, and let-7b was found to be downregulated after exposure. We then confirmed that let-7b mimics could inhibit UM growth both in vitro and in vivo. More specifically, transfection with let-7b mimics markedly resensitized OCM1 and OM431 cells to irradiation by reducing the population of S-phase cells. Cyclin D1 plays a vital role in cell cycle arrest, which is induced by let-7b overexpression. Cyclin D1 is also a target of let-7b and its expression is suppressed by upregulation of let-7b. Collectively, our results indicate that let-7b overexpression can in turn downregulate cyclin D1 expression and enhance the radiosensitivity of UM through cell cycle arrest. Let-7b could serve as a marker for radiosensitivity and could enhance the therapeutic benefit of UM cell irradiation. PMID:25588203

  3. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    SciTech Connect

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  4. Increased expression of annexin A1 predicts poor prognosis in human hepatocellular carcinoma and enhances cell malignant phenotype.

    PubMed

    Lin, Ya; Lin, Guoqing; Fang, Wenzheng; Zhu, Hongwei; Chu, Kedan

    2014-12-01

    Annexin A1 (ANXA1) belongs to the annexin superfamily of proteins, which contribute to the pathological consequence and sequelae of most serious human diseases. Recent studies have reported diverse roles of ANXA1 in various human cancers; however, its involvement in human hepatocellular carcinoma (HCC) still remains controversial. To investigate the expression pattern of ANXA1 in HCC tissues and evaluate its associations with tumor progression and patients' prognosis, immunohistochemistry was performed using 160 pairs of formalin-fixed and paraffin-embedded cancerous and adjacent non-cancerous tissues from patients with HCC. Then, the associations between ANXA1 expression, clinicopathological characteristics, and prognosis of HCC patients were statistically evaluated. In vitro migration and invasion assays of siRNA-targeted ANXA1-transfected cells were further performed. As a result, the expression levels of ANXA1 protein in HCC tissues were significantly higher than those in adjacent non-cancerous tissues (P < 0.001). High ANXA1 expression was closely correlated with advanced TNM stage (P = 0.001) and high Edmondson grade (P = 0.02). Then, univariate and multivariate analyses showed that the status of ANXA1 expression was an independent predictor for overall survival of HCC patients. Furthermore, knockdown of ANXA1 by transfection of siRNA-ANXA1 could suppress the migration and invasion abilities of HCC cells in vitro. Collectively, these findings offer the convincing evidence that ANXA1 may play an important role in HCC progression and can be used as a molecular marker to predict prognosis and a potential target for therapeutic intervention of HCC. PMID:25412936

  5. Change in radiosensitivity of rats during hypokinetic stress

    NASA Technical Reports Server (NTRS)

    Chernov, I. P.

    1980-01-01

    The laws governing stress modification of radiation sickness in relation to hypokinetic stress were investigated. It was found that gamma irradiation (800 rad) of rats on the third day of exposure to hypokinesia increased the radiosensitivity of the animals which was determined by the survival rate and the dynamics of body weight and the weight of some internal organs. The same radiation dose was given on the 20th day of hypokinesia and on the third day of recovery from the 20 day hypokinesia decreased the radiosensitivity of rats. It is concluded that the variations in the radiosensitivity observed may be due to a stress effect of hypokinesia.

  6. Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells

    PubMed Central

    Devailly, Guillaume; Grandin, Mlodie; Perriaud, Laury; Mathot, Pauline; Delcros, Jean-Guy; Bidet, Yannick; Morel, Anne-Pierre; Bignon, Jean-Yves; Puisieux, Alain; Mehlen, Patrick; Dante, Robert

    2015-01-01

    DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNAregions was associated with the oncogenic transformation of human mammary cells. PMID:26007656

  7. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells.

    PubMed

    Generalov, Roman; Kuan, Woo Boon; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2015-05-01

    Nanoparticulates responsive to X-rays offer increased efficacy of radiation therapy. However, successful demonstrations of such nanoparticle use are limited so far due to lack of significant radiosensitizing effects or poor nanoparticle stability in a biological system. Zinc oxide (ZnO) is the most promising biocompatible material for medicinal applications. In this paper, we report preparation and characterization of scintillating ZnO/SiO2 core-shell nanoparticles. The ZnO/SiO2 nanoparticles absorb ultraviolet (UV) radiation (below 360nm) and emit green fluorescence (400-750nm, maximum 550nm). Under X-ray irradiation (200kVp), the nanoparticles scintillate emitting luminescence in the region 350-700nm (maximum 420nm). The synthesized ZnO/SiO2 nanoparticles are stable in a biologically relevant environment (water and cell growth medium). The potential of the ZnO/SiO2 nanoparticles for radiosensitization is demonstrated in human prostate adenocarcinoma cell lines (LNCaP and Du145). The nanoparticles enhance radiation-induced reduction in cell survival about 2-fold for LNCaP and 1.5-fold for Du145 cells. Radiosensitizing effect can be attributed to X-ray-induced radiocatalysis by the nanoparticles. PMID:25829130

  8. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    SciTech Connect

    Guttmann, David M.; Hart, Lori; Du, Kevin; Seletsky, Andrew; Koumenis, Constantinos

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  9. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  10. Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies.

