Sample records for radiotracer targeting cytochrome

  1. A philosophy for CNS radiotracer design

    DOE PAGES

    Van de Bittner, Genevieve C.; Ricq, Emily L.; Hooker, Jacob M.

    2014-10-01

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfallsmore » of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are

  2. A philosophy for CNS radiotracer design.

    PubMed

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  3. A Philosophy for CNS Radiotracer Design

    PubMed Central

    2015-01-01

    Conspectus Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods

  4. Imaging of Nonprostate Cancers Using PSMA-Targeted Radiotracers: Rationale, Current State of the Field, and a Call to Arms.

    PubMed

    Salas Fragomeni, Roberto A; Amir, Tali; Sheikhbahaei, Sara; Harvey, Susan C; Javadi, Mehrbod S; Solnes, Lilja B; Kiess, Ana P; Allaf, Mohamad E; Pomper, Martin G; Gorin, Michael A; Rowe, Steven P

    2018-06-01

    Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein that is highly overexpressed on prostate cancer epithelial cells and for which there is a growing body of literature examining the role of small-molecule and antibody radiotracers targeted against this protein for prostate cancer detection and therapy. Despite its name, PSMA is also expressed, to varying degrees, in the neovasculature of a wide variety of nonprostate cancers; indeed, the pathology literature is replete with promising immunohistochemistry findings. Several groups have begun to correlate those pathology-level results with in vivo imaging and therapy in nonprostate cancers using the same PSMA-targeted agents that have been so successful in prostate cancer. The potential to leverage radiotracers targeted to PSMA beyond prostate cancer is a promising approach for many cancers, and PSMA-targeted agents may be able to supplement or fill gaps left by other agents. However, to date, most of the reported findings with PSMA-targeted radiotracers in nonprostate malignancies have been in case reports and small case series, and the field must adopt a more thorough approach to the design and execution of larger prospective trials to realize the potential of these promising agents outside prostate cancer. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    PubMed

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Preclinical Comparative Study of (68)Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA.

    PubMed

    Ray Banerjee, Sangeeta; Chen, Zhengping; Pullambhatla, Mrudula; Lisok, Ala; Chen, Jian; Mease, Ronnie C; Pomper, Martin G

    2016-06-15

    (68)Ga-labeled, low-molecular-weight imaging agents that target the prostate-specific membrane antigen (PSMA) are increasingly used clinically to detect prostate and other cancers with positron emission tomography (PET). The goal of this study was to compare the pharmacokinetics of three PSMA-targeted radiotracers: (68)Ga-1, using DOTA-monoamide as the chelating agent; (68)Ga-2, containing the macrocyclic chelating agent p-SCN-Bn-NOTA; and (68)Ga-DKFZ-PSMA-11, currently in clinical trials, which uses the acyclic chelating agent, HBED-CC. The PSMA-targeting scaffold for all three agents utilized a similar Glu-urea-Lys-linker construct. Each radiotracer enabled visualization of PSMA+ PC3 PIP tumor, kidney, and urinary bladder as early as 15 min post-injection using small animal PET/computed tomography (PET/CT). (68)Ga-2 demonstrated the fastest rate of clearance from all tissues in this series and displayed higher uptake in PSMA+ PC3 PIP tumor compared to (68)Ga-1 at 1 h post-injection. There was no significant difference in PSMA+ PC3 PIP tumor uptake for the three agents at 2 and 3 h post-injection. (68)Ga-DKFZ-PSMA-11 demonstrated the highest uptake and retention in normal tissues, including kidney, blood, spleen, and salivary glands and PSMA-negative PC3 flu tumors up to 3 h post-injection. In this preclinical evaluation (68)Ga-2 had the most advantageous characteristics for PSMA-targeted PET imaging.

  7. Cerenkov Luminescence Imaging as a Modality to Evaluate Antibody-Based PET Radiotracers

    PubMed Central

    D’Souza, Jimson W.; Hensley, Harvey; Doss, Mohan; Beigarten, Charles; Torgov, Michael; Olafsen, Tove; Yu, Jian Q.

    2017-01-01

    Antibodies, and engineered antibody fragments, labeled with radioisotopes are being developed as radiotracers for the detection and phenotyping of diseases such as cancer. The development of antibody-based radiotracers requires extensive characterization of their in vitro and in vivo properties, including their ability to target tumors in an antigen-selective manner. In this study, we investigated the use of Cerenkov luminescence imaging (CLI) as compared with PET as a modality for evaluating the in vivo behavior of antibody-based radiotracers. Methods: The anti–prostate-specific membrane antigen (PSMA) huJ591 antibody (IgG; 150 kDa) and its minibody (Mb; 80 kDa) format were functionalized with the chelator 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) and radiolabeled with the positron-emitting radionuclide 64Cu (half-life, 12.7 h). Immunoreactive preparations of the radiolabeled antibodies were injected into NCr nu/nu mice harboring PSMA-positive CWR22Rv1 and PSMA-negative PC-3 tumor xenografts. Tumor targeting was evaluated by both PET and CLI. Results: 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb retained the ability to bind cell surface PSMA, and both radiotracers exhibited selective uptake into PSMA-positive tumors. Under the experimental conditions used, PSMA-selective uptake of 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb was observed by CLI as early as 3 h after injection, with tumor-to-background ratios peaking at 24 (IgG) and 16 (Mb) h after injection. Targeting data generated by CLI correlated with that generated by PET and necropsy. Conclusion: CLI provided a rapid and simple assessment of the targeting specificity and pharmacokinetics of the antibody-based PET radiotracers that correlated well with the behavior observed by standard PET imaging. Moreover, CLI provided clear discrimination between uptake kinetics of an intact IgG and its small-molecular-weight derivative Mb. These data support the use of CLI for the evaluation of

  8. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT

    PubMed Central

    Zhou, Yang; Chakraborty, Sudipta; Liu, Shuang

    2011-01-01

    The integrin family is a group of transmembrane glycoprotein comprised of 19 α- and 8 β-subunits that are expressed in 25 different α/β heterodimeric combinations on the cell surface. Integrins play critical roles in many physiological processes, including cell attachment, proliferation, bone remodeling, and wound healing. Integrins also contribute to pathological events such as thrombosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic microorganisms, and immune dysfunction. Among 25 members of the integrin family, the αvβ3 is studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, the αIIbβ3 is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling (“inside-out” and “outside-in”) and allows the aggregation of platelets during vascular injury. The αIIbβ3 plays an important role in thrombosis by its activation and binding to fibrinogen especially in arterial thrombosis due to the high blood flow rate. In the resting state, the αIIbβ3 on platelets does not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of αIIbβ3 are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other diseases. Several excellent review articles have appeared recently to cover a broad range of topics related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor imaging by single photon emission computed tomography (SPECT) or a positron-emitting radionuclide for positron emission tomography (PET). This review will focus on recent developments of αvβ3-targeted radiotracers for imaging tumors and the use of αIIbβ3-targeted radiotracers for thrombosis imaging, and discuss different approaches to maximize the targeting capability of cyclic RGD peptides

  9. Identifying novel radiotracers for PET imaging of the brain: application of LC-MS/MS to tracer identification.

    PubMed

    Barth, Vanessa; Need, Anne

    2014-12-17

    Nuclear medicine imaging biomarker applications are limited by the radiotracers available. Radiotracers enable the measurement of target engagement, or occupancy in relation to plasma exposure. These tracers can also be used as pharmacodynamic biomarkers to demonstrate functional consequences of binding a target. More recently, radiotracers have also been used for patient tailoring in Alzheimer's disease seen with amyloid imaging. Radiotracers for the central nervous system (CNS) are challenging to identify, as they require a unique intersection of multiple properties. Recent advances in tangential technologies, along with the use of iterative learning for the purposes of deriving in silico models, have opened up additional opportunities to identify radiotracers. Mass spectral technologies and in silico modeling have made it possible to measure and predict in vivo characteristics of molecules to indicate potential tracer performance. By analyzing these data alongside other measures, it is possible to delineate guidelines to increase the likelihood of selecting compounds that can perform as radiotracers or serve as the best starting point to develop a radiotracer following additional structural modification. The application of mass spectrometry based technologies is an efficient way to evaluate compounds as tracers in vivo, but more importantly enables the testing of potential tracers that have either no label site or complex labeling chemistry which may deter assessment by traditional means; therefore, use of this technology allows for more rapid iterative learning. The ability to differentially distribute toward target rich tissues versus tissue with no/less target present is a unique defining feature of a tracer. By testing nonlabeled compounds in vivo and analyzing tissue levels by LC-MS/MS, rapid assessment of a compound's ability to differentially distribute in a manner consistent with target expression biology guides the focus of chemistry resources for both

  10. Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery.

    PubMed

    Tavares, Adriana Alexandre S; Lewsey, James; Dewar, Deborah; Pimlott, Sally L

    2012-01-01

    Previously, development of novel brain radiotracers has largely relied on simple screening tools. Improved selection methods at the early stages of radiotracer discovery and an increased understanding of the relationships between in vitro physicochemical and in vivo radiotracer properties are needed. We investigated if high performance liquid chromatography (HPLC) methodologies could provide criteria for lead candidate selection by comparing HPLC measurements with radiotracer properties in humans. Ten molecules, previously used as radiotracers in humans, were analysed to obtain the following measures: partition coefficient (Log P); permeability (P(m)); percentage of plasma protein binding (%PPB); and membrane partition coefficient (K(m)). Relationships between brain entry measurements (Log P, P(m) and %PPB) and in vivo brain percentage injected dose (%ID); and K(m) and specific binding in vivo (BP(ND)) were investigated. Log P values obtained using in silico packages and flask methods were compared with Log P values obtained using HPLC. The modelled associations with %ID were stronger for %PPB (r(2)=0.65) and P(m) (r(2)=0.77) than for Log P (r(2)=0.47) while 86% of BP(ND) variance was explained by K(m). Log P values were variable dependant on the methodology used. Log P should not be relied upon as a predictor of blood-brain barrier penetration during brain radiotracer discovery. HPLC measurements of permeability, %PPB and membrane interactions may be potentially useful in predicting in vivo performance and hence allow evaluation and ranking of compound libraries for the selection of lead radiotracer candidates at early stages of radiotracer discovery. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Targeting the Cytochrome bc1 Complex of Leishmania Parasites for Discovery of Novel Drugs.

    PubMed

    Ortiz, Diana; Forquer, Isaac; Boitz, Jan; Soysa, Radika; Elya, Carolyn; Fulwiler, Audrey; Nilsen, Aaron; Polley, Tamsen; Riscoe, Michael K; Ullman, Buddy; Landfear, Scott M

    2016-08-01

    Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L. donovani, with 50% inhibitory concentrations (IC50s) in the low micromolar range, but the structurally similar hydroxynaphthoquinone buparvaquone was by far the most potent inhibitor of electron transport, ATP production, and intracellular amastigote growth. Cytochrome bc1 is thus a promising target for novel antileishmanial drugs, and further improvements on the buparvaquone scaffold are warranted for development of enhanced therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, a PET radiotracer targeting neuroblastoma and melanoma.

    PubMed

    Vavere, Amy L; Butch, Elizabeth R; Dearling, Jason L J; Packard, Alan B; Navid, Fariba; Shulkin, Barry L; Barfield, Raymond C; Snyder, Scott E

    2012-11-01

    The hu14.18K322A variant of the GD2-targeting antibody hu14.18 has been shown to elicit a level of antibody-dependent cell-mediated cytotoxicity toward human neuroblastoma cells similar to that of the parent antibody. However, hu14.18K322A exhibited a decreased complement activation and associated pain, the dose-limiting toxicity in neuroblastoma immunotherapy. PET with a radiolabeled analog of the same antibody used in treatment will provide insight into the ability of hu14.18K322A to reach its target, as well as nontarget uptake that may cause side effects. Such antibody radiotracers might also provide a method for measuring GD2 expression in tumors, thus enabling the prediction of response to anti-GD2 therapy for individual patients. The conjugation of hu14.18K322A with p-NH(2)-Bn-DOTA was accomplished using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide with subsequent (64)Cu radiolabeling at 37°C for 30 min. Immunoreactivity of the conjugate was assessed by a dose-escalation blocking experiment measuring binding to purified GD2 versus GD1b as a negative control. Cell uptake and biodistribution studies in M21 (GD2-positive) and PC-3 (GD2-negative) tumor models were performed, as was small-animal PET/CT of M21 and PC-3 tumor-bearing mice. The labeling of (64)Cu-p-NH(2)-Bn-DOTA-hu14.18K322A was achieved at more than 95% radiochemical purity and a specific activity of 127-370 MBq/mg (3.4-10 mCi/mg) after chromatographic purification. Preliminary in vitro data demonstrated a greater than 6-fold selectivity of binding to GD2 versus GD1b and dose-dependent inhibition of binding by unmodified hu14.8K322A. In vivo data, including small-animal PET/CT, showed significant GD2-positive tumor-targeting ability, with a persistent 2-fold-higher uptake of radiotracer than in GD2-negative tumors. (64)Cu-p-NH(2)-Bn-DOTA-hu14.18K322A represents a novel PET radiotracer to facilitate clinical investigations of anti-GD2 immunotherapies and to complement other imaging modalities in

  13. Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate

    PubMed Central

    Delgado, Yamixa; Sharma, Rohit Kumar; Sharma, Shweta; Guzmán, Solimar Liz Ponce De León; Tinoco, Arthur D.; Griebenow, Kai

    2018-01-01

    One of the major drawbacks of many of the currently used cancer drugs are off-target effects. Targeted delivery is one method to minimize such unwanted and detrimental events. To actively target lung cancer cells, we have developed a conjugate of the apoptosis inducing protein cytochrome c with transferrin because the transferrin receptor is overexpressed by many rapidly dividing cancer cells. Cytochrome c and transferrin were cross-linked with a redox sensitive disulfide bond for the intra-cellular release of the protein upon endocytosis by the transferrin receptor. Confocal results demonstrated the cellular uptake of the cytochrome c-transferrin conjugate by transferrin receptor overexpressing A549 lung cancer cells. Localization studies further validated that this conjugate escaped the endosome. Additionally, an in vitro assay showed that the conjugate could induce apoptosis by activating caspase-3. The neo-conjugate not only maintained an IC50 value similar to the well known drug cisplatin (50 μM) in A549 cancer cells but also was nontoxic to the normal lung (MRC5) cells. Our neo-conjugate holds promise for future development to target cancers with enhanced transferrin receptor expression. PMID:29649293

  14. The Heritage of Radiotracers for PET

    DOE R&D Accomplishments Database

    Fowler, J. S.; Wolf, A. P.

    1988-05-01

    The history of PET research clearly demonstrates that it is advances in chemistry coupled with a detailed examination of the biochemistry of new radiotracers which has allowed the PET method to be applied to new areas of biology and medicine. Radiotracers whose regional distribution reflects glucose metabolism, neutrotransmitter activity and enzyme activity have all required the development of rapid synthetic methods for the radiotracers themselves and the characterization of their biochemical behavior. This article traces some of the advances in the production of labeled precursors and in radiotracer synthesis and evaluation which have shaped the rapidly expanding application of PET to problems in the neurosciences, in cardiology and in oncology.

  15. The heritage of radiotracers for PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; Wolf, A.P.

    The history of PET research clearly demonstrates that it is advances in chemistry coupled with a detailed examination of the biochemistry of new radiotracers which has allowed the PET method to be applied to new areas of biology and medicine. Radiotracers whose regional distribution reflects glucose metabolism, neutrotransmitter activity and enzyme activity have all required the development of rapid synthetic methods for the radiotracers themselves and the characterization of their biochemical behavior. This article traces some of the advances in the production of labeled precursors and in radiotracer synthesis and evaluation which have shaped the rapidly expanding application of PETmore » to problems in the neurosciences, in cardiology and in oncology. 54 refs.« less

  16. 64Cu-Labeled Phosphonium Cations as PET Radiotracers for Tumor Imaging

    PubMed Central

    Zhou, Yang; Liu, Shuang

    2011-01-01

    Alteration in mitochondrial transmembrane potential (ΔΨm) is an important characteristic of cancer. The observation that the enhanced negative mitochondrial potential is prevalent in tumor cell phenotype provides a conceptual basis for development of mitochondrion-targeting therapeutic drugs and molecular imaging probes. Since plasma and mitochondrial potentials are negative, many delocalized organic cations, such as rhodamine-123 and 3H-tetraphenylphosphonium, are electrophoretically driven through these membranes, and able to localize in the energized mitochondria of tumor cells. Cationic radiotracers, such as 99mTc-Sestamibi and 99mTc-Tetrofosmin, have been clinically used for diagnosis of cancer by single photon emission computed tomography (SPECT) and noninvasive monitoring of the multidrug resistance (MDR) transport function in tumors of different origin. However, their diagnostic and prognostic values are often limited due to their insufficient tumor localization (low radiotracer tumor uptake) and high radioactivity accumulation in the chest and abdominal regions (low tumor selectivity). In contrast, the 64Cu-labeled phosphonium cations represent a new class of PET (positron emission tomography) radiotracers with good tumor uptake and high tumor selectivity. This review article will focus on our recent experiences in evaluation of 64Cu-labeled phosphonium cations as potential PET radiotracers. The main objective is to illustrate the impact of radiometal chelate on physical, chemical and biological properties of 64Cu radiotracers. It will also discuss some important issues related to their tumor selectivity and possible tumor localization mechanism. PMID:21696200

  17. Long-Circulating and pH-Sensitive Liposome Preparation Trapping a Radiotracer for Inflammation Site Detection.

    PubMed

    Mota, Luciene Das Graças; de Barros, André Luís Branco; Fuscaldi, Leonardo Lima; de Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2015-06-01

    Inflammatory and infectious diseases are one of the most common causes of mortality and morbidity. This paper aimed to prepare and to evaluate the ability of long-circulating and pH-sensitive liposomes, trapping a radiotracer, to identify inflamed focus. The physicochemical characterization of freeze-dried liposomes, using glucose as cryoprotectant, showed 80% of the vesicles with adequate mean diameter and good vesicle size homogeneity. Radiotracer encapsulation percentage in liposomes was 10.65%, of which 4.88% was adsorbed on the surface of the vesicles. Furthermore, liposomes presented positive zeta potential. Freeze-dried liposomes, stored for 180 days at 4 degrees C, did not show significant changes in the mean diameter, indicating good stability. Free radiotracer and radiolabeled liposomes were injected into inflammation focus-bearing rats, and ex-vivo biodistribution studies and scintigraphic images were performed. Results showed that radiopharmaceutical, free and encapsulated into liposomes, were able to identify the inflamed site. Target/non-target ratios, obtained by scintigraphic images, were greater than 1.5 at all investigated times. Data did not show significant differences between the free radiotracer and radiolabeled liposomes. Results suggest that this liposomal preparation could be employed as an alternative procedure for inflamed site detection by means of scintigraphic images. However, as the radiotracer is adsorbed onto the liposome surface by electrostatic forces, it is suggested that a neutral radiopharmaceutical be used to confirm the potential of this formulation as a scintigraphic probe for inflammation/infection detection.

  18. Monoamine oxidase: Radiotracer chemistry and human studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less

  19. Monoamine oxidase: Radiotracer chemistry and human studies

    DOE PAGES

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; ...

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less

  20. 64Cu-Labeled Lissamine Rhodamine B: A Promising PET Radiotracer Targeting Tumor Mitochondria

    PubMed Central

    Zhou, Yang; Kim, Young-Seung; Yan, Xin; Jacobson, Orit; Chen, Xiaoyuan; Liu, Shuang

    2011-01-01

    The enhanced mitochondrial potential in carcinoma cells is an important characteristic of cancer. It is of great current interest to develop a radiotracer that is sensitive to the mitochondrial potential changes at the early stage of tumor growth. In this report, we present the synthesis and evaluation of 64Cu-labeled Lissamine Rhodamine B (LRB), 64Cu(DOTA-LRB) (DOTA-LRB = 2-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-5-(N-(2-(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-dodecan-1-yl)acetamido)ethyl)-sulfamoyl)benzenesulfonate), as a new radiotracer for imaging tumors in athymic nude mice bearing U87MG human glioma xenografts by positron emission tomography (PET). We also explored its localization mechanism using Cu(DOTA-LRB) as the fluorescent probe in both U87MG human glioma cell line and the cultured primary U87MG glioma cells. It was found that 64Cu(DOTA-LRB) had the highest tumor uptake (6.54 ± 1.50, 6.91 ± 1.26, 5.68 ± 1.13, 7.58 ± 1.96, and 5.14 ± 1.50 %ID/g at 0.5, 1, 2, 4 and 24 h post-injection, respectively) among many 64Cu-labeled organic cations evaluated in the same animal model. The cellular staining study indicated that Cu(DOTA-LRB) was able to localize in mitochondria of U87MG glioma cells due to the enhanced negative mitochondrial potential. This statement is completely supported by the results from decoupling experiment with carbonylcyanide-m-chlorophenylhydrazone (CCCP). MicroPET data showed that the U87MG glioma tumors were clearly visualized as early as 30 min post-injection with 64Cu(DOTA-LRB). 64Cu(DOTA-LRB) remained stable during renal excretion, but underwent extensive degradation during hepatobiliary excretion. On the basis of the results from this study, it was concluded that 64Cu(DOTA-LRB) represents a new class of promising PET radiotracers for noninvasive imaging of the MDR-negative tumors. PMID:21545131

  1. Radiotracer imaging studies in hepatic encephalopathy: ISHEN practice guidelines.

    PubMed

    Berding, Georg; Banati, Richard B; Buchert, Ralph; Chierichetti, Franca; Grover, Vijay P B; Kato, Akinobu; Keiding, Susanne; Taylor-Robinson, Simon D

    2009-05-01

    There is lack of consensus on radiotracer usage in hepatic encephalopathy (HE). We have focused our attention on three main areas: (i) radiotracer imaging in animal models of HE, (ii) methodological issues of radiotracer imaging in HE and (iii) radiotracer imaging studies on the pathophysiology and (new) therapies in HE. We suggest the following: 1. Positron emission tomography (PET) and single photon emission computed tomography lend themselves to the study of animal models of HE, but the models that are suitable depend on the specific research question. Magnetic resonance imaging (MRI) may be a useful alternative technique. 2. Owing to the cost of the technique, there is a need for multicentre human PET studies to overcome the problem of underpowered small studies being undertaken in individual research centres. There should be a unified PET protocol with central, anonymised data analysis in one centre, using validated methodology, on behalf of all participating centres. Such studies would be useful for the assessment of early intervention in patients with subtle neuropsychiatric symptoms, or for clarification of the effect of liver transplantation on HE. 3. While radiotracer imaging modalities remain useful research tools for the study of pathogenesis and for the assessment of treatment effects, there is no consensus on the use of imaging in routine clinical practice for diagnosis and prognosis. The most promising objective tools appear to be magnetic resonance spectroscopy (MRS) and volumetric MRI, which can be performed in multiple centres without the difficulties that radiotracer imaging entail.

  2. Radioluminescence Microscopy: Measuring the Heterogeneous Uptake of Radiotracers in Single Living Cells

    PubMed Central

    Pratx, Guillem; Chen, Kai; Sun, Conroy; Martin, Lynn; Carpenter, Colin M.; Olcott, Peter D.; Xing, Lei

    2012-01-01

    Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [18F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers. PMID:23056276

  3. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti- Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa . Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu , primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  4. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model.

    PubMed

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-09-26

    Here, we report that it's feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64 Cu. 64 Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro . The specificity of 64 Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated ( n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64 Cu-PSMA-617. All those results suggested 64 Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer.

  5. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model

    PubMed Central

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-01-01

    Here, we report that it’s feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64Cu. 64Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro. The specificity of 64Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated (n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64Cu-PSMA-617. All those results suggested 64Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer. PMID:29088775

  6. Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors.

    PubMed

    Barret, Olivier; Hannestad, Jonas; Vala, Christine; Alagille, David; Tavares, Adriana; Laruelle, Marc; Jennings, Danna; Marek, Ken; Russell, David; Seibyl, John; Tamagnan, Gilles

    2015-04-01

    PET with selective adenosine 2A receptor (A2A) radiotracers can be used to study a variety of neurodegenerative and neuropsychiatric disorders in vivo and to support drug-discovery studies targeting A2A. The aim of this study was to describe the first in vivo evaluation of (18)F-MNI-444, a novel PET radiotracer for imaging A2A, in healthy human subjects. Ten healthy human volunteers were enrolled in this study; 6 completed the brain PET studies and 4 participated in the whole-body PET studies. Arterial blood was collected for invasive kinetic modeling of the brain PET data. Noninvasive methods of data quantification were also explored. Test-retest reproducibility was evaluated in 5 subjects. Radiotracer distribution and dosimetry was determined using serial whole-body PET images acquired over 6 h post-radiotracer injection. Urine samples were collected to calculate urinary excretion. After intravenous bolus injection, (18)F-MNI-444 rapidly entered the brain and displayed a distribution consistent with known A2A densities in the brain. Binding potentials ranging from 2.6 to 4.9 were measured in A2A-rich regions, with an average test-retest variability of less than 10%. The estimated whole-body radiation effective dose was approximately 0.023 mSv/MBq. (18)F-MNI-444 is a useful PET radiotracer for imaging A2A in the human brain. The superior in vivo brain kinetic properties of (18)F-MNI-444, compared with previously developed A2A radiotracers, provide the opportunity to foster global use of in vivo A2A PET imaging in neuroscience research. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles

    PubMed Central

    2014-01-01

    Background Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. Results Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4’,6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. Conclusions Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing

  8. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  9. A complex of cardiac cytochrome c1 and cytochrome c.

    PubMed

    Chiang, Y L; Kaminsky, L S; King, T E

    1976-01-10

    The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of

  10. Radiotracer Technology in Mixing Processes for Industrial Applications

    PubMed Central

    Othman, N.; Kamarudin, S. K.

    2014-01-01

    Many problems associated with the mixing process remain unsolved and result in poor mixing performance. The residence time distribution (RTD) and the mixing time are the most important parameters that determine the homogenisation that is achieved in the mixing vessel and are discussed in detail in this paper. In addition, this paper reviews the current problems associated with conventional tracers, mathematical models, and computational fluid dynamics simulations involved in radiotracer experiments and hybrid of radiotracer. PMID:24616642

  11. Comparative evaluation of two glycine transporter 1 radiotracers [11C]GSK931145 and [18F]MK-6577 in baboons.

    PubMed

    Zheng, Ming-Qiang; Lin, Shu-Fei; Holden, Daniel; Naganawa, Mika; Ropchan, Jim R; Najafzaden, Soheila; Kapinos, Michael; Tabriz, Mike; Carson, Richard E; Hamill, Terence G; Huang, Yiyun

    2016-03-01

    Glycine transporter type-1 (GlyT1) has been proposed as a target for drug development for schizophrenia. PET imaging with a GlyT1 specific radiotracer will allow for the measurement of target occupancy of GlyT1 inhibitors, and for in vivo investigation of GlyT1 alterations in schizophrenia. We conducted a comparative evaluation of two GlyT1 radiotracers, [(11) C]GSK931145, and [(18) F]MK-6577, in baboons. Two baboons were imaged with [(11) C]GSK931145 and [(18) F]MK-6577. Blocking studies with GSK931145 (0.3 or 0.2 mg/kg) were conducted to determine the level of tracer specific binding. [(11) C]GSK931145 and [(18) F]MK-6577 were synthesized in good yield and high specific activity. Moderately fast metabolism was observed for both tracers, with ∼ 30% of parent at 30 min post-injection. In the brain, both radiotracers showed good uptake and distribution profiles consistent with regional GlyT1 densities. [(18) F]MK-6577 displayed higher uptake and faster kinetics than [(11) C]GSK931145. Time activity curves were well described by the two-tissue compartment model. Regional volume of distribution (VT ) values were higher for [(18) F]MK-6577 than [(11) C]GSK931145. Pretreatment with GSK931145 reduced tracer uptake to a homogeneous level throughout the brain, indicating in vivo binding specificity and lack of a reference region for both radiotracers. Linear regression analysis of VT estimates between tracers indicated higher specific binding for [(18) F]MK-6577 than [(11) C]GSK931145, consistent with higher regional binding potential (BPND ) values of [(18) F]MK-6577 calculated using VT from the baseline scans and non-displaceable distribution volume (VND ) derived from blocking studies. [(18) F]MK-6577 appears to be a superior radiotracer with higher brain uptake, faster kinetics, and higher specific binding signals than [(11) C]GSK931145. © 2016 Wiley Periodicals, Inc.

  12. Human Cytochrome P450 2E1 Mutations That Alter Mitochondrial Targeting Efficiency and Susceptibility to Ethanol-induced Toxicity in Cellular Models*

    PubMed Central

    Bansal, Seema; Anandatheerthavarada, Hindupur K.; Prabu, Govindaswamy K.; Milne, Ginger L.; Martin, Martha V.; Guengerich, F. Peter; Avadhani, Narayan G.

    2013-01-01

    Human polymorphisms in the 5′-upstream regulatory regions and also protein coding regions of cytochrome P450 2E1 (CYP2E1) are known to be associated with several diseases, including cancer and alcohol liver toxicity. In this study, we report novel mutations in the N-terminal protein targeting regions of CYP2E1 that markedly affect subcellular localization of the protein. Variant W23R/W30R protein (termed W23/30R) is preferentially targeted to mitochondria but very poorly to the endoplasmic reticulum, whereas the L32N protein is preferentially targeted to the endoplasmic reticulum and poorly to mitochondria. These results explain the physiological significance of bimodal CYP targeting to the endoplasmic reticulum and mitochondria previously described. COS-7 cells and HepG2 cells stably expressing W23/30R mutations showed markedly increased alcohol toxicity in terms of increased production of reactive oxygen species, respiratory dysfunction, and loss of cytochrome c oxidase subunits and activity. Stable cells expressing the L32N variant, on the other hand, were relatively less responsive to alcohol-induced toxicity and mitochondrial dysfunction. These results further support our previous data, based on mutational studies involving altered targeting, indicating that mitochondria-targeted CYP2E1 plays an important role in alcohol liver toxicity. The results also provide an interesting new link to genetic variations affecting subcellular distribution of CYP2E1 with alcohol-induced toxicity. PMID:23471973

  13. Preliminary study of the use of radiotracers for leak detection in industrial applications

    NASA Astrophysics Data System (ADS)

    Wetchagarun, S.; Petchrak, A.; Tippayakul, C.

    2015-05-01

    One of the most widespread uses of radiotracers in the industrial applications is the leak detection of the systems. This technique can be applied, for example, to detect leak in heat exchangers or along buried industrial pipelines. The ability to perform online investigation is one of the most important advantages of the radiotracer technique over other non-radioactive leak detection methods. In this paper, a preliminary study of the leak detection using radiotracer in the laboratory scale was presented. Br-82 was selected for this work due to its chemical property, its suitable half-life and its on-site availability. The NH4Br in the form of aqueous solution was injected into the experimental system as the radiotracer. Three NaI detectors were placed along the pipelines to measure system flow rate and to detect the leakage from the piping system. The results obtained from the radiotracer technique were compared to those measured by other methods. It is found that the flow rate obtained from the radiotracer technique agreed well with the one obtained from the flow meter. The leak rate result, however, showed discrepancy between results obtained from two different measuring methods indicating further study on leak detection was required before applying this technique in the industrial system.

  14. Methods to Increase the Metabolic Stability of (18)F-Radiotracers.

    PubMed

    Kuchar, Manuela; Mamat, Constantin

    2015-09-03

    The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of (18)F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [(18)F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.

  15. Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Wiebe, Leonard I.

    Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.

  16. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    PubMed

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  17. Synthesis, biological evaluation, and molecular dynamics (MD) simulation studies of three novel F-18 labeled and focal adhesion kinase (FAK) targeted 5-bromo pyrimidines as radiotracers for tumor.

    PubMed

    Fang, Yu; Wang, Dawei; Xu, Xingyu; Liu, Jianping; Wu, Aiqin; Li, Xiang; Xue, Qianqian; Wang, Huan; Wang, Hang; Zhang, Huabei

    2017-02-15

    Focal adhesion kinase (FAK) is considered as an attractive target for oncology. A series of F-18 labeled 5-bromo-N 2 -(4-(2-fluoro-pegylated (FPEG))-3,5-dimethoxyphenyl)-N 4 -(4-methoxyphenyl)pyrimidine-2,4-diamine derivatives were prepared and evaluated as the FAK targeted radiotracers for the early diagnoses of tumor. For the study of the FAK targeted drug molecules, this was the first attempt to develop the tumor diagnostic imaging agents on the radiopharmaceutical level. They inhibited the activity of FAK with IC 50 in the range of 91.4-425.7 nM, and among which the result of the [ 19 F]2 was relatively good and had a modest IC 50 of 91.4 nM. The [ 19 F]2 was also profiled in vitro against some other kinds of cancer-related kinases (including two kinds of non-receptor tyrosine kinase: PYK2 and JAK2, and three kinds of receptor tyrosine kinase: IGF-1R, EGFR and PDGFRβ). It displayed 25.2 folds selectivity against PYK2, 35.1 folds selectivity against EGFR, and more than 100 folds selectivity against IGF-1R, JAK2 and PDGFRβ. For the biodistribution in S180 bearing mice, the corresponding [ 18 F]2 were also relatively good, with modest tumor uptake of 5.47 ± 0.19 and 5.80 ± 0.06 %ID/g at 15 and 30 min post-injection, respectively. Furthermore, its tumor/muscle, tumor/bone and tumor/blood ratio at 15 min post-injection were 3.16, 2.53 and 4.52, respectively. And its tumor/muscle, tumor/bone and tumor/blood ratio at 30 min post-injection were 3.14, 2.76 and 4.43, respectively. In addition, coronal micro-PET/CT images of a mouse bearing S180 tumor clearly confirmed that [ 18 F]2 could be accumulated in tumor, especially at 30 min post-injection. Besides, for the [ 18 F]2, both the biodistribution data and the micro-PET/CT imaging study showed significantly reduced uptake of the radiotracer in the tumor tissue at 30 min post-injection in mice that received PF-562,271 (one of the reported best selective FAK inhibitor which was developed by Pfitzer Inc

  18. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers.

    PubMed

    Maisonial, Aurélie; Kuhnast, Bertrand; Papon, Janine; Boisgard, Raphaël; Bayle, Martine; Vidal, Aurélien; Auzeloux, Philippe; Rbah, Latifa; Bonnet-Duquennoy, Mathilde; Miot-Noirault, Elisabeth; Galmier, Marie-Josèphe; Borel, Michèle; Askienazy, Serge; Dollé, Frédéric; Tavitian, Bertrand; Madelmont, Jean-Claude; Moins, Nicole; Chezal, Jean-Michel

    2011-04-28

    This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ((123)I, (124)I, (18)F) and systemic treatment ((131)I) of melanoma potentialities. The biodistribution of each (125)I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [(125)I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [(18)F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [(131)I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ((18)F, (124)I) and targeted radionuclide therapy ((131)I) of melanoma using a single chemical structure.

  19. Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells

    NASA Astrophysics Data System (ADS)

    Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi

    2010-06-01

    Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

  20. Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique

    PubMed Central

    Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak

    2016-01-01

    Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814

  1. Optimization of integrated impeller mixer via radiotracer experiments.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Adnan, M A K

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.

  2. Cerenkov luminescence endoscopy: Improved molecular sensitivity with β --emitting radiotracers

    DOE PAGES

    Carpenter, Colin M.; Ma, Xiaowei; Liu, Hongguang; ...

    2014-10-09

    Cerenkov luminescence endoscopy (CLE) is an optical technique that captures the Cerenkov photons emitted from highly energetic moving charged particles (β + or β $-$) and can be used to monitor the distribution of many clinically available radioactive probes. A main limitation of CLE is its limited sensitivity to small concentrations of radiotracer, especially when used with a light guide. We investigated the improvement in the sensitivity of CLE brought about by using a β $-$ radiotracer that improved Cerenkov signal due to both higher β-particle energy and lower γ noise in the imaging optics because of the lack ofmore » positron annihilation. Here, the signal-to-noise ratio (SNR) of 90Y was compared with that of 18F in both phantoms and small-animal tumor models. Sensitivity and noise characteristics were demonstrated using vials of activity both at the surface and beneath 1 cm of tissue. Rodent U87MG glioma xenograft models were imaged with radiotracers bound to arginine-glycine-aspartate (RGD) peptides to determine the SNR. As a result, γ noise from 18F was demonstrated by both an observed blurring across the field of view and a more pronounced fall-off with distance. A decreased γ background and increased energy of the β particles resulted in a 207-fold improvement in the sensitivity of 90Y compared with 18F in phantoms. 90Y-bound RGD peptide produced a higher tumor-to-background SNR than 18F in a mouse model. In conclusion, the use of 90Y for Cerenkov endoscopic imaging enabled superior results compared with an 18F radiotracer.« less

  3. Radiotracers Used for the Scintigraphic Detection of Infection and Inflammation

    PubMed Central

    Tsopelas, Chris

    2015-01-01

    Over the last forty years, a small group of commercial radiopharmaceuticals have found their way into routine medical use, for the diagnostic imaging of patients with infection or inflammation. These molecular radiotracers usually participate in the immune response to an antigen, by tagging leukocytes or other molecules/cells that are endogenous to the process. Currently there is an advancing effort by researchers in the preclinical domain to design and develop new agents for this application. This review discusses radiopharmaceuticals used in the nuclear medicine clinic today, as well as those potential radiotracers that exploit an organism's defence mechanisms to an infectious or inflammatory event. PMID:25741532

  4. EXOGENOUS CYTOCHROME C RESTORES MYOCARDIAL CYTOCHROME OXIDASE ACTIVITY INTO THE LATE PHASE OF SEPSIS

    PubMed Central

    Piel, David A.; Deutschman, Clifford S.; Levy, Richard J.

    2009-01-01

    Mitochondrial dysfunction is thought to play a role in the pathogenesis of a variety of disease states, including sepsis. An acquired defect in oxidative phosphorylation potentially causes sepsis-induced organ dysfunction. Cytochrome oxidase (CcOX), the terminal oxidase of the respiratory chain, is competitively inhibited early in sepsis and progresses, becoming noncompetitive during the late phase. We have previously demonstrated that exogenous cytochrome c can overcome myocardial CcOX competitive inhibition and improve cardiac function during murine sepsis at the 24-h point. Here, we evaluate the effect of exogenous cytochrome c on CcOX activity and survival in mice at the later time points. Exogenous cytochrome c (800 μg) or saline was intravenously injected 24 h after cecal ligation and puncture (CLP) or sham operation. Steady-state mitochondrial cytochrome c levels and heme c content increased significantly 48 h post-CLP and remained elevated at 72 h in cytochrome c-injected mice compared with saline injection. Cecal ligation and puncture inhibited CcOX at 48 h in saline-injected mice. However, cytochrome c injection abrogated this inhibition and restored CcOX kinetic activity to sham values at 48 h. Survival after CLP to 96 h after cytochrome c injection approached 50% compared with only 15% after saline injection. Thus, a single injection of exogenous cytochrome c 24 h post-CLP repletes mitochondrial substrate levels for up to 72 h, restores myocardial COX activity, and significantly improves survival. PMID:18414235

  5. [Pharmacokinetics of radiotracers in the ocular tissues exposed to infrasound and ultrasound phonophoreses].

    PubMed

    2006-01-01

    The paper compares the efficiency of infrasound and ultrasound phonophoreses. The efficiency was evaluated on the basis of the rate of radiotracers within the eye after infrasound or ultrasound exposure of the eyeball. The exposure was made after preliminary putting the radiotracer-impregnated application into the bulbar conjunctiva of an animal. Radioactivity was recorded on a Siemens gamma camera in its lifetime. The time course of changes in the radioactivities measured 10, 30, and 60 minutes after termination of exposures strongly suggests its stable increase in the eye exposed to infrasound. At the same time 10 minutes after ultrasound exposure, the increased concentration of a radiotracer in the eye was less than that after infrasound exposure and then it progressively decreased. Thus, having a significant phoretic activity, infrasound, as ultrasound, creates more favorable conditions for long drug storage in the eye.

  6. A study of residence time distribution using radiotracer technique in the large scale plant facility

    NASA Astrophysics Data System (ADS)

    Wetchagarun, S.; Tippayakul, C.; Petchrak, A.; Sukrod, K.; Khoonkamjorn, P.

    2017-06-01

    As the demand for troubleshooting of large industrial plants increases, radiotracer techniques, which have capability to provide fast, online and effective detections to plant problems, have been continually developed. One of the good potential applications of the radiotracer for troubleshooting in a process plant is the analysis of Residence Time Distribution (RTD). In this paper, the study of RTD in a large scale plant facility using radiotracer technique was presented. The objective of this work is to gain experience on the RTD analysis using radiotracer technique in a “larger than laboratory” scale plant setup which can be comparable to the real industrial application. The experiment was carried out at the sedimentation tank in the water treatment facility of Thailand Institute of Nuclear Technology (Public Organization). Br-82 was selected to use in this work due to its chemical property, its suitable half-life and its on-site availability. NH4Br in the form of aqueous solution was injected into the system as the radiotracer. Six NaI detectors were placed along the pipelines and at the tank in order to determine the RTD of the system. The RTD and the Mean Residence Time (MRT) of the tank was analysed and calculated from the measured data. The experience and knowledge attained from this study is important for extending this technique to be applied to industrial facilities in the future.

  7. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  8. Membrane cytochromes of Escherichia coli chl mutants.

    PubMed Central

    Hackett, N R; Bragg, P D

    1983-01-01

    The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis. PMID:6302081

  9. Comparison of Biological Properties of 99mTc-Labeled Cyclic RGD Peptide Trimer and Dimer Useful as SPECT Radiotracers for Tumor Imaging

    PubMed Central

    Zhao, Zuo-Quan; Yang, Yong; Fang, Wei; Liu, Shuang

    2016-01-01

    Introduction This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. Methods HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. Results 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200 GBq/µmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. Conclusion Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors. PMID:27556955

  10. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  11. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm

    PubMed Central

    Durand, Anne; Azzouzi, Asma; Bourbon, Marie-Line; Steunou, Anne-Soisig; Liotenberg, Sylviane; Maeshima, Akinori; Astier, Chantal; Argentini, Manuela; Saito, Shingo

    2015-01-01

    ABSTRACT In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. PMID:26396241

  12. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  13. Defining the in Vivo Role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5.

    PubMed

    Finn, Robert D; McLaughlin, Lesley A; Ronseaux, Sebastien; Rosewell, Ian; Houston, J Brian; Henderson, Colin J; Wolf, C Roland

    2008-11-14

    In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.

  14. Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system.

    PubMed

    Hossen, Md Nazir; Kajimoto, Kazuaki; Akita, Hidetaka; Hyodo, Mamoru; Ishitsuka, Taichi; Harashima, Hideyoshi

    2013-03-01

    Because the functional apoptosis-initiating protein, cytochrome C (CytC) is rapidly cleared from the circulation (t1/2 (half-life): 4 minutes), it cannot be used for in vivo therapy. We report herein on a hitherto unreported strategy for delivering exogenous CytC as a potential and safe antiobesity drug for preventing diet-induced obesity, the most common type of obesity in humans. The functional activity of CytC encapsulated in prohibitin (a white fat vessel-specific receptor)-targeted nanoparticles (PTNP) was evaluated quantitatively, as evidenced by the observations that CytC-loaded PTNP causes apoptosis in primary adipose endothelial cells in a dose-dependent manner, whereas CytC alone did not. The delivery of a single dose of CytC through PTNP into the circulation disrupted the vascular structure by the targeted apoptosis of adipose endothelial cells in vivo. Intravenous treatment of CytC-loaded PTNP resulted in a substantial reduction in obesity in high-fat diet (HFD) fed wild-type (wt) mice, as evidenced by the dose-dependent prevention of the percentage of increase in body weight and decrease in serum leptin levels. In addition, no detectable hepatotoxicity was found to be associated with this prevention. Thus, the finding highlights the promising potential of CytC for use as an antiobesity drug, when delivered through a nanosystem.

  15. An automatic bolus injector for use in radiotracer studies of blood flow: design and evaluation.

    PubMed

    Snyder, R E; Overton, T R; Boisvert, D P; Petruk, K C

    1976-12-01

    An electromechanical device is described which automatically injects the radiotracer bolus used in the measurement of cerebral blood flow. It consists of two electronically controlled, solenoid operated syringes, one containing the radiotracer solution and the other heparinized saline. Results are presented which show that use of the automatic bolus injector in place of hand injection leads to an improvement in the precision of measured flow values. Additional advantages of the device are discussed.

