Sample records for radon progeny exposure

  1. Variation of the unattached fraction of radon progeny and its contribution to radon exposure.

    PubMed

    Guo, Lu; Zhang, Lei; Guo, Qiuju

    2016-06-01

    The unattached fraction of radon progeny is one of the most important factors for radon exposure evaluation through the dosimetric approach. To better understand its level and variation in the real environment, a series of field measurements were carried out indoors and outdoors, and radon equilibrium equivalent concentration was also measured. The dose contribution of unattached radon progeny was evaluated in addition. The results show that no clear variation trend of the unattached fraction of radon progeny is observed in an indoor or outdoor environment. The average unattached fraction of radon progeny for the indoors and outdoors are (8.7  ±  1.6)% and (9.7  ±  2.1)%, respectively. The dose contribution of unattached radon progeny to total radon exposure is some 38.8% in an indoor environment, suggesting the importance of the evaluation on unattached radon progeny.

  2. A radon progeny deposition model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rielage, Keith; Elliott, Steven R; Hime, Andrew

    2010-12-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly {sup 222}Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of {sup 210}Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean roommore » environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.« less

  3. Intercomparison of active and passive instruments for radon and radon progeny in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Tu, Keng-Wu; Knutson, E.O.

    1995-02-01

    An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- andmore » beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within {plus_minus}10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement.« less

  4. Deposition of radon progeny on skin surfaces and resulting radiation doses in radon therapy.

    PubMed

    Tempfer, H; Hofmann, W; Schober, A; Lettner, H; Dinu, A L

    2010-05-01

    In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients' skin varied from 1.2 to 4.1 Bq/cm(2) in the bathtub, and from 1.1 to 2.6 Bq/cm(2) in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.

  5. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Knutson, E.O.; Tu, K.W.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC).more » There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.« less

  6. Assessment of the unattached fraction of indoor radon progeny and its contribution to dose: a pilot study in China.

    PubMed

    Guo, Qiuju; Zhang, Lei; Guo, Lu

    2012-12-01

    The unattached fraction of radon progeny (f(p)) is one of the most important factors for accurate evaluation of the effective dose from a unit of radon exposure, and it may vary greatly in different environments. For precise evaluation of the indoor radon exposure dose and the influence of unattached radon progeny, a pilot survey of f(p) in different environments was carried out in China with a portable and integrating monitor. The dose conversion factors for radon progeny are calculated with LUDEP(®) code, and the dose contributions from the unattached and the attached radon progenies were simultaneously evaluated based on the results of field measurements. The results show that even though the concentrations of radon progeny vary significantly among different indoor environments, the variations of f(p) seem relatively small (9.3-16.9%). The dose contribution from unattached radon progeny is generally larger (30.2-46.2%) in an indoor environment.

  7. Preliminary lung cancer risk assessment of exposure to radon progeny for Transylvania, Romania.

    PubMed

    Truta-Popa, Lucia-Adina; Dinu, Alexandra; Dicu, Tiberius; Szacsvai, Kinga; Cosma, Constantin; Hofmann, Werner

    2010-09-01

    The objective of the present study was to assess the lung cancer risk induced by exposures to radon progeny of people living in some areas of Transylvania, Romania. Indoor radon concentrations were measured in 667 dwellings of Stei area, Cluj, Bistrita-Nasaud, Sibiu, and Alba counties. Measurements were performed using CR-39 track detectors, exposed for a minimum of 3 mo. Average annual radon concentrations were 232, 114, 71, 62, and 161 Bq m for Stei area, Cluj, Bistrita-Nasaud, Sibiu, and Alba, respectively. The linear risk model of Darby was used to simulate the dose-effect relationship and relative lung cancer risk at low doses of alpha particles specific to residential radon exposures. Predicted relative risks at the measured exposure levels, together with information on the total number of reported lung cancer deaths and the number of people living in these regions, enabled us to estimate the fraction of lung cancer cases in each area that is attributable to radon. These percentages are 16.67% for Stei area, 9.09% for Cluj, 5.66% for Bistrita-Nasaud, 4.76% for Sibiu, and 12.28% for Alba county among lifetime non-smokers. Assuming that the smoking rates are similar for the investigated regions (10.72% smokers among men and 5.95% among women), around 64 to 69% of the total number of annual lung cancer deaths, stratified by sex, would be attributed to radon and occur among smoking male population, and around 35 to 44% would be attributed to radon and occur among smoking female population.

  8. Surface alpha backgrounds from plate-out of radon progeny

    NASA Astrophysics Data System (ADS)

    Perumpilly, Gopakumar; Guiseppe, Vincente

    2012-03-01

    Low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. We have developed a model of the radon progeny implantation using Geant4 simulations based on the low energy nuclear recoil process. We explore the alpha decays from implanted progeny on a Ge crystal as potential backgrounds for a neutrinoless double-beta decay experiment. Results of the simulations validated with alpha spectrum measurement of plate-out samples will be presented.

  9. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND PROGENY IN THE INDOOR ENVIRONMENT OF YAMUNA AND TONS VALLEYS OF GARHWAL HIMALAYA.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Prasad, Ganesh; Mishra, Rosaline; Ramola, R C

    2016-10-01

    Long-term measurements of indoor radon, thoron and their progeny concentrations have been carried out in dwellings of Yamuna and Tons Valleys of Uttarkashi, Garhwal Himalaya to investigate the health risk associated with inhalation of radon, thoron and progeny. The experimentally determined values of radon, thoron and progeny concentrations were used to estimate the annual inhalation doses and annual effective doses. The annual inhalation dose has been found to vary from 0.8 to 3.9 mSv y -1 with an average of 1.8 mSv y -1 The annual effective dose from the exposure to radon and its progeny in the study area has been found to vary from 0.1 to 2.4 mSv with an average of 1.2±0.6 mSv. Similarly, the annual effective dose due to thoron and its progeny has been found to vary from 0.2 to 1.5 mSv with an average of 0.6±0.4. The measurement techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Exposure to atmospheric radon.

    PubMed Central

    Steck, D J; Field, R W; Lynch, C F

    1999-01-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924007

  11. Comparative analysis of radon, thoron and thoron progeny concentration measurements.

    PubMed

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; McLaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-07-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others.

  12. Comparative analysis of radon, thoron and thoron progeny concentration measurements

    PubMed Central

    Janik, Miroslaw; Tokonami, Shinji; Kranrod, Chutima; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Hosoda, Masahiro; Mclaughlin, James; Chang, Byung-Uck; Kim, Yong Jae

    2013-01-01

    This study examined correlations between radon, thoron and thoron progeny concentrations based on surveys conducted in several different countries. For this purpose, passive detectors developed or modified by the National Institute of Radiological Sciences (NIRS) were used. Radon and thoron concentrations were measured using passive discriminative radon-thoron detectors. Thoron progeny measurements were conducted using the NIRS-modified detector, originally developed by Zhuo and Iida. Weak correlations were found between radon and thoron as well as between thoron and thoron progeny. The statistical evaluation showed that attention should be paid to the thoron equilibrium factor for calculation of thoron progeny concentrations based on thoron measurements. In addition, this evaluation indicated that radon, thoron and thoron progeny were independent parameters, so it would be difficult to estimate the concentration of one from those of the others. PMID:23297318

  13. AGE-DEPENDENT INHALATION DOSE DUE TO EXPOSURE OF SHORT LIVED PROGENY OF RADON AND THORON FOR DIFFERENT AGE GROUPS IN JAMMU & KASHMIR, HIMALAYAS.

    PubMed

    Sharma, Sumit; Kumar, Ajay; Mehra, Rohit

    2018-05-16

    Dosimetric approach is used in this study for the assessment of doses due to inhalation of short lived radon/thoron progeny to the inhabitants of Udhampur district of Jammu & Kashmir. This paper also presents the activity concentrations and unattached fraction of radon and thoron progeny. The observed annual concentration of attached and unattached 222Rn and 220Rn progeny has been found to vary from 8 to 32 and 0.09 to 14 Bq/m3, 0.75 to 3.16 and 0.01 to 1.13 Bq/m3, respectively. The inhalation doses from radon progeny to different body organs of different age groups have been calculated by using the age dependent biokinetic model. The attachment rate of 222Rn and indoor aerosol concentration of 222Rn and 220Rn have been estimated and their relation between them has also been studied. The dose conversion factor for mouth and nasal breathing to different exposure conditions has been obtained from Porstendorfer model.

  14. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Field Investigation of the Surface-deposited Radon Progeny as a Possible Predictor of the Airborne Radon Progeny Dose Rate

    PubMed Central

    Sun, Kainan; Steck, Daniel J.; Field, R. William

    2009-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p < 0.0001) in nonsmoking environments. However, deposited 218Po was not significantly correlated to the above parameters in smoking environments. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as the dependent variable, as well as for radon and deposited 218Po and 214Po as predictors. An interaction effect was found between deposited 214Po and an obstacle in front of the Retrospective Reconstruction Detector (RRD) in predicting dose rate (p = 0.049 and 0.058 for Pdose and Jdose, respectively) for nonsmoking environments. After adjusting for radon and deposited radon progeny effects, the presence of either cooking, usage of a fireplace, or usage of a ceiling fan significantly, or marginal significantly, reduced the Pdose to 0.65 (90% CI 0.42–0.996), 0.54 (90% CI 0.28–1.02) and 0.66 (90% CI 0.45–0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39–0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55–0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64–0.83) in the mean Pdose was noted, after adjusting for the radon and

  16. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.

    PubMed

    Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U

    2011-06-01

    High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published

  17. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpitta, S.C.; Tu, K.W.; Fisenne, I.M.

    1996-10-01

    Results are presented from the Fifth Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurements conducted in the EML radon exposure and test facility in May 1996. In total, thirty-four government, private and academic facilities participated in the exercise with over 170 passive and electronic devices exposed in the EML test chamber. During the first week of the exercise, passive and continuous measuring devices were exposed (usually in quadruplicate) to about 1,280 Bq m{sup {minus}3} {sup 222}Rn for 1--7 days. Radon progeny measurements were made during the second week of the exercise. The results indicate thatmore » all of the tested devices that measure radon gas performed well and fulfill their intended purpose. The grand mean (GM) ratio of the participants` reported values to the EML values, for all four radon device categories, was 0.99 {plus_minus} 0.08. Eighty-five percent of all the radon measuring devices that were exposed in the EML radon test chamber were within {plus_minus}1 standard deviation (SD) of the EML reference values. For the most part, radon progeny measurements were also quite good as compared to the EML values. The GM ratio for the 10 continuous PAEC instruments was 0.90 {plus_minus} 0.12 with 75% of the devices within 1 SD of the EML reference values. Most of the continuous and integrating electronic instruments used for measuring the PAEC underestimated the EML values by about 10--15% probably because the concentration of particles onto which the radon progeny were attached was low (1,200--3,800 particles cm{sup {minus}3}). The equilibrium factor at that particle concentration level was 0.10--0.22.« less

  18. γ-H2AX/53BP1/pKAP-1 foci and their linear tracks induced by in vitro exposure to radon and its progeny in human peripheral blood lymphocytes

    PubMed Central

    Ding, Defang; Zhang, Yaping; Wang, Jing; Wang, Xufei; Fan, Dunhuang; He, Linfeng; Zhang, Xuxia; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for evaluating the human health hazards caused by radon and its progeny. Here, we demonstrated that the formation of phosphorylated histone variant H2AX (γ-H2AX), p53-binding protein 1 (53BP1) and phosphorylated KRAB-associated protein 1 (pKAP-1) foci and their linear tracks in human peripheral blood lymphocytes (HPBLs) in vitro exposed to radon and its progeny were dependent on the cumulative absorbed dose of radon exposure but was unrelated to the concentration of radon. Among them, γ-H2AX foci and its linear tracks were the most sensitive indicators with the lowest estimable cumulative absorbed dose of 1.74 mGy from their linear dose-response curves and sustained for 12 h after termination of radon exposure. In addition, three types of foci showed an overdispersed non-Poisson distribution in HPBLs. The ratios of pKAP-1/γ-H2AX foci co-localization, 53BP1/γ-H2AX foci co-localization and 53BP1/pKAP-1 foci co-localization were significantly increased in HPBLs exposed to radon while they were unrelated to the cumulative dose of radon exposure, suggesting that γ-H2AX, pKAP-1 and 53BP1 play an important role in the repair of heterochromatic double-strand breaks. Altogether, our findings provide an experimental basis for estimating the biological dose of internal α-particle irradiation from radon and its progeny exposure in humans. PMID:27922110

  19. Modeling surface backgrounds from radon progeny plate-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumpilly, G.; Guiseppe, V. E.; Snyder, N.

    2013-08-08

    The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The surface deposition and subsequent implantation of radon progeny in detector materials will be a source of energetic background events. We investigate Monte Carlo and model-based simulations to understand the surface implantation profile of radon progeny. Depending on the material and region of interest of a rare event search, these partial energy depositions can be problematic. Motivated by the use of Ge crystals for the detection of neutrinoless double-beta decay, we wish to understand the detector response of surface backgrounds from radon progeny. Wemore » look at the simulation of surface decays using a validated implantation distribution based on nuclear recoils and a realistic surface texture. Results of the simulations and measured α spectra are presented.« less

  20. Study of indoor radon and thoron progeny levels in surrounding areas of Nalbari, Assam, India

    NASA Astrophysics Data System (ADS)

    Deka, P. C.; Sarma, H.; Sarkar, Subir; Goswami, T. D.; Sarma, B. K.

    2009-07-01

    With the growing understanding of the role of radon and its daughter products as major sources of radiation exposure, the importance of large number of estimation of radon concentration in various parts of the country is realized. Inhalation of radon, thoron and their decay products is the major source of the total radioactive dose received by the human population from natural radiation. The indoor radon and thoron progeny levels in Nalbari area of Assam are studied by using the LR-115 (type II) Solid State Nuclear Track Detector in Plastic Twin Chamber dosimeter. Radon and thoron progeny levels in different types of dwellings for one full calendar year are presented in this paper. For Assam Type (A.T.) houses, indoor radon progeny concentrations vary from 0.17 to 0.64 mWL with an annual geometric mean of 0.27 mWL and that for Reinforced Cement Concrete (R.C.C.) houses vary from 0.22 mWL to 0.60 mWL with the annual geometric mean of 0.37 mWL. The thoron progeny levels in A.T. houses also vary from 0.01 to of 0.05 mWL with an annual geometric mean of 0.02 mWL and that for R.C.C. houses vary from 0.02 to 0.08 mWL with the annual geometric mean of 0.04 mWL.

  1. Optimization of the Timepix chip to measurement of radon, thoron and their progenies.

    PubMed

    Janik, Miroslaw; Ploc, Ondrej; Fiederle, Michael; Procz, Simon; Kavasi, Norbert

    2016-01-01

    Radon and thoron as well as their short-lived progenies are decay products of the radium and thorium series decays. They are the most important radionuclide elements with respect to public exposure. To utilize the semiconductor pixel radiation Timepix chip for the measurement of active and real-time alpha particles from radon, thoron and their progenies, it is necessary to check the registration and visualization of the chip. An energy check for radon, thoron and their progenies, as well as for (241)Am and(210)Po sources, was performed using the radon and thoron chambers at NIRS (National Institute of Radiological Sciences). The check found an energy resolution of 200 keV with a 14% efficiency as well as a linear dependency between the channel number (cluster volume) and the energy. The coefficient of determination r(2) of 0.99 for the range of 5 to 9 MeV was calculated. In addition, an offset for specific Timepix configurations between pre-calibration for low energy from 6 to 60 keV, and the actual calibration for alpha particles with energies from 4000 to 9000 keV, was detected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Radon progeny in hydrometeors at the earth's surface.

    PubMed

    Voltaggio, M

    2012-07-01

    During atmospheric thermal inversions, dew and hoarfrost concentrate gamma emitting radionuclides of the short-lived (222)Rn progeny ((214)Pb and (214)Bi), causing an increase in the total natural gamma background from the ground. To highlight this phenomenon, a volcanic zone of high (222)Rn flux was studied during the winter season 2010-11. High-specific short-lived radon progeny activities up to 122 Bq g(-1) were detected in hydrometeors forming at the earth's surface (ESHs), corresponding to a mean increase of up to 17 % of the normal gamma background value. A theoretical model, depending on radon flux from soil and predicting the radon progeny concentrations in hydrometeors forming at the ESHs is presented. The comparison between model and field data shows a good correspondence. Around nuclear power plants or in nuclear facilities that use automatic NaI or CsI total gamma spectroscopy systems for monitoring radioactive contamination, hydrometeors forming at the ESHs in sites with a high radon flux could represent a relevant source of false alarms of radioactive contamination.

  3. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India.

    PubMed

    Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori

    2017-03-20

    In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y -1 ) and low background radiation areas (control areas, outdoor external dose: 1 mGy y -1 ) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.

  4. Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica-Greece): results from measurements and modelling.

    PubMed

    Nikolopoulos, Dimitrios; Vogiannis, Efstratios; Petraki, Ermioni; Zisos, Athanasios; Louizi, Anna

    2010-01-01

    Radon and progeny ((218)Po, (214)Pb, (214)Bi and (214)Po) in thermal spas are well known radioactive pollutants identified for additional radiation burden of patients due to the activity concentration peaks which appear during bath treatment or due to drinking of waters of high radon content. This burden affects additionally the working personnel of the spas. The present paper has focused on the thermal spas of Loutraki (Attica-Greece). The aim was the investigation of the health impact for patients and working personnel due to radon and progeny. Attention has been paid to radon and progeny transient concentration peaks (for bath treatment) and to radon of thermal waters (both for bath treatment and drinking therapy). Designed experiments have been carried out, which included radon and progeny activity concentration measurements in thermal waters and ambient air. Additionally, published models for description of radon and progeny transient concentration peaks were employed. The models were based on physicochemical processes involved and employed non linear first order derivative mass balance differential equations which were solved numerically with the aid of specially developed computer codes. The collected measurements were analysed incorporating these models. Results were checked via non linear statistical tests. Predictions and measurements were found in close agreement. Non linear parameters were estimated. The models were employed for dosimetric estimations of patients and working personnel. The effective doses of patients receiving bath treatment were found low but not negligible. The corresponding doses to patients receiving potable treatment were found high but below the proposed international limits. It was found that the working personnel are exposed to considerable effective doses, however well below the acceptable limits for workers. It was concluded that treatment and working in the Loutraki spas leads to intense variations of radon and progeny and

  5. STUDY ON A STEP-ADVANCED FILTER MONITOR FOR CONTINUOUS RADON PROGENY MEASUREMENT.

    PubMed

    Zhang, Lei; Yang, Jinmin; Guo, Qiuju

    2017-04-01

    Traditional fixed-filter radon progeny monitors are usually clogged with the loading of dust and cannot be used for radon progeny continuous measurement for long period. To solve this problem, a step-advanced filter (SAF) monitor for radon progeny measurement was developed. This monitor automatically roll and stop the filter at each interview. Radon progeny is collected on a 'fresh' filter at a flowrate of 3 L/min. At the same time, alpha and beta particles emitted from filter are recorded by a PIPS detector. A newly developed alpha-beta spectrum method was used for radon progeny concentration calculation. The 218Po, 214Pb and 214Bi concentrations as well as equilibrium equivalent concentration (EEC) could be worked out at the same time. The lower level limit detection of this monitor is 0.48 Bq m-3 (EEC) for 1h interval. Comparison experiments were carried out in the radon chamber at the National Institute of Metrology of China. The measurement results of this SAF monitor are consistent with EQF3220 (SARAD GmbH, Germany), and the uncertainty is smaller. Due to its high sensitivity, the periodical variation of radon progeny concentration can be easily observed by this monitor. The SAF moniter is suitable for continuous measurement in both indoor and outdoor environments. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Impact of haze-fog days to radon progeny equilibrium factor and discussion of related factors.

    PubMed

    Hou, Changsong; Shang, Bing; Zhang, Qingzhao; Cui, Hongxing; Wu, Yunyun; Deng, Jun

    2015-11-01

    The equilibrium factor F between radon and its short-lived progenies is an important parameter to estimate radon exposure of humans. Therefore, indoor and outdoor concentrations of radon and its short-lived radon progeny were measured in Beijing area using a continuously measuring device, in an effort to obtain information on the F value. The results showed that the mean values of F were 0.58 ± 0.13 (0.25-0.95, n = 305) and 0.52 ± 0.12 (0.31-0.91, n = 64) for indoor and outdoor, respectively. The indoor F value during haze-fog days was higher than the typical value of 0.4 recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation, and it was also higher than the values of 0.47 and 0.49 reported in the literature. A positive correlation was observed between indoor F values and PM2.5 concentrations (R (2) = 0.71). Since 2013, owing to frequent heavy haze-fog events in Beijing and surrounding areas, the number of the days with severe pollution remains at a high level. Future studies on the impact of the ambient fine particulate matter on indoor radon progeny equilibrium factor F could be important.

  7. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decadesmore » of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.« less

  8. High time-resolved radon progeny measurements in the Arctic region (Svalbard islands, Norway): results and potentialities

    NASA Astrophysics Data System (ADS)

    Salzano, Roberto; Pasini, Antonello; Ianniello, Antonietta; Mazzola, Mauro; Traversi, Rita; Udisti, Roberto

    2018-05-01

    The estimation of radon progeny in the Arctic region represents a scientific challenge due to the required low limit of detection in consideration of the limited radon emanation associated with permafrost dynamics. This preliminary study highlighted, for the first time above 70° N, the possibility to monitor radon progeny in the Arctic region with a higher time resolution. The composition of the radon progeny offered the opportunity to identify air masses dominated by long-range transport, in presence or absence of near-constant radon progeny instead of long- and short-lived progenies. Furthermore, the different ratio between radon and thoron progenies evidenced the contributions of local emissions and atmospheric stability. Two different emanation periods were defined in accordance with the permafrost dynamics at the ground and several accumulation windows were recognized coherently to the meteo-climatic conditions occurring at the study site.

  9. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    PubMed

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  10. Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India.

    PubMed

    Sannappa, J; Ningappa, C

    2014-03-01

    An extensive studies on the indoor activity concentrations of thoron, radon and their progeny in the granite region in the state of Karnataka, India, has been carried out since, 2007 in the scope of a lung cancer epidemiological study using solid-state nuclear track detector-based double-chamber dosemeters (LR-115, type II plastic track detector). Seventy-four dwellings of different types were selected for the measurement. The dosemeters containing SSNTD detectors were fixed 2 m above the floor. After an exposure time of 3 months (90 d), films were etched to reveal tracks. From the track density, the concentrations of radon and thoron were evaluated. The value of the indoor concentration of thoron and radon in the study area varies from 16 to 170 Bq m(-3) and 18 to 300 Bq m(-3) with medians of 66 and 82.3 Bq m(-3), respectively, and that of their progeny varies from 1.8 to 24 mWL with a median of 3.6 mWL and 1.6 to 19.6 mWL, respectively. The concentrations of indoor thoron, radon and their progeny and their equivalent effective doses are discussed.

  11. Alpha particle spectroscopy in radon/thoron progeny measurements.

    PubMed

    Thiessen, N P

    1994-12-01

    A comparison is made between the relative variances and counting time requirements for obtaining radon and thoron progeny air concentrations from total alpha count data and from spectroscopically resolved alpha count data collected from air sampling filters. Spectral resolution is shown to have significant advantages, especially in mixed radon/thoron atmospheres. Systematic biases resulting from imperfect energy peak resolution are shown to be subject to accurate mathematical compensation.

  12. Study on peak shape fitting method in radon progeny measurement.

    PubMed

    Yang, Jinmin; Zhang, Lei; Abdumomin, Kadir; Tang, Yushi; Guo, Qiuju

    2015-11-01

    Alpha spectrum measurement is one of the most important methods to measure radon progeny concentration in environment. However, the accuracy of this method is affected by the peak tailing due to the energy losses of alpha particles. This article presents a peak shape fitting method that can overcome the peak tailing problem in most situations. On a typical measured alpha spectrum curve, consecutive peaks overlap even their energies are not close to each other, and it is difficult to calculate the exact count of each peak. The peak shape fitting method uses combination of Gaussian and exponential functions, which can depict features of those peaks, to fit the measured curve. It can provide net counts of each peak explicitly, which was used in the Kerr method of calculation procedure for radon progeny concentration measurement. The results show that the fitting curve fits well with the measured curve, and the influence of the peak tailing is reduced. The method was further validated by the agreement between radon equilibrium equivalent concentration based on this method and the measured values of some commercial radon monitors, such as EQF3220 and WLx. In addition, this method improves the accuracy of individual radon progeny concentration measurement. Especially for the (218)Po peak, after eliminating the peak tailing influence, the calculated result of (218)Po concentration has been reduced by 21 %. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. MEASUREMENT OF RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN THE DWELLINGS OF PAURI GARHWAL, UTTARAKHAND, INDIA.

    PubMed

    Joshi, Veena; Dutt, Sanjay; Yadav, Manjulata; Mishra, Rosaline; Ramola, R C

    2016-10-01

    It is well known that inhalation of radon, thoron and their progeny contributes more than 50 % of natural background radiation dose to human being. The time-integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector-based single-entry pin-hole dosemeter, while for the measurement of progeny concentrations, LR-115 deposition-based direct radon and thoron progeny sensors technique was used. The experimental techniques and results obtained are discussed in detail. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Inhalation dose due to radon, thoron, and progenies in dwellings of a hill station.

    PubMed

    Sivakumar, R

    2017-02-01

    The general public spends a major portion of their time in an indoor environment and hence receives a considerable amount of radiation. Knowledge about indoor radiation is important in order to arrive at the actual effective dose received by residents. The indoor radon, thoron, and progeny concentrations observed in the present study were found to vary with seasons of a given year. The highest and lowest indoor average radon, thoron, and progeny levels were observed during winter and summer seasons, respectively. The concentrations of indoor radon, thoron, and progenies were found to vary with the type of houses. The highest 222 Rn, 220 Rn, and progeny concentrations were observed in mud houses and the lowest values were recorded in wooden houses. The indoor 222 Rn concentration correlated well with concentration of its grandparent 238 U in underlying soil with a correlation coefficient of 0.87. The correlation between indoor 220 Rn and 232 Th in the underlying soil was found to be 0.64. The estimated effective doses received by the general public in the present study due to indoor radon and thoron were 1.49 ± 0.49 and 1.30 ± 0.53 mSv/year, respectively. The annual effective doses due to radon and thoron progenies were estimated as 0.76 ± 0.27 and 0.47 ± 0.23 mSv/year, respectively. The contributions from 222 Rn, 220 Rn, and corresponding progenies to the annual effective doses received were 37, 32, 19, and 12%, respectively. The general public living in the study area receives an inhalation dose of 4.02 mSv/year due to indoor radon, thoron, and progenies, which were found to be less than the action limit of ICRP 2009.

  15. Radon Sources and Associated Risk in Terms of Exposure and Dose

    PubMed Central

    Vogiannis, Efstratios G.; Nikolopoulos, Dimitrios

    2015-01-01

    Radon concerns the international scientific community from the early twentieth century, initially as radium emanation and nearly the second half of the century as a significant hazard to human health. The initial brilliant period of its use as medicine was followed by a period of intense concern for its health effects. Miners in Europe and later in the U.S were the primary target groups surveyed. Nowadays, there is a concrete evidence that radon and its progeny can cause lung cancer (1). Human activities may create or modify pathways increasing indoor radon concentration compared to outdoor background. These pathways can be controlled by preventive and corrective actions (2). Indoor radon and its short-lived progeny either attached on aerosol particles or free, compose an air mixture that carries a significant energy amount [Potential Alpha-Energy Concentration (PAEC)]. Prior research at that topic focused on the exposure on PAEC and the dose delivered by the human body or tissues. Special mention was made to the case of water workers due to inadequate data. Furthermore, radon risk assessment and relevant legislation for the dose delivered by man from radon and its progeny has been also reviewed. PMID:25601905

  16. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Lung dosimetry for inhaled long-lived radionuclides and radon progeny.

    PubMed

    Hussain, M; Winkler-Heil, R; Hofmann, W

    2011-05-01

    The current version of the stochastic lung dosimetry model IDEAL-DOSE considers deposition in the whole tracheobronchial (TB) and alveolar airway system, while clearance is restricted to TB airways. For the investigation of doses produced by inhaled long-lived radionuclides (LLR) together with short-lived radon progeny, alveolar clearance has to be considered. Thus, present dose calculations are based on the average transport rates proposed for the revision of the ICRP human respiratory tract model. The results obtained indicate that LLR cleared from the alveolar region can deliver up to two to six times higher doses to the TB region when compared with the doses from directly deposited particles. Comparison of LLR doses with those of short-lived radon progeny indicates that LLR in uranium mines can deliver up to 5 % of the doses predicted for the short-lived radon daughters.

  18. Invariants of the Jacobi-Porstendorfer room model for radon progeny in indoor air.

    PubMed

    Thomas, Josef; Jilek, Karel

    2012-06-01

    The Jacobi-Porstendörfer room model, describing the dynamical behaviour of radon and radon progeny in indoor air, has been successfully used for decades. The inversion of the model-the determination of the five parameters from measured results which provide better information on the room environment than mere ratios of unattached and attached radon progeny-is treated as an algebraic task. The linear interdependence of the used equations strongly limits the algebraic invertibility of experimental results. For a unique solution, the fulfilment of two invariants of the room model for the measured results is required. Non-fulfilment of these model invariants by the measured results leads to a set of non-identical solutions and indicates the violation of the conditions required by the room model or the incorrectness or excessive uncertainties of the measured results. The limited and non-unique algebraic invertibility of the room model is analysed numerically using our own data for the radon progeny.

  19. Radon exposure in uranium mining industry vs. exposure in tourist caves.

    PubMed

    Quindós Poncela, L; Fernández Navarro, P; Sainz Fernández, C; Gómez Arozamena, J; Bordonoba Perez, M

    2004-01-01

    There is a fairly general consensus among health physicists and radiation professionals that exposure to radon progeny is the largest and most variable contribution to the population's exposure to natural sources of radiation. However, this exposure is the subject of continuing debate concerning the validity of risk assessment and recommendations on how to act in radon-prone areas. The purpose of this contribution is to situate the radon issue in Spain in two very different settings. The first is a uranium mining industry located in Saelices el Chico (Salamanca), which is under strict control of the Spanish Nuclear Safety Council (CSN). We have measured radon concentrations in different workplaces in this mine over a five-year period. The second setting comprises four tourist caves, three of which are located in the province of Cantabria and the fourth on the Canary Island of Lanzarote. These caves are not subject to any administrative control of radiation exposure. Measured air 222Rn concentrations were used to estimate annual effective doses due to radon inhalation in the two settings, and dose values were found to be from 2 to 10 times lower in the uranium mine than in the tourist caves. These results were analysed in the context of the new European Basic Safety Standards Directive (EU-BSS, 1996).

  20. Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India.

    PubMed

    Omori, Yasutaka; Prasad, Ganesh; Sorimachi, Atsuyuki; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Vidya Sagar, Devulapalli; Ramola, Rakesh Chand; Tokonami, Shinji

    2016-10-01

    The Chhatrapur placer deposit is found in a high background radiation area which has been recently identified on the southeastern coast of India. Previously, some geochemical studies of this area were carried out to assess external dose from radionuclides-bearing heavy mineral sands. In this study, radon, thoron and thoron progeny concentrations were measured in about 100 dwellings during three seasons (autumn-winter, summer, and rainy) in a 10- to 12-month period and annual doses due to inhalation of them were evaluated. The measurements were made by passive-type radon-thoron discriminative detectors and thoron progeny detectors in which solid state nuclear track detectors were deployed. The results show that radon and thoron concentrations differ by one order of magnitude depending on exposure periods, while thoron progeny concentration is nearly constant throughout the year. Since thorium-rich sand is distributed in the studied area, exposure to thoron is equal to, or exceeds, exposure to radon and is not negligible for dose evaluation. Based on the measurements, doses due to inhalation of radon and thoron are evaluated as 0.1-1.6 mSv y -1 and 0.2-3.8 mSv y -1 , respectively. The total dose is 0.8-4.6 mSv y -1 , which is the same order of magnitude as the worldwide value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Filter for on-line air monitor unaffected by radon progeny and method of using same

    DOEpatents

    Phillips, Terrance D.; Edwards, Howard D.

    1999-01-01

    An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

  2. A European-wide 222radon and 222radon progeny comparison study

    NASA Astrophysics Data System (ADS)

    Schmithüsen, Dominik; Chambers, Scott; Fischer, Bernd; Gilge, Stefan; Hatakka, Juha; Kazan, Victor; Neubert, Rolf; Paatero, Jussi; Ramonet, Michel; Schlosser, Clemens; Schmid, Sabine; Vermeulen, Alex; Levin, Ingeborg

    2017-04-01

    Although atmospheric 222radon (222Rn) activity concentration measurements are currently performed worldwide, they are being made by many different laboratories and with fundamentally different measurement principles, so compatibility issues can limit their utility for regional-to-global applications. Consequently, we conducted a European-wide 222Rn / 222Rn progeny comparison study in order to evaluate the different measurement systems in use, determine potential systematic biases between them, and estimate correction factors that could be applied to harmonize data for their use as a tracer in atmospheric applications. Two compact portable Heidelberg radon monitors (HRM) were moved around to run for at least 1 month at each of the nine European measurement stations included in this comparison. Linear regressions between parallel data sets were calculated, yielding correction factors relative to the HRM ranging from 0.68 to 1.45. A calibration bias between ANSTO (Australian Nuclear Science and Technology Organisation) two-filter radon monitors and the HRM of ANSTO / HRM = 1.11 ± 0.05 was found. Moreover, for the continental stations using one-filter systems that derive atmospheric 222Rn activity concentrations from measured atmospheric progeny activity concentrations, preliminary 214Po / 222Rn disequilibrium values were also estimated. Mean station-specific disequilibrium values between 0.8 at mountain sites (e.g. Schauinsland) and 0.9 at non-mountain sites for sampling heights around 20 to 30 m above ground level were determined. The respective corrections for calibration biases and disequilibrium derived in this study need to be applied to obtain a compatible European atmospheric 222Rn data set for use in quantitative applications, such as regional model intercomparison and validation or trace gas flux estimates with the radon tracer method.

  3. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies.

    PubMed

    Madas, B G; Balásházy, I; Farkas, Á; Szoke, I

    2011-02-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The object of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects at tissue level. Applying computational fluid and particle dynamics techniques, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 min of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilised in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death-induced cell-cycle shortening has been applied to assess the biological responses. Present computations reveal that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological finding that the uneven deposition distribution of radon progenies may lead to inhomogeneous spatial distribution of tumours in the bronchial airways. In addition, at the macroscopic level, the relationship between cancer risk and radiation burden seems to be non-linear.

  4. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F, A. L.

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based onmore » the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.« less

  5. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    NASA Astrophysics Data System (ADS)

    Pereira, L. A.; Hadler, J. C.; Lixandrão F., A. L.; Guedes, S.; Takizawa, R. H.

    2014-11-01

    It is well known that radon daughters up to 214Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  6. INDOOR RADON, THORON AND THEIR PROGENY CONCENTRATIONS IN HIGH THORON RURAL SERBIA ENVIRONMENTS.

    PubMed

    Zunic, Zora S; Stojanovska, Z; Veselinovic, N; Mishra, R; Yarmoshenko, I V; Sapra, B K; Ishikawa, T; Omori, Y; Curguz, Z; Bossew, P; Udovicic, V; Ramola, R C

    2017-11-01

    This article deals with the variation of radon (Rn), thoron (Tn) and their progeny concentrations expressed in terms of equilibrium equivalent concentrations (EERC and EETC), in 40 houses, in four villages of Sokobanja municipality, Southern Serbia. Two types of passive detectors were used: (1) discriminative radon-thoron detector for simultaneous Rn and Tn gases measurements and (2) direct Tn and Rn progeny sensors (DRPS/DTPS) for measuring Rn and Tn progeny concentrations. Detectors were exposed simultaneously for a single period of 12 months. Variations of Tn and EETC appear higher than those of Rn and EERC. Analysis of the spatial variation of the measured concentrations is also reported. This work is part of a wider survey of Rn, Tn and their progeny concentrations in indoor environments throughout the Balkan region started in 2011 year. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Lung dosimetry for inhaled radon progeny in smokers.

    PubMed

    Baias, Paul F; Hofmann, Werner; Winkler-Heil, Renate; Cosma, Constantin; Duliu, Octavian G

    2010-02-01

    Cigarette smoking may change the morphological and physiological parameters of the lung. Thus the primary objective of the present study was to investigate to what extent these smoke-induced changes can modify deposition, clearance and resulting doses of inhaled radon progeny relative to healthy non-smokers (NSs). Doses to sensitive bronchial target cells were computed for four categories of smokers: (1) Light, short-term (LST) smokers, (2) light, long-term (LLT) smokers, (3) heavy, short-term (HST) smokers and (4) heavy, long-term (HLT) smokers. Because of only small changes of morphological and physiological parameters, doses for the LST smokers hardly differed from those for NSs. For LLT and HST smokers, even a protective effect could be observed, caused by a thicker mucus layer and increased mucus velocities. Only in the case of HLT smokers were doses higher by about a factor of 2 than those for NSs, caused primarily by impaired mucociliary clearance, higher breathing frequency, reduced lung volume and airway obstructions. These higher doses suggest that the contribution of inhaled radon progeny to the risk of lung cancer in smokers may be higher than currently assumed on the basis of NS doses.

  8. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  9. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    PubMed

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. A review of lung-to-blood absorption rates for radon progeny.

    PubMed

    Marsh, J W; Bailey, M R

    2013-12-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.

  11. Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India, using LR-115 deposition-based DTPS/DRPS technique.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Yadav, Manjulata; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2015-11-01

    This paper presents the values of radon and thoron progeny concentrations for different seasons in the dwellings of Tehri Garhwal, India. The measurements have been carried out using LR-115 solid-state nuclear track detector-based passive time-integrated direct thoron progeny sensor/direct radon progeny sensor technique. In summer, the radon and thoron progeny have been found to vary from 5.7±0.8 to 153.2±4.3 Bq m(-3) with an average of 37.6 Bq m(-3) and 0.3±0.06 to 3.2±0.19 Bq m(-3) with an average of 1.3 Bq m(-3), respectively. In the rainy season, the radon and thoron progeny have been found to vary from 3.2±0.6 to 120±3.7 Bq m(-3) with an average of 58.2 Bq m(-3) and 0.2±0.05 to 11.3±0.37 Bq m(-3) with an average of 3.4 Bq m(-3), respectively. In autumn, the radon and thoron progeny have been found to vary from 4.1±0.7 to 374.4±6.7 Bq m(-3) with an average of 95.6 Bq m(-3) and from 0.3±0.06 to 30.5±0.60 Bq m(-3) with an average of 6.6 Bq m(-3), respectively. In winter, the radon and thoron progeny have been found to vary from 9.8±1.1 to 188.9±4.8 Bq m(-3) with an average of 70.7 Bq m(-3) and 0.1±0.03 to 7.5±0.30 Bq m(-3) with an average of 2.3 Bq m(-3), respectively. It has been observed that the average value of radon and thoron progeny concentrations is maximum for autumn and minimum for summer seasons. The seasonal variations in radon and thoron progeny concentrations in different houses are discussed in detail. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Non-linear relationship of cell hit and transformation probabilities in a low dose of inhaled radon progenies.

    PubMed

    Balásházy, Imre; Farkas, Arpád; Madas, Balázs Gergely; Hofmann, Werner

    2009-06-01

    Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterise the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high, even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a function of dose exhibits a linear shape in the low dose range. The results are quite the opposite in the case of hot spots revealed by realistic deposition calculations, where practically all cells receive multiple hits and the hit probability as a function of dose is non-linear in the average dose range of 10-100 mGy.

  13. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment.

    PubMed

    Winkler-Heil, R; Hussain, M; Hofmann, W

    2015-05-01

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

  14. Mutation rates at the glycophorin A and HPRT loci in uranium miners exposed to radon progeny.

    PubMed Central

    Shanahan, E M; Peterson, D; Roxby, D; Quintana, J; Morely, A A; Woodward, A

    1996-01-01

    OBJECTIVES--To find whether a relation exists between estimated levels of exposure to radon and its progeny and mutations in hypoxanthine phosphoribosyl transferase (HPRT) and glycophorin A in a cohort of former uranium miners. METHODS--A cohort study involving a sample of miners from the Radium Hill uranium mine in South Australia, which operated from 1952 to 1961. Radiation exposures underground at Radium Hill were estimated from historical radon gas measures with a job exposure matrix. Workers from the mine who worked exclusively above ground according to mine records were selected as controls. In 1991-2 miners were interviewed and blood taken for measurement of somatic mutations. Mutation rates for HPRT and glycophorin A were estimated with standard assay techniques. RESULTS--Homozygous mutations of glycophorin A were increased in underground miners (P = 0.0027) and the mutation rate tended to rise with increasing exposure with the exception of the highest exposure (> 10 working level months). However, there was no association between place of work and either the hemizygous mutations of glycophorin A or the HPRT mutation. CONCLUSIONS--There may be an association between glycophorin A mutations and previous occupational exposure to ionising radiation. However, not enough is known at present to use these assays as biomarkers for historical exposure in underground mining cohorts. PMID:8704866

  15. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions

  16. Dose conversion factors for radon: recent developments.

    PubMed

    Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot

    2010-10-01

    Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.

  17. The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review

    PubMed Central

    Robertson, Aaron; Allen, James; Laney, Robin; Curnow, Alison

    2013-01-01

    Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis. PMID:23880854

  18. Lung Cancer Attributable to Indoor Radon Exposures in Two Radon--Prone Areas, Stei (Romania) and Torrelodones (Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinu, Alexandra; Cosma, Constantin; Vasiliniuc, Stefan

    2009-05-22

    Radon and radon progeny are present indoors, in houses and others dwellings, representing the most important contribution to dose from natural sources of radiation. Most studies have demonstrated an increased risk of lung cancer at high concentration of radon for both smokers and nonsmokers. For medium and low concentrations which are the typical residential radon levels, recent researches have also demonstrated increased risks of lung cancer for people exposed. The work presents a comparative analysis of the radon exposure data in the two radon--prone areas, Stei, Transylvania, (Romania), in the near of old Romanian uranium mines and in the graniticmore » area of Torrelodones town, Sierra de Guadarrama (Spain). One important difference between the two studied areas is related to the houses built using uranium waste as construction material in Stei area. Measurements of indoor radon were performed in 280 dwellings (Romania) and 91 dwellings (Spain) by using nuclear track detectors, CR 39. The highest value measured in Stei area was 2650 Bq{center_dot}m{sup -3}. and 366 Bq{center_dot}m{sup -3} in the Spanish region. The results are compute with the BEIR VI report estimates using the age-duration model at an exposure rate below 2650 Bq{center_dot}m{sup -3}. A total of 233 lung cancer deaths were calculated in the Stei area for a period of 13 years (1994-2006), which is 116.82% higher than observed from the national statistics. In comparison, in Torrelodones area, a number of 276 deaths caused by lung cancer were estimated along a period of 13 years, which is 2.09 times higher than the number observed by authorities. This represents a significantly evidence that elevated risk can strongly be associated with cumulated radon exposure.« less

  19. A generic biokinetic model for noble gases with application to radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Marsh, James; Gregoratto, Demetrio

    The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny willmore » be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.« less

  20. Stochastic dosimetry model for radon progeny in the rat lung.

    PubMed

    Winkler-HeiI, R; Hofmann, W; Hussain, M

    2014-07-01

    The stochastic dosimetry model presented here considers the distinctly asymmetric, stochastic branching pattern reported in morphometric measurements. This monopodial structure suggests that an airway diameter is a more appropriate morphometric parameter to classify bronchial dose distributions for inhaled radon progeny than the commonly assigned airway generation numbers. Bronchial doses were calculated for the typical exposure conditions reported for the Pacific Northwest National Laboratory rat inhalation studies, yielding an average bronchial dose of 7.75 mGy WLM(-1). If plotted as functions of airway generations, the resulting dose distributions are highest in the central bronchial airways, while significantly decreasing towards peripheral generations. However, if plotted as functions of airway diameters, doses are much more uniformly distributed among bronchial airways. The comparison between rat and human lungs indicates that dose conversion coefficients for the rat lung are higher than the corresponding values for the human lung by a factor of 1.34 for the experimental PNNL exposure conditions, and of 1.25 for typical human indoor conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Analysis of Radon and Radon Progeny in Residences: Factors that Affect Their Amounts and Methods of Reduction

    DTIC Science & Technology

    1985-03-01

    figures 6 - 14 a plot of the radon daughters concentration versua the Electronic Air Cleener operation time is shown. The variations in the daughter...34Uncertainties in the Measurement of Airborne Radon Daughters ," Health Physics, 39, 943-955 (1980). 4. Cliff, K.D. and others. "Radon Daughter Exposures in...Radon and Radon Daughters in Canadian Homes," Health Physics, 39: 285-289 (1980). 25. Nero, A.V. "Indoor Radiation Exposures from Rn-222 and its

  2. Detection of 210Po on filter papers 16 years after use for the collection of short-lived radon progeny in a room.

    PubMed

    Abu-Jarad, F; Fazal-ur-Rehman

    2003-01-01

    Radon gas was allowed to accumulate in its radium source and then injected into a 36 m(3) test room, resulting in an initial radon concentration of 15 kBq m(-3). Filter papers were used to collect the short-lived radon progeny and thus to measure the Potential Alpha Energy Concentration (PAEC) in-situ in the year 1984 at different times and conditions according to the experimental design. The radon progeny collected on the filter papers were studied as a function of aerosol particle concentration ranging from 10(2)-10(5) particles cm(-3) in three different experiments. The highest aerosol particle concentration was generated by indoor cigarette smoking. Those filters were stored after the experiment, and were used after 16 years to study the activity of the radon long-lived alpha emitter progeny, (210)Po (T(1/2)=138 days). This isotope is separated from the short-lived progeny by (210)Pb beta emitter with 22.3 years half-life. After 16 years' storage of these filters, each filter paper was sandwiched and wrapped between two CR-39 nuclear track detectors, to put the detectors in contact with the surfaces of different filters, for 337 days. Correlation between the PAEC measured using filter papers in the year 1984 and the activity of long-lived alpha emitter (210)Po on the same filter papers measured in the year 2000 were studied. The results of the (210)Po activity showed a very good correlation of 0.92 with the PAEC 16 years ago. The results also depict that the PAEC and (210)Po activity in indoor air increased with the increase of aerosol particle concentration, which shows the attachment of short-lived radon progeny with the aerosol particles. The experiment proves that indoor cigarette smoking is a major source of aerosol particles carrying radon progeny and, thus, indoor cigarette smoking is an additional source of internal radiation hazard to the occupants whether smoker or non-smoker.

  3. Radon and lung cancer: assessing and mitigating the risk.

    PubMed

    Choi, Humberto; Mazzone, Peter

    2014-09-01

    Radon is a naturally occurring radioactive gas. Its progenies emit alpha particles capable of causing tissue damage. Radon exposure is estimated to be the second most common cause of lung cancer in the United States. Management of patients with a history of radon exposure should involve a lung cancer specialist. Copyright© 2014 The Cleveland Clinic Foundation.

  4. Thoron and thoron progeny measurements in German clay houses.

    PubMed

    Gierl, S; Meisenberg, O; Feistenauer, P; Tschiersch, J

    2014-07-01

    In recent years, elevated thoron concentrations were found in houses built of unfired clay. In this study experiments were carried out in 17 traditional and modern clay houses in Germany to obtain an overview of indoor thoron in such houses. Long-term measurements over an 8-week period were performed using a newly developed Unattended Battery-Operated Progeny Measurement Device (UBPM) for measuring thoron progeny. This instrument uses a high-voltage electric field to precipitate radon and thoron progeny on nuclear track detectors. Additional active and passive measurements of radon, thoron and their progeny were performed. The equilibrium equivalent thoron concentration was found to be between 2 and 10 Bq m(-3). Gas concentrations were found to be between 20 and 160 Bq m(-3) for radon and between 10 and 90 Bq m(-3) for thoron 20 cm from the wall. The thoron exposure contributes significantly to the inhalation dose of the dwellers (0.6-4 mSv a(-1)). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Passive Measurements of Thoron and its Progeny in some Dwellings in Ireland

    NASA Astrophysics Data System (ADS)

    Choncubhair, Órlaith Ní; Laughlin, James Mc; Tokonami, Shinji

    2008-08-01

    In this paper, an account is given of the development, calibration and field use of a passive alpha track detector sensitive to thoron as well as to radon. No database of thoron and thoron progeny concentrations in dwellings in Ireland exists and, as a result, the level of exposure of the Irish population to thoron and its progeny is unknown. As an initial or pilot stage in establishing such a data base measurements of thoron and thoron progeny concentrations (the latter expressed in Equilibrium Equivalent Thoron Concentration (EETC)) were made in 40 randomly chosen Irish dwellings. The EETC measurements were made using a passive thoron progeny deposition rate monitor designed and supplied by NIRS (Japan). In addition standard unmodified SSI passive radon detectors were used to measure radon in these dwellings. The measured thoron concentrations ranged from below the level of detection to 154 Bq/m3 while the radon gas ranged from 15 to 179 Bq/m3. The thoron progeny EETC values for these dwellings ranged from 0.03 to 7.7 Bq/m3. An account is also given of the dosimetric implications of these measurements.

  6. Does long term exposure to radon gas influence the properties of polymeric waterproof materials?

    NASA Astrophysics Data System (ADS)

    Navratilova Rovenska, Katerina; Jiranek, Martin; Kokes, Pavel; Wasserbauer, Richard; Kacmarikova, Veronika

    2014-01-01

    The technical state of buildings and the quality of the indoor environment depend on the quality of the waterproofing course and on the properties of the insulating materials that are applied, in particular on their durability, long-term functional reliability and resistance to corrosive effects of the subsoil. Underground water chemistry and soil bacteria are well-known corrosive agents. Our investigations indicate that the ageing process of waterproof materials can be significantly accelerated by alpha particles emitted by radon and radon progenies which are present in soil gas. Materials commonly available on the building market, e.g. LDPE and HDPE of various densities, PVC, TPO (thermoplastic polyolefin), PP (polypropylene) and EPDM were selected for our experimental study. The preliminary results for 3-year exposure to radon gas show a decrease in tensile strength to 60%, elongation to 80% and hardness to 95% for samples based on PE. The diffusion coefficient of radon for samples based on PVC decreased to 20% of the initial value after 1-year exposure to radon and soil bacteria.

  7. Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human lung.