    PubMed

    Wei, Qiou; Jiang, Hong; Matthews, Connie P; Colburn, Nancy H

    2008-12-16

    Previous studies have shown that a dominant negative form of c-Jun (TAM67) suppresses mouse skin carcinogenesis both in vitro and in vivo. The current study identifies Sulfiredoxin (Srx) as a unique target of activator protein-1 (AP-1) activation and TAM67 inhibition. Manipulation of Srx levels by ShRNA or over-expression demonstrates that Srx is critical for redox homeostasis through reducing hyperoxidized peroxiredoxins. In JB6 cells, knockdown of Srx abolishes tumor promoter-induced transformation and enhances cell sensitivity to oxidative stress. Knockdown of Srx also impairs c-Jun phosphorylation, implicating a role for Srx in the feedback regulation of AP-1 activity. Screening of patient tissues by tissue microarray reveals elevated Srx expression in several types of human skin cancers. Our study indicates that Srx is a functionally significant target of AP-1 blockade that may have value in cancer prevention or treatment. PMID:19057013

  11. Radiosensitivity of cultured insect cells: II. Diptera

    SciTech Connect

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  12. T-lymphocyte subgroups and the activity of human natural killer (HNK) cells in low-grade and high-grade malignant cases of non-Hodgkin lymphoma.

    PubMed

    Burger, T; Schmelczer, M; Molnr, L; Fbin, G; Szab, A; Tvri, E

    1990-01-01

    T-lymphocyte subgroups and the percentage and activity of Human Natural Killer (HNK) cells were investigated in 24 patients suffering from low-grade and 24 patients with high-grade malignancies of non-Hodgkin lymphoma (NHL). The ratio of CD3, CD4, Leu-7, and HNK cells as well as the release by HNK cells of the 51Cr bound to target cells were found decreased, depending on the pathological stage. The tests were performed with OKT-monoclonal sera. A significant change was observed in the reactivity of bone marrow cells to monoclonal sera; the change was identical in character with that observed when lymphocytes isolated from the peripheral blood were used in the same tests. No significant changes could be observed in the quantitative relations of immunoglobulins. Such changes could by no means be expected, on the basis of the unchanged number of T-suppressor lymphocytes (CDB). As to the supposed immunological relation in detail, the role of a plasma factor that reduces T-lymphocyte formation is assumed to have primary importance in this phenomenon. PMID:1704121

  13. Phosphorylated human lectin galectin-3: analysis of ligand binding by histochemical monitoring of normal/malignant squamous epithelia and by isothermal titration calorimetry.

    PubMed

    Szabo, P; Dam, T K; Smetana, K; Dvoránková, B; Kübler, D; Brewer, C F; Gabius, H-J

    2009-02-01

    The human lectin galectin-3 is a multifunctional effector with special functions in regulation of adhesion and apoptosis. Its unique trimodular organization includes the 12-residue N-terminal sequence, a substrate for protein kinase CK1-dependent phosphorylation. As a step towards elucidating its significance, we prepared phosphorylated galectin-3, labelled it and used it as a tool in histochemistry. We monitored normal and malignant squamous epithelia. Binding was suprabasal with obvious positive correlation to the degree of differentiation and negative correlation to proliferation. The staining pattern resembled that obtained with the unmodified lectin. Basal cell carcinomas were invariably negative. The epidermal positivity profile was akin to distribution of the desmosomal protein desmoglein, as also seen with keratinocytes in vitro. In all cases, binding was inhibitable by the presence of lactose, prompting further investigation of the activity of the lectin site by a sensitive biochemical method, i.e. isothermal titration calorimetry. The overall affinity and the individual enthalpic and entropic contributions were determined. No effect of phosphorylation was revealed. This strategic combination of histo- and biochemical techniques applied to an endogenous effector after its processing by a protein kinase thus enabled a detailed monitoring of the binding properties of the post-translationally modified lectin. It underscores the value of using endogenous lectins as a histochemical tool. The documented approach has merit for applications beyond lectinology. PMID:18983621

  14. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland ; Hales, Russell K.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  15. SU5416 and EGCG work synergistically and inhibit angiogenic and survival factors and induce cell cycle arrest to promote apoptos