  16. A Mycobacterium tuberculosis Cytochrome bd Oxidase Mutant Is Hypersensitive to Bedaquiline

    PubMed Central

    Hartman, Travis E.

    2014-01-01

    ABSTRACT The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. PMID:25028424

  17. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase.

    PubMed

    Kuchar, Manuela; Neuber, Christin; Belter, Birgit; Bergmann, Ralf; Lenk, Jens; Wodtke, Robert; Kniess, Torsten; Steinbach, Jörg; Pietzsch, Jens; Löser, Reik

    2018-01-01

    Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N -succinimidyl 4-[ 18 F]fluorobenzoate ([ 18 F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo , their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18 F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.

  18. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase

    PubMed Central

    Kuchar, Manuela; Neuber, Christin; Belter, Birgit; Bergmann, Ralf; Lenk, Jens; Wodtke, Robert; Kniess, Torsten; Steinbach, Jörg; Pietzsch, Jens; Löser, Reik

    2018-01-01

    Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo, their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.

  19. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.

    PubMed

    Mach, Robert H; Luedtke, Robert R

    2018-03-01

    The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.

    PubMed

    Lipka, J J; Waskell, L A

    1989-01-01

    Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.

  1. Designing Inhibitors of Cytochrome c/Cardiolipin Peroxidase Complexes: Mitochondria-Targeted Imidazole-Substituted Fatty Acids

    PubMed Central

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A.; Silva, K. Ishara; Huang, Zhentai; Amoscato, Andrew A.; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E.

    2014-01-01

    Mitochondria have emerged as the major regulatory platform responsible for coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (cyt) c. As this oxidation occurs within the peroxidase complex of cyt c with CL, the latter represents a promising target for the discovery and design of drugs with anti-apoptotic mechanism of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogues of stearic acid TPP-n-ISA with different positions of the attached imidazole group on the fatty acid (n=6, 8, 10, 13 and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance, and electron spin echo envelope modulation) we demonstrated that TPP-n-ISA indeed were able to potently suppress CL induced structural re-arrangements in cyt c paving the way to its peroxidase competence. TPP-n-ISA analogues preserved the low spin hexa-coordinated heme iron state in cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of cyt c/CL complexes with a significant anti-apoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all atom molecular dynamics simulations. Based on the experimental data and computations predictions, we identified TPP-6-ISA as a candidate drug with optimized anti-apoptotic potency. PMID:24631490

  2. Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.

    PubMed

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A; Silva, K Ishara; Huang, Zhentai; Amoscato, Andrew A; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E

    2014-06-01

    Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications. Nuclear Science Series: Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; Wolf, A.P.

    1982-09-01

    Carbon 11, Fluorine 18, and Nitrogen 13-labeled radiotracers are reviewed from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. The reactions used, the principles used to adapt these reactions to labeling with short-lived radionuclides, and the concepts of chemical reactivity form the framework upon which synthetic strategies for short-lived radiotracers are developed. Potentially new routes are suggested which may be applied to problems in labeling organic molecules. (ACR)

  4. Dose-on-demand production of diverse 18F-radiotracers for preclinical applications using a continuous flow microfluidic system.

    PubMed

    Matesic, Lidia; Kallinen, Annukka; Greguric, Ivan; Pascali, Giancarlo

    2017-09-01

    The production of 18 F-radiotracers using continuous flow microfluidics is under-utilized due to perceived equipment limitations. We describe the dose-on-demand principle, whereby the back-to-back production of multiple, diverse 18 F-radiotracers can be prepared on the same day, on the same microfluidic system using the same batch of [ 18 F]fluoride, the same microreactor, the same HPLC column and SPE cartridge to obtain a useful production yield. [ 18 F]MEL050, [ 18 F]Fallypride and [ 18 F]PBR111 were radiolabeled with [ 18 F]fluoride using the Advion NanoTek Microfluidic Synthesis System. The outlet of the microreactor was connected to an automated HPLC injector and following the collection of the product, SPE reformulation produced the 18 F-radiotracer in <10% ethanolic saline. A thorough automated cleaning procedure was implemented to ensure no cross-contamination between radiotracer synthesis. The complete productions for [ 18 F]MEL050 and [ 18 F]Fallypride were performed at total flow rates of 20μL/min, resulting in 40±13% and 25±13% RCY respectively. [ 18 F]PBR111 was performed at 200μL/min to obtain 27±8% RCY. Molar activities for each 18 F-radiotracer were >100GBq/μmol and radiochemical purities were >97%, implying that the cleaning procedure was effective. Using the same initial solution of [ 18 F]fluoride, microreactor, HPLC column and SPE cartridge, three diverse 18 F-radiotracers could be produced in yields sufficient for preclinical studies in a back-to-back fashion using a microfluidic system with no detectable cross-contamination. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. Species identification in mixed tuna samples with next-generation sequencing targeting two short cytochrome b gene fragments.

    PubMed

    Kappel, Kristina; Haase, Ilka; Käppel, Christine; Sotelo, Carmen G; Schröder, Ute

    2017-11-01

    Conventional Sanger sequencing of PCR products is the gold standard for species authentication of seafood products. However, this method is inappropriate for the analysis of products that might contain mixtures of species, such as tinned tuna. The purpose of this study was to test whether next-generation sequencing (NGS) can be a solution for the authentication of mixed products. Nine tuna samples containing mixtures of up to four species were prepared and subjected to an NGS approach targeting two short cytochrome b gene (cytb) fragments on the Illumina MiSeq platform. Sequence recovery was precise and admixtures of as low as 1% could be identified, depending on the species composition of the mixtures. Duplicate samples as well as two individual NGS runs produced very similar results. A first test of three commercial tinned tuna samples indicated the presence of different species in the same tin, although this is forbidden by EU law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Discharge rate measurements in a canal using radiotracer methods.

    PubMed

    Pant, H J; Goswami, Sunil; Biswal, Jayashree; Samantray, J S; Sharma, V K

    2016-06-01

    Discharge rates of water were measured in a canal using radiotracer methods with an objective to validate the efficacy of Concrete Volute Pumps (CVPs) installed at various pumping stations along the canal. Pulse velocity and dilution methods were applied to measure the discharge rates using Iodine-131 as a radiotracer. The discharge rate measured in one of the sections of the canal using the pulse velocity method was found to be 22.5m(3)/s, whereas the discharge rates measured using the dilution method in four different sections of the canal varied from 20.27 to 20.62m(3)/s with single CVP in operation. The standard error in discharge rate measurements using dilution method ranged from ±1.1 to ±1.8%. The experimentally measured values of the discharge rate were in good agreement with the design value of the discharge rate (20m(3)/s) thus validating the performance of the CVPs used in the canal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  9. Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers.

    PubMed

    Cuccurullo, Vincenzo; Di Stasio, Giuseppe Danilo; Mansi, Luigi

    2018-01-01

    Natural history of prostate cancer (PCa) is extremely variable, as it ranges from indolent and slow growing tumors to highly aggressive histotypes. Genetic background and environmental factors co-operate to the genesis and clinical manifestation of the tumor and include among the others race, family, specific gene variants (i.e., BRCA1 and BRCA2 mutations), acute and chronic inflammation, infections, diet and drugs. In this scenario, remaining actual the clinical interest of bone scan (BS) in detecting skeletal metastases, an important role in diagnostic imaging may be also carried out by, positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI), which combine morphological information provided by CT and MRI with functional and metabolic data provided by PET acquisitions. With respect to PET radiotracers, being ancillary the usefulness of F-18 fluoro-deoxyglucose and not yet demonstrated the cost-effectiveness of F-18 Fluoride respect to BS, the main role is now played by choline derivatives, in particular by 11C-choline and 18F-fluorocholine. More recently, a greater interest for both diagnostic and therapeutic purposes has been associated with radiotracers directed to prostate-specific membrane antigen (PSMA), a transmembrane protein expressed on the cell surface, which showed high selective expression in PCa, metastatic lymph nodes and bone metastases. Several PSMA-targeted PET tracers have been developed many of which showing promising results for accurate diagnosis and staging of primary PCa and re-staging after biochemical recurrence, even in case of low prostate specific antigen values. In particular, the most widely used PSMA ligand for PET imaging is a 68 Ga-labelled PSMA inhibitor, 68 Ga-PSMA-HBED-CC ( 68 Ga-PSMA-11). 99m Tc-HYNIC-Glu-Urea-A for single photon emission computed tomography, and 177 Lu-PSMA-617 for radioligand therapy has also been applied in humans, with interesting preliminary results related

  10. Nuclear Medicine in Prostate Cancer: A New Era for Radiotracers

    PubMed Central

    Cuccurullo, Vincenzo; Di Stasio, Giuseppe Danilo; Mansi, Luigi

    2018-01-01

    Natural history of prostate cancer (PCa) is extremely variable, as it ranges from indolent and slow growing tumors to highly aggressive histotypes. Genetic background and environmental factors co-operate to the genesis and clinical manifestation of the tumor and include among the others race, family, specific gene variants (i.e., BRCA1 and BRCA2 mutations), acute and chronic inflammation, infections, diet and drugs. In this scenario, remaining actual the clinical interest of bone scan (BS) in detecting skeletal metastases, an important role in diagnostic imaging may be also carried out by, positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI), which combine morphological information provided by CT and MRI with functional and metabolic data provided by PET acquisitions. With respect to PET radiotracers, being ancillary the usefulness of F-18 fluoro-deoxyglucose and not yet demonstrated the cost-effectiveness of F-18 Fluoride respect to BS, the main role is now played by choline derivatives, in particular by 11C-choline and 18F-fluorocholine. More recently, a greater interest for both diagnostic and therapeutic purposes has been associated with radiotracers directed to prostate-specific membrane antigen (PSMA), a transmembrane protein expressed on the cell surface, which showed high selective expression in PCa, metastatic lymph nodes and bone metastases. Several PSMA-targeted PET tracers have been developed many of which showing promising results for accurate diagnosis and staging of primary PCa and re-staging after biochemical recurrence, even in case of low prostate specific antigen values. In particular, the most widely used PSMA ligand for PET imaging is a 68Ga-labelled PSMA inhibitor, 68Ga-PSMA-HBED-CC (68Ga-PSMA-11). 99mTc-HYNIC-Glu-Urea-A for single photon emission computed tomography, and 177Lu-PSMA-617 for radioligand therapy has also been applied in humans, with interesting preliminary results related to a

  11. Polymerase chain reaction assay targeting cytochrome b gene for the detection of dog meat adulteration in meatball formulation.

    PubMed

    Rahman, Md Mahfujur; Ali, Md Eaqub; Hamid, Sharifah Bee Abd; Mustafa, Shuhaimi; Hashim, Uda; Hanapi, Ummi Kalthum

    2014-08-01

    A polymerase chain reaction (PCR) assay for the assessment of dog meat adulteration in meatballs was developed. The assay selectively amplified a 100-bp region of canine mitochondrial cytochrome b gene from pure, raw, processed and mixed backgrounds. The specificity of the assay was tested against 11 animals and 3 plants species, commonly available for meatball formulation. The stability of the assay was proven under extensively autoclaving conditions that breakdown target DNA. A blind test from ready to eat chicken and beef meatballs showed that the assay can repeatedly detect 0.2% canine meat tissues under complex matrices using 0.04 ng of dog DNA extracted from differentially treated meatballs. The simplicity, stability and sensitivity of the assay suggested that it could be used in halal food industry for the authentication of canine derivatives in processed foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of a system for real-time measurements of metabolite transport in plants using short-lived positron-emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Kiser, Matthew R.

    be introduced to plants as biologically active molecules such as 11CO2, N13O-3, 18F--[H2O], and H152O . Plants for these studies are grown in controlled-environment chambers at the Phytotron. The chambers offer an array of control for temperature, humidity, atmospheric CO2 concentration, and light intensity. Additionally, the Phytotron houses one large reach-in growth chamber that is dedicated to this project for radioisotope labeling measurements. There are several important properties of short-lived positron-emitting radio-tracers that make them well suited for use in investigating metabolite transport in plants. First, because the molecular mass of a radioisotope-tagged compound is only minutely different from the corresponding stable compound, radiotracer substances should be metabolized and transported in plants the same as their non-radioactive counterparts. Second, because the relatively high energy gamma rays emitted from electron-positron annihilation are attenuated very little by plant tissue, the real-time distribution of a radiotracer can be measured in vivo in plants. Finally, the short radioactive half-lives of these isotopes allow for repeat measurements on the same plant in a short period of time. For example, in studies of short-term environmental changes on plant metabolite dynamics, a single plant can be labeled multiple times to measure its responses to different, environmental conditions. Also, different short-lived radiotracers can be applied to the same plant over a short period of time to investigate the transport and allocation of various metabolites. This newly developed system provides the capabilities for production of 11CO2 at TUNL, transfer of the 11CO 2 gas from the target area at TUNL to a radiation-shielded cryogenic trap at the Phytotron, labeling of photoassimilates with 11C, and in vivo gamma-ray detection for real-time measurements of the radiotracer distribution in small plants. The experimental techniques and instrumentation

  13. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c.

    PubMed

    Samhan-Arias, Alejandro K; Fortalezas, Sofia; Cordas, Cristina M; Moura, Isabel; Moura, José J G; Gutierrez-Merino, Carlos

    2018-05-01

    In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b 5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b 5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b 5 reductase was measured. Complex formation between both proteins suggests that cytochrome b 5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b 5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Investigation of flow behaviour of coal particles in a pilot-scale fluidized bed gasifier (FBG) using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K; Kamudu, M Vidya; Prakash, S G; Krishanamoorthy, S; Anandam, G; Rao, P Seshubabu; Ramani, N V S; Singh, Gursharan; Sonde, R R

    2009-09-01

    Knowledge of residence time distribution (RTD), mean residence time (MRT) and degree of axial mixing of solid phase is required for efficient operation of coal gasification process. Radiotracer technique was used to measure the RTD of coal particles in a pilot-scale fluidized bed gasifier (FBG). Two different radiotracers i.e. lanthanum-140 and gold-198 labeled coal particles (100 gm) were independently used as radiotracers. The radiotracer was instantaneously injected into the coal feed line and monitored at the ash extraction line at the bottom and gas outlet at the top of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tanks-in-series model. The simulation of RTD data indicated good degree of mixing with small fraction of the feed material bypassing/short-circuiting from the bottom of the gasifier. The results of the investigation were found useful for optimizing the design and operation of the FBG, and scale-up of the gasification process.

  15. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: radical processes involving iron porphyrins.

    PubMed Central

    Brault, D

    1985-01-01

    Haloalkane toxicity originates from attack on biological targets by reactive intermediates derived from haloalkane metabolism by a hemoprotein, cytochrome P-450. Carbon-centered radicals and their peroxyl derivatives are most likely involved. The reactions of iron porphyrin--a model for cytochrome P-450--with various carbon-centered and peroxyl radicals generated by pulse radiolysis are examined. Competition between iron porphyrin and unsaturated fatty acids for attack by peroxyl radicals is pointed out. These kinetic data are used to derive a model for toxicity of haloalkanes with particular attention to carbon tetrachloride and halothane. The importance of local oxygen concentration and structural arrangement of fatty acids around cytochrome P-450 is emphasized. PMID:3007100

  16. Tributyltin interacts with mitochondria and induces cytochrome c release.

    PubMed Central

    Nishikimi, A; Kira, Y; Kasahara, E; Sato, E F; Kanno, T; Utsumi, K; Inoue, M

    2001-01-01

    Although triorganotins are potent inducers of apoptosis in various cell types, the critical targets of these compounds and the mechanisms by which they lead to cell death remain to be elucidated. There are two major pathways by which apoptotic cell death occurs: one is triggered by a cytokine mediator and the other is by a mitochondrion-dependent mechanism. To elucidate the mechanism of triorganotin-induced apoptosis, we studied the effect of tributyltin on mitochondrial function. We found that moderately low doses of tributyltin decrease mitochondrial membrane potential and induce cytochrome c release by a mechanism inhibited by cyclosporine A and bongkrekic acid. Tributyltin-induced cytochrome c release is also prevented by dithiols such as dithiothreitol and 2,3-dimercaptopropanol but not by monothiols such as GSH, N-acetyl-L-cysteine, L-cysteine and 2-mercaptoethanol. Further studies with phenylarsine oxide agarose revealed that tributyltin interacts with the adenine nucleotide translocator, a functional constituent of the mitochondrial permeability transition pore, which is selectively inhibited by dithiothreitol. These results suggest that, at low doses, tributyltin interacts selectively with critical thiol residues in the adenine nucleotide translocator and opens the permeability transition pore, thereby decreasing membrane potential and releasing cytochrome c from mitochondria, a series of events consistent with established mechanistic models of apoptosis. PMID:11368793

  17. Electron transfer between cytochrome. alpha. and copper A in cytochrome c oxidase: A perturbed equilibrium study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, J.E.; Li, P.M.; Jang, D.J.

    1989-08-22

    Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. The authors have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 {plus minus} 2,000 s{sup {minus}1} (1more » {sigma}), at pH 7.0 and 25.5{degree}C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome {alpha} and copper A is far faster than any rate measured or inferred previously for this process.« less

  18. Radiotracers for PETT: new developments and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; Wolf, A.P.

    Radiotracer development with positron emitters has its major focus on problems in the neurosciences. Progress is reviewed for high-level isotope production and labelled precurser synthesis with the medical cyclotron. The study of regional brain glucose metabolism represented the first extension of one of the methods of neurochemical autoradiography to humans and the study of brain protein synthesis and neurotransmitter receptors followed. In a more general sense, one PETT instrumentation will provide resolution in the 5 mm range is already emerging. Research status is reviewed. 103 references. (PSB)

  19. [18F]Fluoromethyl-[1,2-2H4]-choline: A novel radiotracer for imaging choline metabolism in tumors by positron emission tomography

    PubMed Central

    Leyton, Julius; Smith, Graham; Zhao, Yongjun; Perumal, Meg; Nguyen, Quang-De; Robins, Edward; Årstad, Erik; Aboagye, Eric O.

    2009-01-01

    Current radiotracers for positron emission tomography (PET) imaging of choline metabolism have poor systemic metabolic stability in vivo. We describe a novel radiotracer, [18F]fluoromethyl-[1,2-2H4]-choline (D4-FCH), that employs deuterium isotope effect to improve metabolic stability. D4-FCH proved more resistant to oxidation than its non-deuterated analog, [18F]fluoromethylcholine (FCH), in plasma, kidneys, liver and tumor, while retaining phosphorylation potential. Tumor radiotracer levels, a determinant of sensitivity in imaging studies, was improved by deuterium substitution; tumor uptake values expressed as %injected dose/voxel at 60 min were 7.43 ± 0.47 and 5.50 ± 0.49 for D4-FCH and FCH, respectively, (P = 0.04). D4-FCH was also found to be a useful response biomarker. Treatment with the mitogenic extracellular kinase inhibitor, PD0325901, resulted in a reduction in tumor radiotracer uptake that occurred in parallel with reductions in choline kinase A expression. In conclusion, D4-FCH is a very promising metabolically stable radiotracer for imaging choline metabolism in tumors. PMID:19773436

  20. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors.

    PubMed

    Sobrio, Franck

    2013-01-01

    l-Glutamate is the major neurotransmitter in the central nervous system and activates both ionotropic and metabotropic receptors. Here the radiosynthesis of radiotracers developed for both types of receptors are reviewed with a highlight on the radiopharmaceuticals used or evaluated in humans. At first, radiotracers were developed for ionotropic N-methyl-d-aspartate receptors without any success to obtain radiopharmaceuticals useable for clinical or even preclinical positron emission tomography (PET) imaging purposes. Some compounds were radiolabelled and evaluated for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors without any successful results. The recent development of radiotracers for metabotropic glutamate receptors was more efficient because radiopharmaceuticals are currently evaluated or used in clinical trials to study the mGluR1, mGluR2 or mGluR5 receptors by PET. Although the majority of the radiotracers were classically labelled with carbon-11 by O- or N-[(11) C]-methylation or with fluorine-18 nucleophilic substitution of aromatic nitro or halogeno precursors using krypofix 2.2.2/potassium [(18) F]fluoride complex, some radiosyntheses were performed with recent radiolabelling reactions like the use of iodionium salt for [(18) F]-labelling. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    PubMed Central

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  2. In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b(5) and methylene blue.

    PubMed

    Pearson, Josh T; Siu, Sophia; Meininger, David P; Wienkers, Larry C; Rock, Dan A

    2010-03-30

    Indoleamine 2,3-dioxygenase (IDO) is a heme-containing dioxygenase involved in the degradation of several indoleamine derivatives and has been indicated as an immunosuppressive. IDO is an attractive target for therapeutic intervention in diseases which are known to capitalize on immune suppression, including cancer, HIV, and inflammatory diseases. Conventionally, IDO activity is measured through chemical reduction by the addition of ascorbate and methylene blue. Identification of potential coenzymes involved in the reduction of IDO in vivo should improve in vitro reconstitution systems used to identify potential IDO inhibitors. In this study we show that NADPH-cytochrome P450 reductase (CPR) is capable of supporting IDO activity in vitro and that oxidation of l-Trp follows substrate inhibition kinetics (k(cat) = 0.89 +/- 0.04 s(-1), K(m) = 0.72 +/- 0.15 microM, and K(i) = 9.4 +/- 2.0 microM). Addition of cytochrome b(5) to CPR-supported l-Trp incubations results in modulation from substrate inhibition to sigmoidal kinetics (k(cat) = 1.7 +/- 0.3 s(-1), K(m) = 1.5 +/- 0.9 microM, and K(i) = 1.9 +/- 0.3). CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).

  3. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed Central

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-01-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative. Images PMID:3186722

  4. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  5. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.

    PubMed

    Papa, S; Lorusso, M; Izzo, G; Capuano, F

    1981-02-15

    1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi

  6. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India

    PubMed Central

    Shaiju, V. S.; Sharma, S. D.; Kumar, Rajesh; Sarin, B.

    2009-01-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as 18F, 11C, 15O, 13N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel. PMID:20098564

  7. Kinetics of interprotein electron transfer between cytochrome c6 and the soluble CuA domain of cyanobacterial cytochrome c oxidase.

    PubMed

    Paumann, Martina; Feichtinger, Markus; Bernroitner, Margit; Goldfuhs, Judith; Jakopitsch, Christa; Furtmüller, Paul G; Regelsberger, Günther; Peschek, Günter A; Obinger, Christian

    2004-10-08

    Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways. Copyright 2004 Federation of European Biochemical Societies

  8. Covalent modification of cytochrome c by reactive metabolites of furan.

    PubMed

    Phillips, Martin B; Sullivan, Mathilde M; Villalta, Peter W; Peterson, Lisa A

    2014-01-21

    Metabolism of the hepatotoxicant furan leads to protein adduct formation in the target organ. The initial bioactivation step involves cytochrome P450-catalyzed oxidation of furan, generating cis-2-butene-1,4-dial (BDA). BDA reacts with lysine to form pyrrolin-2-one adducts. Metabolic studies indicate that BDA also reacts with glutathione (GSH) to generate 2-(S-glutathionyl)butanedial (GSH-BDA), which then reacts with lysine to form GSH-BDA-lysine cross-links. To explore the relative reactivity of these two reactive intermediates, cytochrome c was reacted with BDA in the presence and absence of GSH. As judged by MALDI-TOF mass spectrometry, BDA reacts extensively with cytochrome c to form adducts that add 66 Da to the protein, consistent with the formation of pyrrolinone adducts. Addition of GSH to the reaction mixture reduced the overall extent of adduct formation. The mass of the adducted protein was shifted by 355 Da as expected for GSH-BDA-protein cross-link formation. LC-MS/MS analysis of the tryptic digests of the alkylated protein indicated that the majority of adducts occurred on lysine residues, with BDA reacting less selectively than GSH-BDA. Both types of adducts may contribute to the toxic effects of furan.

  9. Covalent Modification of Cytochrome C by Reactive Metabolites of Furan

    PubMed Central

    Phillips, Martin B.; Sullivan, Mathilde M.; Villalta, Peter W.; Peterson, Lisa A.

    2014-01-01

    Metabolism of the hepatotoxicant furan leads to protein adduct formation in the target organ. The initial bioactivation step involves cytochrome P450-catalyzed oxidation of furan, generating cis-2-butene-1,4-dial (BDA). BDA reacts with lysine to form pyrrolin-2-one adducts. Metabolic studies indicate that BDA also reacts with glutathione (GSH) to generate 2-(S-glutathionyl)butanedial (GSH-BDA), which then reacts with lysine to form GSH-BDA-lysine cross-links. To explore the relative reactivity of these two reactive intermediates, cytochrome c was reacted with BDA in the presence and absence of GSH. As judged by MALDI-TOF mass spectrometry, BDA reacts extensively with cytochrome c to form adducts that add 66 Da to the protein, consistent with the formation of pyrrolinone adducts. Addition of GSH to the reaction mixture reduced the overall extent of adduct formation. The mass of the adducted protein was shifted by 355 Da as expected for GSH-BDA-protein cross-link formation. LC-MS/MS analysis of the tryptic digests of the alkylated protein indicated that the majority of adducts occurred on lysine residues, with BDA reacting less selectively than GSH-BDA. Both types of adducts may contribute to the toxic effects of furan. PMID:24364757

  10. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  11. In vivo evaluation of 18F-MNI698: an 18F-labeled radiotracer for imaging of serotonin 4 receptors in brain.

    PubMed

    Tavares, Adriana Alexandre S; Caillé, Fabien; Barret, Olivier; Papin, Caroline; Lee, Hsiaoju; Morley, Thomas J; Fowles, Krista; Holden, Daniel; Seibyl, John P; Alagille, David; Tamagnan, Gilles D

    2014-05-01

    Serotonin 4 receptors (5-hydroxytryptamine receptor 4 [5HT4R]) hold promise as a novel therapeutic approach to multiple brain disorders, including Alzheimer and Huntington disease. In vivo imaging of these receptors with selective 5HT4R radiotracers and PET would be valuable to investigate alterations in 5HT4R in different brain disorders and to assist drug discovery. In this study, (18)F-MNI698 was evaluated as a potential PET radiotracer for imaging of 5HT4R in the brain. Eighteen PET studies were performed in 3 adult rhesus monkeys. The radiotracer was administered as a bolus intravenous injection or bolus plus constant infusion (time that would be required to inject the bolus at the infusion rate = 60 min), and arterial blood was collected for data quantification. Kinetic models were used to estimate distribution volumes and binding potentials, for which the cerebellum was used as a reference region. (18)F-MNI698 test-retest variability and upper mass dose limits were determined. Preblocking studies using several doses of SB204070, a selective 5HT4R antagonist, were performed. (18)F-MNI698 avidly entered the monkey brain (peak percentage injected dose of ∼ 6.6%), and its brain distribution was consistent with known 5HT4R densities. At 120 min after bolus injection and after the start of radiotracer infusion, only less than 5% and approximately 10% parent compound was present in blood, respectively. Measured binding potentials were underestimated by 22%-36% when noninvasive methods were used for data quantification in comparison with invasive methods. A good agreement was found between test-retest measurements. The radiotracer upper mass dose limit (<5% occupancy) was determined to be 13.1 μg per 70 kg of body weight. SB204070 blocked the radiotracer binding in a dose-dependent manner. Data indicate that (18)F-MNI698 is a promising PET radiotracer for imaging of 5HT4R in the brain, and human studies are warranted based on these study results.

  12. Calcium transport in vesicles energized by cytochrome oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K + selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K + flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interactionmore » with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.« less

  13. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p.

    PubMed

    Banting, Graham S; Glerum, D Moira

    2006-03-01

    Cox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule. Of the alleles studied, more than half had no apparent effect on Cox11p function. Among the respiration deficiency-encoding alleles, we identified three distinct phenotypes, which included a set of mutants with a misassembled or partially assembled cytochrome oxidase, as indicated by a blue-shifted cytochrome aa(3) peak. In addition to the shifted spectral signal, these mutants also display a specific reduction in the levels of subunit 1 (Cox1p). Two of these mutations are likely to occlude a surface pocket behind the copper-binding domain in Cox11p, based on analogy with the Sinorhizobium meliloti Cox11 solution structure, thereby suggesting that this pocket is crucial for Cox11p function. Sequential deletions of the matrix portion of Cox11p suggest that this domain is not functional beyond the residues involved in mitochondrial targeting and membrane insertion. In addition, our studies indicate that Deltacox11, like Deltasco1, displays a specific hypersensitivity to hydrogen peroxide. Our studies provide the first evidence at the level of the cytochrome oxidase holoenzyme that Cox1p is the in vivo target for Cox11p and suggest that Cox11p may also have a role in the response to hydrogen peroxide exposure.

  14. Kinetic studies on the oxidation of cytochrome b(5) Phe35 mutants with cytochrome c, plastocyanin and inorganic complexes.

    PubMed

    Yao, Ping; Wang, Yun-Hua; Sun, Bing-Yun; Xie, Yi; Hirota, Shun; Yamauchi, Osamu; Huang, Zhong-Xian

    2002-04-01

    To illustrate the functions of the aromatic residue Phe35 of cytochrome b(5) and to give further insight into the roles of the Phe35-containing hydrophobic patch and/or aromatic channel of cytochrome b(5), we studied electron transfer reactions of cytochrome b(5) and its Phe35Tyr and Phe35Leu variants with cytochrome c, with the wild-type and Tyr83Phe and Tyr83Leu variants of plastocyanin, and with the inorganic complexes [Fe(EDTA)](-), [Fe(CDTA)](-) and [Ru(NH(3))(6)](3+). The changes at Phe35 of cytochrome b(5) and Tyr83 of plastocyanin do not affect the second-order rate constants for the electron transfer reactions. These results show that the invariant aromatic residues and aromatic patch/channel are not essential for electron transfer in these systems.

  15. Cytochrome bc1 complexes of microorganisms.

    PubMed Central

    Trumpower, B L

    1990-01-01

    The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae. Images PMID:2163487

  16. Structural Basis of Resistance to Anti-Cytochrome bc1 Complex Inhibitors: Implication for Drug Improvement

    PubMed Central

    Esser, Lothar; Yu, Chang-An; Xia, Di

    2016-01-01

    The emergence of drug resistance has devastating economic and social consequences, a testimonial of which is the rise and fall of inhibitors against the respiratory component cytochrome bc1 complex, a time tested and highly effective target for disease control. Unfortunately, the mechanism of resistance is a multivariate problem, including primarily mutations in the gene of the cytochrome b subunit but also activation of alternative pathways of ubiquinol oxidation and pharmacokinetic effects. There is a considerable interest in designing new bc1 inhibitors with novel modes of binding and lower propensity to induce the development of resistance. The accumulation of crystallographic data of bc1 complexes with and without inhibitors bound provides the structural basis for rational drug design. In particular, the cytochrome b subunit offers two distinct active sites that can be targeted for inhibition - the quinol oxidation site and the quinone reduction site. This review brings together available structural information of inhibited bc1 by various quinol oxidation- and reduction-site inhibitors, the inhibitor binding modes, conformational changes upon inhibitor binding of side chains in the active site and large scale domain movements of the iron-sulfur protein subunit. Structural data analysis provides a clear understanding of where and why existing inhibitors fail and points towards promising alternatives. PMID:23688079

  17. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  18. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  19. Functional investigation of bone implant viability using radiotracers in a new model of osteonecrosis

    PubMed Central

    Schiper, Luis; Faintuch, Bluma Linkowski; da Silva Badaró, Roberto José; de Oliveira, Erica Aparecida; Chavez, Victor E. Arana; Chinen, Elisangela; Faintuch, Joel

    2016-01-01

    OBJECTIVES: Conventional imaging methods are excellent for the morphological characterization of the consequences of osteonecrosis; however, only specialized techniques have been considered useful for obtaining functional information. To explore the affinity of radiotracers for severely devascularized bone, a new mouse model of isolated femur implanted in a subcutaneous abdominal pocket was devised. To maintain animal mobility and longevity, the femur was harvested from syngeneic donors. Two technetium-99m-labeled tracers targeting angiogenesis and bone matrix were selected. METHODS: Medronic acid and a homodimer peptide conjugated with RGDfK were radiolabeled with technetium-99m, and biodistribution was evaluated in Swiss mice. The grafted and control femurs were evaluated after 15, 30 and 60 days, including computed tomography (CT) and histological analysis. RESULTS: Radiolabeling achieved high (>95%) radiochemical purity. The biodistribution confirmed good blood clearance 1 hour after administration. For 99mTc-hydrazinonicotinic acid (HYNIC)-E-[c(RGDfK)2, remarkable renal excretion was observed compared to 99mTc-methylene diphosphonate (MDP), but the latter, as expected, revealed higher bone uptake. The results obtained in the control femur were equal at all time points. In the implanted femur, 99mTc-HYNIC-E-[c(RGDfK)2 uptake was highest after 15 days, consistent with early angiogenesis. Regarding 99mTc-MDP in the implant, similar uptake was documented at all time points, consistent with sustained bone viability; however, the uptake was lower than that detected in the control femur, as confirmed by histology. CONCLUSIONS: 1) Graft viability was successfully diagnosed using radiotracers in severely ischemic bone at all time points. 2) Analogously, indirect information about angiogenesis could be gathered using 999mTc-HYNIC-E-[c(RGDfK)2. 3) These techniques appear promising and warrant further studies to determine their potential clinical applications. PMID

  20. X-ray and cryo-EM structures of inhibitor-bound cytochrome bc 1 complexes for structure-based drug discovery

    PubMed Central

    Amporndanai, Kangsa; O’Neill, Paul M.

    2018-01-01

    Cytochrome bc 1, a dimeric multi-subunit electron-transport protein embedded in the inner mitochondrial membrane, is a major drug target for the treatment and prevention of malaria and toxoplasmosis. Structural studies of cytochrome bc 1 from mammalian homologues co-crystallized with lead compounds have underpinned structure-based drug design to develop compounds with higher potency and selectivity. However, owing to the limited amount of cytochrome bc 1 that may be available from parasites, all efforts have been focused on homologous cytochrome bc 1 complexes from mammalian species, which has resulted in the failure of some drug candidates owing to toxicity in the host. Crystallographic studies of the native parasite proteins are not feasible owing to limited availability of the proteins. Here, it is demonstrated that cytochrome bc 1 is highly amenable to single-particle cryo-EM (which uses significantly less protein) by solving the apo and two inhibitor-bound structures to ∼4.1 Å resolution, revealing clear inhibitor density at the binding site. Therefore, cryo-EM is proposed as a viable alternative method for structure-based drug discovery using both host and parasite enzymes. PMID:29765610

  1. Preparation of a novel radiotracer targeting the EphB4 receptor via radiofluorination using spiro azetidinium salts as precursor.

    PubMed

    Wiemer, Jens; Steinbach, Jörg; Pietzsch, Jens; Mamat, Constantin

    2017-08-01

    The visualization of Eph receptors, which are overexpressed in various tumor entities, using selective small molecule Eph inhibitors by means of positron emission tomography is a promising approach for tumor imaging. N-(Pyrimidinyl)indazolamines represent a class of compounds, which are known to have high affinity especially for the EphB4 receptor. Radiofluorination of these compounds could provide a highly specific imaging agent and was investigated using a classical nucleophilic introduction of [ 18 F]fluoride as well as a less common nucleophilic ring-opening reaction of azetidinium salts. In the past, radiofluorinations using azetidinium precursors were demonstrated to result in high radiochemical yields in short periods. For this purpose, an azetidinium precursor based on the N-(pyrimidinyl)indazolamine lead compound was developed, and radiofluorination was successfully accomplished. The respective [ 18 F]radiotracer was quickly prepared with high radiochemical purity >97% and in a radiochemical yield of 34%. Copyright © 2017 John Wiley & Sons, Ltd.

  2. An Investigation of the Effectiveness of Radiotracer Techniques for Instruction in Microbiology.

    ERIC Educational Resources Information Center

    Hurlburt, Evelyn McClelland

    Students in a junior college microbiology course were randomly assigned to one of two laboratory treatments: one using radiotracer techniques to investigate aspects of microbial metabolism, and the other using conventional techniques to investigate the same metabolic features. An achievement test administered at the completion of the unit and six…

  3. Label-free Raman observation of cytochrome c dynamics during apoptosis

    PubMed Central

    Okada, Masaya; Smith, Nicholas Isaac; Palonpon, Almar Flotildes; Endo, Hiromi; Kawata, Satoshi; Sodeoka, Mikiko; Fujita, Katsumasa

    2012-01-01

    We performed label-free observation of molecular dynamics in apoptotic cells by Raman microscopy. Dynamic changes in cytochrome c distribution at the Raman band of 750 cm-1 were observed after adding an apoptosis inducer to the cells. The comparison of mitochondria fluorescence images and Raman images of cytochrome c confirmed that changes in cytochrome c distribution can be distinguished as release of cytochrome c from mitochondria. Our observation also revealed that the redox state of cytochrome c was maintained during the release from the mitochondria. Monitoring mitochondrial membrane potential with JC-1 dye confirmed that the observed cytochrome c release was associated with apoptosis. PMID:22184220

  4. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy

    PubMed Central

    Mast, Natalia; Lin, Joseph B.

    2015-01-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. PMID:26082378

  5. The Search for a Subtype-Selective PET Imaging Agent for the GABAA Receptor Complex: Evaluation of the Radiotracer [11C]ADO in Nonhuman Primates.

    PubMed

    Lin, Shu-Fei; Bois, Frederic; Holden, Daniel; Nabulsi, Nabeel; Pracitto, Richard; Gao, Hong; Kapinos, Michael; Teng, Jo-Ku; Shirali, Anupama; Ropchan, Jim; Carson, Richard E; Elmore, Charles S; Vasdev, Neil; Huang, Yiyun

    2017-01-01

    The myriad physiological functions of γ-amino butyric acid (GABA) are mediated by the GABA-benzodiazepine receptor complex comprising of the GABA A , GABA B , and GABA C groups. The various GABA A subunits with region-specific distributions in the brain subserve different functional and physiological roles. For example, the sedative and anticonvulsive effects of classical benzodiazepines are attributed to the α 1 subunit, and the α 2 and α 3 subunits mediate the anxiolytic effect. To optimize pharmacotherapies with improved efficacy and devoid of undesirable side effects for the treatment of anxiety disorders, subtype-selective imaging radiotracers are required to assess target engagement at GABA sites and determine the dose-receptor occupancy relationships. The goal of this work was to characterize, in nonhuman primates, the in vivo binding profile of a novel positron emission tomography (PET) radiotracer, [ 11 C]ADO, which has been indicated to have functional selectivity for the GABA A α 2 /α 3 subunits. High specific activity [ 11 C]ADO was administrated to 3 rhesus monkeys, and PET scans of 120-minute duration were performed on the Focus-220 scanner. In the blood, [ 11 C]ADO metabolized at a fairly rapid rate, with ∼36% of the parent tracer remaining at 30 minutes postinjection. Uptake levels of [ 11 C]ADO in the brain were high (peak standardized uptake value of ∼3.0) and consistent with GABA A distribution, with highest activity levels in cortical areas, intermediate levels in cerebellum and thalamus, and lowest uptake in striatal regions and amygdala. Tissue kinetics was fast, with peak uptake in all brain regions within 20 minutes of tracer injection. The one-tissue compartment model provided good fits to regional time-activity curves and reliable measurement of kinetic parameters. The absolute test-retest variability of regional distribution volumes ( V T ) was low, ranging from 4.5% to 8.7%. Pretreatment with flumazenil (a subtype nonselective

  6. Interspecies Variation in the Functional Consequences of Mutation of Cytochrome c

    PubMed Central

    Josephs, Tracy M.; Hibbs, Moira E.; Ong, Lily; Morison, Ian M.; Ledgerwood, Elizabeth C.

    2015-01-01

    The naturally occurring human cytochrome c variant (G41S) is associated with a mild autosomal dominant thrombocytopenia (Thrombocytopenia Cargeeg) caused by dysregulation of platelet production. The molecular basis of the platelet production defect is unknown. Despite high conservation of cytochrome c between human and mouse (91.4% identity), introducing the G41S mutation into mouse cytochrome c in a knockin mouse (Cycs G41S/G41S) did not recapitulate the low platelet phenotype of Thrombocytopenia Cargeeg. While investigating the cause of this disparity we found a lack of conservation of the functional impact of cytochrome c mutations on caspase activation across species. Mutation of cytochrome c at residue 41 has distinct effects on the ability of cytochrome c to activate caspases depending on the species of both the cytochrome c and its binding partner Apaf-1. In contrast to our previous results showing the G41S mutation increases the ability of human cytochrome c to activate caspases, here we find this activity is decreased in mouse G41S cytochrome c. Additionally unlike wildtype human cytochrome c, G41S cytochrome c is unable to activate caspases in Xenopus embryo extracts. Taken together these results demonstrate a previously unreported species-specific component to the interaction of cytochrome c with Apaf-1. This suggests that the electrostatic interaction between cytochrome c and Apaf-1 is not the sole determinant of binding, with additional factors controlling binding specificity and affinity. These results have important implications for studies of the effects of cytochrome c mutations on the intrinsic apoptosis pathway. PMID:26086723

  7. Cytochrome c oxidase rather than cytochrome c is a major determinant of mitochondrial respiratory capacity in skeletal muscle of aged rats: role of carnitine and lipoic acid.

    PubMed

    Tamilselvan, Jayavelu; Sivarajan, Kumarasamy; Anusuyadevi, Muthuswamy; Panneerselvam, Chinnakkannu

    2007-09-01

    The release of mitochondrial cytochrome c followed by activation of caspase cascade has been reported with aging in various tissues, whereas little is known about the caspase-independent pathway involved in mitochondrial dysfunction. To determine the functional impact of cytochrome c loss on mitochondrial respiratory capacity, we monitored NADH redox transitions and oxygen consumption in isolated skeletal muscle mitochondria of 4- and 24-month-old rats in the presence and absence of exogenous cytochrome c; and assessed the efficacy of cosupplementation of carnitine and lipoic acid on age-related alteration in mitochondrial respiration. The loss of mitochondrial cytochrome c with age was accompanied with alteration in respiratory transition, which in turn was not rescued by exogenous addition of cytochrome c to isolated mitochondria. The analysis of mitochondrial and nuclear-encoded cytochrome c oxidase subunits suggests that the decreased levels of cytochrome c oxidase may be attributed for the irresponsiveness to exogenously added cytochrome c on mitochondrial respiratory transitions, possibly through reduction of upstream electron carriers. Oral supplementation of carnitine and lipoic acid to aged rats help to maintaining the mitochondrial oxidative capacity by regulating the release of cytochrome c and improves cytochrome c oxidase transcript levels. Thus, carnitine and lipoic acid supplementation prevents the loss of cytochrome c and their associated decline in cytochrome c oxidase activity; thereby, effectively attenuating any putative decrease in cellular energy and redox status with age.

  8. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris

    USGS Publications Warehouse

    Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.

  9. Biogenesis of the yeast cytochrome bc1 complex.

    PubMed

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  10. Reduction of Heavy Metals by Cytochrome c(3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABDELOUAS,A.; GONG,W.L.; LUTZE,W.

    2000-01-18

    We report on reduction and precipitation of Se(VI), Pb(II), CU(II), U(VI), Mo(VI), and Cr(VI) in water by cytochrome c{sub 3} isolated from Desulfomicrobium baczdatum [strain 9974]. The tetraheme protein cytochrome c{sub 3} was reduced by sodium dithionite. Redox reactions were monitored by UV-visible spectroscopy of cytochrome c{sub 3}. Analytical electron microscopy work showed that Se(VI), Pb(II), and CU(II) were reduced to the metallic state, U(W) and Mo(W) to U(IV) and Mo(IV), respectively, and Cr(VI) probably to Cr(III). U(IV) and Mo(W) precipitated as oxides and Cr(III) as an amorphous hydroxide. Cytochrome c{sub 3} was used repeatedly in the same solution withoutmore » loosing its effectiveness. The results suggest usage of cytochrome c{sub 3} to develop innovative and environmentally benign methods to remove heavy metals from waste- and groundwater.« less

  11. Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774.