    PubMed

    Nikezic, D; Lau, B M F; Stevanovic, N; Yu, K N

    2006-01-01

    To calculate the absorbed dose in the human lung due to inhaled radon progeny, ICRP focussed on the layers containing the target cells, i.e., the basal and secretory cells. Such an approach did not consider details of the sensitive cells in the layers. The present work uses the microdosimetric approach and determines the absorbed alpha-particle energy in non-spherical nuclei of target cells (basal and secretory cells). The absorbed energy for alpha particles emitted by radon progeny in the human respiratory tract was calculated in basal- and secretory-cell nuclei, assuming conical and ellipsoidal forms for these cells. Distributions of specific energy for different combinations of alpha-particle sources, energies and targets are calculated and shown. The dose conversion coefficient for radon progeny is reduced for about 2mSv/WLM when conical and ellipsoidal cell nuclei are considered instead of the layers. While changes in the geometry of secretory-cell nuclei do not have significant effects on their absorbed dose, changes from spherical to conical basal-cell nuclei have significantly reduced their absorbed dose from approximately 4 to approximately 3mGy/WLM. This is expected because basal cells are situated close to the end of the range of 6MeV alpha particles. This also underlines the significance of better and more precise information on targets in the T-B tree. A further change in the dose conversion coefficient can be achieved if a different weighting scheme is adopted for the doses for the cells. The results demonstrate the necessity for better information on the target cells for more accurate dosimetry for radon progeny.

  8. [Patients' exposure to electromagnetic fields and radon in radon spas].

    PubMed

    Politański, Piotr; Olszewski, Jerzy; Mamrot, Paweł; Mariańska, Mlagda; Zmyślony, Marek

    2014-01-01

    Many patients of physiotherapeutic facilities using therapeutic radon are also referred to other treatments involving the use of electromagnetic field (EMF). However, in the light of the theory of EMF influence on free radicals, it is still an open question whether, application of EMF shortly after the radon treatment may alter the biological effects of radon or EMF. The aim of the study was to determine how large is the group of patients exposed to radon and EMF in Poland, and how high is the exposure of these patients to analyzed factors. The results of the study are to be used in the future assessment of the combined effects of radon and EMF in radon spas. Based on the statistical data and interviews held in the major Polish radon spas, the analysis of treatment structure was performed and exposure to radon and EMF was assessed by measuring radon concentrations and characteristic values of exposure to EMF. More than 8000 people per year are subjected to combined exposure to radon and EMF. Significant differences were found between measured radon concentrations (they ranged from approximately 61 kBq/m3 for inhalations with inhaler to only 290 Bq/m3 for graduation towers, p = 0.049) and EMF intensities corresponded to those observed in hazardous and dangerous zones for occupational exposure. The results of the study showed significant differences between radon concentrations during various radon treatments. There is a need to develop clear and universal procedures for the application of radon or radon combined with EMF in radon spas. The effects of patients' exposure to radon, especially combined with EMF need to be further studied.

  9. Radon and Thoron In-air Occupational Exposure Study within Selected Wine Cellars of the Western Cape (South Africa) and Associated Annual Effective Doses.

    PubMed

    Botha, R; Newman, R T; Lindsay, R; Maleka, P P

    2017-01-01

    This is the first known study of exposure of Rn (radon) and secondarily Rn (thoron) in-air activity concentrations assessed within nine selected wine cellars in four wine districts of the Western Cape (South Africa) and the associated annual occupational effective doses. E-PERM electret ion chambers (EIC) and RAD-7 α-detectors were used to perform these measurements. The radon in-air levels ranged from 12 ± 4 Bq m to 770 ± 40 Bq m within the nine selected wine cellars. Eight of the nine wine cellars (excluding results from cellar w-6) had a median radon in-air activity concentration of 48 ± 8 Bq m. Continuous thoron in-air activity concentration levels were also measured near an internal granite wall of the wine cellar w-6 (barrel room), where peak levels of up to 1,520 ± 190 Bq m and an average of 680 ± 30 Bq m were observed. The occupational annual effective dose due to radon and decay progeny exposure in-air within the selected wine cellars ranged from 0.08 ± 0.03 mSv to 4.9 ± 0.3 mSv with a median of 0.32 ± 0.04 mSv (Tmax = 2,000 h). The annual effective dose within the wine cellar (w-6) ranged up to a maximum of 2.5 ± 0.4 mSv (Tmax = 2000 h) due to exposure to thoron and decay progeny. In general, most of the wines cellars pose negligible associated health risk to personnel due to ionizing radiation exposure from the inhalation of radon and progeny. Under certain conditions (proximity and exposure time), caution should be exercised at wine cellar w-6 because of elevated thoron in-air levels.

  10. Assessing the deposition of radon progeny from a uranium glass necklace.

    PubMed

    Hansen, M F; Moss, G R

    2015-06-01

    Could jewellery made from uranium glass beads pose an increased risk to skin cancer? The literature Eatough (Alpha-particle dosimetry for the basal layer of the skin and the radon progeny (218)Po and (214)Po. Phys. Med. Biol. 1997; 42: 1899-1911.) suggests that the alphas from the short-lived radon daughters, (218)Po and (214)Po, may reach the basal layer of the epidermis, which is believed to be important in the induction of skin cancers. The deposition of the alphas from the (218)Po and (214)Po daughters was investigated using PADC detector material. The expectation would be that no alpha particles would penetrate through the dead skin layer, assuming the average of 70 microns used in radiation protection, but the skin around the collar bone could potentially be thinner than the assumed average. It should be noticed that by inserting a slice of pig skin in between the necklace and the PADC, no great excess of alpha tracks were seen after 1 week of exposure in the freezer. There was, however, a clear signal through the pig skin from beta particles, confirming the potential of a uranium bead necklace posing a health risk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Long-term measurements of radon, thoron and their airborne progeny in 25 schools in Republic of Srpska.

    PubMed

    Ćurguz, Z; Stojanovska, Z; Žunić, Z S; Kolarž, P; Ischikawa, T; Omori, Y; Mishra, R; Sapra, B K; Vaupotič, J; Ujić, P; Bossew, P

    2015-10-01

    This article reports results of the first investigations on indoor radon, thoron and their decay products concentration in 25 primary schools of Banja Luka, capital city of Republic Srpska. The measurements have been carried out in the period from May 2011 to April 2012 using 3 types of commercially available nuclear track detectors, named: long-term radon monitor (GAMMA 1)- for radon concentration measurements (C(Rn)); radon-thoron discriminative monitor (RADUET) for thoron concentration measurements (C(Tn)); while equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) measured by Direct Radon Progeny Sensors/Direct Thoron Progeny Sensors (DRPS/DTPS) were exposed in the period November 2011 to April 2012. In each school the detectors were deployed at 10 cm distance from the wall. The obtained geometric mean concentrations were C(Rn) = 99 Bq m(-3) and C(Tn) = 51 Bq m(-3) for radon and thoron gases respectively. Those for equilibrium equivalent radon concentration (EERC) and equilibrium equivalent thoron concentrations (EETC) were 11.2 Bq m(-3) and 0.4 Bq m(-3), respectively. The correlation analyses showed weak relation only between C(Rn) and C(Tn) as well as between C(Tn) and EETC. The influence of the school geographical locations and factors linked to buildings characteristic in relation to measured concentrations were tested. The geographical location and floor level significantly influence C(Rn) while C(Tn) depend only from building materials (ANOVA, p ≤ 0.05). The obtained geometric mean values of the equilibrium factors were 0.123 for radon and 0.008 for thoron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A method of discriminating transuranic radionuclides from radon progeny using low-resolution alpha spectroscopy and curve-fitting techniques.

    PubMed

    Konzen, Kevin; Brey, Richard

    2012-05-01

    ²²²Rn (radon) and ²²⁰Rn (thoron) progeny are known to interfere with determining the presence of long-lived transuranic radionuclides, such as plutonium and americium, and require from several hours up to several days for conclusive results. Methods are proposed that should expedite the analysis of air samples for determining the amount of transuranic radionuclides present using low-resolution alpha spectroscopy systems available from typical alpha continuous air monitors (CAMs) with multi-channel analyzer (MCA) capabilities. An alpha spectra simulation program was developed in Microsoft Excel visual basic that employed the use of Monte Carlo numerical methods and serial-decay differential equations that resembled actual spectra. Transuranic radionuclides were able to be quantified with statistical certainty by applying peak fitting equations using the method of least squares. Initial favorable results were achieved when samples containing radon progeny were decayed 15 to 30 min, and samples containing both radon and thoron progeny were decayed at least 60 min. The effort indicates that timely decisions can be made when determining transuranic activity using available alpha CAMs with alpha spectroscopy capabilities for counting retrospective air samples if accompanied by analyses that consider the characteristics of serial decay.

  13. On the interaction between radon progeny and particles generated by electronic and traditional cigarettes

    NASA Astrophysics Data System (ADS)

    Vargas Trassierra, C.; Cardellini, F.; Buonanno, G.; De Felice, P.

    2015-04-01

    During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a "second-hand smoke" has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L-1 to 12.6 ± 0.26 MeV L-1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L-1 to 18.6 ± 0.19 MeV L-1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long

  14. Room model based Monte Carlo simulation study of the relationship between the airborne dose rate and the surface-deposited radon progeny.

    PubMed

    Sun, Kainan; Field, R William; Steck, Daniel J

    2010-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through a Monte Carlo simulation study based on the extended Jacobi room model. Airborne dose rates were calculated from the unattached and attached potential alpha-energy concentrations (PAECs) using two dosimetric models. Surface-deposited (218)Po and (214)Po were significantly correlated with radon concentration, PAECs, and airborne dose rate (p-values <0.0001) in both non-smoking and smoking environments. However, in non-smoking environments, the deposited radon progeny were not highly correlated to the attached PAEC. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as a dependent variable, as well as for radon and deposited (218)Po and (214)Po as predictors. In non-smoking environments, after adjusting for the effect of radon, deposited (214)Po was a significant positive predictor for one dose model (RR 1.46, 95% CI 1.27-1.67), while deposited (218)Po was a negative predictor for the other dose model (RR 0.90, 95% CI 0.83-0.98). In smoking environments, after adjusting for radon and room size, deposited (218)Po was a significant positive predictor for one dose model (RR 1.10, 95% CI 1.02-1.19), while a significant negative predictor for the other model (RR 0.90, 95% CI 0.85-0.95). After adjusting for radon and deposited (218)Po, significant increases of 1.14 (95% CI 1.03-1.27) and 1.13 (95% CI 1.05-1.22) in the mean dose rates were found for large room sizes relative to small room sizes in the different dose models.

  15. Field experience on indoor radon, thoron and their progenies with solid-state detectors in a survey of Kosovo and Metohija (Balkan region).

    PubMed

    Gulan, L; Milic, G; Bossew, P; Omori, Y; Ishikawa, T; Mishra, R; Mayya, Y S; Stojanovska, Z; Nikezic, D; Vuckovic, B; Zunic, Z S

    2012-11-01

    Since 1996/97, indoor radon has been measured in scattered locations around Kosovo. In the most recent campaign, apart from radon, thoron and Rn and Tn progenies have also been measured. The current survey involves 48 houses, in which different detectors have been deployed side-by-side in one room, in order to measure indoor radon and thoron gas with RADUET devices based on CR-39 detectors (analysed by Japanese collaborators) and with direct thoron and radon progeny sensor (DTPS and DRPS) devices based on LR-115 detectors (analysed by collaborators from India). Estimated arithmetic mean values of concentrations in 48 houses are 122 Bq m(-3) for radon and 136 Bq m(-3) for thoron. Those for equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration based on measurements in 48 houses are 40 and 2.1 Bq m(-3), respectively. The arithmetic mean value of the equilibrium factor is estimated to be 0.50 ± 0.23 for radon and 0.037 ± 0.041 for thoron. The preliminary results of these measurements are reported, particularly regarding DTPS and DRPS being set up in real field conditions for the first time in the Balkan region. The results are to be understood under the caveat of open questions related to measurement protocols which yield reproducible and representative results, and to quality assurance of Tn and Rn/Tn progeny measurements in general, some of which are discussed.

  16. The portable device for continual measurement of radon progenies on filter using the detector Timepix.

    PubMed

    Bulanek, Boris; Hulka, Jiri; Jilek, Karel; Stekl, Ivan

    2015-06-01

    In this article, a portable device was presented for continual measuring of equilibrium equivalent concentration (EEC) of (222)Rn based on the Timepix detector with 300-µm-thick active layer. In order to have a portable device, a filtration head was developed for collecting short-lived radon progenies attached on aerosols. The short-lived progenies are estimated from analysing alphas from decay of (218,214)Po from Millipore filter after termination of filtration. Comparison with beta measurement was done as well. The dependence of EEC on an air flow and filtration time was studied. The low-level detection limit for EEC was estimated from the last 10 min of 3-h decay measurement and was found in the range of 40-70 Bq m(-3). EEC was measured in National Radiation Protection Institute radon chamber, and results were compared with the commercial detector Fritra4. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Radon dynamics and reduction in an underground mine in Brazil. Implications for workers' exposure.

    PubMed

    Evangelista, H; Pereira, E B; Fernandes, H M; Sampaio, M

    2002-01-01

    This work was aimed at studying the behaviour of 222Rn in an experimental underground copper mine in Brazil with a single entrance. The 222Rn concentrations, meaured by using a dynamic radon measuring technique. varied between 30.5 Bq.m(-3), during ventilated conditions applied to the mine galleries, and 19.4 x 10(3) Bq.(-3) for non-ventilated conditions and when operational mining activities were conducted inside. High radon concentration surges were observed after blasting and drilling activities. In the cases of inadequate ventilation, it was estimated that workers could be subjected to exposures as high as 10 microSv.h(-1), only due to 222Rn and its short-lived progeny. The results show the importance of real-time measurements to evaluate radon dynamics during mining operations.

  18. Radon progeny size distributions and enhanced deposition effects from high radon concentrations in an enclosed chamber.

    PubMed

    Leonard, Bobby E

    2004-01-01

    Prior work studying radon progeny in a small enclosed chamber found that at high (222)Rn concentrations an enhanced surface deposition was observed. Subsequent measurements for unfiltered air showed minimal charged particle mobility influence. Progeny particle size measurements reported here, performed at the US Department of Energy Environmental Measurement Laboratory (now with Home Security Department), using the EML graded screen array (GSA) system show in unfiltered air that the high (222)Rn levels causes a reduction in the attached (218)Po progeny airborne particulates and formation of additional normal sized unattached ( approximately 0.80 nm) and also even smaller (218)Po below 0.50 nm. At a (222)Rn level of 51 kBq m(-3), 73% of all (218)Po are of a mean particle diameter of about 0.40 +/- 0.02 nm. At this (222)Rn level, the ratio of (218)Po to (222)Rn airborne concentrations is reduced significantly from the concentration ratio at low (222)Rn levels. Similar reductions and size reformations were observed for the (214)Pb and (214)Bi/Po progeny. The particle size changes are further confirmed using the plateout rates and corresponding deposition velocities. The Crump and Seinfeld deposition theory provides the corresponding particle diffusion coefficients. With the diffusion coefficient to ultrafine clustered particle diameter correlation of Ramamurthi and Hopke, good agreement is obtained between EML GSA and deposition velocity data down to 0.40 nm. Strong evidence is presented that the progeny size reduction is due to, as a result of air ionization, the increased neutralization rate (primarily from electron scavenging of OH molecules) of the initially charged progeny. This is shown to increase with the (1/2) power of (222)Rn concentration and relative humidity as well as increased air change rate in the chamber. These results imply that at (222)Rn levels above 50 kBq m(-3), at relative humidity of 52%, a considerable reduction in lung dose could occur from

  19. Environmental radon exposure and childhood leukemia.

    PubMed

    Tong, Jian; Qin, Liqiang; Cao, Yi; Li, Jianxiang; Zhang, Jie; Nie, Jihua; An, Yan

    2012-01-01

    Despite the fact that animal and human epidemiological studies confirmed a link between radon exposure in homes and increased risk of lung cancer in general population, other types of cancers induced by radon, such as leukemia, have not been consistently demonstrated. The aim of this review was to summarize data published thus far from ecological and case-control studies in exposed populations, taking into account radon dose estimation and evidence of radon-induced genotoxicity, in an effort to clarify the correlation between home radon exposure and incidence of childhood leukemia. Among 12 ecological studies, 11 reported a positive association between radon levels and elevated frequency of childhood leukemia, with 8 being significant. In conjunction with ecological studies, several case-control studies on indoor radon exposure and childhood leukemia were examined, and most investigations indicated a weak association with only a few showing significance. A major source of uncertainty in radon risk assessment is radon dose estimate. Methods for radon exposure measurement in homes of children are one of the factors that affect the risk estimates in a case-control study. The effects of radon-induced genetic damage were studied both in vitro and in vivo using genetic endpoints including chromosomal aberration (CA), micronuclei (MN) formation, gene mutation, and deletions and insertions. By applying a meta-analysis, an increased risk of childhood leukemia induced by indoor radon exposure was noted for overall leukemia and for acute lymphoblastic leukemia (ALL). Data thus indicated an association between environmental radon exposure and elevated leukemia incidence, but more evidence is required in both human investigations and animal mechanistic research before this assumption may be confirmed with certainty.

  20. Absorbed doses of lungs from radon retained in airway lumens of mice and rats.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori; Kataoka, Takahiro; Mitsunobu, Fumihiro

    2013-08-01

    This paper provides absorbed doses arising from radon gas in air retained in lung airway lumens. Because radon gas exposure experiments often use small animals, the calculation was performed for mice and rats. For reference, the corresponding computations were also done for humans. Assuming that radon concentration in airway lumens is the same as that in the environment, its progeny's production in and clearance from airways were simulated. Absorbed dose rates were obtained for three lung regions and the whole lung, considering that secretory and basal cells are sensitive to radiation. The results showed that absorbed dose rates for all lung regions and whole lung generally increase from mice to rats to humans. For example, the dose rates for the whole lung were 25.4 in mice, 41.7 in rats, and 59.9 pGy (Bq m⁻³)⁻¹ h⁻¹ in humans. Furthermore, these values were also compared with lung dose rates from two other types of exposures, that is, due to inhalation of radon or its progeny, which were already reported. It was confirmed that the direct inhalation of radon progeny in the natural environment, which is known as a cause of lung cancer, results in the highest dose rates for all species. Based on the present calculations, absorbed dose rates of the whole lung from radon gas were lower by a factor of about 550 (mice), 200 (rats), or 70 (humans) than those from radon progeny inhalation. The calculated dose rate values are comparatively small. Nevertheless, the present study is considered to contribute to our understanding of doses from inhalation of radon and its progeny.

  1. Behaviours and influence factors of radon progeny in three typical dwellings.

    PubMed

    Li, Hongzhao; Zhang, Lei; Guo, Qiuju

    2011-03-01

    To investigate the behaviours and influence factors of radon progeny in rural dwellings in China, site measurements of radon equilibrium factor, unattached fraction and some important indoor environmental factors, such as aerosol concentration, aerosol size distribution and ventilation rate, were carried out in three typical types of dwellings, and a theoretical study was also performed synchronously. Good consistency between the results of site measurements and the theoretical calculation on equilibrium factor F and unattached fraction f(p) was achieved. Lower equilibrium factor and higher unattached fraction in mud or cave houses were found compared to those in brick houses, and it was suggested by the theoretical study that the smaller aerosol size distribution in mud or cave houses might be the main reason for what was observed. The dose conversion factor in the mud houses and the cave houses may be higher than that in brick houses.

  2. MEASUREMENT OF RADON, THORON AND THEIR PROGENY IN DIFFERENT TYPES OF DWELLING IN ALMORA DISTRICT OF KUMAUN HIMALAYAN REGION.

    PubMed

    Singh, Kuldeep; Semwal, Poonam; Pant, Preeti; Gusain, G S; Joshi, Manish; Sapra, B K; Ramola, R C

    2016-10-01

    The indoor concentrations of radon ( 222 Rn), thoron ( 220 Rn) and their daughter products were measured in the dwellings of Almora district in Kumaun Himalaya, India using pin-hole dosemeters and deposition progeny sensors. The measurements were made in the residential houses built of mud, stone with cement plaster and cemented house during winter season. Average [geometric mean (GM) values] radon and thoron concentrations for all dwellings were found to be 99.82 and 79.70 Bq m -3 , respectively, while average equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration (measured for the first time for this region) were measured at 35.22 and 2.52 Bq m -3 , respectively. Radon concentration (GM values) was found to be 110.73, 97.00 and 93.85 Bq m -3 for mud houses, stone with cemented plaster houses and cemented houses, respectively. On the other hand, thoron concentration values were 87.10, 75.79 and 75.68 Bq m -3 for cemented houses, mud houses and stone with cemented plaster houses, respectively. Interpretations have been made on the basis of measured radon/thoron and progeny concentration values with respect to the difference of construction material of the dwellings. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    .... Discussion Uranium recovery facility licensees, including in-situ recovery facilities and conventional... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance AGENCY... Staff Guidance, ``Evaluations of Uranium Recovery Facility Surveys of Radon and Radon Progeny in Air and...

  4. A new mechanism for DNA alterations induced by alpha particles such as those emitted by radon and radon progeny.

    PubMed Central

    Lehnert, B E; Goodwin, E H

    1997-01-01

    The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706

  5. A macroscopic and microscopic study of radon exposure using Geant4 and MCNPX to estimate dose rates and DNA damage

    NASA Astrophysics Data System (ADS)

    van den Akker, Mary Evelyn

    Radon is considered the second-leading cause of lung cancer after smoking. Epidemiological studies have been conducted in miner cohorts as well as general populations to estimate the risks associated with high and low dose exposures. There are problems with extrapolating risk estimates to low dose exposures, mainly that the dose-response curve at low doses is not well understood. Calculated dosimetric quantities give average energy depositions in an organ or a whole body, but morphological features of an individual can affect these values. As opposed to human phantom models, Computed Tomography (CT) scans provide unique, patient-specific geometries that are valuable in modeling the radiological effects of the short-lived radon progeny sources. Monte Carlo particle transport code Geant4 was used with the CT scan data to model radon inhalation in the main bronchial bifurcation. The equivalent dose rates are near the lower bounds of estimates found in the literature, depending on source volume. To complement the macroscopic study, simulations were run in a small tissue volume in Geant4-DNA toolkit. As an expansion of Geant4 meant to simulate direct physical interactions at the cellular level, the particle track structure of the radon progeny alphas can be analyzed to estimate the damage that can occur in sensitive cellular structures like the DNA molecule. These estimates of DNA double strand breaks are lower than those found in Geant4-DNA studies. Further refinements of the microscopic model are at the cutting edge of nanodosimetry research.

  6. Radon mitigation at Birch Cliff Public School.

    PubMed

    Moridi, R; Becker, E

    1996-01-01

    In 1991, Canadian Institute for Radiation Safety (CAIRS) conducted a radon screening program in all Metropolitan Toronto public schools. Birch Cliff Public School had a radon progeny level higher than the action level of 4.16 x 10(-7) Jm-3 (20 mWL). Follow-up radon testing was carried out at the school. Locations on the ground floor and in the basement were tested. All locations on the ground floor had radon progeny levels below the action level. Six locations in the basement had readings above the action level. All cracks and openings in the basement were sealed and a new heating/ventilating (HV) system for the basement was designed and installed. Then, the basement was tested again. Radon progeny levels are now well below the action level with an average of 7.43 x 10(-8) Jm-3 (3.57 mWL). This is about one fifth of the average radon progeny level found in the first stage of follow-up testing.

  7. Residential radon exposure and adult acute leukaemia.

    PubMed

    Law, G R; Kane, E V; Roman, E; Smith, A; Cartwright, R

    2000-05-27

    Exposure to radioactive radon gas in homes, from natural sources, is an important public-health issue for many countries. We found no association between household exposure to radon and leukaemia in adults in the UK.

  8. Radon dose assessment in underground mines in Brazil.

    PubMed

    Santos, T O; Rocha, Z; Cruz, P; Gouvea, V A; Siqueira, J B; Oliveira, A H

    2014-07-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a(-1) (mean 9 mSv a(-1)). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A study of the polyethylene membrane used in diffusion chambers for radon gas concentration measurements

    NASA Astrophysics Data System (ADS)

    Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.

    2007-10-01

    Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.

  10. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine...—radon daughter concentrations representative of worker's breathing zone shall be determined at least...

  11. Potential health effects of indoor radon exposure.

    PubMed Central

    Radford, E P

    1985-01-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem. PMID:4085431

  12. [The methods of assessment of health risk from exposure to radon and radon daughters].

    PubMed

    Demin, V F; Zhukovskiy, M V; Kiselev, S M

    2014-01-01

    The critical analysis of existing models of the relationship dose-effect (RDE) for radon exposure on human health has been performed. Conclusion about the necessity and possibility of improving these models has been made. A new improved version ofthe RDE has been developed. A technique for assessing the human health risk of exposure to radon, including the method for estimating of exposure doses of radon, an improved model of RDE, proper methodology risk assessment has been described. Methodology is proposed for the use in the territory of Russia.

  13. Reduction of Radon Progeny in Indoor Air.

    DTIC Science & Technology

    1986-03-01

    arises from indoor radon is due * 4 to inhalation of the short-lived radon daughters Ra-A, Ra-B, and Ra-C. These decay products are formed from the alpha...concentrations of radon daughters 40 ’ in an air sample from the gross alpha counting of a filter 50 ’ in accordance with the modified Tsivoglou method. 60 ’ 70...8217 The modified Tsivoglou method may be found in " Measurement 80 ’ of Radon Daughters in Air," Health Physics, 23, : pp7S3-789 90 ’ (19𔃼). 95 100 The

  14. Cancer risks from exposure to radon in homes.

    PubMed

    Axelson, O

    1995-03-01

    Exposure to radon and its decay products in mines is a well recognized risk of lung cancer in miners. A large number of epidemiologic studies from various countries are quite consistent in this respect even it the magnitude of the risk differs according to exposure levels. Indoor radon became a concern in the 1970s and about a dozen studies have been conducted since 1979, mainly of the case-control design. From first being of a simple pilot character, the designs have become increasingly sophisticated, especially with regard to exposure assessment. Crude exposure estimates based on type of house, building material and geological features have been supplemented or replaced by quite extensive measurements. Still, exposure assessment remains a difficult and uncertain issue in these studies, most of which indicate a lung cancer risk from indoor radon. Also a recent large scale study has confirmed a lung cancer risk from indoor radon. More recently there are also some studies, mainly of the correlation type, suggesting other cancers also to be related to indoor radon, especially leukemia, kidney cancer, and malignant melanoma, and some other cancers as well. The data are less consistent and much more uncertain than for indoor radon and lung cancer, however; and there is no clear support from studies of miners in this respect.

  15. Cancer risks from exposure to radon in homes.

    PubMed Central

    Axelson, O

    1995-01-01

    Exposure to radon and its decay products in mines is a well recognized risk of lung cancer in miners. A large number of epidemiologic studies from various countries are quite consistent in this respect even it the magnitude of the risk differs according to exposure levels. Indoor radon became a concern in the 1970s and about a dozen studies have been conducted since 1979, mainly of the case-control design. From first being of a simple pilot character, the designs have become increasingly sophisticated, especially with regard to exposure assessment. Crude exposure estimates based on type of house, building material and geological features have been supplemented or replaced by quite extensive measurements. Still, exposure assessment remains a difficult and uncertain issue in these studies, most of which indicate a lung cancer risk from indoor radon. Also a recent large scale study has confirmed a lung cancer risk from indoor radon. More recently there are also some studies, mainly of the correlation type, suggesting other cancers also to be related to indoor radon, especially leukemia, kidney cancer, and malignant melanoma, and some other cancers as well. The data are less consistent and much more uncertain than for indoor radon and lung cancer, however; and there is no clear support from studies of miners in this respect. PMID:7614945

  16. Field monitoring versus individual miner dosimetry of radon daughter products in mines.

    PubMed

    Domański, T; Kluszczyński, D; Olszewski, J; Chruscielewski, W

    1989-01-01

    The paper presents the results realised simultaneously by two different and independent systems of measurement of an assessment of miners' exposure to radon daughter products which naturally occur in the air of mines. The first one, called the Air Sampling System (ASS), was based on the field monitoring of radon progeny in air, the second one, called the Individual Dosimetry System (IDS), was based on the individual dosimeters worn by miners. Experimental comparison of these two systems has been conducted for six years in eleven Polish underground metal-ore mines. This study reveals that no correlation exists between the concentration and annual miners' exposures evaluated by the ASS and IDS. The ratio ASS/IDS for mine population varies from 11.0 to 0.14 in respect of annual concentration means, and in respect to annual exposures, this ratio varies from 4.5 to 0.14. The conclusion to be drawn from six years' observation and comparison of both systems is that correct and true evaluation of miners' exposure to radon progeny can be made only by the use of the Individual Dosimetry System, since the Air Sampling System is too sensitive and too dependent on the Strategy of sampling and its radiation.

  17. Calibration of CR-39-based thoron progeny device.

    PubMed

    Fábián, F; Csordás, A; Shahrokhi, A; Somlai, J; Kovács, T

    2014-07-01

    Radon isotopes and their progenies have proven significant role in respiratory tumour formation. In most cases, the radiological effect of one of the radon isotopes (thoron) and its progenies has been neglected together with its measurement technique; however, latest surveys proved that thoron's existence is expectable in flats and in workplace in Europe. Detectors based on different track detector measurement technologies have recently spread for measuring thoron progenies; however, the calibration is not yet completely elaborated. This study deals with the calibration of the track detector measurement method suitable for measuring thoron progenies using different devices with measurement techniques capable of measuring several progenies (Pylon AB5 and WLx, Sarad EQF 3220). The calibration factor values related to the thoron progeny monitors, the measurement uncertainty, reproducibility and other parameters were found using the calibration chamber. In the future, the effects of the different parameters (aerosol distribution, etc.) will be determined. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Techniques to alleviate nuisance alarms observed by PCMs following 222Rn-progeny deposition on clothing.

    PubMed

    Justus, Alan L

    2015-05-01

    This paper presents technically-based techniques to deal with nuisance personnel contamination monitor (PCM) alarms. The techniques derive from the fundamental physical characteristics of radon progeny. Some PCM alarms, although valid alarms and not actually "false," could be due to nuisance naturally-occurring radionuclides (i.e., radon progeny). Based on certain observed characteristics of the radon progeny, several prompt techniques are discussed that could either remediate or at least mitigate the problem of nuisance alarms. Examples are provided which demonstrate the effective use of the techniques.

  19. Radon exposures in a Jerusalem public school.

    PubMed Central

    Richter, E D; Neeman, E; Fischer, I; Berdugo, M; Westin, J B; Kleinstern, J; Margaliot, M

    1997-01-01

    In December 1995, ambient radon levels exceeding 10,000 Bq/m3 were measured in a basement shelter workroom of a multilevel East Talpiot, Jerusalem, public elementary school (six grades, 600 students). The measurements were taken after cancers (breast and multiple myeloma) were diagnosed in two workers who spent their workdays in basement rooms. The school was located on a hill that geologic maps show to be rich in phosphate deposits, which are a recognized source for radon gas and its daughter products. Levels exceeding 1000,000 Bq/m3 were measured at the mouth of a pipe in the basement shelter workroom, the major point of radon entry. The school was closed and charcoal and electret ion chamber detectors were used to carry out repeated 5-day measurements in all rooms in the multilevel building over a period of several months. Radon concentrations were generally higher in rooms in the four levels of the building that were below ground level. There were some ground-level rooms in the building in which levels reached up to 1300 Bq/m3. In rooms above ground level, however, peak levels did not exceed 300 Bq/m3. Exposure control based on sealing and positive pressure ventilation was inadequate. These findings suggested that radon diffused from highly contaminated basement and ground-floor rooms to other areas of the building and that sealing off the source may have led to reaccumulation of radon beneath the building. Later, subslab venting of below-ground radon pockets to the outside air was followed by more sustained reductions in indoor radon levels to levels below 75 Bq/m3. Even so, radon accumulated in certain rooms when the building was closed. This sentinel episode called attention to the need for a national radon policy requiring threshold exposure levels for response and control. A uniform nationwide standard for school buildings below 75 Bq/m3 level was suggested after considering prudent avoidance, the controversies over risk assessment of prolonged low

  20. Lung cancer incidence attributable to residential radon exposure in Alberta in 2012

    PubMed Central

    Grundy, Anne; Brand, Kevin; Khandwala, Farah; Poirier, Abbey; Tamminen, Sierra; Friedenreich, Christine M.; Brenner, Darren R.

    2017-01-01

    Background: Radon is carcinogenic, and exposure to radon has been shown to increase the risk of lung cancer. The objective of this study was to quantify the proportion and number of lung cancer cases in Alberta in 2012 that could be attributed to residential radon exposure. Methods: We estimated the population attributable risk of lung cancer for residential radon using radon exposure data from the Cross-Canada Survey of Radon Concentrations in Homes from 2009-2011 and data on all-cause and lung cancer mortality from Statistics Canada from 2008-2012. We used cancer incidence data from the Alberta Cancer Registry for 2012 to estimate the total number of lung cancers attributable to residential radon exposure. Estimates were also stratified by sex and smoking status. Results: The mean geometric residential radon level in Alberta in 2011 was 71.0 Bq/m3 (geometric standard deviation 2.14). Overall, an estimated 16.6% (95% confidence interval 9.4%-29.8%) of lung cancers were attributable to radon exposure, corresponding to 324 excess attributable cancer cases. The estimated population attributable risk of lung cancer due to radon exposure was higher among those who had never smoked (24.8%) than among ever smokers (15.6%). However, since only about 10% of cases of lung cancer occur in nonsmokers, the estimated total number of excess cases was higher for ever smokers (274) than for never smokers (48). Interpretation: With about 17% of lung cancer cases in Alberta in 2012 attributable to residential radon exposure, exposure reduction has the potential to substantially reduce Alberta's lung cancer burden. As such, home radon testing and remediation techniques represent important cancer prevention strategies. PMID:28663187

  1. Doses from beta radiation in sensitive layers of human lung and dose conversion factors due to 222Rn/220Rn progeny.

    PubMed

    Markovic, V M; Stevanovic, N; Nikezic, D

    2011-08-01

    Great deal of work has been devoted to determine doses from alpha particles emitted by (222)Rn and (220)Rn progeny. In contrast, contribution of beta particles to total dose has been neglected by most of the authors. The present work describes a study of the detriment of (222)Rn and (220)Rn progeny to the human lung due to beta particles. The dose conversion factor (DCF) was introduced to relate effective dose and exposure to radon progeny; it is defined as effective dose per unit exposure to inhaled radon or thoron progeny. Doses and DCFs were determined for beta radiation in sensitive layers of bronchi (BB) and bronchioles (bb), taking into account inhaled (222)Rn and (220)Rn progeny deposited in mucus and cilia layer. The nuclei columnar secretory and short basal cells were considered to be sensitive target layers. For dose calculation, electron-absorbed fractions (AFs) in the sensitive layers of the BB and bb regions were used. Activities in the fast and slow mucus of the BB and bb regions were obtained using the LUNGDOSE software developed earlier. Calculated DCFs due to beta radiation were 0.21 mSv/WLM for (222)Rn and 0.06 mSv/WLM for (220)Rn progeny. In addition, the influence of Jacobi room parameters on DCFs was investigated, and it was shown that DCFs vary with these parameters by up to 50%.

  2. OCCUPATIONAL EXPOSURE TO RADON IN DIFFERENT KINDS OF NON-URANIUM MINES.

    PubMed

    Fan, D; Zhuo, W; Zhang, Y

    2016-09-01

    For more accurate assessments of the occupational exposure to radon for miners, the individual monitoring was conducted by using an improved passive integrating (222)Rn monitor. A total of 120 miners in 3 different kinds of mines were monitored throughout a year. The results showed that the individual exposure to radon significantly varied with types of mines and work. Compared with the exposure to coal miners, the exposure to copper miners was much higher. Furthermore, it was found that the exposure might be overestimated if the environmental (222)Rn monitored by the passive integrating monitors was used for assessment. The results indicate that the individual monitoring of radon is necessary for an accurate assessment of radon exposure to miners, and radon exposure to non-uranium miners should also be assessed from the viewpoint of radiation protection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia.

    PubMed

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-11-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case-control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7-1.8) for 37-100 Bq m(-3) and 1.1 (95% CI 0.6-2.0) for > 100 Bq m(-3) compared with < 37 Bq m(-3). Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children > or = 2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML.

  4. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia

    PubMed Central

    Steinbuch, M; Weinberg, C R; Buckley, J D; Robison, L L; Sandler, D P

    1999-01-01

    Exposure to radon has been identified as a risk factor for lung cancer in uranium miners, but evidence of adverse health effects due to indoor radon exposure is inconsistent. Ecological studies have suggested a correlation between indoor radon levels and leukaemia incidence. We evaluated the risk associated with indoor residential radon exposure within a larger interview-based case–control study of risk factors for childhood acute myeloid leukaemia (AML). A total of 173 cases and 254 controls met the eligibility criteria, and information was collected through telephone interviews with parents and analysis of alpha-track radon detectors placed in the home for a period of 1 year. No association was observed between radon exposure and risk of AML, with adjusted odds ratios of 1.2 (95% confidence interval (CI) 0.7–1.8) for 37–100 Bq m–3 and 1.1 (95% CI 0.6–2.0) for > 100 Bq m–3 compared with < 37 Bq m–3. Although there was an inverse association between radon level and AML risk among children < 2 years at diagnosis, among children ≥2 years, AML risk was increased among those with higher radon exposure. The observed association after age 2 is most likely due to chance. Overall, there was no association between residential radon and risk of childhood AML. © 1999 Cancer Research Campaign PMID:10555766

  5. Radon Exposure: Using the Spectrum of Prevention Framework to Increase Healthcare Provider Awareness.

    PubMed

    Worrell, Jane; Gibson, Phillip; Allen, Deborah

    2016-12-01

    The radioactive properties of radon have been known for decades, but the risks of exposure have been understated in most professional healthcare curriculums. Healthcare providers in areas with low levels of radon exposure may not consider radon to be a main source of concern in the development of lung and other cancers. Just as nurses counsel patients to avoid tobacco exposure, they should advocate that patients have their homes tested for radon. This article aims to increase radon awareness and address opportunities for providers to work toward various objectives to reduce radon exposure.
.

  6. Estimation of residential radon exposure and definition of Radon Priority Areas based on expected lung cancer incidence.

    PubMed

    Elío, J; Crowley, Q; Scanlon, R; Hodgson, J; Zgaga, L

    2018-05-01

    Radon is a naturally occurring gas, classified as a Class 1 human carcinogen, being the second most significant cause of lung cancer after tobacco smoking. A robust spatial definition of radon distribution in the built environment is therefore essential for understanding the relationship between radon exposure and its adverse health effects on the general population. Using Ireland as a case study, we present a methodology to estimate an average indoor radon concentration and calculate the expected radon-related lung cancer incidence. We use this approach to define Radon Priority Areas at the administrative level of Electoral Divisions (EDs). Geostatistical methods were applied to a data set of almost 32,000 indoor radon measurements, sampled in Ireland between 1992 and 2013. Average indoor radon concentrations by ED range from 21 to 338 Bq m -3 , corresponding to an effective dose ranging from 0.8 to 13.3 mSv y -1 respectively. Radon-related lung cancer incidence by ED was calculated using a dose-effect model giving between 15 and 239 cases per million people per year, depending on the ED. Based on these calculations, together with the population density, we estimate that of the approximately 2,300 lung cancer cases currently diagnosed in Ireland annually, about 280 may be directly linked to radon exposure. This figure does not account for the synergistic effect of radon exposure with other factors (e.g. tobacco smoking), so likely represents a minimum estimate. Our approach spatially defines areas with the expected highest incidence of radon-related lung cancer, even though indoor radon concentrations for these areas may be moderate or low. We therefore recommend that both indoor radon concentration and population density by small area are considered when establishing national radon action plans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Evaluation of the intake of radon through skin from thermal water

    PubMed Central

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-01-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980

  8. Measurements of radon concentrations in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.; Jackson, P. O.; Langford, J. C.

    1977-01-01

    The radon concentrations in the lunar atmosphere were determined by measuring the Po-210 progeny activity in artifacts returned from the moon. Experiments performed on a section of the polished aluminum strut from Surveyor 3 and data obtained from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield are compared with other values of the lunar radon concentration obtained at different times and different locations and by various techniques. Possible sources and release mechanisms compatible with all of the data are discussed. An experimental procedure to determine the relative retention coefficients of various types of material for radon progeny in a simulated lunar environment is described. The results of several experiments are given, and their effect on lunar radon progeny measurements is discussed. An analytical procedure is given for the analysis of a Teflon matrix for trace constituents.

  9. Indoor Radon Exposure in Italian Schools

    PubMed Central

    Castiglia, Paolo; Piana, Andrea; Salis, Giovanni

    2018-01-01

    Background: The aim of the study was to assess radon concentration in schoolrooms in a city located in the midwest of Italy. Methods: A two-phase environmental study was carried out in 19 school buildings of 16 primary, secondary, and tertiary schools. Results: Median (interquartile range—IQR) indoor radon concentration in schoolrooms was 91.6 (45.0–140.3) Bq/m3. The highest (median 952.8 Bq/m3) radon concentration was found in one (3.6%) classroom, located in a building of a primary school whose median concentration was 185 Bq/m3. Radon concentration was significantly correlated with the number of students and teachers, foundation wall construction material, and with the absence of underground floors. A geopedological survey was performed close to the building with highest radon level, showing the presence of granite and tonalithic granodiorite in the soil. Conclusions: Radon levels should be routinely assessed where individuals live or work. Schools are susceptible targets, because of childhood stay and the long daily stay of occupants. Low-cost interventions, such as implementation of natural air ventilation and school maintenance, can reduce radon levels, limiting individual exposure. PMID:29652857

  10. Additional contamination when radon is in excess.

    PubMed

    Martín Sánchez, A; de la Torre Pérez, J; Ruano Sánchez, A B; Naranjo Correa, F L

    2013-11-01

    A study of the behavior of the (222)Rn progeny on clothes, skin and hair has been performed in a place with very high radon concentration. In the past, radon concentration was established to be about 32 kBq/m(3) in a very high humidity environment inside a tourist cave in Extremadura (Spain). The results show that (222)Rn daughters are adhered on clothes, skin and hair, adding some radioactive concentration to that due to radon and its progeny existing in the breathable air. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type

  12. Intercomparison of retrospective radon detectors.

    PubMed

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-11-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type

  13. Canadian individual risks of radon-induced lung cancer for different exposure profiles.

    PubMed

    Chen, Jing

    2005-01-01

    Indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. There is an increasing need among radiation practitioners to have numerical values of lung cancer risks for men and women, ever-smokers and never-smokers exposed to radon in homes. This study evaluates individual risks for the Canadian population exposed to radon in homes at different radon concentrations and for different periods of their lives. Based on the risk model developed recently by U.S. Environmental Protection Agency (EPA), individual risks of radon-induced lung cancers are calculated with Canadian age-specific rates for overall and lung cancer mortalities (1996-2000) as well as the Canadian smoking prevalence data in 2002. Convenient tables of lifetime relative risks are constructed for lifetime exposures and short exposures between any two age intervals from 0 to 110, and for various radon concentrations found in homes from 50 to 1000 Bq/m3. The risk of developing lung cancer from residential radon exposure increases with radon concentration and exposure duration. For short exposure periods, such as 10 or 20 years, risks are higher in middle age groups (30-50) compared especially to the later years. Individuals could lower their risks significantly by reducing radon levels earlier in life. The tables could help radiation protection practitioners to better communicate indoor radon risk to members of the public.

  14. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  15. Evaluation of the intake of radon through skin from thermal water.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-07-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. ICRP draft publication on 'radiological protection against radon exposure'.

    PubMed

    Lecomte, J-F

    2014-07-01

    To control the main part of radon exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) recommends an integrated approach focused as far as possible on the management of the building or location in which radon exposure occurs whatever the purpose of the building and the types of its occupants. This approach is based on the optimisation principle and a graded approach according to the degree of responsibilities at stake, notably in workplace, as well as the level of ambition of the national authorities. The report which is being developed by the Committee 4 is considering the recently consolidated ICRP general recommendations, the new scientific knowledge about the radon risk and the experience gained by many organisations and countries in the control of radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Occupant radon exposure in houses with basements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, E.M.; Fuoss, S.

    1995-12-31

    This study compares basement and main-level radon exposure based on bi-level week-long radon measurements, occupancy and activity data collected in normal use during heating and non-heating seasons in a geographically-stratified random sample of about 600 Minnesota homes, in response to critiques of radon measurement protocol. Basement radon (RN1) (M=4.5, SD=4.5) and main level (Rn2)(M=2.9, SD=3.4) correlation was 0.8 (p=.00), including seasonal variation. In a 101-house subsample where Rn1 >=4.0 pCi/L and Rn2 <=3.9 pCi/L, maximum household exposure in basements was 1162 pCiHrs (M=120, Sd=207), main-level 2486 pCiHrs (M-434, SD=421). In same households, persons with most basement-time maxed 100 hrs (M=13,SD=23),more » persons with most main-level time maxed 160 hrs (M=79, SD=39). Basement activities show two patterns, (1) member used it for personal domain, e.g. sleeping, and (2) household used it for general activities, e.g. TV or children`s play. Basement occupancy justifies measurement of radon in the lowest livable housing level.« less

  18. Radon Levels Measured at a Touristic Thermal Spa Resort in Montagu (South Africa) and Associated Effective Doses.

    PubMed

    Botha, R; Newman, R T; Maleka, P P

    2016-09-01

    Radon activity concentrations (in water and in air) were measured at 13 selected locations at the Avalon Springs thermal spa resort in Montagu (Western Cape, South Africa) to estimate the associated effective dose received by employees and visitors. A RAD-7 detector (DURRIDGE), based on alpha spectrometry, and electret detectors (E-PERM®Radelec) were used for these radon measurements. The primary source of radon was natural thermal waters from the hot spring, which were pumped to various locations on the resort, and consequently a range of radon in-water analyses were performed. Radon in-water activity concentration as a function of time (short term and long term measurements) and spatial distributions (different bathing pools, etc.) were studied. The mean radon in-water activity concentrations were found to be 205 ± 6 Bq L (source), 112 ± 5 Bq L (outdoor pool) and 79 ± 4 Bq L (indoor pool). Radon in-air activity concentrations were found to range between 33 ± 4 Bq m (at the outside bar) to 523 ± 26 Bq m (building enclosing the hot spring's source). The most significant potential radiation exposure identified is that due to inhalation of air rich in radon and its progeny by the resort employees. The annual occupational effective dose due to the inhalation of radon progeny ranges from 0.16 ± 0.01 mSv to 0.40 ± 0.02 mSv. For the water samples collected, the Ra in-water activity concentrations from samples collected were below the lower detection limit (~0.7 Bq L) of the γ-ray detector system used. No significant radiological health risk can be associated with radon and progeny from the hot spring at the Avalon Springs resort.

  19. Residential radon exposure and risk of lung cancer in Missouri.

    PubMed Central

    Alavanja, M C; Lubin, J H; Mahaffey, J A; Brownson, R C

    1999-01-01

    OBJECTIVES: This study investigated residential radon exposure and lung cancer risk, using both standard radon dosimetry and a new radon monitoring technology that, evidence suggests, is a better measure of cumulative radon exposure. METHODS: Missouri women (aged 30 to 84 years) newly diagnosed with primary lung cancer during the period January 1, 1993, to January 31, 1994, were invited to participate in this population-based case-control study. Both indoor air radon detectors and CR-39 alpha-particle detectors (surface monitors) were used. RESULTS: When surface monitors were used, a significant trend in lung cancer odds ratios was observed for 20-year time-weighted-average radon concentrations. CONCLUSIONS: When surface monitors were used, but not when standard radon dosimetry was used, a significant lung cancer risk was found for radon concentrations at and above the action level for mitigation of houses currently used in the United States (148 Bqm-3). The risk was below the action level used in Canada (750 Bqm-3) and many European countries (200-400 Bqm-3). PMID:10394313

  20. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Radon exposure and leukaemia in adulthood.

    PubMed

    Viel, J F

    1993-08-01

    Positive associations between leukaemia and radon concentrations have been observed in England, Scotland and Wales, and Canada. Results of a similar study for the populations of 41 French administrative areas ('départements') are reported for 1984-1986. The average indoor radon and gamma ray concentrations per 'département' range from 12 to 147 Bq.m-3 and from 28 to 142 nG.h-1, respectively. Acute lymphoid leukaemia mortality rate is similar to the national level, whereas an excess of acute myeloid leukaemia deaths is observed. According to Poisson regression models and modified tests for partial correlation, acute myeloid leukaemia mortality is significantly and positively related to indoor radon concentration whether or not adjustment is made for indoor gamma ray dose, socioeconomic status and linear gradient. This result reinforces the evidence that indoor exposure to high levels of radon is a leukaemic environmental hazard.

  2. The Effects of Radon Exposure on Physical and Psychological Health

    DTIC Science & Technology

    1991-08-15

    by inhaled radon-222 at various equilibriums with radon daughters . In E. Karbe & J. F. Parke (Eds.) Experimental lung cancer. Carcinogenesis and...Relationship between the ’̂’°Pb content of teeth and exposure to radon and radon daughters . Health Physics. 47. 253-262. 49 Cohen, B. L. & Gromicko, N...ore dust, radon daughters , and diesel oil exhaust fumes in hamsters and dogs (Report No. DNL—2744). Richland, WA: Batelle Pacific Northwest

  3. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland.

    PubMed

    Vienneau, Danielle; de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-06-16

    Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. We investigated the effects of radon and UV exposure on skin cancer mortality. Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100 Bq/m 3 radon and 1.11 (1.01, 1.23) per W/m 2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p =0.09). There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825.

  4. Short- and long-term variability of radon progeny concentration in dwellings in the Czech Republic.

    PubMed

    Slezáková, M; Navrátilová Rovenská, K; Tomásek, L; Holecek, J

    2013-03-01

    In this paper, repeated measurements of radon progeny concentration in dwellings in the Czech Republic are described. Two distinct data sets are available: one based on present measurements in 170 selected dwellings in the Central Bohemian Pluton with a primary measurement carried out in the 1990s and the other based on 1920 annual measurements in 960 single-family houses in the Czech Republic in 1992 and repeatedly in 1993. The analysis of variance model with random effects is applied to data to evaluate the variability of measurements. The calculated variability attributable to repeated measurements is compared with results from other countries. In epidemiological studies, ignoring the variability of measurements may lead to biased estimates of risk of lung cancer.

  5. Case-control study of childhood acute lymphoblastic leukemia and residential radon exposure.

    PubMed

    Lubin, J H; Linet, M S; Boice, J D; Buckley, J; Conrath, S M; Hatch, E E; Kleinerman, R A; Tarone, R E; Wacholder, S; Robison, L L

    1998-02-18

    Several ecologic analyses have shown significant positive associations between mean indoor radon concentrations and risk of leukemia at all ages (acute myeloid leukemia and chronic lymphocytic leukemia) and for children (all leukemia, acute myeloid leukemia, and acute lymphoblastic leukemia [ALL]). As part of an age-matched, case-control study of childhood ALL in the United States, we investigated the association between the incidence of ALL in children under age 15 years and indoor radon exposure. Radon detectors were placed in current and previous homes of subjects where they resided for 6 months or longer. Children were included in analyses if radon measurements covered 70% or more of the 5-year period prior to diagnosis for case subjects (or from birth for case subjects under age 5 years) and the corresponding reference dates for control subjects. Radon levels could be estimated for 97% of the exposure period for the eligible 505 case subjects and 443 control subjects. Mean radon concentration was lower for case subjects (65.4 becquerels per cubic meter [Bqm(-3)]) than for control subjects (79.1 Bqm(-3)). For categories less than 37, 37-73, 74-147, and 148 or more Bqm(-3) of radon exposure, relative risks based on matched case-control pairs were 1.00, 1.22, 0.82, and 1.02, respectively, and were similar to results from an unmatched analysis. There was no association between ALL and radon exposure within subgroups defined by categories of age, income, birth order, birth weight, sex, type of residence, magnetic field exposure, parental age at the subject's birth, parental occupation, or parental smoking habits. In contrast to prior ecologic studies, the results from this analytic study provide no evidence for an association between indoor radon exposure and childhood ALL.

  6. Residential Radon Exposure and Incidence of Childhood Lymphoma in Texas, 1995-2011.

    PubMed

    Peckham, Erin C; Scheurer, Michael E; Danysh, Heather E; Lubega, Joseph; Langlois, Peter H; Lupo, Philip J

    2015-09-25

    There is warranted interest in assessing the association between residential radon exposure and the risk of childhood cancer. We sought to evaluate the association between residential radon exposure and the incidence of childhood lymphoma in Texas. The Texas Cancer Registry (n = 2147) provided case information for the period 1995-2011. Denominator data were obtained from the United States Census. Regional arithmetic mean radon concentrations were obtained from the Texas Indoor Radon Survey and linked to residence at diagnosis. Exposure was assessed categorically: ≤25th percentile (reference), >25th to ≤50th percentile, >50th to ≤75th percentile, and >75th percentile. Negative binomial regression generated adjusted incidence rate ratios (aIRR) and 95% confidence intervals (CI). We evaluated lymphoma overall and by subtype: Hodgkin (HL; n = 1248), Non-Hodgkin excluding Burkitt (non-BL NHL; n = 658), Burkitt (BL; n = 241), and Diffuse Large B-cell (DLBCL; n = 315). There was no evidence that residential radon exposure was positively associated with lymphoma overall, HL, or BL. Areas with radon concentrations >75th percentile had a marginal increase in DLBCL incidence (aIRR = 1.73, 95% CI: 1.03-2.91). In one of the largest studies of residential radon exposure and the incidence of childhood lymphoma, we found little evidence to suggest a positive or negative association; an observation consistent with previous studies.

  7. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort

    PubMed Central

    Bräuner, Elvira Vaclavik; Loft, Steffen; Sørensen, Mette; Jensen, Allan; Andersen, Claus Erik; Ulbak, Kaare; Hertel, Ole; Pedersen, Camilla; Tjønneland, Anne; Krüger Kjær, Susanne; Raaschou-Nielsen, Ole

    2015-01-01

    Background Although exposure to UV radiation is the major risk factor for skin cancer, theoretical models suggest that radon exposure can contribute to risk, and this is supported by ecological studies. We sought to confirm or refute an association between long-term exposure to residential radon and the risk for malignant melanoma (MM) and non-melanoma skin cancer (NMSC) using a prospective cohort design and long-term residential radon exposure. Methods During 1993–1997, we recruited 57,053 Danish persons and collected baseline information. We traced and geocoded all residential addresses of the cohort members and calculated radon concentrations at each address lived in from 1 January 1971 until censor date. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and confidence intervals (CI) for the risk associated with radon exposure for NMSC and MM, and effect modification was assessed. Results Over a mean follow-up of 13.6 years of 51,445 subjects, there were 3,243 cases of basal cell carcinoma (BCC), 317 cases of squamous cell carcinoma (SCC) and 329 cases of MM. The adjusted IRRs per 100 Bq/m3 increase in residential radon levels for BCC, SCC and MM were 1.14 (95% CI: 1.03, 1.27), 0.90 (95% CI: 0.70, 1.37) and 1.08 (95% CI: 0.77, 1.50), respectively. The association between radon exposure and BCC was stronger among those with higher socio-economic status and those living in apartments at enrollment. Conclusion and Impact Long-term residential radon exposure may contribute to development of basal cell carcinoma of the skin. We cannot exclude confounding from sunlight and cannot conclude on causality, as the relationship was stronger amongst persons living in apartments and non-existent amongst those living in single detached homes. PMID:26274607

  8. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    PubMed Central

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  9. A Systematic Review of Radon Investigations Related to Public Exposure in Iran

    PubMed Central

    Pirsaheb, Meghdad; Najafi, Farid; Khosravi, Touba; Hemati, Lida

    2013-01-01

    Background The main sources of radiation exposure of all living organisms including humans are natural. In fact, radon and its decay products are the cause of 50% of the total dose that is derived from natural sources. Because of the significant health hazards of radon gas, its levels are widely monitored throughout the world. Accordingly, considerable researches have also been carried out in Iran. Objectives The aim of this research is a systematic review of the most recent studies associated with evaluation of radon gas levels in Iran. The main emphasis of this study was on public exposure to radon gas. Materials and Methods The most important route of exposure to such radiation is indoor places. In this investigation measurement of radon in water resources, tap water, indoor places and exhalation of radon from building material, the major sources of indoor radon gas emission, were considered. Results Significantly high levels of radon gas were found mostly in water and residenvial buildings. Conclusions It conclusion with regard to the study of building materials, granite stone and adobe coverings cannot be recommended for construction purposes. PMID:24719680

  10. Effect of radon on the immune system: alterations in the cellularity and functions of T cells in lymphoid organs of mouse.

    PubMed

    Nagarkatti, M; Nagarkatti, P S; Brooks, A

    1996-04-19

    Exposure to radon and its progeny induces significant damage to the cells of the respiratory tract and causes lung cancer. Whether a similar exposure to radon would alter the functions of the immune system has not been previously investigated. In the current study, we investigated the effect of exposure of C57BL/6 mice to 1000 or 2500 working-level months (WLM) of radon and its progeny by inhalation, on the number and function of T lymphocytes in lymphoid organs. The control mice received uranium ore dust carrier aerosol by inhalation. Exposure to radon induced marked decrease in the total cellularity of most lymphoid organs such as thymus, peripheral lymph nodes (PLN), and lung-associated lymph nodes (LALN), when compared to the controls. The percentage of T cells increased, while that of non-T cells decreased, in all peripheral lymphoid organs at both the doses of radon. In the thymus, particularly at 2500 WLM of radon exposure, there was a marked decrease in CD4+CD8+ T cells and an increase in the immature CD4-CD8- T cells. Such alterations in both the numbers and percentages of lymphocytes and macrophages in radon-exposed mice may have resulted from the cell killing by the alpha particles as the immune cells were migrating through the lungs, or it may have been caused by altered migration of cells, inasmuch as expression of CD44, a molecule involved in migration and homing of immune cells, was significantly altered on cells found in different lymphoid organs. In the LALN, where one would predict the largest number of damaged cells to be present, there was a significant decrease in the T-cell responsiveness to mitogens while the B-cell response was not affected. Such alterations may have resulted from the direct effect of alpha-particle exposure on the migrating lymphocytes, altered percentage of lymphocytes as seen in secondary lymphoid organs, or altered expression of adhesion molecules involved in cell activation such as CD44 and CD3. Interestingly, radon

  11. Enhancement of radon exposure in smoking areas.

    PubMed

    Abdel Ghany, Hayam A

    2007-06-01

    Radium-226 is a significant source of radon-222 which enters buildings through soil, construction materials or water supply. When cigarette smoke is present, the radon daughters attach to smoke particles. Thus, the alpha radiation to a smoker's lungs from the natural radon daughters is increased because of smoking. To investigate whether the cigarette tobacco itself is a potential source of indoor radon, the alpha potential energy exposure level contents of radon ((222)Rn, 3.82d) and Thoron ((220)Rn, 55.60s) were measured in 10 different cigarette tobacco samples using CR-39 solid-state nuclear track detectors (SSNTDs). The results showed that the (222, 220)Rn concentrations in these samples ranged from 128 to 266 and 49 to 148 Bqm(-3), respectively. The radon concentrations emerged from all investigated samples were significantly higher than the background level. Also, the annual equivalent doses from the samples were determined. The mean values of the equivalent dose were 3.51 (0.89) and 1.44 (0.08) mSvy(-1), respectively. Measurement of the average indoor radon concentrations in 20 café rooms was, significantly, higher than 20 smoking-free residential houses. The result refers to the dual (chemical and radioactive) effect of smoking as a risk factor for lung cancer.

  12. A complete low cost radon detection system.

    PubMed

    Bayrak, A; Barlas, E; Emirhan, E; Kutlu, Ç; Ozben, C S

    2013-08-01

    Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. DNA damage-inducible genes as biomarkers for exposures to environmental agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, N.F.; Carpenter, T.R.; Jaramillo, R.J.

    1997-06-01

    A biodosimetric approach to determine alpha-particle dose to the respiratory tract epithelium from known exposures to radon has been developed in the rat. Cytotoxicity assays have been used to obtain dose-conversion factors for cumulative exposures typical of those encountered by underground uranium miners. However, this approach is not sensitive enough to derive close-conversion factors for indoor radon exposures. The expression of DNA damage-inducible genes is being investigated as a biomarker of exposure to radon progeny. Exposure of cultures of A549 cells to alpha particles resulted in an increase in the protein levels of the DNA damage-inducible genes, p53, Cip 1,more » and Gadd45. These protein changes were associated with a transient arrest of cells passing through the cell cycle. This arrest was typified by an increase in the number of cells in the G{sub 1} and G{sub 2} phases and a decrease in the number of cells in the S phase. The effect of inhaled alpha particles (radon progeny) in rats was examined in the epithelial cells of the lateral wall of the anterior nasal cavity. Exposures to radon progeny resulted in a significant increase in the number of cells in the G{sub 1} phase and a decrease in the number of cells in the S phase. These cell-cycle changes were concomitant with an increase in the number of cells containing DNA strand breaks. In addition to ionizing radiation, A549 cells were exposed to 4-nitroquinoline-1-oxide, methyl methanesulphonate, crocidolite asbestos, and glass microfiber. These studies showed that physical and chemical agents induce different expression patterns of p53, Cip 1, and Gadd153 proteins and they could be used to discriminate between toxic and nontoxic materials such as asbestos and glass microfiber. The measurement of gene expression in A549 cells may provide a means to identify a broad spectrum of physical and chemical toxicants encountered in the environment. 9 figs., 42 refs.« less

  14. Radon daughters' concentration in air and exposure of joggers at the university campus of Bangalore, India.

    PubMed

    Ashok, G V; Nagaiah, N; Shiva Prasad, N G

    2008-09-01

    The concentration of radon daughters in outdoor air was measured continuously from January 2006 to December 2006 near the Department of Physics, Bangalore University campus, Bangalore. The concentration was measured by collecting air samples at a height of 1 m above the ground level on a glass micro fibre filter paper with a known air flow rate. The results show that the radon progeny concentration exhibits distinct seasonal and diurnal variations that are predominantly caused by changes in the temperature gradient at the soil-atmosphere interface. The concentration was found to be high from 20.00 to 8.00 hrs, when the turbulence mixing was minimum and low during the rest of the time. In terms of the monthly concentration, January was found to be the highest with September/August being the lowest. The diurnal variations in the concentrations of radon progeny were found to exhibit positive correlation with the relative humidity and anti-correlation with the atmospheric temperature. From the measured concentration, an attempt was made to establish the annual effective dose to the general public of the region and was found to be 0.085 mSv/a. In addition, an attempt was also made for the first time to study the variation of inhalation dose with respect to the physical activity levels. Results show that in the light of both the effect of chemical pollutants and radiation dose due to inhalation of radon daughters, evening jogging is advisable.

  15. Children's Exposure to Radon in Nursery and Primary Schools.

    PubMed

    Branco, Pedro T B S; Nunes, Rafael A O; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2016-03-30

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children's exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings' construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings' construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks.

  16. Meta-analysis of residential exposure to radon gas and lung cancer.

    PubMed Central

    Pavia, Maria; Bianco, Aida; Pileggi, Claudia; Angelillo, Italo F.

    2003-01-01

    OBJECTIVES: To investigate the relation between residential exposure to radon and lung cancer. METHODS: A literature search was performed using Medline and other sources. The quality of studies was assessed. Adjusted odds ratios with 95% confidence intervals (CI) for the risk of lung cancer among categories of levels of exposure to radon were extracted. For each study, a weighted log-linear regression analysis of the adjusted odds ratios was performed according to radon concentration. The random effect model was used to combine values from single studies. Separate meta-analyses were performed on results from studies grouped with similar characteristics or with quality scores above or equal to the median. FINDINGS: Seventeen case-control studies were included in the meta-analysis. Quality scoring for individual studies ranged from 0.45 to 0.77 (median, 0.64). Meta-analysis based on exposure at 150 Bq/m3 gave a pooled odds ratio estimate of 1.24 (95% CI, 1.11-1.38), which indicated a potential effect of residential exposure to radon on the risk of lung cancer. Pooled estimates of fitted odds ratios at several levels of randon exposure were all significantly different from unity--ranging from 1.07 at 50 Bq/m3 to 1.43 at 250 Bq/m3. No remarkable differences from the baseline analysis were found for odds ratios from sensitivity analyses of studies in which > 75% of eligible cases were recruited (1.12, 1.00-1.25) and studies that included only women (1.29, 1.04-1.60). CONCLUSION: Although no definitive conclusions may be drawn, our results suggest a dose-response relation between residential exposure to radon and the risk of lung cancer. They support the need to develop strategies to reduce human exposure to radon. PMID:14758433

  17. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Lung cancer risk due to residential radon exposures: estimation and prevention.

    PubMed

    Truta, L A; Hofmann, W; Cosma, C

    2014-07-01

    Epidemiological studies proved that cumulative exposure to radon is the second leading cause of lung cancer, the world's most common cancer. The objectives of the present study are (i) to analyse lung cancer risk for chronic, low radon exposures based on the transformation frequency-tissue response (TF-TR) model formulated in terms of alpha particle hits in cell nuclei; (ii) to assess the percentage of attributable lung cancers in six areas of Transylvania where the radon concentration was measured and (iii) to point out the most efficient remediation measures tested on a pilot house in Stei, Romania. Simulations performed with the TF-TR model exhibit a linear dose-effect relationship for chronic, residential radon exposures. The fraction of lung cancer cases attributed to radon ranged from 9 to 28% for the investigated areas. Model predictions may represent a useful tool to complement epidemiological studies on lung cancer risk and to establish reasonable radiation protection regulations for human safety. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  20. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    PubMed

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Residential Radon Exposure and Incidence of Childhood Lymphoma in Texas, 1995–2011

    PubMed Central

    Peckham, Erin C.; Scheurer, Michael E.; Danysh, Heather E.; Lubega, Joseph; Langlois, Peter H.; Lupo, Philip J.

    2015-01-01

    There is warranted interest in assessing the association between residential radon exposure and the risk of childhood cancer. We sought to evaluate the association between residential radon exposure and the incidence of childhood lymphoma in Texas. The Texas Cancer Registry (n = 2147) provided case information for the period 1995–2011. Denominator data were obtained from the United States Census. Regional arithmetic mean radon concentrations were obtained from the Texas Indoor Radon Survey and linked to residence at diagnosis. Exposure was assessed categorically: ≤25th percentile (reference), >25th to ≤50th percentile, >50th to ≤75th percentile, and >75th percentile. Negative binomial regression generated adjusted incidence rate ratios (aIRR) and 95% confidence intervals (CI). We evaluated lymphoma overall and by subtype: Hodgkin (HL; n = 1248), Non-Hodgkin excluding Burkitt (non-BL NHL; n = 658), Burkitt (BL; n = 241), and Diffuse Large B-cell (DLBCL; n = 315). There was no evidence that residential radon exposure was positively associated with lymphoma overall, HL, or BL. Areas with radon concentrations >75th percentile had a marginal increase in DLBCL incidence (aIRR = 1.73, 95% CI: 1.03–2.91). In one of the largest studies of residential radon exposure and the incidence of childhood lymphoma, we found little evidence to suggest a positive or negative association; an observation consistent with previous studies. PMID:26404336

  2. Assessing exposure to granite countertops--Part 2: Radon.

    PubMed

    Allen, Joseph G; Minegishi, Taeko; Myatt, Theodore A; Stewart, James H; McCarthy, John F; Macintosh, David L

    2010-05-01

    Radon gas ((222)Rn) is a natural constituent of the environment and a risk factor for lung cancer that we are exposed to as a result of radioactive decay of radium ((226)Ra) in stone and soil. Granite countertops, in particular, have received recent media attention regarding their potential to emit radon. Radon flux was measured on 39 full slabs of granite from 27 different varieties to evaluate the potential for exposure and examine determinants of radon flux. Flux was measured at up to six pre-selected locations on each slab and also at areas identified as potentially enriched after a full-slab scan using a Geiger-Muller detector. Predicted indoor radon concentrations were estimated from the measured radon flux using the CONTAM indoor air quality model. Whole-slab average emissions ranged from less than limit of detection to 79.4 Bq/m(2)/h (median 3.9 Bq/m(2)/h), similar to the range reported in the literature for convenience samples of small granite pieces. Modeled indoor radon concentrations were less than the average outdoor radon concentration (14.8 Bq/m(3); 0.4 pCi/l) and average indoor radon concentrations (48 Bq/m(3); 1.3 pCi/l) found in the United States. Significant within-slab variability was observed for stones on the higher end of whole slab radon emissions, underscoring the limitations of drawing conclusions from discrete samples.

  3. Modeling intersubject variability of bronchial doses for inhaled radon progeny.

    PubMed

    Hofmann, Werner; Winkler-Heil, Renate; Hussain, Majid

    2010-10-01

    The main sources of intersubject variations considered in the present study were: (1) size and structure of nasal and oral passages, affecting extrathoracic deposition and, in further consequence, the fraction of the inhaled activity reaching the bronchial region; (2) size and asymmetric branching of the human bronchial airway system, leading to variations of diameters, lengths, branching angles, etc.; (3) respiratory parameters, such as tidal volume, and breathing frequency; (4) mucociliary clearance rates; and (5) thickness of the bronchial epithelium and depth of target cells, related to airway diameters. For the calculation of deposition fractions, retained surface activities, and bronchial doses, parameter values were randomly selected from their corresponding probability density functions, derived from experimental data, by applying Monte Carlo methods. Bronchial doses, expressed in mGy WLM-1, were computed for specific mining conditions, i.e., for defined size distributions, unattached fractions, and physical activities. Resulting bronchial dose distributions could be approximated by lognormal distributions. Geometric standard deviations illustrating intersubject variations ranged from about 2 in the trachea to about 7 in peripheral bronchiolar airways. The major sources of the intersubject variability of bronchial doses for inhaled radon progeny are the asymmetry and variability of the linear airway dimensions, the filtering efficiency of the nasal passages, and the thickness of the bronchial epithelium, while fluctuations of the respiratory parameters and mucociliary clearance rates seem to compensate each other.

  4. Radon levels in Romanian caves: an occupational exposure survey.

    PubMed

    Cucoş Dinu, Alexandra; Călugăr, Monica I; Burghele, Bety D; Dumitru, Oana A; Cosma, Constantin; Onac, Bogdan P

    2017-10-01

    A comprehensive radon survey has been carried out in seven caves located in the western half of Romania's most significant karst regions. Touristic and non-touristic caves were investigated with the aim to provide a reliable distribution of their radon levels and evaluate the occupational exposure and associated effective doses. Radon gas concentrations were measured with long-term diffusion-type detectors during two consecutive seasons (warm and cold). All investigated caves exceed the European Union reference level of radon gas at workplaces (300 Bq/m 3 ). The radon concentration in these caves ranges between 53 and 2866 Bq/m 3 , reflecting particular cave topography, season-related cave ventilation, and complex tectonic and geological settings surrounding each location. Relatively homogeneous high radon levels occur in all investigated touristic caves and in Tăuşoare and Vântului along their main galleries. Except for Muierii, in all the other caves radon levels are higher during the warm season, compared to the cold one. This suggests that natural cave ventilation largely controls the underground accumulation of radon. The results reported here reveal that the occupational exposure in Urşilor, Vadu Crişului, Tăuşoare, Vântului, and Muierii caves needs to be carefully monitored. The effective doses to workers vary between an average of 0.25 and 4.39 mSv/year depending on the measuring season. The highest values were recorded in show caves, ranging from 1.15 to 6.15 mSv/year, well above the European recommended limit, thus posing a potential health hazard upon cave guides, cavers, and scientists.

  5. Estimation of attached and unattached progeny of 222Rn and 220Rn concentration using deposition based progeny sensors.

    PubMed

    Mehra, Rohit; Bangotra, Pargin; Kaur, Kirandeep; Kanse, Sandeep; Mishra, Rosaline

    2015-11-01

    The attached and unattached radon and thoron progeny concentrations have been calculated using deposition-based progeny sensors in Mansa, Muktsar, Bathinda and Faridkot districts of Punjab, India. The total (attached + unattached) equilibrium-equivalent (222)Rn concentration (EECRA + U) and total (attached + unattached) equilibrium-equivalent (220)Rn concentration (EECTA + U) were found to vary from 9 to 46 Bqm(-3) and 0.5 to 3.1 Bq m(-3), respectively. The concentrations of attached progeny nuclides for both (222)Rn and (220)Rn have been found to be greater than the unattached progeny nuclides in the dwellings of studied area. An attempt has also been made to assess the effective dose for (222)Rn and (220)Rn in the studied area. The radiation dose originated from (222)Rn and (220)Rn progeny is low and health risk is negligible. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Radon exposure and tumors of the central nervous system.

    PubMed

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Measurement of radon progenies using the Timepix detector.

    PubMed

    Bulanek, Boris; Jilek, Karel; Cermak, Pavel

    2014-07-01

    After an introduction of Timepix detector, results of these detectors with silicon and cadmium telluride detection layer in assessment of activity of short-lived radon decay products are presented. They were collected on an open-face filter by means of one-grab sampling method from the NRPI radon chamber. Activity of short-lived radon decay products was estimated from measured alpha decays of 218,214Po. The results indicate very good agreement between the use of both Timepix detectors and an NRPI reference instrument, continuous monitor Fritra 4. Low-level detection limit for EEC was estimated to be 41 Bq m(-3) for silicon detection layer and 184 Bq m(-3) for CdTe detection layer, respectively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Children’s Exposure to Radon in Nursery and Primary Schools

    PubMed Central

    Branco, Pedro T. B. S.; Nunes, Rafael A. O.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2016-01-01

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children’s exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings’ construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings’ construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks. PMID:27043596

  9. Radon exposure and the risk of leukemia: a review of epidemiological studies.

    PubMed

    Laurier, D; Valenty, M; Tirmarche, M

    2001-09-01

    Since the 1990's, several authors estimated that radon inhalation may deliver a small amount of irradiation to the red bone marrow, and consequently may increase the risk of leukemia in humans. The objective of this review is to conduct a critical analysis of epidemiologic results currently available concerning the relationship between radon exposure and the risk of leukemia. Nineteen ecological studies, six miner cohort studies, and eight case-control studies published between 1987 and 2000 are included in this review. The limitations associated with each of these studies are discussed. The results of the ecological studies are relatively concordant and suggest an association between radon concentrations and the risk of leukemia at a geographic level. But these ecological studies present important limitations, and some are only crude analyses. Moreover, the results of the cohort and case-control studies, based on individual data, do not show any significant association between radon exposure and leukemia risk. Our conclusion is that the overall epidemiologic results currently available do not provide evidence for an association between radon exposure and leukemia.

  10. Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2017-10-01

    Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.

  11. hprt mutant frequencies, nonpulmonary malignancies, and domestic radon exposure: "postmortem" analysis of an interesting hypothesis.

    PubMed

    Ruttenber, A J; Harrison, L T; Baron, A; McClure, D; Glanz, J; Quillin, R; O'Neill, J P; Sullivan, L; Campbell, J; Nicklas, J A

    2001-01-01

    The hypothesis that exposure to domestic radon raises the risk for leukemia and other nonpulmonary cancers has been proposed and tested in a number of epidemiologic studies over the past decade. During this period, interest in this hypothesis was heightened by evidence of increased frequencies of mutations at the hypoxanthine guanine phosphoribosyl transferase (hprt) gene in persons exposed to domestic radon (Bridges BA et al. [1991]: Lancet 337:1187-1189). An extension of this study (Cole J et al. [lsqb[1996]: Radiat Res 145:61-69) and two independent studies (Albering HJ et al. [1992[: Lancet 340:739; Albering HJ et al. [1994[: Lancet 344:750-751) found that hprt mutant frequency was not correlated with domestic radon exposure, and two well-designed epidemiologic studies showed no evidence of a relation between radon exposure and leukemia in children or adults. In this report, we present additional data from a study of Colorado high school students showing no correlation between domestic radon exposure and hprt mutant frequency. We use reanalyses of previous studies of radon and hprt mutant frequency to identify problems with this assay as a biomarker for domestic radon exposure and to illustrate difficulties in interpreting the statistical data. We also show with analyses of combined data sets that there is no support for the hypothesis that domestic radon exposure elevates hprt mutant frequency. Taken together, the scientific evidence provides a useful example of the problems associated with analyzing and interpreting data that link environmental exposures, biomarkers, and diseases in epidemiologic studies. Copyright 2001 Wiley-Liss, Inc.

  12. Clinical measures, smoking, radon exposure, and risk of lung cancer in uranium miners.

    PubMed Central

    Finkelstein, M M

    1996-01-01

    OBJECTIVES: Exposure to the radioactive daughters of radon is associated with increased risk of lung cancer in mining populations. An investigation of incidence of lung cancer following a clinical survey of Ontario uranium miners was undertaken to explore whether risk associated with radon is modified by factors including smoking, radiographic silicosis, clinical symptoms, the results of lung function testing, and the temporal pattern of radon exposure. METHODS: Miners were examined in 1974 by a respiratory questionnaire, tests of lung function, and chest radiography. A random selection of 733 (75%) of the original 973 participants was followed up by linkage to the Ontario Mortality and Cancer Registries. RESULTS: Incidence of lung cancer was increased threefold. Risk of lung cancer among miners who had stopped smoking was half that of men who continued to smoke. There was no interaction between smoking and radon exposure. Men with lung function test results consistent with airways obstruction had an increased risk of lung cancer, even after adjustment for cigarette smoking. There was no association between radiographic silicosis and risk of lung cancer. Lung cancer was associated with exposures to radon daughters accumulated in a time window four to 14 years before diagnosis, but there was little association with exposures incurred earlier than 14 years before diagnosis. Among the men diagnosed with lung cancer, the mean and median dose rates were 2.6 working level months (WLM) a year and 1.8 WLM/year in the four to 14 year exposure window. CONCLUSIONS: Risk of lung cancer associated with radon is modified by dose and time from exposure. Risk can be substantially decreased by stopping smoking. PMID:8943835

  13. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  14. A preliminary study for conducting a rational assessment of radon exposure levels.

    PubMed

    Jeon, Hyung-Jin; Kang, Dae-Ryoung; Go, Sang-Baek; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun; Lee, Cheol-Min

    2017-06-01

    The aim of this study was to determine the factors that go into a highly reliable estimate of radon exposure levels for use in setting up the case-control study. To this end, the present study conducted a multi-faceted investigation of the distribution of radon concentrations in the bedrooms and living rooms of 400 households in the target areas during the winter months from December 2014 to February 2015. We determined that taking the mean value of the radon concentration levels detected in the bedroom and living room as the representative value of residential concentration is appropriate, given the usability of previous research data and the difference in the concentration levels between the two. In terms of detector placement, we found that detectors should not inconvenience residents or be affected by an air current. Further, we found that housing type should distinguish between regular housing (single-detached, row, and multiplex housing) and apartments but that the building type was not a key factor in the assessment of radon exposure levels. Houses should be classified into those constructed with soil (red clay) and those with constructed with general building materials for the assessment of radon exposure levels.

  15. Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2018-04-01

    The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.

  16. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  17. Radon emanation from low-grade uranium ore.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p < 0.001) between in situ(222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Protection from radon exposure at home and at work in the directive 2013/59/Euratom.

    PubMed

    Bochicchio, F

    2014-07-01

    In recent years, international organisations involved in radiation protection and public health have produced new guidance, recommendations and requirements aiming better protection from radon exposure. These organisations have often worked in close collaboration in order to facilitate the establishment of harmonised standards. This paper deals with such standards and specifically with the new European Council Directive of 5 December 2013 on basic safety standards for protection against the dangers arising from exposure to ionising radiation (2013/59/Euratom). This new Directive has established a harmonised framework for the protection against ionising radiations, including protection from radon exposure. Requirements for radon in workplace are much more tightening than in previous Directive, and exposures to radon in dwellings are regulated for the first time in a Directive. Radon-related articles of this Directive are presented and discussed in this paper, along with some comparisons with other relevant international standards. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  20. Occupational radon exposure and lung cancer mortality: estimating intervention effects using the parametric g-formula.

    PubMed

    Edwards, Jessie K; McGrath, Leah J; Buckley, Jessie P; Schubauer-Berigan, Mary K; Cole, Stephen R; Richardson, David B

    2014-11-01

    Traditional regression analysis techniques used to estimate associations between occupational radon exposure and lung cancer focus on estimating the effect of cumulative radon exposure on lung cancer. In contrast, public health interventions are typically based on regulating radon concentration rather than workers' cumulative exposure. Estimating the effect of cumulative occupational exposure on lung cancer may be difficult in situations vulnerable to the healthy worker survivor bias. Workers in the Colorado Plateau Uranium Miners cohort (n = 4,134) entered the study between 1950 and 1964 and were followed for lung cancer mortality through 2005. We use the parametric g-formula to compare the observed lung cancer mortality to the potential lung cancer mortality had each of 3 policies to limit monthly radon exposure been in place throughout follow-up. There were 617 lung cancer deaths over 135,275 person-years of follow-up. With no intervention on radon exposure, estimated lung cancer mortality by age 90 was 16%. Lung cancer mortality was reduced for all interventions considered, and larger reductions in lung cancer mortality were seen for interventions with lower monthly radon exposure limits. The most stringent guideline, the Mine Safety and Health Administration standard of 0.33 working-level months, reduced lung cancer mortality from 16% to 10% (risk ratio = 0.67 [95% confidence interval = 0.61 to 0.73]). This work illustrates the utility of the parametric g-formula for estimating the effects of policies regarding occupational exposures, particularly in situations vulnerable to the healthy worker survivor bias.

  1. Lung cancer prevalence associated with radon exposure in Norwegian homes.

    PubMed

    Hassfjell, Christina Søyland; Grimsrud, Tom Kristian; Standring, William J F; Tretli, Steinar

    2017-08-22

    Radioactive radon gas is generated from uranium and thorium in underlying rocks and seeps into buildings. The gas and its decay products emit carcinogenic radiation and are regarded as the second most important risk factor for lung cancer after active tobacco smoking. The average radon concentration in Norwegian homes is higher than in most other Western countries. From a health and cost perspective, it is important to be able to quantify the risk of lung cancer posed by radon exposure. We estimated the radon-related risk of lung cancer in Norway based on risk estimates from the largest pooled analysis of European case-control studies, combined with the hitherto largest set of data on radon concentration measurements in Norwegian homes. Based on these estimates, we calculate that radon is a contributory factor in 12 % of all cases of lung cancer annually, assuming an average radon concentration of 88 Bq/m3 in Norwegian homes. For 2015, this accounted for 373 cases of lung cancer, with an approximate 95 % confidence interval of 145 – 682. Radon most likely contributes to a considerable number of cases of lung cancer. Since most cases of radon-associated lung cancer involve smokers or former smokers, a reduction of the radon concentration in homes could be a key measure to reduce the risk, especially for persons who are unable to quit smoking. The uncertainty in the estimated number of radon-associated cases can be reduced through a new national radon mapping study with an improved design.

  2. Assessment of indoor radon, thoron concentrations, and their relationship with seasonal variation and geology of Udhampur district, Jammu & Kashmir, India.

    PubMed

    Kumar, Ajay; Sharma, Sumit; Mehra, Rohit; Narang, Saurabh; Mishra, Rosaline

    2017-07-01

    Background The inhalation doses resulting from the exposure to radon, thoron, and their progeny are important quantities in estimating the radiation risk for epidemiological studies as the average global annual effective dose due to radon and its progeny is 1.3 mSv as compared to that of 2.4 mSv due to all other natural sources of ionizing radiation. Objectives The annual inhalation dose has been assessed with an aim of investigating the health risk to the inhabitants of the studied region. Methods Time integrated deposition based 222 Rn/ 220 Rn sensors have been used to measure concentrations in 146 dwellings of Udhampur district, Jammu and Kashmir. An active smart RnDuo monitor has also been used for comparison purposes. Results The range of indoor radon/thoron concentrations is found to vary from 11 to 58 Bqm -3 with an average value of 29 ± 9 Bqm -3 and from 25 to 185 Bqm -3 with an average value of 83 ± 32 Bqm -3 , respectively. About 10.7% dwellings have higher values than world average of 40 Bqm -3 prescribed by UNSCEAR. The relationship of indoor radon and thoron levels with different seasons, ventilation conditions, and different geological formations have been discussed. Conclusions The observed values of concentrations and average annual effective dose due to radon, thoron, and its progeny in the study area have been found to be below the recommended level of ICRP. The observed concentrations of 222 Rn and 220 Rn measured with active and passive techniques are found to be in good agreement.

  3. Analysis of radon reduction and ventilation systems in uranium mines in China.

    PubMed

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  4. Thoron detection with an active Radon exposure meter—First results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irlinger, J., E-mail: josef.irlinger@helmholtz-muenchen.de; Wielunski, M.; Rühm, W.

    For state-of-the-art discrimination of Radon and Thoron several measurement techniques can be used, such as active sampling, electrostatic collection, delayed coincidence method, and alpha-particle-spectroscopy. However, most of the devices available are bulky and show high power consumption, rendering them unfeasible for personal exposition monitoring. Based on a Radon exposure meter previously realized at the Helmholtz Center Munich (HMGU), a new electronic prototype for Radon/Thoron monitoring is currently being developed, which features small size and weight. Operating with pin-diode detectors, the low-power passive-sampling device can be used for continuous concentration measurements, employing alpha-particle-spectroscopy and coincidence event registration to distinguish decays originatingmore » either from Radon or Thoron isotopes and their decay products. In open geometry, preliminary calibration measurements suggest that one count per hour is produced by a 11 Bq m{sup −3} Radon atmosphere or by a 15 Bq m{sup −3} Thoron atmosphere. Future efforts will concentrate on measurements in mixed Radon/Thoron atmospheres.« less

  5. Seasonal variability of equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab, India.

    PubMed

    Saini, Komal; Singh, Parminder; Singh, Prabhjot; Bajwa, B S; Sahoo, B K

    2017-02-01

    A survey was conducted to estimate equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab state, India. Pin hole based twin cup dosimeters and direct progeny sensor techniques have been utilized for estimation of concentration level of radon, thoron and their progenies. Equilibrium factor calculated from radon, thoron and their progenies concentration has been found to vary from 0.15 to 0.80 and 0.008 to 0.101 with an average value of 0.44 and 0.036 for radon and thoron respectively. Equilibrium factor for radon has found to be highest in winter season and lowest in summer season whereas for thoron highest value is observed in winter and rainy season and lowest in summer. Unattached fractions of radon and thoron have been found to vary from 0.022 to 0.205 and 0.013 to 0.212 with an average value of 0.099 and 0.071 respectively. Unattached fractions have found to be highest in winter season and lowest in rainy and summer season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Time dependence of 222Rn, 220Rn and their progenies' distributions in a diffusion chamber

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.; Nikezic, D.

    2017-11-01

    Diffusion chamber with SSNTD (Solid State Nuclear Track Detector) placed inside is a passive detector for measuring the activity of 222Rn and 220Rn (radon and thoron) and their progenies. Calibration from detected alpha particle tracks to progeny activity is often acquired from theoretical models. One common assumption related to these models found in literature is that concentrations of 222Rn and 220Rn at the entrance of a chamber are constant during the exposure. In this paper, concentrations of 222Rn and 220Rn at the entrance of the chamber are taken to be variable with time, which is actually the case in reality. Therefore, spatial distributions of 222Rn and 220Rn and their progenies inside the diffusion chamber should be time dependent. Variation of 222Rn and 220Rn concentrations on the entrance of the chamber was modeled on the basis of true measurements. Diffusion equations in cylindrical coordinates were solved using FDM (Finite Difference Method) to obtain spatial distributions as functions of time. It was shown that concentrations of 222Rn, 220Rn and their progenies were not homogeneously distributed in the chamber. Due to variable 222Rn and 220Rn concentrations at the entrance of the chamber, steady state (the case when concentration of 222Rn, 220Rn and their progenies inside the chamber remains unchanged with time) could not be reached. Deposition of progenies on the chamber walls was considered and it was shown that distributions of deposited progenies were not uniform over walls' surface.

  7. LIFETIME LUNG CANCER RISKS ASSOCIATED WITH INDOOR RADON EXPOSURE BASED ON VARIOUS RADON RISK MODELS FOR CANADIAN POPULATION.

    PubMed

    Chen, Jing

    2017-04-01

    This study calculates and compares the lifetime lung cancer risks associated with indoor radon exposure based on well-known risk models in the literature; two risk models are from joint studies among miners and the other three models were developed from pooling studies on residential radon exposure from China, Europe and North America respectively. The aim of this article is to make clear that the various models are mathematical descriptions of epidemiologically observed real risks in different environmental settings. The risk from exposure to indoor radon is real and it is normal that variations could exist among different risk models even when they were applied to the same dataset. The results show that lifetime risk estimates vary significantly between the various risk models considered here: the model based on the European residential data provides the lowest risk estimates, while models based on the European miners and Chinese residential pooling with complete dosimetry give the highest values. The lifetime risk estimates based on the EPA/BEIR-VI model lie within this range and agree reasonably well with the averages of risk estimates from the five risk models considered in this study. © Crown copyright 2016.

  8. Using geographic information systems for radon exposure assessment in dwellings in the Oslo region, Norway

    NASA Astrophysics Data System (ADS)

    Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.

    2014-04-01

    Radon exposures were assigned to each residential address in the Oslo region using a geographic information system (GIS) that included indoor radon measurements. The results will be used in an epidemiologic study regarding leukemia and brain cancer. The model is based on 6% of measured residential buildings. High density of indoor radon measurements allowed us to develop a buffer model where indoor radon measurements found around each dwelling were used to assign a radon value for homes lacking radon measurement. Intraclass correlation coefficients (ICCs) were used to study the agreement between radon values from the buffer method, from indoor radon values of measured houses, and from a regression model constructed with radiometric data (eTh, eU) and bedrock geology. We obtained good agreement for both comparisons with ICC values between 0.54 and 0.68. GIS offers a useful variety of tools to study the indoor-radon exposure assessment. By using the buffer method it is more likely that geological conditions are similar within the buffer and this may take more into account the variation of radon over short distances. It is also probable that short-distance-scale correlation patterns express similarities in building styles and living habits. Although the method has certain limitations, we regard it as acceptable for use in epidemiological studies.

  9. Residential Radon Exposure and Lung Cancer: Evidence of an Inverse Association in Washington State.

    ERIC Educational Resources Information Center

    Neuberger, John S.; And Others

    1992-01-01

    Presents results of a descriptive study of lung cancer death rates compared to county levels of radon in Washington State. Age-specific death rates were computed for white female smokers according to radon exposure. A significant lung cancer excess was found in lowest radon counties. No significant difference was found between the proportion of…

  10. RADON CHAMBER IN THE CENTRAL MINING INSTITUTE-THE CALIBRATION FACILITY FOR RADON AND RADON PROGENY MONITORS.

    PubMed

    Skubacz, K; Chalupnik, S; Urban, P; Wysocka, M

    2017-11-01

    The article presents the advantages of the radon chamber with volume of 17 m3, that belongs to Silesian Centre for Environmental Radioactivity and its applicability for calibration of equipment designed to measure the radon concentration and its short-lived decay products. The chamber can be operated under controlled conditions in the range from -20 to 60°C and relative humidity from 20 to 90%. There is also discussed the influence of aerosol concentration and their size distribution on the calibration results. When calibrating the measuring devices in an atmosphere with a large contribution of ultrafine particles that are defined as particles with diameter <0.1 μm, their sensitivity may decrease by tens of percent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Residential radon exposure and risk of incident hematologic malignancies in the Cancer Prevention Study-II Nutrition Cohort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teras, Lauren R., E-mail: lauren.teras@cancer.org; Diver, W. Ryan; Turner, Michelle C.

    Dosimetric models show that radon, an established cause of lung cancer, delivers a non-negligible dose of alpha radiation to the bone marrow, as well as to lymphocytes in the tracheobronchial epithelium, and therefore could be related to risk of hematologic cancers. Studies of radon and hematologic cancer risk, however, have produced inconsistent results. To date there is no published prospective, population-based study of residential radon exposure and hematologic malignancy incidence. We used data from the American Cancer Society Cancer Prevention Study-II Nutrition Cohort established in 1992, to examine the association between county-level residential radon exposure and risk of hematologic cancer.more » The analytic cohort included 140,652 participants (66,572 men, 74,080 women) among which 3019 incident hematologic cancer cases (1711 men, 1308 women) were identified during 19 years of follow-up. Cox proportional hazard regression was used to calculate multivariable-adjusted hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) for radon exposure and hematologic cancer risk. Women living in counties with the highest mean radon concentrations (>148 Bq/m{sup 3}) had a statistically significant higher risk of hematologic cancer compared to those living in counties with the lowest (<74 Bq/m{sup 3}) radon levels (HR=1.63, 95% CI:1.23–2.18), and there was evidence of a dose-response relationship (HR{sub continuous}=1.38, 95% CI:1.15–1.65 per 100 Bq/m{sup 3}; p-trend=0.001). There was no association between county-level radon and hematologic cancer risk among men. The findings of this large, prospective study suggest residential radon may be a risk factor for lymphoid malignancies among women. Further study is needed to confirm these findings. - Highlights: • This is the first prospective, general population study of residential radon and risk of hematologic cancer. • Findings from this study suggest that residential radon exposure may be a

  12. Caves, mines and subterranean spaces: hazard and risk from exposure to radon.

    NASA Astrophysics Data System (ADS)

    Crockett, R. G. M.; Gillmore, G. K.

    2009-04-01

    Radon is a naturally occurring radioactive gas. It is colourless, odourless and chemically inert. The most hazardous isotope is 222Rn. Radon is formed in the natural environment by the radioactive decay of the element uranium (238U) and is a daughter product of daughter product of radium (226Ra). Uranium and radium are found, in differing degrees, in a wide range of rocks, soils (and building materials that are made from these). Radon concentrations in caves, e.g. limestone caves such as the Great Cave of Niah, Borneo, and caves in the Mendips and Peak District in the UK, has been documented and reveal that both (prehistoric) cave-dwellers and other users such as archaeologists are at risk from exposure to radon a naturally occurring radioactive gas. In general, but dependent on cave geometry and ventilation, radon concentration increases with increasing distance from the entrance, implying that the hazard also increases with distance from the entrance. With regard to mines and mining operations, as well as modern extraction of uranium and radium ores, both ores commonly occur alongside other metallic ores, e.g. silver at Schneeberg and Joachimsthal, and tin in Cornwall, and in some instances, waste from earlier metalliferious mining activity has itself been ‘mined' for uranium and/or radium ores. It is not solely the miners and other subterranean workers which are at risk, other workers and local inhabitants are also at risk. Also, that risk is not eliminated by protection against dust/airborne particulates: the risk from inhalation of radon is only reduced by reducing the inhalation of radon, i.e. use of breathing apparatus. Amongst the general population, radon is the second most significant cause of lung cancer behind tobacco smoking. Estimates vary but 6-9% of lung-cancers are attributable to radon and approximately 2% all cancer deaths are attributable to radon. These proportions will increase in higher-radon environments such as caves, mines and mining

  13. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  14. Environmental radon exposure and breast cancer risk in the Nurses' Health Study II.

    PubMed

    VoPham, Trang; DuPré, Natalie; Tamimi, Rulla M; James, Peter; Bertrand, Kimberly A; Vieira, Veronica; Laden, Francine; Hart, Jaime E

    2017-09-07

    Radon and its decay products, a source of ionizing radiation, are primarily inhaled and can deliver a radiation dose to breast tissue, where they may continue to decay and emit DNA damage-inducing particles. Few studies have examined the relationship between radon and breast cancer. The Nurses' Health Study II (NHSII) includes U.S. female registered nurses who completed biennial questionnaires since 1989. Self-reported breast cancer was confirmed from medical records. County-level radon exposures were linked with geocoded residential addresses updated throughout follow-up. Time-varying Cox regression models adjusted for established breast cancer risk factors were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). From 1989 to 2013, 3966 invasive breast cancer cases occurred among 112,639 participants. Increasing radon exposure was not associated with breast cancer risk overall (adjusted HR comparing highest to lowest quintile = 1.06, 95% CI: 0.94, 1.21, p for trend = 0.30). However, women in the highest quintile of exposure (≥74.9 Bq/m 3 ) had a suggested elevated risk of ER-/PR- breast cancer compared to women in the lowest quintile (<27.0 Bq/m 3 ) (adjusted HR = 1.38, 95% CI: 0.97, 1.96, p for trend = 0.05). No association was observed for ER+/PR+ breast cancer. Although we did not find an association between radon exposure and risk of overall or ER+/PR+ breast cancer, we observed a suggestive association with risk of ER-/PR- breast cancer.

  15. 1989 Intercomparison of radon progeny measurement methods and equipment in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, P.; George, A.; Tu, Keng.

    1990-03-01

    At the 1989 {sup 222}Rn progeny intercomparison held at the Environmental Measurements Laboratory (EML), July 10--14, 1989, grab sampling and integrating/continuous {sup 222}Rn progeny methods were evaluated. Sixteen facilities participated in this intercomparison. Twelve facilities used {sup 222}Rn progeny grab sampling methods, and nine facilities used integrating/continuous instruments. Eighty-eight percent of the participants reported grab sample {sup 222}Rn progeny concentrations that were within 20% of the EML reference values. Good agreement between participant and EML grab-sample potential alpha energy concentrations (PAECs) was observed; 92% of the participants had PAECs within 20% of the EML values. For the integrating/continuous PAEC valuesmore » determined with integrating/continuous monitors, 89% of the participants were within 20% of the EML reference values. 9 refs., 3 figs., 4 tabs.« less

  16. Residential Radon Exposure and Risk of Lung Cancer in Missouri

    Cancer.gov

    A case-control study of lung cancer and residential radon exposure in which investigators carried out both standard year-long air measurements and CR-39 alpha detector measurements (call surface monitors)

  17. Fast retrospective determination of radon exposure with a sensitive alpha scintillation probe.

    PubMed

    von Philipsborn, Henning; Just, Günther

    2005-09-01

    The background of a hand-held alpha ZnS scintillation probe of 44 cm(2) was reduced from the normal 50 counts per hour (cph) to 4 +/- 2 cph and the efficiency increased to 34%. The limit of detection for a 30 min measurement is now 5 Bq m(-2) Po-210 on glass surfaces, corresponding to about 200 Bq m(-3) indoor Rn-222 exposure for 20 years. The probe was successfully used for retrospective determination of radon exposure. The probe is simpler, faster and more convenient, and more economic than alpha spectrometry or nuclear track detectors currently used in the field of lung cancer epidemiology and long term radon exposure.

  18. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    NASA Astrophysics Data System (ADS)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  19. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Radon daughter exposure monitoring. 57.5037 Section 57.5037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  20. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Radon daughter exposure monitoring. 57.5037 Section 57.5037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  1. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Radon daughter exposure monitoring. 57.5037 Section 57.5037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  2. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Radon daughter exposure monitoring. 57.5037 Section 57.5037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  3. Indoor radon regulation using tabulated values of temporal radon variation.

    PubMed

    Tsapalov, Andrey; Kovler, Konstantin

    2018-03-01

    Mass measurements of indoor radon concentrations have been conducted for about 30 years. In most of the countries, a national reference/action/limit level is adopted, limiting the annual average indoor radon (AAIR) concentration. However, until now, there is no single and generally accepted international protocol for determining the AAIR with a known confidence interval, based on measurements of different durations. Obviously, as the duration of measurements increases, the uncertainty of the AAIR estimation decreases. The lack of the information about the confidence interval of the determined AAIR level does not allow correct comparison with the radon reference level. This greatly complicates development of an effective indoor radon measurement protocol and strategy. The paper proposes a general principle of indoor radon regulation, based on the simple criteria widely used in metrology, and introduces a new parameter - coefficient of temporal radon variation K V (t) that depends on the measurement duration and determines the uncertainty of the AAIR. An algorithm for determining K V (t) based on the results of annual continuous radon monitoring in experimental rooms is proposed. Included are indoor radon activity concentrations and equilibrium equivalent concentration (EEC) of radon progeny. The monitoring was conducted in 10 selected experimental rooms located in 7 buildings, mainly in the Moscow region (Russia), from 2006 to 2013. The experimental and tabulated values of K V (t) and also the values of the coefficient of temporal EEC variation depending on the mode and duration of the measurements were obtained. The recommendations to improve the efficiency and reliability of indoor radon regulation are given. The importance of taking into account the geological factors is discussed. The representativity of the results of the study is estimated and the approach for their verification is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Residential radon in Galicia: a cross-sectional study in a radon-prone area.

    PubMed

    Lorenzo-González, María; Ruano-Ravina, Alberto; Peón, Joaquín; Piñeiro, María; Barros-Dios, Juan Miguel

    2017-09-01

    Residential radon exposure is a major public health problem. It is the second greatest cause of lung cancer, after smoking, and the greatest in never-smokers. This study shows the indoor radon exposure distribution in Galicia and estimates the percentage of dwellings exceeding reference levels. It is based on 3245 residential radon measurements obtained from the Galician Radon Map project and from controls of two previous case-control studies on residential radon and lung cancer. Results show a high median residential radon concentration in Galicia (99 Bq m -3 ), with 49.3% of dwellings having a radon concentration above 100 Bq m -3 and 11.1% having a concentration above 300 Bq m -3 . Ourense and Pontevedra, located in South Galicia, are the provinces with the highest median indoor radon concentrations (137 Bq m -3 and 123.5 Bq m -3 , respectively). Results also show lower radon levels in progressively higher building storeys. These high residential radon concentrations confirm Galicia as a radon-prone area. A policy on radon should be developed and implemented in Galicia to minimize the residential radon exposure of the population.