    PubMed Central

    Liu, M C; Costa, C; Coutinho, I B; Moura, J J; Moura, I; Xavier, A V; LeGall, J

    1988-01-01

    Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells. PMID:2848008

  12. A Mycobacterium tuberculosis cytochrome bd oxidase mutant is hypersensitive to bedaquiline.

    PubMed

    Berney, Michael; Hartman, Travis E; Jacobs, William R

    2014-07-15

    The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. Importance: A major drawback of current TB chemotherapy is its long duration. New drug regimens with rapid killing kinetics are desperately needed. Our study demonstrates that inhibition of a nonessential bacterial enzyme greatly improves the efficacy of the latest TB drug bedaquiline and emphasizes that screening for compounds with synergistic killing mechanisms is a promising strategy. Copyright © 2014 Berney et al.

  13. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    PubMed Central

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  14. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  15. Obligatory role of cytochrome b5 in the microsomal metabolism of methoxyflurane.

    PubMed

    Canova-Davis, E; Chiang, J Y; Waskell, L

    1985-06-01

    Cytochrome b5 has recently been shown to be required in the reconstituted cytochrome P-450 system for the metabolism of the volatile anesthetic methoxyflurane [E. Canova-Davis and L. A. Waskell, J. biol. Chem. 259, 2541 (1984)]. To determine whether this observation in the reconstituted system was merely dependent on the particular ratios of the various components or some other fortuitous, unknown factor, or whether cytochrome b5 plays a role in the liver microsomal metabolism of methoxyflurane, the following studies were undertaken. Antibody to rabbit holocytochrome b5 was raised in guinea pigs. The antibody to cytochrome b5 was able to inhibit 75% of the microsomal metabolism of methoxyflurane. This same antibody also inhibited methoxyflurane metabolism in the reconstituted system. When the antibody to cytochrome b5 was treated with purified cytochrome b5 before addition to the microsomes, it did not inhibit methoxyflurane metabolism. Furthermore, the antibody to cytochrome b5 did not inhibit the microsomal metabolism of benzphetamine. This suggests that cytochrome b5 was required for the microsomal metabolism of methoxyflurane. It is possible that cytochrome b5 functioned in the metabolism of methoxyflurane by retaining a specific conformation of cytochrome P-450 and not by transferring the second electron to cytochrome P-450. To explore this possibility, cytochrome b5 was reconstituted with Mn3+-protoporphyrin IX. The Mn3+-protoporphyrin IX derivative retained the conformation of cytochrome b5 but not its electron transfer properties. This manganese derivative of cytochrome b5 was unable to stimulate the metabolism of methoxyflurane. The study demonstrated that cytochrome b5 was obligatory for the microsomal metabolism of methoxyflurane, whereas it was not required for the microsomal N-demethylation of benzphetamine. Moreover, the heme moiety of cytochrome b5 functioned to transfer electrons in this reaction.

  16. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  17. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; Wolf, A.P.

    A number of reviews, many of them recent, have appeared on various aspects of /sup 11/C, /sup 18/F and /sup 13/N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeledmore » compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume.« less

  18. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  19. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum.

    PubMed

    Bernal-Bayard, Pilar; Puerto-Galán, Leonor; Yruela, Inmaculada; García-Rubio, Inés; Castell, Carmen; Ortega, José M; Alonso, Pablo J; Roncel, Mercedes; Martínez, Jesús I; Hervás, Manuel; Navarro, José A

    2017-09-01

    The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.

  20. Nanoparticles and Radiotracers: Advances toward Radio-Nanomedicine

    PubMed Central

    Pratt, Edwin C.; Shaffer, Travis M.; Grimm, Jan

    2016-01-01

    Here, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Cerenkov Luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β−) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. PMID:27006133

  1. Investigations of Au-198 as radiotracer in laboratory porous media using gamma camera: a preliminary study

    NASA Astrophysics Data System (ADS)

    Othman, N.; Kamal, W. H. B. Wan; Yusof, N. H.; Engku Chik, E. M. F.; Yunos, M. A. S.; Adnan, M. A. K.; Shari, M. R.

    2018-01-01

    Preliminary experiment has been carried out using irradiated Au-198 as radiotracer inside the laboratory porous media. The objectives are to check the compatibility of Au-198 as the radiotracer inside the porous media as well as to provide insights of fluid hydrodynamics inside the media using gamma camera.198Au is gamma emitter isotope with half-life of 2.7 days and energy of 0.41 MeV (99%). The porous media consists of fine sandstone with grain size 850μm, lubricant as the mimic of original oil in plant (OOIP) or trapped oil and a layer of cement on top of the rig as the bed rock. Gamma camera is arranged next to the porous media in order to capture the movement of radiotracer which has been set to 1minute per frame. Initially, the gold wire which has isotope of 197Au was irradiated inside the rotary rack of Reactor Triga PUSPATI (RTP) to produce 198Au. RTP is located in Nuclear Malaysia, Bangi has energy of 750kW and neutron flux of 5 × 102 n/cm2/s. 198Au, which is in liquid form, is injected inside the porous media and monitored and recorded by gamma camera. The gamma camera gives a quantitative determination of local fluid saturations over the area of observation.

  2. THE OXIDATION OF EXOGENOUS AND ENDOGENOUS CYTOCHROME C IN MITOCHONDRIA

    PubMed Central

    Muscatello, Umberto; Carafoli, Ernesto

    1969-01-01

    The effect of the nonionic detergent Lubrol on the oxidation of endogenous and exogenous cytochrome c by cytochrome oxidase in intact and fragmented mitochondria was studied. Mitochondria and mitochondrial fragments from liver, kidney, heart, and skeletal muscle have been used. Negatively stained preparations of intact mitochondria showed the particles of Fernández-Morán on the matrix side of their inner membrane system: under these conditions, the oxidation rate of externally added cytochrome c was very high, and it was stimulated very poorly by Lubrol. Mechanical fragmentation of liver mitochondria yielded vesicles with a smooth external profile: also under these conditions, the oxidation of externally added cytochrome c was very high, and poorly stimulated by Lubrol. The oxidation of endogenous cytochrome c was also unaffected by Lubrol. On the other hand, fragmentation of heart and skeletal muscle mitochondria yielded vesicles having numerous particles of Fernández-Morán on their external profiles. Under these conditions, the oxidation of exogenous cytochrome c was low and was markedly stimulated by Lubrol. On the contrary, no activation of the oxidation of endogenous cytochrome c was induced by the detergent. The results indicate a difference in the permeability properties of the two faces of the inner mitochondrial membrane: a permeability barrier for cytochrome c is suggested to exist at the inner face. PMID:4303915

  3. Optical reaction cell and light source for ›18F! fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, Richard A.; Schlyer, David; Becker, Richard J.

    1998-09-15

    Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of ›.sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

  4. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  5. New Radiotracers for Imaging of Vascular Targets in Angiogenesis-related Diseases

    PubMed Central

    Hong, Hao; Chen, Feng; Zhang, Yin; Cai, Weibo

    2014-01-01

    Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients. PMID:25086372

  6. Resonance Raman study on photoreduction of cytochrome c oxidase: distinction of cytochromes a and a3 in the intermediate oxidation states.

    PubMed

    Ogura, T; Yoshikawa, S; Kitagawa, T

    1985-12-17

    Occurrence of photoreduction of bovine cytochrome c oxidase was confirmed with the difference absorption spectra and oxygen consumption measurements for the enzyme irradiated with laser light at 406.7, 441.6, and 590 nm. The resonance Raman spectra were obtained under the same experimental conditions as those adopted for the measurements of oxygen consumption and difference absorption spectra. The photoreduction was more effective upon irradiation at shorter wavelengths and was irreversible under anaerobic conditions. However, upon aeration into the cell, the original oxidized form was restored. It was found that aerobic laser irradiation produces a photo steady state of the catalytic dioxygen reduction and that the Raman scattering from this photo steady state probes cytochrome a2+ and cytochrome a3(3)+ separately upon excitations at 441.6 and 406.7 nm, respectively. The enzyme was apparently protected from the photoreduction in the spinning cell with the spinning speed between 1 and 1500 rpm. These results were explained satisfactorily with the reported rate constant for the electron transfer from cytochrome a to cytochrome a3 (0.58 s-1) and a comparable photoreduction rate of cytochrome a. The anaerobic photoreduction did give Raman lines at 1666 and 214 cm-1, which are characteristic of the ferrous high-spin cytochrome a3(2)+, but they were absent under aerobic photoreduction. The formyl CH = O stretching mode of the a3 heme was observed at 1671 cm-1 for a2+a3(2)+CO but at 1664 cm-1 for a2+a3(2)+CN-, indicating that the CH = O stretching frequency reflects the pi back-donation to the axial ligand similar to the oxidation state marker line (v4).

  7. Regulation of nitrite resistance of the cytochrome cbb3 oxidase by cytochrome c ScyA in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Jin, Miao; Zhang, Haiyan; Ju, Lili; Zhang, Lili; Gao, Haichun

    2015-01-01

    Cytochrome c proteins, as enzymes to exchange electrons with substrates or as pure electron carriers to shuttle electrons, play vital roles in bacterial respiration and photosynthesis. In Shewanella oneidensis, a research model for the respiratory diversity, at least 42 c-type cytochromes are predicted to be encoded in the genome and are regarded to be the foundation of its highly branched electron transport pathways. However, only a small number of c-type cytochromes have been extensively studied. In this study, we identify soluble cytochrome c ScyA as an important factor influencing the nitrite resistance of a strain devoid of the bd oxidase by utilizing a newly developed transposon mutagenesis vector, which enables overexpression of the gene(s) downstream of the insertion site. We show that when in overabundance ScyA facilitates growth against nitrite inhibition by enhancing nitrite resistance of the cbb3 oxidase. Based on the data presented in this study, we suggest two possible mechanisms underlying the observed effect of ScyA: (1) ScyA increases electron flow to the cbb3 oxidase; (2) ScyA promotes nitrite resistance of the cbb3 oxidase, possibly by direct interaction. PMID:25417822

  8. Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein.

    PubMed

    Seneca, Nicholas; Zoghbi, Sami S; Liow, Jeih-San; Kreisl, William; Herscovitch, Peter; Jenko, Kimberly; Gladding, Robert L; Taku, Andrew; Pike, Victor W; Innis, Robert B

    2009-05-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that limits the distribution of drugs to several organs of the body. At the blood-brain barrier, P-gp blocks the entry of both loperamide and its metabolite, N-desmethyl-loperamide (N-dLop), and thereby prevents central opiate effects. Animal studies have shown that (11)C-dLop, compared with (11)C-loperamide, is an especially promising radiotracer because it generates negligible radiometabolites that enter the brain. The purposes of this study were to determine whether (11)C-dLop is a substrate for P-gp at the blood-brain barrier in humans and to measure the distribution of radioactivity in the entire body to estimate radiation exposure. Brain PET scans were acquired in 4 healthy subjects for 90 min and included concurrent measurements of the plasma concentration of unchanged radiotracer. Time-activity data from the whole brain were quantified using a 1-tissue-compartment model to estimate the rate of entry (K(1)) of radiotracer into the brain. Whole-body PET scans were acquired in 8 healthy subjects for 120 min. For brain imaging, after the injection of (11)C-dLop the concentration of radioactivity in the brain was low (standardized uptake value, approximately 15%) and stable after approximately 20 min. In contrast, uptake of radioactivity in the pituitary was about 50-fold higher than that in the brain. The plasma concentration of (11)C-dLop declined rapidly, but the percentage composition of plasma was unusually stable, with the parent radiotracer constituting 85% of total radioactivity after approximately 5 min. The rate of brain entry was low (K(1) = 0.009 +/- 0.002 mL.cm(-3).min(-1); n = 4). For whole-body imaging, as a measure of radiation exposure to the entire body the effective dose of (11)C-dLop was 7.8 +/- 0.6 muSv/MBq (n = 8). The low brain uptake of radioactivity is consistent with (11)C-dLop being a substrate for P-gp in humans and confirms that this radiotracer generates negligible quantities of

  9. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    PubMed

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Structural insights into electron transfer in caa3-type cytochrome oxidase

    PubMed Central

    Lyons, Joseph A.; Aragão, David; Slattery, Orla; Pisliakov, Andrei V.; Soulimane, Tewfik; Caffrey, Martin

    2012-01-01

    Summary Paragraph Cytochrome c oxidase is a member of the heme copper oxidase superfamily (HCO)1. HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c2–4. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented. PMID:22763450

  11. Cytochrome b6 arginine 214 of Synechococcus sp. PCC 7002, a key residue for quinone-reductase site function and turnover of the cytochrome bf complex.

    PubMed

    Nelson, Matthew E; Finazzi, Giovanni; Wang, Qing Jun; Middleton-Zarka, Kelly A; Whitmarsh, John; Kallas, Toivo

    2005-03-18

    Quinone-reductase (Q(i)) domains of cyanobacterial/chloroplast cytochrome bf and bacterial/mitochondrial bc complexes differ markedly, and the cytochrome bf Q(i) site mechanism remains largely enigmatic. To investigate the bf Q(i) domain, we constructed the mutation R214H, which substitutes histidine for a conserved arginine in the cytochrome b(6) polypeptide of the cyanobacterium Synechococcus sp. SPCC 7002. At high light intensity, the R214H mutant grew approximately 2.5-fold more slowly than the wild type. Slower growth arose from correspondingly slower overall turnover of the bf complex. Specifically, as shown in single flash turnover experiments of cytochrome b(6) reduction and oxidation, the R214H mutation partially blocked electron transfer to the Q(i) site, mimicking the effect of the Q(i) site inhibitor 2-N-4-hydroxyquinoline-N-oxide. The kinetics of cytochrome b(6) oxidation were largely unaffected by hydrogen-deuterium exchange in the mutant but were slowed considerably in the wild type. This suggests that although protonation events influenced the kinetics of cytochrome b(6) oxidation at the Q(i) site in the wild type, electron flow limited this reaction in the R214H mutant. Redox titration of membranes revealed midpoint potentials (E(m,7)) of the two b hemes similar to those in the wild type. Our data define cytochrome b(6) Arg(214) as a key residue for Q(i) site catalysis and turnover of the cytochrome bf complex. In the recent cytochrome bf structures, Arg(214) lies near the Q(i) pocket and the newly discovered c(i) or x heme. We propose a model for Q(i) site function and a role for Arg(214) in plastoquinone binding.

  12. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    PubMed

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  13. Cytochrome P460 Genes from the Methanotroph Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; Hooper, Alan B.; DiSpirito, Alan A.

    1998-01-01

    P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium. PMID

  14. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  15. Role of Cytochrome c in Apoptosis: Increased Sensitivity to Tumor Necrosis Factor Alpha Is Associated with Respiratory Defects but Not with Lack of Cytochrome c Release▿

    PubMed Central

    Vempati, Uma D.; Diaz, Francisca; Barrientos, Antoni; Narisawa, Sonoko; Mian, Abdul M.; Millán, José Luis; Boise, Lawrence H.; Moraes, Carlos T.

    2007-01-01

    Although the role of cytochrome c in apoptosis is well established, details of its participation in signaling pathways in vivo are not completely understood. The knockout for the somatic isoform of cytochrome c caused embryonic lethality in mice, but derived embryonic fibroblasts were shown to be resistant to apoptosis induced by agents known to trigger the intrinsic apoptotic pathway. In contrast, these cells were reported to be hypersensitive to tumor necrosis factor alpha (TNF-α)-induced apoptosis, which signals through the extrinsic pathway. Surprisingly, we found that this cell line (CRL 2613) respired at close to normal levels because of an aberrant activation of a testis isoform of cytochrome c, which, albeit expressed at low levels, was able to replace the somatic isoform for respiration and apoptosis. To produce a bona fide cytochrome c knockout, we developed a mouse knockout for both the testis and somatic isoforms of cytochrome c. The mouse was made viable by the introduction of a ubiquitously expressed cytochrome c transgene flanked by loxP sites. Lung fibroblasts in which the transgene was deleted showed no cytochrome c expression, no respiration, and resistance to agents that activate the intrinsic and to a lesser but significant extent also the extrinsic pathways. Comparison of these cells with lines with a defective oxidative phosphorylation system showed that cells with defective respiration have increased sensitivity to TNF-α-induced apoptosis, but this process was still amplified by cytochrome c. These studies underscore the importance of oxidative phosphorylation and apoptosome function to both the intrinsic and extrinsic apoptotic pathways. PMID:17210651

  16. Altered Cytochrome c Display Precedes Apoptotic Cell Death in Drosophila

    PubMed Central

    Varkey, Johnson; Chen, Po; Jemmerson, Ronald; Abrams, John M.

    1999-01-01

    Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases. PMID:10037791

  17. Simultaneous identification and DNA barcoding of six Eimeria species infecting turkeys using PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus.

    PubMed

    Hafeez, Mian A; Shivaramaiah, Srichaitanya; Dorsey, Kristi Moore; Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Cobean, Julie; Barta, John R

    2015-05-01

    Species-specific PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus were generated that allow for the specific identification of the most common Eimeria species infecting turkeys (i.e., Eimeria adenoeides, Eimeria meleagrimitis, Eimeria gallopavonis, Eimeria meleagridis, Eimeria dispersa, and Eimeria innocua). PCR reaction chemistries were optimized with respect to divalent cation (MgCl2) and dNTP concentrations, as well as PCR cycling conditions (particularly anneal temperature for primers). Genomic DNA samples from single oocyst-derived lines of six Eimeria species were tested to establish specificity and sensitivity of these newly designed primer pairs. A mixed 60-ng total DNA sample containing 10 ng of each of the six Eimeria species was used as DNA template to demonstrate specific amplification of the correct product using each of the species-specific primer pairs. Ten nanograms of each of the five non-target Eimeria species was pooled to provide a non-target, control DNA sample suitable to test the specificity of each primer pair. The amplifications of the COI region with species-specific primer pairs from pooled samples yielded products of expected sizes (209 to 1,012 bp) and no amplification of non-target Eimeria sp. DNA was detected using the non-target, control DNA samples. These primer pairs specific for Eimeria spp. of turkeys did not amplify any of the seven Eimeria species infecting chickens. The newly developed PCR primers can be used as a diagnostic tool capable of specifically identifying six turkey Eimeria species; additionally, sequencing of the PCR amplification products yields sequence-based genotyping data suitable for identification and molecular phylogenetics.

  18. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    PubMed

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  19. Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus.

    PubMed Central

    Laudenbach, D E; Herbert, S K; McDowell, C; Fork, D C; Grossman, A R; Straus, N A

    1990-01-01

    In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942. PMID:1967057

  20. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  1. Albendazole sulfonation by rat liver cytochrome P-450c.

    PubMed

    Souhaili-El Amri, H; Mothe, O; Totis, M; Masson, C; Batt, A M; Delatour, P; Siest, G

    1988-08-01

    The metabolism of albendazole (ABZ) was studied in perfused livers from control and ABZ-treated rats (10.6 mg/kg, per os, each day for 10 days). In the perfusion fluid, the concentration of ABZ-sulfoxide (SO-ABZ) remained unchanged in treated, as compared to control animals, whereas ABZ-sulfone (SO2-ABZ) was increased in treated animals. In bile, only SO-ABZ was present. The transformation kinetics of SO-ABZ to SO2-ABZ in microsomes from rats treated with ABZ, 3-methylcholanthrene, Aroclor and isosafrole were biphasic. This suggests that enzyme activity was a consequence of two enzyme systems, one characterized by low affinity and high capacity, the other by high affinity and low capacity, the latter could be induced by 3-methylcholanthrene, ABZ, Aroclor and isosafrole. Cytochrome P-450c was induced potently in vivo by ABZ as proven by increased monooxygenase (7-ethoxyresorufin and 7-ethoxycoumarin-O-deethylase) activities and by Elisa test (a 5-fold increase in hemoprotein concentration was observed). Purified and reconstituted cytochrome P-450c from 3-methylcholanthrene or ABZ-treated rat liver were able to produce SO2-ABZ (2.01 and 1.70 nmol/mg/15 min, respectively, whereas cytochrome P-450b produced 10 times less SO2-ABZ). Immunological assays, as well as activity measurements showed a relationship between cytochrome P-450c-3-methylcholanthrene and cytochrome P-450c-ABZ. We conclude that induction of cytochrome P-450c by ABZ is the probable explanation for the enhanced formation of SO2-ABZ in vivo.

  2. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Novel 18F-Labeled κ-Opioid Receptor Antagonist as PET Radiotracer: Synthesis and In Vivo Evaluation of 18F-LY2459989 in Nonhuman Primates.

    PubMed

    Li, Songye; Cai, Zhengxin; Zheng, Ming-Qiang; Holden, Daniel; Naganawa, Mika; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Kapinos, Michael; Lara-Jaime, Teresa; Navarro, Antonio; Huang, Yiyun

    2018-01-01

    The κ-opioid receptor (KOR) has been implicated in depression, addictions, and other central nervous system disorders and, thus, is an important target for drug development. We previously developed several 11 C-labeled PET radiotracers for KOR imaging in humans. Here we report the synthesis and evaluation of 18 F-LY2459989 as the first 18 F-labeled KOR antagonist radiotracer in nonhuman primates and its comparison with 11 C-LY2459989. Methods: The novel radioligand 18 F-LY2459989 was synthesized by 18 F displacement of a nitro group or an iodonium ylide. PET scans in rhesus monkeys were obtained on a small-animal scanner to assess the pharmacokinetic and in vivo binding properties of the ligand. Metabolite-corrected arterial activity curves were measured and used as input functions in the analysis of brain time-activity curves and the calculation of binding parameters. Results: With the iodonium ylide precursor, 18 F-LY2459989 was prepared at high radiochemical yield (36% ± 7% [mean ± SD]), radiochemical purity (>99%), and mean molar activity (1,175 GBq/μmol; n = 6). In monkeys, 18 F-LY2459989 was metabolized at a moderate rate, with a parent fraction of approximately 35% at 30 min after injection. Fast and reversible kinetics were observed, with a regional peak uptake time of less than 20 min. Pretreatment with the selective KOR antagonist LY2456302 (0.1 mg/kg) decreased the activity level in regions with high levels of binding to that in the cerebellum, thus demonstrating the binding specificity and selectivity of 18 F-LY2459989 in vivo. Regional time-activity curves were well fitted by the multilinear analysis 1 kinetic model to derive reliable estimates of regional distribution volumes. With the cerebellum as the reference region, regional binding potentials were calculated and ranked as follows: cingulate cortex > insula > caudate/putamen > frontal cortex > temporal cortex > thalamus, consistent with the reported KOR distribution in the monkey brain

  4. Abnormal kinetic behavior of cytochrome oxidase in a case of Leigh disease.

    PubMed Central

    Glerum, M; Robinson, B H; Spratt, C; Wilson, J; Patrick, D

    1987-01-01

    Cultured skin fibroblasts from a child with fatal lacticacidemia displayed an abnormally high lactate:pyruvate ratio of 77:1, compared with control values of 22:1-27:1. When protease-treated isolated mitochondria were used, activity of the respiratory-chain enzymes was found to be approximately 60% of normal, and adenosine triphosphate synthesis was found to be normal with all substrates tested. In mitochondria prepared by means of digitonin treatment, adenosine triphosphate synthesis was depressed with all substrates tested, suggesting a defect in the operation of the cytochrome oxidase complex. In disrupted whole cells from the patient, cytochrome oxidase activity was 56% of the activity in the control cell line with the lowest activity. In the presence of a twofold excess of oxidized cytochrome c, patient cells showed 31% of the activity in controls. Cytochrome oxidase activity in both sonicated whole-cell preparations and in sonicated mitochondria displayed abnormal kinetics with regard to the substrate-reduced cytochrome c, which was particularly evident in the presence of excess oxidized cytochrome c. We believe that kinetically abnormal cytochrome oxidase complex is responsible for the biochemical and clinical abnormalities present in this patient. PMID:2821802

  5. Mobility of cytochrome P450 in the endoplasmic reticulum membrane.

    PubMed

    Szczesna-Skorupa, E; Chen, C D; Rogers, S; Kemper, B

    1998-12-08

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 x 10(-10) cm2/s. A coefficient only slightly larger (7.1 x 10(-10) cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

  6. Automated PET Radiotracer Manufacture on the BG75 System and Imaging Validation Studies of [18F]fluoromisonidazole ([18F]FMISO).

    PubMed

    Yuan, Hong; Frank, Jonathan E; Merrill, Joseph R; Hillesheim, Daniel A; Khachaturian, Mark H; Anzellotti, Atilio I

    2016-01-01

    The hypoxia PET tracer, 1-[18F]fluoro-3-(2-nitro-1Himidazol- 1-yl)-propan-2-ol ([18F]FMISO) is the first radiotracer developed for hypoxia PET imaging and has shown promising for cancer diagnosis and prognosis. However, access to [18F]FMISO radiotracer is limited due to the needed cyclotron and radiochemistry expertise. The study aimed to develop the automated production method on the [18F]FMISO radiotracer with the novel fully automated platform of the BG75 system and validate its usage on animal tumor models. [18F]FMISO was produced with the dose synthesis cartridge automatically on the BG75 system. Validation of [18F]FMISO hypoxia imaging functionality was conducted on two tumor mouse models (FaDu/U87 tumor). The distribution of [18F]FMISO within tumor was further validated by the standard hypoxia marker EF5. The average radiochemical purity was (99±1) % and the average pH was 5.5±0.2 with other quality attributes passing standard criteria (n=12). Overall biodistribution for [18F]FMISO in both tumor models was consistent with reported studies where bladder and large intestines presented highest activity at 90 min post injection. High spatial correlation was found between [18F]FMISO autoradiography and EF5 hypoxia staining, indicating high hypoxia specificity of [18MF]FMISO. This study shows that qualified [18F]FMISO can be efficiently produced on the BG75 system in an automated "dose-on-demand" mode using single dose disposable cards. The possibilities of having a low-cost, automated system manufacturing ([18F]Fluoride production + synthesis + QC) different radiotracers will greatly enhance the potential for PET technology to reach new geographical areas and underserved patient populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A Novel Role for Cytochrome c: Efficient Catalysis of S-Nitrosothiol Formation

    PubMed Central

    Basu, Swati; Keszler, Agnes; Azarova, Natalia A.; Nwanze, Nneka; Perlegas, Andreas; Shiva, Sruti; Broniowska, Katarzyna A.; Hogg, Neil; Kim-Shapiro, Daniel B.

    2009-01-01

    While S-nitrosothiols are regarded as important elements of many NO-dependent signal transduction pathways, the physiological mechanism of their formation remains elusive. Here, we demonstrate a novel mechanism by which cytochrome c may represent an efficient catalyst of S-nitrosation in vivo. In this mechanism, initial binding of GSH to ferric cytochrome c is followed by reaction of NO with this complex, yielding ferrous cytochrome c and GSNO. We show that when submitochondrial particles or cell lysates are exposed to NO in the presence of cytochrome c, there is a robust formation of protein S-nitrosothiols. In the case of submitochondrial particles protein S-nitrosation is paralleled with an inhibition of mitochondrial complex I. These observations raise the possibility that cytochrome c is a mediator of S-nitrosation in biological systems, particularly during hypoxia, and that release of cytochrome c in to the cytosol during apoptosis potentially releases a GSNO synthase activity which could modulate apoptotic signaling. PMID:19879353

  8. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase.

    PubMed Central

    Green, G N; Gennis, R B

    1983-01-01

    A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB. PMID:6304009

  9. Targeted Nuclear Imaging Probes for Cardiac Amyloidosis.

    PubMed

    Bravo, Paco E; Dorbala, Sharmila

    2017-07-01

    The aim of the present manuscript is to review the latest advancements of radionuclide molecular imaging in the diagnosis and prognosis of individuals with cardiac amyloidosis. 99m Technetium labeled bone tracer scintigraphy had been known to image cardiac amyloidosis, since the 1980s; over the past decade, bone scintigraphy has been revived specifically to diagnose transthyretin cardiac amyloidosis. 18 F labeled and 11 C labeled amyloid binding radiotracers developed for imaging Alzheimer's disease, have been repurposed since 2013, to image light chain and transthyretin cardiac amyloidosis. 99m Technetium bone scintigraphy for transthyretin cardiac amyloidosis, and amyloid binding targeted PET imaging for light chain and transthyretin cardiac amyloidosis, are emerging as highly accurate methods. Targeted radionuclide imaging may soon replace endomyocardial biopsy in the evaluation of patients with suspected cardiac amyloidosis. Further research is warranted on the role of targeted imaging to quantify cardiac amyloidosis and to guide therapy.

  10. Identification of a c-Type Cytochrome Specific for Manganese Dioxide (MnO2) Reduction in Anaeromyxobacter dehalogenans Strain 2CP-C

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.

    2014-12-01

    to proteins, including c-type cytochromes that have not been characterized. The distinctive expression of c-type cytochromes in response to growth with different terminal electron acceptors offers opportunities for functional (i.e., activity) in situ monitoring using metaproteomics or transcript-targeted approaches.

  11. SuperTarget goes quantitative: update on drug–target interactions

    PubMed Central

    Hecker, Nikolai; Ahmed, Jessica; von Eichborn, Joachim; Dunkel, Mathias; Macha, Karel; Eckert, Andreas; Gilson, Michael K.; Bourne, Philip E.; Preissner, Robert

    2012-01-01

    There are at least two good reasons for the on-going interest in drug–target interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget. PMID:22067455

  12. The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage?

    PubMed

    Howe, Christopher J; Schlarb-Ridley, Beatrix G; Wastl, Juergen; Purton, Saul; Bendall, Derek S

    2006-01-01

    Cytochrome c6 has long been known as a redox carrier of the thylakoid lumen of cyanobacteria and some eukaryotic algae that can substitute for plastocyanin in electron transfer. Until recently, it was widely accepted that land plants lack a cytochrome c6. However, a homologue of the protein has now been identified in several plant species together with an additional isoform in the green alga Chlamydomonas reinhardtii. This form of the protein, designated cytochrome c6A, differs from the 'conventional' cytochrome c6 in possessing a conserved insertion of 12 amino acids that includes two absolutely conserved cysteine residues. There are conflicting reports of whether cytochrome c6A can substitute for plastocyanin in photosynthetic electron transfer. The evidence for and against this is reviewed and the likely evolutionary history of cytochrome c6A is discussed. It is suggested that it has been converted from a primary role in electron transfer to one in regulation within the chloroplast, and is an example of evolutionary 'bricolage'.

  13. Direct Measurement of Cyclic Current-Voltage Responses of Integral Membrane Proteins at a Self-Assembled Lipid-Bilayer-Modified Electrode: Cytochrome f and Cytochrome c Oxidase

    NASA Astrophysics Data System (ADS)

    Salamon, Z.; Hazzard, J. T.; Tollin, G.

    1993-07-01

    Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins.

  14. The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase.

    PubMed

    Gilmour, R; Goodhew, C F; Pettigrew, G W; Prazeres, S; Moura, J J; Moura, I

    1994-06-15

    In work that is complementary to our investigation of the spectroscopic features of the cytochrome c peroxidase from Paracoccus denitrificans [Gilmour, Goodhew, Pettigrew, Prazeres, Moura and Moura (1993) Biochem. J. 294, 745-752], we have studied the kinetics of oxidation of cytochrome c by this enzyme. The enzyme, as isolated, is in the fully oxidized form and is relatively inactive. Reduction of the high-potential haem at pH 6 with ascorbate results in partial activation of the enzyme. Full activation is achieved by addition of 1 mM CaCl2. Enzyme activation is associated with formation of a high-spin state at the oxidized low-potential haem. EGTA treatment of the oxidized enzyme prevents activation after reduction with ascorbate, while treatment with EGTA of the reduced, partially activated, form abolishes the activity. We conclude that the active enzyme is a mixed-valence form with the low-potential haem in a high-spin state that is stabilized by Ca2+. Dilution of the enzyme results in a progressive loss of activity, the extent of which depends on the degree of dilution. Most of the activity lost upon dilution can be recovered after reconcentration. The M(r) of the enzyme on molecular-exclusion chromatography is concentration-dependent, with a shift to lower values at lower concentrations. Values of M(r) obtained are intermediate between those of a monomer (39,565) and a dimer. We propose that the active form of the enzyme is a dimer which dissociates at high dilution to give inactive monomers. From the activity of the enzyme at different dilutions, a KD of 0.8 microM can be calculated for the monomerdimer equilibrium. The cytochrome c peroxidase oxidizes horse ferrocytochrome c with first-order kinetics, even at high ferrocytochrome c concentrations. The maximal catalytic-centre activity ('turnover number') under the assay conditions used is 62,000 min-1, with a half-saturating ferrocytochrome c concentration of 3.3 microM. The corresponding values for the

  15. Cytochrome and Alternative Pathway Respiration in Green Algae 1

    PubMed Central

    Weger, Harold G.; Guy, Robert D.; Turpin, David H.

    1990-01-01

    Inhibitor titration curves and discrimination against 18O2 by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities. PMID:16667462

  16. Dual-radiotracer translational SPECT neuroimaging. Comparison of three methods for the simultaneous brain imaging of D2/3 and 5-HT2A receptors.

    PubMed

    Tsartsalis, Stergios; Tournier, Benjamin B; Habiby, Selim; Ben Hamadi, Meriem; Barca, Cristina; Ginovart, Nathalie; Millet, Philippe

    2018-04-30

    SPECT imaging with two radiotracers at the same time is feasible if two different radioisotopes are employed, given their distinct energy emission spectra. In the case of 123 I and 125 I, dual SPECT imaging is not straightforward: 123 I emits photons at a principal energy emission spectrum of 143.1-179.9 keV. However, it also emits at a secondary energy spectrum (15-45 keV) that overlaps with the one of 125 I and the resulting cross-talk of emissions impedes the accurate quantification of 125 I. In this paper, we describe three different methods for the correction of this cross-talk and the simultaneous in vivo [ 123 I]IBZM and [ 125 I]R91150 imaging of D 2/3 and 5-HT 2A receptors in the rat brain. Three methods were evaluated for the correction of the effect of cross-talk in a series of simultaneous, [ 123 I]IBZM and [ 125 I]R91150 in vivo and phantom SPECT scans. Method 1 employs a dual-energy window (DEW) approach, in which the cross-talk on 125 I is considered a stable fraction of the energy emitted from 123 I at the principal emission spectrum. The coefficient describing the relationship between the emission of 123 I at the principal and the secondary spectrum was estimated from a series of single-radiotracer [ 123 I]IBZM SPECT studies. In Method 2, spectral factor analysis (FA) is applied to separate the radioactivity from 123 I and 125 I on the basis of their distinct emission patterns across the energy spectrum. Method 3 uses a modified simplified reference tissue model (SRTM C ) to describe the kinetics of [ 125 I]R91150. It includes the coefficient describing the cross-talk on 125 I from 123 I in the model parameters. The results of the correction of cross-talk on [ 125 I]R91150 binding potential (BP ND ) with each of the three methods, using cerebellum as the reference region, were validated against the results of a series of single-radiotracer [ 123 I]R91150 SPECT studies. In addition, the DEW approach (Method 1), considered to be the most

  17. Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase.

    PubMed

    Collman, James P; Ghosh, Somdatta; Dey, Abhishek; Decréau, Richard A; Yang, Ying

    2009-04-15

    Cytochrome c oxidase (CcO) catalyzes the four-electron reduction of oxygen to water, the one-electron reductant Cytochrome c (Cytc) being the source of electrons. Recently we reported a functional model of CcO that electrochemically catalyzes the four-electron reduction of O(2) to H(2)O (Collman et al. Science 2007, 315, 1565). The current paper shows that the same functional CcO model catalyzes the four-electron reduction of O(2) using the actual biological reductant Cytc in a homogeneous solution. Both single and steady-state turnover kinetics studies indicate that O(2) binding is rate-determining and that O-O bond cleavage and electron transfer from reduced Cytc to the oxidized model complex are relatively fast.

  18. Expression patterns of bark beetle cytochromes P450 during host colonization: Likely physiological functions and potential targets for pest management

    Treesearch

    Dezene P. W. Huber; Melissa Erickson; Christian Leutenegger; Joerg Bohlmann; Steven J. Seybold

    2007-01-01

    Cytochromes P450 family genes (P450s) are found in a diverse array of organisms ranging from bacteria to mammals to plants to arthropods. Although there are exceptions to this rule, organisms generally contain a fairly large number of P450 genes and pseudogenes in their genomes. For instance, among arthropods whose genomes are well characterized, the mosquito,

  19. New PCR primers targeting hydrazine synthase and cytochrome c biogenesis proteins in anammox bacteria.

    PubMed

    Zhou, Zhichao; Chen, Jing; Meng, Han; Dvornyk, Volodymyr; Gu, Ji-Dong

    2017-02-01

    PCR primers targeting genes encoding the two proteins of anammox bacteria, hydrazine synthase and cytochrome c biogenesis protein, were designed and tested in this study. Three different ecotypes of samples, namely ocean sediments, coastal wetland sediments, and wastewater treatment plant (WWTP) samples, were used to assess the primer efficiency and the community structures of anammox bacteria retrieved by 16S ribosomal RNA (rRNA) and the functional genes. Abundances of hzsB gene of anammox bacteria in South China Sea (SCS) samples were significantly correlated with 16S rRNA gene by qPCR method. And hzsB and hzsC gene primer pair hzsB364f-hzsB640r and hzsC745f-hzsC862r in combination with anammox bacterial 16S rRNA gene primers were recommended for quantifying anammox bacteria. Congruent with 16S rRNA gene-based community study, functional gene hzsB could also delineate the coastal-ocean distributing pattern, and seawater depth was positively associated with the diversity and abundance of anammox bacteria from shallow- to deep-sea. Both hzsC and ccsA genes could differentiate marine samples between deep and shallow groups of the Scalindua sp. clades. As for WWTP samples, non-Scalindua anammox bacteria reflected by hzsB, hzsC, ccsA, and ccsB gene-based libraries showed a similar distribution pattern with that by 16S rRNA gene. NH 4 + and NH 4 + /Σ(NO 3 - + NO 2 - ) positively correlated with anammox bacteria gene diversity, but organic matter contents correlated negatively with anammox bacteria gene diversity in SCS. Salinity was positively associated with diversity indices of hzsC and ccsB gene-harboring anammox bacteria communities and could potentially differentiate the distribution patterns between shallow- and deep-sea sediment samples. SCS surface sediments harbored considerably diverse community of Scalindua. A new Mai Po clade representing coastal estuary wetland anammox bacteria group based on 16S rRNA gene phylogeny is proposed. Existence of anammox

  20. Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase

    PubMed Central

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607

  1. The identification of the heat-stable microsomal protein required for methoxyflurane metabolism as cytochrome b5.

    PubMed

    Canova-Davis, E; Waskell, L

    1984-02-25

    Methoxyflurane is an anesthetic whose metabolism by cytochrome P-450LM2 has been shown to be dependent upon a heat-stable microsomal protein (Canova-Davis, E., and Waskell, L. A. (1982) Biochem. Biophys. Res. Commun. 108, 1264-1270). Treatment of this protein with diethylpyrocarbonate, which modifies selected amino acids, caused a dose-dependent loss in its ability to effect the metabolism of methoxyflurane by purified cytochrome P-450LM2. This protein factor has been identified as cytochrome b5 by demonstrating that cytochrome b5 and the heat-stable factor coelute during cytochrome b5 purification. Neither ferriheme nor apocytochrome b5 was able to substitute for the activating factor, while cytochrome b5 reconstituted from apocytochrome b5 and heme exhibited an activity similar to that of native b5. Examination of the cytochrome b5 molecule by computer graphics suggested that diethylpyrocarbonate did not inactivate b5 by reacting with the anionic surface of the cytochrome b5 molecule. Maximal rates of methoxyflurane metabolism were obtained at a ratio of 1:1:1 of the three proteins, cytochrome P-450LM2:reductase:cytochrome b5. In summary, it has been demonstrated that the heat-stable protein, cytochrome b5, is obligatory for the metabolism of methoxyflurane by cytochrome P-450LM2. These data also suggest that cytochrome b5 may be acting as an electron donor to P-450LM2 in the O-demethylation of methoxyflurane.

  2. Mapping of Redox State of Mitochondrial Cytochromes in Live Cardiomyocytes Using Raman Microspectroscopy

    PubMed Central

    Brazhe, Nadezda A.; Treiman, Marek; Brazhe, Alexey R.; Find, Ninett L.; Maksimov, Georgy V.; Sosnovtseva, Olga V.

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes , and of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes , and . The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes , and in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes , and in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data. PMID:22957018

  3. Detection of species and molecular typing of Leishmania in suspected patients by targeting cytochrome b gene in Zahedan, southeast of Iran.

    PubMed

    Mirahmadi, Hadi; Rezaee, Nasrin; Mehravaran, Ahmad; Heydarian, Peyman; Raeghi, Saber

    2018-05-01

    Cutaneous leishmaniasis (CL) is one of the most important health problems that are capable of involving both tropical and subtropical areas, especially in Iran. This cross-sectional study aimed to differentiate the species that are able to cause CL in Zahedan city by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. It was conducted on 145 suspected CL patients in Zahedan city between 2014 and 2016. The smears were initially prepared, air-dried, fixed with absolute methanol, and stained with 10% Giemsa. Then, we examined the stained samples by a light microscope under 1000× magnifications. PCR assay targeted cytochrome b (cyt b ) gene using LCBF1 and LCBR2 primers and the products digested by Ssp1 enzymes. From 145 suspected CL patients, 76 (52.4%) were positive in microscopic examination. In addition, we detected gene of interest (cyt b ) in 98 (67.5%). The results of PCR-RFLP indicated that 53/98 (54%) cases were Leishmania major and 45/98 (46%) were Leishmania tropica , and the main species in these areas was L. major . We concluded that the microscopic examination is not sensitive enough and is not able to distinguish between different Leishmania species. Instead, molecular methods like PCR-RFLP can be appropriately used with promising results.

  4. CYC2 encodes a factor involved in mitochondrial import of yeast cytochrome c.

    PubMed Central

    Dumont, M E; Schlichter, J B; Cardillo, T S; Hayes, M K; Bethlendy, G; Sherman, F

    1993-01-01

    The gene CYC2 from the yeast Saccharomyces cerevisiae was previously shown to affect levels of mitochondrial cytochrome c by acting at a posttranslational step in cytochrome c biosynthesis. We report here the cloning and identification of the CYC2 gene product as a protein involved in import of cytochrome c into mitochondria. CYC2 encodes a 168-amino-acid open reading frame with at least two potential transmembrane segments. Antibodies against a synthetic peptide corresponding to the carboxyl terminus of the predicted sequence were raised. These antibodies recognize multiple bands on immunoblots of mitochondrial extracts. The intensities of these bands vary according to the gene dosage of CYC2 in various isogenic strains. Immunoblotting of subcellular fractions suggests that the CYC2 gene product is a mitochondrial protein. Deletion of CYC2 leads to accumulation of apocytochrome c in the cytoplasm. However, strains with deletions of this gene still import low levels of cytochrome c into mitochondria. The effects of cyc2 mutations are more pronounced in rho- strains than in rho+ strains, even though rho- strains that are CYC2+ contain normal levels of holocytochrome c. cyc2 mutations affect levels of iso-1-cytochrome c more than they do levels of iso-2-cytochrome c, apparently because of the greater susceptibility of apo-iso-1-cytochrome c to degradation in the cytoplasm. We propose that CYC2 encodes a factor that increases the efficiency of cytochrome c import into mitochondria. Images PMID:8413243

  5. Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex.

    PubMed

    Firsov, Alexander M; Kotova, Elena A; Korepanova, Evgeniya A; Osipov, Anatoly N; Antonenko, Yuri N

    2015-03-01

    Interaction of cytochrome c with mitochondrial cardiolipin converting this electron transfer protein into peroxidase is accepted to play an essential role in apoptosis. Cytochrome c/cardiolipin peroxidase activity was found here to cause leakage of carboxyfluorescein, sulforhodamine B and 3-kDa (but not 10-kDa) fluorescent dextran from liposomes. A marked decrease in the amplitude of the autocorrelation function was detected with a fluorescence correlation spectroscopy setup upon incubation of dye-loaded cardiolipin-containing liposomes with cytochrome c and H2O2, thereby showing release of fluorescent markers from liposomes. The cytochrome c/H2O2-induced liposome leakage was suppressed upon increasing the ionic strength, in contrast to the leakage provoked by Fe/ascorbate, suggesting that the binding of cyt c to negatively-charged membranes was required for the permeabilization process. The cyt c/H2O2-induced liposome leakage was abolished by cyanide presumably competing with H2O2 for coordination with the central iron atom of the heme in cyt c. The cytochrome c/H2O2 permeabilization activity was substantially diminished by antioxidants (trolox, butylhydroxytoluene and quercetin) and was precluded if fully saturated tetramyristoyl-cardiolipin was substituted for bovine heart cardiolipin. These data favor the involvement of oxidized cardiolipin molecules in membrane permeabilization resulting from cytochrome c/cardiolipin peroxidase activity. In agreement with previous observations, high concentrations of cyt c induced liposome leakage in the absence of H2O2, however this process was not sensitive to antioxidants and cyanide suggesting direct membrane poration by the protein without the involvement of lipid peroxidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. (99m)Tc-EDDA/HYNIC-octreotate - a new radiotracer for detection and staging of NET: a case of metastatic duodenal carcinoid.