  5. Four passive sampling elements (quatrefoil)--II. Film badges for monitoring radon and its progeny.

    PubMed

    Tommasino, L; Tokonami, S

    2011-05-01

    The four passive samplers (quatrefoil) already described in a parallel paper, make it possible to obtain thin radiation sources, useful for alpha and beta counting by any passive and real-time detector. In the present paper, the applications of this quatrefoil for measuring radon gas by etch-track detectors will be described. In the case of radon measurements, different solids have been identified, with radon-sorption partition coefficients related to air from 1 to 2000. Uniquely compact radon badges can be obtained by using a layer of these solids facing an alpha track-etch detector. These radon badges make it possible to overcome most of the shortcomings of existing passive monitors. Moreover, these badges show promise for studying the radon solubility of polymer films.

  6. Carcinogenic and Cocarcinogenic Effects of Radon and Radon Daughters in Rats.

    PubMed Central

    Monchaux, G; Morlier, JP; Morin, M; Chameaud, J; Lafuma, J; Masse, R

    1994-01-01

    It has been previously established that lung cancer could be induced in rats by exposure to radon and radon daughters. Although the oat-cell carcinomas that are common in humans were not found in rats, other histological types of lung carcinomas, especially squamous cell carcinomas and primitive lung adenocarcinomas, were similar to those observed in humans. A dose-effect relationship was established for cumulative doses varying from 25 to 3000 working-level-months (WLM), which was similar for medium and high cumulative doses to that observed in uranium miners. This experimental protocol was also used to study the potential cocarcinogenic effects of other environmental or industrial airborne pollutants such as tobacco smoke, mineral fibers, diesel exhausts, or minerals from metallic mine ores that may act synergistically with radon exposure. In rats exposed to radon and tobacco smoke combined, the incidence of lung cancers was higher by a factor of 2-4 according to the cumulative radon exposure and the duration of tobacco smoke exposure. When mineral fibers were injected intrapleurally, an increased incidence of malignant thoracic tumors was observed in rats exposed to radon and fibers combined, but synergistic effects resulted in additivity. With diesel exhausts or minerals from metallic ores, a slight, nonsignificant increase in the incidence of lung carcinomas was observed compared with rats exposed to radon alone. These results demonstrated that it is possible to establish the potential cocarcinogenic action, showing either multiplicative, additive, or no effect of various environmental or industrial airborne pollutants combined with radon exposure. This radon model is valid for investigating possible interactions between two occupational exposures. Images p64-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. PMID:9719670

  7. Study and Search for Main Reason of Lung Cancers Based on Cherenkov Radiation in Environmental Radiation

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Emoto, Yusaku; Fujihara, Kento; Kawai, Hideyuki; Kimura, Shota; Kodama, Satoshi; Mizuno, Takahiro

    2018-01-01

    The number of lung-cancer-related death is highest among all cancers in the world, and it is increasing in Japan where population aging in progressing. The main reason for the lung cancer of non-smokers is regarded to be environmental pollution or exposure of the lung to radon in the nature. The risk of lung cancer was estimated to increase by 8 to 13% per every 100 Bq m-3 concentration of radon in the air. We observed beta rays with maximum energy of 3.27 MeV emitted from 214Bi as one of the progenies based on a detection of Cherenkov radiation. The surface radioactivity concentration of 214Bi on the sample was measured; the relation between the concentration and exposure time for the sample at the room air is researched. The behavior of the radon progenies in the air is discussed by a research for the progenies attaching on the sample after the radon decay. The inhalation of the radon progenies is not clear. Thus, to understand the behavior of progenies in the air make to clear the causal relation between the radon concentration and lung cancers.

  8. Time-averaged exposures to 220Rn and 222Rn progeny in Colorado homes.

    PubMed

    Martz, D E; Falco, R J; Langner, G H

    1990-06-01

    Week-long time-averaged exposures to naturally occurring 220Rn and 222Rn progeny have been measured at several locations in Colorado by monitoring the alpha activity collected continuously on a fixed-membrane filter. The alpha-energy spectrum associated with the activity collected on the filter was recorded every 15 min using a microcomputer-controlled alpha spectrometer. The alpha counts observed in three energy regions permitted complete separation of the contributions from each decay chain, and calculation of the separate time-averaged potential alpha-energy concentrations in air from 220Rn progeny, PAEC(Tn), and from 222Rn progeny, PAEC(Rn). The time-averaged PAEC(Tn) ranged from 0.3 to 6.9 mWL at 12 indoor locations, and the time-averaged PAEC(Rn) ranged from 1.0 to 59.0 mWL. The ratios of the indoor PAEC(Tn) to indoor PAEC(Rn) ranged from 0.09 to 0.58, with an overall average ratio of 0.32 and a standard deviation of 0.15. The 10 L min-1 flow rate through the filter was selected to approximate the air intake rate of a resting human; the time-averaged PAEC thus represents the progeny concentrations that would have been inhaled by a person breathing the same atmosphere.

  9. Real-time measurement of individual occupational radon exposures in tombs of the Valley of the Kings, Egypt.

    PubMed

    Gruber, E; Salama, E; Rühm, W

    2011-03-01

    The active radon exposure meter developed recently at the German Research Center for Environmental Health (Helmholtz Zentrum München) was used to measure radon concentrations in 12 tombs located in the Valley of the Kings, Egypt. Radon concentrations in air between 50 ± 7 and 12 100 ± 600 Bq m(-3) were obtained. The device was also used to measure individual radon exposures of those persons working as safeguards inside the tombs. For a measurement time of 2-3 d, typical individual radon exposures ranged from 1800 ± 400 to 240 000 ± 13 000 Bq h m(-3), depending on the duration of measurement and radon concentration in the different tombs. Based on current ICRP dose conversion conventions for workers and on equilibrium factors published in the literature for these tombs, individual effective dose rates that range from 1.5 ± 0.3 to 860 ± 50 µSv d(-1) were estimated. If it is assumed that the climatic conditions present at the measurement campaign persist for about half a year, in this area, then effective doses up to ∼ 66 mSv could be estimated for half a year, for some of the safeguards of tombs where F-values were known. To reduce the exposure of the safeguards, some recommendations are proposed.

  10. Quantitative aspects of radon daughter exposure and lung cancer in underground miners.

    PubMed Central

    Edling, C; Axelson, O

    1983-01-01

    Epidemiological studies have shown an excessive incidence of lung cancer in miners with exposure to radon daughters. The various risk estimates have ranged from six to 47 excess cases per 10(6) person years and working level month, but the effect of smoking has not been fully evaluated. The present study, among a group of iron ore miners, is an attempt to obtain quantitative information about the risk of lung cancer due to radon and its daughters among smoking and non-smoking miners. The results show a considerable risk for miners to develop lung cancer; even non-smoking miners seem to be at a rather high risk. An additive effect of smoking and exposure to radon daughters is indicated and an estimate of about 30-40 excess cases per 10(6) person years and working level month seems to apply on a life time basis to both smoking and non-smoking miners aged over 50. PMID:6830715

  11. Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: The Case of Radon and Smoking

    PubMed Central

    Chahine, Teresa; Schultz, Bradley D.; Zartarian, Valerie G.; Xue, Jianping; Subramanian, SV; Levy, Jonathan I.

    2011-01-01

    Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors. PMID:22016710

  12. Impact of radon gas concentration in the aerosoles profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukaj, Edmond, E-mail: mondilukaj@yahoo.com; Vila, Floran, E-mail: floranvila@yahoo.com; Mandija, Florian, E-mail: fmandija@yahoo.com

    Radon gases relased from building materials and from earth surface are the major responsibility of air ionization. Radon nuclear decay can produce an alpha particle with high energy and Radon progeny. This particle and gamma rays can deliver particles in the air and produce ions with different polarities. This ions, because of induced electric charge, can attach with air aerosols and charge them with their electric charge. The charged aerosols can interact with the other aerosols and ions. Because of this exchange, the air conductivity and the aerosol profiles will change dependently by Radon gas concentration and gamma radiation. Observationsmore » show an increase in concentration of Radon during the night, and a decrease during the daylight time. The Radon gas concentration changed hour by hour can induce aerosol profile to change. This dependency between the aerosol profiles and the Radon gas concentrations is discussed.« less

  13. Radon

    MedlinePlus

    ... Home or Building? Radon forms naturally. Uranium in soil or rock breaks down to form radium, which ... lung cancer. Because radon comes from rock and soil, it can be found anywhere. Exposure to limited ...

  14. Uranium mining industry views on ICRP statement on radon.

    PubMed

    Takala, J

    2012-01-01

    In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items. Copyright © 2012. Published by Elsevier Ltd.

  15. Radiological risk of building materials using homemade airtight radon chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan

    Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samplesmore » were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.« less

  16. Domestic Radon Exposure and Risk of Childhood Cancer: A Prospective Census-Based Cohort Study

    PubMed Central

    Hauri, Dimitri; Spycher, Ben; Huss, Anke; Zimmermann, Frank; Grotzer, Michael; von der Weid, Nicolas; Weber, Damien; Spoerri, Adrian; Kuehni, Claudia E.

    2013-01-01

    Background: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. Objective: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. Methods: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child’s 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents’ socioeconomic status, environmental gamma radiation, and period effects. Results: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m3), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m3) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors. Conclusions: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland. Citation: Hauri D, Spycher B, Huss A, Zimmermann F, Grotzer M, von der Weid N, Weber D, Spoerri A, Kuehni C, Röösli M, for the Swiss National Cohort and the Swiss Paediatric Oncology Group (SPOG). 2013. Domestic radon exposure and risk of childhood cancer: a prospective census-based cohort study. Environ Health Perspect 121:1239–1244; http://dx.doi.org/10

  17. Leukemia and exposure to ionizing radiation among German uranium miners.

    PubMed

    Möhner, Matthias; Lindtner, Manfred; Otten, Heinz; Gille, Hans-G

    2006-04-01

    It is well known that uranium miners are at an increased risk of lung cancer. Whether they also have an increased risk for other cancer sites remains under discussion. The aim of this study was to examine the leukemia risk among miners. An individually matched case-control study of former uranium miners in East Germany was conducted with 377 cases and 980 controls. Using conditional logistic regression models, a dose-response relationship between leukemia risk and radon progeny could not be confirmed. Yet, a significantly elevated risk is seen in the category > or = 400 mSv when combining gamma-radiation and long-lived radionuclides. The results suggest that an elevated risk for leukemia is restricted to employees with a very long occupational career in underground uranium mining or uranium processing. Moreover, the study does not support the hypothesis of an association between exposure to short-lived radon progeny and leukemia risk. Copyright 2006 Wiley-Liss, Inc.

  18. The conversion of exposures due to radon into the effective dose: the epidemiological approach.

    PubMed

    Beck, T R

    2017-11-01

    The risks and dose conversion coefficients for residential and occupational exposures due to radon were determined with applying the epidemiological risk models to ICRP representative populations. The dose conversion coefficient for residential radon was estimated with a value of 1.6 mSv year -1 per 100 Bq m -3 (3.6 mSv per WLM), which is significantly lower than the corresponding value derived from the biokinetic and dosimetric models. The dose conversion coefficient for occupational exposures with applying the risk models for miners was estimated with a value of 14 mSv per WLM, which is in good accordance with the results of the dosimetric models. To resolve the discrepancy regarding residential radon, the ICRP approaches for the determination of risks and doses were reviewed. It could be shown that ICRP overestimates the risk for lung cancer caused by residential radon. This can be attributed to a wrong population weighting of the radon-induced risks in its epidemiological approach. With the approach in this work, the average risks for lung cancer were determined, taking into account the age-specific risk contributions of all individuals in the population. As a result, a lower risk coefficient for residential radon was obtained. The results from the ICRP biokinetic and dosimetric models for both, the occupationally exposed working age population and the whole population exposed to residential radon, can be brought in better accordance with the corresponding results of the epidemiological approach, if the respective relative radiation detriments and a radiation-weighting factor for alpha particles of about ten are used.

  19. Lung Cancer Attributable to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis

    PubMed Central

    Catelinois, Olivier; Rogel, Agnès; Laurier, Dominique; Billon, Solenne; Hemon, Denis; Verger, Pierre; Tirmarche, Margot

    2006-01-01

    Objective The inhalation of radon, a well-established human carcinogen, is the principal—and omnipresent—source of radioactivity exposure for the general population of most countries. Scientists have thus sought to assess the lung cancer risk associated with indoor radon. Our aim here is to assess this risk in France, using all available epidemiologic results and performing an uncertainty analysis. Methods We examined the exposure–response relations derived from cohorts of miners and from joint analyses of residential case-control studies and considered the interaction between radon and tobacco. The exposure data come from measurement campaigns conducted since the beginning of the 1980s by the Institute for Radiation Protection and Nuclear Safety and the Directorate-General of Health in France. We quantified the uncertainties associated with risk coefficients and exposures and calculated their impact on risk estimates. Results The estimated number of lung cancer deaths attributable to indoor radon exposure ranges from 543 [90% uncertainty interval (UI), 75–1,097] to 3,108 (90% UI, 2,996–3,221), depending on the model considered. This calculation suggests that from 2.2% (90% UI, 0.3–4.4) to 12.4% (90% UI, 11.9–12.8) of these deaths in France may be attributable to indoor radon. Discussion In this original work we used different exposure–response relations from several epidemiologic studies and found that regardless of the relation chosen, the number of lung cancer deaths attributable to indoor radon appears relatively stable. Smokers can reduce their risk not only by reducing their indoor radon concentration but also by giving up smoking. PMID:16966089

  20. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium.

    PubMed

    Madas, Balázs G

    2016-09-01

    There is experimental and histological evidence that chronic irritation and cell death may cause hyperplasia in the exposed tissue. As the heterogeneous deposition of inhaled radon progeny results in high local doses at the peak of the bronchial bifurcations, it was proposed earlier that hyperplasia occurs in these deposition hot spots upon chronic radon exposure. The objective of the present study is to quantify how the induction of basal cell hyperplasia modulates the microdosimetric consequences of a given radon exposure. For this purpose, computational epithelium models were constructed with spherical cell nuclei of six different cell types based on histological data. Basal cell hyperplasia was modelled by epithelium models with additional basal cells and increased epithelium thickness. Microdosimetry for alpha-particles was performed by an own-developed Monte-Carlo code. Results show that the average tissue dose, and the average hit number and dose of basal cells decrease by the increase of the measure of hyperplasia. Hit and dose distribution reveal that the induction of hyperplasia may result in a basal cell pool which is shielded from alpha-radiation. It highlights that the exposure history affects the microdosimetric consequences of a present exposure, while the biological and health effects may also depend on previous exposures. The induction of hyperplasia can be considered as a radioadaptive response at the tissue level. Such an adaptation of the tissue challenges the validity of the application of the dose and dose rate effectiveness factor from a mechanistic point of view. As the location of radiosensitive target cells may change due to previous exposures, dosimetry models considering the tissue geometry characteristic of normal conditions may be inappropriate for dose estimation in case of protracted exposures. As internal exposures are frequently chronic, such changes in tissue geometry may be highly relevant for other incorporated radionuclides.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.; Shy, C.M.; Allen, J.W.

    The exfoliated-cell micronucleus (MN) assay was used to assess cytogenetic effects of exposure to radon progeny and cigarette smoke among 99 Colorado plateau uranium workers. Subjects were selected at random from employees in underground and open-pit uranium mines, ore mills, laboratories, and offices participating in a sputum screening program from 1964-88. The prevalence of cells with MN was determined by scoring one sputum specimen for each worker. Data obtained by interview were used to classify exposure to radon progeny and smoking at the time sputum specimens were taken. Underground miners were considered exposed to radon progeny, and others were consideredmore » unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of cells with MN; crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CE 0.6-1.3), respectively. The effects of radon and smoking were not confounded by each other or by age, and there was no evidence of synergy between exposures. The findings appear to cast doubt on the epidemiological utility of a sputum-based MN assay for studies of other populations exposed to occupational or environmental lung carcinogens.« less

  2. Estimate of radon exposure in geothermal spas in Poland.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Zmyślony, Marek

    2016-01-01

    Geothermal waters may contain soluble, radioactive radon gas. Spa facilities that use geothermal water may be a source of an increased radiation dose to people who stay there. It has been necessary to assess the exposure to radon among people: workers and visitors of spa centers that use geothermal waters. In 2013, workers of the Nofer Institute of Occupational Medicine measured concentrations of radon over the geothermal water surfaces in 9 selected Polish spa centers which use geothermal water for recreational and medicinal purposes. The measurements were performed by active dosimetry using Lucas scintillation cells. According to our research, the doses received by the personnel in Polish geothermal spas are < 0.6 mSv/year. In 1 of the investigated spas, the estimated annual dose to the staff may exceed 3 mSv/year. In Polish geothermal spas, neither the workers nor the visitors are at risk of receiving doses that exceed the safe limits. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  3. Hypoxia Treatment of Callosobruchus maculatus Females and Its Effects on Reproductive Output and Development of Progeny Following Exposure.

    PubMed

    Yan, Yan; Williams, Scott B; Baributsa, Dieudonne; Murdock, Larry L

    2016-06-17

    Modified atmospheres present a residue-free alternative to fumigants for controlling postharvest pests of grain during storage. How sub-lethal applications of this method affects the reproductive fitness of target pests, however, is still not fully understood. We examined how low levels of ambient oxygen influence the reproduction of the female cowpea bruchid (Callosobruchus maculatus), a pest of cowpea. We used three low-oxygen atmospheres-2%, 5% and 10% (v/v) oxygen-and observed their effects on: (1) the number of eggs laid by bruchids compared to insects held in normoxic (~20% oxygen) conditions; (2) the total number of eggs laid; and (3) the number of progeny that reached maturity. Low oxygen did not significantly affect the number of eggs laid during 48 or 72 h of exposure, but 2% and 5% oxygen did negatively affected total egg production. Increasing the exposure time from 48 to 72 h further depressed lifetime reproductive output. Maternal and egg exposure to hypoxia reduced the number of progeny that reached adulthood. Lower adult emergence was observed from eggs laid under low oxygen and longer exposure times. These data demonstrate that hermetic conditions depress the egg-laying behavior of cowpea bruchids and the successful development of their progeny.

  4. Hypoxia Treatment of Callosobruchus maculatus Females and Its Effects on Reproductive Output and Development of Progeny Following Exposure

    PubMed Central

    Yan, Yan; Williams, Scott B.; Baributsa, Dieudonne; Murdock, Larry L.

    2016-01-01

    Modified atmospheres present a residue-free alternative to fumigants for controlling postharvest pests of grain during storage. How sub-lethal applications of this method affects the reproductive fitness of target pests, however, is still not fully understood. We examined how low levels of ambient oxygen influence the reproduction of the female cowpea bruchid (Callosobruchus maculatus), a pest of cowpea. We used three low-oxygen atmospheres—2%, 5% and 10% (v/v) oxygen—and observed their effects on: (1) the number of eggs laid by bruchids compared to insects held in normoxic (~20% oxygen) conditions; (2) the total number of eggs laid; and (3) the number of progeny that reached maturity. Low oxygen did not significantly affect the number of eggs laid during 48 or 72 h of exposure, but 2% and 5% oxygen did negatively affected total egg production. Increasing the exposure time from 48 to 72 h further depressed lifetime reproductive output. Maternal and egg exposure to hypoxia reduced the number of progeny that reached adulthood. Lower adult emergence was observed from eggs laid under low oxygen and longer exposure times. These data demonstrate that hermetic conditions depress the egg-laying behavior of cowpea bruchids and the successful development of their progeny. PMID:27322332

  5. Effects of radon mitigation vs smoking cessation in reducing radon-related risk of lung cancer.

    PubMed Central

    Mendez, D; Warner, K E; Courant, P N

    1998-01-01

    OBJECTIVES: The purpose of this paper is to provide smokers with information on the relative benefits of mitigating radon and quitting smoking in reducing radon-related lung cancer risk. METHODS: The standard radon risk model, linked with models characterizing residential radon exposure and patterns of moving to new homes, was used to estimate the risk reduction produced by remediating high-radon homes, quitting smoking, or both. RESULTS: Quitting smoking reduces lung cancer risk from radon more than does reduction of radon exposure itself. CONCLUSIONS: Smokers should understand that, in addition to producing other health benefits, quitting smoking dominates strategies to deal with the problem posed by radon. PMID:9585753

  6. Domestic radon exposure and risk of childhood cancer: a prospective census-based cohort study.

    PubMed

    Hauri, Dimitri; Spycher, Ben; Huss, Anke; Zimmermann, Frank; Grotzer, Michael; von der Weid, Nicolas; Weber, Damien; Spoerri, Adrian; Kuehni, Claudia E; Röösli, Martin

    2013-10-01

    In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects. In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m3), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m3) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors. We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.

  7. Residential radon exposure and risk of incident hematologic malignancies in the Cancer Prevention Study-II Nutrition Cohort.

    PubMed

    Teras, Lauren R; Diver, W Ryan; Turner, Michelle C; Krewski, Daniel; Sahar, Liora; Ward, Elizabeth; Gapstur, Susan M

    2016-07-01

    Dosimetric models show that radon, an established cause of lung cancer, delivers a non-negligible dose of alpha radiation to the bone marrow, as well as to lymphocytes in the tracheobronchial epithelium, and therefore could be related to risk of hematologic cancers. Studies of radon and hematologic cancer risk, however, have produced inconsistent results. To date there is no published prospective, population-based study of residential radon exposure and hematologic malignancy incidence. We used data from the American Cancer Society Cancer Prevention Study-II Nutrition Cohort established in 1992, to examine the association between county-level residential radon exposure and risk of hematologic cancer. The analytic cohort included 140,652 participants (66,572 men, 74,080 women) among which 3019 incident hematologic cancer cases (1711 men, 1308 women) were identified during 19 years of follow-up. Cox proportional hazard regression was used to calculate multivariable-adjusted hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) for radon exposure and hematologic cancer risk. Women living in counties with the highest mean radon concentrations (>148Bq/m(3)) had a statistically significant higher risk of hematologic cancer compared to those living in counties with the lowest (<74Bq/m(3)) radon levels (HR=1.63, 95% CI:1.23-2.18), and there was evidence of a dose-response relationship (HRcontinuous=1.38, 95% CI:1.15-1.65 per 100Bq/m(3); p-trend=0.001). There was no association between county-level radon and hematologic cancer risk among men. The findings of this large, prospective study suggest residential radon may be a risk factor for lymphoid malignancies among women. Further study is needed to confirm these findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Radon in the Exhaled Air of Patients in Radon Therapy.

    PubMed

    Lettner, Herbert; Hubmer, Alexander; Hofmann, Werner; Landrichinger, Julia; Gaisberger, Martin; Winkler-Heil, Renate

    2017-11-01

    In the Gastein valley, numerous facilities use radon for the treatment of various diseases either by exposure to radon in air or in radon rich thermal water. In this study, six test persons were exposed to radon thermal water in a bathtub and the time-dependent radon activity concentration in the exhaled air was recorded. At temperatures between 38°C and 40°C, the radon activity concentration in the water was about 900 kBq/m3 in a total volume of 600 l, where the patients were exposed for 20 min, while continuously sampling the exhaled air during the bathing and 20 min thereafter. After entering the bath, the exhaled radon activity concentration rapidly increased, reaching some kind of saturation after 20 min exposure. The radon activity concentration in the exhaled air was about 8000 Bq/m3 at the maximum, with higher concentrations for male test persons. The total radon transfer from water to the exhaled air was between 480 and 1000 Bq, which is equivalent to 0.08% and 0.2% of the radon in the water. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  10. An Environmentally Controlled Chamber for the Study of Radon Detection

    DTIC Science & Technology

    1991-03-01

    equipment were not available on the market . I received a great deal of help and support during this project. I wish to express my gratitude to my faculty...ionized water mixed with an equal amount of ethylene gylcol. Although freezing temperatures are not anticipated using this equipment, the antifreeze is...completely mixed with the lower radon concentration in the chamber and for the radon and its progeny to reachieve nuclear equilibrium. Several important

  11. Prevention measures against radiation exposure to radon in well waters: analysis of the present situation in Finland.

    PubMed

    Turtiainen, Tuukka; Salonen, Laina

    2010-09-01

    Naturally occurring radioactive elements are found in all groundwaters, especially in bedrock waters. Exposure to these radioactive elements increases the risk of cancer. The most significant of these elements is radon which, as a gas, is mobile and dissolves in groundwater. In Finland, water supply plants are obliged to carry out statutory monitoring of the water quality, including radon. Monitoring of private wells, however, is often neglected. In this paper, we outline the problem by reviewing the outcomes of the studies conducted in Finland since the 1960s. We also summarise the development of legislation, regulations and political decisions made so far that have affected the amount of public exposure to radon in drinking water. A review of the studies on radon removal techniques is provided, together with newly obtained results. New data on the transfer of radon from water into indoor air are presented. The new assessments also take into account the expanding use of domestic radionuclide removal units by Finnish households.

  12. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.

    PubMed

    Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł

    2016-10-01

    In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226 Ra and 228 Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Radon: The Invisible Invader.

    ERIC Educational Resources Information Center

    School Leader, 1987

    1987-01-01

    A brief background on indoor radon and the health risks associated with radon exposure, with special emphasis on nonresidential buildings. One school district's experience in radon testing and monitoring is included. (MLF)

  14. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    PubMed

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  15. Radon Testing in Schools.

    ERIC Educational Resources Information Center

    Wheeler, Robert

    1989-01-01

    Schools may be a significant source of radon exposure for children and staff. Describes radon detection kits and technologies, when to use them, and what action to take given the results of a radon test. (MLF)

  16. Development of cataract and corneal opacity in mice due to radon exposure

    NASA Astrophysics Data System (ADS)

    Abdelkawi, S. A.; Abo-Elmagd, M.; Soliman, H. A.

    This work investigates the radiation damage on the eye of albino mice exposed to effective radon doses ranging from 20.92 to 83.68 mSv. These doses were taken over 2-8 weeks using a radon chamber constructed by the National Institute for Standard (Egypt). The guidance on the quality assurance program for radon measurements was followed. Therefore, the estimated doses received by the laboratory animals meet the requirements of national standardE The refractive index(RI) and protein concentration were measured for soluble proteins of both corneas and lenses. In addition, the sodium dodecyle sulfate polyacrylamide gel electrophoresis (SDSPAGE) technique was used. The results show increasing of the RI of both cornea and lens proteins and decreasing in total protein concentration of exposed animals. These results were accompanied with changes in the SDSPAGE profile for both cornea and lens. Therefore, radon exposure produces substantial hazards to the cornea and lens of experimental animals and has a crucial role in the development of cataract and corneal opacity.

  17. Radon exposure and cancers other than lung cancer in Swedish iron miners.

    PubMed Central

    Darby, S C; Radford, E P; Whitley, E

    1995-01-01

    Data are presented on the risks of cancers other than lung cancer in a cohort of iron miners from northern Sweden occupationally exposed to elevated levels of the radioactive gas radon. Compared with rates for the four northernmost counties of Sweden, mortality was increased for all cancers other than lung cancer (ratio of observed to expected deaths 1.21, 95% confidence interval 1.03-1.41), stomach cancer (ratio of observed to expected deaths 1.45, 95% confidence interval 1.04-1.98), and rectal cancer (ratio of observed to expected deaths 1.94, 95% confidence interval 1.03-3.31). Despite these overall increases, mortality was not significantly associated with cumulative exposure to radon, either for all cancers other than lung cancer or for any site of cancer other than lung cancer individually. However, the data from this cohort on its own have limited power; and for several sites of cancer the data in this study would be consistent with a radon-related increase. Further study of cancers other than lung cancer in populations exposed to radon is required. PMID:7614946

  18. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones

    PubMed Central

    Foster, Stephanie; Everett Jones, Sherry

    2016-01-01

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff. PMID:27983613

  19. Effects of air exchange property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements.

    PubMed

    Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S

    2012-11-01

    Pairs of diffusion chambers with different air exchange rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different air exchange properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.

  20. Radon-induced reduced apoptosis in human bronchial epithelial cells with knock-down of mitochondria DNA

    PubMed Central

    Li, Bing-Yan; Sun, Jing; Wei, Hong; Cheng, Yu-Zhi; Xue, Lian; Cheng, Zhi-Hai; Wan, Jian-Mei; Wang, Ai-Qing; Hei, Tom K.; Tong, Jian

    2012-01-01

    Radon and radon progeny inhalation exposure are recognized to induce lung cancer. To explore the role of mitochondria in radon-induced carcinogenesis in humans, an in vitro partially depleted mitochondrial DNA (mtDNA) cell line (ρ−) was generated by treatment of human bronchial epithelial (HBE) cells (ρ+) with ethidium bromide (EB). The characterization of ρ− cells indicated the presence of dysfunctional mitochondria and might thus serve a reliable model to investigate the role of mitochondria. In a gas inhalation chamber, ρ− and ρ+ cells were exposed to radon gas produced by a radium source. Results showed that apoptosis was significantly increased both in ρ− and ρ+ cells irradiated by radon. Moreover, apoptosis in ρ− cells showed a lower level than in ρ+ cells. Radon was further found to depress mitochondrial membrane potential (MMP) of HBE cells with knock-down mtDNA. Production of reactive oxygen species (ROS) was markedly elevated both in ρ− and ρ+ cells exposed to radon. The distribution of phases of cell cycle was different in ρ− compared to ρ+ cells. Radon-irradiation induced a rise in G2/M and decrease in S phase in ρ+ cells. In ρ− cells, G1, G2/M and S populations remained similar to cells exposed to radon. In conclusion, radon-induced changes in ROS generation, MMP and cell cycle are all attributed to reduction of apoptosis which may trigger and promote cell transformation leading to carcinogenesis. Our study indicates that the use of the ρ− knock-down mtDNA HBE cells may serve as a reliable model to study the role played by mitochondria in carcinogenic diseases. PMID:22891884

  1. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    PubMed

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m -3 ; range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R 2  = 0.68 for linear regression and R 2  = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Incidence of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: a case-cohort study.

    PubMed

    Rericha, Vladimír; Kulich, Michal; Rericha, Robert; Shore, David L; Sandler, Dale P

    2006-06-01

    Uranium miners are chronically exposed to low levels of radon and its progeny. We investigated whether radon exposure is associated with increased incidence of leukemia, lymphoma, or multiple myeloma in this population. We conducted a retrospective case-cohort study in 23,043 uranium miners and identified a total of 177 incident cases of leukemia, lymphoma, and myeloma. Detailed information on occupational radon exposure was obtained for the cases and a randomly selected subcohort of 2,393 subjects. We used the proportional hazards model with power relative risk (RR) function to estimate and test the effects of cumulative radon exposures on incidence rates. Incidence of all leukemia combined and chronic lymphocytic leukemia (CLL) alone was positively associated with cumulative radon exposure. The RR comparing high radon exposure [110 working level months (WLM) ; 80th percentile] to low radon exposure (3 WLM ; 20th percentile) was 1.75 [95% confidence interval (CI) , 1.10-2.78 ; p = 0.014] for all leukemia combined and 1.98 (95% CI, 1.10-3.59 ; p = 0.016) for CLL. Myeloid leukemia and Hodgkin lymphoma were also associated with radon, but RRs were not statistically significant. There was no apparent association of radon with either non-Hodgkin lymphoma or multiple myeloma. Exposure to radon and its progeny was associated with an increased risk of developing leukemia in underground uranium miners. CLL, not previously believed to be radiogenic, was linked to radon exposure.

  3. Incidence of Leukemia, Lymphoma, and Multiple Myeloma in Czech Uranium Miners: A Case–Cohort Study

    PubMed Central

    Řeřicha, Vladimír; Kulich, Michal; Řeřicha, Robert; Shore, David L.; Sandler, Dale P.

    2006-01-01

    Objective Uranium miners are chronically exposed to low levels of radon and its progeny. We investigated whether radon exposure is associated with increased incidence of leukemia, lymphoma, or multiple myeloma in this population. Design We conducted a retrospective case–cohort study in 23,043 uranium miners and identified a total of 177 incident cases of leukemia, lymphoma, and myeloma. Detailed information on occupational radon exposure was obtained for the cases and a randomly selected subcohort of 2,393 subjects. We used the proportional hazards model with power relative risk (RR) function to estimate and test the effects of cumulative radon exposures on incidence rates. Results Incidence of all leukemia combined and chronic lymphocytic leukemia (CLL) alone was positively associated with cumulative radon exposure. The RR comparing high radon exposure [110 working level months (WLM); 80th percentile] to low radon exposure (3 WLM; 20th percentile) was 1.75 [95% confidence interval (CI), 1.10–2.78; p = 0.014] for all leukemia combined and 1.98 (95% CI, 1.10–3.59; p = 0.016) for CLL. Myeloid leukemia and Hodgkin lymphoma were also associated with radon, but RRs were not statistically significant. There was no apparent association of radon with either non-Hodgkin lymphoma or multiple myeloma. Exposure to radon and its progeny was associated with an increased risk of developing leukemia in underground uranium miners. CLL, not previously believed to be radiogenic, was linked to radon exposure. PMID:16759978

  4. Canadian Lung Cancer Relative Risk from Radon Exposure for Short Periods in Childhood Compared to a Lifetime

    PubMed Central

    Chen, Jing

    2013-01-01

    Long-term exposure to elevated indoor radon concentrations has been determined to be the second leading cause of lung cancer in adults after tobacco smoking. With the establishment of a National Radon Program in Canada in 2007 thousands of homes across the country have been tested for radon. Although the vast majority of people are exposed to low or moderate radon concentrations; from time to time; there are homes found with very high concentrations of radon. Among those living in homes with very high radon concentrations, it is typically parents of young children that demonstrate a great deal of concern. They want to know the equivalent risk in terms of the lifetime relative risk of developing lung cancer when a child has lived in a home with high radon for a few years. An answer to this question of risk equivalency is proposed in this paper. The results demonstrate clearly that the higher the radon concentration; the sooner remedial measures should be undertaken; as recommended by Health Canada in the Canadian radon guideline. PMID:23698696

  5. EML indoor radon workshop, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Lowder, W.; Fisenne, I.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniquesmore » for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs.« less

  6. Radon in Devon and Cornwall and paediatric malignancies.

    PubMed

    Thorne, R; Foreman, N K; Mott, M G

    1996-02-01

    Exposure to radon in dwellings may cause cancer including paediatric malignancies. Devon and Cornwall have the highest exposure to radon of the counties of England. However, within these counties there is considerable variation in exposure. Exposure to radon in the 283 postcode sectors of the two counties has been published. The incidence of childhood malignancies between 1976 and 1985 was studied to compare postcode sectors of radon exposures > or = 100 Bq/m3 with sectors < 100 Bq/m3. No significant difference in the incidence rate of 106.7 per million child years in the high radon postcode sectors and 121.7 in the low (P = 0.29) was found. When the incidences of individual tumours were examined, a significantly increased rate of neuroblastoma (P = 0.02) and a non-significant increased rate of acute myeloid leukaemia were found in the high exposure postcode sectors. No association between radon exposure and overall rate of childhood malignancy was found.

  7. Calibration of LR-115 for 222Rn monitoring taking into account the plateout effect.

    PubMed

    Da Silva, A A R; Yoshimura, E M

    2003-01-01

    The dose received by people exposed to indoor radon is mainly due to radon progeny. This fact points to the establishment of techniques that access either radon and progeny together, or only radon progeny concentration. In this work a low cost and easy to use methodology is presented to determine the total indoor alpha emission concentration. It is based on passive detection using LR-115 and CR-39 detectors, taking into account the plateout effect. A calibration of LR-115 track density response was done by indoor exposure in controlled environments and dwellings, places where 222Rn and progeny concentration were measured with CR-39. The calibration factor obtained showed great dependence on the ambient condition: (0.69 +/- 0.04) cm for controlled environments and (0.43 +/- 0.03) cm for dwellings.

  8. Interpreting short and medium exposure etched-track radon measurements to determine whether an action level could be exceeded.

    PubMed

    Denman, A R; Crockett, R G M; Groves-Kirkby, C J; Phillips, P S

    2016-10-01

    Radon gas is naturally occurring, and can concentrate in the built environment. It is radioactive and high concentration levels within buildings, including homes, have been shown to increase the risk of lung cancer in the occupants. As a result, several methods have been developed to measure radon. The long-term average radon level determines the risk to occupants, but there is always pressure to complete measurements more quickly, particularly when buying and selling the home. For many years, the three-month exposure using etched-track detectors has been the de facto standard, but a decade ago, Phillips et al. (2003), in a DEFRA funded project, evaluated the use of 1-week and 1-month measurements. They found that the measurement methods were accurate, but the challenge lay in the wide variation in radon levels - with diurnal, seasonal, and other patterns due to climatic factors and room use. In the report on this work, and in subsequent papers, the group proposed methodologies for 1-week, 1-month and 3-month measurements and their interpretation. Other work, however, has suggested that 2-week exposures were preferable to 1-week ones. In practice, the radon remediation industry uses a range of exposure times, and further guidance is required to help interpret these results. This paper reviews the data from this study and a subsequent 4-year study of 4 houses, re-analysing the results and extending them to other exposures, particularly for 2-week and 2-month exposures, and provides comprehensive guidance for the use of etched-track detectors, the value and use of Seasonal Correction Factors (SCFs), the uncertainties in short and medium term exposures and the interpretation of results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Radon programmes and health marketing.

    PubMed

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  10. Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey

    PubMed Central

    Chen, J.; Moir, D.; Whyte, J.

    2012-01-01

    Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970s in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log–normal distribution with a geometric mean (GM) of 11.2 Bq m–3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log–normal distribution with a GM of 41.9 Bq m–3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure. PMID:22874897

  11. Iowa radon leukaemia study: a hierarchical population risk model for spatially correlated exposure measured with error.

    PubMed

    Smith, Brian J; Zhang, Lixun; Field, R William

    2007-11-10

    This paper presents a Bayesian model that allows for the joint prediction of county-average radon levels and estimation of the associated leukaemia risk. The methods are motivated by radon data from an epidemiologic study of residential radon in Iowa that include 2726 outdoor and indoor measurements. Prediction of county-average radon is based on a geostatistical model for the radon data which assumes an underlying continuous spatial process. In the radon model, we account for uncertainties due to incomplete spatial coverage, spatial variability, characteristic differences between homes, and detector measurement error. The predicted radon averages are, in turn, included as a covariate in Poisson models for incident cases of acute lymphocytic (ALL), acute myelogenous (AML), chronic lymphocytic (CLL), and chronic myelogenous (CML) leukaemias reported to the Iowa cancer registry from 1973 to 2002. Since radon and leukaemia risk are modelled simultaneously in our approach, the resulting risk estimates accurately reflect uncertainties in the predicted radon exposure covariate. Posterior mean (95 per cent Bayesian credible interval) estimates of the relative risk associated with a 1 pCi/L increase in radon for ALL, AML, CLL, and CML are 0.91 (0.78-1.03), 1.01 (0.92-1.12), 1.06 (0.96-1.16), and 1.12 (0.98-1.27), respectively. Copyright 2007 John Wiley & Sons, Ltd.

  12. Transient gestational exposure to drinking water containing excess hexavalent chromium modifies insulin signaling in liver and skeletal muscle of rat progeny.

    PubMed

    Shobana, Navaneethabalakrishnan; Aruldhas, Mariajoseph Michael; Tochhawng, Lalmuankimi; Loganathan, Ayyalu; Balaji, Sadhasivam; Kumar, Mani Kathiresh; Banu, Liaquat Alikhan Sheerin; Navin, Ajit Kumar; Mayilvanan, Chinnaiyan; Ilangovan, Ramachandran; Balasubramanian, Karundevi

    2017-11-01

    Chromium (Cr), an essential micronutrient potentiates insulin action, whereas excess hexavalent Cr (CrVI) acts as an endocrine disruptor. Pregnant mothers living in areas abutting industries using the metal and chromite ore dumps are exposed to ground water contaminated with Cr. Nevertheless, the impact of prenatal exposure to excess CrVI on insulin signaling in the progeny remains obscure. We tested the hypothesis "transient gestational exposure to drinking water containing excess CrVI may modify insulin signaling during postnatal life". Pregnant Wistar rats were given drinking water containing 50, 100 and 200 ppm CrVI (K 2 Cr 2 O 7 ) from gestational day 9-14 encompassing the period of organogenesis; the male progenies were tested at postnatal day 60. Neither fasting blood glucose nor oral glucose tolerance was altered in CrVI treated progeny. Nevertheless, western blot detection pointed out attenuated expression level of insulin receptor (IR), its downstream signaling molecules (IRS-1, pIRS-1 Tyr632 , Akt and pAkt Ser473 ) and organ specific glucose transporters (GLUT2 in liver and GLUT4 in gastrocnemius muscle), along with a significant increase in serum insulin level in male progenies exposed to CrVI. While 14 C-2-deoxy glucose uptake increased in the liver, the same decreased in the skeletal muscle whereas, 14 C-glucose oxidation recorded a consistent decrease in both tissues of CrVI exposed rats. These findings support our hypothesis and suggest that transient gestational exposure to excess CrVI may affect insulin signaling and glucose oxidation in the progeny, predictably rendering them vulnerable to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Management of radon: a review of ICRP recommendations.

    PubMed

    Vaillant, Ludovic; Bataille, Céline

    2012-09-01

    This article proposes a review of past and current ICRP publications dealing with the management of radon exposures. Its main objective is to identify and discuss the driving factors that have been used by the Commission during the last 50 years so as to better appreciate current issues regarding radon exposure management. The analysis shows that major evolutions took place in very recent years. As far as the management of radon exposures is concerned, ICRP recommended, until ICRP Publication 103 (ICRP 2007 ICRP Publication 103; Ann. ICRP 37), to use action levels and to consider only exposures above these levels. The Commission has reviewed its approach and now proposes to manage any radon exposure through the application of the optimisation principle and associated reference levels. As far as the assessment of the radon risk is concerned, it appears that the successive changes made by ICRP did not have a strong impact on the values of radon gas concentration recommended as action levels either in dwellings or in workplaces. The major change occurred in late 2009 with the publication of the ICRP Statement on Radon, which acknowledged that the radon risk has been underestimated by a factor of 2, thus inducing a major revision of radon reference levels.

  14. Indoor Radon: The Deadliest Pollutant.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1988-01-01

    Describes the origin, occurrence, and effects of radon gas. Cites studies which attribute 5,000 to 20,000 deaths per year to radon exposure and the synergistic effect between radon and smoking. Explains ways to reduce risks. (RT)

  15. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals.

    PubMed

    Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Tanaka, Hiroshi; Kataoka, Takahiro; Sakoda, Akihiro

    2011-07-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

  16. Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: follow-up 1946-2003.

    PubMed

    Kreuzer, Michaela; Grosche, B; Schnelzer, M; Tschense, A; Dufey, F; Walsh, L

    2010-05-01

    Data from the German uranium miners cohort study were analyzed to investigate the radon-related risk of mortality from cancer and cardiovascular diseases. The Wismut cohort includes 58,987 men who were employed for at least 6 months from 1946 to 1989 at the former Wismut uranium mining company in Eastern Germany. By the end of 2003, a total of 3,016 lung cancer deaths, 3,355 deaths from extrapulmonary cancers, 5,141 deaths from heart diseases and 1,742 deaths from cerebrovascular diseases were observed. Although a number of studies have already been published on various endpoints in the Wismut cohort, the aim of the present analyses is to provide a direct comparison of the magnitude of radon-related risk for different cancer sites and cardiovascular diseases using the same data set, the same follow-up period and the same statistical methods. A specific focus on a group of cancers of the extrathoracic airways is also made here, due to the assumed high organ doses from absorbed radon progeny. Internal Poisson regression was used to estimate the excess relative risk (ERR) per unit of cumulative exposure to radon in working level months (WLM) and its 95% confidence limits (CI). There was a statistically significant increase in the risk of lung cancer with increasing radon exposure (ERR/WLM = 0.19%; 95% CI: 0.17%; 0.22%). A smaller, but also statistically significant excess was found for cancers of the extrathoracic airways and trachea (ERR/WLM = 0.062%; 95% CI: 0.002%; 0.121%). Most of the remaining nonrespiratory cancer sites showed a positive relationship with increasing radon exposure, which, however, did not reach statistical significance. No increase in risk was noted for coronary heart diseases (ERR/WLM = 0.0003%) and cerebrovascular diseases (ERR/WLM = 0.001%). The present data provide clear evidence of an increased radon-related risk of death from lung cancer, some evidence for an increased radon-related risk of death from cancers of the extrathoracic airways

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.

    The exfoliated-cell micronucleus assay is a relatively new cytogenetic technique which can provide a measure of the genetic effect of exposure to carcinogens and mutagens in target tissues where tumors arise among exposed populations. It is responsive to the effects of ionizing radiation and tobacco smoke in some in vivo human cell systems, but has not been extensively field tested as an indicator of lung cancer-related effects, despite the public health importance of exposure to occupational and environmental lung carcinogens. In this study the exfoliated-cell micronucleus assay was used to assess effects of exposure to radon progeny and cigarette smokemore » in a population of uranium industry workers (including employees in underground and open-pit mines, mills, laboratories, and administrative offices); underground uranium miners experience markedly elevated lung cancer risk because of exposure to ionizing radiation from radon progeny. Ninety-nine workers were selected at random from among workers in Colorado Plateau uranium-related facilities who participated in a workplace sputum cytology screening program from 1964-1988. The prevalence of cells with micronuclei was determined by a manual assay of one sputum specimen for each worker under a light microscope. Occupational and smoking data obtained by interview during screening were used to classify exposure and smoking status at the time the sputum specimen was taken and to obtain information on potential confounders and effect modifiers; underground miners were classified as exposed to radon progeny, and others were considered unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of micronucleated cells. Crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CI 0.6-1.3), respectively, for radon exposure and smoking.« less

  18. Radon-induced lung cancer deaths may be overestimated due to failure to account for confounding by exposure to diesel engine exhaust in BEIR VI miner studies.

    PubMed

    Cao, Xiaodong; MacNaughton, Piers; Laurent, Jose Cedeno; Allen, Joseph G

    2017-01-01

    EPA reported that radon is the second leading cause of lung cancer in the United States, killing 21,100 people per year. EPA relies on the BEIR VI models, based on an evaluation of radon exposure and lung cancer risk in studies of miners. But these models did not account for co-exposure to diesel exhaust, a known human carcinogen recently classified by IARC. It is probable then that a portion of the lung cancer deaths in the miner cohorts are originally attributable to the exposure to diesel rather than radon. To re-evaluate EPA's radon attributable lung cancer estimates accounting for diesel exposure information in the miner cohorts. We used estimates of historical diesel concentrations, combined with diesel exposure-response functions, to estimate the risks of lung cancer attributable to diesel engine exhaust (DEE) exposure in the miner studies. We re-calculated the fatal lung cancer risk attributable to radon after accounting for risk from diesel and re-estimated the number of U.S. deaths associated with radon in the U.S. using EPA's methodology. Considering the probable confounding with DEE exposure and using the same estimate of baseline mortality from 1989-91 that the EPA currently uses in their calculations, we estimate that radon-induced lung cancer deaths per year are 15,600 (95% CI: 14,300, 17,000)- 19,300 (95% CI: 18,800, 20,000) in the U.S. population, a reduction of 9%-26%. The death estimates would be 12,900-15,900 using 2014 baseline vital statistics. We recommend further research on re-evaluating the health effects of exposure to radon that accounts for new information on diesel exhaust carcinogenicity in BEIR VI models, up-to-date vital statistics and new epidemiological evidence from residential studies.

  19. Radon-induced lung cancer deaths may be overestimated due to failure to account for confounding by exposure to diesel engine exhaust in BEIR VI miner studies

    PubMed Central

    MacNaughton, Piers; Laurent, Jose Cedeno; Allen, Joseph G.

    2017-01-01

    Background EPA reported that radon is the second leading cause of lung cancer in the United States, killing 21,100 people per year. EPA relies on the BEIR VI models, based on an evaluation of radon exposure and lung cancer risk in studies of miners. But these models did not account for co-exposure to diesel exhaust, a known human carcinogen recently classified by IARC. It is probable then that a portion of the lung cancer deaths in the miner cohorts are originally attributable to the exposure to diesel rather than radon. Objective To re-evaluate EPA’s radon attributable lung cancer estimates accounting for diesel exposure information in the miner cohorts. Methods We used estimates of historical diesel concentrations, combined with diesel exposure-response functions, to estimate the risks of lung cancer attributable to diesel engine exhaust (DEE) exposure in the miner studies. We re-calculated the fatal lung cancer risk attributable to radon after accounting for risk from diesel and re-estimated the number of U.S. deaths associated with radon in the U.S. using EPA’s methodology. Results Considering the probable confounding with DEE exposure and using the same estimate of baseline mortality from 1989–91 that the EPA currently uses in their calculations, we estimate that radon-induced lung cancer deaths per year are 15,600 (95% CI: 14,300, 17,000)– 19,300 (95% CI: 18,800, 20,000) in the U.S. population, a reduction of 9%–26%. The death estimates would be 12,900–15,900 using 2014 baseline vital statistics. Conclusions We recommend further research on re-evaluating the health effects of exposure to radon that accounts for new information on diesel exhaust carcinogenicity in BEIR VI models, up-to-date vital statistics and new epidemiological evidence from residential studies. PMID:28886109

  20. Orphan radon daughters at Denver Radium site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    During 18 mo of sampling airborne radioactively at a National Priority List ({open_quotes}Superfund{close_quotes}) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as {open_quotes}orphan{close_quotes} daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the {open_quotes}orphan{close_quotes} daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method,more » to measure radon daughters, to which thoron daughters contributed 26 {+-} 12%. On average 28 {+-} 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the {sup 218}Po concentration was lower than that of {sup 214}Pb and {sup 214}Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses.« less

  1. Radon and cancers other than lung cancer in underground miners: a collaborative analysis of 11 studies.

    PubMed

    Darby, S C; Whitley, E; Howe, G R; Hutchings, S J; Kusiak, R A; Lubin, J H; Morrison, H I; Tirmarche, M; Tomásek, L; Radford, E P

    1995-03-01

    Exposure to the radioactive gas radon and its progeny (222Rn and its radioactive decay products) has recently been linked to a variety of cancers other than lung cancer in geographic correlation studies of domestic radon exposure and in individual cohorts of occupationally exposed miners. This study was designed to characterize further the risks for cancers other than lung cancer (i.e., non-lung cancers) from atmospheric radon. Mortality from non-lung cancer was examined in a collaborative analysis of data from 11 cohorts of underground miners in which radon-related excesses of lung cancer had been established. The study included 64,209 men who were employed in the mines for 6.4 years on average, received average cumulative exposures of 155 working-level months (WLM), and were followed for 16.9 years on average. For all non-lung cancers combined, mortality was close to that expected from mortality rates in the areas surrounding the mines (ratio of observed to expected deaths [O/E] = 1.01; 95% confidence interval [CI] = 0.95-1.07, based on 1179 deaths), and mortality did not increase with increasing cumulative exposure. Among 28 individual cancer categories, statistically significant increases in mortality for cancers of the stomach (O/E = 1.33; 95% CI = 1.16-1.52) and liver (O/E = 1.73; 95% CI = 1.29-2.28) and statistically significant decreases for cancers of the tongue and mouth (O/E = 0.52; 95% CI = 0.26-0.93), pharynx (O/E = 0.35; 95% CI = 0.16-0.66), and colon (O/E = 0.77; 95% CI = 0.63-0.95) were observed. For leukemia, mortality was increased in the period less than 10 years since starting work (O/E = 1.93; 95% CI = 1.19-2.95) but not subsequently. For none of these diseases was mortality significantly related to cumulative exposure. Among the remaining individual categories of non-lung cancer, mortality was related to cumulative exposure only for cancer of the pancreas (excess relative risk per WLM = 0.07%; 95% CI = 0.01-0.12) and, in the period less than

  2. EGFR Somatic Mutations in Lung Tumors: Radon Exposure and Passive-smoking in Former- and Never-smoking U.S. Women

    PubMed Central

    Taga, Masataka; Mechanic, Leah E.; Hagiwara, Nobutoshi; Vähäkangas, Kirsi H.; Bennett, William P.; Alavanja, Michael C. R.; Welsh, Judith A.; Khan, Mohammed A.; Lee, Adam; Diasio, Robert; Edell, Eric; Bungum, Aaron; Jang, Jin Sung; Yang, Ping; Jen, Jin; Harris, Curtis C.