    PubMed

    Hubalewska-Dydejczyk, Alicja; Szybiński, Piotr; Fröss-Baron, Katarzyna; Mikolajczak, Renata; Huszno, Bohdan; Sowa-Staszczak, Anna

    2005-01-01

    Somatostatin receptor scintigraphy (SRS) has become a routine imaging method for the diagnostics of neuroendocrine tumours (NET). (99m)Tc-EDDA/HYNIC-octreotate (Polatom, Poland) is a new radiotracer with high affinity for SSTR2 and similar physiological biodistribution to (111)In-Octreoscan. We present a case of a 47-year-old man with disseminated duodenal carcinoid. The patient had been operated due to the tumour mass detected in pancreatic head area. Histopathology revealed carcinoid of the duodenal wall with local lymph node and liver metastases. The patient was qualified for chemotherapy stopped due to severe leucopenia. (99m)Tc EDDA/HYNIC-octreotate scintigraphy was performed for staging and to determine SSTR status of the tumour before planned 90Y-DOTATATE therapy. The multiple metastatic lesions were detected all over the body. The high quality images with high target/non target ratio were obtained. (99m)Tc-MDP scintigraphy confirmed multiple bone metastases. On the basis of SRS result the patient was qualified for 90Y-DOTA-TATE therapy. In conclusion, (99m)Tc EDDA/HYNIC-octreotate can be regarded as a promising tracer for staging and to determine SSTR status of NET.

  7. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen.

    PubMed

    Castresana, J; Lübben, M; Saraste, M; Higgins, D G

    1994-06-01

    Cytochrome oxidase is a key enzyme in aerobic metabolism. All the recorded eubacterial (domain Bacteria) and archaebacterial (Archaea) sequences of subunits 1 and 2 of this protein complex have been used for a comprehensive evolutionary analysis. The phylogenetic trees reveal several processes of gene duplication. Some of these are ancient, having occurred in the common ancestor of Bacteria and Archaea, whereas others have occurred in specific lines of Bacteria. We show that eubacterial quinol oxidase was derived from cytochrome c oxidase in Gram-positive bacteria and that archaebacterial quinol oxidase has an independent origin. A considerable amount of evidence suggests that Proteobacteria (Purple bacteria) acquired quinol oxidase through a lateral gene transfer from Gram-positive bacteria. The prevalent hypothesis that aerobic metabolism arose several times in evolution after oxygenic photosynthesis, is not sustained by two aspects of the molecular data. First, cytochrome oxidase was present in the common ancestor of Archaea and Bacteria whereas oxygenic photosynthesis appeared in Bacteria. Second, an extant cytochrome oxidase in nitrogen-fixing bacteria shows that aerobic metabolism is possible in an environment with a very low level of oxygen, such as the root nodules of leguminous plants. Therefore, we propose that aerobic metabolism in organisms with cytochrome oxidase has a monophyletic and ancient origin, prior to the appearance of eubacterial oxygenic photosynthetic organisms.

  8. Oleamide synthesizing activity from rat kidney: identification as cytochrome c.

    PubMed

    Driscoll, William J; Chaturvedi, Shalini; Mueller, Gregory P

    2007-08-03

    Oleamide (cis-9-octadecenamide) is the prototype member of an emerging class of lipid signaling molecules collectively known as the primary fatty acid amides. Current evidence suggests that oleamide participates in the biochemical mechanisms underlying the drive to sleep, thermoregulation, and antinociception. Despite the potential importance of oleamide in these physiologic processes, the biochemical pathway for its synthesis in vivo has not been established. We report here the discovery of an oleamide synthetase found in rat tissues using [(14)C]oleoyl-CoA and ammonium ion. Hydrogen peroxide was subsequently found to be a required cofactor. The enzyme displayed temperature and pH optima in the physiologic range, a remarkable resistance to proteolysis, and specificity for long-chain acyl-CoA substrates. The reaction demonstrated Michaelis-Menten kinetics with a K(m) for oleoyl-CoA of 21 microm. Proteomic, biochemical, and immunologic analyses were used to identify the source of the oleamide synthesizing activity as cytochrome c. This identification was based upon peptide mass fingerprinting of isolated synthase protein, a tight correlation between enzymatic activity and immunoreactivity for cytochrome c, and identical functional properties shared by the tissue-derived synthetase and commercially obtained cytochrome c. The ability of cytochrome c to catalyze the formation of oleamide experimentally raises the possibility that cytochrome c may mediate oleamide biosynthesis in vivo.

  9. Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it; Ciaccio, Chiara; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari

    2011-01-07

    Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does notmore » catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.« less

  10. On the Monoheme Character of Cytochromes c′

    PubMed Central

    Kennel, S. J.; Meyer, T. E.; Kamen, M. D.; Bartsch, R. G.

    1972-01-01

    Interpretations of data bearing on structures of cytochromes cc′—a class of variant c-type heme proteins from bacteria—in support of a diheme-bearing single chain as a basic structural unit, appear to be invalid in the light of recent studies. These reveal that nearly all members of this class exist as dimers that can be dissociated into, if they do not already exist as, monoheme-bearing monomers. The particular case of the Chromatium protein, held to be the source of a peptic-“core” peptide containing two covalently-bonded heme groups, has been re-examined by preparation of tryptic and chymotryptic peptides derived from the heme-bearing region of the protein, as well as by repetition of experiments on peptic digestion, with more rigorous purification of the resultant peptides than was previously done. It is shown that this protein can also be dissociated into identical subunits, bearing a single heme prosthetic group, and accounting essentially for all its heme content. Thus, the previous terminology—cytochromes cc′—based on supposition of heme group heterogeneity, is inconsistent with these findings and should be replaced by cytochromes c′. PMID:4343972

  11. Development of Tyrosine-Based Radiotracer 99mTc-N4-Tyrosine for Breast Cancer Imaging

    PubMed Central

    Kong, Fan-Lin; Ali, Mohammad S.; Rollo, Alex; Smith, Daniel L.; Zhang, Yinhan; Yu, Dong-Fang; Yang, David J.

    2012-01-01

    The purpose of this study was to develop an efficient way to synthesize 99mTc-O-[3-(1,4,8,11-tetraazabicyclohexadecane)-propyl]-tyrosine (99mTc-N4-Tyrosine), a novel amino acid-based radiotracer, and evaluate its potential in breast cancer gamma imaging. Precursor N4-Tyrosine was synthesized using a 5-step procedure, and its total synthesis yield was 38%. It was successfully labeled with 99mTc with high radiochemical purity (>95%). Cellular uptake of 99mTc-N4-Tyrosine was much higher than that of 99mTc-N4 and the clinical gold standard 18F-2-deoxy-2-fluoro-glucose (18F-FDG) in rat breast tumor cells in vitro. Tissue uptake and dosimetry estimation in normal rats revealed that 99mTc-N4-Tyrosine could be safely administered to humans. Evaluation in breast tumor-bearing rats showed that although 99mTc-N4-Tyrosine appeared to be inferior to 18F-FDG in distinguishing breast tumor tissue from chemical-induced inflammatory tissue, it had high tumor-to-muscle uptake ratios and could detect breast tumors clearly by planar scintigraphic imaging. 99mTc-N4-Tyrosine could thus be a useful radiotracer for use in breast tumor diagnostic imaging. PMID:22496612

  12. Bioenergetics and the role of soluble cytochromes C for alkaline adaptation in gram-negative alkaliphilic Pseudomonas.

    PubMed

    Matsuno, T; Yumoto, I

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H(+) concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h(-1)] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H(+) condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H(+).

  13. Bioenergetics and the Role of Soluble Cytochromes c for Alkaline Adaptation in Gram-Negative Alkaliphilic Pseudomonas

    PubMed Central

    Matsuno, T.; Yumoto, I.

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+. PMID:25705691

  14. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  15. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  16. Theoretical Study of Free Energy in Docking Stability of Azurin(II)-Cytochrome c551(II) Complex System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsunori; Nishikawa, Keigo; Sugiyama, Ayumu; Purqon, Acep; Mizukami, Taku; Shimahara, Hideto; Nagao, Hidemi; Nishikawa, Kiyoshi

    2008-02-01

    The docking structure of the Azurin-Cytochrome C551 is presented. We investigate a complex system of Azurin(II)-Cytochrome C551(II) by using molecular dynamics simulation. We estimate some physical properties, such as root-mean-square deviation (RMSD), binding energy between Azurin and Cytochrome C551, distance between Azurin(II) and Cytochrome C551(II) through center of mass and each active site. We also discuss docking stability in relation to the configuration by free energy between Azurin(II)-Cytochrome C551(II) and Azurin(I)-Cytochrome C551(III).

  17. Engineering of a functional human NADH-dependent cytochrome P450 system

    PubMed Central

    Döhr, Olaf; Paine, Mark J. I.; Friedberg, Thomas; Roberts, Gordon C. K.; Wolf, C. Roland

    2001-01-01

    A functional human NADH-dependent cytochrome P450 system has been developed by altering the cofactor preference of human NADPH cytochrome P450 reductase (CPR), the redox partner for P450s. This has been achieved by a single amino acid change of the conserved aromatic amino acid Trp-676, which covers the re-side of the FAD isoalloxazine ring in the nicotinamide-binding site. Of the mutations made, the substitution of Trp-676 with alanine (W676A) resulted in a functional NADH-dependent enzyme, which catalyzed the reduction of cytochrome c and ferricyanide as well as facilitated the metabolism of 7-ethoxyresorufin by CYP1A2. Kinetic analysis measuring cytochrome c activity revealed that the NADH-dependent kcat of W676A is equivalent (90%) to the NADPH-dependent kcat of the wild-type enzyme, with W676A having an approximately 1,000-fold higher specificity for NADH. The apparent KMNADPH and KMNADH values of W676A are 80- and 150-fold decreased, respectively. In accordance with structural data, which show a bipartite binding mode of NADPH, substitution of Trp-676 does not affect 2′-AMP binding as seen by the inhibition of both wild-type CPR and the W676A mutant. Furthermore, NADPH was a potent inhibitor of the W676A NADH-dependent cytochrome c reduction and CYP1A2 activity. Overall, the results show that Trp-676 of human CPR plays a major role in cofactor discrimination, and substitution of this conserved aromatic residue with alanine results in an efficient NADH-dependent cytochrome P450 system. PMID:11136248

  18. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  19. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    PubMed

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... P450 (CYP450) tests Overview Your doctor may use cytochrome P450 (CYP450) tests to help determine how your body processes (metabolizes) a drug. The human body contains P450 enzymes to process medications. Because of inherited (genetic) traits ...

  1. SuperTarget and Matador: resources for exploring drug-target relationships.

    PubMed

    Günther, Stefan; Kuhn, Michael; Dunkel, Mathias; Campillos, Monica; Senger, Christian; Petsalaki, Evangelia; Ahmed, Jessica; Urdiales, Eduardo Garcia; Gewiess, Andreas; Jensen, Lars Juhl; Schneider, Reinhard; Skoblo, Roman; Russell, Robert B; Bourne, Philip E; Bork, Peer; Preissner, Robert

    2008-01-01

    The molecular basis of drug action is often not well understood. This is partly because the very abundant and diverse information generated in the past decades on drugs is hidden in millions of medical articles or textbooks. Therefore, we developed a one-stop data warehouse, SuperTarget that integrates drug-related information about medical indication areas, adverse drug effects, drug metabolization, pathways and Gene Ontology terms of the target proteins. An easy-to-use query interface enables the user to pose complex queries, for example to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target the same protein but are metabolized by different enzymes. Furthermore, we provide tools for 2D drug screening and sequence comparison of the targets. The database contains more than 2500 target proteins, which are annotated with about 7300 relations to 1500 drugs; the vast majority of entries have pointers to the respective literature source. A subset of these drugs has been annotated with additional binding information and indirect interactions and is available as a separate resource called Matador. SuperTarget and Matador are available at http://insilico.charite.de/supertarget and http://matador.embl.de.

  2. The oxidation of exogenous and endogenous cytochromeC in mitochondria. A biochemical and ultrastructural study.

    PubMed

    Muscatello, U; Carafoli, E

    1969-03-01

    The effect of the nonionic detergent Lubrol on the oxidation of endogenous and exogenous cytochrome c by cytochrome oxidase in intact and fragmented mitochondria was studied. Mitochondria and mitochondrial fragments from liver, kidney, heart, and skeletal muscle have been used. Negatively stained preparations of intact mitochondria showed the particles of Fernández-Morán on the matrix side of their inner membrane system: under these conditions, the oxidation rate of externally added cytochrome c was very high, and it was stimulated very poorly by Lubrol. Mechanical fragmentation of liver mitochondria yielded vesicles with a smooth external profile: also under these conditions, the oxidation of externally added cytochrome c was very high, and poorly stimulated by Lubrol. The oxidation of endogenous cytochrome c was also unaffected by Lubrol. On the other hand, fragmentation of heart and skeletal muscle mitochondria yielded vesicles having numerous particles of Fernández-Morán on their external profiles. Under these conditions, the oxidation of exogenous cytochrome c was low and was markedly stimulated by Lubrol. On the contrary, no activation of the oxidation of endogenous cytochrome c was induced by the detergent. The results indicate a difference in the permeability properties of the two faces of the inner mitochondrial membrane: a permeability barrier for cytochrome c is suggested to exist at the inner face.

  3. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  4. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  5. Immobilized unfolded cytochrome c acts as a catalyst for dioxygen reduction.

    PubMed

    Tavagnacco, Claudio; Monari, Stefano; Ranieri, Antonio; Bortolotti, Carlo Augusto; Peressini, Silvia; Borsari, Marco

    2011-10-21

    Unfolding turns immobilized cytochrome c into a His-His ligated form endowed with catalytic activity towards O(2), which is absent in the native protein. Dioxygen could be used by naturally occurring unfolded cytochrome c as a substrate for the production of partially reduced oxygen species (PROS) contributing to the cell oxidative stress.

  6. Haloarcula marismortui cytochrome b-561 is encoded by the narC gene in the dissimilatory nitrate reductase operon.

    PubMed

    Yoshimatsu, Katsuhiko; Araya, Osamu; Fujiwara, Taketomo

    2007-01-01

    The composition of membrane-bound electron-transferring proteins from denitrifying cells of Haloarcula marismortui was compared with that from the aerobic cells. Accompanying nitrate reductase catalytic NarGH subcomplex, cytochrome b-561, cytochrome b-552, and halocyanin-like blue copper protein were induced under denitrifying conditions. Cytochrome b-561 was purified to homogeneity and was shown to be composed of a polypeptide with a molecular mass of 40 kDa. The cytochrome was autooxidizable and its redox potential was -27 mV. The N-terminal sequence of the cytochrome was identical to the deduced amino acid sequence of the narC gene product encoded in the third ORF of the nitrate reductase operon with a unique arrangement of ORFs. The sequence of the cytochrome was homologous with that of the cytochrome b subunit of respiratory cytochrome bc. A possibility that the cytochrome bc and the NarGH constructed a supercomplex was discussed.

  7. Use of P450 cytochrome inhibitors in studies of enokipodin biosynthesis

    PubMed Central

    Ishikawa, Noemia Kazue; Tahara, Satoshi; Namatame, Tomohiro; Farooq, Afgan; Fukushi, Yukiharu

    2013-01-01

    Enokipodins A, B, C, and D are antimicrobial sesquiterpenes isolated from the mycelial culture medium of Flammulina velutipes, an edible mushroom. The presence of a quaternary carbon stereocenter on the cyclopentane ring makes enokipodins A-D attractive synthetic targets. In this study, nine different cytochrome P450 inhibitors were used to trap the biosynthetic intermediates of highly oxygenated cuparene-type sesquiterpenes of F. velutipes. Of these, 1-aminobenzotriazole produced three less-highly oxygenated biosynthetic intermediates of enokipodins A-D; these were identified as (S)-(−)-cuparene-1,4-quinone and epimers at C-3 of 6-hydroxy-6-methyl-3-(1,2,2-trimethylcyclopentyl)-2-cyclohexen-1-one. One of the epimers was found to be a new compound. PMID:24688524

  8. Production, purification and detergent exchange of isotopically labeled Bacillussubtilis cytochrome b₅₅₈ (SdhC).

    PubMed

    Baureder, Michael; Hederstedt, Lars

    2011-11-01

    Cytochrome b₅₅₈ of the gram-positive bacterium Bacillussubtilis is the membrane anchor subunit of the succinate:quinone oxidoreductase of the citric acid cycle. The cytochrome consists of the SdhC polypeptide (202 residues) and two protoheme IX groups that function in transmembrane electron transfer to menaquinone. The general structure of the cytochrome is known from extensive experimental studies and by comparison to Wolinellasuccinogenes fumarate reductase for which the X-ray crystal structure has been determined. Solution state NMR can potentially be used to identify the quinone binding site(s) and study, e.g. redox-linked, dynamics of cytochrome b₅₅₈. In this work we present an efficient procedure for the isolation of preparative amounts of isotopically labeled B. subtilis cytochrome b₅₅₈ produced in Escherichia coli. We have also evaluated several detergents suitable for NMR for their effectiveness in maintaining the cytochrome solubilized and intact for days at room temperature. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Micro-Dose Calibrator for Pre-clinical Radiotracer Assays | NCI Technology Transfer Center | TTC

    Cancer.gov

    Pre-clinical radiotracer biomedical research involves the use of compounds labeled with radioisotopes, including cell binding studies, immune cell labeling techniques, and radio-ligand bio-distribution studies. Before this Micro-Dose Calibrator, measurement of pre-clinical level dosage for small animal studies was inaccurate and unreliable. This dose calibrator is a prototype ready for manufacturing. It is designed to accurately measure radioactive doses in the range of 50 nCi (1.8 kBq) to 100 µCi (3.7 MBq) with 1% precision. The NCI seeks co-development or licensing to commercialize it. Alternative uses will be considered.

  10. Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth.

    PubMed Central

    Rott, M A; Donohue, T J

    1990-01-01

    In Rhodobacter sphaeroides, cytochrome c2 (cyt c2) is a periplasmic redox protein required for photosynthetic electron transfer. cyt c2-deficient mutants created by replacing the gene encoding the apoprotein for cyt c2 (cycA) with a kanamycin resistance cartridge are photosynthetically incompetent. Spontaneous mutations that suppress this photosynthesis deficiency (spd mutants) arise at a frequency of 1 to 10 in 10(7). We analyzed the cytochrome content of several spd mutants spectroscopically and by heme peroxidase assays. These suppressors lacked detectable cyt c2, but they contained a new soluble cytochrome which was designated isocytochrome c2 (isocyt c2) that was not detectable in either cycA+ or cycA mutant cells. When spd mutants were grown photosynthetically, isocyt c2 was present at approximately 20 to 40% of the level of cyt c2 found in photosynthetically grown wild type cells, and it was found in the periplasm with cytochromes c' and c554. These spd mutants also had several other pleiotropic phenotypes. Although photosynthetic growth rates of the spd mutants were comparable to those of wild-type strains at all light intensities tested, they contained elevated levels of B800-850 pigment-protein complexes. Several spd mutants contained detectable amounts of isocyt c2 under aerobic conditions. Finally, heme peroxidase assays indicated that, under anaerobic conditions, the spd mutants may contain another new cytochrome in addition to isocyt c2. These pleiotropic phenotypes, the frequency at which the spd mutants arise, and the fact that a frameshift mutagen is very effective in generating the spd phenotype suggest that some spd mutants contain a mutation in loci which regulate cytochrome synthesis. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:2156806

  11. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle.

    PubMed

    Hayworth, Christopher R; Rojas, Julio C; Padilla, Eimeira; Holmes, Genevieve M; Sheridan, Eva C; Gonzalez-Lima, F

    2010-01-01

    Low-level light therapy (LLLT) increases survival of cultured cells, improves behavioral recovery from neurodegeneration and speeds wound healing. These beneficial effects are thought to be mediated by upregulation of mitochondrial proteins, especially the respiratory enzyme cytochrome oxidase. However, the effects of in vivo LLLT on cytochrome oxidase in intact skeletal muscle have not been previously investigated. We used a sensitive method for enzyme histochemistry of cytochrome oxidase to examine the rat temporalis muscle 24 h after in vivo LLLT. The findings showed for the first time that in vivo LLLT induced a dose- and fiber type-dependent increase in cytochrome oxidase in muscle fibers. LLLT was particularly effective at enhancing the aerobic capacity of intermediate and red fibers. The findings suggest that LLLT may enhance the oxidative energy metabolic capacity of different types of muscle fibers, and that LLLT may be used to enhance the aerobic potential of skeletal muscle.

  12. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T

    2015-03-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c.

    PubMed

    Peterson, Joshua R; Smith, Trevor A; Thordarson, Pall

    2010-01-07

    Photo-active bis(terpyridine)ruthenium(ii) chromophores were synthesised and attached to the redox enzyme iso-1 cytochrome c in a mixed solvent system to form photo-induced bioconjugates in greater than 40% yield after purification. The effects of up to 20% (v/v) of acetonitrile, tetrahydrofuran, dimethylformamide, or dimethyl sulfoxide at 4, 25 and 35 degrees C on the stability and biological activity of cytochrome c and its reactivity towards the model compound 4,4'-dithiodipyridine (DTDP) was measured. The second-order rate constant for the DTDP reaction was found to range between k = 2.5-4.3 M(-1) s(-1) for reactions with 5% organic solvent added compared to k = 5.6 M(-1) s(-1) in pure water at 25 degrees C. Use of 20% solvent generally results in significant protein oxidation, and 20% acetonitrile and tetrahydrofuran in particular result in significant protein dimerization, which competes with the bioconjugation reaction. Cyclic voltammetry studies indicated that the rate of electron transfer to the heme in solution was reduced in the bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates compared to unmodified cytochrome c. Steady-state fluorescence studies on these bioconjugates showed that energy or electron transfer is taking place between the bis(terpyridine)ruthenium(ii) chromophores and cytochrome c. The bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates demonstrate room temperature photo-activated electron transfer from the bis(terpyridine)ruthenium(ii) donor to the protein acceptor. Two sacrificial donors were used; in 50% glycerol, the bioconjugates were reduced in about 15 min while in 20 mM EDTA the bioconjugates were fully reduced in less than 5 min upon irradiation with a xenon lamp source. Under these conditions, the reduction of the non-covalent mixture of cytochrome c and bis(terpyridine)ruthenium(ii) mixtures took over 30 min. Control experiments showed that the photo-induced reduction of cytochrome c only occurs in the absence of

  14. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances inmore » bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.« less

  15. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities

    PubMed Central

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2015-01-01

    Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies. PMID:25411412

  16. Radio-methyl vorozole and methods for making and using the same

    DOEpatents

    Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

    2014-08-12

    Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

  17. Radio-methyl vorozole and methods for making and using the same

    DOEpatents

    Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

    2014-08-05

    Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

  18. Redox-dependent interactions between reduced/oxidized cytochrome c and cytochrome c oxidase evaluated by in-situ electrochemical surface plasmon resonance.

    PubMed

    Hou, Yuting; An, Jianhong; Deng, Chunyan; Chen, Shu; Xiang, Juan

    2016-07-01

    The interactions between the redox couple of cytochrome c (Cyt c) and cytochrome c oxidase (COX) were investigated at a mimic redox-modulated interface by using an electrochemical surface plasmon resonance (EC-SPR) system. Although early studies of the binding between COX and Cyt c have been conducted using several techniques in homogeneous solutions, a problem still inherent is that ferro-cytochrome c (Cyt c red), the reduced form of Cyt c, can be easily oxidized into ferri-cytochrome c (Cyt c ox) and adversely impact the accuracy and reproducibility of the binding measurements. In order to realize reliable redox-dependent binding tests, here the Cyt c red is quantitatively electro-generated from Cyt c ox by in situ cathodic polarization in a flow cell. Then the kinetic and dissociation constants of the bindings between COX and Cyt c red/Cyt c ox can be evaluated accurately. In this study, the values of association/dissociation rate constants (k a, k d) for both COX/Cyt c red and COX/Cyt c ox were obtained. The dissociation constants, K D, were finally calculated as 3.33 × 10(-8) mol · L(-1) for COX/Cyt c red and 4.25 × 10(-5) mol · L(-1) for COX/Cyt c ox, respectively. In-situ EC-SPR is promising for better mimicking the in vivo condition that COX is embedded in the inner mitochondrial membrane and Cyt c acts as an electron shuttle in the mobile phase. It is an effective method for the investigation of redox-dependent biomolecular interactions. Graphical Abstract Schematic representation of the experimental designs using EC-SPR system. (a) the Au-Cys-COX SPR chip with SAM layers. (b) redox-modulated Cyt c and its binding onto pre-immobilized COX.

  19. Cytochrome b 5 reductase and the control of lipid metabolism and healthspan.

    PubMed

    Martin-Montalvo, Alejandro; Sun, Yaning; Diaz-Ruiz, Alberto; Ali, Ahmed; Gutierrez, Vincent; Palacios, Hector H; Curtis, Jessica; Siendones, Emilio; Ariza, Julia; Abulwerdi, Gelareh A; Sun, Xiaoping; Wang, Annie X; Pearson, Kevin J; Fishbein, Kenneth W; Spencer, Richard G; Wang, Miao; Han, Xianlin; Scheibye-Knudsen, Morten; Baur, Joe A; Shertzer, Howard G; Navas, Placido; Villalba, Jose Manuel; Zou, Sige; Bernier, Michel; de Cabo, Rafael

    2016-01-01

    Cytochrome b 5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.

  20. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  1. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    PubMed

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  2. A role for cytochrome b5 in the in vivo disposition of anti-cancer and cytochrome P450 probe drugs in mice

    PubMed Central

    Henderson, Colin J.; McLaughlin, Lesley A.; Finn, Robert D.; Ronseaux, Sebastien; Kapelyukh, Yury; Wolf, C. Roland

    2014-01-01

    The role of microsomal cytochrome b5 (Cyb5) in defining the rate of drug metabolism and disposition has been intensely debated for several decades. Recently we described mouse models involving the hepatic or global deletion of Cyb5, demonstrating its central role in in vivo drug disposition. We have now used the cytochrome b5 complete null (BCN) model to determine the role of Cyb5 in the metabolism of ten pharmaceuticals metabolised by a range of cytochrome P450s, including five anti-cancer drugs, in vivo and in vitro. The extent to which metabolism was significantly affected by the absence of Cyb5 was substrate-dependent, with AUC increased (75-245%), and clearance decreased (35-72%), for phenacetin, metoprolol and chlorzoxazone. Tolbutamide disposition was not significantly altered by Cyb5 deletion, while for midazolam clearance was decreased by 66%. The absence of Cyb5 had no effect on gefitinib and paclitaxel disposition, while significant changes in the in vivo pharmacokinetics of cyclophosphamide were measured (Cmax and terminal half-life increased 55% and 40%, respectively), tamoxifen (AUClast and Cmax increased 370% and 233%, respectively) and anastrozole (AUC and terminal half-life increased 125% and 62%, respectively; clearance down 80%). These data from provide strong evidence that both hepatic and extra-hepatic Cyb5 levels are an important determinant of in vivo drug disposition catalysed by a range of cytochrome P450s, including currently-prescribed anti-cancer agents, and that individuality in Cyb5 expression could be a significant determinant in rates of drug disposition in man. PMID:24115751

  3. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    PubMed Central

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  4. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    PubMed Central

    Campelo, Diana; Lautier, Thomas; Urban, Philippe; Esteves, Francisco; Bozonnet, Sophie; Truan, Gilles; Kranendonk, Michel

    2017-01-01

    NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners. PMID:29163152

  5. Actinomycin D Inhibition of the Zinc-induced Formation of Cytochrome c in Ustilago1

    PubMed Central

    Brown, D. H.; Cappellini, R. A.; Price, C. A.

    1966-01-01

    As reported earlier by Grimm & Allen, the addition of zinc to the sporidia of the smut fungus, Ustilago sphaerogena, evokes the formation of large amounts of cytochrome c. This occurs under conditions where the rates of increase of dry weight, RNA, and DNA remain unaffected. Actinomycin D added with zinc specifically abolishes the formation of cytochrome c. The system behaves as if cytochrome c were formed de novo. PMID:5956845

  6. The kinetics of the reaction of nitrogen dioxide with iron(II)- and iron(III) cytochrome c.

    PubMed

    Domazou, Anastasia S; Gebicka, Lidia; Didik, Joanna; Gebicki, Jerzy L; van der Meijden, Benjamin; Koppenol, Willem H

    2014-04-01

    The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×10(5) and (1.1±0.1)×10(6) M(-1) s(-1), respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×10(6) M(-1) s(-1) at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×10(7) M(-1) s(-1) at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly-most probably via reaction at the solvent-accessible heme edge-whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomicmore » approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed

  8. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Generator-specific targets of mitochondrial reactive oxygen species.

    PubMed

    Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan

    2015-01-01

    To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    PubMed

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  11. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Long-Wavelength Infrared Sensing by Cytochrome C Protein Thin Film Deposited by the Spin Coating Method

    PubMed Central

    Lai, Bo-Yu; Chu, Chung-Hao; Su, Guo-Dung John

    2013-01-01

    High infrared absorption, large temperature coefficient of resistance (TCR) and small 1/f noise are preferred characteristics for sensing materials used in bolometers. In this paper, we discuss a cytochrome c protein as a potential sensing material for long-wavelength bolometers. We simulated and experimentally proved high infrared absorption of cytochrome c in the wavelength between 8 μm and 14 μm. Cytochrome c thin films were deposited on a hydrophilic surface using the spin coating method. The resistance variation with temperature is measured and we show that the TCR of cytochrome c thin films is consistently higher than 20%. The measured values of 1/f noise were as low as 2.33 × 10−13 V2/Hz at 60 Hz. Finally, we test the reliability of cytochrome c by measuring the resistance changes over time under varying conditions. We found that cytochrome c thin films deteriorated significantly without appropriate packaging. PMID:24264331

  13. The uses of radiotracers in the life sciences

    NASA Astrophysics Data System (ADS)

    Ruth, Thomas J.

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  14. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone

  15. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.

    PubMed

    Ribeiro Guevara, Sergio; Zizek, Suzana; Repinc, Urska; Pérez Catán, Soledad; Jaćimović, Radojko; Horvat, Milena

    2007-03-01

    Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T1/2=2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T1/2=46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold

  16. Small-Animal SPECT/CT of the Progression and Recovery of Rat Liver Fibrosis by Using an Integrin αvβ3-targeting Radiotracer.

    PubMed

    Yu, Xinhe; Wu, Yue; Liu, Hao; Gao, Liquan; Sun, Xianlei; Zhang, Chenran; Shi, Jiyun; Zhao, Huiyun; Jia, Bing; Liu, Zhaofei; Wang, Fan

    2016-05-01

    To assess the potential utility of an integrin αvβ3-targeting radiotracer, technetium 99m-PEG4-E[PEG4-cyclo(arginine-glycine-aspartic acid-D-phenylalanine-lysine)]2 ((99m)Tc-3PRGD2), for single photon emission computed tomography (SPECT)/computed tomography (CT) for monitoring of the progression and prognosis of liver fibrosis in a rat model. All animal experiments were performed by following the protocol approved by the institutional animal care and use committee. (99m)Tc-3PRGD2 was prepared and longitudinal SPECT/CT was performed to monitor the progression (n = 8) and recovery (n = 5) of liver fibrosis induced in a rat model by means of thioacetamide (TAA) administration. The mean liver-to-background radioactivity per unit volume ratio was analyzed for comparisons between the TAA and control (saline) groups at different stages of liver fibrosis. Data were compared by using Student t and Mann-Whitney tests. Results:of SPECT/CT were compared with those of ex vivo biodistribution analysis (n = 5). Accumulation of (99m)Tc-3PRGD2 in the liver increased in proportion to the progression of fibrosis and TAA exposure time; accumulation levels were significantly different between the TAA and control groups as early as week 4 of TAA administration (liver-to-background ratio: 32.30 ± 3.39 vs 19.01 ± 3.31; P = .0002). Results of ex vivo immunofluorescence staining demonstrated the positive expression of integrin αvβ3 on the activated hepatic stellate cells, and the integrin αvβ3 levels in the liver corresponded to the results of SPECT/CT (R(2) = 0.75, P < .0001). (99m)Tc-3PRGD2 uptake in the fibrotic liver decreased after antifibrotic therapy with interferon α2b compared with that in the control group (relative liver-to-background ratio: 0.45 ± 0.05 vs 1.01 ± 0.05; P < .0001) or spontaneous recovery (relative liver-to-background ratio: 0.56 ± 0.06 vs 1.01 ± 0.05; P < .0001). (99m)Tc-3PRGD2 SPECT/CT was successfully used to monitor the progression and recovery of

  17. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  18. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  19. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    PubMed

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  20. Radiotracers For Lipid Signaling Pathways In Biological Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatley, S. J.

    The primary focus of this project continues to be the development of radiotracers and radiotracer methodology for studying physiology and biochemistry. The compounds that have been labeled areacylethanolamines and acylglycerols that are, as classes, represented in both in plants and in animals. In the latter, some of these act as ligands for cannabinoid receptors and they are therefore known as endocannabinoids. Cannabinoid receptors are not found in plant genomes so that plants must contain other receptors and signaling systems that use acylethanolamines. Relatively little work has been done on that issue, though acylethanolamines do modulate plant growth and stress resistance,more » thus possessing obvious relevance to agriculture and energy production. Progress has been described in five peer-reviewed papers and seven meeting abstracts. Preparation of 2-acylglycerol lipid messengers in high purity. A novel enzymatic synthesis was developedthat gave pure 2-acylglycerols free of any rearrrangement to the thermodynamically more stable 1(3)-acylglycerol byproducts. The method utilized 1,3-dibutyryl-2-acylglycerol substrate ethanolysis by a resinimobilized lipase. Thus, pure radiolabeled 2-acylglycerols can now be conveniently prepared just prior to their utilization. These synthetic studies were published in the Journal of Medicinal Chemistry, 2011. Diacylglycerol lipase assay methodology. Diacylglycerol lipases (DAGLs) generate 2- acylglycerols, and are thus potential targets for disease- or growth-modifying agents, by means of reducing formation of 2-acylglycerols. A radioTLC assay of the hydrolysis of radiolabeled diglyceride substrate [1''-carbon-14]2-arachidonoyl-1-stearoyl-sn-glycerol has been implemented, and used to validate a novel, potentially highthroughput fluorescence resonance energy transfer (FRET) based assay. A number of new DAGL inhibitors that have selectivity for DAGLs were synthesized and screened. This work was very recently published in

  1. Evaluation of [11C]metergoline as a PET radiotracer for 5HTR in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2010-04-20

    Metergoline, a serotonin receptor antagonist, was labeled with carbon-11 in order to evaluate its pharmacokinetics and distribution in non-human primates using positron emission tomography. [{sup 11}C]Metergoline had moderate brain uptake and exhibited heterogeneous specific binding, which was blocked by pretreatment with metergoline and altanserin throughout the cortex. Non-specific binding and insensitivity to changes in synaptic serotonin limit its potential as a PET radiotracer. However, the characterization of [{sup 11}C]metergoline pharmacokinetics and binding in the brain and peripheral organs using PET improves our understanding of metergoline drug pharmacology.

  2. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    PubMed Central

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  3. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates

    PubMed Central

    Dibrova, Daria V.; Cherepanov, Dmitry A.; Galperin, Michael Y.; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2013-01-01

    This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. PMID:23871937

  4. Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47.

    PubMed

    Guerra-Castellano, Alejandra; Díaz-Moreno, Irene; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Quintana, Antonio

    2016-04-01

    Protein function is frequently modulated by post-translational modifications of specific residues. Cytochrome c, in particular, is phosphorylated in vivo at threonine 28 and serine 47. However, the effect of such modifications on the physiological functions of cytochrome c - namely, the transfer of electrons in the respiratory electron transport chain and the triggering of programmed cell death - is still unknown. Here we replace each of these two residues by aspartate, in order to mimic phosphorylation, and report the structural and functional changes in the resulting cytochrome c variants. We find that the T28D mutant causes a 30-mV decrease on the midpoint redox potential and lowers the affinity for the distal site of Arabidopsis thaliana cytochrome c1 in complex III. Both the T28D and S47D variants display a higher efficiency as electron donors for the cytochrome c oxidase activity of complex IV. In both protein mutants, the peroxidase activity is significantly higher, which is related to the ability of cytochrome c to leave the mitochondria and reach the cytoplasm. We also find that both mutations at serine 47 (S47D and S47A) impair the ability of cytoplasmic cytochrome c to activate the caspases cascade, which is essential for triggering programmed cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analysis of the cytochrome c-dependent apoptosis apparatus in cells from human pancreatic carcinoma

    PubMed Central

    Gerhard, M C; Schmid, R M; Häcker, G

    2002-01-01

    Defects in the apoptotic system are likely to play a role in tumorigenesis. Pancreatic carcinoma cells are extremely resistant to apoptosis induction by chemotherapy suggesting that the apoptosis machinery is faulty. We investigated the integrity of the cytochrome c-dependent apoptotic apparatus in 10 human pancreatic carcinoma cell lines. Expression of Apaf-1, caspase-3, -6, -7, -8 and -9, Hsp-70 and XIAP was detected in all cell lines. The expression levels of Apaf-1 and caspase-8 were homogenous in all cell lines whereas differences in expression of other caspases were seen. In cytosolic fractions, all investigated caspases were processed in response to cytochrome c but the extent of processing varied between the cell lines. No stringent correlation between the amount of processing of caspase-9 and effector caspases was seen. Cytochrome c-induced effector caspase activity was quantitated by enzyme assay. Especially at low concentrations of added cytochrome c, this response varied greatly between the cell lines. These data demonstrate that the apoptotic system downstream of the mitochondria is qualitatively intact in pancreatic carcinoma. They further show that the response to cytochrome c can be quantitated in a cell-free system and that determinants other than mere expression of apoptotic molecules can regulate cytochrome c-induced apoptosis. British Journal of Cancer (2002) 86, 893–898. DOI: 10.1038/sj/bjc/6600171 www.bjcancer.com © 2002 Cancer Research UK PMID:11953820

  6. Genetics Home Reference: cytochrome c oxidase deficiency

    MedlinePlus

    ... are caused by mutations in genes found within nuclear DNA; however, in some rare instances, mutations in genes located within mtDNA cause this condition. The genes associated with cytochrome c oxidase deficiency are involved in energy production in mitochondria through a process called oxidative ...

  7. A novel assay for detecting antibodies to cytochrome P4502D6, the molecular target of liver kidney microsomal antibody type 1.

    PubMed

    Kerkar, N; Ma, Y; Hussain, M; Muratori, L; Targett, C; Williams, R; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1999-03-04

    Liver Kidney Microsomal type 1 (LKM1) antibody, the diagnostic marker of autoimmune hepatitis type 2, is also found in a proportion of patients with hepatitis C virus infection (HCV). It is detected conventionally by the subjective immunofluorescence technique. Our aim was to establish a simple and objective enzyme-linked immunosorbent assay (ELISA) that measures antibodies to cytochrome P4502D6 (CYP2D6), the target of LKM1. An indirect ELISA using eukaryotically expressed CYP2D6 was designed. Absorbance values obtained against a reference microsomal preparation were subtracted from those obtained against a microsomal preparation over-expressing CYP2D6, thus removing the non-CYP2D6-specific reaction. Sera from 51 LKM1 positive patients (21 autoimmune hepatitis and 30 with HCV infection), 111 LKM1 negative patients with chronic liver disease (including 20 with HCV infection) and 43 healthy controls were tested. Of 51 patients positive by immunofluorescence, 48 were also positive by ELISA while all the 154 LKM1 negative subjects were also negative by ELISA. There was a high degree of association between IFL and ELISA as demonstrated by a kappa reliability value of 0.96. The absorbance values by ELISA correlated with immunofluorescence LKM1 titres both in autoimmune hepatitis (r = 0.74, p < 0.001) and HCV infection (r = 0.67, p < 0.001). The simple, objective ELISA described has the potential to replace the standard immunofluorescence technique.

  8. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.

    PubMed

    Gray, K A; Dutton, P L; Daldal, F

    1994-01-25

    Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.

  9. OnpA, an Unusual Flavin-Dependent Monooxygenase Containing a Cytochrome b5 Domain

    PubMed Central

    Xiao, Yi; Liu, Ting-Ting; Dai, Hui; Zhang, Jun-Jie; Liu, Hong; Tang, Huiru; Leak, David J.

    2012-01-01

    ortho-Nitrophenol 2-monooxygenase (EC 1.14.13.31) from Alcaligenes sp. strain NyZ215 catalyzes monooxygenation of ortho-nitrophenol to form catechol via ortho-benzoquinone. Sequence analysis of this onpA-encoded enzyme revealed that it contained a flavin-binding monooxygenase domain and a heme-binding cytochrome b5 domain. OnpA was purified to homogeneity as a His-tagged protein and was considered a monomer, as determined by gel filtration. FAD and heme were identified by high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (HPLC-MS) as cofactors in this enzyme, and quantitative analysis indicated that 1 mol of the purified recombinant OnpA contained 0.66 mol of FAD and 0.20 mol of heme. However, the enzyme activity of OnpA was increased by 60% and 450% after addition of FAD and hemin, respectively, suggesting that the optimal stoichiometry was 1:1:1. In addition, site-directed mutagenesis experiments confirmed that two highly conserved histidines located in the cytochrome b5 domain were associated with binding of the heme, and the cytochrome b5 domain was involved in the OnpA activity. These results indicate that OnpA is an unusual FAD-dependent monooxygenase containing a fused cytochrome b5 domain that is essential for its activity. Therefore, we here demonstrate a link between cytochrome b5 and flavin-dependent monooxygenases. PMID:22267507

  10. Dynamic movement of cytochrome c from mitochondria into cytosol and peripheral circulation in massive hepatic cell injury.

    PubMed

    Kobayashi, Yoshinori; Mori, Masaaki; Naruto, Takuya; Kobayashi, Naoki; Sugai, Toshiyuki; Imagawa, Tomoyuki; Yokota, Shumpei

    2004-12-01

    In the process of apoptosis, it is known that the transition of cytochrome c from mitochondria into the cytosol occurs, and tumor necrosis factor (TNF)-alpha is one of the molecules responsible for this event. But in the state of hypercytokine induced by D-galactosamine (D-GaIN)/Lipopolysaccharide (LPS), the localization of cytochrome c is little known. Rats were administrated with D-GaIN(700 mg/kg)/LPS(200 microg/kg). Blood and tissue samples were collected and examined for levels of pro-inflammatory cytokines, the apoptosis of liver cells, and the localization of cytochrome c. Before administration of D-GaIN/LPS, cytochrome c was definitely localized in the mitochondria. At 2 h after simultaneous administration of D-GaIN/LPS, cytochrome c had accumulated in the cytosol following abrupt increases of plasma TNF-alpha. Massive cell destruction due to apoptosis proved by Terminal deoxynucleo-tidyl transferase-mediated dUTP nick end labeling staining was observed in liver tissue 4 h later and markedly increased levels of cytochrome c were detected in the plasma 12 h after D-GaIN/LPS administration. Liver injury induced by simultaneous administration of D-GaIN/LPS was closely associated with the production of TNF-alpha, and also with the dynamic movement of cytochrome c from the mitochondria into the cytosol, and then into the systemic circulation. The detection of plasma cytochrome c levels may be a useful clinical tool for the detection of apoptosis in vivo.

  11. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.

    PubMed

    Miura, Hiroshi; Mogi, Tatsushi; Ano, Yoshitaka; Migita, Catharina T; Matsutani, Minenosuke; Yakushi, Toshiharu; Kita, Kiyoshi; Matsushita, Kazunobu

    2013-06-01

    Cyanide-insensitive terminal quinol oxidase (CIO) is a subfamily of cytochrome bd present in bacterial respiratory chain. We purified CIO from the Gluconobacter oxydans membranes and characterized its properties. The air-oxidized CIO showed some or weak peaks of reduced haemes b and of oxygenated and ferric haeme d, differing from cytochrome bd. CO- and NO-binding difference spectra suggested that haeme d serves as the ligand-binding site of CIO. Notably, the purified CIO showed an extraordinary high ubiquinol-1 oxidase activity with the pH optimum of pH 5-6. The apparent Vmax value of CIO was 17-fold higher than that of G. oxydans cytochrome bo3. In addition, compared with Escherichia coli cytochrome bd, the quinol oxidase activity of CIO was much more resistant to cyanide, but sensitive to azide. The Km value for O2 of CIO was 7- to 10-fold larger than that of G. oxydans cytochrome bo3 or E. coli cytochrome bd. Our results suggest that CIO has unique features attributable to the structure and properties of the O2-binding site, and thus forms a new sub-group distinct from cytochrome bd. Furthermore, CIO of acetic acid bacteria may play some specific role for rapid oxidation of substrates under acidic growth conditions.

  12. Semi-automated lab-on-a-chip for dispensing GA-68 radiotracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Irving

    We solved a technical problem that is hindering American progress in molecular medicine, and restricting US citizens from receiving optimal diagnostic care. Specifically, the project deals with a mother/daughter generator of positron-emitting radiotracers (Ge-68/Ga-68). These generator systems are approved in Europe but cannot be used in the USA, because of safety issues related to possible breakthrough of long-lived Ge-68 (mother) atoms. Europeans have demonstrated abilities of Ga-68-labeled radiotracers to image cancer foci with high sensitivity and specificity, and to use such methods to effectively plan therapy.The USA Food and Drug Administration (FDA) and Nuclear Regulatory Commission (NRC) have taken themore » position that every patient administration of Ga-68 should be preceded by an assay demonstrated that Ge-68 breakthrough is within acceptable limits. Breakthrough of parent elements is a sensitive subject at the FDA, as evidenced by the recent recall of Rb-82 generators due to inadvertent administrations of Sr-82. Commercially, there is no acceptable rapid method for assaying breakthrough of Ge-68 prior to each human administration. The gamma emissions of daughter Ga-68 have higher energies than the parent Ge-68, so that the shielding assays typically employed for Mo-99/Tc-99m generators cannot be applied to Ga-68 generators. The half-life of Ga-68 is 68 minutes, so that the standard 10-half-life delay (used to assess breakthrough in Sr-82/Rb-82 generators) cannot be applied to Ga-68 generators. As a result of the aforementioned regulatory requirements, Ga-68 generators are sold in the USA for animal use only.The American clinical community’s inability to utilize Ga-68 generators impairs abilities to treat patients domestically, and puts the USA at a disadvantage in developing exportable products. The proposed DOE project aimed to take advantage of recent technological advances developed for lab-on-a-chip (LOC) applications. Based on our experiences

  13. Crystal structure of the Leishmania major peroxidase–cytochrome c complex

    PubMed Central

    Jasion, Victoria S.; Doukov, Tzanko; Pineda, Stephanie H.; Li, Huiying; Poulos, Thomas L.

    2012-01-01

    The causative agent of leishmaniasis is the protozoan parasite Leishmania major. Part of the host protective mechanism is the production of reactive oxygen species including hydrogen peroxide. In response, L. major produces a peroxidase, L. major peroxidase (LmP), that helps to protect the parasite from oxidative stress. LmP is a heme peroxidase that catalyzes the peroxidation of mitochondrial cytochrome c. We have determined the crystal structure of LmP in a complex with its substrate, L. major cytochrome c (LmCytc) to 1.84 Å, and compared the structure to its close homolog, the yeast cytochrome c peroxidase–cytochrome c complex. The binding interface between LmP and LmCytc has one strong and one weak ionic interaction that the yeast system lacks. The differences between the steady-state kinetics correlate well with the Lm redox pair being more dependent on ionic interactions, whereas the yeast redox pair depends more on nonpolar interactions. Mutagenesis studies confirm that the ion pairs at the intermolecular interface are important to both kcat and KM. Despite these differences, the electron transfer path, with respect to the distance between hemes, along the polypeptide chain is exactly the same in both redox systems. A potentially important difference, however, is the side chains involved. LmP has more polar groups (Asp and His) along the pathway compared with the nonpolar groups (Leu and Ala) in the yeast system, and as a result, the electrostatic environment along the presumed electron transfer path is substantially different. PMID:23100535

  14. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  15. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death

    PubMed Central

    Kagan, Valerian E.; Bayir, Hülya A.; Belikova, Natalia A.; Kapralov, Olexandr; Tyurina, Yulia Y.; Tyurin, Vladimir A.; Jiang, Jianfei; Stoyanovsky, Detcho A.; Wipf, Peter; Kochanek, Patrick M.; Greenberger, Joel S.; Pitt, Bruce; Shvedova, Anna A.; Borisenko, Grigory

    2009-01-01

    Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt c's conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria – its asymmetric trans-membrane distribution and mechanisms of collapse, regulation of its synthesis, remodeling and fatty acid composition – are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with anti-apoptotic effects are presented. PMID:19285551

  16. Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress.

    PubMed

    Li, Tsyregma; Brustovetsky, Tatiana; Antonsson, Bruno; Brustovetsky, Nickolay

    2008-11-01

    In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.

  17. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production

    Treesearch

    Nian-Qing Shi; Brian Davis; Fred Sherman; Jose Cruz; Thomas W. Jeffries

    1999-01-01

    The xylose-utilizing yeast, Pichia stipitis, has a complex respiratory system that contains cytochrome and non-cytochrome alternative electron transport chains in its mitochondria. To gain primary insights into the alternative respiratory pathway, a cytochrome c gene (PsCYC1, Accession No. AF030426) was cloned from wild-type P. stipitis CBS 6054 by cross-hybridization...

  18. Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48

    PubMed Central

    Moreno-Beltrán, Blas; Guerra-Castellano, Alejandra; Del Conte, Rebecca; García-Mauriño, Sofía M.; Díaz-Moreno, Sofía; González-Arzola, Katiuska; Santos-Ocaña, Carlos; Velázquez-Campoy, Adrián; De la Rosa, Miguel A.; Turano, Paola; Díaz-Moreno, Irene

    2017-01-01

    Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects. PMID:28348229

  19. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.

    PubMed

    Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D

    1991-07-15

    To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.

  20. Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.

    PubMed

    Rydzewski, J; Nowak, W

    2017-08-10

    Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.

  1. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity

    PubMed Central

    Hess, Kenneth C.; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A.; Buck, Jochen; Levin, Lonny R.; Barrientos, Antoni

    2014-01-01

    Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.—Hess, K. C., Liu, J., Manfredi, G., Mühlschlegel, F. A., Buck, J., Levin, L. R., Barrientos, A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. PMID:25002117

  2. Application of cytochrome b DNA sequences for the authentication of endangered snake species.

    PubMed

    Wong, Ka-Lok; Wang, Jun; But, Paul Pui-Hay; Shaw, Pang-Chui

    2004-01-06

    In order to enforce the conservation program and curbing the illegal trading and consumption of endangered snake species, the value of cytochrome b sequence in the authentication of snake species was evaluated. As an illustration, DNA was extracted, selected cytochrome b DNA sequences amplified and sequenced from six snakes commonly consumed in Hong Kong. Cataloging with sequences available in public, a cytochrome b database containing 90 species of snakes was constructed. In this database, sequence homology between snakes ranged from 70.68 to 95.11%. On the other hand, intraspecific variation of three tested snakes was 0-0.98%. Using the database, we were able to determine the identity of six meat samples confiscated by the Agriculture, Fisheries and Conservation Department, HKSAR.

  3. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases.

    PubMed

    Navarro-Mabarak, Cynthia; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2018-05-01

    Cytochromes P450 (CYPs) constitute a family of enzymes that can be found in the endoplasmic reticulum (ER), mitochondria or the cell surface of the cells. CYPs are characterized by carrying out the oxidation of organic compounds and they are mainly recognized as mediators of the biotransformation of xenobiotics to polar hydrophilic metabolites that can be eliminated from the organism. However, these enzymes play a key role in many other physiological processes, being involved in diverse indispensable metabolic pathways since they metabolize many endogenous substrates. Various CYP isoforms are expressed in the brain, and it is believed that this could be in part due to the particular function of brain CYPs. In the brain, CYPs are involved in the cholesterol turnover, the biosynthesis of dopamine, serotonin, morphine, hormones, and protective lipid mediators (epoxyeicosatrienoic acids), in addition to their already recognized role in xenobiotics detoxification and psychotropic drug metabolism. Increasing evidence suggests that this group of enzymes is fundamental for the normal functioning and maintenance of brain homeostasis. This review is focused on highlighting the importance of CYP-mediated endogenous metabolism in the central nervous system (CNS) and its relationship with recent findings regarding CYP involvement in neurodegenerative diseases. Some therapeutic approaches focused on CYP regulation are also discussed.

  4. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  5. Early Decrease in Respiration and Uncoupling Event Independent of Cytochrome c Release in PC12 Cells Undergoing Apoptosis

    PubMed Central

    Berghella, Libera; Ferraro, Elisabetta

    2012-01-01

    Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation during STS-induced apoptosis does not depend on the release of cytochrome c into the cytosol and is a reversibile event. These findings may contribute to understand the mechanisms affecting mitochondria during the early stages of apoptosis and priming them for the release of apoptogenic factors. PMID:22666257

  6. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly.

    PubMed

    Shalaeva, Daria N; Dibrova, Daria V; Galperin, Michael Y; Mulkidjanian, Armen Y

    2015-05-27

    Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of

  7. Isolation and characterization of the pea cytochrome c oxidase Vb gene.

    PubMed

    Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi

    2006-11-01

    Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.

  8. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  9. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    PubMed

    Ghosh, Manik C; Ray, Arun K

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  10. Evidence for a Key Role of Cytochrome bo3 Oxidase in Respiratory Energy Metabolism of Gluconobacter oxydans

    PubMed Central

    Richhardt, Janine; Luchterhand, Bettina; Büchs, Jochen

    2013-01-01

    The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized. Deletion of the cydAB genes for cytochrome bd had no obvious influence on growth, whereas the lack of the cyoBACD genes for cytochrome bo3 severely reduced the growth rate and the cell yield. Using a respiration activity monitoring system and adjusting different levels of oxygen availability, hints of a low-oxygen affinity of cytochrome bd oxidase were obtained, which were supported by measurements of oxygen consumption in a respirometer. The H+/O ratio of the ΔcyoBACD mutant with mannitol as the substrate was 0.56 ± 0.11 and more than 50% lower than that of the reference strain (1.26 ± 0.06) and the ΔcydAB mutant (1.31 ± 0.16), indicating that cytochrome bo3 oxidase is the main component for proton extrusion via the respiratory chain. Plasmid-based overexpression of cyoBACD led to increased growth rates and growth yields, both in the wild type and the ΔcyoBACD mutant, suggesting that cytochrome bo3 might be a rate-limiting factor of the respiratory chain. PMID:23852873

  11. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  12. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway

    PubMed Central

    Allen, James W. A.; Ginger, Michael L.; Ferguson, Stuart J.

    2004-01-01

    The c-type cytochromes are characterized by the covalent attachment of haem to the polypeptide via thioether bonds formed from haem vinyl groups and, normally, the thiols of two cysteines in a CXXCH motif. Intriguingly, the mitochondrial cytochromes c and c1 from two euglenids and the Trypanosomatidae contain only a single cysteine within the haem-binding motif (XXXCH). There are three known distinct pathways by which c-type cytochromes are matured post-translationally in different organisms. The absence of genes encoding any of these c-type cytochrome biogenesis machineries is established here by analysis of six trypanosomatid genomes, and correlates with the presence of single-cysteine cytochromes c and c1. In contrast, we have identified a comprehensive catalogue of proteins required for a typical mitochondrial oxidative phosphorylation apparatus. Neither spontaneous nor catalysed maturation of the single-cysteine Trypanosoma brucei cytochrome c occurred in Escherichia coli. However, a CXXCH variant was matured by the E. coli cytochrome c maturation machinery, confirming the proposed requirement of the latter for two cysteines in the haem-binding motif and indicating that T. brucei cytochrome c can accommodate a second cysteine in a CXXCH motif. The single-cysteine haem attachment conserved in cytochromes c and c1 of the trypanosomatids is suggested to be related to their cytochrome c maturation machinery, and the environment in the mitochondrial intermembrane space. Our genomic and biochemical studies provide very persuasive evidence that the trypanosomatid mitochondrial cytochromes c are matured by a novel biogenesis system. PMID:15500440

  13. Effects of Muscle-Specific Oxidative Stress on Cytochrome c Release and Oxidation-Reduction Potential Properties.

    PubMed

    Ke, Yiling; Mitacek, Rachel M; Abraham, Anupam; Mafi, Gretchen G; VanOverbeke, Deborah L; DeSilva, Udaya; Ramanathan, Ranjith

    2017-09-06

    Mitochondria play a significant role in beef color. However, the role of oxidative stress in cytochrome c release and mitochondrial degradation is not clear. The objective was to determine the effects of display time on cytochrome c content and oxidation-reduction potential (ORP) of beef longissimus lumborum (LL) and psoas major (PM) muscles. PM discolored by day 3 compared with LL. On day 0, mitochondrial content and mitochondrial oxygen consumption were greater in PM than LL. However, mitochondrial content and oxygen consumption were lower (P < 0.05) in PM than LL by day 7. Conversely, cytochrome c content in sarcoplasm was greater on days 3 and 7 for PM than LL. There were no significant differences in ORP for LL during display, but ORP increased for PM on day 3 when compared with day 0. The results suggest that muscle-specific oxidative stress can affect cytochrome c release and ORP changes.

  14. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    PubMed

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  15. [Cytochrome c oxydase-deficient Leigh syndrome with homozygous mutation in SURF1 gene].

    PubMed

    Monnot, S; Chabrol, B; Cano, A; Pellissier, J F; Collignon, P; Montfort, M F; Paquis-Flucklinger, V

    2005-05-01

    Leigh syndrome is a heterogeneous disorder, usually due to a defect in oxidative metabolism. Mutations in SURF1 gene have been identified in patients with cytochrome c oxidase deficiency. We report a homozygous splice site deletion [516-2_516-1delAG] in a young girl presenting with cytochrome c oxidase-deficient Leigh syndrome. Identification of molecular defect is indispensable for genetic counselling and prenatal diagnosis.

  16. Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats.

    PubMed

    Oliveira, Bruno L; Blasi, Francesco; Rietz, Tyson A; Rotile, Nicholas J; Day, Helen; Caravan, Peter

    2015-10-01

    We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F PET probes for noninvasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and SPECT. In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in 2 animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. Radiotracers were synthesized using a known fibrin-binding peptide conjugated to 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid monoamide (DOTA-MA), or a diethylenetriamine ligand (DETA-propanoic acid [PA]), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA), or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics, and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a nonbinding control probe using SPECT/PET/CT imaging. All 3 radiotracers showed affinity similar to soluble fibrin fragment DD(E) (inhibition constant=0.53-0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0±0.2 percentage injected dose per gram), with low off-target accumulation. Both radiotracers underwent fast systemic elimination (half-life, 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation or degradation. Triple-isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu

  17. Multimodal molecular imaging reveals high target uptake and specificity of 111In and 68Ga labeled fibrin-binding probes for thrombus detection in rats

    PubMed Central

    Oliveira, Bruno L.; Blasi, Francesco; Rietz, Tyson A.; Rotile, Nicholas J.; Day, Helen; Caravan, Peter

    2016-01-01

    We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F positron emission tomography (PET) probes for non-invasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and single-photon emission computed tomography (SPECT). In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in two animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. Methods Radiotracers were synthesized using a known fibrin-binding peptide conjugated to NODAGA, DOTA-MA, or a diethylenetriamine ligand (DETA-PA), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA) or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a non-binding control probe using SPECT/PET/CT imaging. Results All three radiotracers showed similar affinity to soluble fibrin fragment DD(E) (Ki = 0.53–0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0 ± 0.2% ID/g) with low off-target accumulation. Both radiotracers underwent fast systemic elimination (t1/2 = 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation and/or degradation. Triple isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu-D-Cys-FBP8, detected the location of the 125I-labeled thrombus, confirming high target

  18. The folding energy landscape and free energy excitations of cytochrome c.

    PubMed

    Weinkam, Patrick; Zimmermann, Jörg; Romesberg, Floyd E; Wolynes, Peter G

    2010-05-18

    The covalently bound heme cofactor plays a dominant role in the folding of cytochrome c. Because of the complicated inorganic chemistry of the heme, some might consider the folding of cytochrome c to be a special case, following principles different from those used to describe the folding of proteins without cofactors. Recent investigations, however, demonstrate that common models describing folding for many proteins work well for cytochrome c when heme is explicitly introduced, generally providing results that agree with experimental observations. In this Account, we first discuss results from simple native structure-based models. These models include attractive interactions between nonadjacent residues only if they are present in the crystal structure at pH 7. Because attractive nonnative contacts are not included in native structure-based models, their energy landscapes can be described as "perfectly funneled". In other words, native structure-based models are energetically guided towards the native state and contain no energetic traps that would hinder folding. Energetic traps are denoted sources of "frustration", which cause specific transient intermediates to be populated. Native structure-based models do, however, include repulsion between residues due to excluded volume. Nonenergetic traps can therefore exist if the chain, which cannot cross over itself, must partially unfold so that folding can proceed. The ability of native structure-based models to capture this kind of motion is partly responsible for their successful predictions of folding pathways for many types of proteins. Models without frustration describe the sequence of folding events for cytochrome c well (as inferred from hydrogen-exchange experiments), thereby justifying their use as a starting point. At low pH, the experimentally observed folding sequence of cytochrome c deviates from that at pH 7 and from models with perfectly funneled energy landscapes. Here, alternate folding pathways are

  19. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics.

    PubMed

    Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S

    2014-11-01

    Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The effect of bi-terminal PEGylation of an integrin  α vβ 6-targeted 18F peptide on pharmacokinetics and tumor uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausner, Sven H.; Bauer, Nadine; Hu, Lina Y.

    Radiotracers based on the peptide A20FMDV2 selectively target the cell surface receptor integrin α vβ 6. This integrin has been identified as a prognostic indicator correlating with the severity of disease for several challenging malignancies. In previous studies of A20FMDV2 peptides labeled with 4- 18F-fluorobenzoic acid ( 18F-FBA), we have shown that the introduction of poly(ethylene glycol) (PEG) improves pharmacokinetics, including increased uptake in α vβ 6-expressing tumors. The present study evaluated the effect of site-specific C-terminal or dual (N- and C-terminal) PEGylation, yielding 18F-FBA-A20FMDV2-PEG 28 (4) and 18F-FBA-PEG 28-A20FMDV2-PEG 28 (5), on α vβ 6-targeted tumor uptake and pharmacokinetics.more » The results are compared with 18F-FBA–labeled A20FMDV2 radiotracers (1–3) bearing either no PEG or different PEG units at the N terminus. The radiotracers were prepared and radiolabeled on solid phase. Using 3 cell lines, DX3puroβ6 (α vβ 6+), DX3puro (α vβ 6–), and BxPC-3 (α vβ 6+), we evaluated the radiotracers in vitro (serum stability; cell binding and internalization) and in vivo in mouse models bearing paired DX3puroβ6–DX3puro and, for 5, BxPC-3 xenografts. Here, the size and location of the PEG units significantly affected α vβ 6 targeting and pharmacokinetics. Although the C-terminally PEGylated 4 showed some improvements over the un-PEGylated 18F-FBA-A20FMDV2 (1), it was the bi-terminally PEGylated 5 that displayed the more favorable combination of high α vβ 6 affinity, selectivity, and pharmacokinetic profile. In vitro, 5 bound to α vβ 6-expressing DX3puroβ6 and BxPC-3 cells with 60.5% ± 3.3% and 48.8% ± 8.3%, respectively, with a significant fraction of internalization (37.2% ± 4.0% and 37.6% ± 4.1% of total radioactivity, respectively). By comparison, in the DX3puro control 5 showed only 3.0% ± 0.5% binding and 0.9% ± 0.2% internalization. In vivo, 5 maintained high, α vβ 6-directed binding in the

  1. The effect of bi-terminal PEGylation of an integrin  α vβ 6-targeted 18F peptide on pharmacokinetics and tumor uptake

    DOE PAGES

    Hausner, Sven H.; Bauer, Nadine; Hu, Lina Y.; ...

    2015-03-26

    Radiotracers based on the peptide A20FMDV2 selectively target the cell surface receptor integrin α vβ 6. This integrin has been identified as a prognostic indicator correlating with the severity of disease for several challenging malignancies. In previous studies of A20FMDV2 peptides labeled with 4- 18F-fluorobenzoic acid ( 18F-FBA), we have shown that the introduction of poly(ethylene glycol) (PEG) improves pharmacokinetics, including increased uptake in α vβ 6-expressing tumors. The present study evaluated the effect of site-specific C-terminal or dual (N- and C-terminal) PEGylation, yielding 18F-FBA-A20FMDV2-PEG 28 (4) and 18F-FBA-PEG 28-A20FMDV2-PEG 28 (5), on α vβ 6-targeted tumor uptake and pharmacokinetics.more » The results are compared with 18F-FBA–labeled A20FMDV2 radiotracers (1–3) bearing either no PEG or different PEG units at the N terminus. The radiotracers were prepared and radiolabeled on solid phase. Using 3 cell lines, DX3puroβ6 (α vβ 6+), DX3puro (α vβ 6–), and BxPC-3 (α vβ 6+), we evaluated the radiotracers in vitro (serum stability; cell binding and internalization) and in vivo in mouse models bearing paired DX3puroβ6–DX3puro and, for 5, BxPC-3 xenografts. Here, the size and location of the PEG units significantly affected α vβ 6 targeting and pharmacokinetics. Although the C-terminally PEGylated 4 showed some improvements over the un-PEGylated 18F-FBA-A20FMDV2 (1), it was the bi-terminally PEGylated 5 that displayed the more favorable combination of high α vβ 6 affinity, selectivity, and pharmacokinetic profile. In vitro, 5 bound to α vβ 6-expressing DX3puroβ6 and BxPC-3 cells with 60.5% ± 3.3% and 48.8% ± 8.3%, respectively, with a significant fraction of internalization (37.2% ± 4.0% and 37.6% ± 4.1% of total radioactivity, respectively). By comparison, in the DX3puro control 5 showed only 3.0% ± 0.5% binding and 0.9% ± 0.2% internalization. In vivo, 5 maintained high, α vβ 6-directed binding in the

  2. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  3. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  4. The Folding Energy Landscape and Free Energy Excitations of Cytochrome c

    PubMed Central

    Weinkam, Patrick; Zimmermann, Jörg; Romesberg, Floyd E.

    2014-01-01

    The covalently bound heme cofactor plays a dominant role in the folding of cytochrome c. Due to the complicated inorganic chemistry of the heme, some might consider the folding of cytochrome c to be a special case that follows different principles than those used to describe folding of proteins without cofactors. Recent investigations, however, demonstrate that models which are commonly used to describe folding for many proteins work well for cytochrome c when heme is explicitly introduced and generally provide results that agree with experimental observations. We will first discuss results from simple native structure-based models. These models include attractive interactions between nonadjacent residues only if they are present in the crystal structure at pH 7. Since attractive nonnative contacts are not included in native structure-based models, their energy landscapes can be described as “perfectly funneled.” In other words, native structure-based models are energetically guided towards the native state and contain no energetic traps that would hinder folding. Energetic traps are sources of frustration which cause specific transient intermediates to be populated. Native structure-based models do include repulsion between residues due to excluded volume. Nonenergetic traps can therefore exist if the chain, which cannot cross over itself, must partially unfold in order for folding to proceed. The ability of native structure-based models to capture these type of motions is in part responsible for their successful predictions of folding pathways for many types of proteins. Models without frustration describe well the sequence of folding events for cytochrome c inferred from hydrogen exchange experiments thereby justifying their use as a starting point. At low pH, the folding sequence of cytochrome c deviates from that at pH 7 and from those predicted from models with perfectly funneled energy landscapes. Alternate folding pathways are a result of

  5. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    PubMed

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  6. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.

    PubMed

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A

    2015-08-11

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity.

  7. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.

    PubMed

    Belsare, Ketaki D; Andorfer, Mary C; Cardenas, Frida S; Chael, Julia R; Park, Hyun June; Lewis, Jared C

    2017-03-17

    Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450 BM3 , pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.

  8. The diheme cytochrome c4 from Vibrio cholerae is a natural electron donor to the respiratory cbb3 oxygen reductase

    PubMed Central

    Chang, Hsin-Yang; Ahn, Young; Pace, Laura A.; Lin, Myat T.; Lin, Yun-Hui; Gennis, Robert B.

    2010-01-01

    The respiratory chain of Vibrio cholerae contains three bd-type quinol oxygen reductases as well as one cbb3 oxygen reductase. The cbb3 oxygen reductase has been previously isolated and characterized, however the natural mobile electron donor(s) which shuttles electrons between the bc1 complex and the cbb3 oxygen reductase is not known. The most likely candidates are the diheme cytochrome c4 and mono-heme cytochrome c5, which have been previously shown to be present in the periplasm of aerobically grown cultures of V. cholerae. Both cytochromes c4 and c5 from V. cholerae have been cloned and expressed heterologously in E. coli. It is shown that reduced cytochrome c4 is a substrate for the purified cbb3 oxygen reductase and can support steady state oxygen reductase activity of at least 300 e−1/s. In contrast, reduced cytochrome c5 is not a good substrate for the cbb3 oxygen reductase. Surprisingly, the dependence of the oxygen reductase activity on the concentration of cytochrome c4 does not exhibit saturation. Global spectroscopic analysis of the time course of the oxidation of cytochrome c4 indicates that the apparent lack of saturation is due to the strong dependence of KM and Vmax on the concentration of oxidized cytochrome c4. Whether this is an artifact of the in vitro assay or has physiological significance remains unknown. Cyclic voltammetry was used to determine that the midpoint potentials of the two hemes in cytochrome c4 are 240 mV and 340 mV (vs SHE), similar to the electrochemical properties of other c4-type cytochromes. Genomic analysis shows a strong correlation between the presence of a c4-type cytochrome and a cbb3 oxygen reductase within the β- and γ- proteobacterial clades, suggesting that cytochrome c4 is the likely natural electron donor to the cbb3 oxygen reductases within these organisms. These would include the β-proteobacteria Neisseria meningitidis and Neisseria gonnorhoeae, in which the cbb3 oxygen reductases are the only terminal

  9. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.

    PubMed

    Okotrub, Konstantin A; Surovtsev, Nikolay V

    2015-12-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation

    PubMed Central

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-01-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface. PMID:26140532

  11. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    PubMed

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  12. The role of cytochrome c on apoptosis induced by Anagrapha falcifera multiple nuclear polyhedrosis virus in insect Spodoptera litura cells.

    PubMed

    Liu, Kaiyu; Shu, Duanyang; Song, Na; Gai, Zhongchao; Yuan, Yuan; Li, Juan; Li, Min; Guo, Shuying; Peng, Jianxin; Hong, Huazhu

    2012-01-01

    There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.

  13. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5

    NASA Astrophysics Data System (ADS)

    Gnedenko, O. V.; Yablokov, E. O.; Usanov, S. A.; Mukha, D. V.; Sergeev, G. V.; Bulko, T. V.; Kuzikov, A. V.; Moskaleva, N. E.; Shumyantseva, V. V.; Ivanov, A. S.; Archakov, A. I.

    2014-02-01

    The combination of SPR biosensor with electrochemical analysis was used for the study of protein-protein interaction between cytochromes CYP3A4 or 3А5 and cytochromes b5: the microsomal, mitochondrial forms of this protein, and 2 ≪chimeric≫ proteins. Kinetic constants of CYP3A4 and CYP3А5 complex formation with cytochromes b5 were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was observed upon their interactions with mitochondrial cytochrome b5. The electrochemical analysis of CYP3A4, CYP3A5, and cytochromes b5 immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 to -0.350 V (vs. Ag/AgCl).

  14. OpenPET: A Flexible Electronics System for Radiotracer Imaging

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.

    2010-10-01

    We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.

  15. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    PubMed

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  16. Formate bound to cytochrome oxidase can be removed by cyanide and by reduction.

    PubMed

    Chang, K T; Palmer, G

    1996-12-18

    Using 14C-radiolabeled formate we have found that the rapid form of oxidized cytochrome oxidase can bind up to 1 mol of formate. Treatment of this formate-ligated enzyme with excess cyanide releases 97% of the radiolabel while reduction of formate-labeled enzyme with NADH+ruthenium releases 80-85% of the radioactivity. These data are most simply interpreted by assuming that formate binds to the heme iron of cytochrome a3.

  17. Identification of human cytochrome P450s as autoantigens.

    PubMed

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  18. A Critical Role for the cccA Gene Product, Cytochrome c2, in Diverting Electrons from Aerobic Respiration to Denitrification in Neisseria gonorrhoeae

    PubMed Central

    Hopper, Amanda C.; Li, Ying

    2013-01-01

    Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae. PMID:23543713

  19. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements

  20. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c

    PubMed Central

    Mootha, Vamsi K.; Wei, Michael C.; Buttle, Karolyn F.; Scorrano, Luca; Panoutsakopoulou, Vily; Mannella, Carmen A.; Korsmeyer, Stanley J.

    2001-01-01

    Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases. PMID:11179211

  1. A hypothetical complex between crystalline flavocytochrome b2 and cytochrome c.

    PubMed

    Tegoni, M; White, S A; Roussel, A; Mathews, F S; Cambillau, C

    1993-08-01

    Flavocytochrome b2 and cytochrome c are physiological electron transfer partners in yeast mitochondria. The formation of a stable complex between them has been demonstrated both in solution and in the crystalline state. On the basis of the three-dimensional structures, using molecular modeling and energy minimization, we have generated a hypothetical model for the interaction of these redox partners in the crystal lattice. General criteria such as good charge and surface complementarity, plausible orientation, and separation distance of the prosthetic groups, as well as more specific criteria such as the stoichiometry determined in the crystal, and the involvement of both domains and of more than one subunit of flavocytochrome b2 led us to discriminate between several possible interaction sites. In the hypothetical model we present, four cytochrome c molecules interact with a tetramer of flavocytochrome b2. The b2 and c hemes are coplanar, with an edge-to-edge distance of 14 A. The contact surface area is ca. 800 A2. Several electrostatic interactions involving the flavin and the heme domains of flavocytochrome b2 stabilize the binding of cytochrome c.

  2. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  3. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c

    PubMed Central

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A.

    2015-01-01

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin’s transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ’s histone chaperone activity. PMID:26216969

  4. Cytochrome and alternative pathway respiration in green algae : measurements using inhibitors and o(2) discrimination.

    PubMed

    Weger, H G; Guy, R D; Turpin, D H

    1990-05-01

    Inhibitor titration curves and discrimination against (18)O(2) by mitochondrial respiration in three strains of green algae (Selenastrum minutum [Naeg.] Collins, and two strains of Chlamydomonas reinhardtii Dangeard) with differing respiratory capabilities were determined. Discrimination for cytochrome pathway respiration ranged from 19.89 to 20.43%. Discrimination for alternative pathway respiration by wild-type C. reinhardtii (measured in the presence of KCN) was 25.46%, while discrimination values for a cytochrome oxidase deficient mutant of C. reinhardtii ranged from 24.24 to 24.96%. In the absence of KCN, the alternative pathway was not engaged in wild-type C. reinhardtii, the only algal strain that possessed both cytochrome and alternative pathway capacities.

  5. Probing the cytochrome c' folding landscape.

    PubMed

    Pletneva, Ekaterina V; Zhao, Ziqing; Kimura, Tetsunari; Petrova, Krastina V; Gray, Harry B; Winkler, Jay R

    2007-11-01

    The folding kinetics of R. palustris cytochrome c' (cyt c') have been monitored by heme absorption and native Trp72 fluorescence at pH 5. The Trp72 fluorescence burst signal suggests early compaction of the polypeptide ensemble. Analysis of heme transient absorption spectra reveals deviations from two-state behavior, including a prominent slow phase that is accelerated by the prolyl isomerase cyclophilin. A nonnative proline configuration (Pro21) likely interferes with the formation of the helical bundle surrounding the heme.

  6. Evidence that ligand formation is a mechanism underlying the maintenance of cytochrome P-450 in rat liver cell culture. Potent maintenance by metyrapone.

    PubMed Central

    Paine, A J; Villa, P; Hockin, L J

    1980-01-01

    The loss of cytochrome P-450 in cultured rat hepatocytes can be prevented by substituted pyridines, especially isonicotinamide, 3-hydroxypyridine and metyrapone. The effect of these compounds is independent of protein synthesis, suggesting that they maintain pre-existing cytochrome P-450. The efficiency of pyridines at maintaining cytochrome P-450 in hepatocyte culture is highly correlated with their ability to bind to this cytochrome, suggesting that ligand formation with cytochrome P-450 prevents its accelerated turnover in liver cell culture. PMID:7470047

  7. Thermodynamics of Electron Flow in the Bacterial Deca-heme Cytochrome MtrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Zarzycki, Piotr P.; Blumberger, Jochen

    2012-07-01

    Electron transporting multiheme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron conductance along heme chains in the cytochrome are difficult to access via experiment due to the nearly identical chemical nature of the heme cofactors. Here we employ large-scale molecular dynamics simulations to compute the reduction potentials of the ten hemes of MtrF in aqueous solution. We find that as a whole they fall within amore » range of about 0.3 V in agreement with experiment. Individual reduction potentials give rise to a free energy profile for electron conduction that is approximately symmetric with respect to the center of the protein. Our calculations indicate that there is no significant potential bias along the orthogonal octa- and tetra-heme chains suggesting that under aqueous conditions MtrF is a nearly reversible two-dimensional conductor.« less

  8. Absence of sugars in electrophoretically purified cytochrome b5 demonstrated by combined gas chromatography-mass spectrometry

    PubMed Central

    1981-01-01

    The problem of determining small but significant amounts of carbohydrates, in purified proteins, has been studied using the membrane protein, cytochrome b5. A newly developed method that involves direct gas chromatography-mass spectrometry of sugars obtained by hydrolysis of proteins purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) allows the identification and determination of small amounts of carbohydrates (e.g., 20 micrograms of glycoprotein containing a minimum of 0.1% monosaccharide), even in the presence of relatively high amounts of impurities. Application of this method to cytochrome b5 fragments obtained by tryptic digestion from rat liver microsomes and purified by combined gel filtration and ion exchange chromatography, followed by SDS PAGE, has consistently yielded values below 0.07 mol of the individual sugars and aminosugars per mole cytochrome b5. It is concluded that cytochrome b5, at least its trypsin-released major amino- terminal fragment, is not constitutively glycosylated. PMID:7251667

  9. {sup 18}F-desmethoxyfallypride: A fluorine-18 labeled radiotracer with properties similar to carbon-11 raclopride for PET imaging studies of dopamine D{sub 2} receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J.; Yang, Z.Y.; Brown, T.

    1996-07-19

    We have developed (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-{sup 18}F-fluoropropyl)-2-methoxybenzamide ({sup 18}F-desmethoxyfallypride) as a fluorine-18 radiotracer with properties analogous to that of {sup 11}C-raclopride. In vitro experiments in rat brain homogenates showed an association rate constant of 2.1X10{sup 8} M{sup -1} min{sup -1} and a dissociation rate constant of 0.073 min{sup -1}. High striatal uptake (up to 0.08% injected dose/cc) of {sup 18}F-desmethoxyfallypride in rhesus monkeys was observed in PET experiments. The radiotracer cleared from the striata with a dissociation rate of 1.80X10{sup -2} min{sup -1}. Striatum to cerebellum ratios peaked at 3.0 in 30 min after which they decreased steadily. Intravenously administered haloperidol displacedmore » specifically bound {sup 18}F-desmethoxyfallypride with a k{sub off} of 0.058 min{sup -1}. Synaptic dopamine released by the treatment of the monkeys with a d-amphetamine increased the dissociation rate of {sup 18}F-desmethoxyfallypride to 0.83 min{sup -1} thus reducing specifically bound {sup 18}F-desmethoxyfallypride by 56% over a period of 42 mins compared to a reduction of only 20% in controls during this time period. The sensitivity of {sup 18}F-desmethoxyfallypride towards competition with dopamine should make this radiotracer useful in PET studies to evaluate in vivo pharmacological effects of various agents that alter levels of endogenous dopamine. 27 refs., 8 figs.« less

  10. Optical biosensing of nitrite ions using cytochrome cd1 nitrite reductase encapsulated in a sol-gel matrix.

    PubMed

    Ferretti, S; Lee, S K; MacCraith, B D; Oliva, A G; Richardson, D J; Russell, D A; Sapsford, K E; Vidal, M

    2000-11-01

    Nitrite is an important human health and environmental analyte. As such, the European Union (EU) has imposed a limit for nitrite in potable water of 0.1 mg l-1 (2.18 microM). In order to develop an optical biosensing system for the determination of nitrite ions in environmental waters, cytochrome cd1 nitrite reductase has been extracted and purified from the bacterium Paracoccus pantotrophus. The protein has been spectroscopically characterised in solution and important kinetic parameters of nitrite reduction of the cytochrome cd1 enzyme, i.e., Km, Vmax and kcat have been determined. The influence of pH on the activity of the cytochrome cd1 has been investigated and the results suggest that this enzyme can be used for the determination of nitrite in the pH range 6-9. Biosensing experiments with the cytochrome cd1 in solution suggested that the decrease in intensity of the absorption band associated with the d1 haem (which is the nitrite binding site), at 460 nm, with increasing nitrite concentrations would enable the measurement of this analyte with the optimum limit of detection. The cytochrome cd1 has been encapsulated in a bulk sol-gel monolith with no structural changes observed and retention of enzymatic activity. The detection of nitrite ions in the range 0.075-1.250 microM was achieved, with a limit of detection of 0.075 microM. In order to increase the speed of response, a sol-gel sandwich thin film structure was formulated with the cytochrome cd1. This structure enabled the determination of nitrite concentrations within ca. 5 min. The sol-gel sandwich entrapped cytochrome cd1 enzyme was found to be stable for several months when the films were stored at 4 degrees C.

  11. Evidence from the structure and function of cytochromes c(2) that nonsulfur purple bacterial photosynthesis followed the evolution of oxygen respiration.

    PubMed

    Meyer, Terry; Van Driessche, Gonzalez; Ambler, Richard; Kyndt, John; Devreese, Bart; Van Beeumen, Jozef; Cusanovich, Michael

    2010-10-01

    Cytochromes c(2) are the nearest bacterial homologs of mitochondrial cytochrome c. The sequences of the known cytochromes c(2) can be placed in two subfamilies based upon insertions and deletions, one subfamily is most like mitochondrial cytochrome c (the small C2s, without significant insertions and deletions), and the other, designated large C2, shares 3- and 8-residue insertions as well as a single-residue deletion. C2s generally function between cytochrome bc(1) and cytochrome oxidase in respiration (ca 80 examples known to date) and between cytochrome bc(1) and the reaction center in nonsulfur purple bacterial photosynthesis (ca 21 examples). However, members of the large C2 subfamily are almost always involved in photosynthesis (12 of 14 examples). In addition, the gene for the large C2 (cycA) is associated with those for the photosynthetic reaction center (pufBALM). We hypothesize that the insertions in the large C2s, which were already functioning in photosynthesis, allowed them to replace the membrane-bound tetraheme cytochrome, PufC, that otherwise mediates between the small C2 or other redox proteins and photosynthetic reaction centers. Based upon our analysis, we propose that the involvement of C2 in nonsulfur purple bacterial photosynthesis was a metabolic feature subsequent to the evolution of oxygen respiration.

  12. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem

  13. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations.

    PubMed

    Von Moltke, L L; Greenblatt, D J; Granda, B W; Duan, S X; Grassi, J M; Venkatakrishnan, K; Harmatz, J S; Shader, R I

    1999-07-01

    To determine the human cytochromes mediating biotransformation of the imidazopyridine hypnotic, zolpidem, and the clinical correlates of the findings. Kinetic properties of zolpidem biotransformation to its three hydroxylated metabolites were studied in vitro using human liver microsomes and heterologously expressed individual human cytochromes. The metabolic product termed M-3 accounted for more than 80% of net intrinsic clearance by liver microsomes in vitro. Microsomes containing human cytochromes CYP1A2, 2C9, 2C19, 2D6, and 3 A4 expressed by cDNA-transfected human lymphoblastoid cells mediated zolpidem metabolism in vitro. The kinetic profile for zolpidem metabolite formation by each individual cytochrome was combined with estimated relative abundances based on immunological quantification, yielding projected contributions to net intrinsic clearance of: 61% for 3 A4, 22% for 2C9, 14% for 1A2, and less than 3% for 2D6 and 2C19. These values were consistent with inhibitory effects of ketoconazole and sulfaphenazole on zolpidem biotransformation by liver microsomes. Ketoconazole had a 50% inhibitory concentration (IC50 ) of 0.61 microm vs formation of the M-3 metabolite of zolpidem in vitro; in a clinical study, ketoconazole coadministration reduced zolpidem oral clearance by approximately 40%, somewhat less than anticipated based on the IC50 value and total plasma ketoconazole levels, but much more than predicted based on unbound plasma ketoconazole levels. The incomplete dependence of zolpidem clearance on CYP3A activity has clinical implications for susceptibility to metabolic inhibition.

  14. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations

    PubMed Central

    von Moltke, Lisa L; Greenblatt, David J; Granda, Brian W; Duan, Su Xiang; Grassi, Jeffrey M; Venkatakrishnan, Karthik; Harmatz, Jerold S; Shader, Richard I

    1999-01-01

    Aims To determine the human cytochromes mediating biotransformation of the imidazopyridine hypnotic, zolpidem, and the clinical correlates of the findings. Methods Kinetic properties of zolpidem biotransformation to its three hydroxylated metabolites were studied in vitro using human liver microsomes and heterologously expressed individual human cytochromes. Results The metabolic product termed M-3 accounted for more than 80% of net intrinsic clearance by liver microsomes in vitro. Microsomes containing human cytochromes CYP1A2, 2C9, 2C19, 2D6, and 3 A4 expressed by cDNA-transfected human lymphoblastoid cells mediated zolpidem metabolism in vitro. The kinetic profile for zolpidem metabolite formation by each individual cytochrome was combined with estimated relative abundances based on immunological quantification, yielding projected contributions to net intrinsic clearance of: 61% for 3 A4, 22% for 2C9, 14% for 1A2, and less than 3% for 2D6 and 2C19. These values were consistent with inhibitory effects of ketoconazole and sulfaphenazole on zolpidem biotransformation by liver microsomes. Ketoconazole had a 50% inhibitory concentration (IC50) of 0.61 μm vs formation of the M-3 metabolite of zolpidem in vitro; in a clinical study, ketoconazole coadministration reduced zolpidem oral clearance by ≈40%, somewhat less than anticipated based on the IC50 value and total plasma ketoconazole levels, but much more than predicted based on unbound plasma ketoconazole levels. Conclusions The incomplete dependence of zolpidem clearance on CYP3A activity has clinical implications for susceptibility to metabolic inhibition. PMID:10383565

  15. Simultaneous acquisition of (99m)Tc- and (123)I-labeled radiotracers using a preclinical SPECT scanner with CZT detectors.

    PubMed

    Kobayashi, Masato; Matsunari, Ichiro; Nishi, Kodai; Mizutani, Asuka; Miyazaki, Yoshiharu; Ogai, Kazuhiro; Sugama, Jyunko; Shiba, Kazuhiro; Kawai, Keiichi; Kinuya, Seigo

    2016-05-01

    of (99m)Tc-HMPAO with the dual tracer in normal mice also were the similar to those of the (99m)Tc-HMPAO single injection. In the first injection of (123)I-FP-CIT and second injection of (99m)Tc-HMPAO, the brain images and radioactive counts with the dual tracer were not much different from those of the (123)I-FP-CIT single injection. Dual-tracer imaging of (99m)Tc- and (123)I-labeled radiotracers is feasible in a preclinical SPECT scanner with CZT detector. When higher radioactivity of (99m)Tc-labeled radiotracers relative to (123)I-labeled radiotracers is applied, correction methods are not necessarily required for the quantification of (99m)Tc- and (123)I-labeled radiotracers when using a preclinical SPECT scanner with CZT detector.