    2012-01-01

    Background Lung cancer patients with mutations in EGFR tyrosine kinase have improved prognosis when treated with EGFR inhibitors. We hypothesized that EGFR mutations may be related to residential radon or passive tobacco smoke. Methods This hypothesis was investigated by analyzing EGFR mutations in seventy lung tumors from a population of never and long-term former female smokers from Missouri with detailed exposure assessments. The relationship with passive-smoking was also examined in never-smoking female lung cancer cases from the Mayo clinic. Results Overall, the frequency of EGFR mutation was 41% [95% Confidence Interval (CI): 32-49%]. Neither radon nor passive-smoking exposure was consistently associated with EGFR mutations in lung tumors. Conclusions The results suggest that EGFR mutations are common in female, never-smoking, lung cancer cases from the U.S, and EGFR mutations are unlikely due to exposure to radon or passive-smoking. PMID:22523180

  3. Radon exhalation rates from some soil samples of Kharar, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vimal; Deptt of Physics, Punjabi University, Patiala- 147 001; Singh, Tejinder Pal, E-mail: tejinders03@gmail.com

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar areamore » of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.« less

  4. Portable apparatus for the measurement of environmental radon and thoron

    DOEpatents

    Negro, Vincent C.

    2001-01-01

    The radometer is a portable instrument for the measurement of the concentration of atmospheric radon/thoron in a test area. A constant velocity pump pulls the air from the outside at a constant flow rate. If the air is too moist, some or all of the sample is passed through a desiccant filter prior to encountering an electrostatic filter. The electrostatic filter prevents any charged particles from entering the sampling chamber. Once the sample has entered the chamber, the progeny of the decay of radon/thoron are collected on a detector and measured. The measured data is compiled by a computer and displayed.

  5. Effect on radioactivity concentration estimation of radon progenies with NaI(Tl) pulse height distribution from considering geometric structure around detector and infiltration of radionuclides.

    PubMed

    Hirouchi, J; Terasaka, Y; Hirao, S; Moriizumi, J; Yamazawa, H

    2015-11-01

    The surface radioactivity concentrations of the radon progenies, (214)Pb and (214)Bi, were estimated from NaI(Tl) pulse height distributions during rain. The improvement in estimation errors caused by considering geometric structures around measuring points and infiltration of radionuclides was discussed. The surface radioactivity concentrations were determined by comparing the count rates at the full-energy peak ranges between observation and calculation with the electron-photon transport code EGS5. It was shown that the concentrations can be underestimated by about 30 % unless the obstacles around the detector or infiltration of radionuclides are considered in gamma ray transfer calculations at measuring points, where there are many tall obstacles, or the ground is covered with unpaved areas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Human Lung Cancer Risks from Radon – Part I - Influence from Bystander Effects - A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle “hits” are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid. PMID:21731539

  7. Radon, Smoking, and Lung Cancer: The Need to Refocus Radon Control Policy

    PubMed Central

    Mendez, David; Philbert, Martin A.

    2013-01-01

    Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy. PMID:23327258

  8. Radon, smoking, and lung cancer: the need to refocus radon control policy.

    PubMed

    Lantz, Paula M; Mendez, David; Philbert, Martin A

    2013-03-01

    Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy.

  9. The Austrian radon activities on the way to the national radon action plan.

    PubMed

    Gruber, V; Ringer, W; Wurm, G; Haider, W

    2014-07-01

    Based on the new Euratom Basic Safety Standards (BSS), all EU member states will be obliged to design a strategy to address long-term risks from radon exposure, which is laid down in the 'national radon action plan'. In Austria, the National Radon Centre is responsible for the development of the action plan. This paper presents the current and planned radon protection activities on the way to establish the radon action plan--like the national radon database, the definition of radon risk areas by improving the existing radon map, as well as strategies and activities to increase the radon awareness of the public and decision-makers and to involve the building sector. The impact of and the need for actions caused by the BSS requirements on the Austrian radon legislation, strategy and programme are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radon in Wisconsin.

    PubMed

    Weiffenbach, C; Anderson, H A

    2000-11-01

    Owners of about 15% to 20% of the homes in Wisconsin have tested their indoor air for the carcinogenic gas radon. Five percent to 10% of homes have year-average main-floor radon levels that exceed the US Environmental Protection Agency (EPA) exposure guideline, and they are found in most regions of the state. Attempting to retroactively seal foundations to keep radon from the ground out of a home is largely ineffective. However, a soil-depressurization radon mitigation system is highly effective for existing houses, and new homes can easily be built radon-resistant. As the number of homeowners obtaining needed repairs increases, significant lung cancer risk reduction is being achieved in a voluntary, non-regulatory setting. In coming years, as radon in community drinking water supplies becomes regulated under the federal 1996 Safe Drinking Water Act, the "multimedia" option of the act may result in additional attention to mitigation of radon in indoor air.

  11. Comparative survey of outdoor, residential and workplace radon concentrations

    PubMed Central

    Barros, Nirmalla; Field, Dan W.; Steck, Daniel J.; Field, R. William

    2015-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m−3. Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. PMID:24936021

  12. Risks from Radon: Reconciling Miner and Residential Epidemiology

    NASA Astrophysics Data System (ADS)

    Chambers, Douglas B.; Harley, Naomi H.

    2008-08-01

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the

  13. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 2: APPENDICES

    EPA Science Inventory

    Growing concern about health risks associated with exposure to indoor radon, a radioactive gas found in varying amounts in nearly all houses, has underscored the need for dependable radon reduction methods in existing and newly constructed houses. Responding to this need, the U....

  14. Comparative survey of outdoor, residential and workplace radon concentrations.

    PubMed

    Barros, Nirmalla; Field, Dan W; Steck, Daniel J; Field, R William

    2015-02-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m(-3). Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    PubMed Central

    2012-01-01

    Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625

  16. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine.

    PubMed

    Al Zabadi, Hamzeh; Musmar, Samar; Issa, Shaza; Dwaikat, Nidal; Saffarini, Ghassan

    2012-01-13

    Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.

  17. Study of epidemiological risk of lung cancer in Mexico due indoor radon exposure

    NASA Astrophysics Data System (ADS)

    Ángeles, A.; Espinosa, G.

    2014-07-01

    In this work the lifetime relative risks (LRR) of lung cancer due to exposure to indoor 222Rn on the Mexican population is calculated. Cigarette smoking is the number one risk factor for lung cancer (LC), because that, to calculate the number of cases of LC due to exposure to 222Rn is necessary considers the number of cases of LC for smoking cigarette. The lung cancer mortality rates published by the "Secretaría de Salud" (SSA), the mexican population data published by the "Consejo Nacional de Población" (CONAPO), smoking data in the mexican population, published by the "Comisión Nacional Contra las Adicciones" (CONADIC), the "Organización Panamericana de la Salud" (OPS) and indoor 222Rn concentrations in Mexico published in several recent studies are used. To calculate the lifetime relative risks (LRR) for different segments of the Mexican population, firstly the Excess Relative Risk (ERR) is calculated using the method developed by the BEIR VI committee and subsequently modified by the USEPA and published in the report "EPA Assessment of Risks from Radon in Homes". The excess relative risks were then used to calculate the corresponding lifetime relative risks, again using the method developed by the BEIR VI committee. The lifetime relative risks for Mexican male and female eversmokers and Mexican male and female never-smokers were calculated for radon concentrations spanning the range found in recent studies of indoor radon concentrations in Mexico. The lifetime relative risks of lung cancer induced by lifetime exposure to the mexican average indoor radon concentration were estimated to be 1.44 and 1.40 for never-smokers mexican females and males respectively, and 1.19 and 1.17 for ever-smokers Mexican females and males respectively. The Mexican population LRR values obtained in relation to the USA and Canada LRR published values in ever-smokers for both gender are similar with differences less than 4%, in case of never-smokers in relation with Canada

  18. Radon: The Silent Danger.

    ERIC Educational Resources Information Center

    Stoffel, Jennifer

    1989-01-01

    This article discusses the public health dangers associated with radon exposure in homes and schools. In addition, testing and corrective efforts by federal and state agencies are discussed. A map indicating areas in the U.S. with potentially high radon levels is included. (IAH)

  19. Quantitative health impact of indoor radon in France.

    PubMed

    Ajrouche, Roula; Roudier, Candice; Cléro, Enora; Ielsch, Géraldine; Gay, Didier; Guillevic, Jérôme; Marant Micallef, Claire; Vacquier, Blandine; Le Tertre, Alain; Laurier, Dominique

    2018-05-08

    Radon is the second leading cause of lung cancer after smoking. Since the previous quantitative risk assessment of indoor radon conducted in France, input data have changed such as, estimates of indoor radon concentrations, lung cancer rates and the prevalence of tobacco consumption. The aim of this work was to update the risk assessment of lung cancer mortality attributable to indoor radon in France using recent risk models and data, improving the consideration of smoking, and providing results at a fine geographical scale. The data used were population data (2012), vital statistics on death from lung cancer (2008-2012), domestic radon exposure from a recent database that combines measurement results of indoor radon concentration and the geogenic radon potential map for France (2015), and smoking prevalence (2010). The risk model used was derived from a European epidemiological study, considering that lung cancer risk increased by 16% per 100 becquerels per cubic meter (Bq/m 3 ) indoor radon concentration. The estimated number of lung cancer deaths attributable to indoor radon exposure is about 3000 (1000; 5000), which corresponds to about 10% of all lung cancer deaths each year in France. About 33% of lung cancer deaths attributable to radon are due to exposure levels above 100 Bq/m 3 . Considering the combined effect of tobacco and radon, the study shows that 75% of estimated radon-attributable lung cancer deaths occur among current smokers, 20% among ex-smokers and 5% among never-smokers. It is concluded that the results of this study, which are based on precise estimates of indoor radon concentrations at finest geographical scale, can serve as a basis for defining French policy against radon risk.

  20. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less

  1. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    DOE PAGES

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.; ...

    2015-09-15

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less

  2. Radon: Counseling patients about risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, R.B.

    Exposure to radon and its decay products has increased as the United States has changed from an outdoor society to a largely indoor society. Radon, which is found primarily in the soil, enters houses and buildings through cracks, holes and pipes in foundation walls and floors. Although radon is suspected of being a significant cause of lung cancer, comparisons with other risk factors cannot yet be made. Radon levels in the home can be measured with commercially available kits. Guidelines for reducing the amount of radon in a home are provided by the U.S. Environmental Protection Agency.18 references.

  3. Effects of Radon Inhalation on Some Biophysical Properties of Blood in Rats

    NASA Astrophysics Data System (ADS)

    Essa, M. F.; Shahin, Fayez M.; Ahmed, Ashour M.; Abdel-Salam, Omar

    2013-03-01

    The major source of human exposure to natural radiation arises from the inhalation of radon (222Rn) gas. Exposure to high concentrations of radon 222Rn and its daughters for long period leads to pathological effects like lung cancer, leukaemia, skin cancer and kidney diseases. The present study was performed on rats to investigate the effect of radon exposure on the absorption spectra of hemoglobin. Measurements have been performed in a radon chamber where rats were exposed to radon for 1, 5 or 7 weeks. The inhalation of radon resulted in decrease in intensity of the absorption bands characterizing the hemoglobin molecular structure with increased radon doses.

  4. Indoor radon and childhood leukaemia.

    PubMed

    Raaschou-Nielsen, Ole

    2008-01-01

    This paper summarises the epidemiological literature on domestic exposure to radon and risk for childhood leukaemia. The results of 12 ecological studies show a consistent pattern of higher incidence and mortality rates for childhood leukaemia in areas with higher average indoor radon concentrations. Although the results of such studies are useful to generate hypotheses, they must be interpreted with caution, as the data were aggregated and analysed for geographical areas and not for individuals. The seven available case-control studies of childhood leukaemia with measurement of radon concentrations in the residences of cases and controls gave mixed results, however, with some indication of a weak (relative risk < 2) association with acute lymphoblastic leukaemia. The epidemiological evidence to date suggests that an association between indoor exposure to radon and childhood leukaemia might exist, but is weak. More case-control studies are needed, with sufficient statistical power to detect weak associations and based on designs and methods that minimise misclassification of exposure and provide a high participation rate and low potential selection bias.

  5. Domestic radon and childhood cancer in Denmark.

    PubMed

    Raaschou-Nielsen, Ole; Andersen, Claus E; Andersen, Helle P; Gravesen, Peter; Lind, Morten; Schüz, Joachim; Ulbak, Kaare

    2008-07-01

    Higher incidence rates of childhood cancer and particularly leukemia have been observed in regions with higher radon levels, but case-control studies have given inconsistent results. We tested the hypothesis that domestic radon exposure increases the risk for childhood cancer. We identified 2400 incident cases of leukemia, central nervous system tumor, and malignant lymphoma diagnosed in children between 1968 and 1994 in the Danish Cancer Registry. Control children (n = 6697) were selected from the Danish Central Population Registry. Radon levels in residences of children and the cumulated exposure of each child were calculated as the product of exposure level and time, for each address occupied during childhood. Cumulative radon exposure was associated with risk for acute lymphoblastic leukemia (ALL), with rate ratios of 1.21 (95% confidence interval = 0.98-1.49) for levels of 0.26 to 0.89 x 10(3) Bq/m3-years and 1.63 (1.05-2.53) for exposure to >0.89 x 10(3) Bq/m3-years, when compared with <0.26 x 10(3) Bq/m3-years. A linear dose-response analysis showed a 56% increase in the rate of ALL per 10(3) Bq/m3-years increase in exposure. The association with ALL persisted in sensitivity analyses and after adjustment for potential confounders. No association was found with the other types of childhood cancer. This study suggests that domestic radon exposure increases the risk for ALL during childhood but not for other childhood cancers.

  6. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  7. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    PubMed Central

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus E.; Pedersen, Camilla; Gravesen, Peter; Ulbak, Kaare; Hertel, Ole; Loft, Steffen; Raaschou-Nielsen, Ole

    2013-01-01

    Background Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals (CI) for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. Results Median estimated radon was 40.5 Bq/m3. The adjusted IRR for primary brain tumour associated with each 100 Bq/m3 increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58) and this was exposure-dependently higher over the four radon exposure quartiles. This association was not modified by air pollution. Conclusions We found significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies. PMID:24066143

  8. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  9. Modeling Joint Exposures and Health Outcomes for Cumulative Risk Assessment: the Case of Radon and Smoking

    EPA Science Inventory

    Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case exam...

  10. A reference aerosol for a radon reference chamber

    NASA Astrophysics Data System (ADS)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  11. ASSESSMENT OF THE EXPOSURE TO AND DOSE FROM RADON DECAY PRODUCTS IN NORMALLY OCCUPIED HOMES

    EPA Science Inventory

    The paper gives results of an assessment of the exposure to radon decay products in seven houses in northeastern U.S. and southeastern Canada. n two houses, a single individual smoked cigarettes. ariety of heating and cooking appliances were in the houses. hese studies provided 5...

  12. [Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations].

    PubMed

    Walczak, Katarzyna; Zmyślony, Marek

    2013-01-01

    Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.

  13. Childhood leukemia incidence and exposure to indoor radon, terrestrial and cosmic gamma radiation.

    PubMed

    Evrard, Anne-Sophie; Hémon, Denis; Billon, Solenne; Laurier, Dominique; Jougla, Eric; Tirmarche, Margot; Clavel, Jacqueline

    2006-06-01

    This study was undertaken to evaluate the ecological association between terrestrial and cosmic gamma radiation, indoor radon, and acute leukemia incidence among children under 15 y of age. From 1990 to 2001, 5,330 cases of acute leukemia were registered by the French National Registry of Childhood Leukemia and Lymphoma. Exposure to terrestrial gamma radiation was based on measurements, using thermoluminescent dosimeters, at about 1,000 sites covering all the "Départements." In addition, 8,737 indoor terrestrial gamma dose rate measurements covering 62% of the "Départements" and 13,240 indoor radon concentration measurements covering all the "Départements" were made during a national campaign. Cosmic ray doses were estimated in each of the 36,363 "Communes" of France. There was no evidence of an ecological association between terrestrial gamma dose (range: 0.22-0.90 mSv y) or total gamma dose (range: 0.49-1.28 mSv y) and childhood acute leukemia incidence, for acute myeloid leukemia (AML) or for acute lymphoblastic leukemia (ALL), in univariate or multivariate regression analyses including indoor radon. A significant positive association between indoor radon (range: 22-262 Bq m) and AML incidence among children was observed and remained significant in multivariate regression analyses including either terrestrial gamma dose [SIR per 100 Bq m = 1.29 (1.09-1.53)] or total gamma dose [SIR per 100 Bq m = 1.29 (1.09-1.53)]. The study showed no ecological association between terrestrial gamma radiation and childhood leukemia for the range of variation in gamma dose rates observed in France. The moderate ecological association between childhood AML incidence and indoor radon does not appear to be confounded by terrestrial gamma dose.

  14. Should radon be reduced in homes? A cost-effect analysis.

    PubMed

    Stigum, Hein; Strand, Terje; Magnus, Per

    2003-02-01

    Radon is a radioactive gas that may leak into buildings from the ground. Radon exposure is a risk factor for lung cancer. An intervention against radon exposure in homes may consist of locating homes with high radon exposure (above 200 Bq m(-3)) and improving these, and protecting future houses. The purpose of this paper is to calculate the costs and the effects of this intervention. We performed a cost-effect analysis from the perspective of the society, followed by an uncertainty and sensitivity analysis. The distribution of radon levels in Norwegian homes is lognormal with mean = 74.5 Bq m(-3), and 7.6% above 200 Bq m(-3). The preventable attributable fraction of radon on lung cancer was 3.8% (95% uncertainty interval: 0.6%, 8.3%). In cumulative present values the intervention would cost $238 (145, 310) million and save 892 (133, 1981) lives; each life saved costs $0.27 (0.09, 0.9) million. The cost-effect ratio was sensitive to the radon risk, the radon exposure distribution, and the latency period of lung cancer. Together these three parameters explained 90% of the variation in the cost-effect ratio. The uncertainty in the estimated cost per life is large, mainly due to uncertainty in the risk of lung cancer from radon. Based on estimates from road construction, the Norwegian society has been willing to pay $1 million to save a life. This is above the upper uncertainty limit of the cost per life. The intervention against radon in homes, therefore, seems justifiable.

  15. Uptake of the natural radioactive gas radon by an epiphytic plant.

    PubMed

    Li, Peng; Zhang, Ruiwen; Gu, Mintian; Zheng, Guiling

    2018-01-15

    Radon ( 222 Rn) is a natural radioactive gas and the major radioactive contributor to human exposure. The present effective ways to control Rn contamination are ventilation and adsorption with activated carbon. Plants are believed to be negligible in reducing airborne Rn. Here, we found epiphytic Tillandsia brachycaulos (Bromeliaceae) was effective in reducing airborne Rn via the leaves. Rn concentrations in the Rn chamber after Tillandsia plant treatments decreased more than those in the natural situation. The specialized foliar trichomes densely covering Tillandsia leaves play a major role in the uptake of Rn because the amplified rough leaf surface area facilitates deposition of Rn progeny particles and the powdery epicuticular wax layer of foliar trichomes uptakes liposoluble Rn. The results provide us a new ecological strategy for Rn contamination control, and movable epiphytic Tillandsia plants can be applied widely in Rn removal systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Application of thoron interference as a tool for simultaneous measurement of radon and thoron with a pulse ionisation chamber.

    PubMed

    Tripathi, R M; Sumesh, C G; Vinod Kumar, A; Puranik, V D

    2013-07-01

    Pulse ionisation chamber (PIC)-based monitors measuring radioactive gas radon ((222)Rn) without energy discrimination will have interference due to thoron ((220)Rn) present in the atmosphere. A technique has been developed to use this property of interference for simultaneous measurement of radon and thoron gas. These monitors work on the principle of counting of gross alphas emitted from radon and its progeny. A theoretical model has been developed for the variation of thoron sensitivity with respect to the flow rate of gas through the monitor. The thoron sensitivity of the monitor is found to vary with the flow rate of gas through the monitor. Using this sensitivity, the sampling procedure has been developed and verified for simultaneous measurement of radon and thoron. The PIC-measured radon and thoron concentration using this procedure agrees well with those measured by using standard radon and thoron discriminating monitor.

  17. Experimental animal studies of radon and cigarette smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, F.T.; Dagle, G.E.; Gies, R.A.

    Cigarette-smoking is a dominant cause of lung cancer and confounds risk assessment of exposure to radon decay products. Evidence in humans on the interaction between cigarette-smoking and exposure to radon decay products, although limited, indicates a possible synergy. Experimental animal data, in addition to showing synergy, also show a decrease or no change in risk with added cigarette-smoke exposures. This article reviews previous animal data developed at Compagnie Generale des Matieres Nucleaires and Pacific Northwest Laboratory (PNL) on mixed exposures to radon and cigarette smoke, and highlights new initiation-promotion-initiation (IPI) studies at PNL that were designed within the framework ofmore » a two-mutation carcinogenesis model. Also presented are the PNL exposure system, experimental protocols, dosimetry, and biological data observed to date in IPI animals.« less

  18. Inhalation exposures due to radon and thoron ((222)Rn and (220)Rn): Do they differ in high and normal background radiation areas in India?

    PubMed

    Mishra, Rosaline; Sapra, B K; Prajith, R; Rout, R P; Jalaluddin, S; Mayya, Y S

    2015-09-01

    In India, High Background Radiation Areas (HBRAs) due to enhanced levels of naturally occurring radionuclides in soil (thorium and, to a lesser extent, uranium), are located along some parts of the coastal tracts viz. the coastal belt of Kerala, Tamilnadu and Odisha. It is conjectured that these deposits will result in higher emissions of radon isotopes ((222)Rn and (220)Rn) and their daughter products as compared to Normal Background Radiation Areas (NBRAs). While the annual external dose rates contributed by gamma radiations in these areas are about 5-10 times higher, the extent of increase in the inhalation dose rates attributable to (222)Rn and (220)Rn and their decay products is not well quantified. Towards this, systematic indoor surveys were conducted wherein simultaneous measurements of time integrated (222)Rn and (220)Rn gas and their decay product concentrations was carried out in around 800 houses in the HBRAs of Kerala and Odisha to estimate the inhalation doses. All gas measurements were carried out using pin-hole cup dosimeters while the progeny measurements were with samplers and systems based on the Direct radon/thoron Progeny sensors (DRPS/DTPS). To corroborate these passive measurements of decay products concentrations, active sampling was also carried out in a few houses. The results of the surveys provide a strong evidence to conclude that the inhalation doses due to (222)Rn and (220)Rn gas and their decay products in these HBRAs are in the same range as observed in the NBRAs in India. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India

    NASA Astrophysics Data System (ADS)

    Ningappa, C.; Sannappa, J.; Chandrashekara, M. S.; Paramesh, L.

    2009-08-01

    The radon survey was performed in granite quarries around Bangalore rural district and Bangalore city as part of a lung cancer epidemiological study. Long duration measurements of indoor and outdoor radon, thoron and their progenies concentrations were made around granite quarries of Bangalore rural district by using Solid State Nuclear Track Detector (SSNTD, LR-115, Type-II Plastic track detector) during summer and winter period (2006-07). The increase of radioactivity in granite quarries and inhalation dose to workers and populations near the quarries have been summarized. The higher concentrations of radon and thoron in granite quarries suggest radiation health effects on workers and public around the quarries is higher than permissible levels. The results are presented and analyzed with reference to ICRP limits.

  20. Reanalysis of Diesel Engine Exhaust and Lung Cancer Mortality in the Diesel Exhaust in Miners Study Cohort Using Alternative Exposure Estimates and Radon Adjustment.

    PubMed

    Chang, Ellen T; Lau, Edmund C; Van Landingham, Cynthia; Crump, Kenny S; McClellan, Roger O; Moolgavkar, Suresh H

    2018-06-01

    The Diesel Exhaust in Miners Study (DEMS) (United States, 1947-1997) reported positive associations between diesel engine exhaust exposure, estimated as respirable elemental carbon (REC), and lung cancer mortality. This reanalysis of the DEMS cohort used an alternative estimate of REC exposure incorporating historical data on diesel equipment, engine horsepower, ventilation rates, and declines in particulate matter emissions per horsepower. Associations with cumulative REC and average REC intensity using the alternative REC estimate and other exposure estimates were generally attenuated compared with original DEMS REC estimates. Most findings were statistically nonsignificant; control for radon exposure substantially weakened associations with the original and alternative REC estimates. No association with original or alternative REC estimates was detected among miners who worked exclusively underground. Positive associations were detected among limestone workers, whereas no association with REC or radon was found among workers in the other 7 mines. The differences in results based on alternative exposure estimates, control for radon, and stratification by worker location or mine type highlight areas of uncertainty in the DEMS data.

  1. Reanalysis of Diesel Engine Exhaust and Lung Cancer Mortality in the Diesel Exhaust in Miners Study Cohort Using Alternative Exposure Estimates and Radon Adjustment

    PubMed Central

    Chang, Ellen T; Lau, Edmund C; Van Landingham, Cynthia; Crump, Kenny S; McClellan, Roger O; Moolgavkar, Suresh H

    2018-01-01

    Abstract The Diesel Exhaust in Miners Study (DEMS) (United States, 1947–1997) reported positive associations between diesel engine exhaust exposure, estimated as respirable elemental carbon (REC), and lung cancer mortality. This reanalysis of the DEMS cohort used an alternative estimate of REC exposure incorporating historical data on diesel equipment, engine horsepower, ventilation rates, and declines in particulate matter emissions per horsepower. Associations with cumulative REC and average REC intensity using the alternative REC estimate and other exposure estimates were generally attenuated compared with original DEMS REC estimates. Most findings were statistically nonsignificant; control for radon exposure substantially weakened associations with the original and alternative REC estimates. No association with original or alternative REC estimates was detected among miners who worked exclusively underground. Positive associations were detected among limestone workers, whereas no association with REC or radon was found among workers in the other 7 mines. The differences in results based on alternative exposure estimates, control for radon, and stratification by worker location or mine type highlight areas of uncertainty in the DEMS data. PMID:29522073

  2. A statewide investigation of geographic lung cancer incidence patterns and radon exposure in a low-smoking population.

    PubMed

    Ou, Judy Y; Fowler, Brynn; Ding, Qian; Kirchhoff, Anne C; Pappas, Lisa; Boucher, Kenneth; Akerley, Wallace; Wu, Yelena; Kaphingst, Kimberly; Harding, Garrett; Kepka, Deanna

    2018-01-31

    Lung cancer is the leading cause of cancer-related mortality in Utah despite having the nation's lowest smoking rate. Radon exposure and differences in lung cancer incidence between nonmetropolitan and metropolitan areas may explain this phenomenon. We compared smoking-adjusted lung cancer incidence rates between nonmetropolitan and metropolitan counties by predicted indoor radon level, sex, and cancer stage. We also compared lung cancer incidence by county classification between Utah and all SEER sites. SEER*Stat provided annual age-adjusted rates per 100,000 from 1991 to 2010 for each Utah county and all other SEER sites. County classification, stage, and sex were obtained from SEER*Stat. Smoking was obtained from Environmental Public Health Tracking estimates by Ortega et al. EPA provided low (< 2 pCi/L), moderate (2-4 pCi/L), and high (> 4 pCi/L) indoor radon levels for each county. Poisson models calculated overall, cancer stage, and sex-specific rates and p-values for smoking-adjusted and unadjusted models. LOESS smoothed trend lines compared incidence rates between Utah and all SEER sites by county classification. All metropolitan counties had moderate radon levels; 12 (63%) of the 19 nonmetropolitan counties had moderate predicted radon levels and 7 (37%) had high predicted radon levels. Lung cancer incidence rates were higher in nonmetropolitan counties than metropolitan counties (34.8 vs 29.7 per 100,000, respectively). Incidence of distant stage cancers was significantly higher in nonmetropolitan counties after controlling for smoking (16.7 vs 15.4, p = 0.02*). Incidence rates in metropolitan, moderate radon and nonmetropolitan, moderate radon counties were similar. Nonmetropolitan, high radon counties had a significantly higher incidence of lung cancer compared to nonmetropolitan, moderate radon counties after adjustment for smoking (41.7 vs 29.2, p < 0.0001*). Lung cancer incidence patterns in Utah were opposite of metropolitan

  3. Radon in the DRIFT-II directional dark matter TPC: emanation, detection and mitigation

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Brack, J.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J.-L.; Gold, M.; Harmon, L. J.; Harton, J. L.; Landers, J. M.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.; Monte, A.; Murphy, A. StJ.; Paling, S. M.; Phan, N.; Pipe, M.; Robinson, M.; Sadler, S. W.; Scarff, A.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Telfer, S.; Walker, D.; Warner, D.; Yuriev, L.

    2014-11-01

    Radon gas emanating from materials is of interest in environmental science and also a major concern in rare event non-accelerator particle physics experiments such as dark matter and double beta decay searches, where it is a major source of background. Notable for dark matter experiments is the production of radon progeny recoils (RPRs), the low energy (~ 100 keV) recoils of radon daughter isotopes, which can mimic the signal expected from WIMP interactions. Presented here are results of measurements of radon emanation from detector materials in the 1 m3 DRIFT-II directional dark matter gas time projection chamber experiment. Construction and operation of a radon emanation facility for this work is described, along with an analysis to continuously monitor DRIFT data for the presence of internal 222Rn and 218Po. Applying this analysis to historical DRIFT data, we show how systematic substitution of detector materials for alternatives, selected by this device for low radon emanation, has resulted in a factor of ~ 10 reduction in internal radon rates. Levels are found to be consistent with the sum from separate radon emanation measurements of the internal materials and also with direct measurement using an attached alpha spectrometer. The current DRIFT detector, DRIFT-IId, is found to have sensitivity to 222Rn of 2.5 μBql-1 with current analysis efficiency, potentially opening up DRIFT technology as a new tool for sensitive radon assay of materials.

  4. An updated review of case-control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer?

    PubMed

    Sheen, Seungsoo; Lee, Keu Sung; Chung, Wou Young; Nam, Saeil; Kang, Dae Ryong

    2016-01-01

    Lung cancer is a leading cause of cancer-related death in the world. Smoking is definitely the most important risk factor for lung cancer. Radon ((222)Rn) is a natural gas produced from radium ((226)Ra) in the decay series of uranium ((238)U). Radon exposure is the second most common cause of lung cancer and the first risk factor for lung cancer in never-smokers. Case-control studies have provided epidemiological evidence of the causative relationship between indoor radon exposure and lung cancer. Twenty-four case-control study papers were found by our search strategy from the PubMed database. Among them, seven studies showed that indoor radon has a statistically significant association with lung cancer. The studies performed in radon-prone areas showed a more positive association between radon and lung cancer. Reviewed papers had inconsistent results on the dose-response relationship between indoor radon and lung cancer risk. Further refined case-control studies will be required to evaluate the relationship between radon and lung cancer. Sufficient study sample size, proper interview methods, valid and precise indoor radon measurement, wide range of indoor radon, and appropriate control of confounders such as smoking status should be considered in further case-control studies.

  5. Radon monitoring and hazard prediction in Ireland

    NASA Astrophysics Data System (ADS)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given

  6. A Pilot Study to Examine Exposure to Residential Radon in Under-Sampled Census Tracts of DeKalb County, Georgia, in 2015.

    PubMed

    Stauber, Christine E; Dai, Dajun; Chan, Sydney R; Diem, Jeremy E; Weaver, Scott R; Rothenberg, Richard

    2017-03-22

    While DeKalb County, Georgia, offers free radon screening for all eligible residents, portions of the county remain relatively under-sampled. This pilot study focused on 10% of the census tracts in the county with the lowest proportion of radon testing; most were in southern DeKalb County. In total, 217 households were recruited and homes were tested for indoor radon concentrations on the lowest livable floor over an eight-week period from March-May 2015. Tract-level characteristics were examined to understand the differences in socio-demographic and economic factors between the pilot study area and the rest of the county. The pilot study tracts had a higher proportion of African Americans compared to the rest of DeKalb County (82% versus 47%). Radon was detected above 11.1 Bq/m³ (0.3 pCi/L) in 73% of the indoor samples and 4% of samples were above 148 Bq/m³ (4 pCi/L). Having a basement was the strongest predictive factor for detectable and hazardous levels of radon. Radon screening can identify problems and spur homeowners to remediate but more research should be done to identify why screening rates vary across the county and how that varies with radon levels in homes to reduce radon exposure.

  7. A Pilot Study to Examine Exposure to Residential Radon in Under-Sampled Census Tracts of DeKalb County, Georgia, in 2015

    PubMed Central

    Stauber, Christine E.; Dai, Dajun; Chan, Sydney R.; Diem, Jeremy E.; Weaver, Scott R.; Rothenberg, Richard

    2017-01-01

    While DeKalb County, Georgia, offers free radon screening for all eligible residents, portions of the county remain relatively under-sampled. This pilot study focused on 10% of the census tracts in the county with the lowest proportion of radon testing; most were in southern DeKalb County. In total, 217 households were recruited and homes were tested for indoor radon concentrations on the lowest livable floor over an eight-week period from March–May 2015. Tract-level characteristics were examined to understand the differences in socio-demographic and economic factors between the pilot study area and the rest of the county. The pilot study tracts had a higher proportion of African Americans compared to the rest of DeKalb County (82% versus 47%). Radon was detected above 11.1 Bq/m3 (0.3 pCi/L) in 73% of the indoor samples and 4% of samples were above 148 Bq/m3 (4 pCi/L). Having a basement was the strongest predictive factor for detectable and hazardous levels of radon. Radon screening can identify problems and spur homeowners to remediate but more research should be done to identify why screening rates vary across the county and how that varies with radon levels in homes to reduce radon exposure. PMID:28327511

  8. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota

    PubMed Central

    Kearfott, Kimberlee J.; Whetstone, Zachary D.; Rafique Mir, Khwaja M.

    2016-01-01

    Because 222Rn is a progeny of 238U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. PMID:26472478

  9. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    PubMed Central

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon. PMID:24748485

  10. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.

    PubMed

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Onischenko, A; Seleznev, A

    2016-11-15

    Indoor radon concentration was studied in the 14 settlements located near the Techa River, which was contaminated by radioactive wastes in 1950-s. Results of the radon survey were used for analysis of the relationship between the indoor radon and main geologic factors (Pre-Jurassic formations, Quaternary sediments and faults), local geogenic radon potential and anthropogenic factors. Main influencing factors explain 58% of the standard deviation of indoor radon concentration. Association of the air exchange influence over radon concentration with underlying geological media was related to different contributions of geogenic advective and diffusive radon entries. The properties of geological formation to transfer radon gas in interaction with the house can be considered within the radon geogenic potential concept. The study of the radon exposure of the Techa River population can be used to estimate the contribution of natural radon to the overall radiation exposure of the local population during the period of radioactive waste discharges. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Radon as a causative factor in induction of myeloid leukaemia and other cancers.

    PubMed

    Henshaw, D L; Eatough, J P; Richardson, R B

    1990-04-28

    The international incidence of myeloid leukaemia, cancer of the kidney, melanoma, and certain childhood cancers all show significant correlation with radon exposure in the home. For myeloid leukaemia, analysis suggests that in the UK 6-12% of incidence may be attributed to radon. In Cornwall, where radon levels are higher, the range is 23-43%. For the world average radon exposure of 50 Bq.m-3, 13-25% of myeloid leukaemia at all ages may be caused by radon.

  12. Factors Affecting Radon Concentration in Houses

    NASA Astrophysics Data System (ADS)

    Al-Sharif, Abdel-Latif; Abdelrahman, Y. S.

    2001-03-01

    The dangers to the human health upon exposure to radon and its daughter products is the main motivation behind the vast number of studies performed to find the concentration of radon in our living environment, including our houses. The presence of radon and its daughter products in houses are due to various sources including building materials and the soil under the houses. Many factors affect radon concentration in our houses, the elevation above ground level,ventilation, building materials and room usage being among these factors. In our paper, we discuss the effect of elevation above ground level, room usage and ventilation on the Radon concentration in houses. The faculty residences of the Mu'tah University (Jordan) were chosen in our study. Our results showed that the concentration of radon decreases with elevation. Ventilation rate was also found to affect radon concentration, where low concentrations observed for areas with good ventilation.

  13. 222Rn progeny surface deposition and resuspension--residential materials.

    PubMed

    Leonard, B E

    1995-07-01

    The radiological hazard of radon gas to occupants in residential environments is from the particulate progeny 218Po, 214Pb, 214Bi, and 214Po, rather than 222Rn itself. Attachment to aerosols, plateout, and resuspension impact on the progeny airborne concentrations. Plateout rate and resuspension factors were measured for air change (ventilation) rates, 0.01 to 1.0 h-1, in a 0.28 m3 test chamber for interior residential materials of wallboard, drapery, carpet, ceiling tile, and concrete, and from 0.05 to 2.5 h-i for hardwood and glass. The overall accuracy of the plateout rate values is estimated to be +/- 13% standard deviation. For the different materials, the plateout rates for 218Po progeny varied by a factor of nearly six. Drapery gave the largest plateout rates. Resuspension rate factors, R, were measured for hardwood, wallboard, drapery, carpet, and glass by a new time-dependent measurement method based on the difference in buildup rate of 214Po to equilibrium caused by resuspension. Values for R obtained for hardwood, wallboard, drapery, carpet and glass were 0.31, 0.29, 0.44, 0.55, and 0.36, respectively ( +/- 30% standard deviation). All measurements were made in a continuous air conditioned interior environment maintaining temperature at 22.2 +/- 1.1 degrees C and relative humidity of 30% +/- 10%. Computations were made of equivalent plateout rates and equilibrium fractions for a standard 5 m x 5 m x 3 m high room to provide values to compare with other work.

  14. Inhalation Dose and Source Term Studies in a Tribal Area of Wayanad, Kerala, India

    PubMed Central

    Damodaran, Ravikumar C.; Kumar, Visnuprasad Ashok; Panakal John, Jojo; Bangaru, Danalakshmi; Natarajan, Chitra; Sathiamurthy, Bala Sundar; Mundiyanikal Thomas, Jose; Mishra, Rosaline

    2017-01-01

    Among radiation exposure pathways to human beings, inhalation dose is the most prominent one. Radon, thoron, and their progeny contribute more than 50 per cent to the annual effective dose due to natural radioactivity. South west coast of India is classified as a High Natural Background Radioactivity Area and large scale data on natural radioactivity and dosimetry are available from these coastal regions including the Neendakara-Chavara belt in the south of Kerala. However, similar studies and reports from the northern part of Kerala are scarce. The present study involves the data collection and analysis of radon, thoron, and progeny concentration in the Wayanad district of Kerala. The radon concentration was found to be within a range of 12–378 Bq/m3. The thoron concentration varied from 15 to 621 Bq/m3. Progeny concentration of radon and thoron and the diurnal variation of radon were also studied. In order to assess source term, wall and floor exhalation studies have been done for the houses showing elevated concentration of radon and thoron. The average values of radon, thoron, and their progeny are found to be above the Indian average as well as the average values reported from the High Natural Background Radioactivity Areas of Kerala. Exhalation studies of the soil samples collected from the vicinity of the houses show that radon mass exhalation rate varied from below detectable limit (BDL) to a maximum of 80 mBq/kg/h. The thoron surface exhalation rate ranged from BDL to 17470 Bq/m2/h. PMID:28611847

  15. Development and management of a radon assessment strategy suitable for underground railway tunnelling projects.

    PubMed

    Purnell, C J; Frommer, G; Chan, K; Auch, A A

    2004-01-01

    The construction of underground tunnels through radon-bearing rock poses a radiation health risk to tunnelling workers from exposure to radon gas and its radioactive decay products. This paper presents the development and practical application of a radon assessment strategy suitable for the measurement of radon in tunnelling work environments in Hong Kong. The assessment strategy was successfully evaluated on a number of underground railway tunnelling projects over a 3 y period. Radon measurements were undertaken using a combination of portable radon measurement equipment and track etch detectors (TEDs) deployed throughout the tunnels. The radon gas monitoring results were used to confirm that ventilation rates were adequate or identified, at an early stage, when further action to reduce radon levels was required. Exposure dose estimates based on the TED results showed that the exposure of tunnel workers to radon did not exceed 3 mSv per annum for the duration of each project.

  16. Concentration en radon dans une maison du Calvados

    NASA Astrophysics Data System (ADS)

    Leleyter, Lydia; Riffault, Benoit; Mazenc, Bernard

    2010-03-01

    Recent studies indicate a link between the risk of lung cancer and residential radon exposure. However, in France, awareness of this problem was made relatively late. Accordingly this study examines the radon concentration in a private home in Calvados. Findings show that the presence of a fireplace in a house can accelerate radon convective transfer, and that simple adjustments to interior and exterior accommodation can significantly reduce radon concentrations in the home.

  17. Adult myeloid leukaemia and radon exposure: a Bayesian model for a case-control study with error in covariates.

    PubMed

    Toti, Simona; Biggeri, Annibale; Forastiere, Francesco

    2005-06-30

    The possible association between radon exposure in dwellings and adult myeloid leukaemia had been explored in an Italian province by a case-control study. A total of 44 cases and 211 controls were selected from death certificates file. No association had been found in the original study (OR = 0.58 for > 185 vs 80 < or = Bq/cm). Here we reanalyse the data taking into account the measurement error of radon concentration and the presence of missing data. A Bayesian hierarchical model with error in covariates is proposed which allows appropriate imputation of missing values. The general conclusion of no evidence of association with radon does not change, but a negative association is not observed anymore (OR = 0.99 for > 185 vs 80 < or = Bq/cm). After adjusting for residential house radon and gamma radiation, and for the multilevel data structure, geological features of the soil is associated with adult myeloid leukaemia risk (OR = 2.14, 95 per cent Cr.I. 1.0-5.5). Copyright 2005 John Wiley & Sons, Ltd.

  18. Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels

    PubMed Central

    Gombeau, Kewin; Murat El Houdigui, Sophia; Floriani, Magali; Camilleri, Virginie; Cavalie, Isabelle; Adam-Guillermin, Christelle

    2017-01-01

    Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic

  19. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.

    PubMed

    Szőke, István; Farkas, Arpád; Balásházy, Imre; Hofmann, Werner; Madas, Balázs G; Szőke, Réka

    2012-06-01

    The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.

  20. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Long-term radon concentrations estimated from 210Po embedded in glass

    USGS Publications Warehouse

    Lively, R.S.; Steck, D.J.

    1993-01-01

    Measured surface-alpha activity on glass exposed in radon chambers and houses has a linear correlation to the integrated radon exposure. Experimental results in chambers and houses have been obtained on glass exposed to radon concentrations between 100 Bq m-3 and 9 MBq m-3 for periods of a few days to several years. Theoretical calculations support the experimental results through a model that predicts the fractions of airborne activity that deposit and become embedded or adsorbed. The combination of measured activity and calculated embedded fraction for a given deposition environment can be applied to most indoor areas and produces a better estimate for lifetime radon exposure than estimates based on short-term indoor radon measurements.

  2. Four passive sampling elements (quatrefoil)--I. Monitoring radon and its progeny by surface-contamination monitors.

    PubMed

    Tommasino, L; Tokonami, S

    2011-05-01

    Four passive sampling elements (quatrefoil) have been recently developed, which transform airborne radionuclides into surface-bound radionuclides. These samplers, once exposed, result in thin radiation sources that can be detected by any real-time or passive detector. In particular, by using a large collecting-area sampler with a low surface density (g cm(-2)), it is possible to measure radon and its decay products by beta surface-contamination monitors, which are rarely used for these applications. The results obtained to date prove that it is finally possible to carry out the measurements of radon (and its decay products) indoors, in soil and in water simply by a Pancake Geiger-Muller counter. Emphasis will be given to those measurements, which are difficult, if not impossible, to carry out with existing technologies.

  3. Potential for bias in epidemiologic studies that rely on glass-based retrospective assessment of radon.

    PubMed Central

    Weinberg, C R

    1995-01-01

    Retrospective assessment of exposure to radon remains the greatest challenge in epidemiologic efforts to assess lung cancer risk associated with residential exposure. An innovative technique based on measurement of alpha-emitting, long-lived daughters embedded by recoil into household glass may one day provide improved radon dosimetry. Particulate air pollution is known, however, to retard the plate-out of radon daughters. This would be expected to result in a differential effect on dosimetry, where the calibration curve relating the actual historical radon exposure to the remaining alpha-activity in the glass would be different in historically smoky and nonsmoky environments. The resulting "measurement confounding" can distort inferences about the effect of radon and can also produce spurious evidence for synergism between radon exposure and cigarette smoking. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:8605854

  4. Exposure of population from residential radon: a case study for district Hattian, Azad Kashmir, Sub-Himalayas, Pakistan.

    PubMed

    Rafique, M; Rahman, S U; Matiullah

    2012-11-01

    Indoor air quality has acquired considerable importance in recent years. Tighter buildings with poorer ventilation systems have led towards higher levels of indoor air pollution. Radon is considered to be most significant perilous gas among the various air contaminants found in the residential environment. To determine the risk posed by residential radon exposure, a survey was carried out in the Hattian district of the state of Azad Jammu and Kashmir, Pakistan. In this context, 160 houses were carefully selected for the installation of CR-39-based National Radiological Protection Board-type detectors installation. After exposing the CR-39 detectors for a period of 90 d, they were etched in 6 M chemical solution of sodium hydroxide at a temperature of 80°C for a period of 16 h. The detectors were read under an optical microscope and observed track densities were converted into the indoor radon concentration using a calibration factor of 2.7 tracks cm(-2) h(-1) per kBqm(-3). For the current study, observed radon concentrations ranged from 35 to 175 Bqm(-3), whereas the mean annual effective radon doses received by the inhabitants of the area ranged from 0.88 ± 0.12 to 4.41 ± 0.20 mSv with an average value of 2.62 ± 0.12 mSv. These reported values are less than the limits (standards) recommended by the different world organisations.

  5. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, William Jowett

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure andmore » the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.« less

  6. Indoor radon concentration in Korea residential environments.

    PubMed

    Park, Tae Hyun; Kang, Dae Ryong; Park, Si Hyun; Yoon, Dan Ki; Lee, Cheol Min

    2018-05-01

    The purpose of this study is to provide basic data for the evaluation and management of health effects with respect to exposure to radon within residential environments in South Korea. It is part of a case-control study to develop a management plan based on indoor radon exposure levels and assess their impact on health. To investigate the long-term cumulative concentration levels of radon, 599 patients who have respiratory diseases were recruited in South Korea, and alpha track detectors were installed in their residences for a period of 3 months from mid-2015 to late 2016. A survey was then conducted to determine the factors affecting the radon concentration. The radon concentration levels were analyzed in conjunction with the survey results. The results show that the arithmetic mean of the radon concentrations in domestic residences was in the range of 70.8 ± 65.2 Bq/m 3 . An analysis of covariance (ANCOVA) was performed to identify the environmental factors affecting the radon concentration and contributing to variations in the residential radon concentration based on the height of the residence. The results show that the contribution of the local environmental factor to the variation in radon concentration (p < 0.05) was greater than that of other environmental factors. Although no statistically significant difference was found with regard to the construction year of the building before the control (p > 0.05), the same was found with regard to the construction year after the control (p < 0.05).

  7. Radon in Irish Show Caves—Personal Monitoring Data From 2001-2006

    NASA Astrophysics Data System (ADS)

    Currivan, L.; Murray, M.; O'Colmain, M.; Pollard, D.

    2008-08-01

    The European Directive 96/29/EURATOM and its transposition into national legislation demands the application of radiation protection measures if the presence of radon and radon decay products leads to significant increase in exposures of workers. Irish legislation further demands that laboratories carrying out radon measurements operate a high level quality assurance programme. As a result of a reconnaissance survey regular measurements of show cave guides have been made in order to assess exposure to radon in such workplaces and to ascertain that the limits set for radon are not exceeded. In 2000, an action level of 400 Bqm-3, was established. Doses in the range 0.3-12.0 mSv have been estimated for workers for the period 2001-2006.

  8. A multiyear quality control study of alpha-track radon monitors.

    PubMed

    Pearson, M D; Martz, D E; George, J L; Langner, G H

    1992-01-01

    Quality control exposures of commercial alpha-track radon monitors have been conducted approximately weekly at the U.S. Department of Energy (DOE) Grand Junction Projects Office since early 1987 in support of DOE remedial action programs. The results of these exposures provide a historical record of the comparative performances of these radon monitors.

  9. Controlling the Radon Threat Needn't Be Another Costly Nightmare.

    ERIC Educational Resources Information Center

    Freije, Matthew R.