  16. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Yi-Hua; Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu; Baker, Angela A.

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling,more » a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.« less

  17. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.

    PubMed

    Malvankar, Nikhil S; Mester, Tünde; Tuominen, Mark T; Lovley, Derek R

    2012-02-01

    Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c-type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c-type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge-discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self-discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic-like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  19. Functionalized PEI Nanoparticles For Delivery Of IGF-1R-Targeted siRNA's to UPAR-Expressing Tumors In Vitro And In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giblin, Michael F

    2012-12-14

    This proposal addressed the use of imaging technologies to develop therapeutic nanoparticle constructs which could reduce expression of molecules within the cancer cell important in tumor progression. The proposal described new labeling techniques that would result in therapeutic constructs which could be tracked both within targeted cells individually as well as within the individuals being treated. Representing a new generation of dual-labeled in vivo imaging agent, the constructs envisioned here would allow microPET imaging of targeted receptor expression as well as fluorescent imaging of silencing complexes targeting IGF-1R mRNA's. As such, this proposal was highly relevant to the Office ofmore » Biological and Environmental Research (BER) goals of facilitating improvements in radiotracer design in order to solve critical problems in biology and nuclear medicine.« less

  20. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  1. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling

    PubMed Central

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-01-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450–CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate–enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies. PMID:23844938

  2. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  3. Mechanisms of m-cresol induced protein aggregation studied using a model protein cytochrome c†

    PubMed Central

    Singh, Surinder M.; Hutchings, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Multi-dose protein formulations require an effective antimicrobial preservative (AP) to inhibit microbial growth during long-term storage of unused formulations. m-cresol is one such AP, but has been shown to cause protein aggregation. However, the fundamental physical mechanisms underlying such AP-induced protein aggregation are not understood. In this study, we used a model protein cytochrome c to identify the protein unfolding that triggers protein aggregation. m-cresol induced cytochrome c aggregation at preservative concentrations that are commonly used to inhibit microbial growth. Addition of m-cresol decreased the temperature at which the protein aggregated and increased the aggregation rate. However, m-cresol did not perturb the tertiary or secondary structure of cytochrome c. Instead, it populated an “invisible” partially unfolded intermediate where a local protein region around the methionine residue at position 80 was unfolded. Stabilizing the Met80 region drastically decreased the protein aggregation, which conclusively shows that this local protein region acts as an aggregation “hot-spot”. Based on these results, we propose that APs induce protein aggregation by partial rather than global unfolding. Because of the availability of site-specific probes to monitor different levels of protein unfolding, cytochrome c provided a unique advantage in characterizing the partial protein unfolding that triggers protein aggregation. PMID:21229618

  4. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  5. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  6. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  7. Construction and engineering of a thermostable self-sufficient cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C.more » Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.« less

  8. Cytochrome c conformations resolved by the photon counting histogram: Watching the alkaline transition with single-molecule sensitivity

    PubMed Central

    Perroud, Thomas D.; Bokoch, Michael P.; Zare, Richard N.

    2005-01-01

    We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pH-induced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0–9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5–10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry. PMID:16314563

  9. Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation

    PubMed Central

    Kamlet, Adam S.; Neumann, Constanze N.; Lee, Eunsung; Carlin, Stephen M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias

    2013-01-01

    New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods. PMID:23554994

  10. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  11. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    PubMed

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  12. Identification of Forensically Important Calliphoridae and Sarcophagidae Species Collected in Korea Using SNaPshot Multiplex System Targeting the Cytochrome c Oxidase Subunit I Gene

    PubMed Central

    Park, Ji Hye

    2018-01-01

    Estimation of postmortem interval (PMI) is paramount in modern forensic investigation. After the disappearance of the early postmortem phenomena conventionally used to estimate PMI, entomologic evidence provides important indicators for PMI estimation. The age of the oldest fly larvae or pupae can be estimated to pinpoint the time of oviposition, which is considered the minimum PMI (PMImin). The development rate of insects is usually temperature dependent and species specific. Therefore, species identification is mandatory for PMImin estimation using entomological evidence. The classical morphological identification method cannot be applied when specimens are damaged or have not yet matured. To overcome this limitation, some investigators employ molecular identification using mitochondrial cytochrome c oxidase subunit I (COI) nucleotide sequences. The molecular identification method commonly uses Sanger's nucleotide sequencing and molecular phylogeny, which are complex and time consuming and constitute another obstacle for forensic investigators. In this study, instead of using conventional Sanger's nucleotide sequencing, single-nucleotide polymorphisms (SNPs) in the COI gene region, which are unique between fly species, were selected and targeted for single-base extension (SBE) technology. These SNPs were genotyped using a SNaPshot® kit. Eleven Calliphoridae and seven Sarcophagidae species were covered. To validate this genotyping, fly DNA samples (103 adults, 84 larvae, and 4 pupae) previously confirmed by DNA barcoding were used. This method worked quickly with minimal DNA, providing a potential alternative to conventional DNA barcoding. Consisting of only a few simple electropherogram peaks, the results were more straightforward compared with those of the conventional DNA barcoding produced by Sanger's nucleotide sequencing. PMID:29682531

  13. Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c(3), in Shewanella oneidensis MR-1

    NASA Technical Reports Server (NTRS)

    Ozawa, K.; Tsapin, A. I.; Nealson, K. H.; Cusanovich, M. A.; Akutsu, H.

    2000-01-01

    Cytochrome c(3) from Desulfovibrio vulgaris Miyazaki F was successfully expressed in the facultative aerobe Shewanella oneidensis MR-1 under anaerobic, microaerophilic, and aerobic conditions, with yields of 0.3 to 0.5 mg of cytochrome/g of cells. A derivative of the broad-host-range plasmid pRK415 containing the cytochrome c(3) gene from D. vulgaris Miyazaki F was used for transformation of S. oneidensis MR-1, resulting in the production of protein product that was indistinguishable from that produced by D. vulgaris Miyazaki F, except for the presence of one extra alanine residue at the N terminus.

  14. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    PubMed

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  15. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    PubMed

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. A mutation in yeast mitochondrial DNA results in a precise excision of the terminal intron of the cytochrome b gene.

    PubMed

    Hill, J; McGraw, P; Tzagoloff, A

    1985-03-25

    The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.

  17. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase.

    PubMed

    Henderson, Colin J; Otto, Diana M E; Carrie, Dianne; Magnuson, Mark A; McLaren, Aileen W; Rosewell, Ian; Wolf, C Roland

    2003-04-11

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.

  18. BH3-only proteins trigger cytochrome c release, but how?

    PubMed

    Häcker, Georg; Weber, Arnim

    2007-06-15

    The mitochondrial apoptosis pathway has been neatly ordered. Mitochondrial apoptosis is governed by Bcl-2 family proteins, and their respective contributions determine the release of cytochrome c. It is clear that, among the Bcl-2 family, BH3-only proteins are the triggers: activation of BH3-only proteins by apoptotic stimuli initiates the process. BH3-only proteins cause cytochrome c release by activating Bax and/or Bak, and the anti-apoptotic group of Bcl-2-like proteins prevents this. However, it is curiously uncertain how BH3-only proteins activate Bax/Bak. Current models suggest that this is either through direct interaction--although this interaction is not detectable experimentally--or by the neutralisation of Bcl-2-like proteins. Here we discuss the context in which these models are placed and attempt to weigh the evidence.

  19. Cytochrome P450 2D6 polymorphism and character traits.

    PubMed

    Suzuki, Eiji; Kitao, Yoshie; Ono, Yutaka; Iijima, Yoshimi; Inada, Toshiya

    2003-06-01

    It has been suggested that cytochrome P450 2D6 (CYP2D6) is involved in dopamine metabolism within the brain. The dopamine system is suggested to play a role in determining normal character. The purpose of this study was to examine whether character traits are dependent on cytochrome P450 2D6 activity. We investigated the association between temperament and CYP2D6 gene polymorphism. The subjects were all Japanese and the polymorphism genotyped in the present study was CYP2D6*10. Character traits were assessed using the Temperament and Character Inventory. There was no overall or specific association between personality traits and the CYP2D6*10 allele and genotype frequencies. The present results do not support the hypothesis that CYP2D6 activity affects temperament and character.

  20. In vivo evaluation of radiotracers targeting the melanin-concentrating hormone receptor 1: [11C]SNAP-7941 and [18F]FE@SNAP reveal specific uptake in the ventricular system.

    PubMed

    Zeilinger, Markus; Dumanic, Monika; Pichler, Florian; Budinsky, Lubos; Wadsak, Wolfgang; Pallitsch, Katharina; Spreitzer, Helmut; Lanzenberger, Rupert; Hacker, Marcus; Mitterhauser, Markus; Philippe, Cécile

    2017-08-14

    The MCHR1 is involved in the regulation of energy homeostasis and changes of the expression are linked to a variety of associated diseases, such as diabetes and adiposity. The study aimed at the in vitro and in vivo evaluation of [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP as potential PET-tracers for the MCHR1. Competitive binding studies with non-radioactive derivatives and small-animal PET/CT and MRI brain studies were performed under baseline conditions and tracer displacement with the unlabelled MCHR1 antagonist (±)-SNAP-7941. Binding studies evinced high binding affinity of the non-radioactive derivatives. Small-animal imaging of [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP evinced high tracer uptake in MCHR1-rich regions of the ventricular system. Quantitative analysis depicted a significant tracer reduction after displacement with (±)-SNAP-7941. Due to the high binding affinity of the non-labelled derivatives and the high specific tracer uptake of [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP, there is strong evidence that both radiotracers may serve as highly suitable agents for specific MCHR1 imaging.

  1. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2.

    PubMed

    Slavik, Roger; Müller Herde, Adrienne; Haider, Ahmed; Krämer, Stefanie D; Weber, Markus; Schibli, Roger; Ametamey, Simon M; Mu, Linjing

    2016-09-01

    The cannabinoid receptor type 2 (CB2) is part of the endocannabinoid system and has gained growing attention in recent years because of its important role in neuroinflammatory/neurodegenerative diseases. Recently, we reported on a carbon-11 labeled 4-oxo-quinoline derivative, designated RS-016, as a promising radiotracer for imaging CB2 using PET. In this study, three novel fluorinated analogs of RS-016 were designed, synthesized, and pharmacologically evaluated. The results of our efforts led to the identification of N-(1-adamantyl)-1-(2-(2-fluoroethoxy)ethyl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxamide (RS-126) as the most potent candidate for evaluation as a CB2 PET ligand. [(18) F]RS-126 was obtained in ≥ 99% radiochemical purity with an average specific radioactivity of 98 GBq/μmol at the end of the radiosynthesis. [(18) F]RS-126 showed a logD7.4 value of 1.99 and is stable in vitro in rat and human plasma over 120 min, whereas 55% intact parent compound was found in vivo in rat blood plasma at 10 min post injection. In vitro autoradiographic studies with CB2-positive rat spleen tissue revealed high and blockable binding which was confirmed in in vivo displacement experiments with rats by dynamic PET imaging. Ex vivo biodistribution studies confirmed accumulation of [(18) F]RS-126 in rat spleen with a specificity of 79% under blocking conditions. The moderate elevated CB2 levels in LPS-treated mice brain did not permit the detection of CB2 by [(18) F]RS-126 using PET imaging. In summary, [(18) F]RS-126 demonstrated high specificity toward CB2 receptor in vitro and in vivo and is a promising radioligand for imaging CB2 receptor expression. Cannabinoid receptor type 2 (CB2) is an interesting target for PET imaging. Specific binding of [(18) F]RS-126 in CB2-positive spleen tissue (white arrow head) was confirmed in in vivo displacement experiments with rats. Time activity curve of [(18) F]RS-126 in the spleen after the addition of GW405833 (CB2

  2. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 inmore » marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a

  3. Vanadium(V) Reduction by Shewanella oneidensis MR-1 Requires Menaquinone and Cytochromes from the Cytoplasmic and Outer Membranes

    PubMed Central

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2004-01-01

    The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species. PMID:15006760

  4. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    PubMed

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Limitations of in silico predictability of specificity of co-immobilised cytochromes P450 and mimics in food-bioprocessing.

    PubMed

    Wiseman, Alan

    2003-04-01

    Cytochromes P450 (EC 1.14.14.1) are mixed function oxidases (oxygenases) that can catalyse redox bioconversions of food components. Also, efficacious removal of undesirable components can be achieved using solid-support immobilised enzyme (IME) of a selection from 2700 isoforms of cytochromes P450 (CYP). Cytochromes P450 co-immobilised with other enzymes, or protein receptors, may be used to confer a secondary order of regio- or stereo-specificity of chiral bioconversion: these can be predictable in silico by utilisation of QSARs (quantitative structure/activity relationships).

  6. Persian Gulf Jellyfish (Cassiopea andromeda) Venom Fractions Induce Selective Injury and Cytochrome C Release in Mitochondria Obtained from Breast Adenocarcinoma Patients

    PubMed

    Mirshamsi, Mohammad Reza; Omranipour, Ramesh; Vazirizadeh, Amir; Fakhri, Amir; Zangeneh, Fatemeh; Mohebbi, Gholam Hussain; Seyedian, Ramin; Pourahmad, Jalal

    2017-01-01

    Objective: This study was conducted to investigate whether fractions of jellyfish Cassiope andromeda venom, could selectively induce toxicity on mitochondria isolated from cancer tissue of patients with breast adenocarcinomas. Methods: Firstly, we extracted two fractions, (f1 and f2) from crude jellyfish venom by gel filtration on Sephadex G-200.Then different dilutions of these extracted fractions were applied to mitochondria isolated from human breast tumoral- and extra-tumoral tissues. Parameters of mitochondrial toxicity including generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, swelling, cytochrome c release, activation of caspase3 and apoptosis were then assayed. Result: Our results demonstrate that fraction 2 of Cassiopea andromeda crude venom significantly (P<0.05) decreased mitochondrial succinate dehydrogenase activity, increased mitochondrial ROS production, induced mitochondrial swelling, MMP collapse and cytochrome c release, activated caspase3 and induced apoptosis only in tumoral mitochondria, and not in mitochondria obtained from extra-tumoral tissue (P<0.05). Conclusion: In conclusion this study suggested that fraction 2 of Cassiopea andromeda crude venom selectively induces ROS mediated cytotoxicity by directly targeting mitochondria isolated from human breast tumor tissue. Creative Commons Attribution License

  7. Persian Gulf Jellyfish (Cassiopea andromeda) Venom Fractions Induce Selective Injury and Cytochrome C Release in Mitochondria Obtained from Breast Adenocarcinoma Patients

    PubMed Central

    Mirshamsi, Mohammad Reza; Omranipour, Ramesh; Vazirizadeh, Amir; Fakhri, Amir; Zangeneh, Fatemeh; Mohebbi, Gholam Hussain; Seyedian, Ramin; Pourahmad, Jalal

    2017-01-01

    Objective: This study was conducted to investigate whether fractions of jellyfish Cassiope andromeda venom, could selectively induce toxicity on mitochondria isolated from cancer tissue of patients with breast adenocarcinomas. Methods: Firstly, we extracted two fractions, (f1 and f2) from crude jellyfish venom by gel filtration on Sephadex G-200. Then different dilutions of these extracted fractions were applied to mitochondria isolated from human breast tumoral- and extra-tumoral tissues. Parameters of mitochondrial toxicity including generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, swelling, cytochrome c release, activation of caspase3 and apoptosis were then assayed. Result: Our results demonstrate that fraction 2 of Cassiopea andromeda crude venom significantly (P<0.05) decreased mitochondrial succinate dehydrogenase activity, increased mitochondrial ROS production, induced mitochondrial swelling, MMP collapse and cytochrome c release, activated caspase3 and induced apoptosis only in tumoral mitochondria, and not in mitochondria obtained from extra-tumoral tissue (P<0.05). Conclusion: In conclusion this study suggested that fraction 2 of Cassiopea andromeda crude venom selectively induces ROS mediated cytotoxicity by directly targeting mitochondria isolated from human breast tumor tissue. PMID:28240847

  8. Utility of the cytochrome c oxidase subunit I gene for the diagnosis of toxoplasmosis using PCR.

    PubMed

    Feng, Xue; Norose, Kazumi; Li, Kexin; Hikosaka, Kenji

    2017-10-01

    Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which belongs to the phylum Apicomplexa. Since this parasite causes severe clinical symptoms in immunocompromised patients, early diagnosis of toxoplasmosis is essential. PCR is currently used for early diagnosis, but there is no consensus regarding the most effective method for amplifying Toxoplasma DNA. In this study, we considered the utility of the cytochrome c subunit I (cox1) gene, which is encoded in the mitochondrial DNA of this parasite, as a novel target of PCR for the diagnosis of toxoplasmosis. To do this, we compared its copy number per haploid nuclear genome and the detection sensitivity of cox1-PCR with the previously reported target genes B1 and 18S rRNA and the AF146527 repeat element. We found that the copy number of cox1 was high and that the PCR using cox1 primers was more efficient at amplifying Toxoplasma DNA than the other PCR targets examined. In addition, PCR using clinical samples indicated that the cox1 gene would be useful for the diagnosis of toxoplasmosis. These findings suggest that use of cox1-PCR would facilitate the diagnosis of toxoplasmosis in clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    PubMed

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection.

    PubMed

    Shepherd, Mark; Achard, Maud E S; Idris, Adi; Totsika, Makrina; Phan, Minh-Duy; Peters, Kate M; Sarkar, Sohinee; Ribeiro, Cláudia A; Holyoake, Louise V; Ladakis, Dimitrios; Ulett, Glen C; Sweet, Matthew J; Poole, Robert K; McEwan, Alastair G; Schembri, Mark A

    2016-10-21

    Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract.

  11. Cytochrome P450 3A4 activity after surgical stress.

    PubMed

    Haas, Curtis E; Kaufman, David C; Jones, Carolyn E; Burstein, Aaron H; Reiss, William

    2003-05-01

    To evaluate the relationship between the acute inflammatory response after surgical trauma and changes in hepatic cytochrome P450 3A4 activity, compare changes in cytochrome P450 3A4 activity after procedures with varying degrees of surgical stress, and to explore the time course of any potential drug-cytokine interaction after surgery. Prospective, open-label study with each patient serving as his or her own control. University-affiliated, acute care, general hospital. A total of 16 patients scheduled for elective repair of an abdominal aortic aneurysm (n = 5), complete or partial colectomy (n = 6), or peripheral vascular surgery with graft (n = 5). Cytochrome P450 3A4 activity was estimated using the carbon-14 [14C]erythromycin breath test (ERMBT) before surgery and 24, 48, and 72 hrs after surgery. Abdominal aortic aneurysm and colectomy patients also had an ERMBT performed at discharge. Blood samples were obtained before surgery, immediately after surgery, and 6, 24, 32, 48, and 72 hrs after surgery for determination of plasma concentrations of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha. Clinical markers of surgical stress that were collected included duration of surgery, estimated blood loss, and volume of fluids administered in the operating room. ERMBT results significantly declined in all three surgical groups, with the lowest value at the time of the 72-hr study in all three groups. There was a trend toward differences in ERMBT results among groups that did not reach statistical significance (p =.06). The nadir ERMBT result was significantly and negatively correlated with both peak interleukin-6 concentration (r(s) = -.541, p =.03) and log interleukin-6 area under the curve from 0 to 72 hrs (r(s) = -.597, p =.014). Subjects with a peak interleukin-6 of >100 pg/mL had a significantly lower nadir ERMBT compared with subjects with a peak interleukin-6 of <100 pg/mL (35.5% +/- 5.2% vs. 74.7% +/- 5.1%, p <.001). Acute inflammation after

  12. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain.

    PubMed Central

    Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K

    1992-01-01

    The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169

  13. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction.

    PubMed

    Sacco, James C; Trepanier, Lauren A

    2010-01-01

    NADH cytochrome b5 reductase (b5R) and cytochrome b5 (b5) catalyze the reduction of sulfamethoxazole hydroxylamine (SMX-HA), which can contribute to sulfonamide hypersensitivity, to the parent drug sulfamethoxazole. Variability in hydroxylamine reduction could thus play a role in adverse drug reactions. The aim of this study was to characterize variability in SMX-HA reduction in 111 human livers, and investigate its association with single nucleotide polymorphisms (SNPs) in b5 and b5R cDNA. Liver microsomes were assayed for SMX-HA reduction activity, and b5 and b5R expression was semiquantified by immunoblotting. The coding regions of the b5 (CYB5A) and b5R (CYB5R3) genes were resequenced. Hepatic SMX-HA reduction displayed a 19-fold range of individual variability (0.06-1.11 nmol/min/mg protein), and a 17-fold range in efficiency (Vmax/Km) among outliers. SMX-HA reduction was positively correlated with b5 and b5R protein content (P<0.0001, r=0.42; P=0.01, r=0.23, respectively), and expression of both proteins correlated with one another (P<0.0001; r=0.74). A novel cSNP in CYB5A (S5A) was associated with very low activity and protein expression. Two novel CYB5R3 SNPs, R59H and R297H, displayed atypical SMX-HA reduction kinetics and decreased SMX-HA reduction efficiency. These studies indicate that although novel cSNPs in CYB5A and CYB5R3 are associated with significantly altered protein expression and/or hydroxylamine reduction activities, these low-frequency cSNPs seem to only minimally impact overall observed phenotypic variability. Work is underway to characterize polymorphisms in other regions of these genes to further account for individual variability in hydroxylamine reduction.

  14. Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity.

    PubMed

    McEneny-King, Alanna; Osman, Wesseem; Edginton, Andrea N; Rao, Praveen P N

    2017-06-01

    The 1,2,3,4-tetrahydroacridine derivative tacrine was the first drug approved to treat Alzheimer's disease (AD). It is known to act as a potent cholinesterase inhibitor. However, tacrine was removed from the market due to its hepatotoxicity concerns as it undergoes metabolism to toxic quinonemethide species through the cytochrome P450 enzyme CYP1A2. Despite these challenges, tacrine serves as a useful template in the development of novel multi-targeting anti-AD agents. In this regard, we sought to evaluate the risk of hepatotoxicity in a series of C9 substituted tacrine derivatives that exhibit cholinesterase inhibition properties. The hepatotoxic potential of tacrine derivatives was evaluated using recombinant cytochrome (CYP) P450 CYP1A2 and CYP3A4 enzymes. Molecular docking studies were conducted to predict their binding modes and potential risk of forming hepatotoxic metabolites. Tacrine derivatives compound 1 (N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) and 2 (6-chloro-N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) which possess a C9 3,4-dimethoxybenzylamino substituent exhibited weak binding to CYP1A2 enzyme (1, IC 50 =33.0µM; 2, IC 50 =8.5µM) compared to tacrine (CYP1A2 IC 50 =1.5µM). Modeling studies show that the presence of a bulky 3,4-dimethoxybenzylamino C9 substituent prevents the orientation of the 1,2,3,4-tetrahydroacridine ring close to the heme-iron center of CYP1A2 thereby reducing the risk of forming hepatotoxic species. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    PubMed Central

    Marshall, Matthew J; Dohnalkova, Alice C; Kennedy, David W; Shi, Liang; Wang, Zheming; Boyanov, Maxim I; Lai, Barry; Kemner, Kenneth M; McLean, Jeffrey S; Reed, Samantha B; Culley, David E; Bailey, Vanessa L; Simonson, Cody J; Saffarini, Daad A; Romine, Margaret F; Zachara, John M

    2006-01-01

    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments. PMID:16875436

  16. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide

    PubMed Central

    Korshunov, Sergey; Imlay, Karin R. C.; Imlay, James A.

    2016-01-01

    Summary When sulfur compounds are scarce or difficult to process, E. coli adapts by inducing the high-level expression of sulfur-compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low-micromolar levels of sulfide inhibited the proton-pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back-up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic-anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats. PMID:26991114

  17. Identification of fraud (with pig stuffs) in chicken-processed meat through information of mitochondrial cytochrome b.

    PubMed

    Yacoub, Haitham A; Sadek, Mahmoud A

    2017-11-01

    This study was conducted to find out the fraud in chicken-processed meat ingredients to protect consumers from commercial adulteration and authentication through a reliable way: direct amplification of conserved segment of cytochrome b gene of mitochondrial DNA, in addition, using species-specific primer assay for a certain cytochrome b. The results reported that chicken-processed meats were identified as a chicken meat based on amplification of conserved cytochrome b gene of mtDNA, while different fragments sizes were produced after the application of species-specific primer as follows: 227, 157, 274, 331, 389 and 439 bp for raw meat of chicken, goat, cattle, sheep, pig and horse, respectively. The results revealed that all chicken meat products are produced with 227 bp in size. While, an adulteration with pork stuffs was observed in some of the chicken meat products using a species-specific primer of cytochrome b gene, namely, chicken luncheon and chicken burger. This study represents a reliable technique that could be used to provide a promising solution for identifying the commercial adulteration and substitutions in processed meat in retail markets.

  18. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-,more » and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.« less

  19. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/submore » 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.« less

  20. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  1. Ibuprofen induces reduction of the proliferation-seeking radiotracer 99mTc-(V)DMSA uptake in severe epithelial breast hyperplasia without atypia.

    PubMed

    Papantoniou, Vassilios; Tsaroucha, Angeliki; Valsamaki, Pipitsa; Tsiouris, Spyridon; Sotiropoulou, Evangelia; Karianos, Theodore; Marinopoulos, Spyridon; Fothiadaki, Athina; Sotiropoulou, Maria; Archontaki, Aikaterini; Syrgiannis, Konstantinos; Dimitrakakis, Konstantinos; Antsaklis, Aris

    2010-10-01

    The purpose of this study was to investigate if ibuprofen intake can influence mammary uptake of the proliferation-seeking radiotracer technetium 99m-pentavalent dimercaptosuccinic acid (99mTc-(V)DMSA) in women with severe epithelial and atypical epithelial breast hyperplasia. Eight patients with histologically confirmed severe epithelial breast hyperplasia with (n  =  4) and without atypia (n  =  4) were submitted prospectively to 99mTc-(V)DMSA scintimammography before and after a 4-week course of 400 mg ibuprofen daily oral intake. Lesion to background ratios 60 minutes postinjection were calculated and compared (t-test) before and after ibuprofen administration. Prior to ibuprofen, the patients with severe epithelial hyperplasia displayed a significantly higher 99mTc-(V)DMSA uptake ratio compared to those with atypical epithelial hyperplasia (2.40 ± 0.32 vs 1.67 ± 0.09, respectively; p  =  .003). They also exhibited a more substantial percent decline in tracer uptake postibuprofen compared to women with atypical epithelial hyperplasia (62.0 ± 7.1 vs 15.0 ± 0.2, respectively; p  =  .001). Ibuprofen induces significant uptake reduction of the proliferation-seeking radiotracer 99mTc-(V)DMSA in severe epithelial breast hyperplasia without atypia. This agent could therefore constitute a potential imaging tool for monitoring chemoprophylaxis effectiveness in women at the early stages of malignant transformation.

  2. Cytochrome P450 diversity in the tree of life.

    PubMed

    Nelson, David R

    2018-01-01

    Sequencing in all areas of the tree of life has produced >300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to >41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. >3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are >43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assembly of the mitochondrial membrane system. XVIII. Genetic loci on mitochondrial DNA involved in cytochrome b biosynthesis.

    PubMed

    Tzagoloff, A; Foury, F; Akai, A

    1976-11-24

    1. Fourteen cytoplasmic mutants of Saccharomyces cerevisiae with a specific deficiency of cytochrome b have been studied. The mutations have been shown to occur in two separate genetic loci, COB 1 and COB 2. These loci can be distinguished by mit- X mit- crosses. Pairwise crosses of cytochrome b mutants belonging to different loci yield 4-6% wild type recombinants corresponding to recombinational frequencies of 8-12%. In intra-locus crosses, the recombinational frequencies range from 1% to less than 0.01%. The two loci can also be distinguished by mit- X rho- crosses. Twenty rho- testers have been isolated of which ten preferentially restore mutations in COB 1 and ten others in COB 2. 2. The COB 1 and COB 2 loci have been localized on mitochondrial DNA between the two antibiotic resistance loci OLI 1 and OLI 2 in the order OLI 2-COB 2-COB 1-OLI 1. The results of mit- X mit- and mit- X rho- crosses have also been used to map the cytochrome b mutations relative to each other. The maps obtained by the two independent methods are in good agreement. 3. Mutations in COB 1 have been found to be linked to the OLI1 locus in some but not in other strains of S. cervisiae. This evidence suggests that there may be a spacer region between the two loci whose length varies from strain to strain. 4. Two mutations in COB 2 have been found to cause a loss of a mitochondrial translation product corresponding to the cytochrome b apoprotein. Instead of the wild type protein the mutants have a new low-molecular weight product which is probably a fragment of cytochrome b. The fact that the mutations revert suggests that they are nonsense mutations in the structural gene of cytochrome b.

  4. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding

    PubMed Central

    Liko, Idlir; Degiacomi, Matteo T.; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V.

    2016-01-01

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance. PMID:27364008

  5. Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies.

    PubMed

    Palma, P N; Moura, I; LeGall, J; Van Beeumen, J; Wampler, J E; Moura, J J

    1994-05-31

    Small electron-transfer proteins such as flavodoxin (16 kDa) and the tetraheme cytochrome c3 (13 kDa) have been used to mimic, in vitro, part of the complex electron-transfer chain operating between substrate electron donors and respiratory electron acceptors, in sulfate-reducing bacteria (Desulfovibrio species). The nature and properties of the complex formed between these proteins are revealed by 1H-NMR and molecular modeling approaches. Our previous study with the Desulfovibrio vulgaris proteins [Moura, I., Moura, J.J. G., Santos, M.H., & Xavier, A. V. (1980) Cienc. Biol. (Portugal) 5, 195-197; Stewart, D.E. LeGall, J., Moura, I., Moura, J. J. G., Peck, H.D. Jr., Xavier, A. V., Weiner, P. K., & Wampler, J.E. (1988) Biochemistry 27, 2444-2450] indicated that the complex between cytochrome c3 and flavodoxin could be monitored by changes in the NMR signals of the heme methyl groups of the cytochrome and that the electrostatic surface charge (Coulomb's law) on the two proteins favored interaction between one unique heme of the cytochrome with flavodoxin. If the interaction is indeed driven by the electrostatic complementarity between the acidic flavodoxin and a unique positive region of the cytochrome c3, other homologous proteins from these two families of proteins might be expected to interact similarly. In this study, three homologous Desulfovibrio cytochromes c3 were used, which show a remarkable variation in their individual isoelectric points (ranging from 5.5 to 9.5). On the basis of data obtained from protein-protein titrations followed at specific proton NMR signals (i.e., heme methyl resonances), a binding model for this complex has been developed with evaluation of stoichiometry and binding constants. This binding model involves one site on the cytochromes c3 and two sites on the flavodoxin, with formation of a ternary complex at saturation. In order to understand the potential chemical form of the binding model, a structural model for the hypothetical

  6. Relative importance of driving force and electrostatic interactions in the reduction of multihaem cytochromes by small molecules.

    PubMed

    Quintas, Pedro O; Cepeda, Andreia P; Borges, Nuno; Catarino, Teresa; Turner, David L

    2013-06-01

    Multihaem cytochromes are essential to the energetics of organisms capable of bioremediation and energy production. The haems in several of these cytochromes have been discriminated thermodynamically and their individual rates of reduction by small electron donors were characterized. The kinetic characterization of individual haems used the Marcus theory of electron transfer and assumed that the rates of reduction of each haem by sodium dithionite depend only on the driving force, while electrostatic interactions were neglected. To determine the relative importance of these factors in controlling the rates, we studied the effect of ionic strength on the redox potential and the rate of reduction by dithionite of native Methylophilus methylotrophus cytochrome c″ and three mutants at different pH values. We found that the main factor determining the rate is the driving force and that Marcus theory describes this satisfactorily. This validates the method of the simultaneous fitting of kinetic and thermodynamic data in multihaem cytochromes and opens the way for further investigation into the mechanisms of these proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  8. Cytochrome c release in acute myocardial infarction predicts poor prognosis and myocardial reperfusion on contrast-enhanced magnetic resonance imaging.

    PubMed

    Liu, Zhen-Bing; Fu, Xiang-Hua; Wei, Geng; Gao, Jun-Ling

    2014-01-01

    Myocardial ischemia and reperfusion injury in ST-segment elevation myocardial infarction (STEMI) can trigger no-flow, resulting in myocardial necrosis and apoptosis, even a poor prognosis. Cytochrome c can induce an apoptotic process. The aim of our study was to assess the relationship between systemic cytochrome c levels and the occurrence of no-reflow in STEMI. One hundred and sixty patients with STEMI undergoing a primary percutaneous coronary intervention (PPCI) were randomly chosen. Patients were divided into two groups defined by the mean cytochrome c peak level after PPCI. No-reflow was assessed using three different methods after PPCI: myocardial blush grade, electrocardiographic ST-resolution, and microvascular obstruction (MO) assessed by cardiovascular magnetic resonance imaging. The primary clinical end points were major adverse cardiovascular events (defined as cardiac death, reinfarction, or new congestive heart failure). Clinical follow-up was carried out for 1 year. Patients with a cytochrome c level of at least the mean peak level had a greater creatine kinase-MB isoenzyme peak level (P=0.044), a lower left ventricular ejection fraction (P=0.029), a significantly higher occurrence of early MO (P=0.008), and a significantly larger extent of early MO (P=0.020). The cytochrome c peak level was elevated in patients with early MO (P=0.025), myocardial blush grade 0-1 (P=0.002), and ST-resolution less than 30% (P=0.003) after PPCI. A higher incidence of cardiac death at the 1-year follow-up was found in the patients with cytochrome c levels of at least the mean peak level (log rank, P=0.029). Cytochrome c levels above the mean peak level were related to no-reflow and mortality in patients with STEMI.

  9. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  10. THE DIFFERENTIAL HEPATOTOXICITY AND CYTOCHROME P450 RESPONSE OF F344 RATS TO THE THREE ISOMERS OF DICHLOROBENZENE

    EPA Science Inventory

    The acute hepatotoxicity and response of hepatic cytochrome P450 to treatment with the three isomers of dichlorobenzene (DCB) have been investigated. The objectives were to estimate toxic thresholds and to further e1ucidate the role of cytochrome P450 in the metabolism and toxici...

  11. Cytochrome P450 (CYP) epoxygenases as potential targets in the management of impaired diabetic wound healing.

    PubMed

    Zhao, Huichen; Chen, Jicui; Chai, Jiachao; Zhang, Yuchao; Yu, Cong; Pan, Zhe; Gao, Peng; Zong, Chen; Guan, Qingbo; Fu, Yuqin; Liu, Yuantao

    2017-07-01

    Epoxyeicosatrienoic acids (EETs) are the epoxidation products of arachidonic acid catalyzed by cytochrome P450 (CYP) epoxygenases, which possess multiple biological activities. In the present study, we aimed to explore the role and effects of CYP epoxygenases/EETs in wound healing in ob/ob mice. Full-thickness skin dorsal wounds were made on ob/ob mice and C57BL/6 control mice. The mRNA and protein expression of CYP epoxygenases were determined in granulation tissues of wounds. Effects of EETs on wound healing were evaluated. Inflammation and angiogenesis in wounds were also observed. Compared with C57BL/6 mice, the mRNA and protein expression of CYP2C65 and CYP2J6 in the granulation tissues in ob/ob mice were significantly reduced. 11,12-EET treatment significantly improved wound healing in ob/ob mice, whereas 14,15-EEZE, an EET antagonist, showed the opposite effect. 11,12-EET treatment decreased neutrophil and macrophage infiltration to the wound sites, resulting in reduced production of inflammatory cytokines, decreased MMP-9 expression, and increased collagen accumulation in the granulation tissues of ob/ob mice. In addition, 11,12-EET increased angiogenesis in the granulation tissues of wounds in ob/ob mice. These findings indicate that reduced expression of CYP epoxygenases may contribute to impaired diabetic wound healing, and exogenous EETs may improve diabetic wound healing by modulating inflammation and angiogenesis.

  12. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    PubMed

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  13. Effects of thalidomide, cytochrome P-450 and TNF-alpha on angiogenesis in a three-dimensional collagen gel-culture.

    PubMed

    Fujita, Keiko; Asami, Yoshiko; Murata, Eiko; Akita, Masumi; Kaneko, Katsuji

    2002-10-01

    The anti-angiogenic effects of thalidomide were examined in mouse aortae grown in a three-dimensional collagen gel-culture. In our in vitro model, (+/-)-thalidomide and (-)-thalidomide exhibited no anti-angiogenic effects. On the other hand, when the culture was treated with thalidomide plus cytochrome P-450, both types of thalidomides significantly inhibited angiogenesis. Co-administration of 100 microg/ml thalidomide plus 200 microg/ml cytochrome P-450 inhibited angiogenesis more strongly than thalidomide plus cytochrome P-450 at other concentrations (10 microg/ml + 200 microg/ml and 100 microg/ml + 20 microg/ml). To study the relation between the anti-angiogenic effect and TNF-alpha, we also evaluated the concentration of TNF-alpha in the culture medium. We found that the concentration of TNF-alpha was correlated to the strength of the anti-angiogenic effect. The inhibition of angiogenesis by thalidomide and cytochrome P-450 takes place through a suppression of TNF-alpha and involves the metabolism of the thalidomide.

  14. The effects of monobromobimane on calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome C release in isolated brain mitochondria.

    PubMed

    Abe, Tsutomu; Takagi, Norio; Nakano, Midori; Tanonaka, Kouichi; Takeo, Satoshi

    2004-04-01

    A possible involvement of inhibitory effects of monobromobimane (MBM), a thiol reagent, on the swelling and the release of cytochrome c in the isolated brain mitochondria was examined. MBM dose-dependently inhibited the calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome c release. Significant relationships between mitochondrial swelling and cytochrome c release were detected. Furthermore, effects of in vivo treatment with MBM on neuronal cell damage after transient (15 min) global ischemia in rats were examined. Infusion of MBM (1 or 3 microg/animal) to cerebral ventricles attenuated an increased number of TUNEL-positive cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion. These results suggest that MBM may have an ability to inhibit mitochondria-associated apoptotic pathways through attenuation of the mitochondrial swelling and the release of cytochrome c.

  15. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis.

    PubMed

    Zou, Yu-Ling; Luo, Wen-Bin; Xie, Lin; Mao, Xin-Bang; Wu, Chao; You, Zhi-Peng

    2018-06-01

    Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive. In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot. Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What's more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1. These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.

  16. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances.

    PubMed

    Dantas, Joana M; Ferreira, Marisa R; Catarino, Teresa; Kokhan, Oleksandr; Raj Pokkuluri, P; Salgueiro, Carlos A

    2018-05-16

    The bacterium Geobacter sulfurreducens can transfer electrons to the quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH 2 QDS) can also be used as energy source G. sulfurreducens. Such bi-directional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bi-functional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH 2 QDS. Using stopped-flow measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same bi-functional behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13 C, 15 N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1 H heme methyl group signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex with AQDS through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens. Copyright © 2018. Published by Elsevier B.V.

  17. The biodiversity of microbial cytochromes P450.

    PubMed

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  18. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    PubMed Central

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  19. Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Forman, C. J.; Wang, N.; Yang, Z. Y.; Mowat, C. G.; Jarvis, S.; Durkan, C.; Barker, P. D.

    2013-05-01

    Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.

  20. Differential Stability of Dimeric and Monomeric Cytochrome c Oxidase Exposed to Elevated Hydrostatic Pressure†

    PubMed Central

    Staničová, Jana; Sedlák, Erik; Musatov, Andrej; Robinson, Neal C.

    2007-01-01

    Detergent-solubilized dimeric and monomeric cytochrome c oxidase (CcO) have significantly different quaternary stability when exposed to 2−3 kbar of hydrostatic pressure. Dimeric, dodecyl maltoside-solubilized cytochrome c oxidase is very resistant to elevated hydrostatic pressure with almost no perturbation of its quaternary structure or functional activity after release of pressure. In contrast to the stability of dimeric CcO, 3 kbar of hydrostatic pressure triggers multiple structural and functional alterations within monomeric cytochrome c oxidase. The perturbations are either irreversible or slowly reversible since they persist after the release of high pressure. Therefore, standard biochemical analytical procedures could be used to quantify the pressure-induced changes after the release of hydrostatic pressure. The electron transport activity of monomeric cytochrome c oxidase decreases by as much as 60% after exposure to 3 kbar of hydrostatic pressure. The irreversible loss of activity occurs in a time- and pressure-dependent manner. Coincident with the activity loss is a sequential dissociation of four subunits as detected by sedimentation velocity, high-performance ion-exchange chromatography, and reversed-phase and SDS–PAGE subunit analysis. Subunits VIa and VIb are the first to dissociate followed by subunits III and VIIa. Removal of subunits VIa and VIb prior to pressurization makes the resulting 11-subunit form of CcO even more sensitive to elevated hydrostatic pressure than monomeric CcO containing all 13 subunits. However, dimeric CcO, in which the association of VIa and VIb is stabilized, is not susceptible to pressure-induced inactivation. We conclude that dissociation of subunit III and/or VIIa must be responsible for pressure-induced inactivation of CcO since VIa and VIb can be removed from monomeric CcO without significant activity loss. These results are the first to clearly demonstrate an important structural role for the dimeric form of

  1. In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans: 18F-MNI-659 and 18F-MNI-654.

    PubMed

    Barret, Olivier; Thomae, David; Tavares, Adriana; Alagille, David; Papin, Caroline; Waterhouse, Rikki; McCarthy, Timothy; Jennings, Danna; Marek, Ken; Russell, David; Seibyl, John; Tamagnan, Gilles

    2014-08-01

    Phosphodiesterase (PDE) 10A is an enzyme involved in the regulation of cyclic adenosine monophosphate and cyclic guanosine monophosphate and is highly expressed in medium-sized spiny neurons of the striatum, making it an attractive target for novel therapies for a variety of neurologic and psychiatric disorders that involve striatal function. Potential ligands for PET imaging of PDE10A have been reported. Here, we report the first-in-human characterization of 2 new PDE10A radioligands, 2-(2-(3-(1-(2-fluoroethyl)-1H-indazol-6-yl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ((18)F-MNI-654) and 2-(2-(3-(4-(2-fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ((18)F-MNI-659), with the goal of selecting the best one for use in future studies interrogating pathophysiologic changes in neuropsychiatric disorders and aiding pharmaceutical development targeting PDE10A. Eleven healthy volunteers participated in this study ((18)F-MNI-654 test-retest, 2 men; (18)F-MNI-659 test-retest, 4 men and 1 woman; (18)F-MNI-659 dosimetry, 2 men and 2 women). Brain PET images were acquired over 5.5 h for (18)F-MNI-654 and over 3.5 h for (18)F-MNI-659, and pharmacokinetic modeling with plasma- and reference-region (cerebellar cortex)-based methods was performed. Whole-body PET images were acquired over 6 h for (18)F-MNI-659 and radiation dosimetry estimated with OLINDA. Both radiotracers were similarly metabolized, with about 20% of intact parent remaining at 120 min after injection. PET time-activity data demonstrated that (18)F-MNI-654 kinetics were much slower than (18)F-MNI-659 kinetics. For (18)F-MNI-659, there was good agreement between the Logan and simplified reference tissue models for nondisplaceable binding potential (BPND), supporting noninvasive quantification, with test-retest variability less than 10% and intraclass correlation greater than 0.9. The (18)F-MNI-659 effective dose was

  2. Microbolometer SU-8 photoresist microstructure with cytochrome c protein as a sensing pixel for microbolometer

    NASA Astrophysics Data System (ADS)

    Lai, Jian-Lun; Su, Guo-Dung J.

    2012-08-01

    There are two important parts in Microbolometer: the high TCR sensing material and low thermal conductance. The high TCR material cytochrome c protein is a good candidate for infrared detection. Our group already demonstrated cytochrome c thin film has high TCR on the top of SU8 surface that has been published in Proc. of SPIE (2011). Because the very low thermal conductivity of SU-8, we proposed a new concept of SU-8 photoresist thermal insulation desk structure, and used the exposure dose method to establish it. Although exposure dose method is very sensitive to exposure time and PEB time, we successfully investigated the right recipe to create new desk insulation structure which with different height. We also explored the relationship between mask II exposure time and desktop thickness, and how the post-exposure baking (PEB) time influenced our structure. Our SU-8 photoresist insulation structure fabrication process is much easier and cheaper than present SiNx fabrication process. The desk shape structure can have low thermal conductance of 6.681*10-6 W/K. The easy-made SU-8 microstructures and cytochrome c thin films that and can reduce the cost of IR microbolometer. We believe that it is possible to fabricate a new generation of microbolometer based on cytochrome c protein and SU-8 photoresist microstructures.

  3. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology.

    PubMed

    Jennings, Brett L; Sahan-Firat, Seyhan; Estes, Anne M; Das, Kanak; Farjana, Nasreen; Fang, Xiao R; Gonzalez, Frank J; Malik, Kafait U

    2010-10-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study showing that angiotensin II-induced vascular smooth muscle cell growth depends on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg per minute) or mice (1000 μg/kg per day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased vascular reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1(-/-) mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3',4,5'-tetramethoxystilbene, which prevents both cytochrome P450 1B1-dependent and -independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases.

  4. CYTOCHROME P450 1B1 CONTRIBUTES TO ANGIOTENSIN II-INDUCED HYPERTENSION AND ASSOCIATED PATHOPHYSIOLOGY

    PubMed Central

    Jennings, Brett L.; Sahan-Firat, Seyhan; Estes, Anne M.; Das, Kanak; Farjana, Nasreen; Fang, Xiao R.; Gonzalez, Frank J.; Malik, Kafait U.

    2010-01-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study that angiotensin II-induced vascular smooth muscle cell growth is dependent on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg/min) or mice (1000 μg/kg/day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor, 2,3′,4,5′-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1-/- mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3′,4,5′-tetramethoxystilbene which prevents both cytochrome P450 1B1-dependent and independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases. PMID:20805442

  5. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons.

    PubMed

    Wong-Riley, M T; Trusk, T C; Kaboord, W; Huang, Z

    1994-09-01

    One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly

  6. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed

    Rhoads, D. M.; McIntosh, L.

    1993-11-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein.

  7. Properties and structure of a low-potential, penta-heme cytochrome c 552 from a thermophilic purple sulfur photosynthetic bacterium Thermochromatium tepidum.

    PubMed

    Chen, Jing-Hua; Yu, Long-Jiang; Boussac, Alain; Wang-Otomo, Zheng-Yu; Kuang, Tingyun; Shen, Jian-Ren

    2018-04-24

    The thermophilic purple sulfur bacterium Thermochromatium tepidum possesses four main water-soluble redox proteins involved in the electron transfer behavior. Crystal structures have been reported for three of them: a high potential iron-sulfur protein, cytochrome c', and one of two low-potential cytochrome c 552 (which is a flavocytochrome c) have been determined. In this study, we purified another low-potential cytochrome c 552 (LPC), determined its N-terminal amino acid sequence and the whole gene sequence, characterized it with absorption and electron paramagnetic spectroscopy, and solved its high-resolution crystal structure. This novel cytochrome was found to contain five c-type hemes. The overall fold of LPC consists of two distinct domains, one is the five heme-containing domain and the other one is an Ig-like domain. This provides a representative example for the structures of multiheme cytochromes containing an odd number of hemes, although the structures of multiheme cytochromes with an even number of hemes are frequently seen in the PDB database. Comparison of the sequence and structure of LPC with other proteins in the databases revealed several characteristic features which may be important for its functioning. Based on the results obtained, we discuss the possible intracellular function of this LPC in Tch. tepidum.

  8. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  9. Identification of novel cytochrome P450s in the Acari

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s are the major phase I drug metabolising enzymes found in most organisms, including arthropods. Much of the work within the area of xenobiotic metabolism in this group of animals has centered around mosquito species, e.g. Anopheles gambiae and Culex quinquefasciatus, due to their rol...

  10. Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations.

    PubMed

    Kim, Young-Seung; Yang, Chang-Tong; Wang, Jianjun; Wang, Lijun; Li, Zi-Bo; Chen, Xiaoyuan; Liu, Shuang

    2008-05-22

    In this report, we present the synthesis and evaluation of six new 64Cu-labeled triphenylphosphonium (TPP) cations. Biodistribution studies were performed using the athymic nude mice bearing U87MG human glioma xenografts to explore the impact of TPP moieties, linkers, bifunctional chelators (BFCs), and molecular charge on biological properties of 64Cu radiotracers. On the basis of the results from this study, it is concluded that (1) mTPP (tris(4-methoxyphenyl)phosphonium) is a better mitochondrion-targeting molecule than TPP and 3mTPP (tris(2,4,6-trimethoxyphenyl)phosphonium); (2) DO3A (1,4,7,10-tetraazacyclododecane-4,7,10-triacetic acid) and DO2A (1,4,7,10-tetraazacyclododecane-4,7-diacetic acid) are suitable BFCs for the 64Cu-labeling of TPP cations; (3) NOTA-Bn ( S-2-(4-thioureidobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid) has a significant adverse effect on the radiotracer tumor uptake and tumor-to-background ratios; and (4) monoanionic BFCs should be avoided to ensure that 64Cu chelate has a neutral or negative charge. Considering the tumor uptake and tumor/liver ratios, 64Cu(DO2A-xy-TPP)+ is the best candidate for more extensive evaluations in different tumor-bearing animal models.

  11. Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with its native cytochrome c6: Reunion with a lost donor.

    PubMed

    Bernal-Bayard, Pilar; Pallara, Chiara; Carmen Castell, M; Molina-Heredia, Fernando P; Fernández-Recio, Juan; Hervás, Manuel; Navarro, José A

    2015-12-01

    In the Phaeodactylum tricornutum alga, as in most diatoms, cytochrome c6 is the only electron donor to photosystem I, and thus they lack plastocyanin as an alternative electron carrier. We have investigated, by using laser-flash absorption spectroscopy, the electron transfer to Phaeodactylum photosystem I from plastocyanins from cyanobacteria, green algae and plants, as compared with its own cytochrome c6. Diatom photosystem I is able to effectively react with eukaryotic acidic plastocyanins, although with less efficiency than with Phaeodactylum cytochrome c6. This efficiency, however, increases in some green alga plastocyanin mutants mimicking the electrostatics of the interaction site on the diatom cytochrome. In addition, the structure of the transient electron transfer complex between cytochrome c6 and photosystem I from Phaeodactylum has been analyzed by computational docking and compared to that of green lineage and mixed systems. Taking together, the results explain why the Phaeodactylum system shows a lower efficiency than the green systems, both in the formation of the properly arranged [cytochrome c6-photosystem I] complex and in the electron transfer itself. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syn-9,10-dioxabimane.

    PubMed Central

    Vogel, F; Lumper, L

    1983-01-01

    The kinetics of thiol-group alkylation in NADPH-cytochrome P-450 reductase during its inactivation by monobromobimane has been studied using the fluorimetric determination of S-bimane-L-cysteine by high-performance liquid chromatography. Loss of activity during the reaction of NADPH-cytochrome P-450 reductase with monobromobimane is caused by the alkylation of one single critical cysteine residue, which can be protected against thiol-specific reagents by NADP(H). The chemical stability of the bimane group allows the digestion of bimane-labelled NADPH-cytochrome P-450 reductase by CNBr. The critical cysteine residue could be located in a CNBr-cleaved peptide purified to homogeneity with Mr 10 500 +/- 1 000 and valine as N-terminus. Images Fig. 2. PMID:6414464

  13. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c.

    PubMed

    Battistuzzi, G; Borsari, M; Sola, M; Francia, F

    1997-12-23

    The reduction potentials of beef heart cytochrome c and cytochromes c2 from Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Rhodobacter capsulatus were measured through direct electrochemistry at a surface-modified gold electrode as a function of temperature in nonisothermal experiments carried out at neutral and alkaline pH values. The thermodynamic parameters for protein reduction (DeltaS degrees rc and DeltaH degrees rc) were determined for the native and alkaline conformers. Enthalpy and entropy terms underlying species-dependent differences in E degrees and pH- and temperature-induced E degrees changes for a given cytochrome were analyzed. The difference of about +0.1 V in E degrees between cytochromes c2 and the eukaryotic species can be separated into an enthalpic term (-DeltaDeltaH degrees rc/F) of +0.130 V and an entropic term (TDeltaDeltaS degrees rc/F) of -0.040 V. Hence, the higher potential of the bacterial species appears to be determined entirely by a greater enthalpic stabilization of the reduced state. Analogously, the much lower potential of the alkaline conformer(s) as compared to the native species is by far enthalpic in origin for both protein families, and is largely determined by the substitution of Met for Lys in axial heme ligation. Instead, the biphasic E degrees /temperature profile for the native cytochromes is due to a difference in reduction entropy between the conformers at low and high temperatures. Temperature-dependent 1H NMR experiments suggest that the temperature-induced transition also involves a change in orientation of the axial methionine ligand with respect to the heme plane.

  14. Three-dimensional structure of NADPH–cytochrome P450 reductase: Prototype for FMN- and FAD-containing enzymes

    PubMed Central

    Wang, Ming; Roberts, David L.; Paschke, Rosemary; Shea, Thomas M.; Masters, Bettie Sue Siler; Kim, Jung-Ja P.

    1997-01-01

    Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase. PMID:9237990

  15. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.

    PubMed

    Kollipara, Sireesha; Tatireddy, Shivakishore; Pathirathne, Thusitha; Rathnayake, Lasantha K; Northrup, Scott H

    2016-08-25

    Brownian dynamics (BD) simulations provide here a theoretical atomic-level treatment of the reduction of human ferric cytochrome b5 (cyt b5) by NADH-cytochrome b5 reductaste (cyt b5r) and several of its mutants. BD is used to calculate the second-order rate constant of electron transfer (ET) between the proteins for direct correlation with experiments. Interestingly, the inclusion of electrostatic forces dramatically increases the reaction rate of the native proteins despite the overall negative charge of both proteins. The role played by electrostatic charge distribution in stabilizing the ET complexes and the role of mutations of several amino acid residues in stabilizing or destabilizing the complexes are analyzed. The complex with the shortest ET reaction distance (d = 6.58 Å) from rigid body BD is further subjected to 1 ns of molecular dynamics (MD) in a periodic box of TIP3P water to produce a more stable complex allowed by flexibility and with a shorter average reaction distance d = 6.02 Å. We predict a docking model in which the following ion-ion interactions are dominant (cyt b5r/cyt b5): Lys162-Heme O1D/Lys163-Asp64/Arg91-Heme O1A/Lys125-Asp70.

  16. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath.

    PubMed Central

    Zahn, J A; Duncan, C; DiSpirito, A A

    1994-01-01

    An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline. Images PMID:7928947

  17. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics.

    PubMed

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C

    2013-01-01

    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Synthesis of Radioisotope Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 Hybrid Nanoparticles for Use as Radiotracer.

    PubMed

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Radioisotope hybrid nanoparticles (NPs) of Mn-56@SiO2, Sm-153@SiO2, and Dy-165@SiO2 were synthesized by neutron irradiation of Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs respectively using the HANARO research reactor. The Mn-55@SiO2, Sm-150@SiO2, and Dy-163@SiO2 NPs were synthesized by calcination in air flow at 500 degrees C for 8 h of the hybrid NPs that has been prepared by the sol-gel reaction of tetraethyl silicate in the presence of the complex precursors. Mn-55, Sm-150, and Dy-163 were selected for use as radiotracers were selected because these elements can be easily gamma-activated by neutrons (activation limits: 1 picogram (Dy), 1-10 picogram (Mn), 10-100 picogram (Sm)). The successful synthesis of the radioisotope hybrid NPs was confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDS), Scanning Electron Microscopy (SEM), and Gamma Spectroscopy analysis. The synthesized the radioisotope hybrid NPs could be used as radiotracers in the scientific, environmental, engineering, and industrial fields.

  19. Impact of Indocyanine Green for Sentinel Lymph Node Mapping in Early Stage Endometrial and Cervical Cancer: Comparison with Conventional Radiotracer (99m)Tc and/or Blue Dye.

    PubMed

    Buda, Alessandro; Crivellaro, Cinzia; Elisei, Federica; Di Martino, Giampaolo; Guerra, Luca; De Ponti, Elena; Cuzzocrea, Marco; Giuliani, Daniela; Sina, Federica; Magni, Sonia; Landoni, Claudio; Milani, Rodolfo

    2016-07-01

    To compare the detection rate (DR) and bilateral optimal mapping (OM) of sentinel lymph nodes (SLNs) in women with endometrial and cervical cancer using indocyanine green (ICG) versus the standard technetium-99m radiocolloid ((99m)Tc) radiotracer plus methylene or isosulfan blue, or blue dye alone. From October 2010 to May 2015, 163 women with stage I endometrial or cervical cancer (118 endometrial and 45 cervical cancer) underwent SLN mapping with (99m)Tc with blue dye, blue dye alone, or ICG. DR and bilateral OM of ICG were compared respectively with the results obtained using the standard (99m)Tc radiotracer with blue dye, or blue dye alone. SLN mapping with (99m)Tc radiotracer with blue dye was performed on 77 of 163 women, 38 with blue dye only and 48 with ICG. The overall DR of SLN mapping was 97, 89, and 100 % for (99m)Tc with blue dye, blue dye alone, and ICG, respectively. The bilateral OM rate for ICG was 85 %-significantly higher than the 58 % obtained with (99m)Tc with blue dye (p = 0.003) and the 54 % for blue dye (p = 0.001). Thirty-one women (19 %) had positive SLNs. Sensitivity and negative predictive value of SLN were 100 % for all techniques. SLNs mapping using ICG demonstrated higher DR compared to other modalities. In addition, ICG was significantly superior to (99m)Tc with blue dye in terms of bilateral OM in women with early stage endometrial and cervical cancer. The higher number of bilateral OM may consequently reduce the overall number of complete lymphadenectomies, reducing the duration and additional costs of surgical treatment.

  20. Structural characterization of a family of cytochromes c{sub 7} involved in Fe(III) respiration by Geobacter sulfurreducens.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokkuluri, P. R.; Londer, Y. Y.; Yang, X.

    2010-02-01

    Periplasmic cytochromes c{sub 7} are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c{sub 7}. The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, inmore » the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c{sub 7} within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe(III) oxide compared to ferric citrate. The structures have the highest degree of conservation around 'heme IV'; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c{sub 7} could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, 'heme I' and 'heme III', differ within the family. The above observations suggest that each of the five cytochromes c{sub 7} could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens.« less

  1. Redox interactions in cytochrome c oxidase: from the "neoclassical" toward "modern" models.

    PubMed Central

    Hendler, R W; Westerhoff, H V

    1992-01-01

    Because of recent experimental data on the redox characteristics of cytochrome c oxidase and renewed interest in the role of cooperativity in energy coupling, the question of redox cooperativity in cytochrome c oxidase is reexamined. Extensive redox cooperativity between more than two redox centers, some of which are spectrally invisible, may be expected for this electron transfer coupled proton pump. Such cooperativity, however, cannot be revealed by the traditional potentiometric experiments based on a difference in absorbance between two wavelengths. Multiwavelength analyses utilizing singular value decomposition and second derivatives of absorbance vs. wavelength have revealed a stronger cooperativity than consistent with the "neoclassical" model, which allowed only for weak negative cooperativity between two equipotential one-electron centers. A thermodynamic analysis of redox cooperativity is developed, which includes the possibilities of strong cooperative redox interactions, the involvement of invisible redox centers, conformational changes, and monomer/dimer equilibrations. The experimental observation of an oxidation of one of the cytochromes (a3) with a decrease in applied redox potential is shown to require both strong negative cooperativity and the participation of more than two one-electron centers. A number of "modern" models are developed using the analytical approaches described in this paper. By testing with experimental data, some of these models are falsified, whereas some are retained with suggestions for further testing. PMID:1336989

  2. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  3. Design and evaluation of radiotracers for determination of regional cerebral blood flow with PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambrecht, R.M.; Duncan, C.C.; Shiue, C.Y.

    The tracer kinetics of 4-Fluoro(/sup 18/F)-, 4-Bromo(/sup 82/Br)- and 4-Iodo(/sup 125/I)-antipyrine and /sup 15/O-water were compared in a cat or baboon animal model. First-pass cerebral extraction and clearance with alterations in PaCO/sub 2/ were measured for whole brain. The Renkin/Crone model was used to evaluate brain capillary permeability-surface area product for 4-/sup 18/FAP in cats. Positron-emission-tomographic measurements required development of an instrument and technique for control of the arterial concentration of the radiotracer as a ramp function, so that tracer concentration changes due to radioactive decay or altered physiological processes could be accurately described with PET. Pharmacokinetic and tissue-distribution studiesmore » in cats were used to determine dosimetry for 4-/sup 18/FAP. 4-Bromoantipyrine labeled with /sup 78/Br (t = 6.5 m) is suggested as a tracer for determination of rCBF with PET.« less

  4. In vivo imaging of reactive oxygen species in mouse brain by using [3H]Hydromethidine as a potential radical trapping radiotracer

    PubMed Central

    Abe, Kohji; Takai, Nozomi; Fukumoto, Kazumi; Imamoto, Natsumi; Tonomura, Misato; Ito, Miwa; Kanegawa, Naoki; Sakai, Katsunori; Morimoto, Kenji; Todoroki, Kenichiro; Inoue, Osamu

    2014-01-01

    To assess reactive oxygen species (ROS) production by detecting the fluorescent oxidation product, hydroethidine has been used extensively. The present study was undertaken to evaluate the potential of the hydroethidine derivative as a radiotracer to measure in vivo brain ROS production. [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]Hydromethidine) was synthesized, and evaluated using in vitro radical-induced oxidization and in vivo brain ROS production model. In vitro studies have indicated that [3H]Hydromethidine is converted to oxidized products by a superoxide radical (O2•−) and a hydroxyl radical (OH•−) but not hydrogen peroxide (H2O2). In vivo whole-body distribution study showed that [3H]Hydromethidine rapidly penetrated the brain and then was washed out in normal mice. Microinjection of sodium nitroprusside (SNP) into the brain was performed to produce ROS such as OH•− via Fenton reaction. A significant accumulation of radioactivity immediately after [3H]Hydromethidine injection was seen in the side of the brain treated with SNP (5 and 20 nmol) compared with that in the contralateral side. These results indicated that [3H]Hydromethidine freely penetrated into the brain where it was rapidly converted to oxidized forms, which were trapped there in response to the production of ROS. Thus, [3H]Hydromethidine should be useful as a radical trapping radiotracer in the brain. PMID:25227606

  5. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part II: Comparison of RDA-PE and Radiotracer RDA Measures.

    PubMed

    Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel

    2015-01-01

    The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.

  6. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  7. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  8. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?

    PubMed Central

    Kelly, Steven L.; Kelly, Diane E.

    2013-01-01

    The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated. PMID:23297358

  9. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    PubMed

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  10. Structure of caa(3) cytochrome c oxidase--a nature-made enzyme-substrate complex.

    PubMed

    Noor, Mohamed Radzi; Soulimane, Tewfik

    2013-05-01

    Aerobic respiration, the energetically most favorable metabolic reaction, depends on the action of terminal oxidases that include cytochrome c oxidases. The latter forms a part of the heme-copper oxidase superfamily and consists of three different families (A, B, and C types). The crystal structures of all families have now been determined, allowing a detailed structural comparison from evolutionary and functional perspectives. The A2-type oxidase, exemplified by the Thermus thermophilus caa(3) oxidase, contains the substrate cytochrome c covalently bound to the enzyme complex. In this article, we highlight the various features of caa(3) enzyme and provide a discussion of their importance, including the variations in the proton and electron transfer pathways.

  11. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron

    PubMed Central

    Hiesel, Rudolf; Brennicke, Axel

    1983-01-01

    The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484

  13. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects.

    PubMed

    Jiemy, William Febry; Heeringa, Peter; Kamps, Jan A A M; van der Laken, Conny J; Slart, Riemer H J A; Brouwer, Elisabeth

    2018-05-03

    Macrophages are key players in the pathogenesis of large-vessel vasculitis (LVV) and may serve as a target for diagnostic imaging of LVV. The radiotracer, 18 F-FDG has proven to be useful in the diagnosis of giant cell arteritis (GCA), a form of LVV. Although uptake of 18 F-FDG is high in activated macrophages, it is not a specific radiotracer as its uptake is high in any proliferating cell and other activated immune cells resulting in high non-specific background radioactivity especially in aging and atherosclerotic vessels which dramatically lowers the diagnostic accuracy. Evidence also exists that the sensitivity of 18 F-FDG PET drops in patients upon glucocorticoid treatment. Therefore, there is a clinical need for more specific radiotracers in imaging GCA to improve diagnostic accuracy. Numerous clinically established and newly developed macrophage targeted radiotracers for oncological and inflammatory diseases can potentially be utilized for LVV imaging. These tracers are more target specific and therefore may provide lower background radioactivity, higher diagnostic accuracy and the ability to assess treatment effectiveness. However, current knowledge regarding macrophage subsets in LVV lesions is limited. Further understanding regarding macrophage subsets in vasculitis lesion is needed for better selection of tracers and new targets for tracer development. This review summarizes the development of macrophage targeted tracers in the last decade and the potential application of macrophage targeted tracers currently used in other inflammatory diseases in imaging LVV. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence.

    PubMed

    Prasopthum, Aruna; Pouyfung, Phisit; Sarapusit, Songklod; Srisook, Ekaruth; Rongnoparut, Pornpimol

    2015-04-01

    The human cytochrome P450 2A6 (CYP2A6) and monoamine oxidases (MAO-A and MAO-B), catalyzing nicotine and dopamine metabolisms, respectively, are two therapeutic targets of nicotine dependence. Vernonia cinerea, a medicinal plant commonly used for treatment of diseases such as asthma and bronchitis, has been shown reducing tobacco dependence effect among tobacco users. In the present study, we found eight active compounds isolated from V. cinerea that comprise inhibitory activity toward CYP2A6 and MAO-A and MAO-B enzymes using activity-guided assays, with coumarin as substrate of CYP2A6 and kynuramine of MAOs. These compounds were three flavones (apigenin, chrysoeriol, luteolin), one flavonol (quercetin), and four hirsutinolide-type sesquiterpene lactones (8α-(2-methylacryloyloxy)-hirsutinolide-13-O-acetate, 8α-(4-hydroxymethacryloyloxy)-hirsutinolide-13-O-acetate, 8α-tigloyloxyhirsutinolide-13-O-acetate, and 8α-(4-hydroxytigloyloxy)-hirsutinolide-13-O-acetate). Modes and kinetics of inhibition against the three enzymes were determined. Flavonoids possessed strong inhibitory effect on CYP2A6 in reversible mode, while inhibition by hirsutinolides was mechanism-based (NADPH-, concentration-, and time-dependence) and irreversible. Inhibition by hirsutinolides could not be reversed by dialysis and by addition of trapping agents or potassium ferricyanide. Flavonoids inhibited MAOs with variable degrees and were more prominent in inhibition toward MAO-A than hirsutinolides, while two of hirsutinolides inhibited MAO-B approximately comparable to two flavonoids. These results could have implications in combination of drug therapy for smoking cessation. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  15. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    PubMed Central

    Rhoads, D. M.; McIntosh, L.

    1993-01-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein. PMID:12231986

  16. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  17. The impact of the thermal sensitivity of cytochrome c oxidase on the respiration rate of Arctic charr red muscle mitochondria. pierre_blier@uqar.qc.ca.

    PubMed

    Blier, P U; Lemieux, H

    2001-04-01

    To assess if cytochrome c oxidase could determine the response of mitochondrial respiration to changes in environmental temperature in ectotherms, we performed KCN titration of the respiration rate and cytochrome c oxidase activity in mitochondria from Arctic charr (Salvelinusfontinalis) muscle at four different temperatures (1 degrees C, 6 degrees C, 12 degrees C, and 18 degrees C). Our data showed an excess of cytochrome c oxidase activity over the mitochondrial state 3 respiration rate. Mitochondrial oxygen consumption rates reached approximately 12% of the cytochrome c oxidase maximal capacity at every temperature. Also, following titration, the mitochondrial respiration rate significantly decreased when KCN reached concentrations that inhibit almost 90% of the cytochrome c oxidase activity. This strongly supports the idea that the thermal sensitivity of the maximal mitochondrial respiration rate cannot be dictated by the effect of temperature on cytochrome c oxidase catalytic capacity. Furthermore, the strong similarity of the Q10s of mitochondrial respiration and cytochrome c oxidase activity suggests a functional or structural link between the two. The functional link could be coevolution of parts of the mitochondrial system to maintain optimal functions in most of the temperature range encountered by organisms.

  18. Effects of cysteine introduction into three homologous cytochromes C.

    PubMed

    Kobayashi, Yoshiko; Sonoyama, Takafumi; Takeda, Taku; Sambongi, Yoshihiro

    2009-05-01

    A cysteine residue was systematically introduced into three homologous cytochromes c from Hydrogenobacter thermophilus, Hydrogenophilus thermoluteolus, and Pseudomonas aeruginosa at a conserved position. The H. thermoluteolus variant showed the most decreased thermal stability as compared with the wild type, which might have been due in part to crosslinked polymer formation. The effects of cysteine introduction differed even at the conserved position in these homologous proteins.

  19. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Jianzhen; Yu, Rongrong; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2012-05-01

    Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1% and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    EPA Science Inventory

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  1. The interaction of representative members from two classes of antimycotics--the azoles and the allylamines--with cytochromes P-450 in steroidogenic tissues and liver.

    PubMed

    Schuster, I

    1985-06-01

    Spectrophotometric studies with ketoconazole, clotrimazole and miconazole show strong type-II interactions with several cytochromes P-450, particularly (Ks greater than 10(7)M-1; pH7.4; 25 degrees C) with the 11 beta-hydroxylase of adrenal mitochondria, with the 17 alpha/20 lyase of testis microsomes and with some forms of cytochromes P-450 of liver. A tight binding of the azoles also occurs to the reduced cytochromes, giving rise to an impeded CO binding to the haem iron. The binding of the azoles to 11 beta-hydroxylase and 17 alpha/20 lyase is much tighter than the binding of endogenous substrates, and consequently inhibition of steroidogenesis will occur at these sites. The metabolism of xenobiotic substrates by the cytochromes P-450 of liver will also be severely impeded. In contrast, the allylamines naftifine and SF 86-327 are type-I substrates for a small portion of cytochromes P-450 of liver microsomes only and there is no spectral evidence for binding to the cytochromes P-450 involved in steroid biosynthesis.

  2. Epsilonproteobacterial hydroxylamine oxidoreductase (εHao): characterization of a 'missing link' in the multihaem cytochrome c family.

    PubMed

    Haase, Doreen; Hermann, Bianca; Einsle, Oliver; Simon, Jörg

    2017-07-01

    Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite-ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host-associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep-sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao-maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao-typical absorbance maximum at 460 nm. In most cases, the εHao-encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane-bound HaoCA assembly reminiscent of the menaquinol-oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a 'missing link' in the evolution of NrfA and Hao enzymes. © 2017 John Wiley & Sons Ltd.

  3. Gender and Gonadal Status Differences in Zona Reticularis Expression in Marmoset Monkey Adrenals: Cytochrome b5 Localization With Respect To Cytochrome P450 17,20-Lyase Activity.

    PubMed Central

    Pattison, J Christina; Saltzman, Wendy; Abbott, David H; Hogan, Brynn K; Nguyen, Ann D; Husen, Bettina; Einspanier, Almuth; Conley, Alan J; Bird., Ian M

    2007-01-01

    Neonatal marmosets express an adrenal fetal zone comparable to humans. While adult males fail to express a functional ZR, with barely detectable blood DHEA levels, females produce higher levels of DHEA than males in adulthood. We investigated the presence of a putative functional ZR in adult female marmosets. In contrast to males, immunohistochemical analysis showed the ZR marker cytochrome b5 was elevated in the innermost zone in cycling females (compared to testis-intact males), further elevated in the adrenals from anovulatory females, and substantially elevated and continuous in ovariectomized females. As a functional test in vivo, following overnight dexamethasone treatment, cycling and anovulatory females showed higher levels of DHEA relative to males, but DHEA failed to increase in response to ACTH. In direct contrast, while ovariectomized females exhibited lower initial DHEA levels, clear increases were detectable after ACTH administration (p<0.05), suggesting an adrenal origin. The apparent differences in cytochrome b5 expression between groups were also further verified by western blotting of adrenal microsomes, and compared to 17,20-lyase activity; the two parameters were positively correlated (p<0.01) across multiple treatment groups. We conclude that the cycling female marmoset expresses a rudimentary ZR with at least a capacity for DHEA production that becomes significantly ACTH-responsive after anovulation. Expression of cytochrome b5 in this region may be directly or indirectly controlled by gonadal function, and is, at least in part, a critical determinant in the development of an adrenal ZR that is more defined and significantly ACTH-responsive. PMID:17222503

  4. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  5. CMOS compatible IR sensors by cytochrome c protein

    NASA Astrophysics Data System (ADS)

    Liao, Chien-Jen; Su, Guo-Dung

    2013-09-01

    In recent years, due to the progression of the semiconductor industrial, the uncooled Infrared sensor - microbolometer has opened the opportunity for achieving low cost infrared imaging systems for both military and commercial applications. Therefore, various fabrication processes and different materials based microbolometer have been developed sequentially. The cytochrome c (protein) thin film has be reported high temperature coefficient of resistance (TCR), which is related to the performance of microbolometer directly. Hence the superior TCR value will increase the performance of microbolometer. In this paper, we introduced a novel fabrication process using aluminum which is compatible with the Taiwan Semiconductor Manufacture Company (TSMC) D35 2P4M process as the main structure material, which benefits the device to integrate with readout integrated circuit (ROIC).The aluminum split structure is suspended by sacrificial layer utilizing the standard photolithography technology and chemical etching. The height and thickness of the structure are already considered. Besides, cytochrome c solutions were ink-jetted onto the aluminum structure by using the inkjet printer, applying precise control of the Infrared absorbing layer. In measurement, incident Infrared radiation can be detected and later the heat can be transmitted to adjacent pads to readout the signal. This approach applies an inexpensive and simple fabrication process and makes the device suitable for integration. In addition, the performance can be further improved with low noise readout circuits.

  6. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.

    PubMed Central

    Sibbesen, O; Koch, B; Halkier, B A; Møller, B L

    1994-01-01

    The cytochrome P-450 enzyme (hemethiolate enzyme) that catalyzes the N-hydroxylation of L-tyrosine to N-hydroxytyrosine, the committed step in the biosynthesis of the cyanogenic glucoside dhurrin, has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The cytochrome P-450 enzyme was solubilized with the detergents Renex 690, reduced Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and isolated by ion-exchange (DEAE-Sepharose) and dye (Cibacron blue and reactive red 120) column chromatography. To prevent irreversible aggregation of the cytochrome P-450 enzyme, the isolation procedure was designed without any concentration step--i.e., with dilution of the ion-exchange gel with gel filtration material. The isolated enzyme, which we designate the cytochrome P-450TYR enzyme, gives rise to the specific formation of a type I substrate binding spectrum in the presence of L-tyrosine. The microsomal preparation contains 0.2 nmol of total cytochrome P-450/mg of protein. The cytochrome P-450TYR enzyme is estimated to constitute approximately 20% of the total cytochrome P-450 content of the microsomal membranes and about 0.2% of their total protein content. The apparent molecular mass of the cytochrome P-450TYR enzyme is 57 kDa, and the N-terminal amino acid sequence is ATMEVEAAAATVLAAP. A polyclonal antibody raised against the isolated cytochrome P-450TYR enzyme is specific as monitored by Western blot analysis and inhibits the in vitro conversion of L-tyrosine to p-hydroxymandelonitrile catalyzed by the microsomal system. The cytochrome P-450TYR enzyme exhibits high substrate specificity and acts as an N-hydroxylase on a single endogenous substrate. The reported isolation procedure based on dye columns constitutes a gentle isolation method for cytochrome P-450 enzymes and is of general use as indicated by its ability to separate cytochrome P-450TYR from the cytochrome P-450 enzyme catalyzing the C

  7. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity

    PubMed Central

    Zha, Weibin; Edin, Matthew L.; Vendrov, Kimberly C.; Schuck, Robert N.; Lih, Fred B.; Jat, Jawahar Lal; Bradbury, J. Alyce; DeGraff, Laura M.; Hua, Kunjie; Tomer, Kenneth B.; Falck, John R.; Zeldin, Darryl C.; Lee, Craig R.

    2014-01-01

    Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences. PMID:25114171

  8. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Pedrini, Nicolás; Zhang, Shizhu; Juárez, M Patricia; Keyhani, Nemat O

    2010-08-01

    The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.

  9. Mutation of the Inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 Alters Lignin Composition and Improves Saccharification1[W][OPEN

    PubMed Central

    Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout

    2014-01-01

    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. PMID:25315601

  10. Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species.

    PubMed

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-03-16

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.

  11. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes.

    PubMed

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin; Tuma, Roman; Hatzakis, Nikos S; Jeuken, Lars J C

    2017-09-01

    The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from Escherichia coli, cytochrome bo 3 , for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055-16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P-side of single HCOs. Proton transport activity of cytochrome bo 3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH6.4-8.4, while proton release at the P-side had an optimum pH of ~7.4, suggesting that the pH optimum is related to proton release from the proton exit site. Our previous single-enzyme experiments identified rare, long-lived conformation states of cytochrome bo 3 where protons leak back under turn-over conditions. Here, we analyzed and found that ~23% of cytochrome bo 3 proteoliposomes show ΔpH half-lives below 50s after stopping turnover, while only ~5% of the proteoliposomes containing a non-pumping mutant, E286C cytochrome bo 3 exhibit such fast decays. These single-enzyme results confirm our model in which HCO exhibit heterogeneous pumping rates and can adopt rare leak states in which protons are able to rapidly flow back. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    NASA Astrophysics Data System (ADS)

    Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.

    2014-05-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  13. Photoreduction of Shewanella oneidensis Extracellular Cytochromes by Organic Chromophores and Dye‐Sensitized TiO2

    PubMed Central

    Ainsworth, Emma V.; Lockwood, Colin W. J.; White, Gaye F.; Hwang, Ee Taek; Sakai, Tsubasa; Gross, Manuela A.; Richardson, David J.; Clarke, Thomas A.

    2016-01-01

    Abstract The transfer of photoenergized electrons from extracellular photosensitizers across a bacterial cell envelope to drive intracellular chemical transformations represents an attractive way to harness nature's catalytic machinery for solar‐assisted chemical synthesis. In Shewanella oneidensis MR‐1 (MR‐1), trans‐outer‐membrane electron transfer is performed by the extracellular cytochromes MtrC and OmcA acting together with the outer‐membrane‐spanning porin⋅cytochrome complex (MtrAB). Here we demonstrate photoreduction of solutions of MtrC, OmcA, and the MtrCAB complex by soluble photosensitizers: namely, eosin Y, fluorescein, proflavine, flavin, and adenine dinucleotide, as well as by riboflavin and flavin mononucleotide, two compounds secreted by MR‐1. We show photoreduction of MtrC and OmcA adsorbed on RuII‐dye‐sensitized TiO2 nanoparticles and that these protein‐coated particles perform photocatalytic reduction of solutions of MtrC, OmcA, and MtrCAB. These findings provide a framework for informed development of strategies for using the outer‐membrane‐associated cytochromes of MR‐1 for solar‐driven microbial synthesis in natural and engineered bacteria. PMID:27685371

  14. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus.

    PubMed Central

    Chan, H T; Anthony, C

    1991-01-01

    The quinoprotein methanol dehydrogenase (MDH) of Acetobacter methanolicus has an alpha 2 beta 2 structure. By contrast with other MDHs, the beta-subunit (approx. 8.5 kDa) does not contain the five lysine residues previously proposed to be involved in ionic interactions with the electron acceptor cytochrome cL. That electrostatic interactions are involved was confirmed by the demonstration that methanol:cytochrome cL oxidoreductase activity was inhibited by high ionic strength (I), the strength of interaction being inversely related to the square root of I. Specific modifiers of arginine residues on MDH inhibited this reaction but not the dye-linked MDH activity. Modification of lysine residues on MDH that altered its charge had no effect on the dye-linked activity but inhibited reaction with cytochrome cL. When the charge was retained on modification of lysine residues, little effect on either activity was observed. Cross-linking experiments confirmed that lysine residues on the alpha-subunit, but not the beta-subunit, are involved in the 'docking' process between the proteins. Images Fig. 4. PMID:1660263

  15. Cytochrome P450 drug interactions with statin therapy.

    PubMed

    Goh, Ivanna Xin Wei; How, Choon How; Tavintharan, Subramaniam

    2013-03-01

    Statins are commonly used in the treatment of hyperlipidaemia. Although the benefits of statins are well-documented, they have the potential to cause myopathy and rhabdomyolysis due to the complex interactions of drugs, comorbidities and genetics. The cytochrome P450 family consists of major enzymes involved in drug metabolism and bioactivation. This article aims to highlight drug interactions involving statins, as well as provide updated recommendations and approaches regarding the safe and appropriate use of statins in the primary care setting.

  16. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, Sudeep Kumar; Bhattacharya, Subarna; Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. Black-Right-Pointing-Pointer But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. Black-Right-Pointing-Pointer Enhancement positively correlates to the concentration of peroxide in reaction. Black-Right-Pointing-Pointer Reducible additives serve as non-specific agents for redox relay in the system. Black-Right-Pointing-Pointer Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome cmore » and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding - (1) the promiscuous role of cytochrome b{sub 5} in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.« less

  17. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less

  18. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreamer, G.L.; Squibb, K.; Gioeli, D.

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached bymore » 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.« less

  19. Humanlike substitutions to Ω-loop D of yeast iso-1-cytochrome c only modestly affect dynamics and peroxidase activity.

    PubMed

    Lei, Haotian; Bowler, Bruce E

    2018-06-01

    Structural studies of yeast iso-1-cytochrome c (L.J. McClelland, T.-C. Mou, M.E. Jeakins-Cooley, S.R. Sprang, B.E. Bowler, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6648-6653) show that modest movement of Ω-loop D (residues 70-85, average RMSD versus the native structure: 0.81 Å) permits loss of Met80-heme ligation creating an available coordination site to catalyze the peroxidase activity mediated by cytochrome c early in apoptosis. However, Ala81 and Gly83 move significantly (RMSDs of 2.18 and 1.26 Å, respectively). Ala81 and Gly83 evolve to Ile and Val, respectively, in human cytochrome c and peroxidase activity decreases 25-fold relative to the yeast protein at pH 7. To test the hypothesis that these residues evolved to restrict the peroxidase activity of cytochrome c, A81I and G83V variants of yeast iso-1-cytochrome c were prepared. For both variants, the apparent pK a of the alkaline transition increases by 0.2 to 0.3 relative to the wild type (WT) protein and the rate of opening the heme crevice is slowed. The cooperativity of acid unfolding is decreased for the G83V variant. At pH 7 and 8, the catalytic rate constant, k cat , for the peroxidase activity of both variants decreases relative to WT, consistent with the effects on alkaline isomerization. Below pH 7, the loss in the cooperativity of acid unfolding causes k cat for peroxidase activity to increase for the G83V variant relative to WT. Neither variant decreases k cat to the level of the human protein, indicating that other residues also contribute to the low peroxidase activity of human cytochrome c. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Dependence of microsomal methoxyflurane O-demethylation on cytochrome P-450 reductase and the stoichiometry of fluoride ion and formaldehyde release.

    PubMed

    Waskell, L; Gonzales, J

    1982-07-01

    In order to characterize further the in vitro liver microsomal O-demethylation and defluorination of the volatile anesthetic methoxyflurane, and obtain additional information regarding the participation of cytochrome P-450 in the oxidation, the stoichiometry of the reaction was determined and the effect of antibody to cytochrome P-450 reductase on this unique biotransformation was examined. Liver microsomes were isolated from rabbits and rats in which enzyme induction had previously been produced by phenobarbital. The O-demethylation of methoxyflurane by phenobarbital-induced microsomes results in the production of 1 mol of formaldehyde for every 2 mol of fluoride ion produced. Dichloroacetic acid is also a product of methoxyflurane O-demethylation. Antibody to cytochrome P-450 reductase inhibits by 85% the amount of fluoride ion produced by the microsomal metabolism of methoxyflurane. Thus critical indirect supportive data are contributed to the hypothesis that at least one, but perhaps more, cytochrome P-450 is indeed responsible for methoxyflurane O-demethylation and defluorination.

  1. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition

    PubMed Central

    Pannala, Venkat R.; Camara, Amadou K. S.

    2016-01-01

    Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O2 to H2O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent Km of O2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions. PMID:27633738

  2. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain.

    PubMed

    Deng, Bin; Parthasarathy, Sudharsan; Wang, WenFang; Gibney, Brian R; Battaile, Kevin P; Lovell, Scott; Benson, David R; Zhu, Hao

    2010-09-24

    NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain.

  3. Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough.

    PubMed Central

    Pollock, W B; Loutfi, M; Bruschi, M; Rapp-Giles, B J; Wall, J D; Voordouw, G

    1991-01-01

    By using a synthetic deoxyoligonucleotide probe designed to recognize the structural gene for cytochrome cc3 from Desulfovibrio vulgaris Hildenborough, a 3.7-kb XhoI genomic DNA fragment containing the cc3 gene was isolated. The gene encodes a precursor polypeptide of 58.9 kDa, with an NH2-terminal signal sequence of 31 residues. The mature polypeptide (55.7 kDa) has 16 heme binding sites of the form C-X-X-C-H. Covalent binding of heme to these 16 sites gives a holoprotein of 65.5 kDa with properties similar to those of the high-molecular-weight cytochrome c (Hmc) isolated from the same strain by Higuchi et al. (Y. Higuchi, K. Inaka, N. Yasuoka, and T. Yagi, Biochim. Biophys. Acta 911:341-348, 1987). Since the data indicate that cytochrome cc3 and Hmc are the same protein, the gene has been named hmc. The Hmc polypeptide contains 31 histidinyl residues, 16 of which are integral to heme binding sites. Thus, only 15 of the 16 hemes can have bis-histidinyl coordination. A comparison of the arrangement of heme binding sites and coordinated histidines in the amino acid sequences of cytochrome c3 and Hmc from D. vulgaris Hildenborough suggests that the latter contains three cytochrome c3-like domains. Cloning of the D. vulgaris Hildenborough hmc gene into the broad-host-range vector pJRD215 and subsequent conjugational transfer of the recombinant plasmid into D. desulfuricans G200 led to expression of a periplasmic Hmc gene product with covalently bound hemes. Images PMID:1846136

  4. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease.

    PubMed

    Kerkar, Nanda; Choudhuri, Kaushik; Ma, Yun; Mahmoud, Ayman; Bogdanos, Dimitrios P; Muratori, Luigi; Bianchi, Francesco; Williams, Roger; Mieli-Vergani, Giorgina; Vergani, Diego

    2003-02-01

    Cytochrome P4502D6 (CYP2D6), target of liver kidney microsomal autoantibody type 1 (LKM1), characterizes autoimmune hepatitis type 2 (AIH2) but is also found in patients with chronic hepatitis C virus (HCV) infection. To provide a complete linear epitope B cell map of CYP2D6, we tested peptides spanning the entire sequence of CYP2D6. In addition to confirming previously described antigenic sites, we identified four new epitopes (193-212, 238-257, 268-287, and 478-497). CYP2D6(193-212) is immunodominant and was the target of 12 of 13 (93%) patients with AIH2 and 5 of 10 (50%) HCV/LKM1-positive patients. Because LKM1 is present in both AIH2 and a viral infection, we tested whether Abs to CYP2D6(193-212) arise through cross-reactive immunity between virus and self. We identified a hexameric sequence "RLLDLA" sharing 5 of 6 aa with "RLLDLS" of HCV(2985-2990) and all 6 aa with CMV(130-135). Of 17 CYP2D6(193-212)-reactive sera, 11 (7 AIH and 4 HCV) reacted by ELISA with the HCV homologue, 8 (5 AIH and 3 HCV) with the CMV homologue, and 8 (5 AIH and 3 HCV) showed double reactivity. Autoantibody binding to CYP2D6(193-212) was inhibited by preincubation with HCV(2977-2996) or CMV(121-140). Recombinant HCV-nonstructural protein 5 and CMV-UL98 proteins also inhibited Ab binding to CYP2D6(193-212). Affinity-purified CYP2D6(193-212)-specific Ab inhibited the metabolic activity of CYP2D6. The demonstrated similarity and cross-reactivity between CYP2D6(193-212) and two unrelated viruses suggests that multiple exposure to viruses mimicking self may represent an important pathway to the development of autoimmunity.