    1989-01-01

    After a study of 3,000 classrooms in 130 schools in 16 states, the Environmental Protection Agency urged all schools to conduct tests for radon. Explains a 6-step screening test, methods of reducing radon concentrations, and how the risk from radon exposure compares with other risks. (MLF)

  10. International standardisation work on the measurement of radon in air and water.

    PubMed

    Calmet, D; Ameon, R; Beck, T; Bombard, A; Bourquin, M N; Brun, S; De Jong, P; Forte, M; Fournier, M; Herranz, M; Jerome, S; Klett, A; Kwakman, P; Llaurado, M; Loyen, J; Michel, R; Nardoux, P; Richards, T; Schuler, C; Tokonami, S; Woods, M

    2011-05-01

    Radon is considered to be the main source of human exposure to natural radiation. As stated by the World Health Organization, the exposure due to the inhalation of indoor radon is much greater than the one via the ingestion of water as radon degasses from water during handling. In response to these concerns about the universal presence of radon, environmental assessment studies are regularly commissioned to assess the radon exposure of public and workers. The credibility of such studies relies on the quality and reliability of radon analysis as well as on the sample representativeness of the radiological situation. The standard-setting approach, based on consensus, seemed to lend itself to a settlement of technical aspects of potential comparison. At present, two Working Groups of the International Standardization Organization are focussing on drafting standards on radon and its decay products measurement in air and water. These standards, which aim for a set of rigorous metrology practices, will be useful for persons in charge of the initial characterisation of a site with respect to natural radioactivity as well as to those performing the routine surveillance of specific sites.

  11. Observations and modelling of thoron and its progeny in the soil-atmosphere-plant system.

    PubMed

    Baldacci, A E; Gattavecchia, E; Kirchner, G

    2010-11-01

    Samples of pasture vegetation, mainly Trifolium pratensis, were collected at the Botanic Garden of the University of Bologna during the period 1998-2000 and measured by gamma-spectrometry for determining thoron progeny. Concentrations of (212)Pb were between 1.5 and 20 Bq m(-2), with individual peaks up to 70 Bq m(-2). Soil samples were collected at the same location and physically characterised. Their chemical composition (particularly Th and U) was determined by X-ray fluorescence spectroscopy. Lead-212 on plants mainly originates from dry and wet deposition of this isotope generated in the lower atmosphere by the decay of its short-lived precursor (220)Rn, which is produced in the upper soil layers as a member of the natural thorium decay chain and exhales into the atmosphere. Concentrations of (220)Rn in the atmosphere depend on (1) the amount of Th present in soil, (2) the radon fraction which escapes from the soil minerals into the soil pore space, (3) its transport into the atmosphere, and (4) its redistribution within the atmosphere. The mobility of radon in soil pore space can vary by orders of magnitude depending on the soil water content, thus being the main factor for varying concentrations of (220)Rn and (212)Pb in the atmosphere. We present a simple model to predict concentrations of thoron in air and its progeny deposited from the atmosphere, which takes into account varying soil moisture contents calculated by the OPUS code. Results of this model show close agreement with our observations.

  12. Radon Measurements in Schools: An Interim Report.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  13. Nanomaterial containing wall paints can increase radon concentration in houses located in radon prone areas.

    PubMed

    Haghani, M; Mortazavi, S M J; Faghihi, R; Mehdizadeh, S; Moradgholi, J; Darvish, L; Fathi-Pour, E; Ansari, L; Ghanbar-Pour, M R

    2013-09-01

    Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m-3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m(3) while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m(3). The difference between these means was statistically significant (P<0.001). To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  14. Nanomaterial Containing Wall Paints Can Increase Radon Concentration in Houses Located in Radon Prone Areas

    PubMed Central

    Haghani, M.; Mortazavi, S. M. J.; Faghihi, R.; Mehdizadeh, S.; Moradgholi, J.; Darvish, L.; Fathi-Pour, E.; Ansari, L.; Ghanbar-pour, M. R.

    2013-01-01

    Background: Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m–3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. Objective: This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Methods: Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Results: Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m3 while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m3. The difference between these means was statistically significant (P<0.001). Conclusion: To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes. PMID:25505754

  15. Development of a novel fiber-optic sensor to measure radon in the deep ocean

    NASA Astrophysics Data System (ADS)

    Monteiro, Catarina; Guimarães, Diana; Jorge, Pedro; Barbosa, Susana

    2017-04-01

    The radon concentration in the deep ocean has gained increasing interest in the last decades. The underwater monitoring of this natural radioactive gas can give important information about submarine groundwater discharges, groundwater migration and contamination. Radon concentration has also been studied as a possible indicator of earthquake events which can have devastating consequences when the epicenter is located at the sea. In contrast with radon monitoring studies in caves, mines, and underground soil, there is an utter lack of information about radon in deep-sea. These measurements are particularly difficult to attain due to the challenges that marine-like environments post to electronic sensing devices and their maintenance over time. Gamma rays emitted by radon's progeny can be easily detected when interacting with a scintillator material. Recently, optical fiber doped with scintillating material has emerged has an alternative for gamma ray detection. The lightweight, low transmission loss, immunity to electromagnetic interference and the cost effectiveness makes optical fiber a compelling solution for radiation detection when compared to conventional sensors. In this work a compact all-fiber optical sensor is developed for continuous gamma ray detection in the deep sea. This sensor is composed by a scintillating optical fiber coupled to a polymeric optical fiber that allows the detection of low levels of radiation.

  16. Mapping the geogenic radon potential of the eastern Canary Islands.

    NASA Astrophysics Data System (ADS)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    The main contribution of indoor radon comes from soils and thus, the knowledge of the concentration of this gas in soils is important for estimating the risk of finding high radon indoor concentrations. To characterize the behavior of radon in soils, it is common to use the a quantity named Radon Potential which results of a combination of properties of the soil itself and from the underlying rock, such as concentration and distribution of radium, porosity, permeability, the moisture content and meteorological parameters, among others. In this work, the results three year of campaigns of measurement radon gas as well as the permeability in soils of the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) are presented. By combining these two parameters and through the use of geostatistic interpolation techniques, the radon potential of soils is estimated and it is used to carry on a classification of the territory into hazard zones according to their potential for radon emanation. To measure the radon soil gas a probe equipped with a "lost" sharp tip is inserted to the desired sampling depth. One of the characteristics of the Canary Islands is the absence of developed soils and so the bedrock is found typically at very shallow depth. This fact has led us to adopt a sampling depth of 50 cm at most. The probe is connected to the continuous radon monitor Durridge RAD7 equipped with a solid-state alpha spectrometer to determine concentration radon using the activity its short-lived progeny. Dried soil air is delivered to the RAD7 radon monitor by pumping. A half hour counting time for all sampling points has been taken. In parallel to the radon measurement campaign, the permeability of soils has also been determined at each point using the permeameter RADON-JOK. The principle of operation of this equipment consists of air withdrawal by means of negative pressure. The gas permeability is then calculated using the known flow of air flowing through the probe

  17. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron

  18. Radon Monitoring in Army Stand-Alone Housing Units

    DTIC Science & Technology

    1990-04-01

    greater damage to tissues. The internal exposures to alpha radiation resulting from inhalation of radioactive radon daughters (adsorbed onto airborne...appropriate detector, the monitor can measure all or some of the radon daughters adsorbed onto airborne, respirable dust particles. As with the 3...input to the cell is equipped with a 0.8-rim micropore filter that3removes any solid radon daughters from the air stream. Alpha I 26 Final Report, April

  19. THORON-SCOUT - first diffusion based active Radon and Thoron monitor

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.

    2016-10-01

    THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.

  20. Feeding of soy protein isolate to rats during pregnancy and lactation suppresses formation of aberrant crypt foci in their progeny's colons: interaction of diet with fetal alcohol exposure

    PubMed Central

    Linz, Amanda L; Xiao, Rijin; Parker, James G; Simpson, Pippa M; Badger, Thomas M; Simmen, Frank A

    2004-01-01

    Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats. PMID:15488141

  1. EPA Assessment of Risks from Radon in Homes

    EPA Pesticide Factsheets

    This 2003 document will serve as a technical basis for EPA’s estimates of risk from radon in homes. It provides estimates of the risk per unit exposure and projects the number of fatal lung cancers occurring in the U.S. population each year due to radon.

  2. Adult myeloid leukaemia, geology, and domestic exposure to radon and gamma radiation: a case control study in central Italy.

    PubMed

    Forastiere, F; Sperati, A; Cherubini, G; Miceli, M; Biggeri, A; Axelson, O

    1998-02-01

    To investigate whether indoor randon or gamma radiation might play a part in myeloid leukaemia as suggested by studies based on crude geographical or geological data for exposure assessment. For six months randon and gamma radiation was measured with solid state nuclear track detectors and thermoluminescent dosimeters in dwellings of 44 adult male cases of acute myeloid leukaemia and 211 controls (all subjects deceased). Conditional logistic regression ORs (ORs) and 95% confidence intervals (95% CIs) were estimated for quartiles of radon and gamma radiation and for municipality and dwelling characteristics. The risk of leukaemia was associated with an increasing urbanisation index (p value for trend = 0.008). An increased OR was found among those living in more modern houses (OR 3.0, 95% CI 1.4 to 6.6). Confirming the findings of a previous study in the same area, geological features bore a positive association with myeloid leukemia, even by adjusting for level of urbanisation. Contrary to expectations from the previous study, however, no association appeared between myeloid leukaemia and radon and gamma radiation; for the highest quartiles of exposure, ORs were 0.56 (95% CI 0.2 to 1.4) and 0.52 (95% CI 0.2 to 1.4), respectively. Considering only subjects who had lived > or = 20 years in the monitored home and adjusting for urbanisation, there was still no effect of exposure to radiation. In view of the limited numbers, the results do not in general refute a possible risk of myeloid leukaemia from exposure to indoor radon or gamma radiation, but decrease the credibility of such a relation in the area studied and also of other studies suggesting an effect without monitoring indoor radiation. Some other fairly strong determinants have appeared--that is, level of urbanisation and living in modern houses--that might need further consideration.

  3. Adult myeloid leukaemia, geology, and domestic exposure to radon and gamma radiation: a case control study in central Italy

    PubMed Central

    Forastiere, F.; Sperati, A.; Cherubini, G.; Miceli, M.; Biggeri, A.; Axelson, O.

    1998-01-01

    OBJECTIVES: To investigate whether indoor randon or gamma radiation might play a part in myeloid leukaemia as suggested by studies based on crude geographical or geological data for exposure assessment. METHODS: For six months randon and gamma radiation was measured with solid state nuclear track detectors and thermoluminescent dosimeters in dwellings of 44 adult male cases of acute myeloid leukaemia and 211 controls (all subjects deceased). Conditional logistic regression ORs (ORs) and 95% confidence intervals (95% CIs) were estimated for quartiles of radon and gamma radiation and for municipality and dwelling characteristics. RESULTS: The risk of leukaemia was associated with an increasing urbanisation index (p value for trend = 0.008). An increased OR was found among those living in more modern houses (OR 3.0, 95% CI 1.4 to 6.6). Confirming the findings of a previous study in the same area, geological features bore a positive association with myeloid leukemia, even by adjusting for level of urbanisation. Contrary to expectations from the previous study, however, no association appeared between myeloid leukaemia and radon and gamma radiation; for the highest quartiles of exposure, ORs were 0.56 (95% CI 0.2 to 1.4) and 0.52 (95% CI 0.2 to 1.4), respectively. Considering only subjects who had lived > or = 20 years in the monitored home and adjusting for urbanisation, there was still no effect of exposure to radiation. CONCLUSIONS: In view of the limited numbers, the results do not in general refute a possible risk of myeloid leukaemia from exposure to indoor radon or gamma radiation, but decrease the credibility of such a relation in the area studied and also of other studies suggesting an effect without monitoring indoor radiation. Some other fairly strong determinants have appeared--that is, level of urbanisation and living in modern houses-- that might need further consideration.   PMID:9614394

  4. Assessment of ecologic regression in the study of lung cancer and indoor radon.

    PubMed

    Stidley, C A; Samet, J M

    1994-02-01

    Ecologic regression studies conducted to assess the cancer risk of indoor radon to the general population are subject to methodological limitations, and they have given seemingly contradictory results. The authors use simulations to examine the effects of two major methodological problems that affect these studies: measurement error and misspecification of the risk model. In a simulation study of the effect of measurement error caused by the sampling process used to estimate radon exposure for a geographic unit, both the effect of radon and the standard error of the effect estimate were underestimated, with greater bias for smaller sample sizes. In another simulation study, which addressed the consequences of uncontrolled confounding by cigarette smoking, even small negative correlations between county geometric mean annual radon exposure and the proportion of smokers resulted in negative average estimates of the radon effect. A third study considered consequences of using simple linear ecologic models when the true underlying model relation between lung cancer and radon exposure is nonlinear. These examples quantify potential biases and demonstrate the limitations of estimating risks from ecologic studies of lung cancer and indoor radon.

  5. Publications about Radon

    EPA Pesticide Factsheets

    There is no known safe level of exposure to radon. EPA strongly recommends that you fix your home if your test shows 4 picocuries (pCi/L) or more. These publications and resources will provide you with the information you need to fix your home.

  6. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    PubMed Central

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  7. Radon Risk Communication Strategies: A Regional Story.

    PubMed

    Cheng, Winnie

    2016-01-01

    Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report.

  8. The newest international trend about regulation of indoor radon.

    PubMed

    Bochicchio, Francesco

    2011-07-01

    On the basis of recent epidemiological findings, many international and national organisations have revised their recommendations and regulations on radon exposure in dwellings and workplaces, or are in the process to do it. In particular, new recommendations and regulations were recently published (or are going to be) by World Health Organization, Nordic Countries, International Commission on Radiological Protection, International, Atomic Energy Agency (and the other international organisations sponsoring the International Basic Safety Standards), European Commission. Although with some differences, these new documents recommend lower radon concentrations in indoor air, especially in dwellings, compared with previous ones. Moreover, preventive measures in all new buildings are more and more considered as one of the most cost-effective way to reduce the radon-related lung cancers, compared with previous approach restricting preventive measures in radon-prone areas only. A comprehensive national action plan, involving several national and local authorities, is generally considered a necessary tool to deal with the many complex actions needed to reduce the risk from radon exposure in an effective way.

  9. STABILITY OF THE NEUTRON DOSE DETERMINATION ALGORITHM FOR PERSONAL NEUTRON DOSEMETERS AT DIFFERENT RADON GAS EXPOSURES.

    PubMed

    Mayer, Sabine; Boschung, Markus; Butterweck, Gernot; Assenmacher, Frank; Hohmann, Eike

    2016-09-01

    Since 2008 the Paul Scherrer Institute (PSI) has been using a microscope-based automatic scanning system for assessing personal neutron doses with a dosemeter based on PADC. This scanning system, known as TASLImage, includes a comprehensive characterisation of tracks. The distributions of several specific track characteristics such as size, shape and optical density are compared with a reference set to discriminate tracks of alpha particles and non-track background. Due to the dosemeter design at PSI, it is anticipated that radon should not significantly contribute to the creation of additional tracks in the PADC detector. The present study tests the stability of the neutron dose determination algorithm of the personal neutron dosemeter system in operation at PSI at different radon gas exposures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    PubMed

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  11. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  12. [Knowledge about radon and its associated risk perception in France].

    PubMed

    Beck, F; Richard, J B; Deutsch, A; Benmarhnia, T; Pirard, P; Roudier, C; Peretti-Watel, P

    2013-12-01

    Radon exposure is a major environmental risk in health. It remains badly known by the general population. It is the second cause of lung cancer, after tobacco smoking. The aim of this cross-sectional general population survey was to describe radon exposure risk knowledge and the socioeconomic factors related to this knowledge. The Cancer Barometer survey 2010 questioned the French population about its knowledge of radon as such and as health risk factor. This survey was a two-stage random sampling with computer-assisted telephone interview that was performed from April 3, 2010 to August 7, 2010 on a sample of 3,359 people aged 15 to 75 years old. Among people aged 15 to 75 years old, only one in five knows that radon is a natural gas coming from the ground. This knowledge is more frequent among people living in an area that is directly concerned by radon, among men and increases with age, with the level of education and the level of income. Radon risk remains still widely underestimated by the general public, including in areas concerned by this risk. When people were confronted with radon exposure, few intended to remedy by improving their home. The success of prevention initiatives implies the support and the collaboration of various national and local actors. To improve their impact for the prevention of lung cancers, it could be more effective to couple these actions with prevention messages on tobacco. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  13. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    NASA Astrophysics Data System (ADS)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  14. Radiological risk assessment of environmental radon

    NASA Astrophysics Data System (ADS)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-01

    Measurements of radon gas (222Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the 226Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m-3 to 571.1 ± 251.4 Bq m-3, 101.0 ± 41.0 Bq m-3 to 245.3 ± 100.2 Bq m-3, 53.1 ± 7.5 Bq m-3 to 181.8 ± 9.7 Bq m-3, 256.1 ± 59.3 Bq m-3 to 652.2 ± 222.2 Bq m-3 and 164.5 ± 75.9 Bq m-3 to 653.3 ± 240.0 Bq m-3, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m-3, 192.1 ± 75.4 Bq m-3, 176.1 ± 85.9 Bq m-3 and 28.4 ± 5.7 Bq m-3, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m-3 proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas

  15. Radon abate: Who should pay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Z.P.

    Radon is blamed for thousands of deaths from lung cancer annually. This radioactive gas most often seeps into buildings through structural defects. The cost of protecting tenants and homeowners from the health risks of radon adds to the cost of housing, particularly for those who can least afford it. Tenants and people whose homes need repair are at higher risk for radon exposure than are people living in well-constructed and well-maintained homes. Renters are at particular risk, says Joseph Laquatra, associate professor of design and environmental analysis, because they are powerless to implement radon mitigation. Moreover, they could be hurtmore » financially if landlords were forced to upgrade buildings in an attempt to reduce radon levels. [open quotes]A balance has to be struck,[close quotes] Laquatra says, [open quotes]between making rental units safer and not reducing the availability of affordable housing for people with low incomes.[close quotes] In a study of housing in central and western New York State, Laquatra and Peter Chi, professor of consumer economics and housing, found that up to 66 percent of rental units had excessive radon levels, versus 41 percent of owner-occupied homes costing less than $40,000 and 36 percent of homes worth more than $40,000.« less

  16. RESIDENTIAL RADON AND BIRTH DEFECTS: A POPULATION-BASED ASSESSMENT

    PubMed Central

    Langlois, Peter H; Lee, MinJae; Lupo, Philip J; Rahbar, Mohammad H; Cortez, Ruben K

    2015-01-01

    BACKGROUND Associations have been reported between maternal radiation exposure and birth defects. No such studies were found on radon. Our objective was to determine if there is an association between living in areas with higher radon levels and birth defects. METHODS The Texas Birth Defects Registry provided data on all birth defects from 1999–2009 from the entire state. Mean radon levels by geologic region came from the Texas Indoor Radon Survey. The association between radon and birth defects was estimated using multilevel mixed effect Poisson regression. RESULTS Birth defects overall were not associated with residential radon levels. Of the 100 other birth defect groups with at least 500 cases, 14 were significantly elevated in areas with high mean radon level in crude analyses, and 9 after adjustment for confounders. Cleft lip with/without cleft palate had an adjusted prevalence ratio (aPR) of 1.16 per 1 picoCurie/liter (pCi/l) increase in exposure to region mean radon, 95% confidence interval (CI) 1.08, 1.26. Cystic hygroma / lymphangioma had an aPR of 1.22 per 1 pCi/l increase, 95% CI 1.02, 1.46. Other associations were suggested but not as consistent: three skeletal defects, Down syndrome, other specified anomalies of the brain, and other specified anomalies of the bladder and urethra. CONCLUSIONS In the first study of residential radon and birth defects, we found associations with cleft lip w/wo cleft palate and cystic hygroma / lymphangioma. Other associations were suggested. The ecological nature of this study and multiple comparisons suggest that our results be interpreted with caution. PMID:25846606

  17. Accounting for Berkson and Classical Measurement Error in Radon Exposure Using a Bayesian Structural Approach in the Analysis of Lung Cancer Mortality in the French Cohort of Uranium Miners.

    PubMed

    Hoffmann, Sabine; Rage, Estelle; Laurier, Dominique; Laroche, Pierre; Guihenneuc, Chantal; Ancelet, Sophie

    2017-02-01

    Many occupational cohort studies on underground miners have demonstrated that radon exposure is associated with an increased risk of lung cancer mortality. However, despite the deleterious consequences of exposure measurement error on statistical inference, these analyses traditionally do not account for exposure uncertainty. This might be due to the challenging nature of measurement error resulting from imperfect surrogate measures of radon exposure. Indeed, we are typically faced with exposure uncertainty in a time-varying exposure variable where both the type and the magnitude of error may depend on period of exposure. To address the challenge of accounting for multiplicative and heteroscedastic measurement error that may be of Berkson or classical nature, depending on the year of exposure, we opted for a Bayesian structural approach, which is arguably the most flexible method to account for uncertainty in exposure assessment. We assessed the association between occupational radon exposure and lung cancer mortality in the French cohort of uranium miners and found the impact of uncorrelated multiplicative measurement error to be of marginal importance. However, our findings indicate that the retrospective nature of exposure assessment that occurred in the earliest years of mining of this cohort as well as many other cohorts of underground miners might lead to an attenuation of the exposure-risk relationship. More research is needed to address further uncertainties in the calculation of lung dose, since this step will likely introduce important sources of shared uncertainty.

  18. Cancer Mortality in Low Radon Spa Area

    PubMed Central

    Suzuki, Yasuyo; Honjo, Satoshi; Kawamura, Hiroko; Koishi, Fumiko; Suzuki, Tomokazu; Hirohata, Tomio

    1994-01-01

    Recently lower mortality for cancers of all sites was reported among inhabitants in the Misasa spa area, where there is a high radon background. To clarify the effects of radon exposure on cancer mortality, the effects of a hot spring itself on cancer mortality was investigated in the Beppu spa area, which has only a low radon background, and adjacent control areas. For females, the mortalities for cancers of all sites, liver and lung were higher in Beppu than those for all Japan on the basis of the standardized mortality ratio (SMR), while the SMR for all cancers was lower in adjacent areas. For the male inhabitants in hoth areas the cancer mortalities of all sites were not significantly different from those of all Japan. When we directly compared the most typical spa areas in Beppu and an adjacent control area, a Poisson regression analysis did not show that the relative risk of dying from cancer of all sites was decreased in the spa areas. These results are thus consistent with the view that the lower cancer mortality in the Misasa spa area might be related to exposure to low levels of radon . PMID:7829388

  19. Radon concentration of waters in Greece and Cyprus

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  20. Radiological risk assessment of environmental radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based onmore » the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were

  1. Residential radon and cancer mortality in Galicia, Spain.

    PubMed

    López-Abente, Gonzalo; Núñez, Olivier; Fernández-Navarro, Pablo; Barros-Dios, Juan M; Martín-Méndez, Iván; Bel-Lan, Alejandro; Locutura, Juan; Quindós, Luis; Sainz, Carlos; Ruano-Ravina, Alberto

    2018-01-01

    Residential radon exposure is a serious public health concern, and as such appears in the recommendations of European Code Against Cancer. The objective of this study was to assess the association between residential radon levels and mortality due to different types of cancer, using misaligned data analysis techniques. Mortality data (observed cases) for each of the 313 Galician municipalities were drawn from the records of the National Statistics Institute for the study period (1999-2008). Expected cases were computed using Galician mortality rates for 14 types of malignant tumors as reference, with a total of 56,385 deaths due to the tumors analyzed. The effect estimates of indoor radon (3371 sampling points) were adjusted for sociodemographic variables, altitude, and arsenic topsoil levels (1069 sampling points), using spatial/geostatistical models fitted with stochastic partial differential equations and integrated nested Laplace approximations. These models are capable of processing misaligned data. The results showed a statistical association between indoor radon and lung, stomach and brain cancer in women in Galicia. Apart from lung cancer (relative risk (RR)=1.09), in which a twofold increase in radon exposure led to a 9% rise in mortality, the association was particularly relevant in stomach (RR=1.17) and brain cancer (RR=1.28). Further analytical epidemiologic studies are needed to confirm these results, and an assessment should be made of the advisability of implementing interventions targeting such exposure in higher-risk areas. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Radon

    MedlinePlus

    ... My Home? Radon Guide for Tenants Builders and Contractors Radon-Resistant Construction Basics and Techniques EPA's Directory of Builders Resources for Builders and Contractors Radon Action Plans The National Radon Action Plan ( ...

  3. Insulin-like signalling to the maternal germline controls progeny response to osmotic stress

    PubMed Central

    Burton, Nicholas O.; Furuta, Tokiko; Webster, Amy K.; Kaplan, Rebecca E. W.; Baugh, L. Ryan; Arur, Swathi; Horvitz, H. Robert

    2017-01-01

    In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells1, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology2–7 and that parental stress can contribute to progeny disorders8. The mechanisms regulating these phenomena are poorly understood. We report that the nematode C. elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes8. PMID:28166192

  4. Radon exhalation from building materials for decorative use.

    PubMed

    Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim

    2010-04-01

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  5. Radon testing in rapid access lung clinics: an opportunity for secondary prevention.

    PubMed

    Smyth, R; Long, S; Wiseman, E; Sharpe, D; Breen, D; O'Regan, A

    2017-05-01

    Radon is a naturally occurring radioactive gas and a level 1 carcinogen. It acts synergistically with cigarette smoke to cause lung cancer. In Ireland, radon is estimated to be associated with 13 % of all lung cancers. Rapid access lung cancer clinics (RALC's) were established in the UK and Ireland to improve lung cancer management outcomes. There has been no attempt to date to provide advice on household radon exposure assessments in this setting. We performed a prospective feasibility study of radon assessment in our RALC to test the hypothesis that patients would avail of this service and that it would provide an opportunity for secondary prevention in at risk persons. We investigated household radon levels in consecutive patients who were newly referred with symptoms of lung cancer to the RALC in Galway University Hospital, Ireland over a 6-month period. Of 50 patients enrolled, 42 returned valid results. Overall 21 % of patients had radon levels recorded above the national reference level. Only 5 % of patients were aware of the association between radon gas and lung cancer. Smokers were significantly less likely to engage fully in radon testing. The development of RALC's offers a novel opportunity to integrate the concepts of radon exposure, cigarette smoking and the development of lung cancer, and to reinforce this message in the minds of at risk patients.

  6. Continuous measurements of bronchial exposure induced by radon decay products during inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwaoka, Kazuki; Tokonami, Shinji; Yonehara, Hidenori

    2007-09-15

    The deposition of radon decay products is not equal in each of the respiratory regions and as the presence of radon has been linked with an increase in lung cancer risk, it is important to calculate the deposition of radon decay products in each of the respiratory regions. Recently, many studies on the deposition of radon in respiratory regions have been simulated using wire screens. The systems and equipment used in those studies are not suitable for field measurements as their dimensions are relatively massive, nor can they measure continuously. We developed a continuous bronchial dosimeter (CBD) which is suitablemore » for field measurements. It was designed with specifications that allow it to be remain compact. The CBD simulates the deposition of radon decay products in the different respiratory regions by the use of a combination of wire screens. Deposition in the simulated regions of the lung can be continuously estimated in various environments. The ratio of activities deposited in a simulated nasal cavity (N) and tracheobronchial (TB) regions was calculated from the results of simultaneous measurements using CBD-R (reference), CBD-N (nasal), and CBD-TB (tracheobronchial) measurement units. After aerosols were injected into the radon chamber, the ratio of N and TB depositions decreased. This results indicate that the CBD gave a good response to changes in the environment. It was found that the ratio of N and TB deposition also varied with time in each actual environment.« less

  7. Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania).

    PubMed

    Cosma, Constantin; Cucoş-Dinu, Alexandra; Papp, Botond; Begy, Robert; Sainz, Carlos

    2013-02-01

    Radon contributes to over than 50% of the natural radiation dose received by people. In radon risk areas this contribution can be as high as 90-95%, leading to an exposure to natural radiation 5-10 times higher than normal. This work presents results from radon measurements (indoor, soil and exhalation from building materials) in Băiţa-Ştei, a former uranium exploitation area in NW Romania. In this region, indoor radon concentrations found were as high as 5000 Bq m(-3) and soil radon levels ranged from 20 to 500 kBq m(-3). An important contribution from building materials to indoor radon was also observed. Our results indicate two independent sources of indoor radon in the surveyed houses of this region. One source is coming from the soil and regular building materials, and the second source being uranium waste and local radium reached material used in building construction. The soil as source of indoor radon shows high radon potential in 80% of the investigated area. Some local building materials reveal high radon exhalation rate (up to 80 mBq kg(-1) h(-1) from a sandy-gravel material, ten times higher than normal material). These measurements were used for the radon risk classification of this area by combining the radon potential of the soil with the additional component from building materials. Our results indicate that Băiţa-Ştei area can be categorized as a radon prone area. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. A comprehensive study of radon levels and associated radiation doses in Himalayan groundwater

    NASA Astrophysics Data System (ADS)

    Prasad, Mukesh; Kumar, G. Anil; Sahoo, B. K.; Ramola, R. C.

    2018-03-01

    The concentration of radon in groundwater is mainly governed by the radium content in the rocks of the aquifer. The internal exposure to high levels of radon in water is directly associated with the radiological risk to members of public. In this work, radon concentrations were measured in groundwater of Garhwal Himalaya, India, using scintillation detector-based RnDuo and silicon detector-based RAD7 monitors. An inter-comparison exercise was carried out between RnDuo and RAD7 techniques for a few samples to validate the results. The radiation doses associated with the exposure to radon in water were estimated from measured values of activity concentrations. An attempt has been made to see the effect of geology, geohydrology and different types of sources on radon levels in Himalayan groundwater. The experimental techniques and results obtained are discussed in detail.

  9. Residential radon and lung cancer incidence in a Danish cohort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braeuner, Elvira V., E-mail: ole@cancer.dk; Danish Building Research Institute, Aalborg University; Andersen, Claus E.

    High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) formore » lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m{sup 3}. The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m{sup 3} higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.« less

  10. Surface-deposition and Distribution of the Radon (222Rn and 220Rn) Decay Products Indoors

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Tommasino, Luigi

    The exposure to radon (222Rn and 220Rn) decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure, little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper.

  11. Studies on the reduction of radon plate-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, M.; Nakib, M.; Calkins, R.

    The decay of common radioactive gases, such as radon, produces stable isotopes by a sequence of daughter particles with varied half-lives. These daughter particles are a significant source of gamma, neutron, and alpha (α) particle backgrounds that can mimic desired signals in dark matter and neutrinoless double beta decay experiments. In the LUMINA Laboratory at Southern Methodist University (SMU), studies of radon plate-out onto copper samples are conducted using one of XIA’s first five UltraLo 1800 alpha counters. We present results from investigations into various mitigation approaches. A custom-built copper holder (in either plastic or metal) has been designed andmore » produced to maximize the copper’s exposure to {sup 220}Rn. The {sup 220}Rn source is a collection of camping lantern mantles. We present the current status of control and experimental methods for addressing radon exposure levels.« less

  12. A facility for studying the carcinogenic and synergistic effects of radon daughters and other agents in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, J.C.; Walsh, M.

    Although there is evidence to link lung cancer with radon exposures in miners, studies have not yet adequately demonstrated a link at domestic levels of exposure. Induction of cancer in animals after acute exposure to high levels of radon and radon daughters has been investigated by several laboratories. It is our intention to study the effects of radon and its daughters on rodents following both acute and chronic exposure. The studies will be extended to investigate the effects of other carcinogens in association with radon daughters. We will describe a facility in which rodents can be exposed continuously to radonmore » and its daughters for periods of up to several months. The facility consists of two exposure chambers with closed air circuits which are operated independently of each other. Aerosol generators provide controlled vector aerosols onto which radon daughters can attach. Particular attention has been paid to accurate measurements of the concentrations of radon gas and of individual radon daughters. Techniques have also been developed for measuring the {open_quotes}unattached{close_quotes} fraction, the activity size distribution of individual daughters, and the potential alpha energy. The environment within the facility will be adjusted to be comparable to that found in dwellings with regard to condensation nucleus concentration, {open_quotes}unattached{close_quotes} fraction, equilibrium factor, and activity size distribution. Other vapors and aerosols, such as tobacco smoke, can be introduced into one of the air circuits to study the combined effects of radiation and toxic chemical agents.« less

  13. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    PubMed

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  14. Registration in a radon system of signals related to the Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Steinitz, Gideon; Piatibratova, Oksana; Kotlarsky, Peter

    2013-04-01

    The behavior of radon (Rn-222) within confined volumes of air is examined experimentally at the GSI (Jerusalem) since several years. In these experiments a relatively high level of radon is maintained by diffusion from a source via a tube and radiation from it is measured using nuclear detectors. In difference with the expected, nuclear radiation from the radon (progeny) shows: a) temporal variations (signals) spanning annual to daily scale; b) directionality of the nuclear radiation reflected as inverse signal patterns in the east-west versus north-south directions. The experimental setup at the GSI lab consists of a leak tight stainless steel (SS) canister (3.53 l) fed with radon by diffusing via SS tube (0.8 m) from a commercial source (RaCl2; 103 kBq). Four identical gamma detectors (2×2") were placed around its central horizontal plane of the canister, at the primary geographic directions, and a further detector (36×76 mm) was placed along the vertical axis of the canister. Count rates (1-minute intervals) were acquired by a datalogger. The system was used in this configuration in a series of experiments conducted from May 2009 to June 2012. An experiment was operating from 30.1.2011 to 22.3.11. The host gas in this experiment was argon at a pressure of ~1 atmosphere. Distinctive short term periodic (STP) signals with periods of 2-3 hours (frequencies in the range of 9-12 CPD) occur in a time interval of three days in association with the Tohoku earthquake (TE; 11.3.2011) and possibly also with its pre-shock. The STP signals occur from around 6 hours prior to the TE and are maintained to around 48 hours after the TE. These signals are observed at all five sensors and are superimposed on the DR signals with relative amplitudes of around 20%. They exhibit differing forms and phase at the different sensors, located at different directions around the canister. The pattern is similar but not identical to the spatial manifestation of form and phase of the DR

  15. Measurement and modeling of indoor radon concentrations in residential buildings.

    PubMed

    Park, Ji Hyun; Whang, Sungim; Lee, Hyun Young; Lee, Cheol-Min; Kang, Dae Ryong

    2018-01-01

    Radon, the primary constituent of natural radiation, is the second leading environmental cause of lung cancer after smoking. To confirm a relationship between indoor radon exposure and lung cancer, estimating cumulative levels of exposure to indoor radon for an individual or population is necessary. This study sought to develop a model for estimate indoor radon concentrations in Korea. Especially, our model and method may have wider application to other residences, not to specific site, and can be used in situations where actual measurements for input variables are lacking. In order to develop a model, indoor radon concentrations were measured at 196 ground floor residences using passive alpha-track detectors between January and April 2016. The arithmetic mean (AM) and geometric mean (GM) means of indoor radon concentrations were 117.86±72.03 and 95.13±2.02 Bq/m 3 , respectively. Questionnaires were administered to assess the characteristics of each residence, the environment around the measuring equipment, and lifestyles of the residents. Also, national data on indoor radon concentrations at 7643 detached houses for 2011-2014 were reviewed to determine radon concentrations in the soil, and meteorological data on temperature and wind speed were utilized to approximate ventilation rates. The estimated ventilation rates and radon exhalation rates from the soil varied from 0.18 to 0.98/hr (AM, 0.59±0.17/hr) and 326.33 to 1392.77 Bq/m 2 /hr (AM, 777.45±257.39; GM, 735.67±1.40 Bq/m 2 /hr), respectively. With these results, the developed model was applied to estimate indoor radon concentrations for 157 residences (80% of all 196 residences), which were randomly sampled. The results were in better agreement for Gyeonggi and Seoul than for other regions of Korea. Overall, the actual and estimated radon concentrations were in better agreement, except for a few low-concentration residences.

  16. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  17. An assessment of radon in groundwater in New York State

    USGS Publications Warehouse

    Shaw, Stephen B.; Eckhardt, David A.V.

    2012-01-01

    Abstract: A set of 317 samples collected from wells throughout New York State (excluding Long Island) from 2003 through 2008 was used to assess the distribution of radon gas in drinking water. Previous studies have documented high concentrations of radon in groundwater from granitic and metamorphic bedrock, but there have been only limited characterizations of radon in water from sedimentary rock and unconsolidated sand-and-gravel deposits in New York. Approximately 8% of the samples from bedrock wells exceed 89 Bq L-1 (eight times the proposed regulatory limit), but only 2% of samples from sand-and-gravel wells exceed 44 Bq L-1. Specific metamorphic and sedimentary rock formations in New York are associated with the high radon concentrations, indicating that specific areas of New York could be targeted with efforts to reduce the risk of exposure to radon in groundwater. Additionally, radon in groundwater from the sand-and-gravel aquifers was found to be directly correlated to radon in indoor air when assessed by county.

  18. Numerical and analytical assessment of radon diffusion in various media and potential of charcoal as radon detector

    NASA Astrophysics Data System (ADS)

    Rybalkin, Andrey

    Numerical assessments of radon diffusion together with analytical estimates for short-time and long-time exposure were the first objective of this thesis with the goal to demonstrate how radon propagates in various media. Theoretical predictions were compared to numerical simulations, and obtained values of total radon activities inside each material match quite well with the analytical estimates. These estimates, for activated and nonactivated charcoal, were then used to evaluate the possibility of designing a charcoal system to be used as a radon detector. Another objective was to use nonactivated charcoal samples and measure the level of radon accumulation, and use these data to estimate radon diffusion and adsorption coefficients. The analytical approach was developed to estimate these values. Radon adsorption coefficient in nonactivated charcoal was found to be from 0.2 to 0.4 m3/kg. Radon diffusion coefficient for nonactivated charcoal is in the range of 1.2×10-11 to 5.1×10-10 m2/s in comparison to activated charcoal with adsorption coefficient of 4 m3/kg and diffusion coefficient of 1.43×10-9 m2/s. The third objective was to use GEANT4 numerical code to simulate decay of 238U series and 222Rn in an arbitrary soil sample. Based on that model, the goal was to provide a guideline for merging GEANT4 radioactive decay modeling with the diffusion of radon in a soil sample. It is known that radon can be used as an earthquake predictor by measuring its concentration in groundwater, or if possible, along the faults. Numerical simulations of radon migration by diffusion only were made to estimate how fast and how far radon can move along the fault strands. Among the known cases of successful correlations between radon concentration anomalies and earthquake are the 1966 Tashkent and 1976 Songpan-Pingwu earthquakes. Thus, an idea of radon monitoring along the Wasatch Fault, using system of activated/nonactivated charcoals together with solid state radon detectors is

  19. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district.

    PubMed

    Domingos, Filipa; Pereira, Alcides

    2018-05-01

    Alteration processes have strong impacts on the chemical and physical properties of rock masses. Because they can affect the contents and the distribution of U as well as enhance the permeability of the bedrock, they may lead to a significant increase of radon release to the environment. However, their influence on radon emanation and radon production rate has yet to be properly assessed. To investigate the impact of alteration processes on the radiological properties, samples were collected in the Panasqueira region under the influence of surface weathering, deuteric, hydrothermal and fault related alteration. Major and trace elements (U, Th), physical, and radiological properties were measured in metasedimentary and fault rocks. The degree of alteration and weathering progress were assessed through indices of alteration, porosity and bulk density. Overall, an increase of the radon emanation coefficient from (approximately) 0.1 to 0.4 and radon production rate (from 40 to over 160Bq·m -3 ·h -1 ) is observed with the progress of physicochemical alteration. Decoupling of physical and chemical alteration however implies both must be quantified towards a proper assessment of the degree of alteration. The behavior of radiogenic elements upon alteration is shown to be complex and contingent upon the alteration process. An atypical increase of radon emanation in the ore district due to U mobilization was caused by hydrothermal alteration. Because radon emanation is not dependent upon the pelitic nature of the metasedimentary rocks, it may thus become a proxy for W-Sn exploration. The dependency of radon production rate from the latter constrains its use for exploration. Nevertheless, it may provide a reliable estimation of the bedrock contribution to indoor radon concentrations. Higher indoor radon concentrations, hence, a higher risk of exposure to radon are expected in the ore district as well as within fault zones. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Measurement of Radon-Induced Backgrounds in the NEXT Double Beta Decay Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novella, P.; et al.

    The measurement of the internal 222Rn activity in the NEXT-White detector during the so-called Run-II period with 136Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222Rn and its alpha-emitting progeny. The specific activity is measured to bemore » $$(37.5\\pm 2.3~\\mathrm{(stat.)}\\pm 5.9~\\mathrm{(syst.)})$$~mBq/m$^3$. Radon-induced electrons have also been characterized from the decay of the 214Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.2~counts/yr in the neutrinoless double beta decay sample.« less

  1. A new passive radon-thoron discriminative measurement system.

    PubMed

    Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M

    2010-10-01

    A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.

  2. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey.

    PubMed

    Aykamis, Ahmet S; Turhan, Seref; Aysun Ugur, F; Baykan, Umut N; Kiliç, Ahmet M

    2013-11-01

    It is very important to determine the levels of the natural radioactivity in construction materials and radon exhalation rate from these materials for assessing potential exposure risks for the residents. The present study deals with 22 different granite samples employed as decoration stones in constructions in Turkey. The natural radioactivity in granite samples was measured by gamma-ray spectrometry with an HPGe detector. The activity concentrations of (226)Ra, (232)Th and (40)K were found to be in the range of 10-187, 16-354 and 104-1630 Bq kg(-1), respectively. The radon surface exhalation rate and the radon mass exhalation rate estimated from the measured values of (226)Ra content and material properties varied from 1.3 to 24.8 Bq m(-2) h(-1) with a mean of 10.5±1.5 Bq m(-2) h(-1) and 0.03-0.64 Bq kg(-1) h(-1) with a mean of 0.27±0.04 Bq kg(-1) h(-1), respectively. Radon concentrations in the room caused from granite samples estimated using a mass balance equation varied from 23 to 461 Bq m(-3) with a mean of 196±27 Bq m(-3). Also the gamma index (Iγ), external indoor annual effective dose (Eγ) and annual effective dose due to the indoor radon exposure (ERn) were estimated as the average value of 1.1±0.1, 0.16±0.02 mSv and 5.0±0.7 mSv, respectively, for the granite samples.

  3. INADEQUACY OF THORON DOSE CALCULATIONS FROM THORON PROGENY MEASUREMENT ALONE.

    PubMed

    Lane-Smith, D; Wong, F K

    2016-10-01

    To determine the dose received by thoron ( 220 Rn) domestically, conventional methods measure the activity concentration of thoron progeny only (namely the 212 Pb atoms) and calculate the dose by using a set of conversion factors. This may be due to the measurement of progeny being simpler since it is longer lived and will be evenly spread throughout the room, whereas the thoron gas, with its short half-life, will exist only near the source and hence will not be of major concern for the majority of the room. However, concrete walls are a source of thoron, and spending prolonged amounts of time near them may lead to greatly increased radiation exposure, the degree of which is not revealed through progeny activity alone. The present paper compares the energy received from the ionising radiation of both thoron gas and thoron progeny near its source. Converting the energy dose to radiation dose is not within the scope of this paper. The results suggest a difference of an order of magnitude higher when taking into account the dose received by thoron gas. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. [Transgenerational impact of chemotherapy: Would the father exposure impact the health of future progeny?

    PubMed

    Tremblay, A; Beaud, H; Delbès, G

    2017-11-01

    The number of cancer survivors is increasing and their quality of life is becoming a major public health issue. Cancer treatments reduce men's reproductive health by targeting spermatogenesis. Ultimately, DNA, chromatin and the epigenome of spermatozoa can be altered in cancer survivors. Knowing whether the history of cancer and the treatments received can have consequences on the health of their offspring is therefore a fundamental question for these patients. This review gathers the experimental and epidemiological evidences of the effects observed on the direct descendants and on several generations, and draws up the state of knowledge on the mechanisms potentially involved. Experimental data describe inter- and transgenerational effects of paternal exposure depending on the type of treatment, dose and time of exposure. In the human population, the analysis of the effects specifically due to chemotherapy is still limited because they are often combined with irradiation treatments. However, it appears that chemotherapy agents affect the birth rate but do not have a significant impact on the health of the children born. Nevertheless, the demonstration of modifications of the sperm epigenome in cancer survivors, even after a period of remission, as well as changes in the sperm of the progeny in animal models, suggests a possible transgenerational transmission that remains to be studied in the human population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    PubMed

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  6. Predicted indoor radon concentrations from a Monte Carlo simulation of 1,000,000 granite countertop purchases.

    PubMed

    Allen, J G; Zwack, L M; MacIntosh, D L; Minegishi, T; Stewart, J H; McCarthy, J F

    2013-03-01

    Previous research examining radon exposure from granite countertops relied on using a limited number of exposure scenarios. We expanded upon this analysis and determined the probability that installing a granite countertop in a residential home would lead to a meaningful radon exposure by performing a Monte Carlo simulation to obtain a distribution of potential indoor radon concentrations attributable to granite. The Monte Carlo analysis included estimates of the probability that a particular type of granite would be purchased, the radon flux associated with that type, the size of the countertop purchased, the volume of the home where it would be installed and the air exchange rate of that home. One million countertop purchases were simulated and 99.99% of the resulting radon concentrations were lower than the average outdoor radon concentrations in the US (14.8 Bq m(-3); 0.4  pCi l(-1)). The median predicted indoor concentration from granite countertops was 0.06 Bq m(-3) (1.59 × 10(-3) pCi l(-1)), which is over 2000 times lower than the US Environmental Protection Agency's action level for indoor radon (148 Bq m(-3); 4 pCi l(-1)). The results show that there is a low probability of a granite countertop causing elevated levels of radon in a home.

  7. Radon and leukemia in the Danish study: another source of dose.

    PubMed

    Harley, Naomi H; Robbins, Edith S

    2009-10-01

    An epidemiologic study of childhood leukemia in Denmark (2,400 cases; 6,697 controls) from 1968 to 1994 suggested a weak, but statistically significant, association of residential radon exposure and acute childhood lymphoblastic leukemia (ALL). The Danish study estimated a relative risk (RR) = 1.56 (95% CI, 1.05-2.30) for a cumulative exposure of 1,000 Bq m-3 y. For an exposure duration of 10 y their RR corresponds to a radon concentration of 100 Bq m-3. There are two dose pathways of interest where alpha particles could damage potential stem cells for ALL. One is the alpha dose to bone marrow, and two is the dose to bronchial mucosa where an abundance of circulating lymphocytes is found. Compared with an exposure of about 1 mSv y-1 from natural external background, radon and decay products contribute an additional 10 to 60% to the bone marrow equivalent dose. The other pathway for exposure of T (or B) lymphocytes is within the tracheobronchial epithelium (BE). Inhaled radon decay products deposit on the relatively small area of airway surfaces and deliver a significant dose to the nearby basal or mucous cells implicated in human lung cancer. Lymphocytes are co-located with basal cells and are half as abundant. Using a 10-y exposure to 100 Bq m-3, our dose estimates suggest that the equivalent dose to these lymphocytes could approach 1 Sv. The relatively high dose estimate to lymphocytes circulating through the BE, potential precursor cells for ALL, provides a dose pathway for an association.

  8. Radon Levels in Indoor Environments of the University Hospital in Bari-Apulia Region Southern Italy

    PubMed Central

    Fucilli, Fulvio; Cavone, Domenica; De Maria, Luigi; Birtolo, Francesco; Ferri, Giovanni Maria; Soleo, Leonardo

    2018-01-01

    Since 1988, the International Agency for Research on Cancer (IARC) has classified radon among the compounds for which there is scientific evidence of carcinogenicity for humans (group 1). The World Health Organization (WHO) recommends a reference radon level between 100 and 300 Bq/m3 for homes. The objective of this study is to measure the radon concentrations in 401 workplaces, different from the patient rooms, in 28 different buildings of the university hospital in Bari (Apulia region, Southern Italy) to evaluate the exposure of health care workers. Radon environmental sampling is performed over two consecutive six-month periods via the use of passive dosimeters of the CR-39 type. We find an average annual radon concentration expressed as median value of 48.0 Bq/m3 (range 6.5–388.0 Bq/m3) with a significant difference between the two six-month periods (median value: February/July 41.0 Bq/m3 vs. August/January 55.0 Bq/m3). An average concentration of radon lower than the WHO reference level (100 Bq/m3) is detected in 76.1% of monitored environments, while higher than 300 Bq/m3 only in the 0.9%. Most workplaces report radon concentrations within the WHO reference level, therefore, the risk to workers’ health deriving from occupational exposure to radon can be considered to be low. Nevertheless, the goal is to achieve near-zero exposures to protect workers’ health. PMID:29642436

  9. Lung cancer mortality among nonsmoking uranium miners exposed to radon daughters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscoe, R.J.; Steenland, K.; Halperin, W.E.

    Radon daughters, both in the workplace and in the household, are a continuing cause for concern because of the well-documented association between exposure to radon daughters and lung cancer. To estimate the risk of lung cancer mortality among nonsmokers exposed to varying levels of radon daughters, 516 white men who never smoked cigarettes, pipes, or cigars were selected from the US Public Health Service cohort of Colorado Plateau uranium miners and followed up from 1950 through 1984. Age-specific mortality rates for nonsmokers from a study of US veterans were used for comparison. Fourteen deaths from lung cancer were observed amongmore » the nonsmoking miners, while 1.1 deaths were expected, yielding a standardized mortality ratio of 12.7 with 95% confidence limits of 8.0 and 20.1. These results confirm that exposure to radon daughters in the absence of cigarette smoking is a potent carcinogen that should be strictly controlled.« less

  10. First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection

    NASA Astrophysics Data System (ADS)

    Alner, G. J.; Araújo, H. M.; Bewick, A.; Bungau, C.; Camanzi, B.; Carson, M. J.; Cashmore, R. J.; Chagani, H.; Chepel, V.; Cline, D.; Davidge, D.; Davies, J. C.; Daw, E.; Dawson, J.; Durkin, T.; Edwards, B.; Gamble, T.; Gao, J.; Ghag, C.; Howard, A. S.; Jones, W. G.; Joshi, M.; Korolkova, E. V.; Kudryavtsev, V. A.; Lawson, T.; Lebedenko, V. N.; Lewin, J. D.; Lightfoot, P.; Lindote, A.; Liubarsky, I.; Lopes, M. I.; Lüscher, R.; Majewski, P.; Mavrokoridis, K.; McMillan, J. E.; Morgan, B.; Muna, D.; Murphy, A. St. J.; Neves, F.; Nicklin, G. G.; Ooi, W.; Paling, S. M.; Pinto da Cunha, J.; Plank, S. J. S.; Preece, R. M.; Quenby, J. J.; Robinson, M.; Salinas, G.; Sergiampietri, F.; Silva, C.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Spooner, N. J. C.; Sumner, T. J.; Thorne, C.; Tovey, D. R.; Tziaferi, E.; Walker, R. J.; Wang, H.; White, J. T.; Wolfs, F. L. H.

    2007-11-01

    Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two-phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and 60Co γ-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kg × days. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acceptance between 5 keV ee and 20 keV ee, had an observed count of 29 events, with a summed expectation of 28.6 ± 4.3 γ-ray and radon progeny induced background events. These figures provide a 90% c.l. upper limit to the number of nuclear recoils of 10.4 events in this acceptance window, which converts to a WIMP-nucleon spin-independent cross-section with a minimum of 6.6 × 10 -7 pb following the inclusion of an energy-dependent, calibrated, efficiency. A second run is currently underway in which the radon progeny will be eliminated, thereby removing the background population, with a projected sensitivity of 2 × 10 -7 pb for similar exposures as the first run.

  11. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague.

    PubMed

    Jílek, K; Timková, J

    2015-06-01

    During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Radiation Protection. Measurement of radioactivity in the environment - Air- radon 222. A proposed ISO standard.

    NASA Astrophysics Data System (ADS)

    Gillmore, G.; Woods, M.

    2009-04-01

    Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of

  13. A review of ecologic studies of lung cancer and indoor radon.

    PubMed

    Stidley, C A; Samet, J M

    1993-09-01

    Although radon exposure is an established cause of lung cancer among underground miners, the lung cancer risk to the general population from indoor radon remains controversial. This controversy stems in part from the contradictory results of published studies of indoor radon and lung cancer, including 15 ecologic studies, seven of which found a positive association, six no association, and two a negative association. To address the misunderstanding of the indoor radon risk that has resulted from these ecologic studies, the authors discuss the general methodologic problems and limitations of ecologic studies, and the particular limitations of these 15 studies. The authors conclude that the shortcomings of the ecologic studies render them uninformative on the lung cancer risk associated with indoor radon.

  14. A combined analysis of North American case-control studies of residential radon and lung cancer.

    PubMed

    Krewski, Daniel; Lubin, Jay H; Zielinski, Jan M; Alavanja, Michael; Catalan, Vanessa S; Field, R William; Klotz, Judith B; Létourneau, Ernest G; Lynch, Charles F; Lyon, Joseph L; Sandler, Dale P; Schoenberg, Janet B; Steck, Daniel J; Stolwijk, Jan A; Weinberg, Clarice; Wilcox, Homer B

    2006-04-01

    Cohort studies have consistently shown underground miners exposed to high levels of radon to be at excess risk of lung cancer, and extrapolations based on those results indicate that residential radon may be responsible for nearly 10-15% of all lung cancer deaths per year in the United States. However, case-control studies of residential radon and lung cancer have provided ambiguous evidence of radon lung cancer risks. Regardless, alpha-particle emissions from the short-lived radioactive radon decay products can damage cellular DNA. The possibility that a demonstrated lung carcinogen may be present in large numbers of homes raises a serious public health concern. Thus, a systematic analysis of pooled data from all North American residential radon studies was undertaken to provide a more direct characterization of the public health risk posed by prolonged radon exposure. To evaluate the risk associated with prolonged residential radon exposure, a combined analysis of the primary data from seven large scale case-control studies of residential radon and lung cancer risk was conducted. The combined data set included a total of 4081 cases and 5281 controls, representing the largest aggregation of data on residential radon and lung cancer conducted to date. Residential radon concentrations were determined primarily by a-track detectors placed in the living areas of homes of the study subjects in order to obtain an integrated 1-yr average radon concentration in indoor air. Conditional likelihood regression was used to estimate the excess risk of lung cancer due to residential radon exposure, with adjustment for attained age, sex, study, smoking factors, residential mobility, and completeness of radon measurements. Although the main analyses were based on the combined data set as a whole, we also considered subsets of the data considered to have more accurate radon dosimetry. This included a subset of the data involving 3662 cases and 4966 controls with a-track radon

  15. Measurements of radon activity concentration in mouse tissues and organs.

    PubMed

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m 3 of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m 3 of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  16. Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes.

    PubMed

    Mitchell, Austin L; Griffin, W Michael; Casman, Elizabeth A

    2016-11-01

    The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon-induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m 3 (41-74 pCi/L), and the throughput-weighted average was 1,983 Bq/m 3 (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent-free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m 3 (<1% of the U.S. Environmental Protection Agency's action level). Using worst-case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10 -4 (interval spanning 95% of simulation results: 8.5×10 -5 , 3.4×10 -4 ). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10 -3 . Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates. © 2016 Society for Risk Analysis.

  17. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.

    PubMed

    Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger

    2015-07-01

    Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. Copyright © 2015. Published by Elsevier Inc.

  18. Evaluating for a geospatial relationship between radon levels and thyroid cancer in Pennsylvania.

    PubMed

    Goyal, Neerav; Camacho, Fabian; Mangano, Joseph; Goldenberg, David

    2015-01-01

    To determine whether there is an association between radon levels and the rise in incidence of thyroid cancer in Pennsylvania. Epidemiological study of the state of Pennsylvania. We used information from the Pennsylvania Cancer Registry and the Pennsylvania Department of Energy. From the registry, information regarding thyroid incidence by county and zip code was recorded. Information regarding radon levels per county was recorded from the state. Poisson regression models were fit predicting county-level thyroid incidence and change as a function of radon/lagged radon levels. To account for measurement error in the radon levels, a Bayesian Model extending the Poisson models was fit. Geospatial clustering analysis was also performed. No association was noted between cumulative radon levels and thyroid incidence. In the Poisson modeling, no significant association was noted between county radon level and thyroid cancer incidence (P = .23). Looking for a lag between the radon level and its effect, no significant effect was seen with a lag of 0 to 6 years between exposure and effect (P = .063 to P = .59). The Bayesian models also failed to show a statistically significant association. A cluster of high thyroid cancer incidence was found in western Pennsylvania. Through a variety of models, no association was elicited between annual radon levels recorded in Pennsylvania and the rising incidence of thyroid cancer. However, a cluster of thyroid cancer incidence was found in western Pennsylvania. Further studies may be helpful in looking for other exposures or associations. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Radon

    MedlinePlus

    You can't see radon. And you can't smell it or taste it. But it may be a problem in your home. Radon comes from the natural breakdown of uranium in soil, rock, and water. Radon is the second leading cause of lung cancer ...

  20. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  1. Radon testing in schools in New York State: a 20-year summary.

    PubMed

    Kitto, Michael

    2014-11-01

    For nearly 20 years the Department of Health has conducted programs to assist in the measurement and reduction of indoor radon concentrations in 186 schools located primarily in Zone 1 areas of New York State. Although many schools had few or no rooms containing radon above 148 Bq/m(3), some rooms had >740 Bq/m(3) and remediation techniques were utilized to reduce exposure. Short-term radon measurements in the schools showed little correlation to basement and first-floor radon results from single-family homes in the towns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. National radon programmes and policies: the RADPAR recommendations.

    PubMed

    Bochicchio, F; Hulka, J; Ringer, W; Rovenská, K; Fojtikova, I; Venoso, G; Bradley, E J; Fenton, D; Gruson, M; Arvela, H; Holmgren, O; Quindos, L; McLaughlin, J; Collignan, B; Gray, A; Grosche, B; Jiranek, M; Kalimeri, K; Kephalopoulos, S; Kreuzer, M; Schlesinger, D; Zeeb, H; Bartzis, J

    2014-07-01

    Results from epidemiological studies on lung cancer and radon exposure in dwellings and mines led to a significant revision of recommendations and regulations of international organisations, such as WHO, IAEA, Nordic Countries, European Commission. Within the European project RADPAR, scientists from 18 institutions of 14 European countries worked together for 3 y (2009-12). Among other reports, a comprehensive booklet of recommendations was produced with the aim that they should be useful both for countries with a well-developed radon programme and for countries with little experience on radon issues. In this paper, the main RADPAR recommendations on radon programmes and policies are described and discussed. These recommendations should be very useful in preparing a national action plan, required by the recent Council Directive 2013/59/Euratom. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Radon observations as an integrated part of the multi parameter approach to study pre-earthquake processes

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Lee, Lou; Giuliani, Guachino; Fu, Ching-Chou; Liu, Tiger; Hattori, Katsumi

    2017-04-01

    This work is part of international project to study the complex chain of interactions Lithosphere - Atmosphere -Ionosphere (LAI) in presence of ionization in atmosphere loaded by radon and other gases and is supported by International Space Science Institute (ISSI) in Bern and Beijing. We are presenting experimental measurements and theoretical estimates showing that radon measurements recorded before large earthquake are correlated with release of the heat flux in atmosphere during ionization of the atmospheric boundary layer .The recorded anomalous heat (observed by the remote sounding -infrared radiometers installed on satellites) are followed also by ionospheric anomalies (observed by GPS/TEC, ionosonde or satellite instruments). As ground proof we are using radon measurements installed and coordinated in four different seismic active regions California, Taiwan, Italy and Japan. Radon measurements are performed indirectly by means of gamma ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively) and also by Alfa detectors. We present data of five physical parameters- radon, seismicity, temperature of the atmosphere boundary layer, outgoing earth infrared radiation and GPS/TEC and their temporal and spatial variations several days before the onset of the following recent earthquakes: (1) 2016 M6.6 in California; (2) 2016 Amatrice-Norcia (Central Italy), (3) 2016 M6.4 of Feb 06 in Taiwan and (4) 2016 M7.0 of Nov 21 in Japan. Our preliminary results of simultaneous analysis of radon and space measurements in California, Italy, Taiwan and Japan suggests that pre-earthquake phase follows a general temporal-spatial evolution pattern in which radon plays a critical role in understanding the LAI coupling. This pattern could be reviled only with multi instruments observations and been seen and in other large earthquakes worldwide.

  4. Comprehensive survey of household radon gas levels and risk factors in southern Alberta

    PubMed Central

    Stanley, Fintan K.T.; Zarezadeh, Siavash; Dumais, Colin D.; Dumais, Karin; MacQueen, Renata; Clement, Fiona; Goodarzi, Aaron A.

    2017-01-01

    Background: The inhalation of naturally occurring radon (222Rn) gas from indoor air exposes lung tissue to α-particle bombardment, a highly mutagenic form of ionizing radiation that damages DNA and increases the lifetime risk of lung cancer. We analyzed household radon concentrations and risk factors in southern Alberta, including Calgary, the third-largest Canadian metropolis. Methods: A total of 2382 residential homes (2018 in Calgary and 364 in surrounding townships) from an area encompassing 82% of the southern Alberta population were tested for radon, per Health Canada guidelines, for at least 90 days (median 103 d) between 2013 and 2016. Participants also provided home metrics (construction year, build type, foundation type, and floor and room of deployment of the radon detector) via an online survey. Homes that were subsequently remediated were retested to determine the efficacy of radon reduction techniques in the region. Results: The average indoor air radon level was 126 Bq/m3, which equates to an effective absorbed radiation dose of 3.2 mSv/yr. A total of 1135 homes (47.6%) had levels of 100 Bq/m3 or higher, and 295 homes (12.4%) had levels of 200 Bq/m3 or higher; the range was less than 15 Bq/m3 to 3441 Bq/m3. Homes built in 1992 or later had radon levels 31.5% higher, on average, than older homes (mean 142 Bq/m3 v. 108 Bq/m3). For 90 homes with an average radon level of 575 Bq/m3 before mitigation, radon suppression successfully reduced levels to an average of 32.5 Bq/m3. Interpretation: Our findings show that radon exposure is a genuine public health concern in southern Alberta, suggest that modern building practices are associated with increased indoor air radon accumulation, legitimatize efforts to understand the consequences of radon exposure to the public, and suggest that radon testing and mitigation are likely to be impactful cancer prevention strategies. PMID:28401142

  5. The rate of radon remediation in Ireland 2011-2015: Establishing a base line rate for Ireland's National Radon Control Strategy.

    PubMed

    Dowdall, A; Fenton, D; Rafferty, B

    2016-10-01

    Radon is the greatest source of radiation exposure to the public. In Ireland, it is estimated that approximately 7% of the national housing stock have radon concentrations above the Reference Level of 200 Bq m -3 . A radon test can be carried out to identify homes with radon levels above the Reference Level. However there is no health benefit associated with radon testing unless it leads to remediation. Surveys to establish the rate of remediation in Ireland, that is the proportion of householders who having found levels of radon above the Reference Level proceed to carry out remediation work have been carried out in 2011 and 2013. Reasons for not carrying out remediation work were also investigated. In 2015 the survey was repeated to establish the current rate of remediation and reasons for not remediating. This report presents the results of that survey. It also compiles the data from all three surveys to identify any trends over time. The rate of remediation is an important parameter in estimating the effectiveness of programmes aimed at reducing radon levels. Currently the rate of remediation is 22% and the main reasons householders gave for not remediating were not certain there is a serious risk and concern about the cost of the work. In Ireland, this figure of 22% will be now used as a baseline metric against which the effectiveness of its National Radon Control Strategy will be measured over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Radon in Ingleborough / Clapham Cave, North Yorkshire, UK.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin

    2015-04-01

    Atmospheric radon concentration was measured at Ingleborough Cave, North Yorkshire during the summer of 2004, and the autumn / winter of 2004/5. Significantly, Ingleborough Cave forms part of a larger system which includes the world famous Gaping Gill pothole. This plunges 105 m (334 ft), contains the tallest unbroken waterfall in England and one of the largest known underground chambers in the UK. Measurements were taken to assess the effects of seasonal and spatial variation, elevation and ventilation on radon concentration in Ingleborough. In this study personal dose exposures for three groups of cave user were identified, and the performance of a variety of radon detection systems evaluated. Summer radon concentrations inside the cave peaked at around 7,000 Bq m-3, although average concentrations were less than 5,000 Bq m-3. During the winter measurement period, average concentrations were around 100 Bq m-3, and a winter / summer ration therefore of 47,4. The average annual radon concentration exceeded the legislative limitations for the workplace of 400 Bq m-3 due in part to a failed fan in the ventilation system. When the fan was running we noted an 80% reduction in radon concentrations although reliability of the fan was problematic due to extensive but relatively rare flooding of the cave system. The radon dose experienced by cave workers and guides in this study exceeded the Ionisation Radiation Regulations limit of 5 mSv/annum, and highlighted that for health and safety reasons the ventilation system should be fully operational during the high radon concentration summer months. Keywords: Radon, Cave, Ingleborough, Detection methods

  7. Lung and stomach cancer associations with groundwater radon in North Carolina, USA

    PubMed Central

    Messier, Kyle P; Serre, Marc L

    2017-01-01

    Abstract Background: The risk of indoor air radon for lung cancer is well studied, but the risks of groundwater radon for both lung and stomach cancer are much less studied, and with mixed results. Methods: Geomasked and geocoded stomach and lung cancer cases in North Carolina from 1999 to 2009 were obtained from the North Carolina Central Cancer Registry. Models for the association with groundwater radon and multiple confounders were implemented at two scales: (i) an ecological model estimating cancer incidence rates at the census tract level; and (ii) a case-only logistic model estimating the odds that individual cancer cases are members of local cancer clusters. Results: For the lung cancer incidence rate model, groundwater radon is associated with an incidence rate ratio of 1.03 [95% confidence interval (CI) = 1.01, 1.06] for every 100 Bq/l increase in census tract averaged concentration. For the cluster membership models, groundwater radon exposure results in an odds ratio for lung cancer of 1.13 (95% CI = 1.04, 1.23) and for stomach cancer of 1.24 (95% CI = 1.03, 1.49), which means groundwater radon, after controlling for multiple confounders and spatial auto-correlation, increases the odds that lung and stomach cancer cases are members of their respective cancer clusters. Conclusion: Our study provides epidemiological evidence of a positive association between groundwater radon exposure and lung cancer incidence rates. The cluster membership model results find groundwater radon increases the odds that both lung and stomach cancer cases occur within their respective cancer clusters. The results corroborate previous biokinetic and mortality studies that groundwater radon is associated with increased risk for lung and stomach cancer. PMID:27639278

  8. Lung and stomach cancer associations with groundwater radon in North Carolina, USA.

    PubMed

    Messier, Kyle P; Serre, Marc L

    2017-04-01

    The risk of indoor air radon for lung cancer is well studied, but the risks of groundwater radon for both lung and stomach cancer are much less studied, and with mixed results. Geomasked and geocoded stomach and lung cancer cases in North Carolina from 1999 to 2009 were obtained from the North Carolina Central Cancer Registry. Models for the association with groundwater radon and multiple confounders were implemented at two scales: (i) an ecological model estimating cancer incidence rates at the census tract level; and (ii) a case-only logistic model estimating the odds that individual cancer cases are members of local cancer clusters. For the lung cancer incidence rate model, groundwater radon is associated with an incidence rate ratio of 1.03 [95% confidence interval (CI) = 1.01, 1.06] for every 100 Bq/l increase in census tract averaged concentration. For the cluster membership models, groundwater radon exposure results in an odds ratio for lung cancer of 1.13 (95% CI = 1.04, 1.23) and for stomach cancer of 1.24 (95% CI = 1.03, 1.49), which means groundwater radon, after controlling for multiple confounders and spatial auto-correlation, increases the odds that lung and stomach cancer cases are members of their respective cancer clusters. Our study provides epidemiological evidence of a positive association between groundwater radon exposure and lung cancer incidence rates. The cluster membership model results find groundwater radon increases the odds that both lung and stomach cancer cases occur within their respective cancer clusters. The results corroborate previous biokinetic and mortality studies that groundwater radon is associated with increased risk for lung and stomach cancer. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  9. Determination of the diffusion coefficient and solubility of radon in plastics.

    PubMed

    Pressyanov, D; Georgiev, S; Dimitrova, I; Mitev, K; Boshkova, T

    2011-05-01

    This paper describes a method for determination of the diffusion coefficient and the solubility of radon in plastics. The method is based on the absorption and desorption of radon in plastics. Firstly, plastic specimens are exposed for controlled time to referent (222)Rn concentrations. After exposure, the activity of the specimens is followed by HPGe gamma spectrometry. Using the mathematical algorithm described in this report and the decrease of activity as a function of time, the diffusion coefficient can be determined. In addition, if the referent (222)Rn concentration during the exposure is known, the solubility of radon can be determined. The algorithm has been experimentally applied for different plastics. The results show that this approach allows the specified quantities to be determined with a rather high accuracy-depending on the quality of the counting equipment, it can be better than 10 %.

  10. Residential radon and COPD. An ecological study in Galicia, Spain.

    PubMed

    Barbosa-Lorenzo, Raquel; Ruano-Ravina, Alberto; Ramis, Rebeca; Aragonés, Nuria; Kelsey, Karl T; Carballeira-Roca, Consuelo; Fernández-Villar, Alberto; López-Abente, Gonzalo; Barros-Dios, Juan M

    2017-02-01

    Radon is a human lung carcinogen but it might be linked with other respiratory diseases. We aimed to assess the relationship between residential radon exposure and COPD (chronic obstructive pulmonary disease) prevalence and hospital admissions at a municipal level. We designed an ecological study where we included those municipalities with at least three radon measurements. Using mixed Poisson regression models, we calculated the relative risk (RR) for COPD for each 100 Bq/m 3 of increase in radon concentration and also the relative risk for COPD using a cut-off point of 50 Bq/m 3 . We did not have individual data on cigarette smoking and therefore we used a proxy (bladder cancer standardized mortality rate) that has proved to account for tobacco consumption. We performed separate analyses for sex and also sensitivity analysis considering age and rurality. A total of 3040 radon measurements and 49,393 COPD cases were included. The relative risk for COPD prevalence was 0.95 (95% CI: 0.92-0.97) while for hospital admissions the RR was 1.04 (95% CI: 1.00-1.10) for each 100 Bq/m 3 . Relative risks were higher for women compared to men. Using a categorical analysis with a cut-off point of 50 Bq/m 3 , the RR for COPD prevalence was 1.06 (95% CI: 1.02-1.10) and for hospital admissions it was 1.08 (95% CI: 1.00-1.17) for women living in municipalities with more than 50 Bq/m 3 . All risks were also higher for women. No relevant differences were observed for age, rurality or other categories for radon exposure. While the influence of radon on COPD prevalence is unclear depending on the approach used, it seems that residential radon might increase the risk of hospital admissions in COPD patients. Women have a higher risk than men in all situations. Since this is an ecological study, results should be interpreted cautiously.

  11. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  12. Radon and lung cancer: a cost-effectiveness analysis.

    PubMed Central

    Ford, E S; Kelly, A E; Teutsch, S M; Thacker, S B; Garbe, P L

    1999-01-01

    OBJECTIVES: This study examined the cost-effectiveness of general and targeted strategies for residential radon testing and mitigation in the United States. METHODS: A decision-tree model was used to perform a cost-effectiveness analysis of preventing radon-associated deaths from lung cancer. RESULTS: For a radon threshold of 4 pCi/L, the estimated costs to prevent 1 lung cancer death are about $3 million (154 lung cancer deaths prevented), or $480,000 per life-year saved, based on universal radon screening and mitigation, and about $2 million (104 lung cancer deaths prevented), or $330,000 per life-year saved, if testing and mitigation are confined to geographic areas at high risk for radon exposure. For mitigation undertaken after a single screening test and after a second confirmatory test, the estimated costs are about $920,000 and $520,000, respectively, to prevent a lung cancer death with universal screening and $130,000 and $80,000 per life-year for high risk screening. The numbers of preventable lung cancer deaths are 811 and 527 for universal and targeted approaches, respectively. CONCLUSIONS: These data suggest possible alternatives to current recommendations. PMID:10076484

  13. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    PubMed

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Determination of the volume activity concentration of alpha artificial radionuclides with alpha spectrometer.

    PubMed

    Liu, B; Zhang, Q; Li, Y

    1997-12-01

    This paper introduces a method to determine the volume activity concentration of alpha and/or beta artificial radionuclides in the environment and radon/thoron progeny background-compensation based on a Si surface-barrier detector. By measuring the alpha peak counts of 218Po and 214Po in two time intervals, the activity concentration of 218Po, 214Pb and 214Bi aerosol particles were determined; meanwhile, the total beta count of 214Pb and 214Bi aerosols was also calculated from their decay scheme. With the average equilibrium factor of thoron progeny in general environment, the alpha and beta counts of thoron progeny were approximately evaluated by 212Po alpha peak counts. The alpha count of transuranic aerosols was determined by subtracting the trail counts of radon/thoron progeny alpha peaks. The total count of beta artificial radionuclides was determined by subtracting the beta counts of radon/thoron progeny aerosol particles. In our preliminary experiments, if the radon progeny concentration is less than 15 Bq m(-3), the lower limit of detection of transuranics concentration is less than 0.1 Bq m(-3). Even if the radon progeny concentration is as high as 75 Bq m(-3), the lower limit of detection of total beta activity concentration of artificial nuclides aerosols is less than 1 Bq m(-3).

  15. Evaluation of human embryonic stem cells and their differentiated fibroblastic progenies as cellular models for in vitro genotoxicity screening.

    PubMed

    Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong

    2014-08-20

    This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.

  16. Human Lung Cancer Risks from Radon – Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2012-01-01

    Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874

  17. Measurement of Radon Concentration in Selected Houses in Ibadan, Nigeria

    NASA Astrophysics Data System (ADS)

    Usikalu, M. R.; Olatinwo, V.; Akpochafor, M.; Aweda, M. A.; Giannini, G.; Massimo, V.

    2017-05-01

    Radon is a natural radioactive gas without colour or odour and tasteless. The World Health Organization (WHO) grouped radon as a human lung carcinogen. For this reason, there has been a lot of interest on the effects of radon exposure to people all over the world and Nigeria is no exception. The aim of this study is to investigate the radon concentration in selected houses in three local government areas of Ibadan. The indoor radon was measured in both mud and brick houses. Fifty houses were considered from the three Local government areas. A calibrated portable continuous radon monitor type (RAD7) manufactured by Durridge company was used for the measurement. A distance of 100 to 200 m was maintained between houses in all the locations. The living room was kept closed during the measurements. The mean radon concentration measured in Egbeda is 10.54 ±1.30 Bqm -3; Lagelu is 16.90 ± 6.31 Bqm -3 and Ona-Ara is 17.95 ± 1.72 Bqm -3. The mean value of the annual absorbed dose and annual effective dose for the locations in the three local government areas was 0.19 mSvy-1 and 0.48 mSvy-1 respectively. The radon concentration for location 10 in Ono-Ara local government exceeded the recommended limit. However, the overall average indoor radon concentration of the three local governments was found to be lower than the world average value of 40 Bqm -3. Hence, there is need for proper awareness about the danger of radon accumulation in dwelling places.

  18. 30 CFR 57.5040 - Exposure records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complete individual exposure of all mine personnel working in active working areas with radon daughter... personnel assigned to work in active working areas where radon daughter concentrations have been reduced to.... An average airborne radon daughter concentration for a designated active working area shall be...

  19. Radon in soil gas in Kosovo.

    PubMed

    Kikaj, Dafina; Jeran, Zvonka; Bahtijari, Meleq; Stegnar, Peter

    2016-11-01

    An assessment of the radiological situation due to exposure to radon and gamma emitting radionuclides was conducted in southern Kosovo. This study deals with sources of radon in soil gas. A long-term study of radon concentrations in the soil gas was carried out using the SSNTDs (CR-39) at 21 different locations in the Sharr-Korabi zone. The detectors were exposed for an extended period of time, including at least three seasonal periods in a year and the sampling locations were chosen with respect to lithology. In order to determine the concentration of the natural radioactive elements 238 U and 226 Ra, as a precursor of 222 Rn, soil samples were collected from each measuring point from a depth of 0.8 m, and measured by gamma spectrometry. The levels (Bq kg -1 ) of naturally occurring radionuclides and levels (kBq m -3 ) of radon in soil gas obtained at a depth 0.8 m of soil were: 21-53 for 226 Ra, 22-160 for 238 U and 0.295-32 for 222 Rn. With respect to lithology, the highest value for 238 U and 226 Ra were found in limestone and the highest value for 222 Rn was found in metamorphic rocks. In addition, the results showed seasonal variations of the measured soil gas radon concentrations with maximum concentration in the spring months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. RADON REDUCTION AND RADON RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK

    EPA Science Inventory

    The report covers three tasks related to indoor radon: (1) the demonstration of radon reduction techniques in 8 houses in each of two uniquely different radon prone areas of the State of New York; (2) the evaluation and repair of 14 radon mitigation systems in houses mitigated 4 ...

  1. Risk-Reduction Strategies to Expand Radon Care Planning with Vulnerable Groups

    PubMed Central

    Larsson, Laura S.

    2016-01-01

    Objectives Radon is the second leading cause of lung cancer in the United States and the leading cause of lung cancer among nonsmokers. Residential radon is the cause of approximately 21,000 U.S. lung cancer deaths each year. Dangerous levels of radon are just as likely to be found in low-rise apartments and townhomes as single-family homes in the same area. The preferred radon mitigation strategy can be expensive and requires structural modifications to the home. The public health nurse (PHN) needs a collection of low-cost alternatives when working with low-income families or families who rent their homes. Method A review of the literature was performed to identify evidence-based methods to reduce radon risk with vulnerable populations. Results Fourteen recommendations for radon risk reduction were categorized into four strategies. Nine additional activities for raising awareness and increasing testing were also included. Discussion The results pair the PHN with practical interventions and the underlying rationale to develop radon careplans with vulnerable families across housing types. The PHN has both the competence and the access to help families reduce their exposure to this potent carcinogen. PMID:24547763

  2. Distribution of radon concentrations in child-care facilities in South Korea.

    PubMed

    Lee, Cheol-Min; Kwon, Myung-Hee; Kang, Dae-Ryong; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun

    2017-02-01

    This study was conducted to provide fundamental data on the distribution of radon concentrations in child day-care facilities in South Korea and to help establish radon mitigation strategies. For this study, 230 child-care centers were randomly chosen from all child-care centers nationwide, and alpha track detectors were used to examine cumulative radon exposure concentrations from January to May 2015. The mean radon concentration measured in Korean child-care centers is approximately 52 Bq m -3 , about one-third of the upper limit of 148 Bq m -3 , which is recommended by South Korea's Indoor Air Quality Control in Public Use Facilities, etc. Act and the U.S. Environmental Protection Agency (EPA). Furthermore, this concentration is about 50% lower than 102 Bq m -3 , which is the measured concentration of radon in houses nationwide from December 2013 to February 2014. Our results indicate that the amount of ventilation, as a major determining factor for indoor radon concentrations, is strongly correlated with the fluctuation of indoor radon concentrations in Korean child-care centers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Risk-reduction strategies to expand radon care planning with vulnerable groups.

    PubMed

    Larsson, Laura S

    2014-01-01

    Radon is the second leading cause of lung cancer in the United States and the leading cause of lung cancer among nonsmokers. Residential radon is the cause of approximately 21,000 U.S. lung cancer deaths each year. Dangerous levels of radon are just as likely to be found in low-rise apartments and townhomes as single-family homes in the same area. The preferred radon mitigation strategy can be expensive and requires structural modifications to the home. The public health nurse (PHN) needs a collection of low-cost alternatives when working with low-income families or families who rent their homes. A review of the literature was performed to identify evidence-based methods to reduce radon risk with vulnerable populations. Fourteen recommendations for radon risk reduction were categorized into four strategies. Nine additional activities for raising awareness and increasing testing were also included. The results pair the PHN with practical interventions and the underlying rationale to develop radon careplans with vulnerable families across housing types. The PHN has both the competence and the access to help families reduce their exposure to this potent carcinogen. © 2014 Wiley Periodicals, Inc.

  4. Relative performance of different types of passive dosimeters employing solid state nuclear track detectors.

    PubMed

    Jamil, K; Al-Ahmady, K K; Fazal-ur-Rehman; Ali, S; Qureshi, A A; Khan, H A

    1997-10-01

    Radon and its progeny, known to be carcinogenic, are a matter of great concern in underground mines and energy conserved air-tight houses. Different shapes of dosimeters using solid state nuclear track detectors (SSNTDs) have been devised to measure radon concentrations in mines and dwellings. Sometimes intercomparison of results is required by various laboratories working with solid state nuclear track detector-based passive dosimeters. The present work includes the determination of various parameters for a set of dosimeters consisting of (1) box-type, (2) pen-type, (3) tube-type, (4) Karlsruhe Diffusion Chamber, and (5) bare-type dosimeters. In this research two types of plastics, allyl-diglycol-carbonate (C12H18O7) and cellulose nitrate (C6H8O8N2) known as CR-39 and CN-85, respectively, have been employed. The detection efficiency for alpha particles from radon and its progeny for CR-39 and CN-85 have been compared. All experiments have been carried out in a custom-designed exposure chamber connected to a radon source. The calibration factors, in terms of Bq m(-3) per unit track density (1.0 cm(-2)) with respect to box-type dosimeter, have been determined for intercomparison and standardization of measured radon concentrations by a set of passive radon dosimeters used in various laboratories of the world.

  5. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ajay, E-mail: ajay782@rediffmail.com; Sharma, Sumit, E-mail: sumitshrm210@gmail.com

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEARmore » [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].« less

  6. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  7. The April 1994 and October 1994 radon intercomparisons at EML

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Perry, P.M.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities andmore » foreign institutions participated in these exercises. The majority of the participant`s results were within {+-}10% of the EML value at radon concentrations of 570 and 945 Bq m{sup {minus}3}.« less

  8. Radon Levels in Nurseries and Primary Schools in Bragança District-Preliminary Assessment.

    PubMed

    Sousa, S I V; Branco, P T B S; Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G

    2015-01-01

    Lung cancer has been associated with radon concentration even at low levels such as those found in dwellings. This study aimed to (i) determine radon diurnal variations in three nurseries and one primary school in the Bragança district (north of Portugal) and (ii) compare radon concentrations with legislated standards and assess the legislated procedures. Radon was measured in three nurseries and a primary school in a rural area with nongranite soil. Measurements were performed continuously to examine differences between occupation and nonoccupation periods. Indoor temperature and relative humidity were also measured continuously. A great variability was found in radon concentrations between the microenvironments examined. Radon concentrations surpassed by severalfold the recommended guidelines and thresholds, and excessive levels of health concern were sporadically found (361.5-753.5 Bq m(-3)). Thus, it is of importance to perform a national campaign on radon measurements and to reduce exposure.

  9. Residential radon and environmental burden of disease among Non-smokers.

    PubMed

    Noh, Juhwan; Sohn, Jungwoo; Cho, Jaelim; Kang, Dae Ryong; Joo, Sowon; Kim, Changsoo; Shin, Dong Chun

    2016-01-01

    Lung cancer was the second highest absolute cancer incidence globally and the first cause of cancer mortality in 2014. Indoor radon is the second leading risk factor of lung cancer after cigarette smoking among ever smokers and the first among non-smokers. Environmental burden of disease (EBD) attributable to residential radon among non-smokers is critical for identifying threats to population health and planning health policy. To identify and retrieve literatures describing environmental burden of lung cancer attributable to residential radon, we searched databases including Ovid-MEDLINE, -EMBASE from 1980 to 2016. Search terms included patient keywords using 'lung', 'neoplasm', exposure keywords using 'residential', 'radon', and outcomes keywords using 'years of life lost', 'years of life lost due to disability', 'burden'. Searching through literatures identified 261 documents; further 9 documents were identified using manual searching. Two researchers independently assessed 271 abstracts eligible for inclusion at the abstract level. Full text reviews were conducted for selected publications after the first assessment. Ten studies were included in the final evaluation. Global disability-adjusted life years (DALYs)(95 % uncertainty interval) for lung cancer were increased by 35.9 % from 23,850,000(18,835,000-29,845,000) in 1900 to 32,405,000(24,400,000-38,334,000) in 2000. DALYs attributable to residential radon were 2,114,000(273,000-4,660,000) DALYs in 2010. Lung cancer caused 34,732,900(33,042,600 ~ 36,328,100) DALYs in 2013. DALYs attributable to residential radon were 1,979,000(1,331,000-2,768,000) DALYs for in 2013. The number of attributable lung cancer cases was 70-900 and EBD for radon was 1,000-14,000 DALYs in Netherland. The years of life lost were 0.066 years among never-smokers and 0.198 years among ever-smoker population in Canada. In summary, estimated global EBD attributable to residential radon was 1,979,000 DALYs for both sexes in 2013

  10. The radon indicator

    NASA Astrophysics Data System (ADS)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  11. The effectiveness of mitigation for reducing radon risk in single-family Minnesota homes.

    PubMed

    Steck, Daniel J

    2012-09-01

    Increased lung cancer incidence has been linked with long-term exposure to elevated residential radon. Experimental studies have shown that soil ventilation can be effective in reducing radon concentrations in single-family homes. Most radon mitigation systems in the U.S. are installed by private contractors. The long-term effectiveness of these systems is not well known, since few state radon programs regulate or independently confirm post-mitigation radon concentrations. The effectiveness of soil ventilation systems in Minnesota was measured for 140 randomly selected clients of six professional mitigators. Homeowners reported pre-mitigation radon screening concentrations that averaged 380 Bq m (10.3 pCi L). Long term post-mitigation radon measurements on the two lowest floors show that, even years after mitigation, 97% of these homes have concentrations below the 150 Bq m U.S. Environmental Protection Agency action level. The average post-mitigation radon in the houses was 30 Bq m, an average observed reduction of >90%. If that reduction was maintained over the lifetime of the 1.2 million Minnesotans who currently reside in single-family homes with living space radon above the EPA action level, approximately 50,000 lives could be extended for nearly two decades by preventing radon-related lung cancers.

  12. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue{trademark} transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, A.D.; Cross, F.T.; Steigler, G.L.

    1994-12-31

    We have exposed Big Blue{trademark} transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80{degrees}C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of themore » mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure.« less

  13. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  14. Epistemic assessment of radon level of offices in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, L. T.; Mui, K. W.; Law, K. Y.; Hui, P. S.

    People spend most of their life working indoors. Human exposure to various air pollutants changed its importance in nature from outdoor to indoor. As some of the pollutant sources basically originate from the building envelope that could not be removed or is costly to mitigate, the remaining questions are: how the indoor air quality (IAQ) is monitored and how the information could be used for the environmental control system to achieve the best air quality delivery. Indoor radon level could be measured with a number of sampling approaches and used to determine the acceptance of an IAQ with respect to certain exposure limits. In determining the acceptable IAQ of a space, this study proposes that the measured indoor radon level must be accompanied with the confidence levels of the assessment. Radon levels in Hong Kong offices were studied by a cross-sectional measurement in 216 typical offices and a year-round longitudinal measurement in one office. The results showed that 96.5% (94.0-99.0% at 95% confidence interval) and 98.6% (97.0% to >99.9% at 95% confidence interval) of the sampled offices would satisfy action radon levels of 150 and 200 Bq m -3, respectively. The same results were then used to quantify the prior knowledge on radon level distributions of an office and the probable errors of the adopted sampling schemes. This study proposes an epistemic approach, with the prior knowledge and a sample test result, to assess the acceptance against an action radon level of an office in Hong Kong. With the certainty of the test results determined for judgmental purposes, it is possible to apply the method to an office for follow-up tests of acceptance.

  15. A radon daughter deposition model for low background experiments

    NASA Astrophysics Data System (ADS)

    Rielage, K.; Guiseppe, V. E.; Mastbaum, A.; Elliott, S. R.; Hime, A.

    2009-05-01

    The next generation low-background detectors operating underground, such as dark matter searches and neutrinoless double-beta decay, aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly ^222Rn) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of ^210Pb on sensitive locations of a detector. An understanding of the potential surface contamination will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of daughters onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon daughters on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model will be presented.

  16. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Politański, Piotr; Zmyślony, Marek

    2017-07-14

    Radon concentrations for 31 Polish underground tourist routes were analyzed. The equivalent dose to the lung, the effective dose and the relative risk were calculated for employees of the analyzed routes on the grounds of information on radon concentrations, work time, etc. The relative risk for lung cancers was calculated using the Biological Effects of Ionizing Radiation (BEIR) VI Committee model. Equivalent doses to the lungs of workers were determined using the coefficients calculated by the Kendall and Smith. The conversion coefficient proposed by the International Atomic Energy Agency (IAEA) in the report No. 33 was used for estimating the effective doses. In 13 routes, the effective dose was found to be above 1 mSv/year, and in 3 routes, it exceeded 6 mSv/year. For 5 routes, the equivalent dose to lungs was higher than 100 mSv/year, and in 1 case it was as high as 490 mSv/year. In 22.6% of underground workplaces the risk of developing lung cancer among employees was about 2 times higher than that for the general population, and for 1 tourist route it was about 5 times higher. The geometric mean of the relative risk of lung cancer for all workers of underground tourist routes was 1.73 (95% confidence interval (CI): 1.6-1.87). Routes were divided into: caves, mines, post-military underground constructions and urban underground constructions. The difference between levels of the relative risk of developing lung cancer for all types of underground tourist routes was not found to be significant. If we include the professional group of the employees of underground tourist routes into the group of occupational exposure, the number of persons who are included in the Category A due to occupational exposure may increase by about 3/4. The professional group of the employees of underground tourist routes should be monitored for their exposure to radon. Int J Occup Med Environ Health 2017;30(5):687-694. This work is available in Open Access model and licensed under a CC

  17. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    PubMed

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  18. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  19. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  20. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  1. Radon

    Cancer.gov

    Learn about radon, which can raise your risk of lung cancer. Radon gas usually exists at very low levels outdoors, but the gas can accumulate in areas without adequate ventilation, such as underground mines or residential basements.

  2. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10-6 and 3.6 x 10-5 M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals. PMID:26125595

  3. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca; Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2; Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentarymore » or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation.

  4. United role of radon decay products and nano-aerosols in radon dosimetry

    NASA Astrophysics Data System (ADS)

    Smerajec, M.; Vaupotič, J.

    2012-04-01

    The major part of human exposure to natural radiation originates from inhalation of radon (Rn) and radon short-lived decay products (RnDP: 218Po, 214Pb, 214Bi and 214Po). RnDP are formed as a result of α-transformation of radon. In the beginning they are positive ions which neutralize and form clusters with air molecules, and later partly attach to background aerosol particles in indoor air. Eventually, they appear as radioactive nano-aerosols with a bimodal size distribution in ranges of 1-10 nm (unattached RnDP) and of 200-800 nm (attached RnDP). When inhaled, they are deposited in the respiratory tract. Deposition is more efficient for smaller particles. Therefore, the fraction (fun) of the unattached RnDP, which appears to be influenced by the number concentration and size distribution of general (background) aerosols in the ambient air, has a crucial role in radon dosimetry. Radon, radon decay products and general aerosols have been monitored simultaneously in the kitchen of a typical rural house under real living conditions, also comprising four human activities generating particular matter: cooking and baking, as two typical activities in kitchen, and cigarette smoking and candle burning. In periods without any human activity, the total number concentration of general aerosol ranged from 1000 to 3000 cm-3,with the geometric mean of particle diameter in the range of 60-68 nm and with 0.1-1 % of particles smaller than 10 nm. Preparation of coffee changed the concentration to 193,000 cm-3, the geometric mean of diameter to 20 nm and fraction of particles smaller than 10 nm to 11 %. The respective changes were for baking cake: 503,000 cm-3, 17 nm and 19 %, for smoking:423,000 cm-3, 83 nm and 0.4 %, and forcandle burning: 945,000 cm-3, 8 nm and 85 %. While, as expected, a reduction of fun was observed during cooking, baking and smoking, when larger particles were emitted, fun did not increase during candle burning with mostly particles smaller than 10 nm

  5. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.

    PubMed

    Gerstein, Aleeza C; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L; Fraser, James A; Berman, Judith; Nielsen, Kirsten

    2015-10-13

    Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions. Copyright © 2015 Gerstein et al.

  6. Current knowledge on radon risk: implications for practical radiation protection? radon workshop, 1/2 December 2015, Bonn, BMUB (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety).

    PubMed

    Müller, Wolfgang-Ulrich; Giussani, Augusto; Rühm, Werner; Lecomte, Jean-Francois; Harrison, John; Kreuzer, Michaela; Sobotzki, Christina; Breckow, Joachim

    2016-08-01

    ICRP suggested a strategy based on the distinction between a protection approach for dwellings and one for workplaces in the previous recommendations on radon. Now, the Commission recommends an integrated approach for the protection against radon exposure in all buildings irrespective of their purpose and the status of their occupants. The strategy of protection in buildings, implemented through a national action plan, is based on the application of the optimisation principle below a derived reference level in concentration (maximum 300 Bq m(-3)). A problem, however, arises that due to new epidemiological findings and application of dosimetric models, ICRP 115 (Ann ICRP 40, 2010) presents nominal probability coefficients for radon exposure that are approximately by a factor of 2 larger than in the former recommendations of ICRP 65 (Ann ICRP 23, 1993). On the basis of the so-called epidemiological approach and the dosimetric approach, the doubling of risk per unit exposure is represented by a doubling of the dose coefficients, while the risk coefficient of ICRP 103 (2007) remains unchanged. Thus, an identical given radon exposure situation with the new dose coefficients would result in a doubling of dose compared with the former values. This is of serious conceptual implications. A possible solution of this problem was presented during the workshop.

  7. Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon

    MedlinePlus

    ... Radon: The Guide to Protecting Yourself and Your Family from Radon Contains basic information about Radon in ... Radon Zones and State Contact Information Individuals and Families Radon Publications Home Buyers and Sellers Builders and ...

  8. Radon in ground water: A study of the measurement and release of waterborne radon and modeling of radon variation in bedrock wells

    NASA Astrophysics Data System (ADS)

    Guiseppe, Vincente E.

    Naturally occurring radon gas (222Rn) exists in ground water and drinking water supplies. Research involving radon in ground water requires the ability to accurately measure radon in water. In the absence of a national program, an intercomparison study of laboratories was sanctioned by the State of Maine. The University of Maine research laboratory supplied each laboratory with water samples of various radon concentrations, served as the reference laboratory, and analyzed the results presented here. The external review of the University of Maine laboratory and agreement with some of the participating laboratories verifies its accuracy in measuring radon in water. A study of nine elementary schools in Maine examined the release of waterborne radon during water use. The release of radon into the kitchen air was measured to be greater than the EPA action level of 0.150 Bq L -1 (4 pCi L-1) in all schools but negligible concentrations of radon were found in adjacent classrooms. In two schools over a three-fold spatial radon variation was measured suggesting that multiple detectors are needed to accurately measure waterborne radon in air. During water use, the radon in water concentration was measured periodically and many of the schools showed an increase in the radon concentration by 200 BqL-1 or more. To explore this effect, nine bedrock wells were studied in detail. Measurements of the ambient and purged radon profiles in the wells showed variations of radon concentration of samples within the well. The rock chips removed during well-drilling were analyzed for radionuclides in the 238U decay series. The 226Ra concentrations in the rock chips do not explain the measured vertical variation of dissolved radon. The vertical flow and fracture locations were previously determined by borehole logging to determine location of ground water inflow. A mathematical model of the ground-water flow into and through the well with radon as a tracer was tested. The model was

  9. Internal exposure from building materials exhaling (222)Rn and (220)Rn as compared to external exposure due to their natural radioactivity content.

    PubMed

    Ujić, Predrag; Celiković, Igor; Kandić, Aleksandar; Vukanac, Ivana; Durasević, Mirjana; Dragosavac, Dusan; Zunić, Zora S

    2010-01-01

    The main scope of this paper is to point out the importance of introducing radon and thoron exhalation measurements from building materials in the regulating frame. Currently (2009), such a regulation of this kind of exposure is not explicitly included in the Serbian regulating network. To this end, this work reports concentration measurements of (226)Ra, (232)Th and (40)K and radon and thoron exhalation rates from building materials used in Serbia. Following detailed analysis, it was noticed that both internal exposures to radon and/or thoron exhaling from building materials may exceed external exposures to their precursors contained therein.

  10. Experimental assessment of indoor radon and soil gas variability: the RADON project

    NASA Astrophysics Data System (ADS)

    Barbosa, S. M.; Pereira, A. J. S. C.; Neves, L. J. P. F.; Steinitz, G.; Zafrir, H.; Donner, R.; Woith, H.

    2012-04-01

    Radon is a radioactive noble gas naturally present in the environment, particularly in soils derived from rocks with high uranium content. Radon is formed by alpha decay from radium within solid mineral grains, but can migrate via diffusion and/or advection into the air space of soils, as well as into groundwater and the atmosphere. The exhalation of radon from the pore space of porous materials into the atmosphere of indoor environments is well known to cause adverse health effects due to the inhalation of radon's short-lived decay products. The danger to human health is particularly acute in the case of poorly ventilated dwellings located in geographical areas of high radon potential. The RADON project, funded by the Portuguese Science Foundation (FCT), aims to evaluate the temporal variability of radon in the soil and atmosphere and to examine the influence of meteorological effects in radon concentration. For that purpose an experimental monitoring station is being installed in an undisturbed dwelling located in a region of high radon potential near the old uranium mine of Urgeiriça (central Portugal). The rationale of the project, the set-up of the experimental radon monitoring station, and preliminary monitoring results will be presented.

  11. Radon in Schools

    MedlinePlus

    ... Radon Measurement in Schools Radon Prevention in the Design and Construction of Schools and Other Large Buildings ( ... techniques and quality assurance to address complicated building designs and specialized airflow. Protocols for Measuring Radon and ...

  12. Preliminary Experiments Using a Passive Detector for Measuring Indoor 220Rn Progeny Concentrations with an Aerosol Chamber.

    PubMed

    Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo

    2015-06-01

    This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.

  13. A DISCUSSION ON DIFFERENT APPROACHES FOR ASSESSING LIFETIME RISKS OF RADON-INDUCED LUNG CANCER.

    PubMed

    Chen, Jing; Murith, Christophe; Palacios, Martha; Wang, Chunhong; Liu, Senlin

    2017-11-01

    Lifetime risks of radon induced lung cancer were assessed based on epidemiological approaches for Canadian, Swiss and Chinese populations, using the most recent vital statistic data and radon distribution characteristics available for each country. In the risk calculation, the North America residential radon risk model was used for the Canadian population, the European residential radon risk model for the Swiss population, the Chinese residential radon risk model for the Chinese population, and the EPA/BEIR-VI radon risk model for all three populations. The results were compared with the risk calculated from the International Commission on Radiological Protection (ICRP)'s exposure-to-risk conversion coefficients. In view of the fact that the ICRP coefficients were recommended for radiation protection of all populations, it was concluded that, generally speaking, lifetime absolute risks calculated with ICRP-recommended coefficients agree reasonably well with the range of radon induced lung cancer risk predicted by risk models derived from epidemiological pooling analyses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    PubMed

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental

  15. Radon Detection and Counting

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2004-11-01

    One of the daughter products of the naturally occuring U 238 decay chain is the colorless, odorless, inert gas radon. The daughter products of the radon, from Po 218 through Po 214, can remain in the lungs after breathing radon that has diffused into the atmosphere. Radon testing of homes before sale or purchase is necessary in many parts of the U.S. Testing can be accomplished by the simple procedure of exposing a canister of activated charcoal to the ambient air. Radon atoms in the air are adsorbed onto the surface of the charcoal, which is then sealed in the canister. Gamma rays of the daughter products of the radon, in particular Pb 214 and Bi 214, can then be detected in low background counting system. Radon remediation procedures are encouraged for radon activities in the air greater than 4 pCi/L.

  16. Map showing radon potential of rocks and soils in Fairfax County, Virginia

    USGS Publications Warehouse

    Otton, James K.; Schumann, R. Randall; Owen, Douglass E.; Thurman, Nelson; Duval, Joseph S.

    1988-01-01

    Since 1984, indoor radon has gained national attention as a significant health hazard in the United States. Radon is a colorless, odorless, radioactive gas derived from uranium by radioactive decay. The U.S. Environmental Protection Agency (EPA) now projects that 5,000 to 20,000 lung-cancer deaths per year may be attributed to the long-term exposure to indoor radon and its radioactive decay products. Indoor radon has been previously recognized as a health hazard associated with uranium-bearing mill tailings or building materials, but it was not until December 1984 that some natural soils and rocks were found to be sources of indoor radon at levels comparable to those in uranium mines. It is now suspected that elevated indoor radon levels are far more widespread than initially though. The EPA considers 4 picoCuries of radon per liter of air (pCi/L) as the level (in a year-round measurement) at which actions ought to be taken to lower the concentration of indoor radon. All soils and rocks contain measurable amounts of uranium, which generate measurable amounts of radon. Certain soils and rocks, however, have a greater potential to cause indoor radon problems than others because (1) they have a higher uranium content and thus can generate higher levels of radon in soil gas (gas that occupies the pores of the soil), and (2) the permeability of the sol or rack is sufficiently high that radon-bearing soil gas can flow freely and move indoors through the foundation of the structure. This study was designed to demonstrate the correlation between the geologic environment and indoor radon levels and to demonstrate a method of assessment that could be used by other informed workers in areas of their interest. A parallel study by Gundersen and others (1988) of the radon potential of rocks and soils in Montgomery County, Md., used somewhat different methods of assessment because the data available for and assessment of Montgomery County differed.

  17. Circular RNA profiles in mouse lung tissue induced by radon.

    PubMed

    Pei, Weiwei; Tao, Lijing; Zhang, Leshuai W; Zhang, Shuyu; Cao, Jianping; Jiao, Yang; Tong, Jian; Nie, Jihua

    2017-04-07

    Radon is a known human lung carcinogen, whose underlying carcinogenic mechanism remains unclear. Recently, circular RNA (circRNA), a class of endogenous non-protein coding RNAs that contain a circular loop, was found to exhibit multiple biological effects. In this study, circRNA profiles in mouse lung tissues between control and radon exposure were analyzed. Six mice were exposed to radon at concentration of 100,000 Bq/m 3 , 12 h/d, for up to cumulative doses of 60 working level months (WLM). H&E staining and immunohistochemistry of caspase-3 were used to detect the damages in lung tissue. The lung tissue of control and exposed group were selected for circRNA microarray study. The circRNA/microRNA interaction was analyzed by starBase prediction software. 5 highest expressing circRNAs were selected by real-time PCR to validate the consistency in mouse lung tissue exposed to radon. Inflammatory reaction was found in mouse lung tissue exposed to radon, and caspase-3 expression was significantly increased. Microarray screening revealed 107 up-regulated and 83 down-regulated circRNAs, among which top 30 circRNAs with the highest fold changes were chosen for further analysis, with 5 microRNAs binding sites listed for each circRNA. Consistency of the top 5 circRNAs with the highest expressions were confirmed in mice exposed with 60WLM of radon. Mouse lung tissue was severely injured when exposed to radon through pathological diagnosis and immunohistochemical analysis. A series of differentially expressed circRNAs demonstrated that they may play an important role in pulmonary toxicity induced by radon.

  18. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas.

    PubMed

    2002-06-05

    This paper reports the results of the United Kingdom Childhood Cancer Study relating to risks associated with radon concentrations in participants homes at the time of diagnosis of cancer and for at least 6 months before. Results are given for 2226 case and 3773 control homes. No evidence to support an association between higher radon concentrations and risk of any of the childhood cancers was found. Indeed, evidence of decreasing cancer risks with increasing radon concentrations was observed. Adjustment for deprivation score for area of residence made little difference to this trend and similar patterns were evident in all regions and in all diagnostic groups. The study suggests that control houses had more features, such as double glazing and central heating, leading to higher radon levels than case houses. Further, case houses have features more likely to lead to lower radon levels, e.g. living-rooms above ground level. Consequently the case-control differences could have arisen because of differences between houses associated with deprivation that are not adequately allowed for by the deprivation score. Copyright 2002 Cancer Research UK

  19. Radioecological aftermath: Maternal transfer of anthropogenic radionuclides to shark progeny is sustained and enhanced well beyond maternal exposure.

    PubMed

    Jeffree, Ross A; Oberhaensli, Francois; Teyssie, Jean-Louis; Fowler, Scott W

    2018-05-25

    Cartilaginous dogfish Scyliorhinus canicula continued to transfer four anthropogenic radionuclides ( 65 Zn, 60 Co, 134 Cs and 241 Am) to their eggs for over six months, after two months of continued maternal exposure to radio-labelled food. Unexpectedly, rates of radionuclide transfers to eggs and their yolk & embryo during maternal depuration were equivalent for 60 Co and 241 Am, or even enhanced for 65 Zn and 134 Cs by factors of c.200-350%, over two-three months, compared to their maximal transfer rates at the end of the maternal uptake phase. These rates of maternal transfer of radionuclides to yolk & embryo were positively associated with their previously determined efficiencies of assimilation (AE) from ingested radio-labelled food. Thus progeny may be more exposed via maternal transfer to those radionuclides which have greater rates of maternal assimilation from food. As maternal depuration continued beyond 60-80 up to 180-200 days the transfers of all four radionuclides to eggs did diminish but were still substantial at mean values of 18% for 241 Am, 17% for 134 Cs and 9 and 8% for 60 Co and 65 Zn, respectively. In the yolk & embryo the mean rates of transfer over this period were further reduced for 241 Am (13.5%), 60 Co (2.5%) and 65 Zn (5.8%), but were still appreciable for 134 Cs at 56%. These results for S. canicula have demonstrated a potential enhanced radiological risk of extended duration due to the particular biokinetics of maternal transfer in this species. This study draws further attention to the current paucity of knowledge about the maternal: progeny transfer pathway, particularly in the context of the known heightened radio-sensitivity of early life stages in fish and other vertebrates, compared to later life stages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Estimating the burden of lung cancer and the efficiency of home radon mitigation systems in some Canadian provinces.

    PubMed

    Al-Arydah, Mo'tassem

    2018-06-01

    Lung cancer (LC) is the leading cause of death of cancer in Canada in both men and women, and indoor radon is the second leading cause of LC after tobacco smoking. The Population Attributable Risk (PAR) is used to assess radon exposure risk. In this work we estimate the burden of LC in some Canadian provinces. We use the PAR to identify the radon levels responsible for most LC cases. Finally, we use the PAR function of the two variables, radon action and target levels, to search for a possible optimal mitigation program. The LC burden for Ontario, Alberta, Manitoba, Quebec and British Columbia was estimated using provincial radon and mortality data. Then the PAR and LC cases for these provinces were estimated over the period 2006-2009 at different given indoor radon exposure levels. Finally, the PAR function when radon action levels and radon target levels are variables was analyzed. The highest burden of LC in 2006-2009 was in Ontario and Quebec. During the period 2006-2009, 6% of houses in Ontario, 9% of houses in Alberta, 19% of houses in Manitoba, 7% of houses in Quebec, and 5% of houses in British Columbia had radon levels higher than 200 Bq/m 3 and were responsible about 913, 211, 260, 972, and 258 lives, respectively. Radon mitigation programs could have prevented these LC cases. The BEIR VI assumption for the United States (US) population, 95% of LC deaths in men and 90% of LC deaths in women are Ever-Smokers (ES), can be applied to the Canadian population. The PAR is a linear function in the target radon value with an estimated slope of 0.0001 for Ontario, Alberta, Quebec and British Columbia, and 0.0004 for Manitoba. The PAR is almost a square root function in the radon action level. The PAR is sensitive to changes in the radon mitigation program and as such, any improvement is a worthwhile investment. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Compact anti-radon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajt, L.; Kouba, P.; Mamedov, F.

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  2. Radon assay and purification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simgen, Hardy

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  3. Radon assay and purification techniques

    NASA Astrophysics Data System (ADS)

    Simgen, Hardy

    2013-08-01

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive 222Rn-daughters and the question of gas purification from radon is addressed.

  4. Mated Progeny Production Is a Biomarker of Aging in Caenorhabditis elegans

    PubMed Central

    Pickett, Christopher L.; Dietrich, Nicholas; Chen, Junfang; Xiong, Chengjie; Kornfeld, Kerry

    2013-01-01

    The relationships between reproduction and aging are important for understanding the mechanisms of aging and evaluating evolutionary theories of aging. To investigate the effects of progeny production on reproductive and somatic aging, we conducted longitudinal studies of Caenorhabditis elegans hermaphrodites. For mated wild-type animals that were not sperm limited and survived past the end of the reproductive period, high levels of cross-progeny production were positively correlated with delayed reproductive and somatic aging. In this group of animals, individuals that generated more cross progeny also reproduced and lived longer than individuals that generated fewer cross progeny. These results indicate that progeny production does not accelerate reproductive or somatic aging. This longitudinal study demonstrated that cumulative cross progeny production through day four is an early-stage biomarker that is a positive predictor of longevity. Furthermore, in mated animals, high levels of early cross progeny production were positively correlated with high levels of late cross progeny production, indicating that early progeny production does not accelerate reproductive aging. The relationships between progeny production and aging were further evaluated by comparing self-fertile hermaphrodites that generated relatively few self progeny with mated hermaphrodites that generated many cross progeny. The timing of age-related somatic degeneration was similar in these groups, suggesting progeny production does not accelerate somatic aging. These studies rigorously define relationships between progeny production, reproductive aging, and somatic aging and identify new biomarkers of C. elegans aging. These results indicate that some mechanisms or pathways control age-related degeneration of both reproductive and somatic tissues in C. elegans. PMID:24142929

  5. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation.

    PubMed

    Buonanno, Manuela; de Toledo, Sonia M; Azzam, Edouard I

    2011-01-01

    An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.

  6. The use of mapped geology as a predictor of radon potential in Norway.

    PubMed

    Watson, Robin J; Smethurst, Mark A; Ganerød, Guri V; Finne, Ingvild; Rudjord, Anne Liv

    2017-01-01

    Radon exposure is considered to cause several hundred fatalities from lung-cancer each year in Norway. A national map identifying areas which are likely to be exposed to elevated radon concentrations would be a useful tool for decision-making authorities, and would be particularly important in areas where only few indoor radon measurements exist. An earlier Norwegian study (Smethurst et al. 2008) produced radon hazard maps by examining the relationship between airborne gamma-ray spectrometry, bedrock and drift geology, and indoor radon. The study was limited to the Oslo region where substantial indoor radon and airborne equivalent uranium datasets were available, and did not attempt to test the statistical significance of relationships, or to quantify the confidence of its predictions. While it can be anticipated that airborne measurements may have useful predictive power for indoor radon, airborne measurement coverage in Norway is at present sparse; to provide national coverage of radon hazard estimates, a good understanding of the relationship between geology and indoor radon is therefore important. In this work we use a new enlarged (n = 34,563) form of the indoor radon dataset with national coverage, and we use it to examine the relationship between geology and indoor radon concentrations. We use this relationship to characterise geological classes by their radon potential, and we produce a national radon hazard map which includes confidence limits on the likelihood of areas having elevated radon concentrations, and which covers the whole of mainland Norway, even areas where little or no indoor radon data are available. We find that bedrock and drift geology classes can account for around 40% of the total observed variation in radon potential. We test geology-based predictions of RP (radon potential) against locally-derived estimates of RP, and produce classification matrices with kappa values in the range 0.37-0.56. Our classifier has high predictive value

  7. [Assessment of radon-induced health risk for occupants of a house built on uranium ore residue].

    PubMed

    Cléro, E; Marie, L; Challeton-De Vathaire, C; Laurier, D; Rannou, A

    2016-09-01

    At the request of French public authorities, the Institute of Radiological Protection and Nuclear Safety has assessed the radiological situation of a house built on uranium ore residues in Haute-Vienne and the health risks induced from exposure to radon for all occupants. Classified as a lung carcinogen by the World Health Organization, radon is a proven cause of lung cancer in case of regular inhalation over a long period, and the risk increases with cumulative exposure. Radon exposure was reconstructed for various standard profiles of house occupancy. A risk model derived from a European epidemiological study was used to calculate the lifetime probability of death from lung cancer according to these standard profiles. Risk assessment of the occupants of the house highlighted the following main findings. For a resident school child having been exposed to radon from birth to the age of 7, the lifetime relative risk (LRR) was estimated at 5. For last adult and young adult residents having lived more than 10years in the house, the probability of death from lung cancer was in the same order of magnitude as that of a regular cigarette smoker, with a LRR from 10 to 13 and a lifetime probability of death from lung cancer between 3 and 4%. If these individuals smoked regularly, in addition to being exposed to radon, this probability would be between 6 and 32% (supposing an additive or multiplicative interaction). For former occupants (non-smokers) having been exposed 10years during childhood, the LRR was two-fold lower. For children having been in day care in the house, the increased probability of death from lung cancer was low, with a LRR lower than 2. Supposing, as in adults, that the risk decreases beyond 30years after the end of radon exposure, the increase was almost zero for former occupants exposed during childhood and during day care, with a LRR close to 1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Exposure to radon in the Gadime Cave, Kosovo.

    PubMed

    Bahtijari, M; Vaupotic, J; Gregoric, A; Stegnar, P; Kobal, I

    2008-02-01

    Air radon concentration was measured in summer and winter at 11 points along the tourist guided route in the Gadime Cave in Kosovo using alpha scintillation cells and etched track detectors. At two points in summer, values higher than 1700Bqm(-3) were observed; they otherwise were in the range 400-1000Bqm(-3). Values were lower in winter. The effective dose received by a person during a 90min visit is 3.7microSv in summer and 2.5microSv in winter. For a tourist guide the annual effective dose is less than 3.5mSv.

  10. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  11. Is there any interaction between domestic radon exposure and air pollution from traffic in relation to childhood leukemia risk?

    PubMed

    Bräuner, Elvira Vaclavik; Andersen, Claus E; Andersen, Helle P; Gravesen, Peter; Lind, Morten; Ulbak, Kaare; Hertel, Ole; Schüz, Joachim; Raaschou-Nielsen, Ole

    2010-11-01

    In a recent population-based case-control study using 2,400 cases of childhood cancer, we found a statistically significant association between residential radon and acute lymphoblastic leukemia risk. Traffic exhaust in the air enhances the risk association between radon and childhood leukemia. We included 985 cases of childhood leukemia and 1,969 control children. We used validated models to calculate residential radon and street NO(x) concentrations for each home. Conditional logistic regression analyses were used to analyze the effect of radon on childhood leukemia risk within different strata of air pollution and traffic density. The relative risk for childhood leukemia in association with a 10(3) Bq/m(3)-years increase in radon was 1.77 (1.11, 2.82) among those exposed to high levels of NO(x) and 1.23 (0.79, 1.91) for those exposed to low levels of NO(x) (p(interaction,) 0.17). Analyses for different morphological subtypes of leukemia and within different strata of traffic density showed a non-significant pattern of stronger associations between radon and childhood leukemia within strata of higher traffic density at the street address. Air pollution from traffic may enhance the effect of radon on the risk of childhood leukemia. The observed tendency may also be attributed to chance.

  12. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    PubMed Central

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Conclusions Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon

  13. Measurement of radon concentration in water using the portable radon survey meter.

    PubMed

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be <20 %, when the radon concentration in the mineral water was >20 Bq l(-1).

  14. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  15. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    PubMed

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  16. Loss of Telomeres in the Progeny of Human Lymphocytes Exposed to Energetic Heavy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F.A.; George, K.; Durante, M.

    2006-01-01

    We have used cross-species multi-color banding (RxFISH) combined with telomere FISH probes, to measure chromosomal aberrations in the progeny of human peripheral blood lymphocytes exposed to ionizing radiation. Accelerated iron particles (energy 1 GeV/nucleon) induced many more terminal deletions than the same dose of gamma-rays. We found that truncated chromosomes without telomeres could be transmitted for at least three cell cycles following exposure, and represented about 10% of all aberrations observed in the progeny of cells exposed to iron ions. High energy heavy ions generate the most significant health risk for human space exploration and the results suggest that telomere loss may be the leading mechanism for their high efficiency in the induction of late effects.

  17. Preliminary results from an indoor radon thoron survey in Hungary.

    PubMed

    Szeiler, G; Somlai, J; Ishikawa, T; Omori, Y; Mishra, R; Sapra, B K; Mayya, Y S; Tokonami, S; Csordás, A; Kovács, T

    2012-11-01

    More than half of the radiation dose of natural origin comes from radon. However, according to some surveys in certain cases, the radiation dose originating from thoron may be considerable. Among the factors disturbing the measurement of radon, the presence of thoron may also influence the measured radon value, making the estimated radiation exposure imprecise. Thoron has previously been surveyed, mainly in Asia; however, recent surveys for some European locations have found that significant thoron concentrations also need to be considered. In this survey, several types of commercially available SSNTDs (solid-state nuclear track detectors) capable of measuring both radon and thoron were placed at the same time in 73 houses and 7 workplaces in Hungary with 3-month exposition periods. In order to measure thoron, the distance of the detector sets was fixed as 15-20 cm from the walls. The radon concentration was measured with five types of SSNTDs: NRPB, NRPB SSI, Raduet, DTPS and DRPS. The first four types had relatively good accordance (within ± 10 %), but the results of the DRPS detectors were considerably lower when compared with other detectors for radon concentrations over 100 Bq m(-3). The thoron averages were provided by two different types of detectors: Raduet and DTPS. The difference between their average results was more than 30 % and was six times the maximum values. Therefore, the thoron measurement results were judged to be erroneous, and their measurement protocol should be clearly established for future work.

  18. Attached and unattached fractions of short-lived radon decay products in outdoor environments: effect on the human respiratory system.

    PubMed

    Amrane, M; Oufni, L; Misdaq, M A

    2014-12-01

    The authors developed a model for determining the alpha- and beta-activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their decay products attached and unattached to the aerosol in the outdoor air at the workplace in natural conditions at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors. In addition, the percentage of (218)Po, (214)Pb and (214)Po radionuclides attached to the aerosols and the unattached fraction f(j) for different values of the attachment rate were evaluated. Radon and thoron concentrations in outdoor air of the studied different locations were found to vary from 9.20±0.8 to 16.30±1.50 Bq m(-3) and 0.22±0.02 to 1.80±0.20 Bq m(-3), respectively. The committed equivalent doses due to the radon short-lived progeny (218)Po and (214)Po attached and unattached to the aerosol air were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. [Uranium exposure and cancer risk: a review of epidemiological studies].

    PubMed

    Tirmarche, M; Baysson, H; Telle-Lamberton, M

    2004-02-01

    At the end of 2000, certain diseases including leukemia were reported among soldiers who participated in the Balkan and in the Gulf wars. Depleted uranium used during these conflicts was considered as a possible cause. Its radiotoxicity is close to that of natural uranium. This paper reviews the epidemiological knowledge of uranium, the means of exposure and the associated risk of cancer. The only available epidemiological data concerns nuclear workers exposed to uranium. A review of the international literature is proposed by distinguishing between uranium miners and other workers of the nuclear industry. French studies are described in details. In ionizing radiation epidemiology, contamination by uranium is often cited as a risk factor, but the dose-effect relationship is rarely studied. Retrospective assessment of individual exposure is generally insufficient. Moreover, it is difficult to distinguish between uranium radiotoxicity, its chemical toxicity and the radiotoxicity of its progeny. A causal relation between lung cancer and radon exposure, a gas derived from the decay of uranium, has been demonstrated in epidemiological studies of miners. Among other nuclear workers exposed to uranium, there is a mortality deficit from all causes (healthy worker effect). No cancer site appears systematically in excess compared to the national population; very few studies describe a dose-response relationship. Only studies with a precise reconstruction of doses and sufficient numbers of workers will allow a better assessment of risks associated with uranium exposure at levels encountered in industry or during conflicts using depleted uranium weapons.

  20. Association of Radon Background and Total Background Ionizing Radiation with Alzheimer's Disease Deaths in U.S. States.

    PubMed

    Lehrer, Steven; Rheinstein, Peter H; Rosenzweig, Kenneth E

    2017-01-01

    Exposure of the brain to ionizing radiation might promote the development of Alzheimer's disease (AD). Analysis of AD death rates versus radon background radiation and total background radiation in U.S. states. Total background, radon background, cosmic and terrestrial background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States and Report No. 160 - Ionizing Radiation Exposure of the Population of the United States. 2013 AD death rates by U.S. state are from the Alzheimer's Association. Radon background ionizing radiation was significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.467, p = 0.001). Total background ionizing radiation was also significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.452, p = 0.001). Multivariate linear regression weighted by state population demonstrated that AD death rate was significantly correlated with radon background (β= 0.169, p < 0.001), age (β= 0.231, p < 0.001), hypertension (β= 0.155, p < 0.001), and diabetes (β= 0.353, p < 0.001). Our findings, like other studies, suggest that ionizing radiation is a risk factor for AD. Intranasal inhalation of radon gas could subject the rhinencephalon and hippocampus to damaging radiation that initiates AD. The damage would accumulate over time, causing age to be a powerful risk factor.

  1. Method for measurement of radon diffusion and solubility in solid materials

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  2. Development of radon sources with a high stability and a wide range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukutsu, K.; Yamada, Y.

    A solid {sup 222}Rn (radon) source using a fibrous and porous SiC ceramic disk was developed. The emission rate of radon emanated from the disk depended on the content of {sup 226}Ra and the sintering temperature. A {sup 226}Ra sulfate ({sup 226}RaSO{sub 4}) solution was dropped on a fibrous SiC ceramic disk (33 mmφ) of 1 mm in thickness, and sintered at 400 °C. The radon concentration from a disk containing {sup 226}Ra of 1.85 MBq was measured to be 38 kBq m{sup −3} at a carrier airflow rate of 0.5 L min{sup −1}. By adjusting the {sup 226}Ra contentmore » or the sweep airflow rate, the radon concentrations were easily controlled over a wide range of over three orders of magnitude. The concentration was very stable for a long term. The compactness of the source disk made is easy for handling the source container and the shielding of gamma radiation from {sup 226}Ra and its decay products. Such advantages in a radon generation system are desirable for experiments of high-level, large-scale radon exposure.« less

  3. Possible association between mutant frequency in peripheral lymphocytes and domestic radon concentrations.

    PubMed

    Bridges, B A; Cole, J; Arlett, C F; Green, M H; Waugh, A P; Beare, D; Henshaw, D L; Last, R D

    1991-05-18

    To investigate whether previously found geographical correlations between leukaemia incidence and exposure to radon are reflected in a detectable mutagenic effect on individuals, the frequency of mutations in the hypoxanthine guanine phosphoribosyl transferase gene (hprt) in peripheral blood T lymphocytes was measured in subjects with known domestic radon concentrations. These concentrations were measured in December, 1989, in houses in Street, Somerset, UK, by passive alpha-track radon detectors. 20 non-smoking subjects aged 36-55 years were selected from the patient list at the local health centre on the basis of the radon concentrations in their homes--the range selected varied by a factor of ten. Blood samples for preparation of T lymphocytes were taken in July, 1990. There was a significant association between the log mutant frequency and radon concentration (t = 3.47, p less than 0.01). A second analysis of a further set of radon measurements (October, 1990, to January, 1991), in both living rooms and bedrooms, and repeated mutant frequency determinations also showed a significant relation, which remained significant even after exclusion of the highest frequency and adjustment for subject's age and cloning efficiency. These data must be regarded as preliminary and further more extensive studies should be done to determine whether the observed association is causal.

  4. Soil radon and electromagnetic anomalies before the Ileia(Greece) M6.8 earthquake

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.; Zisos, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it accounts for more than half of the natural exposure of the general public. Radon has been used as trace gas in several studies of Earth, hydrogeology and atmosphere, due to its 3.82-day half-life (which allows migration at long distances) and its alpha decay (which enables low level of detection). It has been accounted in the search of earthquake precursors, volcanic processes, fluid circulation in karstic sources and in the study of natural ventilation of underground cavities. Radon anomalies impending great earthquakes have been observed in groundwater, thermal waters soil gas and in underground tunnels. Ileia is a very active tectonic site located in SW Greece, dominated by extensional active seismicity structures (e.g. Alfeios, Neda, Melpeia, Kiparissia-Aetos). Its instrumental and felt seismicity is very high, with more than 600 earthquakes of magnitude greater than 4.0 R in the last 100 years two of which occurred during the last 15 years and were very destructive (5.8 R on 26/3/93 and 6.8 R on 8/6/08 respectively). Hence, it is an area benefiting from the installation of a geophysical monitoring station, where radon exhalation associated with the accumulation or release of tectonic strain can be studied. In the aforementioned consensus, a station for the surveillance of soil radon has been installed in Kardamas Ileias, 3 km south from Amaliada which is the second highly populated city. The station consists of a high precision (calibration certified) active instrument (Alpha Guard-AG, Genitron Ltd.), equipped with an appropriate unit designed for pumping and measurement of radon in soil gas (Soil gas Unit, Genitron Ltd.). Soil radon is driven into AG via a 1-m probe (to minimize meteorological influences) and a 25-m radon proof 25-mm tube (to avoid simultaneous measurement of soil 220Rn

  5. Polycarbonates: a long-term highly sensitive radon monitor

    NASA Astrophysics Data System (ADS)

    Pressyanov, D.; Buysse, J.; Poffijn, A.; Meesen, G.; Van Deynse, A.

    2000-06-01

    An approach for long-term (either retrospective or prospective) 222Rn measurements is proposed that is based on the combination of the high radon absorption ability of some polycarbonates with their alpha track-etch properties. The detection limit is projected to be <10 Bq m -3 for an exposure time of 20 yr.

  6. Comparison of urinary excretion of radon from the human body before and after radon bath therapy.

    PubMed

    Kávási, Norbert; Kovács, Tibor; Somlai, János; Jobbágy, Viktor; Nagy, Katalin; Deák, Eszter; Berhés, István; Bender, Tamás; Ishikawa, Tetsuo; Tokonami, Shinji

    2011-07-01

    Theoretically, the human body absorbs radon through the lungs and the skin and excretes it through the lungs and the excretory organs during radon bath therapy. To check this theory, the radon concentrations in urine samples were compared before and after radon bath therapy. During the therapy, the geometric mean (GM) and the geometric standard deviation of the radon concentration in air and in the bath water were 979 Bq m(-3), 1.58 and 73.6 Bq dm(-3), 1.1, respectively. Since radon was detected in each urine sample (GM around 3.0 Bq dm(-3)), urinary excretion of radon was confirmed. The results of this study can neither reject nor confirm the hypothesis of radon absorption through the skin. A 15 times higher increment of inhaled radon level did not cause significant changes in radon of urine samples.

  7. Determination of indoor radon concentrations at the elementary schools of Fatih district in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt, A., E-mail: aziz.kurt@istanbul.edu.tr; Yalcin, L. Sahin, E-mail: latife.sahin@gmail.com; Oktem, Y., E-mail: sgyks@istanbul.edu.tr

    Radon is an odorless, tasteless, colorless noble radioactive gas which is produced within the radioactive decay chain of Uranium. The Radon forms in rocks, diffuses into soil and then escapes into atmosphere. When human exposure to high concentration of radon gas from inside, risk of developing lung cancer is increased. There are many methods to determine {sup 222}Rn concentration in the air. In this study, radon concentration of confined air spaces were measured by using LR-115 solid state nuclear track detectors. 509 LR-115 nuclear trace detectors were placed to 25 schools in Fatih District and they effective dose values weremore » calculated. The results of measurements showed that the radon concentration varies between 40-395 Bq/m{sup 3}. This results compared with Turkey’s limits (400 Bq/m{sup 3}) are low, conversely higher compared with WHO’s limits (100 Bq/m{sup 3}).« less

  8. Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales.

    PubMed

    Groves-Kirkby, Christopher J; Denman, Antony R; Campbell, Jackie; Crockett, Robin G M; Phillips, Paul S; Rogers, Stephen

    2016-04-01

    To test whether an association exists between radon gas concentration in the home and increased multiple sclerosis (MS) incidence, a retrospective study was undertaken of MS incidence in known areas of raised domestic radon concentration in England and Wales, using The Health Improvement Network (THIN) clinical research database. The study population comprised 20,140,498 person-years of clinical monitoring (males: 10,056,628: 49.93%; females: 10,083,870: 50.07%), representing a mean annual population of 2.5 million individuals. To allow for the possible latency of MS initiation following exposure, data extraction was limited to patients with at least five years registration history with the same GP practice before first diagnosis. Patient records were allocated to one of nine radon concentration bands depending on the average radon level in their postcode sector. MS incidence was analysed by searching for patients with first MS diagnosis over the eight calendar years 2005-2012 inclusive. 1512 new MS cases were diagnosed, 1070 females, 442 males, equivalent to raw incidence rates of 7.51, 10.61 and 4.40 per 10(5) person-years respectively, comparable to previously reported results. Of these new cases, 115 could be allocated to one of the radon bands representing high radon areas. Standardising to the UK 2010 population, excess relative risk (ERR) figures for MS were calculated for each radon band. Linear regression of ERR against mean band radon concentration shows a positive gradient of 0.22 per 100 Bq·m(-3) (R(2) = 0.25, p = 0.0961) when forced through the origin to represent a linear-no-threshold response. The null hypothesis falls inside the 95% confidence interval for the linear fit and therefore this fit is not statistically significant. We conclude that, despite THIN sampling around 5% of the population, insufficient data was available to confirm or refute the hypothesised association between MS incidence and radon concentration. Copyright © 2015. Published

  9. Managing Radon in Schools

    EPA Pesticide Factsheets

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  10. Assessment of inhalation and ingestion doses from exposure to radon gas using passive and active detecting techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, A. H.; Jafaar, M. S.

    The aim of this study was to assess an environmental hazard of radon exhalation rate from the samples of soil and drinking water in selected locations in Iraqi Kurdistan, passive (CR-39NTDs) and active (RAD7) detecting techniques has been employed. Long and short term measurements of emitted radon concentrations were estimated for 124 houses. High and lower radon concentration in soil samples was in the cities of Hajyawa and Er. Tyrawa, respectively. Moreover, for drinking water, high and low radon concentration was in the cities of Similan and Kelak, respectively. A comparison between our results with that mentioned in international reportsmore » had been done. Average annual dose equivalent to the bronchial epithelium, stomach and whole body in the cities of Kelak and Similan are estimated, and it was varied from 0.04{+-}0.01 mSv to 0.547{+-}0.018 mSv, (2.832{+-}0.22)x10{sup -5} to (11.972{+-}2.09)x10{sup -5} mSv, and (0.056 {+-}0.01) x10{sup -5} to (0.239{+-}0.01)x10{sup -5} mSv, respectively. This indicated that the effects of dissolved radon on the bronchial epithelium are much than on the stomach and whole body. (authors)« less

  11. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas

    PubMed Central

    2002-01-01

    This paper reports the results of the United Kingdom Childhood Cancer Study relating to risks associated with radon concentrations in participants homes at the time of diagnosis of cancer and for at least 6 months before. Results are given for 2226 case and 3773 control homes. No evidence to support an association between higher radon concentrations and risk of any of the childhood cancers was found. Indeed, evidence of decreasing cancer risks with increasing radon concentrations was observed. Adjustment for deprivation score for area of residence made little difference to this trend and similar patterns were evident in all regions and in all diagnostic groups. The study suggests that control houses had more features, such as double glazing and central heating, leading to higher radon levels than case houses. Further, case houses have features more likely to lead to lower radon levels, e.g. living-rooms above ground level. Consequently the case–control differences could have arisen because of differences between houses associated with deprivation that are not adequately allowed for by the deprivation score. British Journal of Cancer (2002) 86, 1721–1726. doi:10.1038/sj.bjc.6600276 www.bjcancer.com © 2002 Cancer Research UK PMID:12087456

  12. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    PubMed

    Allegrucci, Giuliana; Sbordoni, Valerio; Cesaroni, Donatella

    2015-01-01

    The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae) sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA). Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  13. The role of natural ventilation in the exposure to radon in the Postojna Cave

    NASA Astrophysics Data System (ADS)

    Gregorič, A.; Smerajec, M.; Vaupotič, J.

    2012-04-01

    Postojna Cave is the biggest of 21 show caves in Slovenia and one of present day's most visited show caves in the world. Long and branched out cave system, large entrances at different levels, inflow of the Pivka river, and large variation of the outdoor air temperature and precipitation, make the Postojna Cave also a very complex climatic system in which each part shows different conditions. The cave is only naturally ventilated and it is therefore characterised by high radon concentration, which depends on the ventilation regime in different seasons, resulting in typical annual cycles of radon levels in the cave air. Postojna Cave is a typical horizontal cave, where the difference between outside and cave air temperature represents the main driving force for air circulation. In winter, when the cave temperature is higher than outside, cave air is released from the cave into the outdoor atmosphere due to the air draught caused by the 'chimney effect', thus allowing fresh and cold outdoor air to enter the cave through low lying openings. This effect is not operative in summer, when the outside temperature is higher than in the cave, and air draught is minimal or reversed. In addition, air circulation can be locally altered due to other processes, like changing level of Pivka river during the rainy season and local geomorphologic characteristics of cave passages. High radon concentration in the Postojna Cave is the reason for thorough studies of the methodology for dose estimates of the personnel working in the cave. Due to high relative humidity and low air circulation, the cave air is characterised by very low particle concentration, which play an important role in radon dosimetry. Therefore parallel monitoring of radioactive aerosols of radon decay products (RnDP) and general (non-radioactive) aerosols in the particle size range of 10-1100 nm was performed in the air of Postojna Cave at the lowest point of tourist path in summer, winter and both transitional

  14. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements.

    PubMed

    Kumar, Amit; Chauhan, R P; Joshi, Manish; Sahoo, B K

    2014-01-01

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Radiation doses to individuals due to ²³⁸U, ²³²Th and ²²²Rn from the immersion in thermal waters and to radon progeny from the inhalation of air inside thermal stations.

    PubMed

    Misdaq, M A; Ghilane, M; Ouguidi, J; Outeqablit, K

    2012-11-01

    In Morocco, thermal waters have been used for decades for the treatment of various diseases. To explore the exposure pathway of (238)U, (232)Th and (222)Rn to the skin of bathers from the immersion in thermal waters, these radionuclides were measured inside waters collected from different Moroccan thermal springs, by means of CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs), and corresponding annual committed effective doses to skin were determined. Accordingly, to assess radiation dose due to radon short-lived decay products from the inhalation of air by individuals, concentrations of these radionuclides were measured in indoor air of two thermal stations by evaluating mean critical angles of etching of the CR-39 and LR-115 II SSNTDs. Committed effective doses due to the short-lived radon decay products (218)Po and (214)Po by bathers and working personnel inside the thermal stations studied were determined.

  16. AN ALTERNATIVE CALIBRATION OF CR-39 DETECTORS FOR RADON DETECTION BEYOND THE SATURATION LIMIT.

    PubMed

    Franci, Daniele; Aureli, Tommaso; Cardellini, Francesco

    2016-12-01

    Time-integrated measurements of indoor radon levels are commonly carried out using solid-state nuclear track detectors (SSNTDs), due to the numerous advantages offered by this radiation detection technique. However, the use of SSNTD also presents some problems that may affect the accuracy of the results. The effect of overlapping tracks often results in the underestimation of the detected track density, which leads to the reduction of the counting efficiency for increasing radon exposure. This article aims to address the effect of overlapping tracks by proposing an alternative calibration technique based on the measurement of the fraction of the detector surface covered by alpha tracks. The method has been tested against a set of Monte Carlo data and then applied to a set of experimental data collected at the radon chamber of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, at the ENEA centre in Casaccia, using CR-39 detectors. It has been proved that the method allows to extend the detectable range of radon exposure far beyond the intrinsic limit imposed by the standard calibration based on the track density. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Researching Radon.

    ERIC Educational Resources Information Center

    Lucidi, Louis; Mecca, Peter M.

    2001-01-01

    Introduces a project in which students examined the physics, chemistry, and geology of radon and used available technology to measure radon concentrations in their homes. Uses the inquiry process, analytical skills, communication skills, content knowledge, and production of authentic products for student assessment. (YDS)

  18. What Teachers Should Know about Radon.

    ERIC Educational Resources Information Center

    Bettis, Clifford; Throckmorton, Carl

    1991-01-01

    Attempts to clear up misunderstandings about radon and outlines information teachers can convey to their students. Includes a brief history of radon, health threats posed by radon, methods to measure radon quantities, homeowner risks and preventative actions, and a glossary of radon terms. (MDH)

  19. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions?

    PubMed

    Pozolotina, Vera N; Antonova, Elena V

    2017-03-01

    The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.

  20. Radon measurements and dose estimate of workers in a manganese ore mine.

    PubMed

    Shahrokhi, Amin; Vigh, Tamás; Németh, Csaba; Csordás, Anita; Kovács, Tibor

    2017-06-01

    In the new European Basic Safety Standard (EU-BSS), a new reference level for indoor radon concentration in workplaces has recommended that the annual average activity concentration of indoor radon shall not be higher than 300Bqm -3 . This paper describes the radon concentration level in an underground workplace (manganese ore mine) over long time intervals (4 years). Several common radon monitors devices - including NRPB and Raduet (as a passive method based on CR-39), AlphaGUARD PQ 2000Pro, SARAD EQF3220, TESLA and Pylon WLX (as active methods) - were used for continuous radon measurements. The output results were used, first, to comprised the result of each device, based on conditions present in underground mines; Second, to have comprehensive measurements about all factors that cause workers exposure to radiation (each monitoring device specified for a unique measurement). The results indicate that the mine's staff had successful efforts to reach the strict requirement of the new EU-BSS, and the average annual radon activity concentrations during the working hours were below 300Bqm -3 in the investigated period. The paper presents the effective dose calculations; applying different equilibrium factors suggested by the literature and calculated basing on our measurements at the site, concluding that the differences could be about threefold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Radon Resources for Home Buyers and Sellers

    MedlinePlus

    ... and Research Centers Radon Contact Us Share Radon Resources for Home Buyers and Sellers Radon Protection: Buying ... Radon-Resistant New Construction Radon and Real Estate Resources Home Buyer's/Seller's Guide to Radon Consumer's Guide ...

  2. Polyploid Titan Cells Produce Haploid and Aneuploid Progeny To Promote Stress Adaptation

    PubMed Central

    Gerstein, Aleeza C.; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L.; Fraser, James A.; Berman, Judith

    2015-01-01

    ABSTRACT Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. PMID:26463162

  3. Influence of a component of solar irradiance on radon signals at 1000 meter depth at the Gran Sasso Laboratory, Italy

    NASA Astrophysics Data System (ADS)

    Gazit-Yaari (Charit-Yaari), N.; Steinitz, G.; Piatibratova, O.

    2012-04-01

    Exploratory monitoring of radon is conducted at one site at the deep underground Gran Sasso National Laboratory (LNGS; 1,000m below the surface). Monitoring is performed in a small secluded space separated by a sealed partition from the entirety of the laboratory environment in air in contact with the exposed surrounding calcareous country rock. Overall radon levels are low (0.45 kBq/m3). Utilizing both alpha and gamma-ray detectors measurements (15-minute resolution) cover a time span of ca. 600 days. Systematic and recurring radon signals are recorded consisting of two primary signal types: a) non-periodic Multi-Day (MD) signals lasting 2-10 days, and b) Daily Radon (DR) signals - which are of a periodic nature exhibiting a primary 24-hour cycle. Temperature in the closed enclosure is stable (11.5±0.3 °C) and pressure reflects above surface barometric variations. Analysis and comparison in the time and frequency domains (FFT) of local environmental data (P, T) indicates that these do not drive radon variation in air at the site. The phenomenology of the MD and DR signals is similar to situations encountered at other locations where radon is monitored with a high time resolution in geogas at upper crustal levels. Using the Continuous Wavelet Transform analysis tool a different variation pattern is observed for time series consisting of day-time and night-time measurement of the gamma radiation from radon progeny. Applying the same analysis to the time series of local air pressure does not reveal a day-time and night-time difference. The observation of a differing day/night pattern in the gamma radiation from radon at LNGS is similar to further occurrences at other subsurface locations. Production of a day/night pattern must be related to rotation of Earth around its axis. This phenomenon is a further confirmation of the recent proposition as to the influence of a component of solar irradiance on the nuclear radiation from radon in air. The occurrence of these

  4. Radon Guide for Tenants

    EPA Pesticide Factsheets

    This guide is for people who rent their apartments or houses. The guide explains what radon is, and how to find out if there is a radon problem in your home. The guide also talks about what you can do if there are high radon levels in your home.

  5. Bronchial dysplasia induced by radiation in miners exposed to 222Rn progeny.

    PubMed Central

    Michaylov, M A; Pressyanov, D S; Kalinov, K B

    1995-01-01

    OBJECTIVES--To investigate whether sputum cytology can be used to monitor epithelial cell changes in groups at high risk of lung cancer from exposure to radiation. METHODS--Dysplasia of bronchial cells was investigated by means of sputum cytology in a group of 434 underground miners. 100 of them were not exposed, and 334 were exposed to 222Rn progeny at cumulative exposures < 450 working level months. RESULTS--The frequency of dysplasia in the exposed group was significantly higher than that in the not exposed group (P < 0.0001), and an exposure-response relation was found. This relation was different for smokers and non-smokers. CONCLUSIONS--Possibly the frequencies of dysplasia could be used to assess past exposures of groups of miners. This approach could be applied to cases where data on radiation monitoring are not available or are very scarce. Images p82-a PMID:7757171

  6. Lack of evidence for an association between the frequency of mutants or translocations in circulating lymphocytes and exposure to radon gas in the home.

    PubMed

    Cole, J; Green, M H; Bridges, B A; Waugh, A P; Beare, D M; Henshaw, D; Last, R; Liu, Y; Cortopassi, G

    1996-01-01

    Radon measurements in the living room and main bedroom of 41 houses in the town of Street, Somerset, England have been made. Exposure levels, weighted using the formula of the UK National Radiological Protection Board, of 19-484 Bq m-3 (about half > 100 Bq m-3) were found. Blood samples were obtained from a total of 66 occupants in these homes, and the frequency of genetic alterations in lymphocytes was estimated using two different end points. Gene mutations at the hypoxanthine guanine phosphoribosyl transferase locus were determined in T lymphocytes for 65 subjects using a clonal assay, and the frequency of the BCL-2 t(14;18) translocation, a chromosomal event associated with leukemia/lymphoma, was estimated in lymphocytes using a polymerase chain reaction-based technique for 64 subjects. In neither case was a significant correlation with radon levels in the home found, in contrast to our earlier observation with a smaller series.

  7. Implementation of the new international standards in Swiss legislation on radon protection in dwellings.

    PubMed

    Palacios Gruson, Martha; Barazza, Fabio; Murith, Christophe; Ryf, Salome

    2015-04-01

    The current revision of the Swiss Radiological Protection Ordinance aims to bring Swiss legislation in line with new international standards. In future, the control of radon exposure in dwellings will be based on a reference level of 300 Bq m(-3). Since this value is exceeded in >10 % of the buildings so far investigated nationwide, the new strategy requires the development of efficient measures to reduce radon-related health risks at an acceptable cost. The minimisation of radon concentrations in new buildings is therefore of great importance. This can be achieved, for example, through the enforcement of building regulations and the education of construction professionals. With regard to radon mitigation in existing buildings, synergies with the ongoing renewal of the building stock should be exploited. In addition, the dissemination of knowledge about radon and its risks needs to be focused on specific target groups, e.g. notaries, who play an important information role in real estate transactions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Height growth in western white pine progenies

    Treesearch

    G. E. Rehfeldt; R. J. Steinhoff

    1970-01-01

    Heights of 31 progenies of western white pines from four geographic localities and four crosses between localities were assessed on 14-year-old trees at two sites. Differences in height among individual progenies were detected but could not be related to localities or crosses between localities. Although differential effects of sites on tree height became apparent...

  9. Three Mile Island epidemiologic radiation dose assessment revisited: 25 years after the accident.

    PubMed

    Field, R William

    2005-01-01

    Over the past 25 years, public health concerns following the Three Mile Island (TMI) accident prompted several epidemiologic investigations in the vicinity of TMI. One of these studies is ongoing. This commentary suggests that the major source of radiation exposure to the population has been ignored as a potential confounding factor or effect modifying factor in previous and ongoing TMI epidemiologic studies that explore whether or not TMI accidental plant radiation releases caused an increase in lung cancer in the community around TMI. The commentary also documents the observation that the counties around TMI have the highest regional radon potential in the United States and concludes that radon progeny exposure should be included as part of the overall radiation dose assessment in future studies of radiation-induced lung cancer resulting from the TMI accident.

  10. First radon measurements and occupational exposure assessments in underground geodynamic laboratory the Polish Academy of Sciences Space Research Centre in Książ Castle (SW Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia; Przylibski, Tadeusz A

    2016-12-01

    The article presents the results of the first radon activity concentration measurements conducted continuously between 17 th May 2014 and 16 th May 2015 in the underground geodynamic laboratory of the Polish Academy of Sciences Space Research Centre in Książ. The data were registered with the use of three Polish semiconductor SRDN-3 detectors located the closest (SRDN-3 No. 6) to and the furthest (SRDN-3 No. 3) from the facility entrance, and in the fault zone (SRDN-3 No. 4). The study was conducted to characterize the radon behaviour and check it possibility to use with reference to long- and short-term variations of radon activity concentration observed in sedimentary rocks strongly fractured and intersected by systems of multiple faults, for integrated comparative assessments of changes in local orogen kinetics. The values of radon activity concentration in the underground geodynamic laboratory of the Polish Academy of Sciences (PAN) Space Research Centre in Książ undergo changes of a distinctly seasonal character. The highest values of radon activity concentration are recorded from late spring (May/June) to early autumn (October), and the lowest - from November to April. Radon activity concentrations varied depending on the location of measurement points. Between late spring and autumn they ranged from 800 Bq·m -3 to 1200 Bq·m -3 , and even 3200 Bq·m -3 in the fault zone. Between November and April, values of radon activity concentration are lower, ranging from 500 Bq·m -3 to 1000 Bq·m -3 and 2700 Bq·m -3 in the fault zone. The values of radon activity concentration recorded in the studied facility did not undergo short-term changes in either the whole annual measuring cycle or any of its months. Effective doses received by people staying in the underground laboratory range from 0.001 mSv/h to 0.012 mSv/h. The mean annual effective dose, depending on the measurement site, equals 1 or is slightly higher than 10 mSv/year, while the maximum dose

  11. A study of Monitoring and Mapping for Radon-Concentration Distribution in Gyeongju - 12201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chan Hee; Lee, Jung Min; Jang, So Young

    Radon is one of the most important contributors to the radiation exposure in humans. This study measured the indoor radon concentrations at the 17 elementary school auditoriums that were sampled from those in the city of Gyeongju, Korea. The reason that an elementary school was selected as a measurement object is that many students and teachers stay for a long time in a day and it's easy to identify the characteristics of the auditorium building such as the essential building. The measurement shows that most of the indoor radon concentrations at the 17 elementary school auditoriums did not exceed 148more » Bq/m{sup 3} that is the action level recommended by U.S. Environmental Protection Agency. This study measured the indoor radon concentrations at the elementary school auditoriums in Gyeongju. The measurements were analyzed according to the bedrock type and the time intervals per day. In this study, it was found that the indoor radon concentrations over off-duty hours were generally higher that those over on-duty hours, and the indoor radon concentration in the area whose bedrock is volcanic rock was higher than those in the area of the other types of bedrock. As mentioned above, attention has to be paid to an elementary school since many young students and teachers stay for more 6 hours a day at it. Hence, it is necessary to continuously monitor and properly manage the indoor radon concentrations in the elementary schools. (authors)« less

  12. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, M., E-mail: mirek@fml.nirs.go.jp; Ishikawa, T.; Omori, Y.

    Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercisesmore » were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes

  13. Radon exhalation rates from building materials using electret ion chamber radon monitors in accumulators.

    PubMed

    Kotrappa, Payasada; Stieff, Frederick

    2009-08-01

    An electret ion chamber (EIC) radon monitor in a sealed accumulator measures the integrated average radon concentration at the end of the accumulation duration. Theoretical equations have been derived to relate such radon concentrations (Bq m(-3) ) to the radon emanation rate (Bq d(-1)) from building materials enclosed in the accumulator. As an illustration, a 4-L sealable glass jar has been used as an accumulator to calculate the radon emanation rate from different granite samples. The radon emanation rate was converted into radon flux (Bq mm(-2) d(-1)) by dividing the emanation rate by surface area of the sample. Fluxes measured on typical, commercially available granites ranged from 20-30 Bq m(-2) d(-1). These results are similar to the results reported in the literature. The lower limit of detection for a 2-d measurement works out to be 7 Bq m(-2) d(-1). Equations derived can also be used for other sealable accumulators and other integrating detectors, such as alpha track detectors.

  14. Emanation of radon from household granite.

    PubMed

    Kitto, Michael E; Haines, Douglas K; Arauzo, Hernando Diaz

    2009-04-01

    Emanation of radon (222Rn) from granite used for countertops and mantels was measured with continuous and integrating radon monitors. Each of the 24 granite samples emitted a measurable amount of radon. Of the two analytical methods that utilized electret-based detectors, one measured the flux of radon from the granite surfaces, and the other one measured radon levels in a glass jar containing granite cores. Additional methods that were applied utilized alpha-scintillation cells and a continuous radon monitor. Measured radon flux from the granites ranged from 2 to 310 mBq m-2 s-1, with most granites emitting <20 mBq m-2 s-1. Emanation of radon from granites encapsulated in airtight containers produced equilibrium concentrations ranging from <0.01 to 11 Bq kg-1 when alpha-scintillation cells were used, and from <0.01 to 4.0 Bq kg-1 when the continuous radon monitor was used.

  15. Progeny testing: proceedings of servicewide genetics workshop

    Treesearch

    Dick Miller

    1984-01-01

    The primary objective of this workshop was to discuss in detail the state- of-the-art of progeny testing. All aspects, from setting objectives through data collection and analysis, was be covered. We all know progeny testing is a highly technical phase of our tree improvement programs. Each task is critical and must be performed accurately and within a prescribed time...

  16. The effect on the radon diffusion coefficient of long-term exposure of waterproof membranes to various degradation agents.

    PubMed

    Navrátilová Rovenská, Katerina

    2014-07-01

    Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, Jr., G. Harold

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  18. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, G.H. Jr.

    1993-01-12

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  19. Childhood cancer and residential radon exposure - results of a population-based case-control study in Lower Saxony (Germany).

    PubMed

    Kaletsch, U; Kaatsch, P; Meinert, R; Schüz, J; Czarwinski, R; Michaelis, J

    1999-09-01

    A population-based case-control study on risk factors for childhood malignancies was used to investigate a previously reported association between elevated indoor radon concentrations and childhood cancer, with special regard to leukaemia. The patients were all children suffering from leukaemia and common solid tumours (nephroblastoma, neuroblastoma, rhabdomyosarcoma, central nervous system (CNS) tumours) diagnosed between July 1988 and June 1993 in Lower Saxony (Germany) and aged less than 15 years. Two population-based control groups were matched by age and gender to the leukaemia patients. Long-term (1 year) radon measurements were performed in those homes where the children had been living for at least 1 year, with particular attention being paid to those rooms where they had stayed most of the time. Due to the sequential study design, radon measurements in these rooms could only be done for 36% (82 leukaemias, 82 solid tumours and 209 controls) of the 1038 families initially contacted. Overall mean indoor radon concentrations (27 Bq m(-3)) were low compared with the measured levels in other studies. Using a prespecified cutpoint of 70 Bq m(-3), no association with indoor radon concentrations was seen for the leukaemias (odds ratio (OR): 1.30; 95% confidence interval (95% CI): 0.32-5.33); however, the risk estimates were elevated for the solid tumours (OR: 2.61; 95% CI: 0.96-7.13), mainly based on 6 CNS tumours. We did not find any evidence for an association between indoor radon and childhood leukaemia, which is in line with a recently published American case-control study. There is little support for an association with CNS tumours in the literature.

  20. Ponderosa pine progenies: differential response to ultramafic and granitic soils

    Treesearch

    James L. Jenkinson

    1974-01-01

    Progenies of nine ponderosa pines native to one granitic and several ultramafic soils in the northern Sierra Nevada were grown on both soil types in a greenhouse. The progenies differed markedly in first-year growth on infertile ultramafic soils, but not on a fertile granitic soil. Growth differences between progenies were primarily related to differences in calcium...