  5. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence

    PubMed Central

    Jo, Jeanyoung; Cortez, Krista L; Cornell, William Cole; Price-Whelan, Alexa

    2017-01-01

    Hypoxia is a common challenge faced by bacteria during associations with hosts due in part to the formation of densely packed communities (biofilms). cbb3-type cytochrome c oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often contain multiple full and partial (i.e. ‘orphan’) operons for cbb3-type oxidases and oxidase subunits. Here, we describe a unique role for the orphan catalytic subunit CcoN4 in colony biofilm development and respiration in the opportunistic pathogen Pseudomonas aeruginosa PA14. We also show that CcoN4 contributes to the reduction of phenazines, antibiotics that support redox balancing for cells in biofilms, and to virulence in a Caenorhabditis elegans model of infection. These results highlight the relevance of the colony biofilm model to pathogenicity and underscore the potential of cbb3-type oxidases as therapeutic targets. PMID:29160206

  6. Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-Labeled Compounds: the Influence of Prosthetic Groups on Tumor Uptake and Clearance Profile.

    PubMed

    Bouvet, Vincent; Wuest, Melinda; Bailey, Justin J; Bergman, Cody; Janzen, Nancy; Valliant, John F; Wuest, Frank

    2017-12-01

    .98 ([ 18 F]DCFPyL), 2.11 ([ 18 F]7), 0.40 ([ 18 F]4), and 0.19 ([ 18 F]8). The observed tumor uptake and clearance profiles demonstrate the importance of the selected prosthetic group on the pharmacokinetic profile of analyzed PSMA-targeting radiotracers. Radiotracer [ 18 F]7 displayed the highest uptake and retention in LNCaP tumors, which exceeded uptake values of reference compound [ 18 F]DCFPyL by more than 100 %. Despite the higher kidney and liver uptake and retention of compound [ 18 F]7, the simple radiosynthesis and the exceptionally high tumor uptake (SUV 60min 2.11) and retention make radiotracer [ 18 F]7 an interesting alternative to radiotracer [ 18 F]DCFPyL for PET imaging of PSMA in prostate cancer.

  7. Targeted Approach to Identify Genetic Loci Associated with ...

    EPA Pesticide Factsheets

    Extreme tolerance to highly toxic dioxin-like contaminants (DLCs) has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly contaminated urban/industrialized estuaries of the US Atlantic coast. We hypothesized that comparisons among tolerant populations and in contrast to their sensitive neighboring killifish might reveal genetic loci associated with DLC tolerance. Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, we identified single nucleotide polymorphisms (SNPs) from 43 genes associated with the AHR to serve as targeted markers. Wild fish from the four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Consistent with other killifish population genetic analyses, our results revealed strong genetic differentiation among populations, consistent with isolation by distance models. Pairwise comparisons of nearby tolerant and sensitive populations revealed differentiation among these loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP) 1A and 3A30, and the NADH ubiquinone oxidoreductase MLRQ subunit. By grouping tolerant versus sensitive populations, we also identified cytochrome P450 1A and the AHR2 loci as under selection, lend

  8. Improved Phenoxyalkylbenzimidazoles with Activity against Mycobacterium tuberculosis Appear to Target QcrB

    PubMed Central

    2017-01-01

    The phenoxy alkyl benzimidazoles (PABs) have good antitubercular activity. We expanded our structure–activity relationship studies to determine the core components of PABs required for activity. The most potent compounds had minimum inhibitory concentrations against Mycobacterium tuberculosis in the low nanomolar range with very little cytotoxicity against eukaryotic cells as well as activity against intracellular bacteria. We isolated resistant mutants against PAB compounds, which had mutations in either Rv1339, of unknown function, or qcrB, a component of the cytochrome bc1 oxidase of the electron transport chain. QcrB mutant strains were resistant to all PAB compounds, whereas Rv1339 mutant strains were only resistant to a subset, suggesting that QcrB is the target. The discovery of the target for PAB compounds will allow for the improved design of novel compounds to target intracellular M. tuberculosis. PMID:29035551

  9. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    PubMed Central

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  10. On-target digestion of collected bacteria for MALDI mass spectrometry.

    PubMed

    Dugas, Alton J; Murray, Kermit K

    2008-10-03

    An on-target protein digestion system was developed for the identification of microorganisms in collected bioaerosols using off-line matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Bacteria analysis techniques based on MALDI-MS were adapted for use with an orthogonal MALDI quadrupole-time-of-flight mass spectrometer. Bioaerosols were generated using a pneumatic nebulizer and infused into a chamber for sampling. An Andersen N6 single-stage impactor was used to collect the bioaerosols on a MALDI target. On-target digestion was carried out inside temporary mini-wells placed over the impacted samples. The wells served as miniature reactors for proteolysis. Collected test aerosol particles containing the protein cytochrome c and E. coli bacteria were proteolyzed in situ using trypsin or cyanogen bromide. A total of 19 unique proteins were identified for E. coli. Using the TOF-MS spectra of the digested samples, peptide mass mapping was performed using the MASCOT search engine and an iterative search technique.

  11. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  13. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  14. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    PubMed Central

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  15. [ATP-synthetase activity, respiration and cytochromes of rat heart mitochondria in aging and hyperthyroidism].

    PubMed

    Lemeshko, V V; Kaliman, P A; Belostotskaia, L I; Uchitel', A A

    1982-04-01

    The ATP-synthetase activity, the rate of oxygen uptake under different metabolic conditions, the tightness of coupling of respiration to oxidative phosphorylation and the cytochrome contents in heart mitochondria of rats from different age groups were studied under normal conditions and in hyperthyroidism. It was found that heart mitochondria of aged animals did not practically differ in terms of their functional activity from those of the young animals. Administration of thyroxin to the animals from all age groups produced no significant effects on the state of mitochondria, increasing the rate of ATP synthesis on alpha-glycerophosphate, which was especially well-pronounced in aged animals, and the cytochrome content in 1-month-old rats.

  16. Identification of a New Isoindole-2-yl Scaffold as a Qo and Qi Dual Inhibitor of Cytochrome bc 1 Complex: Virtual Screening, Synthesis, and Biochemical Assay.

    PubMed

    Azizian, Homa; Bagherzadeh, Kowsar; Shahbazi, Sophia; Sharifi, Niusha; Amanlou, Massoud

    2017-09-18

    Respiratory chain ubiquinol-cytochrome (cyt) c oxidoreductase (cyt bc 1 or complex III) has been demonstrated as a promising target for numerous antibiotics and fungicide applications. In this study, a virtual screening of NCI diversity database was carried out in order to find novel Qo/Qi cyt bc 1 complex inhibitors. Structure-based virtual screening and molecular docking methodology were employed to further screen compounds with inhibition activity against cyt bc 1 complex after extensive reliability validation protocol with cross-docking method and identification of the best score functions. Subsequently, the application of rational filtering procedure over the target database resulted in the elucidation of a novel class of cyt bc 1 complex potent inhibitors with comparable binding energies and biological activities to those of the standard inhibitor, antimycin.

  17. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Mondal, Satyajit; Das, Bijan

    2018-06-01

    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH 7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.

  18. Inkjet-printed selective microfluidic biosensor using CNTs functionalized by cytochrome P450 enzyme

    NASA Astrophysics Data System (ADS)

    Krivec, Matic; Leitner, Raimund; Überall, Florian; Hochleitner, Johannes

    2017-05-01

    An additive manufacturing concept, consisting of 3D photopolymer printing and Ag nanoparticle printing, was investigated for the construction of a microfluidic biosensor based on immobilized cytochrome P450 enzyme. An acylate-type microfluidic chamber composed of two parts, i.e. chamber-housing and chamber-lid was printed with a polyjet 3D printer. A 3-electrode sensor structure was inkjet-printed on the lid using a combination of Ag and graphene printing. The working electrode was covered with carbon nanotubes by drop-casting and immobilized with cytochrome P450 2D6 enzyme. The microfluidic sensor shows a significant response to a test xenobiotic, i.e. dextromethorphan; the cyclic voltammetrical measurements show a corresponding oxidation peak at 0.4 V with around 5 μM detection limit.

  19. The cytochrome complex SoxXA of Paracoccus pantotrophus is produced in Escherichia coli and functional in the reconstituted sulfur-oxidizing enzyme system.

    PubMed

    Rother, Dagmar; Friedrich, Cornelius G

    2002-07-29

    The heterodimeric c-type cytochrome complex SoxXA of Paracoccus pantotrophus was produced in Escherichia coli. The soxX and soxA genes, separated by two genes in the sox gene cluster of P. pantotrophus, were fused with ribosome binding sites optimal for E. coli and combined to give soxXA in pRD133.27. The cytochrome complex SoxXA was produced in E. coli M15 containing pRD133.27, pREP4 encoding the Lac repressor and plasmid pEC86, carrying essential cytochrome c maturation genes. SoxX and SoxA were formed in a ratio of about 2.5:1. SoxA appeared to be unstable when not complexed with SoxX. The cytochrome complex SoxXA, purified to homogeneity from periplasmic extracts of E. coli M15 (pRD133.27, pREP4, pEC86), exhibited identical biochemical and biophysical properties as compared to SoxXA of P. pantotrophus. Moreover, this cytochrome complex was shown to be equally catalytically active with respect to rates and reactivity with different sulfur substrates in the reconstituted sulfur-oxidizing enzyme system using homogeneous Sox-proteins of P. pantotrophus. Homogeneous SoxX was catalytically inactive.

  20. In-situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens.

    PubMed

    Liang, Huei-Chen; Liu, Yi-Chen; Chen, Hsin; Ku, Ming Chun; Do, Quynh-Trang; Wang, Chih-Yen; Tzeng, Shun-Fen; Chen, Shu-Hui

    2018-06-13

    Catechol estrogens (CEs) are metabolic electrophiles that actively undergo covalent interaction with cellular proteins, influencing molecular function. There is no feasible method to identify their binders in a living system. Herein, we developed a click chemistry-based approach using ethinylestradiol (EE2) as the precursor probe coupled with quantitative proteomics to identify protein targets of CEs and classify their binding strengths. Using in-situ metabolic conversion and click reaction in liver microsomes, CEs-protein complex was captured by the probe, digested by trypsin, stable isotope labeled via reductive amination, and analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of 334 liver proteins were repeatedly identified (n  2); 274 identified proteins were classified as strong binders based on precursor mass mapping. The binding strength was further scaled by D/H ratio (activity probe/solvent): 259 strong binders had D/H > 5.25; 46 weak binders had 5.25 > D/H > 1; 5 non-specific binders (keratins) had D/H < 1. These results were confirmed using spiked covalent control (strong binder) and noncovalent control (weak binder), as well as in vitro testing of cytochrome c (D/H = 5.9) which showed covalent conjugation with CEs. Many identified strong binders, such as glutathione transferase, catechol-O-methyl transferase, superoxide dismutase, catalase, glutathione peroxidase, and cytochrome c, are involved in cellular redox processes or detoxification activities. CE conjugation was shown to suppress the superoxide oxidase activity of cytochrome c, suggesting that CEs modification may alter the redox action of cellular proteins. Due to structural similarity and inert alkyne group, EE2 probe is very likely to capture protein targets of CEs in general. Thus, this strategy can be adopted to explore the biological impact of CEs modification in living systems.

  1. Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats.

    PubMed

    Murray, M

    1988-05-01

    Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear

  2. Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes.

    PubMed

    Bergmann, D J; Arciero, D M; Hooper, A B

    1994-06-01

    The organization of genes for three proteins involved in ammonia oxidation in Nitrosomonas europaea has been investigated. The amino acid sequence of the N-terminal region and four heme-containing peptides produced by proteolysis of the tetraheme cytochrome c554 of N. europaea were determined by Edman degradation. The gene (cycA) encoding this cytochrome is present in three copies per genome (H. McTavish, F. LaQuier, D. Arciero, M. Logan, G. Mundfrom, J.A. Fuchs, and A. B. Hooper, J. Bacteriol. 175:2445-2447, 1993). Three clones, representing at least two copies of cycA, were isolated and sequenced by the dideoxy-chain termination procedure. In both copies, the sequences of 211 amino acids derived from the gene sequence are identical and include all amino acids predicted by the proteolytic peptides. In two copies, the cycA open reading frame (ORF) is followed closely (three bases in one copy) by a second ORF predicted to encode a 28-kDa tetraheme c cytochrome not previously characterized but similar to the nirT gene product of Pseudomonas stutzeri. In one copy of the cycA gene cluster, the second ORF is absent.

  3. Kinetic Monte Carlo Simulations and Molecular Conductance Measurements of the Bacterial Decaheme Cytochrome MtrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, H. S.; Pirbadian, S.; Nakano, Aiichiro

    2014-09-05

    Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, asmore » well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-heme electron transfer rates for solvated molecules.« less

  4. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  5. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.

    PubMed

    Covian, Raul; Trumpower, Bernard L

    2008-09-01

    The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.

  6. In Vivo Imaging of Experimental Melanoma Tumors using the Novel Radiotracer 68Ga-NODAGA-Procainamide (PCA).

    PubMed

    Kertész, István; Vida, András; Nagy, Gábor; Emri, Miklós; Farkas, Antal; Kis, Adrienn; Angyal, János; Dénes, Noémi; Szabó, Judit P; Kovács, Tünde; Bai, Péter; Trencsényi, György

    2017-01-01

    The most aggressive form of skin cancer is the malignant melanoma. Because of its high metastatic potential the early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of the disease. Previous studies have already shown that benzamide derivatives, such as procainamide (PCA) specifically bind to melanin pigment. The aim of this study was to synthesize and investigate the melanin specificity of the novel 68 Ga-labeled NODAGA-PCA molecule in vitro and in vivo using PET techniques. Procainamide (PCA) was conjugated with NODAGA chelator and was labeled with Ga-68 ( 68 Ga-NODAGA-PCA). The melanin specificity of 68 Ga-NODAGA-PCA was tested in vitro , ex vivo and in vivo using melanotic B16-F10 and amelanotic Melur melanoma cell lines. By subcutaneous and intravenous injection of melanoma cells tumor-bearing mice were prepared, on which biodistribution studies and small animal PET/CT scans were performed for 68 Ga-NODAGA-PCA and 18 FDG tracers. 68 Ga-NODAGA-PCA was produced with high specific activity (14.9±3.9 GBq/µmol) and with excellent radiochemical purity (98%<), at all cases. In vitro experiments showed that 68 Ga-NODAGA-PCA uptake of B16-F10 cells was significantly ( p ≤0.01) higher than Melur cells. Ex vivo biodistribution and in vivo PET/CT studies using subcutaneous and metastatic tumor models showed significantly ( p ≤0.01) higher 68 Ga-NODAGA-PCA uptake in B16-F10 primary tumors and lung metastases in comparison with amelanotic Melur tumors. In experiments where 18 FDG and 68 Ga-NODAGA-PCA uptake of B16-F10 tumors was compared, we found that the tumor-to-muscle (T/M) and tumor-to-lung (T/L) ratios were significantly ( p ≤0.05 and p ≤0.01) higher using 68 Ga-NODAGA-PCA than the 18 FDG accumulation. Our novel radiotracer 68 Ga-NODAGA-PCA showed specific binding to the melanin producing experimental melanoma tumors. Therefore, 68 Ga-NODAGA-PCA is a suitable diagnostic radiotracer for the detection

  7. In Vivo Imaging of Experimental Melanoma Tumors using the Novel Radiotracer 68Ga-NODAGA-Procainamide (PCA)

    PubMed Central

    Kertész, István; Vida, András; Nagy, Gábor; Emri, Miklós; Farkas, Antal; Kis, Adrienn; Angyal, János; Dénes, Noémi; Szabó, Judit P.; Kovács, Tünde; Bai, Péter; Trencsényi, György

    2017-01-01

    Purpose: The most aggressive form of skin cancer is the malignant melanoma. Because of its high metastatic potential the early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of the disease. Previous studies have already shown that benzamide derivatives, such as procainamide (PCA) specifically bind to melanin pigment. The aim of this study was to synthesize and investigate the melanin specificity of the novel 68Ga-labeled NODAGA-PCA molecule in vitro and in vivo using PET techniques. Methods: Procainamide (PCA) was conjugated with NODAGA chelator and was labeled with Ga-68 (68Ga-NODAGA-PCA). The melanin specificity of 68Ga-NODAGA-PCA was tested in vitro, ex vivo and in vivo using melanotic B16-F10 and amelanotic Melur melanoma cell lines. By subcutaneous and intravenous injection of melanoma cells tumor-bearing mice were prepared, on which biodistribution studies and small animal PET/CT scans were performed for 68Ga-NODAGA-PCA and 18FDG tracers. Results: 68Ga-NODAGA-PCA was produced with high specific activity (14.9±3.9 GBq/µmol) and with excellent radiochemical purity (98%<), at all cases. In vitro experiments showed that 68Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p≤0.01) higher than Melur cells. Ex vivo biodistribution and in vivo PET/CT studies using subcutaneous and metastatic tumor models showed significantly (p≤0.01) higher 68Ga-NODAGA-PCA uptake in B16-F10 primary tumors and lung metastases in comparison with amelanotic Melur tumors. In experiments where 18FDG and 68Ga-NODAGA-PCA uptake of B16-F10 tumors was compared, we found that the tumor-to-muscle (T/M) and tumor-to-lung (T/L) ratios were significantly (p≤0.05 and p≤0.01) higher using 68Ga-NODAGA-PCA than the 18FDG accumulation. Conclusion: Our novel radiotracer 68Ga-NODAGA-PCA showed specific binding to the melanin producing experimental melanoma tumors. Therefore, 68Ga-NODAGA-PCA is a suitable diagnostic radiotracer for

  8. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  9. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria.

    PubMed

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc(1) complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc(1) complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc(1) complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.

  10. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc 1 Complex of Yeast Mitochondria

    PubMed Central

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc 1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc 1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc 1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain. PMID:21716720

  11. Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae.

    PubMed

    Nazir, K H M Nazmul Hussain; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2011-05-01

    A functional library of cytochrome P450 monooxygenases from Aspergillus oryzae (AoCYPs) was constructed in which 121 isoforms were coexpressed with yeast NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. Using this functional library, novel catalytic functions of AoCYPs, such as catalytic potentials of CYP57B3 against genistein, were elucidated for the first time. Comprehensive functional screening promises rapid characterization of catalytic potentials and utility of AoCYPs.

  12. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents.

    PubMed

    Malik, Kafait U; Jennings, Brett L; Yaghini, Fariborz A; Sahan-Firat, Seyhan; Song, Chi Young; Estes, Anne M; Fang, Xiao R

    2012-08-01

    The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone (DOCA)-salt-, and N(ω)-nitro-L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Contribution of Cytochrome P450 1B1 to Hypertension and Associated Pathophysiology: A Novel Target for Antihypertensive Agents

    PubMed Central

    Malik, Kafait U.; Jennings, Brett L.; Yaghini, Fariborz A.; Sahan-Firat, Seyhan; Song, Chi Young; Estes, Anne M.; Fang, Xiao R.

    2012-01-01

    The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone Nω-nitro-(DOCA)-salt-, and L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3′,5′-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. PMID:22210049

  14. [Participation of nitric oxide and arachidonic acid metabolites via cytochrome - P450 in the regulation of arterial blood pressure].

    PubMed

    Sánchez-Mendoza, M Alicia; Martínez-Ayala, Sonia O; Hernández-Hernández, José A; Zúñiga-Sosa, Leonor; Pastelín-Hernández, Gustavo; Escalante-Acosta, Bruno A

    2003-01-01

    Nitric oxide and cytochrome P450 arachidonic acid metabolites participate in blood pressure regulation. The synthesis of these autacoids leads to arterial hypertension. However, it is not known whether there is an interaction between them. Therefore, we studied the modulatory effect of nitric oxide and cytochrome P450-arachidonic acid metabolites, their interaction on blood pressure, and the renal content of cytochrome P450. Male Wistar rats were divided: 1) control, 2) L-NAME (100 mg/kg/d p.o.), 3) L-NAME + SnCl2 (10 mg/kg/d i.p.), and 4) L-NAME + dexamethasone (1 mg/kg/d s.c.). We measured blood pressure and collected urine and blood for nitric oxide measurement. NO2 was quantified by HPLC. Blood pressure was: control, 97 +/- 7 mmHg; L-NAME, 151 +/- 4.6 mmHg; L-NAME + SnCl2, 133 +/- 3 mmHg, and L-NAME + dexamethasone 152 +/- 4.5 mmHg. Urine nitrite concentration was: 1) 1.832 +/- 0.32, 2) 1.031 +/- 0.23, 3) 1.616 +/- 0.33, and 4) 1.244 +/- 0.33 mumol/mL, while the concentration in blood was: 1) 0.293 +/- 0.06, 2) 0.150 +/- 0.05, 3) 0.373 +/- 0.13, and 4) 0.373 +/- 0.07 mumol/mL. L-NAME + SnCl2 decreased cytochrome P450 renal content, and L-NAME + dexamethasone showed a similar response. In conclusion, both, nitric oxide and CYP-arachidonic acid metabolites play a role in the regulation of blood pressure. Nitric oxide also partially regulates renal cytochrome P450 content.

  15. Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus.

    PubMed

    Rasmussen, Tim; Brittain, Thomas; Berks, Ben C; Watmough, Nicholas J; Thomson, Andrew J

    2005-11-07

    Nitrous oxide reductase (N2OR) catalyses the final step of bacterial denitrification, the two-electron reduction of nitrous oxide (N2O) to dinitrogen (N2). N2OR contains two metal centers; a binuclear copper center, CuA, that serves to receive electrons from soluble donors, and a tetranuclear copper-sulfide center, CuZ, at the active site. Stopped flow experiments at low ionic strengths reveal rapid electron transfer (kobs=150 s-1) between reduced horse heart (HH) cytochrome c and the CuA center in fully oxidized N2OR. When fully reduced N2OR was mixed with oxidized cytochrome c, a similar rate of electron transfer was recorded for the reverse reaction, followed by a much slower internal electron transfer from CuZ to CuA(kobs=0.1-0.4 s-1). The internal electron transfer process is likely to represent the rate-determining step in the catalytic cycle. Remarkably, in the absence of cytochrome c, fully reduced N2OR is inert towards its substrate, even though sufficient electrons are stored to initiate a single turnover. However, in the presence of reduced cytochrome c and N2O, a single turnover occurs after a lag-phase. We propose that a conformational change in N2OR is induced by its specific interaction with cytochrome c that in turn either permits electron transfer between CuA and CuZ or controls the rate of N2O decomposition at the active site.

  16. MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens.

    PubMed

    Seidel, Julian; Hoffmann, Maren; Ellis, Katie E; Seidel, Antonia; Spatzal, Thomas; Gerhardt, Stefan; Elliott, Sean J; Einsle, Oliver

    2012-04-03

    The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS(-2) as an electron donor. The observed K(M) was 38.5 ± 3.7 μM H(2)O(2) and v(max) was 0.78 ± 0.03 μmol of H(2)O(2)·min(-1)·mg(-1), resulting in a turnover number k(cat) = 0.46 · s(-1). In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.

  17. MacA is a Second Cytochrome c Peroxidase of Geobacter sulfurreducens

    PubMed Central

    Seidel, Julian; Hoffmann, Maren; Ellis, Katie E.; Seidel, Antonia; Spatzal, Thomas; Gerhardt, Stefan; Elliott, Sean J.

    2012-01-01

    The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS2– as an electron donor. The observed KM was 38.5 ± 3.7 μM H2O2 and vmax was 0.78 ± 0.03 μmol H2O2·min–1·mg–1, resulting in a turnover number kcat = 0.46 · s–1. In contrast, no Fe(III) reductase activity was observed. MacA was found to display similar electrochemical properties to other bacterial diheme peroxidases, in additional to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergo conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation. PMID:22417533

  18. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  19. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques.

    PubMed

    Mondal, Satyajit; Das, Bijan

    2018-06-05

    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C 16 MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C 16 MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C 16 MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  1. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  2. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  3. Target sites for chemical regulation of strigolactone signaling

    PubMed Central

    Nakamura, Hidemitsu; Asami, Tadao

    2014-01-01

    Demands for plant growth regulators (PGRs; chemicals that control plant growth) are increasing globally, especially in developing countries. Both positive and negative PGRs are widely used to enhance crop production and to suppress unwanted shoot growth, respectively. Strigolactones (SLs) are multifunctional molecules that function as phytohormones, inhibiting shoot branching and also functioning in the rhizospheric communication with symbiotic fungi and parasitic weeds. Therefore, it is anticipated that chemicals that regulate the functions of SLs will be widely used in agricultural applications. Although the SL biosynthetic pathway is not fully understood, it has been demonstrated that β-carotene isomerases, carotenoid cleavage dioxygenases (CCDs), and a cytochrome P450 monooxygenase are involved in strigolactone biosynthesis. A CCD inhibitor, abamine, which is also an inhibitor of abscisic acid biosynthesis, reduces the levels of SL in several plant species and reduces the germination rate of Orobanche minor seeds grown with tobacco. On the basis of the structure of abamine, several chemicals have been designed to specifically inhibit CCDs during SL synthesis. Cytochrome P450 monooxygenase is another target enzyme in the development of SL biosynthesis inhibitors, and the triazole-derived TIS series of chemicals is known to include SL biosynthesis inhibitors, although their target enzyme has not been identified. Recently, DWARF14 (D14) has been shown to be a receptor for SLs, and the D-ring moiety of SL is essential for its recognition by D14. A variety of SL agonists are currently under development and most agonists commonly contain the D-ring or a D-ring-like moiety. Several research groups have also resolved the crystal structure of D14 in the last two years. It is expected that this information on the D14 structure will be invaluable not only for developing SL agonists with novel structures but also in the design of inhibitors of SL receptors. PMID:25414720

  4. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: Evidence for involvement in host-plant allelochemical resistance

    PubMed Central

    Danielson, Phillip B.; MacIntyre, Ross J.; Fogleman, James C.

    1997-01-01

    Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification. PMID:9380713

  5. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  6. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging.

    PubMed

    Qi, Yuan-Hong; Mao, Fang-Fang; Zhou, Zhu-Qing; Liu, Dong-Cheng; Min-Yu; Deng, Xiang-Yi; Li, Ji-Wei; Mei, Fang-Zhu

    2018-05-02

    It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that

  7. Photooxidation of the cytochrome b-559 in the presence of various substituted 2-anilinothiophenes and of some other compounds, in Chlamydomonas reinhardtii.

    PubMed

    Maroc, J; Garnier, J

    1979-11-08

    Five substituted 2-anilinothiophenes and two substituted carbonylcyanide-phenylhydrazones were comparatively studied with respect to their capacities for inducing photooxidation of the cytochrome b-559 in chloroplast fragments and in whole cells of Chlamydomonas reinhardtii (wild type and P-700-lacking mutant Fl 5). In addition, some other compounds: antimycin A, picric acid, tetraphenylboron and NH4Cl were also tested. Cytochrome b-559 photooxidations were clearly observed in the presence of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), 2-(3,4,5-trichloro)anilino-3,5-dinitrothiophene (ANT 2s), 2-(4-chloro)anilino-3,5-dinitrothiophene and, with greater amplitudes, in the presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone and carbonylcyanide-m-chlorophenylhydrazone, both in whole cells and in chloroplast fragments. Picric acid, antimycin A and tetraphenylboron were also able to induce cytochrome b-559 photooxidation in chloroplast fragments, but not in whole cells. In the wild type, the highest photoinduced redox changes were 1.1 (carbonylcyanide-p-trifluoromethoxyphenylhydrazone, carbonylcyanide-m-chlorophenyl-hydrazone) and 0.6 (ANT 2p, ANT 2s) mumol of oxidized cytochrome b-559/1 mmol of chlorophyll, corresponding to 40% and 23% of the redox changes which could be induced chemically. All these cytochrome b-559 photooxidations, the greater part of which was inhibited by 3-(3,4-dichloropheny)-1,1-dimethylurea and occurred in the mutant Fl 5, appeared to be mainly Photosystem II-dependent reactions. But 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive Photosystem I-dependent photooxidations of cytochrome b-559 occurred also in the wild type. On the other hand, 2-(4-dimethylamine)-anilino-3,5-dinitrothiophene, 2-N-methyl-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene and NH4Cl did not induce any cytochrome b-559 photooxidation. These results were discussed taking in consideration the nature of the molecular substitutions

  8. 99m Tc-HYNIC-(Ser)3 -J18 peptide: A radiotracer for non-small-cell lung cancer targeting.

    PubMed

    Shaghaghi, Zahra; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-02-14

    Radiolabeled peptide could be a useful tool for the diagnosis of non-small-cell lung cancer (NSCLC). In this study, HYNIC-(Ser) 3 -J18 peptide was labeled with 99m Tc using EDDA/tricine as coligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular-specific binding and tumor targeting in A-549 cells and tumor-bearing mice, respectively. The high radiochemical purity was obtained and this radiolabeled peptide exhibited high stability in buffer and serum. The radiolabeled peptide showed high affinity for the A-549 cells with a dissociation constant value (K D ) of 4.4 ± 0.8 nm. The tumor-muscles ratios were 2.7 and 4.4 at 1 and 2 hr after injection of 99m Tc-(EDDA/tricine)-HYNIC-(Ser) 3 -J18 in tumor-bearing mice. The tumor uptake was decreased after preinjection with non-labeled peptide for this radiolabeled peptide in blocking experiment. The results of this study showed the 99m Tc-(EDDA/tricine)-(Ser) 3 -HYNIC-J18 peptide might be a promising radiolabeled peptide for NSCLC targeting. © 2018 John Wiley & Sons A/S.

  9. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity.

    PubMed

    Zha, Weibin; Edin, Matthew L; Vendrov, Kimberly C; Schuck, Robert N; Lih, Fred B; Jat, Jawahar Lal; Bradbury, J Alyce; DeGraff, Laura M; Hua, Kunjie; Tomer, Kenneth B; Falck, John R; Zeldin, Darryl C; Lee, Craig R

    2014-10-01

    Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center.

    PubMed

    Gray, K A; Grooms, M; Myllykallio, H; Moomaw, C; Slaughter, C; Daldal, F

    1994-03-15

    The facultative phototrophic bacterium Rhodobacter capsulatus is capable of growth in a wide range of environmental conditions using a highly branched electron-transfer chain. During respiratory growth of this organism reducing equivalents are conveyed to oxygen via two terminal oxidases, previously called "cyt b410" (cytochrome c oxidase) and "cyt b260" (quinol oxidase). The cytochrome c oxidase was purified to homogeneity from a semiaerobically grown R. capsulatus strain. The purified enzyme consumes oxygen at a rate of 600 s-1, oxidizes reduced equine cyt c and R. capsulatus cyt c2, and has high sensitivity to cyanide. The complex is composed of three major polypeptides of apparent molecular masses 45, 32, and 28 kDa on SDS-PAGE. The 32- and 28-kDa proteins also stain with tetramethylbenzidine, indicating that they are c-type cytochromes. Partial amino acid sequences obtained from each of the subunits reveal significant homology to the fixN, fixO, and fixP gene products of Bradyrhizobium japonicum and Rhizobium meliloti. The reduced enzyme has an optical absorption spectrum with distinct features near 550 and 560 nm and an asymmetric Soret band centered at 418 nm, indicating the presence of both c- and b-type cytochromes. Two electrochemically distinct cyt c are apparent, with redox midpoint potentials (Em7) of 265 and 320 mV, while the low-spin cyt b has an Em7 value of 385 mV. The enzyme binds carbon monoxide, and the CO difference spectrum indicates that CO binds to a high-spin cyt b. Pyridine hemochrome and HPLC analyses suggest that the complex contains 1 mol of heme C to 1 mol of protoheme and that neither heme O nor heme A is present.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity

    PubMed Central

    Morgado, Leonor; Bruix, Marta; Pessanha, Miguel; Londer, Yuri Y.; Salgueiro, Carlos A.

    2010-01-01

    Abstract A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G

  12. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides themore » reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.« less

  13. Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility

    PubMed Central

    Al Faraj, Achraf; Alotaibi, Basem; Shaik, Abjal Pasha; Shamma, Khaled Z; Al Jammaz, Ibrahim; Gerl, Jürgen

    2015-01-01

    Despite their advantageous chemical properties for nuclear imaging, radioactive sodium-22 (22Na) tracers have been excluded for biomedical applications because of their extremely long lifetime. In the current study, we proposed, for the first time, the use of 22Na radiotracers for pre-clinical applications by efficiently loading with silica nanoparticles (SiNPs) and thus offering a new life for this radiotracer. Crown-ether-conjugated SiNPs (300 nm; −0.18±0.1 mV) were successfully loaded with 22Na with a loading efficacy of 98.1%±1.4%. Noninvasive positron emission tomography imaging revealed a transient accumulation of 22Na-loaded SiNPs in the liver and to a lower extent in the spleen, kidneys, and lung. However, the signal gradually decreased in a time-dependent manner to become not detectable starting from 2 weeks postinjection. These observations were confirmed ex vivo by quantifying 22Na radioactivity using γ-counter and silicon content using inductively coupled plasma-mass spectrometry in the blood and the different organs of interest. Quantification of Si content in the urine and feces revealed that SiNPs accumulated in the organs were cleared from the body within a period of 2 weeks and completely in 1 month. Biocompatibility evaluations performed during the 1-month follow-up study to assess the possibility of synthesized nanocarriers to induce oxidative stress or DNA damage confirmed their safety for pre-clinical applications. 22Na-loaded nanocarriers can thus provide an innovative diagnostic agent allowing ultra-sensitive positron emission tomography imaging. On the other hand, with its long lifetime, onsite generators or cyclotrons will not be required as 22Na can be easily stored in the nuclear medicine department and be used on-demand. PMID:26504381

  14. In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development.

    PubMed

    Warnock, Geoff; Turtoi, Andrei; Blomme, Arnaud; Bretin, Florian; Bahri, Mohamed Ali; Lemaire, Christian; Libert, Lionel Cyrille; Seret, Alain E J J; Luxen, André; Castronovo, Vincenzo; Plenevaux, Alain R E G

    2013-10-01

    For many years the laboratory mouse has been used as the standard model for in vivo oncology research, particularly in the development of novel PET tracers, but the growth of tumors on chicken chorioallantoic membrane (CAM) provides a more rapid, low cost, and ethically sustainable alternative. For the first time, to our knowledge, we demonstrate the feasibility of in vivo PET and CT imaging in a U87 glioblastoma tumor model on chicken CAM, with the aim of applying this model for screening of novel PET tracers. U87 glioblastoma cells were implanted on the CAM at day 11 after fertilization and imaged at day 18. A small-animal imaging cell was used to maintain incubation and allow anesthesia using isoflurane. Radiotracers were injected directly into the exposed CAM vasculature. Sodium (18)F-fluoride was used to validate the imaging protocol, demonstrating that image-degrading motion can be removed with anesthesia. Tumor glucose metabolism was imaged using (18)F-FDG, and tumor protein synthesis was imaged using 2-(18)F-fluoro-l-tyrosine. Anatomic images were obtained by contrast-enhanced CT, facilitating clear delineation of the tumor, delineation of tracer uptake in tumor versus embryo, and accurate volume measurements. PET imaging of tumor glucose metabolism and protein synthesis was successfully demonstrated in the CAM U87 glioblastoma model. Catheterization of CAM blood vessels facilitated dynamic imaging of glucose metabolism with (18)F-FDG and demonstrated the ability to study PET tracer uptake over time in individual tumors, and CT imaging improved the accuracy of tumor volume measurements. We describe the novel application of PET/CT in the CAM tumor model, with optimization of typical imaging protocols. PET imaging in this valuable tumor model could prove particularly useful for rapid, high-throughput screening of novel radiotracers.

  15. Mitochondrial Group II Introns, Cytochrome c Oxidase, and Senescence in Podospora anserina†

    PubMed Central

    Begel, Odile; Boulay, Jocelyne; Albert, Beatrice; Dufour, Eric; Sainsard-Chanet, Annie

    1999-01-01

    Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (α) has been thought to play a prominent role in this syndrome. Intron α is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the α sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron α. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron α is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron α plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, “immortality” can be acquired not by the absence of intron α but rather by the lack of active cytochrome c oxidase. PMID:10330149

  16. Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies.

    PubMed

    Dell'acqua, Simone; Pauleta, Sofia R; Monzani, Enrico; Pereira, Alice S; Casella, Luigi; Moura, José J G; Moura, Isabel

    2008-10-14

    The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.

  17. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed Central

    Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899

  18. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    PubMed

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis

    PubMed Central

    Sarapusit, Songklod; Lertkiatmongkol, Panida; Duangkaew, Panida; Rongnoparut, Pornpimol

    2013-01-01

    Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD) mediated by mosquito CYP6AA3 with a two-to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs. PMID:23325047

  20. Structure and function of the tetraheme cytochrome associated to the reaction center of Roseobacter denitrificans.

    PubMed

    Garcia, D; Richaud, P; Breton, J; Verméglio, A

    1994-01-01

    We have characterized the tetrahemic RC bound cytochrome isolated from the quasi-photosynthetic bacterium Roseobacter denitrificans in terms of absorption spectrum, redox property and orientation with respect to the membrane plane. The heme, designated H1, which possesses the highest redox midpoint potential (+290 mV), absorbs at 555 nm. Its plane makes an angle of 40 degrees with the membrane plane. The second high potential heme, H2 (+240 mV), peaks at 554 nm and makes a tilt of 55 degrees with the membrane. The two low potential hemes, L1 and L2, present a similar and rather high redox midpoint potential (+90 mV). They absorb at 553 nm and 550 nm. One of these hemes is oriented at 40 degrees while the other makes an angle of 90 degrees with the membrane plane. The soluble cytochrome c551 completes the cyclic electron transfer between the RC and the bc1 complex. Both the oxidation and the re-reduction of cytochrome c551 are diffusible processes. Under semi-aerobic conditions, one of the low potential hemes is photo-oxidized under illumination but only extremely slowly re-reduced. This explains the requirement of high aerobic conditions for growth of Roseobacter denitrificans cells in the light.

  1. [Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].

    PubMed

    Sorokina, E A; Sibiriak, S V; Sergeeva, S A

    2002-01-01

    Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.

  2. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  3. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.

    PubMed

    Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I

    2005-01-01

    Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P < .0001) with significant increases in COX activity in wake and sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P < .001). There was no difference between brain regions in the degree of increase in enzyme activity in wakefulness. Both COXI and COXIV mRNA were increased with wakefulness as compared to sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c

  4. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112; Cawley, George F.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of severalmore » P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is

  5. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth

    DOE PAGES

    Beckwith, Christopher R.; Edwards, Marcus J.; Lawes, Matthew; ...

    2015-04-28

    The autotrophic Sideroxydans lithotrophicus ES-1 can grow by coupling the oxidation of ferrous iron to the reduction of oxygen. Soluble ferrous iron is oxidized at the surface of the cell by an MtoAB porin-cytochrome complex that functions as an electron conduit through the outer membrane. Electrons are then transported to the cytoplasmic membrane where they are used to generate proton motive force (PMF) (for ATP synthesis) and NADH for autotrophic processes such as carbon fixation. As part of the mtoAB gene cluster, S. lithotrophicus also contains the gene mtoD that is proposed to encode a cytochrome c protein. We isolatedmore » mtoD from a Shewanella oneidensis expression system where the mtoD gene was expressed on a pBAD plasmid vector. Biochemical, biophysical, and crystallographic characterization of the purified MtoD revealed it as an 11 kDa monomeric protein containing a single heme. Sequence and structural alignment indicated that MtoD belonged to the class-1 cytochrome c family and had a similar fold to ferricytochrome c552 family, however the MtoD heme is bis-histidine coordinated and is substantially more exposed than the hemes of other family members. The reduction potential of the MtoD heme at pH 7 was +155 mV vs. Standard Hydrogen Electrode, which is approximately 100 mV lower than that of mitochondrial cytochrome c. Consideration of the properties of MtoD in the context of the potential respiratory partners identified from the genome suggests that MtoD could associate to multiple electron transfer partners as the primary periplasmic electron shuttle.« less

  6. Pseudoazurin dramatically enhances the reaction profile of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 and facilitates release of product nitric oxide.

    PubMed

    Sam, Katharine A; Fairhurst, Shirley A; Thorneley, Roger N F; Allen, James W A; Ferguson, Stuart J

    2008-05-02

    Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.

  7. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    PubMed Central

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  8. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling.

    PubMed

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Copyright © 2015 the American Physiological Society.

  9. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    PubMed Central

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  10. Reductive Detoxication of Arylhydroxylamine Carcinogens by Human NADH Cytochrome b5 Reductase and Cytochrome b5

    PubMed Central

    Kurian, Joseph R.; Chin, Nathaniel A.; Longlais, Brett J.; Hayes, Kristie L.; Trepanier, Lauren A.

    2008-01-01

    Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of inter-individual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. Based on our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxication of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2- amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56 to 346-fold higher in the purified system compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (Km values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM (∼1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of arylhydroxylamine carcinogens

  11. The structure of PccH from Geobactersulfurreducens-a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dantas, Joana; Campelo, Luisa M.; Duke, Norma E. C.

    The structure of cytochrome c (GSU3274) designated as PccH from Geobactersulfurreducens was determined at a resolution of 2.0 angstrom. PccH is a small (15kDa) cytochrome containing one c-type heme, found to be essential for the growth of G.sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH hasmore » a low reduction potential of -24mV at pH7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.« less

  12. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  13. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions

    PubMed Central

    Kagan, Valerian E.; Wipf, Peter; Stoyanovsky, Detcho; Greenberger, Joel S.; Borisenko, Grigory; Belikova, Natalia A.; Yanamala, Naveena; Samhan Arias, Alejandro K.; Tungekar, Muhammad A.; Jiang, Jianfei; Tyurina, Yulia Y.; Ji, Jing; Klein-Seetharaman, Judith; Pitt, Bruce R.; Shvedova, Anna A; Bayır, Hülya

    2009-01-01

    Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader-sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants. PMID:19716396

  14. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  15. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30.

    PubMed

    Ramesh, Chinnasamy; Nayak, Tapan K; Burai, Ritwik; Dennis, Megan K; Hathaway, Helen J; Sklar, Larry A; Prossnitz, Eric R; Arterburn, Jeffrey B

    2010-02-11

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.

  16. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment.

    PubMed

    Quester, Katrin; Juarez-Moreno, Karla; Secundino, Isamel; Roseinstein, Yvonne; Alejo, Karla P; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2017-05-01

    Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF-7 breast cancer cells are treated with CYP-polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site-specific CYP activity in tumor tissues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A current review of cytochrome P450 interactions of psychotropic drugs.

    PubMed

    Madhusoodanan, Subramoniam; Velama, Umamaheswararao; Parmar, Jeniel; Goia, Diana; Brenner, Ronald

    2014-05-01

    The number of psychotropic drugs has expanded tremendously over the past few decades with a proportional increase in drug-drug interactions. The majority of psychotropic agents are biotransformed by hepatic enzymes, which can lead to significant drug-drug interactions. Most drug-drug interactions of psychotropics occur at metabolic level involving the hepatic cytochrome P450 enzyme system. We searched the National Library of Medicine, PsycINFO, and Cochrane reviews from 1981 to 2012 for original studies including clinical trials, double-blind, placebo-controlled studies, and randomized controlled trials. In addition, case reports, books, review articles, and hand-selected journals were utilized to supplement this review. Based on the clinical intensity of outcome, cytochrome interactions can be classified as severe, moderate, and mild. Severe interactions include effects that might be acutely life threatening. They are mainly inhibitory interactions with cardiovascular drugs. Moderate interactions include efficacy issues. Mild interactions include nonserious side effects, such as somnolence. Psychotropic drugs may interact with other prescribed medications used to treat concomitant medical illnesses. A thorough understanding of the most prescribed medications and patient education will help reduce the likelihood of potentially fatal drug-drug interactions.

  18. [Cytochrome P-450 and the response to antimalarial drugs].

    PubMed

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other

  19. Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidised metal electron acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna

    2012-01-01

    The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grownmore » with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.« less

  20. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    PubMed Central

    2009-01-01

    Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated