Science.gov

Sample records for rainforest tree species

  1. Leaf and whole-tree water use relations of Australian rainforest species

    NASA Astrophysics Data System (ADS)

    Ishida, Yoko; Laurance, Susan; Liddell, Michael; Lloyd, Jonathan

    2015-04-01

    Climate change induces drought events and may therefore cause significant impact on tropical rainforests, where most plants are reliant on high water availability - potentially affecting the distribution, composition and abundance of plant species. Using an experimental approach, we are studying the effects of a simulated drought on lowland rainforest plants at the Daintree Rainforest Observatory (DRO), in tropical northern Australia. Before to build up the rainout infrastructure, we installed sap flow meters (HRM) on 62 rainforest trees. Eight tree species were selected with diverse ecological strategies including wood density values ranging from 0.34 to 0.88 g/cm3 and could be replicated within a 1ha plot: Alstonia scholaris (Apocynaceae), Argyrondendron peralatum (Malvaceae), Elaeocarpus angustifolius (Elaeocarpaceae), Endiandra microneura (Lauraceae), Myristica globosa (Myristicaceae), Syzygium graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae), and Castanospermum australe (Fabaceae). Our preliminary results from sap flow data obtained from October 2013 to December of 2014 showed differences in the amount of water used by our trees varied in response to species, size and climate. For example Syzygium graveolens has used a maximum of 60 litres/day while Argyrondendrum peralatum used 13 litres/day. Other potential causes for differential water-use between species and the implications of our research will be discussed. We will continue to monitor sap flow during the rainfall exclusion (2014 to 2016) to determine the effects of plant physiological traits on water use strategies.

  2. The contribution of seed dispersers to tree species diversity in tropical rainforests.

    PubMed

    Kakishima, Satoshi; Morita, Satoru; Yoshida, Katsuhiko; Ishida, Atsushi; Hayashi, Saki; Asami, Takahiro; Ito, Hiromu; Miller, Donald G; Uehara, Takashi; Mori, Shigeta; Hasegawa, Eisuke; Matsuura, Kenji; Kasuya, Eiiti; Yoshimura, Jin

    2015-10-01

    Tropical rainforests are known for their extreme biodiversity, posing a challenging problem in tropical ecology. Many hypotheses have been proposed to explain the diversity of tree species, yet our understanding of this phenomenon remains incomplete. Here, we consider the contribution of animal seed dispersers to the species diversity of trees. We built a multi-layer lattice model of trees whose animal seed dispersers are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We modified the lattice model to explicitly examine the coexistence of new tree species and the resulting high biodiversity. The results indicate that both the coexistence and diversified evolution of tree species can be explained by the introduction of animal seed dispersers. PMID:26587246

  3. The contribution of seed dispersers to tree species diversity in tropical rainforests

    PubMed Central

    Kakishima, Satoshi; Morita, Satoru; Yoshida, Katsuhiko; Ishida, Atsushi; Hayashi, Saki; Asami, Takahiro; Ito, Hiromu; Miller, Donald G.; Uehara, Takashi; Mori, Shigeta; Hasegawa, Eisuke; Matsuura, Kenji; Kasuya, Eiiti; Yoshimura, Jin

    2015-01-01

    Tropical rainforests are known for their extreme biodiversity, posing a challenging problem in tropical ecology. Many hypotheses have been proposed to explain the diversity of tree species, yet our understanding of this phenomenon remains incomplete. Here, we consider the contribution of animal seed dispersers to the species diversity of trees. We built a multi-layer lattice model of trees whose animal seed dispersers are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We modified the lattice model to explicitly examine the coexistence of new tree species and the resulting high biodiversity. The results indicate that both the coexistence and diversified evolution of tree species can be explained by the introduction of animal seed dispersers. PMID:26587246

  4. C4 Photosynthesis in Tree Form Euphorbia Species from Hawaiian Rainforest Sites 1

    PubMed Central

    Pearcy, Robert W.; Troughton, John

    1975-01-01

    The 13C 12C isotope ratios and the leaf anatomy of 18 species and varieties of Euphorbia native to the Hawaian Islands indicated that all possess C4 photosynthesis. These species range from small prostrate coastal strand shrubs to shrubs and trees in rainforest and bog habitats. The results show that C4 photosynthesis occurs in plants from a much wider range of habitats and life-forms than has been previously reported. PMID:16659208

  5. Assessing the contribution of leaf respiration to the carbon economy of tropical rainforest tree species

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Lasantha; Creek, Danielle; Crous, Kristine; Xiang, Shuang; Atkin, Owen

    2013-04-01

    Tropical rainforests are among the most important biomes in terms of annual primary productivity; hence, assessing their sensitivity to potential shifts in global and regional temperatures patterns is a necessary step to model future local, regional, and global carbon cycling. However, how the changes in future climate including increased temperatures in short- and long-term basis might impact on the carbon cycling in these tropical rainforests is little studied and remain poorly understood. Given this, this study examined the impact of short and long term changes in temperature on leaf respiration in tropical lowland rainforest located in Far North Queensland, Australia. We quantified how leaf respiration responded to short-term changes in temperature and associated leaf chemical and structural traits in 16 tropical rainforest tree species at two canopy heights; upper and lower level of the tree canopy. Further we measured rates of photosynthesis (A) and leaf respiration (R) both in the dark and light, and relationships between those traits and associated leaf structural and chemical traits. Four of these species were subsequently exposed to three different growth temperatures of 25° C, 30° C and 35° C under controlled environment conditions and ability of leaf respiration to acclimate to new temperature regimes was examined. In the field, upper canopy leaves showed higher rates of leaf respiration in darkness and in light than lower canopy leaves at a given set temperature (28° C). Moreover, at any given leaf mass per unit area (LMA), leaf nitrogen [N] and leaf phosphorus [P] value, rates of respiration were higher in upper canopy leaves (compared to lower canopy leaves). The short-term temperature sensitivity of leaf respiration (Q10) was found to be constant around 1.89 at 25° C irrespective of species or canopy position. Three out of four species subjected to different long-term growth temperatures under control environment conditions exhibited some

  6. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    NASA Astrophysics Data System (ADS)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  7. Population structure and demographic history of a tropical lowland rainforest tree species Shorea parvifolia (Dipterocarpaceae) from Southeastern Asia.

    PubMed

    Iwanaga, Hiroko; Teshima, Kosuke M; Khatab, Ismael A; Inomata, Nobuyuki; Finkeldey, Reiner; Siregar, Iskandar Z; Siregar, Ulfah J; Szmidt, Alfred E

    2012-07-01

    Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo. PMID:22957170

  8. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    NASA Astrophysics Data System (ADS)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  9. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  10. Reports on the distribution of aromatic cyanogenic glycosides in Australian tropical rainforest tree species of the Lauraceae and Sapindaceae.

    PubMed

    Miller, Rebecca E; Tuck, Kellie L

    2013-08-01

    The aromatic cyanogenic glycosides taxiphyllin [(R)-4-hydroxymandelonitrile β-D-glucoside] and prunasin [(R)-mandelonitrile β-D-glucoside] were identified as the main cyanogenic compounds in tissues of Australian endemic tropical rainforest tree taxa in the Lauraceae and Sapindaceae families, respectively. The tyrosine-derived taxiphyllin was the main cyanogenic glycoside in foliage of Beilschmiedia collina. This is the first reported cyanogenic compound from the Lauraceae. In addition, substantial quantitative variation in the capacity for cyanogenesis was detected in leaves from 40 individuals, with taxiphyllin concentrations ranging from 23 to 1263 μg CN g(-1) dry wt. No acyanogenic individuals were detected. Concentrations of taxiphyllin were, on average, 2.2-fold greater in young leaves than in old leaves. Prunasin was the dominant cyanogenic compound in tissues of Mischocarpus grandissimus (leaves) and Mischocarpus exangulatus (leaves and seed capsule). Better known for cyanolipids in seed oils, this is the first time a phenylalanine-derived cyanogenic glycoside has been reported in the Sapindaceae. The concentrations of prunasin varied widely, over an order of magnitude, among individuals and different tissue types in these species, with the higher concentrations found in seed capsules and young leaves. PMID:23642385

  11. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm

    NASA Astrophysics Data System (ADS)

    Ghulam, Abduwasit; Porton, Ingrid; Freeman, Karen

    2014-02-01

    In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH-VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.

  12. Genetic structure of the Atlantic Rainforest tree species Luehea divaricata (Malvaceae).

    PubMed

    Conson, André R O; Ruas, Eduardo A; Vieira, Bruna G; Rodrigues, Luana A; Costa, Bruno F; Bianchini, Edmílson; Prioli, Alberto José; de Fátima Ruas, Claudete; Ruas, Paulo M

    2013-06-01

    The Atlantic Rain Forest is one of the most important Brazilian biomes and a hotspot for biodiversity that is characterized by its high level of endemism, where new species are still being described. Luehea divaricata (Malvaceae) is commonly found in riparian forests areas of the Atlantic forest. Because of the importance of this species in reforestation programs, we used nine pairs of microsatellite loci to study the genetic variability of this species along its distribution area and verify if fragmentation is compromising the survival of these populations. A total of 50 alleles were obtained with an average observed and expected heterozygosity of 0.53 and 0.67, respectively. Seven of the nine populations studied showed a heterozygosity deficit. Most of the genetic diversity was found within populations; while the level of genetic differentiation was moderated (6.84) between populations. Different levels of gene flow between the populations were detected. Positive and significant values of Fis were found for seven populations. The signal test for excess of heterozygosity indicated that a recent genetic bottleneck occurred in the fragmented populations. The dendrogram constructed by the UPGMA method revealed the formation of seven clusters, which was confirmed by the Bayesian analysis for number of K clusters. The presence of several pairs of loci in linkage disequilibrium confirms that these populations experienced a loss of genetic diversity caused by genetic drift. The results showed that it is necessary to develop management strategies for the conservation of these populations of L. divaricata as the viability of the next generations are severely compromised. PMID:23619833

  13. Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation.

    PubMed

    Diabate, Moussa; Munive, Antonio; de Faria, Sérgio Miana; Ba, Amadou; Dreyfus, Bernard; Galiana, Antoine

    2005-04-01

    Despite the abundance and diversity of timber tree legumes in the West African rainforest, their ability to form nitrogen-fixing nodules in symbiosis with rhizobia, and their response to rhizobial inoculation, remain poorly documented. In the first part of this study the occurrence of nodulation was determined in 156 leguminous species growing in six natural forest areas in Guinea, mostly mature trees. In the second part, an in situ experiment of rhizobial inoculation was performed on eight selected tree species belonging to three genera: Albizia, Erythrophleum and Millettia. Of the 97 plant species and 14 genera that had never been examined before this study, 31 species and four genera were reported to be nodulated. After 4 months of growing in a nursery and a further 11 months after transplantation of plants to the field, we observed a highly significant (P < 0.001) and positive effect of inoculation with Bradyrhizobium sp. strains on the growth of the eight tree species tested. The importance of determining the nodulation ability of unexplored local trees and subsequently using this information for inoculation in reforestation programmes was demonstrated. PMID:15760366

  14. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits

    PubMed Central

    Lusk, Christopher H.; Kelly, Jeff W. G.; Gleason, Sean M.

    2013-01-01

    Background and Aims A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Methods Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Results Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. Conclusions The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze–thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year. PMID

  15. Large tree species richness is associated with topography, forest structure and spectral heterogeneity in a neotropical rainforest

    NASA Astrophysics Data System (ADS)

    Fricker, G. A.; Wolf, J. A.; Gillespie, T.; Meyer, V.; Hubbell, S. P.; Santo, F. E.; Saatchi, S. S.

    2013-12-01

    Large tropical canopy trees contain the majority of forest biomass in addition to being the primary producers in the forest ecosystem in terms of both food and structural habitat. The spatial distributions of large tropical trees are non-randomly distributed across environmental gradients in light, water and nutrients. These environmental gradients are a result of the biophysical processes related to topography and three-dimensional forest structure. In this study we examine large (>10 cm) diameter tree species richness across Barro Colorado Nature Monument in a tropical moist forest in Panama using active and passive remote sensing. Airborne light detection and ranging and high-resolution satellite imagery were used to quantify spectral heterogeneity, sub-canopy topography and vertical canopy structure across existing vegetation plots to model the extent to which remote sensing variables can be used to explain variation in large tree species richness. Plant species richness data was calculated from the stem mapped 50-ha forest dynamics plot on Barro Colorado Island in addition to 8 large tree plots across the Barro Colorado Nature Monument at 1.0 ha and 0.25 ha spatial scales. We investigated four statistical models to predict large tree species richness including spectral, topographic, vertical canopy structure and a combined ';global' model which includes all remote sensing derived variables. The models demonstrate that remote sensing derived variables can capture a significant fraction (R2= 0.54 and 0.36) of observed variation in tree species richness across the 1.0 and 0.25 ha spatial scales respectively. A selection of remote sensing derived predictor variables. A) World View-2 satellite imagery in RGB/true color. B) False color image of the principal component analysis. C) Normalized Difference Vegetation Index (NDVI). D) Simple Ratio Index. E) Quickbird satellite imagery in RGB/true color. F) False color image of the principal component analysis. G) NDVI. H

  16. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.

    2010-11-01

    In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

  17. Giant eucalypts - globally unique fire-adapted rain-forest trees?

    PubMed

    Tng, D Y P; Williamson, G J; Jordan, G J; Bowman, D M J S

    2012-11-01

    CONTENTS: Summary    1 I. Introduction    1 II. Giant eucalypts in a global context    2 III. Giant eucalypts - taxonomy and distribution    4 IV. Growth of giant eucalypts    6 V. Fire and regeneration of giant eucalypts    8 VI. Are giant eucalypts different from other rain-forest trees?    9 VII. Conclusions 10 Acknowledgements 11 References 11 SUMMARY: Tree species exceeding 70 m in height are rare globally. Giant gymnosperms are concentrated near the Pacific coast of the USA, while the tallest angiosperms are eucalypts (Eucalyptus spp.) in southern and eastern Australia. Giant eucalypts co-occur with rain-forest trees in eastern Australia, creating unique vegetation communities comprising fire-dependent trees above fire-intolerant rain-forest. However, giant eucalypts can also tower over shrubby understoreys (e.g. in Western Australia). The local abundance of giant eucalypts is controlled by interactions between fire activity and landscape setting. Giant eucalypts have features that increase flammability (e.g. oil-rich foliage and open crowns) relative to other rain-forest trees but it is debatable if these features are adaptations. Probable drivers of eucalypt gigantism are intense intra-specific competition following severe fires, and inter-specific competition among adult trees. However, we suggest that this was made possible by a general capacity of eucalypts for 'hyper-emergence'. We argue that, because giant eucalypts occur in rain-forest climates and share traits with rain-forest pioneers, they should be regarded as long-lived rain-forest pioneers, albeit with a particular dependence on fire for regeneration. These unique ecosystems are of high conservation value, following substantial clearing and logging over 150 yr. PMID:23121314

  18. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    PubMed

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  19. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    PubMed Central

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  20. Contrasting Strategies of Tree Function in a Seasonal Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Oliveira, R.; Agee, E.; Brum, M., Jr.; Saleska, S. R.; Fatichi, S.; Ewing, G.

    2015-12-01

    The increased frequency and severity of drought conditions in the Amazon Basin region have emphasized the question of rainforest vulnerability and resilience to heat and drought-induced stresses. However, what emerges from much research is that the impacts of droughts, essential controlling factors of the rainforest function, and variability of tree-scale strategies are yet to be fully understood. We present here a preliminary analysis of hydraulic relations of a seasonal Amazon rainforest using a set of ecohydrologic data collected through the GoAmazon project over dry and wet seasons. Expressions of different hydraulic strategies are identified that convey different implications for tree resilience during short- (diurnal) and longer-term (seasonal) stress periods. These hydraulic strategies appear to be inter-related with the tree growth and non-structural carbohydrate dynamics, contributing to the understanding of trait coordination at the whole-plant scale. Integration of individual responses is conducted over a range of wood density and exposure conditions. The results of this research thus shed light on the implication of variations in the rainforest function for future stresses, vital for predictive models of ecosystem dynamics of next generation.

  1. Comparative phylogeography in rainforest trees from Lower Guinea, Africa.

    PubMed

    Heuertz, Myriam; Duminil, Jérôme; Dauby, Gilles; Savolainen, Vincent; Hardy, Olivier J

    2014-01-01

    Comparative phylogeography is an effective approach to assess the evolutionary history of biological communities. We used comparative phylogeography in fourteen tree taxa from Lower Guinea (Atlantic Equatorial Africa) to test for congruence with two simple evolutionary scenarios based on physio-climatic features 1) the W-E environmental gradient and 2) the N-S seasonal inversion, which determine climatic and seasonality differences in the region. We sequenced the trnC-ycf6 plastid DNA region using a dual sampling strategy: fourteen taxa with small sample sizes (dataset 1, mean n = 16/taxon), to assess whether a strong general pattern of allele endemism and genetic differentiation emerged; and four taxonomically well-studied species with larger sample sizes (dataset 2, mean n = 109/species) to detect the presence of particular shared phylogeographic patterns. When grouping the samples into two alternative sets of two populations, W and E, vs. N and S, neither dataset exhibited a strong pattern of allelic endemism, suggesting that none of the considered regions consistently harboured older populations. Differentiation in dataset 1 was similarly strong between W and E as between N and S, with 3-5 significant F ST tests out of 14 tests in each scenario. Coalescent simulations indicated that, given the power of the data, this result probably reflects idiosyncratic histories of the taxa, or a weak common differentiation pattern (possibly with population substructure) undetectable across taxa in dataset 1. Dataset 2 identified a common genetic break separating the northern and southern populations of Greenwayodendron suaveolens subsp. suaveolens var. suaveolens, Milicia excelsa, Symphonia globulifera and Trichoscypha acuminata in Lower Guinea, in agreement with differentiation across the N-S seasonal inversion. Our work suggests that currently recognized tree taxa or suspected species complexes can contain strongly differentiated genetic lineages, which could lead

  2. Comparative Phylogeography in Rainforest Trees from Lower Guinea, Africa

    PubMed Central

    Heuertz, Myriam; Duminil, Jérôme; Dauby, Gilles; Savolainen, Vincent; Hardy, Olivier J.

    2014-01-01

    Comparative phylogeography is an effective approach to assess the evolutionary history of biological communities. We used comparative phylogeography in fourteen tree taxa from Lower Guinea (Atlantic Equatorial Africa) to test for congruence with two simple evolutionary scenarios based on physio-climatic features 1) the W-E environmental gradient and 2) the N-S seasonal inversion, which determine climatic and seasonality differences in the region. We sequenced the trnC-ycf6 plastid DNA region using a dual sampling strategy: fourteen taxa with small sample sizes (dataset 1, mean n = 16/taxon), to assess whether a strong general pattern of allele endemism and genetic differentiation emerged; and four taxonomically well-studied species with larger sample sizes (dataset 2, mean n = 109/species) to detect the presence of particular shared phylogeographic patterns. When grouping the samples into two alternative sets of two populations, W and E, vs. N and S, neither dataset exhibited a strong pattern of allelic endemism, suggesting that none of the considered regions consistently harboured older populations. Differentiation in dataset 1 was similarly strong between W and E as between N and S, with 3–5 significant FST tests out of 14 tests in each scenario. Coalescent simulations indicated that, given the power of the data, this result probably reflects idiosyncratic histories of the taxa, or a weak common differentiation pattern (possibly with population substructure) undetectable across taxa in dataset 1. Dataset 2 identified a common genetic break separating the northern and southern populations of Greenwayodendron suaveolens subsp. suaveolens var. suaveolens, Milicia excelsa, Symphonia globulifera and Trichoscypha acuminata in Lower Guinea, in agreement with differentiation across the N–S seasonal inversion. Our work suggests that currently recognized tree taxa or suspected species complexes can contain strongly differentiated genetic lineages, which could

  3. The role of immigrants in the assembly of the South American rainforest tree flora.

    PubMed Central

    Pennington, R Toby; Dick, Christopher W

    2004-01-01

    The Amazon lowland rainforest flora is conventionally viewed as comprising lineages that evolved in biogeographic isolation after the split of west Gondwana (ca. 100 Myr ago). Recent molecular phylogenies, however, identify immigrant lineages that arrived in South America during its period of oceanic isolation (ca. 100-3 Myr ago). Long-distance sweepstakes dispersal across oceans played an important and possibly predominant role. Stepping-stone migration from Africa and North America through hypothesized Late Cretaceous and Tertiary island chains may have facilitated immigration. An analysis of inventory plot data suggests that immigrant lineages comprise ca. 20% of both the species and individuals of an Amazon tree community in Ecuador. This is more than an order of magnitude higher than previous estimates. We also present data on the community-level similarity between South American and palaeotropical rainforests, and suggest that most taxonomic similarity derives from trans-oceanic dispersal, rather than a shared Gondwanan history. PMID:15519976

  4. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees.

    PubMed

    Martin, Adam R; Thomas, Sean C

    2013-12-01

    Tree functional traits and their link to patterns of growth and demography are central to informing trait-based analyses of forest communities, and mechanistic models of forest dynamics. However, few data are available on how functional traits in trees vary through ontogeny, particularly in tropical species; and less is known about how patterns of size-dependent changes in traits may differ across species of contrasting life-history strategies. Here we describe size-dependent variation in seven leaf functional traits and four wood chemical traits, in two Dominican rainforest tree species (Dacryodes excelsa Vahl. and Miconia mirabilis (Aubl.) L.O. Williams), ranging from small saplings to the largest canopy trees. With one exception, all traits showed pronounced variation with tree size (diameter at breast height, DBH). Leaf mass per area (LMA), thickness and tissue density increased monotonically with DBH in both species. Leaf area, leaf nitrogen (N) and carbon (C) : nitrogen (N) ratios also varied significantly with DBH; however, these patterns were unimodal, with peak trait values preceding the DBH at reproductive onset in both species. Size-dependent changes in leaf structural traits (LMA and leaf thickness) were generally similar in both species, while traits associated with leaf-level investment in C gain (leaf area, leaf C : N ratio) showed contrasting ontogenetic trends between species. Wood starch concentration varied with DBH in both species, also showing unimodal patterns with peaks preceding size at reproductive onset. Wood C concentration increased linearly with DBH in both species, though significantly only in M. mirabilis. Size-dependent patterns in wood chemical traits were similar between both species. Our data demonstrate pronounced variation in functional traits through tree ontogeny, probably due to a combination of environmental factors and shifts in resource allocation. Such ontogenetic variation is comparable in magnitude with interspecific

  5. Colonization processes and the maintenance of genetic diversity: insights from a pioneer rainforest tree, Aucoumea klaineana

    PubMed Central

    Born, Céline; Kjellberg, Finn; Chevallier, Marie-Hélène; Vignes, Hélène; Dikangadissi, Jean-Toussaint; Sanguié, Jodel; Wickings, E. Jean; Hossaert-McKey, Martine

    2008-01-01

    Despite recurrent episodes of range expansion and contraction, forest trees often harbour high genetic diversity. Studies of temperate forest trees suggest that prolonged juvenile phase and high pollen flow are the main factors limiting founder effects. Here, we studied the local colonization process of a pioneer rainforest tree in central Africa, Aucoumea klaineana. We identified 87% of parents among trees up to 20–25 years old and could thus compare direct parentage structure data with classical population genetics estimators. In this species, genetic diversity was maintained during colonization. The absence of founder effects was explained by (i) local random mating and (ii) local recruitment, as we showed that 75% of the trees in the close neighbourhood participated in the recruitment of new saplings. Long-distance pollen flow contributed little to genetic diversity: pollen and seed dispersal was mainly within stand (128 and 118 m, respectively). Spatial genetic structure was explained by aggregated seed dispersal rather than by mother–offspring proximity as assumed in classical isolation-by-distance models. Hence, A. klaineana presents a genetic diversity pattern typical of forest trees but does not follow the classical rules by which this diversity is generally achieved. We suggest that while high local genetic variability is of general importance to forest tree survival, the proximate mechanisms by which it is achieved may follow very different scenarios. PMID:18559325

  6. Contribution of litter and tree diameter increment in the eastern Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Camargo, P. B.; Ferreira, M.; De Oliveira, R., Jr.; Saleska, S. R.; Alves, L. F.

    2013-12-01

    Tropical forests have a great importance in the global carbon cycle, especially with regard to biomass. Some models predict that these forests can be vulnerable to carbon loss due to global warming-induced drought increases, while others contradict this theory. So, it is necessary to assess changes in carbon storage over time to better understand the future trends of this scenario. In this sense, this work has as its main objective the evaluation of tree diameter increment and the amount of litter, in a region of the eastern Amazon rainforest. 1000 dendometric trees bands were installed in different taxonomic families and size classes over four transects represent 4 ha each, as well as 60 collectors (litter traps). The trees of the forest had a higher growth in November and a smaller diameter increment in the month of September. The trees of the size class 55-90 cm were the most grown up followed by class > 90 cm trees. A likely factor that drove this episode was the height of the canopy of these trees. Pearson's correlation analysis showed correlation of 55-90 cm class with temperature and precipitation. The production of litter has an average production within the range found in the literature between 200 and 1700 kg.ha.ano-1. Further studies are needed in order to understand more clearly, what are the key factors that drive or limit the growth of tree species in the Amazon.

  7. A new species of Tropidopedia from the Amazon rainforest, Brazil (Hymenoptera: Apidae), with a revised phylogenetic overview of the genus.

    PubMed

    Mahlmann, Thiago; De Oliveira, Marcio L

    2015-01-01

    We describe a new species of the bee tribe Tapinotaspidini, Tropidopedia guaranae Mahlmann & Oliveira sp. n. from the Amazon rainforest, Amazonas, Brazil. We emend the phylogenetic tree of Aguiar & Melo (2007) to include the new species and comment upon some characters presented by those authors. PMID:26624352

  8. Species integrity in trees.

    PubMed

    Ortiz-Barrientos, Daniel; Baack, Eric J

    2014-09-01

    From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space. PMID:25155715

  9. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo

    PubMed Central

    Loader, N. J.; Walsh, R. P. D.; Robertson, I.; Bidin, K.; Ong, R. C.; Reynolds, G.; McCarroll, D.; Gagen, M.; Young, G. H. F.

    2011-01-01

    Stable carbon isotope (δ13C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age–growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum). PMID:22006972

  10. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo.

    PubMed

    Loader, N J; Walsh, R P D; Robertson, I; Bidin, K; Ong, R C; Reynolds, G; McCarroll, D; Gagen, M; Young, G H F

    2011-11-27

    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum). PMID:22006972

  11. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. PMID:26661903

  12. Long-term trends in nitrogen isotope composition and nitrogen concentration in Brazilian rainforest trees suggest changes in nitrogen cycle

    PubMed Central

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-01-01

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analysed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in δ15N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood δ15N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, δ15N increased significantly during the past century even when analysing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood δ15N often decreased, the δ15N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e. higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics. PMID:20092248

  13. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    PubMed

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics. PMID:20092248

  14. The influence of tree morphology on stemflow generation in a tropical lowland rainforest

    NASA Astrophysics Data System (ADS)

    Uber, Magdalena; Levia, Delphis F.; Zimmermann, Beate; Zimmermann, Alexander

    2014-05-01

    Even though stemflow usually accounts for only a small proportion of rainfall, it is an important point source of water and ion input to forest floors and may, for instance, influence soil moisture patterns and groundwater recharge. Previous studies showed that the generation of stemflow depends on a multitude of meteorological and biological factors. Interestingly, despite the tremendous progress in stemflow research during the last decades it is still largely unknown which combination of tree characteristics determines stemflow volumes in species-rich tropical forests. This knowledge gap motivated us to analyse the influence of tree characteristics on stemflow volumes in a 1 hectare plot located in a Panamanian lowland rainforest. Our study comprised stemflow measurements in six randomly selected 10 m by 10 m subplots. In each subplot we measured stemflow of all trees with a diameter at breast height (DBH) > 5 cm on an event-basis for a period of six weeks. Additionally, we identified all tree species and determined a set of tree characteristics including DBH, crown diameter, bark roughness, bark furrowing, epiphyte coverage, tree architecture, stem inclination, and crown position. During the sampling period, we collected 985 L of stemflow (0.98 % of total rainfall). Based on regression analyses and comparisons among plant functional groups we show that palms were most efficient in yielding stemflow due to their large inclined fronds. Trees with large emergent crowns also produced relatively large amounts of stemflow. Due to their abundance, understory trees contribute much to stemflow yield not on individual but on the plot scale. Even though parameters such as crown diameter, branch inclination and position of the crown influence stemflow generation to some extent, these parameters explain less than 30 % of the variation in stemflow volumes. In contrast to published results from temperate forests, we did not detect a negative correlation between bark roughness

  15. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample

    PubMed Central

    Crampton-Platt, Alex; Timmermans, Martijn J.T.N.; Gimmel, Matthew L.; Kutty, Sujatha Narayanan; Cockerill, Timothy D.; Vun Khen, Chey; Vogler, Alfried P.

    2015-01-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA “superbarcodes” for testing hypotheses regarding global patterns of diversity. PMID:25957318

  16. Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Christoffersen, Bradley; Nardini, Andrea; Mencuccini, Maurizio

    2016-07-01

    The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change. PMID:27001030

  17. Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes.

    PubMed

    Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Meave, Jorge A; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P L; Santos, Bráulio A

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954

  18. Conserving Tropical Tree Diversity and Forest Structure: The Value of Small Rainforest Patches in Moderately-Managed Landscapes

    PubMed Central

    Hernández-Ruedas, Manuel A.; Arroyo-Rodríguez, Víctor; Meave, Jorge A.; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P. L.; Santos, Bráulio A.

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954

  19. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests.

    PubMed

    Menge, Duncan N L; Chazdon, Robin L

    2016-02-01

    Trees capable of symbiotic nitrogen (N) fixation ('N fixers') are abundant in many tropical forests. In temperate forests, it is well known that N fixers specialize in early-successional niches, but in tropical forests, successional trends of N-fixing species are poorly understood. We used a long-term census study (1997-2013) of regenerating lowland wet tropical forests in Costa Rica to document successional patterns of N fixers vs non-fixers, and used an individual-based model to determine the demographic drivers of these trends. N fixers increased in relative basal area during succession. In the youngest forests, N fixers grew 2.5 times faster, recruited at a similar rate and were 15 times less likely to die as non-fixers. As succession proceeded, the growth and survival disparities decreased, whereas N fixer recruitment decreased relative to non-fixers. According to our individual-based model, high survival was the dominant driver of the increase in basal area of N fixers. Our data suggest that N fixers are successful throughout secondary succession in tropical rainforests of north-east Costa Rica, and that attempts to understand this success should focus on tree survival. PMID:26513713

  20. Drought and tree mortality in tropical rainforest: understanding and differentiating functional responses

    NASA Astrophysics Data System (ADS)

    Meir, P.; Rowland, L.; da Costa, A. C. L.; Mencuccini, M.; Oliveira, A.; Binks, O.; Christoffersen, B. O.; Eliane, M.; Vasconcelos, S.; Kruijt, B.; Ferreira, L.

    2014-12-01

    Our understanding of how forests respond to drought is especially constrained with respect to widespread tree mortality events. This limitation is particularly clear for tropical forests, despite the risk of drought to these ecosystems during the coming decades. We present new findings from the only current long-term 'ecosystem-scale' (1 ha) rainfall manipulation experiment in tropical rainforest, the Esecaflor experiment at Caxiuana National Forest, Para State, Brazil. Throughfall has been partially excluded from experimental forest at the Esecaflor experiment for more than a decade. We have previously demonstrated a capacity to model short-term physiological responses well, but longer term physiology and ecological dynamics remain challenging to understand and represent. In particular, high mortality and increased autotrophic respiration following extended drought are poorly understood phenomena, and their interaction with hydraulic responses and limitations needs to be characterised. We present initial data that for the first time combine carbon use and hydraulic metrics, comparing drought-vulnerable and non-vulnerable species that have experienced extended soil moisture deficit, as imposed in the experiment, also considering the response in soil respiration. We also discuss how these findings can be used to develop future empirical and modelling studies aimed at improving our capacity to predict the effects of drought on tropical forest ecosystems in Amazonia and in other tropical forest regions where species characteristics and environmental constraints may influence both short and long-term responses to drought.

  1. Spatial distribution of dominant arboreal ants in a malagasy coastal rainforest: gaps and presence of an invasive species.

    PubMed

    Dejean, Alain; Fisher, Brian L; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-01-01

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species-a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal

  2. Ants inhabiting myrmecophytic ferns regulate the distribution of lianas on emergent trees in a Bornean tropical rainforest.

    PubMed

    Tanaka, Hiroshi O; Itioka, Takao

    2011-10-23

    Little is known about the spatial distribution of lianas on emergent trees in tropical rainforests and the factors affecting this distribution. The present study investigated the effects of an arboreal ant species, Crematogaster difformis, which forms myrmecophytic symbioses with two epiphytic ferns, Lecanopteris sp. and Platycerium sp., on the spatial distribution of lianas associated with emergent trees. Living lianas were placed onto trunk surfaces inside and outside the territories of the ants in the canopy, to examine their ability to remove them. The number of leaves pruned by the ants was significantly higher on lianas inside than outside their territories. The spatial overlap of the distributions of lianas and the two ferns on emergent trees were then examined. The frequency of liana colonization of tree crowns was found to be significantly lower on trees with than without ferns. Under the natural conditions, C. difformis workers were observed biting and pruning the lianas. These results suggest that C. difformis regulates the distribution of lianas on emergent trees. PMID:21508025

  3. Ants inhabiting myrmecophytic ferns regulate the distribution of lianas on emergent trees in a Bornean tropical rainforest

    PubMed Central

    Tanaka, Hiroshi O.; Itioka, Takao

    2011-01-01

    Little is known about the spatial distribution of lianas on emergent trees in tropical rainforests and the factors affecting this distribution. The present study investigated the effects of an arboreal ant species, Crematogaster difformis, which forms myrmecophytic symbioses with two epiphytic ferns, Lecanopteris sp. and Platycerium sp., on the spatial distribution of lianas associated with emergent trees. Living lianas were placed onto trunk surfaces inside and outside the territories of the ants in the canopy, to examine their ability to remove them. The number of leaves pruned by the ants was significantly higher on lianas inside than outside their territories. The spatial overlap of the distributions of lianas and the two ferns on emergent trees were then examined. The frequency of liana colonization of tree crowns was found to be significantly lower on trees with than without ferns. Under the natural conditions, C. difformis workers were observed biting and pruning the lianas. These results suggest that C. difformis regulates the distribution of lianas on emergent trees. PMID:21508025

  4. Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species

    PubMed Central

    Dejean, Alain; Fisher, Brian L.; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-01-01

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant

  5. New species of Elaphomyces (Elaphomycetaceae, Eurotiales, Ascomycota) from tropical rainforests of Cameroon and Guyana.

    PubMed

    Castellano, Michael A; Dentinger, Bryn T M; Séné, Olivier; Elliott, Todd F; Truong, Camille; Henkel, Terry W

    2016-06-01

    The sequestrate false truffles Elaphomyces favosus, E. iuppitercellus, and E. labyrinthinus spp. nov. are described as new to science from the Dja Biosphere Reserve, Cameroon. Elaphomyces adamizans sp. nov. is described as new from the Pakaraima Mountains of Guyana. The Cameroonian species are the first Elaphomyces taxa to be formally described from Africa, occurring in lowland Guineo-Congolian tropical rainforests dominated by the ectomycorrhizal (ECM) canopy tree Gilbertiodendron dewevrei (Fabaceae subfam. Caesalpinioideae). The Guyanese species is the third to be discovered in lowland tropical South America, occurring in forests dominated by the ECM trees Pakaraimaea dipterocarpacea (Dipterocarpaceae) and Dicymbe jenmanii (Fabaceae subfam. Caesalpinioideae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species. Molecular and morphological data place these fungi in Elaphomycetaceae (Eurotiales, Ascomycota). Unique morphological features are congruent with molecular delimitation of each of the new species based on a phylogenetic analysis of the rDNA ITS and 28S loci across the Elaphomycetaceae. The phylogenetic analysis also suggests that a common ancestor is shared between some Elaphomyces species from Africa and South America, and that species of the stalked, volvate genus Pseudotulostoma may be nested in Elaphomyces. PMID:27433441

  6. Constitutive polymorphic cyanogenesis in the Australian rainforest tree, Ryparosa kurrangii (Achariaceae).

    PubMed

    Webber, Bruce L; Miller, Rebecca E; Woodrow, Ian E

    2007-08-01

    Cyanogenesis, the liberation of volatile hydrogen cyanide from endogenous cyanide-containing compounds, is a proven plant defence mechanism and the particular cyanogens involved have taxonomic utility. The cyclopentenoncyanhydrin glycoside gynocardin was the only cyanogen isolated from foliar tissue of the rare Australian rainforest tree, Ryparosa kurrangii (Achariaceae). Mechanical damage simulating foliar herbivory did not induce a significant increase in the expression of cyanogenesis over a 24h period, indicating cyanogenic herbivore defence in R. kurrangii is constitutive. The cyanogenic potential of mature leaves was quantitatively polymorphic between trees in a natural population, ranging from 0.54 to 4.77 mg CN g(-1) dry wt leaf tissue. PMID:17570449

  7. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania. PMID:26350630

  8. An application of the lottery competition model to a montane rainforest community of two canopy trees, ohia (Metrosideros polymorpha) and koa (Acacia koa) on Mauna Loa, Hawaii

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1992-01-01

    This rainforest occurs on Mauna Loa at 1500-2000 m elevation. Earthwatch volunteers, studying the habitat of 8 native forest bird species (3 endangered), identified 2382 living canopy trees, and 99 dead trees, on 68 study plots, 400 m2 each. Ohia made up 88% of the canopy; koa was 12%. The two-species lottery competition model, a stochastic model in which coexistence of species results from variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by one species. A discrete version was fit to the live tree data and a likelihood ratio test (p=0.02) was used to test if the mean death rates were equal. This test was corroborated by a contingency table analysis (p=0.03) based on dead trees. Parameter estimates from the two analyses were similar.

  9. Mechanosensing of stem bending and its interspecific variability in five neotropical rainforest species

    PubMed Central

    Coutand, Catherine; Chevolot, Malia; Lacointe, André; Rowe, Nick; Scotti, Ivan

    2010-01-01

    Background and Aims In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. Methods Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose–response curve for each species. Dose–response curves were then compared between tested species. Key Results The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose–response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. Conclusions This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated

  10. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  11. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  12. Epidemiology of tree-hole breeding mosquitoes in the tropical rainforest of Imo State, south-east Nigeria.

    PubMed

    Anosike, Jude C; Nwoke, Bertram E B; Okere, Anthony N; Oku, Ene E; Asor, Joe E; Emmy-Egbe, Ifeyinwa O; Adimike, Desmond A

    2007-01-01

    The study of tree-hole breeding mosquitoes was carried out in the tropical rainforest of Imo State Nigeria (two rural areas and two forest reserves in some parts of Orlu Senatorial Zone) between May-October 2002. Using standard entomological procedures, two macrohabitats (natural tree-holes and bamboo traps) and two microhabitats (leaf axils of cocoyams/pineapples and leaf axils of plantain/banana) were sampled for various mosquito species. Mosquitoes were recovered from all the various biotypes sampled. Types of mosquitoes species encountered, their relative abundance, as well as genera varied significantly during the study (p<0.05). Four genera of mosquitoes: Aedes, Culex, Anopheles and Toxorhynchites were recovered while 16 species of mosquitoes encountered include: Aedes aegypti, Ae. africanus, Ae. simpsoni, Ae. albopictus, Ae. stokesi, Ae. taylori, Ae. apicoargenteus, Culex quinquefasciatus, Cx. nebulosus, Cx. trigripes, Cx. decens, Anopheles gambiae, An. funiestus, An. coustani and Toxorhynchites viridibasis. Most of the mosquitoes showed oviposition preferences for one or more habitats. The presence of Ae. africanus, Ae. simpsoni and Ae. aegypti indicate that the study areas were at risk of yellow fever epidemic. The presence of Anopheles and Culex species ensured endemicity of malaria and filariasis, while the recovery of Ae. albopictus in this region suggests a possible outbreak of dengue fever in future if not properly controlled. PMID:17655174

  13. [Generalist bees (Meliponina) and the reproductive success of the mass flowering tree Stryphnodendron pulcherrimum (Fabales: Mimosaceae) in the Atlantic Rainforest, Bahia].

    PubMed

    Monteiro, Daniela; Ramalho, Mauro

    2010-01-01

    It is controversial the role played by Meliponina bees in the pollination of mass flowering trees with small generalized flowers (FMPG), very common group of trees in the tropical forest canopy. The species richness and relative abundance of flower visiting insects of the mass flowering tree Stryphnodendron pulcherrimum were measured to test the hypothesis of tight ecological association between these generalist bees and FMPG and to evaluate the effect of this relationship upon the reproductive success variation among tree crowns. The flower visiting insects were sampled on 10 flowering tree crowns at the Atlantic Rainforest in southern Bahia. Altogether, 553 visiting insects were collected during the flowering period of S. pulcherrimum: 293 (52%) Meliponina bees out of 438 bees (79.4%). All tree crowns were visited by Meliponina, with the proportion of these bees ranging from 27% to 87%. The tight ecological association between FMPG trees and Meliponina bees is supported by the observed pattern of spatial relationship. Both the relationship between variation of fruit set among tree crowns and species richness (r = 0.3579; P = 0.3098) or relative abundance (r = 0.3070; P = 0.3881) of Meliponina were not statistically significant. Likely a threshold of minimum relative abundance combined with the absolute abundance of these bees explain the fruit set variation among tree crowns of S. pulcherrimum, even by self-pollination. We tested this assumption with a preliminary analysis of Melipona bee genera distribution among the tree crowns. PMID:20877986

  14. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    USGS Publications Warehouse

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  15. STRAW: Species TRee Analysis Web server

    PubMed Central

    Shaw, Timothy I.; Ruan, Zheng; Glenn, Travis C.; Liu, Liang

    2013-01-01

    The coalescent methods for species tree reconstruction are increasingly popular because they can accommodate coalescence and multilocus data sets. Herein, we present STRAW, a web server that offers workflows for reconstruction of phylogenies of species using three species tree methods—MP-EST, STAR and NJst. The input data are a collection of rooted gene trees (for STAR and MP-EST methods) or unrooted gene trees (for NJst). The output includes the estimated species tree, modified Robinson-Foulds distances between gene trees and the estimated species tree and visualization of trees to compare gene trees with the estimated species tree. The web sever is available at http://bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/. PMID:23661681

  16. An autogamous rainforest species of Schiedea (Caryophyllaceae) from East Maui, Hawaiian Islands

    USGS Publications Warehouse

    Wagner, W.L.; Weller, S.G.; Sakai, A.K.; Medeiros, A.C.

    1999-01-01

    A new autogamous species of Schiedea is described and illustrated. It is known only from cliff habitat in rainforest on a single ridge in the Natural Area Reserve, Hanawi, East Maui. With the addition of this species there are 28 species in this endemic Hawaiian genus. The new species appears to be most closely related to Schiedea nuttallii, a species of mesic habitats on O'ahu, Moloka'i, and Maui.

  17. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  18. Contrasting levels of connectivity and localised persistence characterise the latitudinal distribution of a wind-dispersed rainforest canopy tree.

    PubMed

    Heslewood, Margaret M; Lowe, Andrew J; Crayn, Darren M; Rossetto, Maurizio

    2014-06-01

    Contrasting signals of genetic divergence due to historic and contemporary gene flow were inferred for Coachwood, Ceratopetalum apetalum (Cunoniaceae), a wind-dispersed canopy tree endemic to eastern Australian warm temperate rainforest. Analysis of nine nuclear microsatellites across 22 localities revealed two clusters between northern and southern regions and with vicariance centred on the wide Hunter River Valley. Within populations diversity was high indicating a relatively high level of pollen dispersal among populations. Genetic variation was correlated to differences in regional biogeography and ecology corresponding to IBRA regions, primary factors being soil type and rainfall. Eleven haplotypes were identified by chloroplast microsatellite analysis from the same 22 localities. A lack of chloroplast diversity within sites demonstrates limited gene flow via seed dispersal. Network representation indicated regional sharing of haplotypes indicative of multiple Pleistocene refugia as well as deep divergences between regional elements of present populations. Chloroplast differentiation between sites in the upper and lower sections of the northern population is reflective of historic vicariance at the Clarence River Corridor. There was no simple vicariance explanation for the distribution of the divergent southern chlorotype, but its distribution may be explained by the effects of drift from a larger initial gene pool. Both the Hunter and Clarence River Valleys represent significant dry breaks within the species range, consistent with this species being rainfall dependent rather than cold-adapted. PMID:24898671

  19. Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.

    2012-01-01

    Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929

  20. Coalescent Histories for Lodgepole Species Trees.

    PubMed

    Disanto, Filippo; Rosenberg, Noah A

    2015-10-01

    Coalescent histories are combinatorial structures that describe for a given gene tree and species tree the possible lists of branches of the species tree on which the gene tree coalescences take place. Properties of the number of coalescent histories for gene trees and species trees affect a variety of probabilistic calculations in mathematical phylogenetics. Exact and asymptotic evaluations of the number of coalescent histories, however, are known only in a limited number of cases. Here we introduce a particular family of species trees, the lodgepole species trees (λn)n ≥ 0, in which tree λn has m = 2n+1 taxa. We determine the number of coalescent histories for the lodgepole species trees, in the case that the gene tree matches the species tree, showing that this number grows with m!! in the number of taxa m. This computation demonstrates the existence of tree families in which the growth in the number of coalescent histories is faster than exponential. Further, it provides a substantial improvement on the lower bound for the ratio of the largest number of matching coalescent histories to the smallest number of matching coalescent histories for trees with m taxa, increasing a previous bound of [Formula: see text] to [Formula: see text]. We discuss the implications of our enumerative results for phylogenetic computations. PMID:25973633

  1. Exact solutions for species tree inference from discordant gene trees.

    PubMed

    Chang, Wen-Chieh; Górecki, Paweł; Eulenstein, Oliver

    2013-10-01

    Phylogenetic analysis has to overcome the grant challenge of inferring accurate species trees from evolutionary histories of gene families (gene trees) that are discordant with the species tree along whose branches they have evolved. Two well studied approaches to cope with this challenge are to solve either biologically informed gene tree parsimony (GTP) problems under gene duplication, gene loss, and deep coalescence, or the classic RF supertree problem that does not rely on any biological model. Despite the potential of these problems to infer credible species trees, they are NP-hard. Therefore, these problems are addressed by heuristics that typically lack any provable accuracy and precision. We describe fast dynamic programming algorithms that solve the GTP problems and the RF supertree problem exactly, and demonstrate that our algorithms can solve instances with data sets consisting of as many as 22 taxa. Extensions of our algorithms can also report the number of all optimal species trees, as well as the trees themselves. To better asses the quality of the resulting species trees that best fit the given gene trees, we also compute the worst case species trees, their numbers, and optimization score for each of the computational problems. Finally, we demonstrate the performance of our exact algorithms using empirical and simulated data sets, and analyze the quality of heuristic solutions for the studied problems by contrasting them with our exact solutions. PMID:24131054

  2. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories.

    PubMed

    Siddique, Ilyas; Vieira, Ima Célia Guimarães; Schmidt, Susanne; Lamb, David; Carvalho, Cláudio José Reis; Figueiredo, Ricardo de Oliveira; Blomberg, Simon; Davidson, Eric A

    2010-07-01

    Nutrient enrichment is increasingly affecting many tropical ecosystems, but there is no information on how this affects tree biodiversity. To examine dynamics in vegetation structure and tree species biomass and diversity, we annually remeasured tree species before and for six years after repeated additions of nitrogen (N) and phosphorus (P) in permanent plots of abandoned pasture in Amazonia. Nitrogen and, to a lesser extent, phosphorus addition shifted growth among woody species. Nitrogen stimulated growth of two common pioneer tree species and one common tree species adaptable to both high- and low-light environments, while P stimulated growth only of the dominant pioneer tree Rollinia exsucca (Annonaceae). Overall, N or P addition reduced tree assemblage evenness and delayed tree species accrual over time, likely due to competitive monopolization of other resources by the few tree species responding to nutrient enrichment with enhanced establishment and/or growth rates. Absolute tree growth rates were elevated for two years after nutrient addition. However, nutrient-induced shifts in relative tree species growth and reduced assemblage evenness persisted for more than three years after nutrient addition, favoring two nutrient-responsive pioneers and one early-secondary tree species. Surprisingly, N + P effects on tree biomass and species diversity were consistently weaker than N-only and P-only effects, because grass biomass increased dramatically in response to N + P addition. The resulting intensified competition probably prevented an expected positive N + P synergy in the tree assemblage. Thus, N or P enrichment may favor unknown tree functional response types, reduce the diversity of coexisting species, and delay species accrual during structurally and functionally complex tropical rainforest secondary succession. PMID:20715634

  3. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns

    NASA Astrophysics Data System (ADS)

    Stuntz, Sabine; Simon, Ulrich; Zotz, Gerhard

    2002-05-01

    Epiphytes are often assumed to influence the microclimatic conditions of the tree crowns that they inhabit. In order to quantify this notion, we measured the parameters "temperature" (of the substrate surface and the boundary layer of air above it), "evaporative drying rate" and "evapotranspiration" at various locations within tree crowns with differing epiphyte assemblages. The host tree species was Annona glabra, which was either populated by one of three epiphyte species ( Dimerandra emarginata, Tillandsia fasciculata, or Vriesea sanguinolenta) or was epiphyte-free. We found that during the hottest and driest time of day, microsites in the immediate proximity of epiphytes had significantly lower temperatures than epiphyte-bare locations within the same tree crown, even though the latter were also shaded by host tree foliage or branches. Moreover, water loss through evaporative drying at microsites adjacent to epiphytes was almost 20% lower than at exposed microsites. We also found that, over the course of several weeks, the evapotranspiration in tree crowns bearing epiphytes was significantly lower than in trees without epiphytes. Although the influence of epiphytes on temperature extremes and evaporation rates is relatively subtle, their mitigating effect could be of importance for small animals like arthropods inhabiting an environment as harsh and extreme as the tropical forest canopy.

  4. How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?

    PubMed Central

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.

    2013-01-01

    Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements

  5. Seasonal diet shifts of seven fish species in an Atlantic rainforest stream in Southeastern Brazil.

    PubMed

    Deus, C P; Petrere-Junior, M

    2003-11-01

    We analyzed the stomach contents of 116 individuals belonging to seven fishes species in order to investigate seasonal changes in feeding strategy and how trophic interactions between species affect community structure in an Atlantic rainforest stream in Southeastern Brazil. Oligosarcus hepsetus and Pimelodus sp. consumed fewer items during the winter. Phalloceros caudimaculatus switched feeding habits from detritus during summer to algae during winter. These examples are related to variations in food availability and species feeding selectivity. The highest diet overlap values, for most species, as measured using Schoener's index, were observed in summer, along with a species tendency to be more generalist. Feeding pattern variation may influence the fish community structure. PMID:15029369

  6. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    PubMed

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity. PMID:26602351

  7. The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa.

    PubMed

    Budde, K B; González-Martínez, S C; Hardy, O J; Heuertz, M

    2013-07-01

    Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation-coastal or swamp vs terra firme-in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees. PMID:23572126

  8. The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa

    PubMed Central

    Budde, K B; González-Martínez, S C; Hardy, O J; Heuertz, M

    2013-01-01

    Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation—coastal or swamp vs terra firme—in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees. PMID:23572126

  9. Hymenochaetaceae from the Guineo-Congolian rainforest: three new species of Phylloporia based on morphological, DNA sequences and ecological data.

    PubMed

    Yombiyeni, Prudence; Balezi, Alphonse; Amalfi, Mario; Decock, Cony

    2015-01-01

    Four species are added to Phylloporia. Three species, originating from the western edge of the Guineo-Congolian rainforest in Gabon (central Africa), are described as new. Phylloporia afrospathulata sp. nov. forms seasonal, stipitate, solitary basidiomata emerging from soil, more likely connected to buried roots, and has broadly ellipsoid basidiospores. Phylloporia inonotoides sp. nov. forms seasonal sessile, soft basidiomata, solitary at the base of small-stemmed trees including Crotonogyne manniana (Euphorbiaceae) and Garcinia cf. smeathmannii (Clusiaceae). It has a homogeneous context, large pores (2-3 mm), and oblong-ellipsoid to suballantoid basidiospores. Phylloporia fulva sp. nov. forms sessile, conchate, mostly pendant, gregarious basidiomata emerging from the trunk of an unidentified small-stemmed tree and has small, subglobose basidiospores. This species is compared to Polyporus pullus and Phylloporia pulla comb. nov. and proposed based on the study of the type specimen. Phylogenetic inferences using partial nuc 28S DNA sequence data (region including the D1/D2/D3 domains) and the most exhaustive dataset available to date resolved these new morphospecies as three distinct terminal lineages. No sequence data of P. pulla currently is available. The 28S-based phylogenic inferences poorly resolved the interspecific relationships within the Phylloporia clade. PMID:26240304

  10. Designing Mixed Species Tree Plantations for the Tropics: Balancing Ecological Attributes of Species with Landholder Preferences in the Philippines

    PubMed Central

    Nguyen, Huong; Lamb, David; Herbohn, John; Firn, Jennifer

    2014-01-01

    A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop. PMID:24751720

  11. Designing mixed species tree plantations for the tropics: balancing ecological attributes of species with landholder preferences in the Philippines.

    PubMed

    Nguyen, Huong; Lamb, David; Herbohn, John; Firn, Jennifer

    2014-01-01

    A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30-40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop. PMID:24751720

  12. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly.

    PubMed

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S; Laffan, Shawn W

    2015-12-01

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. PMID:26645199

  13. Patterns of relative species abundance in rainforests and coral reefs.

    PubMed

    Volkov, Igor; Banavar, Jayanth R; Hubbell, Stephen P; Maritan, Amos

    2007-11-01

    A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs. PMID:17972874

  14. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    PubMed

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10-30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  15. New species of Microcentrum Scudder, 1862 (Orthoptera: Tettigonioidea:
    Phaneropteridae) from Amazon rainforest.

    PubMed

    Da Silva Sovano, Rafael S; Cadena-Castañeda, Oscar J

    2015-01-01

    A regional study is performed for the Amazonian species of the genus Microcentrum Scudder, 1862, its proposed Microcentrum punctifrons Brunner von Wattenwyl, 1891 as nomen dubium n. stat. and two new species are described: Microcentrum amacayacu Cadena-Casteñada, Sovano n. sp. and Microcentrum xavieri Sovano, Cadena-Casteñada n. sp. the Colombian and Brazilian Amazon, respectively. A list and a key to the Amazonian species are also provided, along with a discussion on their distribution, according to endemism areas established to Amazon rainforest. PMID:25947488

  16. New species of Daidalotarsonemus and Excelsotarsonemus (Acari, Tarsonemidae) from the Brazilian rainforest

    PubMed Central

    Rezende, José Marcos; Lofego, Antonio Carlos; Ochoa, Ronald; Bauchan, Gary

    2015-01-01

    Abstract Three new species of Tarsonemidae, Daidalotarsonemus oliveirai Rezende, Lofego & Ochoa, sp. n., Excelsotarsonemus caravelis Rezende, Lofego & Ochoa, sp. n. and Excelsotarsonemus tupi Rezende, Lofego & Ochoa, sp. n. are described and illustrated. Measurements for these species are provided, as well as drawings, phase contrast (PC), differential interference contrast (DIC) and low temperature scanning electron microscopy (LT-SEM) micrographs. Some characters, which have not been used or clearly understood, are described herein. Biological, ecological and agricultural aspects about the role of these species in the rainforest and its surrounding environment are briefly discussed. PMID:25684996

  17. Root systems of successional and old-growth forest species and its role on nutrient dynamics within a tropical rainforest in Indonesia

    SciTech Connect

    Soedjito, H.

    1990-01-01

    Most studies of nutrient dynamics in tropical rainforest have focused on the above ground portion of forest trees. However, the aim of this dissertation is to demonstrate the root systems also play an important role in nutrient dynamics. Nutrient dynamics, in general, are likely to differ between successional forest and old-growth forest. To test for differences in nutrient uptake between trees of successional and old-growth forests, the author experimentally compared seedlings of six different species by measuring biomass allocation and nutrient concentrations as well as determining spatial patterns of root distribution and the absorption ability of the root systems by usign the [sup 32]P radiotracer technique. Young saplings of ten species from natural habitats were also examined for the same parameters, and the results to determine whether results of the laboratory experiments were consistent with field results. It was found that as seedlings, roots of successional forest species penetrate deeper into the soil and have longer lateral roots than old-growth forest species. Successional forest species also had greater biomass accumulation rates, higher ability to absorb [sup 32]P, and contained higher levels of nutrients than species of old-growth forest. Mycorrhizal associations are suspected to be responsible for the high nutrient concentrations, primarily of P and N, within successional species. Successional forest tree species had more cases of infection by vesicular arbuscular mycorrhizas (VAM), while old-growth forest species were infected by both VAM and ectomycorrhizas. Therefore, successional seedlings can play an important role in conserving released nutrients after disturbance. At the landscape level, successional species together with old-growth species can maintain sustainable nutrient cycling within tropical rainforests.

  18. Interference of Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) on the establishment of rainforest trees.

    PubMed

    Silva Matos, D M; Belinato, T A

    2010-05-01

    In order to identify the effect of P. arachnoideum, we studied 11 native tree species commonly used in reforestation projects. Bioassays were conducted in laboratory to evaluate the effect of bracken leachate on the germination and morphology of seedlings. Juveniles of some of these species were planted in two adjacent but contrasting areas in relation to the dominance of P. arachnoideum. The evaluation of growth and survivorship was performed after six and twelve months. This study reveals that for some pioneer and secondary trees P. arachnoideum leachate exerted an inhibitory effect on seed germination and seedling morphology. Field experiments revealed that pioneers are apparently more resistant to P. arachnoideum leachate than secondary species. PMID:20549062

  19. Individual Species-Area Relationship of Woody Plant Communities in a Heterogeneous Subtropical Monsoon Rainforest

    PubMed Central

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species’ habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species’ interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10–30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  20. Do carbon-based defences reduce foliar damage? Habitat-related effects on tree seedling performance in a temperate rainforest of Chiloé Island, Chile.

    PubMed

    Chacón, Paulina; Armesto, Juan J

    2006-01-01

    Carbon-based secondary compounds (CBSCs), such as phenols or tannins, have been considered as one of the most important and general chemical barriers of woody plants against a diverse array of herbivores. Herbivory has been described as a critical factor affecting the growth and survival of newly established tree seedlings or juveniles then, the presence of secondary metabolites as defences against herbivores should be a primary strategy to reduce foliar damage. We examined whether light-induced changes in leaf phenolic chemistry affected insect herbivory on seedlings of two rainforest tree species, Drimys winteri (Winteraceae) and Gevuina avellana (Proteaceae). Seedlings of both species were planted under closed canopy and in a canopy gap within a large remnant forest patch. Half of the seedlings in each habitat were disinfected with a wide-spectrum systemic insecticide and the other half were used as controls. Seedling growth, survival, and foliar damage (estimated by an herbivory index) due to insect herbivores were monitored over a period of 16 months (December 2001-April 2003). The total leaf content of phenols and condensed tannins were assessed in seedlings from both habitats. As expected, access to light induced a greater production of CBSCs in seedlings of both tree species, but these compounds did not seem to play a significant defensive role, as seedlings grown in gaps suffered greater leaf damage than those planted in forest interior. In addition, in both habitats, seedlings without insecticide treatment suffered a greater foliar damage than those with insecticide, especially 16 months after the beginning of the experiment. Canopy openness and herbivory had positive and negative effects, respectively, on seedling growth and survival in both tree species. In conclusion, despite the higher levels of defence in tree-fall gap, the higher densities of herbivore override this and lead to higher damage levels. PMID:16170562

  1. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    PubMed

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. PMID:26179437

  2. Reconciliation with Non-Binary Species Trees

    PubMed Central

    Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton

    2008-01-01

    Abstract Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|VG| · (kS + hS)) time, where |VG| is the number of nodes in the gene tree, hS is the height of the species tree and kS is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in Notung, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets. PMID:18808330

  3. Species Tree Inference Using a Mixture Model.

    PubMed

    Ullah, Ikram; Parviainen, Pekka; Lagergren, Jens

    2015-09-01

    Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by coestimating gene trees and the species tree but this approach poses a scalability problem for larger data sets. We present MixTreEM-DLRS: A two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural expectation maximization algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model (Åkerborg O, Sennblad B, Arvestad L, Lagergren J. 2009. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A. 106(14):5714-5719), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad L, Lagergren J, Sennblad B. 2009. The gene evolution model and computing its associated probabilities. J ACM. 56(2):1-44). We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance with a recent genome-scale species tree reconstruction method PHYLDOG (Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013. Genome-scale coestimation of species and gene trees. Genome Res. 23(2):323-330) as well as with a fast parsimony-based algorithm Duptree (Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. Duptree: a program for large-scale phylogenetic

  4. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and

  5. Comparative LC-MS-based metabolite profiling of the ancient tropical rainforest tree Symphonia globulifera.

    PubMed

    Cottet, Kévin; Genta-Jouve, Grégory; Fromentin, Yann; Odonne, Guillaume; Duplais, Christophe; Laprévote, Olivier; Michel, Sylvie; Lallemand, Marie-Christine

    2014-12-01

    In the last few years, several phytochemical studies have been undertaken on the tropical tree Symphonia globulifera leading to the isolation and characterisation of several compounds exhibiting antiparasitic activities against Plasmodium falciparum, Trypanosoma brucei and Leishmania donovani. The comparative LC-MS based metabolite profiling study conducted on the tree led to the identification of compounds originating from specific tissues. The results showed that renewable organs/tissues can be used as the starting material for the production of polycyclic poly-prenylated-acylphloroglucinols, therefore reducing impacts on biodiversity. This study also underlined the lack of knowledge on the secondary metabolites produced by S. globulifera since only a small number of the total detected features were putatively identified using the database of known compounds for the species. PMID:25301665

  6. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    PubMed

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  7. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest

    PubMed Central

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  8. The complex biogeographic history of a widespread tropical tree species.

    PubMed

    Dick, Christopher W; Heuertz, Myriam

    2008-11-01

    Many tropical forest tree species have broad geographic ranges, and fossil records indicate that population disjunctions in some species were established millions of years ago. Here we relate biogeographic history to patterns of population differentiation, mutational and demographic processes in the widespread rainforest tree Symphonia globulifera using ribosomal (ITS) and chloroplast DNA sequences and nuclear microsatellite (nSSR) loci. Fossil records document sweepstakes dispersal origins of Neotropical S. globulifera populations from Africa during the Miocene. Despite historical long-distance gene flow, nSSR differentiation across 13 populations from Costa Rica, Panama, Ecuador (east and west of Andes) and French Guiana was pronounced (F(ST)= 0.14, R(ST)= 0.39, P < 0.001) and allele-size mutations contributed significantly (R(ST) > F(ST)) to the divergences between cis- and trans-Andean populations. Both DNA sequence and nSSR data reflect contrasting demographic histories in lower Mesoamerica and Amazonia. Amazon populations show weak phylogeographic structure and deviation from drift-mutation equilibrium indicating recent population expansion. In Mesoamerica, genetic drift was strong and contributed to marked differentiation among populations. The genetic structure of S. globulifera contains fingerprints of drift-dispersal processes and phylogeographic footprints of geological uplifts and sweepstakes dispersal. PMID:18764917

  9. A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: why so few species in lowland tropical rainforests?

    PubMed

    Smith, Sarah A; de Oca, Adrian Nieto Montes; Reeder, Tod W; Wiens, John J

    2007-05-01

    Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome. PMID:17492971

  10. Does nonnutritive tree gouging in a rainforest-dwelling lemur convey resource ownership as does loud calling in a dry forest-dwelling lemur?

    PubMed

    Rasoloharijaona, Solofonirina; Randrianambinina, Blanchard; Joly-Radko, Marine

    2010-12-01

    Nonhuman primates may defend crucial resources using acoustic or chemical signals. When essential resources are limited, ownership display for a resource may be enhanced. Defending resources may depend on population density and habitat characteristics. Using the Milne Edwards' sportive lemurs (Lepilemur edwardsi) and weasel sportive lemurs (L. mustelinus) as models, we tested whether two cryptic nocturnal lemur species differing in population density and habitat show differences in their vocal and chemical communication for signaling ownership of resources. L. edwardsi inhabits a western dry deciduous forest in a high-density population, whereas L. mustelinus is found in an eastern rainforest in low density. We followed ten L. edwardsi (six males and four females) and nine L. mustelinus (four males and five females) for 215 hr during the early evening (06:00-10:00 p.m.) and the early morning (02:00-05:00 a.m.) and recorded their behavior using focal animal sampling. We found that both species differed in their vocal and chemical communication. L. edwardsi was highly vocal and displayed loud calling in the mornings and evenings while feeding or in the vicinity of resting places. In contrast, L. mustelinus never vocalized during observations, but displayed tree-gouging behavior that was never observed in L. edwardsi. Tree gouging occurred more often during early evening sessions than early morning sessions. Subjects gouged trees after leaving their sleeping hole and before moving around. We suggest that, in weasel sportive lemurs, non-nutritive tree gouging is used as a scent-marking behavior in order to display ownership of sleeping sites. Altogether, our findings provide first empirical evidence on the evolution of different communication systems in two cryptic nocturnal primate species contrasting in habitat quality and population density. Further investigations are needed to provide more insight into the underlying mechanisms. PMID:20623502

  11. Isoprenoid emissions of trees in a tropical rainforest in Xishuangbanna, SW China

    NASA Astrophysics Data System (ADS)

    Wilske, B.; Cao, K.-F.; Schebeske, G.; Chen, J.-W.; Wang, A.; Kesselmeier, J.

    Isoprenoid emissions of eight tropical tree species of SE Asia were investigated using dynamic Teflon bag branch enclosures. Emission potentials of four species were considerably deviating from a previous report. Two species, Garcinia cowa and Celtis philippensis, emitted isoprene with standard emission factors, given as carbon on dry weight basis of 20.7 and 0.2μgg-1h-1, respectively, before the peak of the rainy season. After the peak of the rainy reason the standard emission changed to 17.5 and 0.7μgg-1h-1, respectively. The other six species emitted monoterpenes with low standard emission factors between <0.1 and 0.5μgg-1h-1. Four out of five species investigated at two different times of the year showed seasonal differences in emission rates and composition. Total isoprenoid emissions were generally higher with new leaf flush than with aged leaves. Overall, the results suggest that better understanding of volatile organic compounds (VOC) emission from tropical species of SE Asia requires investigations that cover different seasons.

  12. Reconciliation of Gene and Species Trees

    PubMed Central

    Rusin, L. Y.; Lyubetskaya, E. V.; Gorbunov, K. Y.; Lyubetsky, V. A.

    2014-01-01

    The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i) inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii) trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii) can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree. PMID:24800245

  13. Tropical Rainforests.

    ERIC Educational Resources Information Center

    Nigh, Ronald B.; Nations, James D.

    1980-01-01

    Presented is a summary of scientific knowledge about the rainforest environment, a tropical ecosystem in danger of extermination. Topics include the current state of tropical rainforests, the causes of rainforest destruction, and alternatives of rainforest destruction. (BT)

  14. Computer simulation model of ecological succession in Australian subtropical rainforest. Environmental Sciences Division Publication No. 1407

    SciTech Connect

    Shugart, H.H.; Mortlock, A.T.; Hopkins, M.S.; Burgess, I.P.

    1980-04-01

    KIAMBRAM, a detailed simulation model for ecological succession in an Australian subtropical humid rainforest is documented in respect to model structure. Model parameters for 125 rainforest tree species are provided. A listing of the KIAMBRAM model and a sample of output from the model is included.

  15. A cost–benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings: leaf life span and payback time for leaf deployment

    PubMed Central

    Coste, Sabrina; Roggy, Jean-Christophe; Schimann, Heidy; Epron, Daniel; Dreyer, Erwin

    2011-01-01

    The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity. PMID:21511904

  16. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island

    PubMed Central

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year−1) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  17. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island.

    PubMed

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year(-1)) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  18. Morphological and molecular characterization and phylogenetic relationships of a new species of trypanosome in Tapirus terrestris (lowland tapir), Trypanosoma terrestris sp. nov., from Atlantic Rainforest of southeastern Brazi

    PubMed Central

    2013-01-01

    Background The Lowland tapir (Tapirus terrestris) is the largest Brazilian mammal and despite being distributed in various Brazilian biomes, it is seriously endangered in the Atlantic Rainforest. These hosts were never evaluated for the presence of Trypanosoma parasites. Methods The Lowland tapirs were captured in the Brazilian southeastern Atlantic Rainforest, Espírito Santo state. Trypanosomes were isolated by hemoculture, and the molecular phylogeny based on small subunit rDNA (SSU rDNA) and glycosomal-3-phosphate dehydrogenase (gGAPDH) gene sequences and the ultrastructural features seen via light microscopy and scanning and transmission electron microscopy are described. Results Phylogenetic trees using combined SSU rDNA and gGAPDH data sets clustered the trypanosomes of Lowland tapirs, which were highly divergent from other trypanosome species. The phylogenetic position and morphological discontinuities, mainly in epimastigote culture forms, made it possible to classify the trypanosomes from Lowland tapirs as a separate species. Conclusions The isolated trypanosomes from Tapirus terrestris are a new species, Trypanosoma terrestris sp. n., and were positioned in a new Trypanosoma clade, named T. terrestris clade. PMID:24330660

  19. Pushing the pace of tree species migration.

    PubMed

    Lazarus, Eli D; McGill, Brian J

    2014-01-01

    Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale. PMID:25162663

  20. Pushing the Pace of Tree Species Migration

    PubMed Central

    Lazarus, Eli D.; McGill, Brian J.

    2014-01-01

    Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale. PMID:25162663

  1. Region effects influence local tree species diversity

    PubMed Central

    Ricklefs, Robert E.; He, Fangliang

    2016-01-01

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species. PMID:26733680

  2. Region effects influence local tree species diversity.

    PubMed

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species. PMID:26733680

  3. Transcriptomic analysis suggests a key role for SQUAMOSA PROMOTER BINDING PROTEIN LIKE, NAC and YUCCA genes in the heteroblastic development of the temperate rainforest tree Gevuina avellana (Proteaceae).

    PubMed

    Ostria-Gallardo, Enrique; Ranjan, Aashish; Chitwood, Daniel H; Kumar, Ravi; Townsley, Brad T; Ichihashi, Yasunori; Corcuera, Luis J; Sinha, Neelima R

    2016-04-01

    Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species. PMID:26680017

  4. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  5. Ultrastructure and pollen morphology of Bromeliaceae species from the Atlantic Rainforest in Southeastern Brazil.

    PubMed

    Silva, Vanessa J D; Ribeiro, Ester M; Luizi-Ponzo, Andrea P; Faria, Ana Paula G

    2016-01-01

    Pollen grain morphology of Bromeliaceae species collected in areas of the Atlantic Rainforest of southeastern Brazil was studied. The following species were analyzed: Aechmea bambusoides L.B.Sm. & Reitz, A. nudicaulis (L.) Griseb., A. ramosa Mart. ex Schult.f., Ananas bracteatus (Lindl.) Schult.f., Billbergia distachia (Vell.) Mez, B. euphemiae E. Morren, B. horrida Regel, B. zebrina (Herb.) Lindl., Portea petropolitana (Wawra) Mez, Pitcairnia flammea Lindl., Quesnelia indecora Mez, Tillandsia polystachia (L.) L., T. stricta Sol., T. gardneri Lindl., T. geminiflora Brongn. and Vriesea grandiflora Leme. Light and scanning electron microscopy were used and the species were grouped into three pollen types, organized according to aperture characteristics: Type I - pantoporate pollen grains observed in P. petropolitana, Type II - 2-porate pollen grains, observed in the genera Ananas, Aechmea and Quesnelia, and Type III - 1-colpate pollen grains, observed in the genera Billbergia, Pitcairnia, Tillandsia and Vriesea. Pollen data led to the construction of an identification key. The results showed that the species analyzed can be distinguished using mainly aperture features and exine ornamentation, and that these characteristics may assist in taxonomic studies of the family. PMID:27168370

  6. AFLP marker analysis revealing genetic structure of the tree Parapiptadenia rigida (Benth.) Brenan (Leguminosae-Mimosoideae) in the southern Brazilian Tropical Rainforest.

    PubMed

    de Souza, Laís Bérgamo; Ruas, Eduardo A; Rodrigues, Luana A; Ruas, Claudete F; Ruas, Paulo M

    2013-12-01

    Parapiptadenia rigida is a tropical early secondary succession tree characteristic of the Tropical Atlantic Rainforest. This species is of great ecological importance in the recovery of degraded areas. In this study we investigated the variability and population genetic structure of eight populations of P. rigida. Five AFLP primer combinations were used in a sample of 159 individuals representing these eight populations, rendering a total of 126 polymorphic fragments. The averages of percentage of polymorphic loci, gene diversity, and Shannon index were 60.45%, 0.217, and 0.322, respectively. A significant correlation between the population genetic variability and the population sizes was observed. The genetic variability within populations (72.20%) was higher than between these (22.80%). No perfect correlation was observed between geographic and genetic distances, which might be explained by differences in deforestation intensities that occurred in these areas. A dendrogram constructed by the UPGMA method revealed the formation of two clusters, these also confirmed by Bayesian analysis for the number of K cluster. These results show that it is necessary to develop urgent management strategies for the conservation of certain populations of P. rigida, while other populations still preserve reasonably high levels of genetic variability. PMID:24385857

  7. Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China

    PubMed Central

    Lan, Guoyu; Getzin, Stephan; Wiegand, Thorsten; Hu, Yuehua; Xie, Guishui; Zhu, Hua; Cao, Min

    2012-01-01

    Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1) fourteen of the twenty tree species were negatively (or positively) associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2) Most saplings of the study species showed a significantly clumped distribution at small scales (0–10 m) which was lost at larger scales (10–30 m). (3) The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4) It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely) contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China. PMID:23029394

  8. Tree traits and canopy closure data from an experiment with 34 planted species native to Sabah, Borneo.

    PubMed

    Gustafsson, Malin; Gustafsson, Lena; Alloysius, David; Falck, Jan; Yap, Sauwai; Karlsson, Anders; Ilstedt, Ulrik

    2016-03-01

    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment. PMID:26900591

  9. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  10. CpDNA-based species identification and phylogeography: application to African tropical tree species.

    PubMed

    Duminil, J; Heuertz, M; Doucet, J-L; Bourland, N; Cruaud, C; Gavory, F; Doumenge, C; Navascués, M; Hardy, O J

    2010-12-01

    Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations. PMID:21091558

  11. A tree species inventory over Europe

    NASA Astrophysics Data System (ADS)

    Ambelas Skjøth, C.; Geels, C.; Hvidberg, M.; Hertel, O.; Brandt, J.; Frohn, L. M.; Hansen, K. M.; Hedegaard, G. B.; Christensen, J. H.; Moseholm, L.

    2009-04-01

    Atmospheric transport models are used in studies of atmospheric chemistry as well as aerobiology. Atmospheric transport models in general needs accurate emissions inventories, which includes biogenic emissions such as Volatile Organic Compounds (VOCs) and pollen. Trees are important VOC and pollen sources and a needed requirement is specie distribution which takes into account important species such as Betula and Alnus. We present here a detailed tree species inventory covering Europe, parts of Africa and parts of Asia. Forest inventories have been obtained for each European country, parts of Asia and parts of Africa. The national inventories vary with respect to number of species as well as the number of sub-regions each nation is divided into. The inventories are therefore harmonised within a GIS system and afterwards gridded to the model grid defined by the EMEP model: 50 km x 50 km. The inventory is designed to be used with existing land-use data, which separates forest cover into broad leaved, mixed and conifer forests. This will be exemplified by using two different remote sensing products with different grid resolution such as GLC2000 and CLC2000 in selected areas. The final inventory includes 16 conifer species and 23 broadleaved species that are important for biogenic VOCs or pollen emission calculations. For example: Oak (Quercus), poplar (Populus), pines (Pinus), spruce (Picea), birch (Betula) and alder (Alnus). 774 regions with forest inventories are included, mainly on sub-national level. The coverage of each specie ranges from national to European scale, where the latter includes VOC and allergy relevant species such as Quercus, Alnus and Betula. The inventory is gridded to the model grid defined by the EMEP model, which is also the basis for many emissions inventories throughout Europe. The inventory is therefore prepared for easy implementation into atmospheric transport models by providing an extension to already applied land use data such as the

  12. Large-scale phylogeography of the disjunct Neotropical tree species Schizolobium parahyba (Fabaceae-Caesalpinioideae).

    PubMed

    Turchetto-Zolet, Andreia C; Cruz, Fernanda; Vendramin, Giovanni G; Simon, Marcelo F; Salgueiro, Fabiano; Margis-Pinheiro, Marcia; Margis, Rogerio

    2012-10-01

    Neotropical rainforests exhibit high levels of endemism and diversity. Although the evolutionary genetics of plant diversification has garnered increased interest, phylogeographic studies of widely distributed species remain scarce. Here we describe chloroplast and nuclear variation patterns in Schizolobium parahyba (Fabaceae), a widespread tree in Neotropical rainforests that harbor two varieties with a disjunct distribution. Chloroplast and nuclear sequence analyses yielded 21 and 4 haplotypes, respectively. Two genetic diversity centers that correlate with the two known varieties were identified: the Southeastern Atlantic forest and the Amazonian basin. In contrast, the populations from southern and northeastern Atlantic forests and Andean-Central American forests exhibited low levels of genetic diversity and divergent haplotypes, likely related to historical processes that impact the flora and fauna in these regions, such as a founder's effect after dispersion and demographic expansion. Phylogeographic and demographic patterns suggest that episodes of genetic isolation and dispersal events have shaped the evolutionary history for this species, and different patterns have guided the evolution of S. parahyba. Moreover, the results of this study suggest that the dry corridor formed by Cerrado and Caatinga ecoregions and the Andean uplift acted as barriers to this species' gene flow, a picture that may be generalized to most of the plant biodiversity tropical woodlands and forests. These results also reinforce the importance of evaluating multiple genetic markers for a more comprehensive understanding of population structure and history. Our results provide insight into the conservation efforts and ongoing work on the genetics of population divergence and speciation in these Neotropical rainforests. PMID:22750114

  13. Liana competition with tropical trees varies seasonally but not with tree species identity.

    PubMed

    Leonor, Alvarez-Cansino; Schnitzer, Stefan A; Reid, Joseph P; Powers, Jennifer S

    2015-01-01

    Lianas in tropical forests compete intensely with trees for above- and belowground resources and limit tree growth and regeneration. Liana competition with adult canopy trees may be particularly strong, and, if lianas compete more intensely with some tree species than others, they may influence tree species composition. We performed the first systematic, large-scale liana removal experiment to assess the competitive effects of lianas on multiple tropical tree species by measuring sap velocity and growth in a lowland tropical forest in Panama. Tree sap velocity increased 60% soon after liana removal compared to control trees, and tree diameter growth increased 25% after one year. Although tree species varied in their response to lianas, this variation was not significant, suggesting that lianas competed similarly with all tree species examined. The effect of lianas on tree sap velocity was particularly strong during the dry season, when soil moisture was low, suggesting that lianas compete intensely with trees for water. Under the predicted global change scenario of increased temperature and drought intensity, competition from lianas may become more prevalent in seasonal tropical forests, which, according to our data, should have a negative effect on most tropical tree species. PMID:26236888

  14. Carbon stocks, tree diversity and their relation to soil properties in a Neotropical rainforest of South-East Mexico

    NASA Astrophysics Data System (ADS)

    Navarrete-Segueda, Armando; Siebe-Grabach, Christina; Ibarra-Manríquez, Guillermo; Martínez-Ramos, Miguel; Vázquez-Selem, Lorenzo

    2015-04-01

    Site heterogeneity at the local scale is an important factor for the generation of ecosystem services across the landscape. Several investigations at regional or local scale have identified the important role of soil properties and topography to determine tree diversity and productivity in tropical forests. We studied how the characteristics of soils affect the tree richness and carbon storage in the tropical rain forest of south-east Mexico. We compared carbon stocks on above-ground dry biomass of living trees, litter and soil organic carbon in 9 plots of 5000 m2 distributed in three contrasting soil-topographic units in neotropical forest (Floodplains/Low altitude hills/Steep slopes) all under the same climate. In each plot, landform features and soil properties to rooting depths were determined. We obtained richness and biomass values of trees with diameter at breast height (DBH) ≥ 10 cm. In each plot, litter and soil samples were taken for quantifying carbon in laboratory and allometric equations were applied to relate tree biomass (root and aerial) with carbon. We used cluster analysis as classification technique to compare richness between units. The relationship between soil properties and tree richness was obtained based on a canonical correspondence analysis. Both the classification and ordination techniques showed that plant diversity and richness respond to soil conditions. The variation was positively correlated with pH, total nitrogen, soil aeration, water retention capacity and exchange aluminum. The richness is smaller in floodplains, but this unit, with higher water and nutrient storage capacity, shows the largest carbon stocks. In contrast, limiting site for tree growth have less total carbon. Low altitude hills are much more heterogeneous in soil properties but also richer in tree species. The soil in this land unit has small rooting depth and available water holding capacity. Additionally, in this soil carbon stock is greater than the carbon

  15. Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest

    PubMed Central

    Gianoli, Ernesto; Saldaña, Alfredo; Jiménez-Castillo, Mylthon

    2012-01-01

    Climbing plants are a key component of rainforests, but mechanistic approaches to their distribution and abundance are scarce. In a southern temperate rainforest, we addressed whether the dominance of climbing plants across light environments is associated with the expression of ecophysiological traits. In mature forest and canopy gaps, we measured leaf size, specific leaf area, photosynthetic rate, and dark respiration in six of the most abundant woody vines. Mean values of traits and their phenotypic change (%) between mature forest and canopy gaps were predictor variables. Leaf size and specific leaf area were not significantly associated with climbing plant dominance. Variation in gas-exchange traits between mature forest and canopy gaps explained, at least partly, the dominance of climbers in this forest. A greater increase in photosynthetic rate and a lower increase in dark respiration rate when canopy openings occur were related to the success of climbing plant species. Dominant climbers showed a strategy of maximizing exploitation of resource availability but minimizing metabolic costs. Results may reflect phenotypic plasticity or genetic differentiation in ecophysiological traits between light environments. It is suggested that the dominant climbers in this temperate rainforest would be able to cope with forest clearings due to human activities. PMID:22685611

  16. The probability of topological concordance of gene trees and species trees.

    PubMed

    Rosenberg, Noah A

    2002-03-01

    The concordance of gene trees and species trees is reconsidered in detail, allowing for samples of arbitrary size to be taken from the species. A sense of concordance for gene tree and species tree topologies is clarified, such that if the "collapsed gene tree" produced by a gene tree has the same topology as the species tree, the gene tree is said to be topologically concordant with the species tree. The term speciodendric is introduced to refer to genes whose trees are topologically concordant with species trees. For a given three-species topology, probabilities of each of the three possible collapsed gene tree topologies are given, as are probabilities of monophyletic concordance and concordance in the sense of N. Takahata (1989), Genetics 122, 957-966. Increasing the sample size is found to increase the probability of topological concordance, but a limit exists on how much the topological concordance probability can be increased. Suggested sample sizes beyond which this probability can be increased only minimally are given. The results are discussed in terms of implications for molecular studies of phylogenetics and speciation. PMID:11969392

  17. Exploring tree species signature using waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2015-12-01

    Successful classification of tree species with waveform LiDAR data would be of considerable value to estimate the biomass stocks and changes in forests. Current approaches emphasize converting the full waveform data into discrete points to get larger amount of parameters and identify tree species using several discrete-points variables. However, ignores intensity values and waveform shapes which convey important structural characteristics. The overall goal of this study was to employ the intensity and waveform shape of individual tree as the waveform signature to detect tree species. The data was acquired by the National Ecological Observatory Network (NEON) within 250*250 m study area located in San Joaquin Experimental Range. Specific objectives were to: (1) segment individual trees using the smoothed canopy height model (CHM) derived from discrete LiDAR points; (2) link waveform LiDAR with above individual tree boundaries to derive sample signatures of three tree species and use these signatures to discriminate tree species in a large area; and (3) compare tree species detection results from discrete LiDAR data and waveform LiDAR data. An overall accuracy of the segmented individual tree of more than 80% was obtained. The preliminary results show that compared with the discrete LiDAR data, the waveform LiDAR signature has a higher potential for accurate tree species classification.

  18. Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree

    PubMed Central

    Offord, Catherine A.; Meagher, Patricia F.; Zimmer, Heidi C.

    2014-01-01

    Seedling growth rates can have important long-term effects on forest dynamics. Environmental variables such as light availability and edaphic factors can exert a strong influence on seedling growth. In the wild, seedlings of Wollemi pine (Wollemia nobilis) grow on very acid soils (pH ∼4.3) in deeply shaded sites (∼3 % full sunlight). To examine the relative influences of these two factors on the growth of young W. nobilis seedlings, we conducted a glasshouse experiment growing seedlings at two soil pH levels (4.5 and 6.5) under three light levels: low (5 % full sun), medium (15 %) and high (50 %). Stem length and stem diameter were measured, stem number and branch number were counted, and chlorophyll and carotenoid content were analysed. In general, increased plant growth was associated with increased light, and with low pH irrespective of light treatment, and pigment content was higher at low pH. Maximum stem growth occurred in plants grown in the low pH/high light treatment combination. However, stem number was highest in low pH/medium light. We hypothesize that these differences in stem development of W. nobilis among light treatments were due to this species' different recruitment strategies in response to light: greater stem growth at high light and greater investment in multiple stem production at low light. The low light levels in the W. nobilis habitat may be a key limitation on stem growth and hence W. nobilis recruitment from seedling to adult. Light and soil pH are two key factors in the growth of this threatened relictual rainforest species. PMID:24790132

  19. Detectability in Audio-Visual Surveys of Tropical Rainforest Birds: The Influence of Species, Weather and Habitat Characteristics

    PubMed Central

    Anderson, Alexander S.; Marques, Tiago A.; Shoo, Luke P.; Williams, Stephen E.

    2015-01-01

    Indices of relative abundance do not control for variation in detectability, which can bias density estimates such that ecological processes are difficult to infer. Distance sampling methods can be used to correct for detectability, but in rainforest, where dense vegetation and diverse assemblages complicate sampling, information is lacking about factors affecting their application. Rare species present an additional challenge, as data may be too sparse to fit detection functions. We present analyses of distance sampling data collected for a diverse tropical rainforest bird assemblage across broad elevational and latitudinal gradients in North Queensland, Australia. Using audio and visual detections, we assessed the influence of various factors on Effective Strip Width (ESW), an intuitively useful parameter, since it can be used to calculate an estimate of density from count data. Body size and species exerted the most important influence on ESW, with larger species detectable over greater distances than smaller species. Secondarily, wet weather and high shrub density decreased ESW for most species. ESW for several species also differed between summer and winter, possibly due to seasonal differences in calling behavior. Distance sampling proved logistically intensive in these environments, but large differences in ESW between species confirmed the need to correct for detection probability to obtain accurate density estimates. Our results suggest an evidence-based approach to controlling for factors influencing detectability, and avenues for further work including modeling detectability as a function of species characteristics such as body size and call characteristics. Such models may be useful in developing a calibration for non-distance sampling data and for estimating detectability of rare species. PMID:26110433

  20. Myrmecophilic food body production in the understorey tree, Ryparosa kurrangii (Achariaceae), a rare Australian rainforest taxon.

    PubMed

    Webber, Bruce L; Abaloz, Bruce A; Woodrow, Ian E

    2007-01-01

    Plant food bodies are rarely observed in the field, because of continual harvesting, and are often first documented on isolated glasshouse plants. Little is known about the genus Ryparosa (Achariaceae), and the appearance of outgrowths on leaves and stems of glasshouse-raised R. kurrangii seedlings suggested that the species may produce food bodies. Detailed macroimaging and histological techniques were used to characterize chemomorphological variation in food body material gathered from glasshouse plants. Two distinct types of food body were observed. Multicellular pearl bodies derived from epidermal and mesophyll tissue were produced on young leaves and stems, and contained lipids and glycogen-like carbohydrates. A unique form of lipid-rich multicellular food body that 'opens' during development was found exclusively on mature plant tissue. A filament network was associated with food body lipid droplets. This is the first detailed documentation of food body production in an understorey genus adapted to low light conditions. We suggest that the distinctive spatial deployment of Ryparosa food rewards, and the ants attracted to them, may be invaluable for keeping long-lived leaves free from epiphyllous communities. PMID:17204073

  1. Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species

    PubMed Central

    Kooyman, Robert M.; Westoby, Mark

    2009-01-01

    Background and Aims Height gain plays an important role in plant life-history strategies and species coexistence. Here main-stem costs of height gain of saplings across species within a rainforest community are compared. Methods Scaling relationships of height to diameter at the sapling stage were compared among 75 woody rainforest plant species in subtropical eastern Australia using standardized major axis regression. Main-stem costs of height gain were then related to other functional traits that reflect aspects of species ecological strategies. Key Results Slopes (β) for the height–diameter (H–D) scaling relationship were close to 1·3, in line with previous reports and with theory. Main-stem volume to achieve 5 m in height varied substantially between species, including between species within groups based on adult height and successional status. The variation was largely independent of other species traits, being uncorrelated with mature plant height (Hmax) and with leaf size, and weakly negatively correlated with wood density and seed size. The relationship between volume to reach 5 m and wood density was too weak to be regarded as a trade-off. Estimated main-stem dry mass to achieve 5 m height varied almost three-fold across species, with wood density and stem volume contributing roughly equally to the variation. Conclusion The wide range in economy of sapling height gain reported here is presumed to be associated with a trade-off between faster growth and higher mortality rates. It is suggested that wide diameters would have a stronger effect in preventing main-stem breakage in the short term, while high wood density would have a stronger effect in sustaining stem strength over time. PMID:19635742

  2. An estimate of the number of tropical tree species

    PubMed Central

    Slik, J. W. Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L.; Bellingham, Peter J.; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q.; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L. M.; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K.; Chazdon, Robin L.; Clark, Connie; Clark, David B.; Clark, Deborah A.; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S.; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J.; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A. O.; Eisenlohr, Pedro V.; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J.; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T.; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M.; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A.; Joly, Carlos A.; de Jong, Bernardus H. J.; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F.; Lawes, Michael J.; do Amaral, Ieda Leao; Letcher, Susan G.; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H.; Meilby, Henrik; Melo, Felipe P. L.; Metcalfe, Daniel J.; Medjibe, Vincent P.; Metzger, Jean Paul; Millet, Jerome; Mohandass, D.; Montero, Juan C.; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T. F.; Pitman, Nigel C. A.; Poorter, Lourens; Poulsen, Axel D.; Poulsen, John; Powers, Jennifer; Prasad, Rama C.; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A.; Santos, Fernanda; Sarker, Swapan K.; Satdichanh, Manichanh; Schmitt, Christine B.; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S.; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I.-Fang; Sunderland, Terry; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W.; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L. C. H.; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Whitfeld, Timothy; Wich, Serge A.; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Yoneda, Tsuyoshi; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L.; Garcia Luize, Bruno; Venticinque, Eduardo M.

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. PMID:26034279

  3. An estimate of the number of tropical tree species.

    PubMed

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L M; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K; Chazdon, Robin L; Robin, Chazdon L; Clark, Connie; Clark, David B; Clark, Deborah A; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A O; Eisenlohr, Pedro V; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A; Joly, Carlos A; de Jong, Bernardus H J; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F; Lawes, Michael J; Amaral, Ieda Leao do; Letcher, Susan G; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H; Meilby, Henrik; Melo, Felipe P L; Metcalfe, Daniel J; Medjibe, Vincent P; Metzger, Jean Paul; Millet, Jerome; Mohandass, D; Montero, Juan C; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T F; Pitman, Nigel C A; Poorter, Lourens; Poulsen, Axel D; Poulsen, John; Powers, Jennifer; Prasad, Rama C; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; Dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A; Santos, Fernanda; Sarker, Swapan K; Satdichanh, Manichanh; Schmitt, Christine B; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I-Fang; Sunderland, Terry; Sunderand, Terry; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L C H; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Whitfeld, Timothy; Wich, Serge A; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Yoneda, Tsuyoshi; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L; Garcia Luize, Bruno; Venticinque, Eduardo M

    2015-06-16

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. PMID:26034279

  4. Mapping the geographic distribution of canopy species communities in lowland Amazon rainforest with CAO-AToMS (Invited)

    NASA Astrophysics Data System (ADS)

    Feret, J.; Asner, G. P.

    2013-12-01

    Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.

  5. Tree species richness affecting fine root biomass in European forests

    NASA Astrophysics Data System (ADS)

    Finér, Leena; Domisch, Timo; Vesterdal, Lars; Dawud, Seid M.; Raulund-Rasmussen, Karsten

    2016-04-01

    Fine roots are an important factor in the forest carbon cycle, contributing significantly to below-ground biomass and soil carbon storage. Therefore it is essential to understand the role of the forest structure, indicated by tree species diversity in controlling below-ground biomass and managing the carbon pools of forest soils. We studied how tree species richness would affect fine root biomass and its distribution in the soil profile and biomass above- and below-ground allocation patterns of different tree species. Our main hypothesis was that increasing tree species richness would lead to below-ground niche differentiation and more efficient soil exploitation by the roots, resulting in a higher fine root biomass in the soil. We sampled fine roots of trees and understorey vegetation in six European forest types in Finland, Poland, Germany, Romania, Italy and Spain, representing boreal, temperate and Mediterranean forests, established within the FunDivEUROPE project for studying the effects of tree species diversity on forest functioning. After determining fine root biomasses, we identified the percentages of different tree species in the fine root samples using the near infrared reflectance spectroscopy (NIRS) method. Opposite to our hypothesis we did not find any general positive relationship between tree species richness and fine root biomass. A weak positive response found in Italy and Spain seemed to be related to dry environmental conditions during Mediterranean summers. At the Polish site where we could sample deeper soil layers (down to 40 cm), we found more tree fine roots in the deeper layers under species-rich forests, as compared to the monocultures, indicating the ability of trees to explore more resources and to increase soil carbon stocks. Tree species richness did not affect biomass allocation patterns between above- and below-ground parts of the trees.

  6. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  7. Helminth fauna of two species of Physalaemus (Anura: Leiuperidae) from an undisturbed fragment of the Atlantic rainforest, southeastern Brazil.

    PubMed

    Toledo, Gislayne M; Aguiar, Aline; Silva, Reinaldo J; Anjos, Luciano A

    2013-10-01

    Two amphibian species, Physalaemus cuvieri and Physalaemus olfersii, from Serra do Mar State Park, which is an old-growth environment of the Atlantic Rainforest in southeastern Brazil, were surveyed for endoparasites. Hosts were sampled in 2 ponds; each was colonized by only 1 Physalaemus species. The overall prevalence of helminths was high and similar in both amphibian species. The mean intensity of infection in P. olfersii did not differ statistically from that in P. cuvieri . Nine helminth species were found: 2 acanthocephalans, 1 cestode, and 6 nematodes. Parasite richness in the 2 host species was similar. The composition of helminth fauna differed but the 2 hosts shared the most prevalent taxon of nematode (an unidentified species of Cosmocercidae). All helminth species exhibited an aggregated distribution pattern in the host species. The present results demonstrate relatively low species richness and the dominance of generalist parasite species. This study contributes to knowledge regarding the structure and composition of the helminth community in anurans. PMID:23409941

  8. Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover.

    PubMed

    Dauby, G; Duminil, J; Heuertz, M; Koffi, G K; Stévart, T; Hardy, O J

    2014-05-01

    Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures. PMID:24655106

  9. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis

    NASA Astrophysics Data System (ADS)

    Somers, B.; Asner, G. P.

    2014-09-01

    The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.

  10. African rainforests: past, present and future

    PubMed Central

    Malhi, Yadvinder; Adu-Bredu, Stephen; Asare, Rebecca A.; Lewis, Simon L.; Mayaux, Philippe

    2013-01-01

    The rainforests are the great green heart of Africa, and present a unique combination of ecological, climatic and human interactions. In this synthesis paper, we review the past and present state processes of change in African rainforests, and explore the challenges and opportunities for maintaining a viable future for these biomes. We draw in particular on the insights and new analyses emerging from the Theme Issue on ‘African rainforests: past, present and future’ of Philosophical Transactions of the Royal Society B. A combination of features characterize the African rainforest biome, including a history of climate variation; forest expansion and retreat; a long history of human interaction with the biome; a relatively low plant species diversity but large tree biomass; a historically exceptionally high animal biomass that is now being severely hunted down; the dominance of selective logging; small-scale farming and bushmeat hunting as the major forms of direct human pressure; and, in Central Africa, the particular context of mineral- and oil-driven economies that have resulted in unusually low rates of deforestation and agricultural activity. We conclude by discussing how this combination of factors influences the prospects for African forests in the twenty-first century. PMID:23878339

  11. Inferring optimal species trees under gene duplication and loss.

    PubMed

    Bayzid, M S; Mirarab, S; Warnow, T

    2013-01-01

    Species tree estimation from multiple markers is complicated by the fact that gene trees can differ from each other (and from the true species tree) due to several biological processes, one of which is gene duplication and loss. Local search heuristics for two NP-hard optimization problems - minimize gene duplications (MGD) and minimize gene duplications and losses (MGDL) - are popular techniques for estimating species trees in the presence of gene duplication and loss. In this paper, we present an alternative approach to solving MGD and MGDL from rooted gene trees. First, we characterize each tree in terms of its "subtree-bipartitions" (a concept we introduce). Then we show that the MGD species tree is defined by a maximum weight clique in a vertex-weighted graph that can be computed from the subtree-bipartitions of the input gene trees, and the MGDL species tree is defined by a minimum weight clique in a similarly constructed graph. We also show that these optimal cliques can be found in polynomial time in the number of vertices of the graph using a dynamic programming algorithm (similar to that of Hallett and Lagergren(1)), because of the special structure of the graphs. Finally, we show that a constrained version of these problems, where the subtree-bipartitions of the species tree are drawn from the subtree-bipartitions of the input gene trees, can be solved in time that is polynomial in the number of gene trees and taxa. We have implemented our dynamic programming algorithm in a publicly available software tool, available at http://www.cs.utexas.edu/users/phylo/software/dynadup/. PMID:23424130

  12. Inconsistency of Species Tree Methods under Gene Flow.

    PubMed

    Solís-Lemus, Claudia; Yang, Mengyao; Ané, Cécile

    2016-09-01

    Coalescent-based methods are now broadly used to infer evolutionary relationships between groups of organisms under the assumption that incomplete lineage sorting (ILS) is the only source of gene tree discordance. Many of these methods are known to consistently estimate the species tree when all their assumptions are met. Nonetheless, little work has been done to test the robustness of such methods to violations of their assumptions. Here, we study the performance of two of the most efficient coalescent-based methods, ASTRAL and NJst, in the presence of gene flow. Gene flow violates the assumption that ILS is the sole source of gene tree conflict. We find anomalous gene trees on three-taxon rooted trees and on four-taxon unrooted trees. These anomalous trees do not exist under ILS only, but appear because of gene flow. Our simulations show that species tree methods (and concatenation) may reconstruct the wrong evolutionary history, even from a very large number of well-reconstructed gene trees. In other words, species tree methods can be inconsistent under gene flow. Our results underline the need for methods like PhyloNet, to account simultaneously for ILS and gene flow in a unified framework. Although much slower, PhyloNet had better accuracy and remained consistent at high levels of gene flow. PMID:27151419

  13. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons

    PubMed Central

    Graham, Eric A.; Mulkey, Stephen S.; Kitajima, Kaoru; Phillips, Nathan G.; Wright, S. Joseph

    2003-01-01

    Recent global-scale analyses indicate that climate variability affects net carbon storage but regard temperature and precipitation to be the main contributors. Seasonal and interannual variation in light availability may also limit CO2 uptake. As an experimental test of light limitation by cloud cover during tropical rainy seasons and by the unusually heavy cloud cover associated with La Niña, we installed high-intensity lamps above the forest canopy to augment light for Luehea seemannii, a tropical canopy tree species, during cloudy periods of 1999–2000. Light augmentation only partially compensated for the reduction in photosynthetic photon flux density caused by clouds. Nonetheless, leaves acclimated to the augmented irradiance, and photosynthesis, vegetative growth, and reproduction increased significantly. Light, rather than water, temperature, or leaf nitrogen, was the primary factor limiting CO2 uptake during the rainy season. PMID:12518044

  14. Indirect interactions among tropical tree species through shared rodent seed predators: a novel mechanism of tree species coexistence.

    PubMed

    Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A

    2015-08-01

    The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest. PMID:25939379

  15. Exploring the Taxonomy of Oaks and Related Tree Species

    ERIC Educational Resources Information Center

    McMaster, Robert T.

    2004-01-01

    A lab in Eastern North America conducted a study to determine the taxonomic relationship between deciduous trees and several species of oaks by calculating the similarity index of all species to be studied. The study enabled students to classify the different species of oaks according to their distinct characteristics.

  16. Mapping urban forest tree species using IKONOS imagery: preliminary results.

    PubMed

    Pu, Ruiliang

    2011-01-01

    A stepwise masking system with high-resolution IKONOS imagery was developed to identify and map urban forest tree species/groups in the City of Tampa, Florida, USA. The eight species/groups consist of sand live oak (Quercus geminata), laurel oak (Quercus laurifolia), live oak (Quercus virginiana), magnolia (Magnolia grandiflora), pine (species group), palm (species group), camphor (Cinnamomum camphora), and red maple (Acer rubrum). The system was implemented with soil-adjusted vegetation index (SAVI) threshold, textural information after running a low-pass filter, and brightness threshold of NIR band to separate tree canopies from non-vegetated areas from other vegetation types (e.g., grass/lawn) and to separate the tree canopies into sunlit and shadow areas. A maximum likelihood classifier was used to identify and map forest type and species. After IKONOS imagery was preprocessed, a total of nine spectral features were generated, including four spectral bands, three hue-intensity-saturation indices, one SAVI, and one texture image. The identified and mapped results were examined with independent ground survey data. The experimental results indicate that when classifying all the eight tree species/ groups with the high-resolution IKONOS image data, the identifying accuracy was very low and could not satisfy a practical application level, and when merging the eight species/groups into four major species/groups, the average accuracy is still low (average accuracy = 73%, overall accuracy = 86%, and κ = 0.76 with sunlit test samples). Such a low accuracy of identifying and mapping the urban tree species/groups is attributable to low spatial resolution IKONOS image data relative to tree crown size, to complex and variable background spectrum impact on crown spectra, and to shadow/shaded impact. The preliminary results imply that to improve the tree species identification accuracy and achieve a practical application level in urban area, multi-temporal (multi

  17. Spatio-temporal microhabitat use by two co-occurring species of scorpions in Atlantic rainforest in Brazil.

    PubMed

    Lira, André F A; Souza, Adriano M; Silva Filho, Arthur A C; Albuquerque, Cleide M R

    2013-06-01

    With the increasing devastation of the tropical rain forest, there is a critical need to understand how animal forest communities are structured and how habitat degradation will affect these communities. We conducted a field survey to investigate the microhabitat preferences of two co-occurring species of scorpions (Tityus pusillus and Ananteris mauryi) in a fragment of Atlantic rainforest, as well as their abundance and their ecological niche, during both the dry and rainy seasons. Behavioural aspects related to the use of the environment and the proportions of juveniles and adults are also described. The occurrence of intra- and interspecific coexistence was assessed by active search. In addition, pitfall catches were used to assess the structure of the population in the dry and rainy seasons. The differential patterns of spatial distribution in the litter layers provided evidence of partial niche partitioning between the two coexisting scorpion species depending on age and climatic conditions. Abundance, foraging behaviour and age structure (juveniles and adults) were seasonally influenced. We conclude that the diverse and subtle behaviours involved in interaction and habitat use may facilitate species coexistence. Resource partitioning and refuge sharing on a temporal and/or spatial scale, as well as predation pressure, may drive the dynamics and spatial distribution of scorpion species in the rain forest environment. PMID:23664851

  18. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species.

    PubMed

    van Heerwaarden, Belinda; Malmberg, Michelle; Sgrò, Carla M

    2016-02-01

    Tropical and subtropical species represent the majority of biodiversity. These species are predicted to lack the capacity to evolve higher thermal limits in response to selection imposed by climatic change. However, these assessments have relied on indirect estimates of adaptive capacity, using conditions that do not reflect environmental changes projected under climate change. Using a paternal half-sib full-sib breeding design, we estimated the additive genetic variance and narrow-sense heritability for adult upper thermal limits in two rainforest-restricted species of Drosophila reared under two thermal regimes, reflecting increases in seasonal temperature projected for the Wet Tropics of Australia and under standard laboratory conditions (constant 25°C). Estimates of additive genetic variation and narrow-sense heritability for adult heat tolerance were significantly different from zero in both species under projected summer, but not winter or constant, thermal regimes. In contrast, significant broad-sense genetic variation was apparent in all thermal regimes for egg-to-adult viability. Environment-dependent changes in the expression of genetic variation for adult upper thermal limits suggest that predicting adaptive responses to climate change will be difficult. Estimating adaptive capacity under conditions that do not reflect future environmental conditions may provide limited insight into evolutionary responses to climate change. PMID:26703976

  19. Soil nutrients influence spatial distributions of tropical tree species

    PubMed Central

    John, Robert; Dalling, James W.; Harms, Kyle E.; Yavitt, Joseph B.; Stallard, Robert F.; Mirabello, Matthew; Hubbell, Stephen P.; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757–1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<104 km2) and regional scales. At local scales (<1 km2), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant–soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant–soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. PMID:17215353

  20. Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    PubMed Central

    Stouffer, Philip C.; Johnson, Erik I.; Bierregaard, Richard O.; Lovejoy, Thomas E.

    2011-01-01

    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction. PMID:21731616

  1. Tree Species Classification By Multiseasonal High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Elatawneh, Alata; Wallner, Adelheid; Straub, Christoph; Schneider, Thomas; Knoke, Thomas

    2013-12-01

    Accurate forest tree species mapping is a fundamental issue for sustainable forest management and planning. Forest tree species mapping with the means of remote sensing data is still a topic to be investigated. The Bavaria state institute of forestry is investigating the potential of using digital aerial images for forest management purposes. However, using aerial images is still cost- and time-consuming, in addition to their acquisition restrictions. The new space-born sensor generations such as, RapidEye, with a very high temporal resolution, offering multiseasonal data have the potential to improve the forest tree species mapping. In this study, we investigated the potential of multiseasonal RapidEye data for mapping tree species in a Mid European forest in Southern Germany. The RapidEye data of level A3 were collected on ten different dates in the years 2009, 2010 and 2011. For data analysis, a model was developed, which combines the Spectral Angle Mapper technique with a 10-fold- cross-validation. The analysis succeeded to differentiate four tree species; Norway spruce (Picea abies L.), Silver Fir (Abies alba Mill.), European beech (Fagus sylvatica) and Maple (Acer pseudoplatanus). The model success was evaluated using digital aerial images acquired in the year 2009 and inventory point records from 2008/09 inventory. Model results of the multiseasonal RapidEye data analysis achieved an overall accuracy of 76%. However, the success of the model was evaluated only for all the identified species and not for the individual.

  2. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  3. Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting

    PubMed Central

    Pollard, Daniel A; Eisen, Michael B

    2006-01-01

    The phylogenetic relationship of the now fully sequenced species Drosophila erecta and D. yakuba with respect to the D. melanogaster species complex has been a subject of controversy. All three possible groupings of the species have been reported in the past, though recent multi-gene studies suggest that D. erecta and D. yakuba are sister species. Using the whole genomes of each of these species as well as the four other fully sequenced species in the subgenus Sophophora, we set out to investigate the placement of D. erecta and D. yakuba in the D. melanogaster species group and to understand the cause of the past incongruence. Though we find that the phylogeny grouping D. erecta and D. yakuba together is the best supported, we also find widespread incongruence in nucleotide and amino acid substitutions, insertions and deletions, and gene trees. The time inferred to span the two key speciation events is short enough that under the coalescent model, the incongruence could be the result of incomplete lineage sorting. Consistent with the lineage-sorting hypothesis, substitutions supporting the same tree were spatially clustered. Support for the different trees was found to be linked to recombination such that adjacent genes support the same tree most often in regions of low recombination and substitutions supporting the same tree are most enriched roughly on the same scale as linkage disequilibrium, also consistent with lineage sorting. The incongruence was found to be statistically significant and robust to model and species choice. No systematic biases were found. We conclude that phylogenetic incongruence in the D. melanogaster species complex is the result, at least in part, of incomplete lineage sorting. Incomplete lineage sorting will likely cause phylogenetic incongruence in many comparative genomics datasets. Methods to infer the correct species tree, the history of every base in the genome, and comparative methods that control for and/or utilize this

  4. Geographical Range and Local Abundance of Tree Species in China

    PubMed Central

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  5. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  6. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  7. Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana.

    PubMed

    Courtois, Elodie A; Paine, C E Timothy; Blandinieres, Pierre-Alain; Stien, Didier; Bessiere, Jean-Marie; Houel, Emeline; Baraloto, Christopher; Chave, Jerome

    2009-11-01

    Volatile organic compounds (VOCs) are produced by a broad range of organisms, from bacteria to mammals, and they represent a vast chemical diversity. In plants, one of the preeminent roles of VOCs is their repellent or cytotoxic activity, which helps the plant deter its predators. Most studies on VOCs emitted by vegetative parts have been conducted in model plant species, and little is known about patterns of VOC emissions in diverse plant communities. We conducted a survey of the VOCs released immediately after mechanical damage of the bark and the leaves of 195 individual trees belonging to 55 tropical tree species in a lowland rainforest of French Guiana. We discovered a remarkably high chemical diversity, with 264 distinct VOCs and a mean of 37 compounds per species. Two monoterpenes (alpha-pinene and limonene) and two sesquiterpenes (beta-caryophyllene and alpha-copaene), which are known to have cytotoxic and deterrent effects, were the most frequent compounds in the sampled species. As has been established for floral scents, the blend of VOCs is largely species-specific and could be used to discriminate among 43 of the 55 sampled species. The species with the most diverse blends were found in the Sapindales, Laurales, and Magnoliales, indicating that VOC diversity is not uniformly distributed among tropical species. Interspecific variation in chemical diversity was caused mostly by variation in sesquiterpenes. This study emphasizes three aspects of VOC emission by tropical tree species: the species-specificity of the mixtures, the importance of sesquiterpenes, and the wide-ranging complexity of the mixtures. PMID:20012675

  8. Bushmeat hunting changes regeneration of African rainforests

    PubMed Central

    Effiom, Edu O.; Nuñez-Iturri, Gabriela; Smith, Henrik G.; Ottosson, Ulf; Olsson, Ola

    2013-01-01

    To assess ecological consequences of bushmeat hunting in African lowland rainforests, we compared paired sites, with high and low hunting pressure, in three areas of southeastern Nigeria. In hunted sites, populations of important seed dispersers—both small and large primates (including the Cross River gorilla, Gorilla gorilla diehli)—were drastically reduced. Large rodents were more abundant in hunted sites, even though they are hunted. Hunted and protected sites had similar mature tree communities dominated by primate-dispersed species. In protected sites, seedling communities were similar in composition to the mature trees, but in hunted sites species with other dispersal modes dominated among seedlings. Seedlings emerging 1 year after clearing of all vegetation in experimental plots showed a similar pattern to the standing seedlings. This study thus verifies the transforming effects of bushmeat hunting on plant communities of tropical forests and is one of the first studies to do so for the African continent. PMID:23516245

  9. Bushmeat hunting changes regeneration of African rainforests.

    PubMed

    Effiom, Edu O; Nuñez-Iturri, Gabriela; Smith, Henrik G; Ottosson, Ulf; Olsson, Ola

    2013-05-22

    To assess ecological consequences of bushmeat hunting in African lowland rainforests, we compared paired sites, with high and low hunting pressure, in three areas of southeastern Nigeria. In hunted sites, populations of important seed dispersers-both small and large primates (including the Cross River gorilla, Gorilla gorilla diehli)-were drastically reduced. Large rodents were more abundant in hunted sites, even though they are hunted. Hunted and protected sites had similar mature tree communities dominated by primate-dispersed species. In protected sites, seedling communities were similar in composition to the mature trees, but in hunted sites species with other dispersal modes dominated among seedlings. Seedlings emerging 1 year after clearing of all vegetation in experimental plots showed a similar pattern to the standing seedlings. This study thus verifies the transforming effects of bushmeat hunting on plant communities of tropical forests and is one of the first studies to do so for the African continent. PMID:23516245

  10. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    PubMed

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly. PMID:26465729

  11. Is tree species diversity or tree species identity the most important driver of European forest soil carbon stocks?

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Muhie Dawud, Seid; Raulund-Rasmussen, Karsten; Finér, Leena; Domisch, Timo

    2016-04-01

    Land management includes the selection of specific tree species and tree species mixtures for European forests. Studies of functional species diversity effects have reported positive effects for aboveground carbon (C) sequestration, but the question remains whether higher soil C stocks could also result from belowground niche differentiation including more efficient root exploitation of soils. We studied topsoil C stocks in tree species diversity gradients established within the FunDivEurope project to explore biodiversity-ecosystem functioning relationships in six European forest types in Finland, Poland, Germany, Romania, Spain and Italy. In the Polish forest type we extended the sampling to also include subsoils. We found consistent but modest effects of species diversity on total soil C stocks (forest floor and 0-20 cm) across the six European forest types. Carbon stocks in the forest floor alone and in the combined forest floor and mineral soil layers increased with increasing tree species diversity. In contrast, there was a strong effect of species identity (broadleaf vs. conifer) and its interaction with site-related factors. Within the Polish forest type we sampled soils down to 40 cm and found that species identity was again the main factor explaining total soil C stock. However, species diversity increased soil C stocks in deeper soil layers (20-40 cm), while species identity influenced C stocks significantly within forest floors and the 0-10 cm layer. Root biomass increased with diversity in 30-40 cm depth, and a positive relationship between C stocks and root biomass in the 30-40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. We conclude that total C stocks are mainly driven by tree species identity. However, modest positive diversity effects were detected at the European scale, and stronger positive effects on subsoil C stocks

  12. Multilocus inference of species trees and DNA barcoding.

    PubMed

    Mallo, Diego; Posada, David

    2016-09-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481787

  13. New species of Daidalotarsonemus and Excelsotarsonemus (Acari: Tarsonemidae) from the Brazilian rainforest including new morphological characters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new species, Daidalotarsonemus oliveirai Rezende, Lofego & Ochoa, sp. nov.,Excelsotarsonemus caravelis Rezende, Lofego & Ochoa, sp. nov. and E. tupi Rezende, Lofego & Ochoa, sp. nov. are described and illustrated. Measurements for these species are provided, as well as drawings, phase contrast...

  14. Intra-plant variation in cyanogenesis and the continuum of foliar plant defense traits in the rainforest tree Ryparosa kurrangii (Achariaceae).

    PubMed

    Webber, Bruce L; Woodrow, Ian E

    2008-06-01

    At the intra-plant level, temporal and spatial variations in plant defense traits can be influenced by resource requirements, defensive priorities and storage opportunities. Across a leaf age gradient, cyanogenic glycoside concentrations in the rainforest understory tree Ryparosa kurrangii B.L. Webber were higher in young expanding leaves than in mature leaves (2.58 and 1.38 mg g(-1), respectively). Moreover, cyanogens, as an effective chemical defense against generalist herbivores, contributed to a defense continuum protecting foliar tissue during leaf development. Chemical (cyanogens and phenolic compounds) and phenological (delayed greening) defense traits protected young leaves, whereas mature leaves were largely protected by physical defense mechanisms (lamina toughness; explained primarily by leaf mass per area). Cyanogen concentration was considerably higher in floral tissue than in foliar tissue and decreased in floral tissue during development. Across contrasting tropical seasons, foliar cyanogenic concentration varied significantly, being highest in the late wet season and lowest during the pre-wet season, the latter coinciding with fruiting and leaf flushing. Cyanogens in R. kurrangii appear to be differentially allocated in a way that maximizes plant fitness but may also act as a store of reduced nitrogen that is remobilized during flowering and leaf flushing. PMID:18381278

  15. tropiTree: an NGS-based EST-SSR resource for 24 tropical tree species.

    PubMed

    Russell, Joanne R; Hedley, Peter E; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  16. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    PubMed Central

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  17. Gene trees versus species trees: reassessing life-history evolution in a freshwater fish radiation.

    PubMed

    Waters, Jonathan M; Rowe, Diane L; Burridge, Christopher P; Wallis, Graham P

    2010-10-01

    Mechanisms of speciation are best understood in the context of phylogenetic relationships and as such have often been inferred from single gene trees, typically those derived from mitochondrial DNA (mtDNA) markers. Recent studies, however, have noted the potential for phylogenetic discordance between gene trees and underlying species trees (e.g., due to stochastic lineage sorting, introgression, or selection). Here, we employ a variety of nuclear DNA loci to reassess evolutionary relationships within a recent freshwater fish radiation to reappraise modes of speciation. New Zealand's freshwater-limited Galaxias vulgaris complex is thought to have evolved from G. brevipinnis, a widespread migratory species that retains a plesiomorphic marine juvenile phase. A well-resolved tree, based on four mtDNA regions, previously suggested that marine migratory ability has been lost on 3 independent occasions in the evolution of this species flock (assuming that loss of diadromy is irreversible). Here, we use pseudogene (galaxiid Numt: 1801 bp), intron (S: 903 bp), and exon (RAG-1: 1427 bp) markers, together with mtDNA, to reevaluate this hypothesis of parallel evolution. Interestingly, partitioned Bayesian analysis of concatenated nuclear sequences (3141 bp) and concatenated nuclear and mtDNA (4770 bp) both recover phylogenies implying a single loss of diadromy, not three parallel losses as previously inferred from mtDNA alone. This phylogenetic result is reinforced by a multilocus analysis performed using Bayesian estimation of species trees (BEST) software that estimates the posterior distribution of species trees under a coalescent model. We discuss factors that might explain the apparently misleading phylogenetic inferences generated by mtDNA. PMID:20603441

  18. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species

    PubMed Central

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role (‘trait portfolio’) that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide

  19. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species.

    PubMed

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role ('trait portfolio') that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide further

  20. Inter- and intraspecific comparisons of antiherbivore defenses in three species of rainforest understory shrubs.

    PubMed

    Fincher, R M; Dyer, L A; Dodson, C D; Richards, J L; Tobler, M A; Searcy, J; Mather, J E; Reid, A J; Rolig, J S; Pidcock, W

    2008-04-01

    Plants defend themselves against herbivores and pathogens with a suite of morphological, phenological, biochemical, and biotic defenses, each of which is presumably costly. The best studied are allocation costs that involve trade-offs in investment of resources to defense versus other plant functions. Decreases in growth or reproductive effort are the costs most often associated with antiherbivore defenses, but trade-offs among different defenses may also occur within a single plant species. We examined trade-offs among defenses in closely related tropical rain forest shrubs (Piper cenocladum, P. imperiale, and P. melanocladum) that possess different combinations of three types of defense: ant mutualists, secondary compounds, and leaf toughness. We also examined the effectiveness of different defenses and suites of defenses against the most abundant generalist and specialist Piper herbivores. For all species examined, leaf toughness was the most effective defense, with the toughest species, P. melanocladum, receiving the lowest incidence of total herbivory, and the least tough species, P. imperiale, receiving the highest incidence. Although variation in toughness within each species was substantial, there were no intraspecific relationships between toughness and herbivory. In other Piper studies, chemical and biotic defenses had strong intraspecific negative correlations with herbivory. A wide variety of defensive mechanisms was quantified in the three Piper species studied, ranging from low concentrations of chemical defenses in P. imperiale to a complex suite of defenses in P. cenocladum that includes ant mutualists, secondary metabolites, and moderate toughness. Ecological costs were evident for the array of defensive mechanisms within these Piper species, and the differences in defensive strategies among species may represent evolutionary trade-offs between costly defenses. PMID:18317843

  1. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    PubMed

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians. PMID:25958806

  2. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima

    PubMed Central

    Cannon, Charles H.; Hijmans, Robert J.; Piessens, Thomas; Saw, Leng Guan; van Welzen, Peter C.; Slik, J. W. Ferry

    2014-01-01

    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present. PMID:25385612

  3. A new species of Xystonotus Wolcott, 1900 (Acari, Hydrachnidia, Mideopsidae) from bromeliad phytotelmata in Brazilian Atlantic rainforest.

    PubMed

    Pešić, Vladimir; Piccoli, Gustavo Cauê De Oliveira; Araújo, Marcel Santos De; Rezende, José Marcos; Gonçalves, Ana Zangirolame

    2015-01-01

    The rosette architecture of some bromeliad species traps water and organic matter from the canopy in leaf axils (forming phytotelmata) and harbors many species of invertebrate animals (Frank & Lounibos 2009). Some water mites are adapted to live in phytotelmata; typically recorded from water-filled tree holes, bromeliad tanks, and a range of plant axils. Karl Viets (1939) was the first acarologist who discovered Micruracaropsis phytotelmaticola (Viets, 1939) in the water contained in the leaf bases of epiphytic Bromeliaceae in Surinam. Later on, Orghidan et al. (1977) described Arrenurus bromeliacearum Orghidan, Gruia & Viña Bayés, 1977 from phytotelmata in Cuba. Orghidan & Gruia (1987) reported Arrenurus andrewfieldi Orghidan & Gruia, 1983 from phytotelmata of epiphytic bromeliad Vriesea platynema in Venezuela. Smith & Harvey (1989) described Arrenurus kitchingi Smith & Harvey, 1989 from water-filled tree holes in Queensland, Australia. The same authors (Smith & Harvey 1989) also reported that members of genus Thyopsis occur in water-filled tree holes in Ohio, USA. Rosso de Ferradás & Fernández (2001) reported two Arrenurus species from water accumulated in Guzmania mucronata (Bromeliaceae) in Venezuela, A. andrewfieldi Orghidan & Gruia, 1983 and A. caquetiorum Rosso de Ferradás & Fernández, 2001. PMID:26249986

  4. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  5. Documenting biogeographical patterns of African timber species using herbarium records: a conservation perspective based on native trees from Angola.

    PubMed

    Romeiras, Maria M; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain

    2014-01-01

    In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to

  6. Documenting Biogeographical Patterns of African Timber Species Using Herbarium Records: A Conservation Perspective Based on Native Trees from Angola

    PubMed Central

    Romeiras, Maria M.; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain

    2014-01-01

    In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to

  7. Multilocus inference of species trees and DNA barcoding

    PubMed Central

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  8. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.

    PubMed

    Shi, Tao

    2016-03-01

    Complicated history of gene duplication and loss brings challenge to molecular phylogenetic inference, especially in deep phylogenies. However, phylogenomic approaches, such as gene tree parsimony (GTP), show advantage over some other approaches in its ability to use gene families with duplications. GTP searches the 'optimal' species tree by minimizing the total cost of biological events such as duplications, but accuracy of GTP and phylogenetic signal in the context of different gene families with distinct histories of duplication and loss are unclear. To evaluate how different evolutionary properties of different gene families can impact on species tree inference, 3900 gene families from seven angiosperms encompassing a wide range of gene content, lineage-specific expansions and contractions were analyzed. It was found that the gene content and total duplication number in a gene family strongly influence species tree inference accuracy, with the highest accuracy achieved at either very low or very high gene content (or duplication number) and lowest accuracy centered in intermediate gene content (or duplication number), as the relationship can fit a binomial regression. Besides, for gene families of similar level of average gene content, those with relatively higher lineage-specific expansion or duplication rates tend to show lower accuracy. Additional correlation tests support that high accuracy for those gene families with large gene content may rely on abundant ancestral copies to provide many subtrees to resolve conflicts, whereas high accuracy for single or low copy gene families are just subject to sequence substitution per se. Very low accuracy reached by gene families of intermediate gene content or duplication number can be due to insufficient subtrees to resolve the conflicts from loss of alternative copies. As these evolutionary properties can significantly influence species tree accuracy, I discussed the potential weighting of the duplication cost by

  9. Widespread Discordance of Gene Trees with Species Tree inDrosophila: Evidence for Incomplete Lineage Sorting

    SciTech Connect

    Pollard, Daniel A.; Iyer, Venky N.; Moses, Alan M.; Eisen,Michael B.

    2006-08-28

    The phylogenetic relationship of the now fully sequencedspecies Drosophila erecta and D. yakuba with respect to the D.melanogaster species complex has been a subject of controversy. All threepossible groupings of the species have been reported in the past, thoughrecent multi-gene studies suggest that D. erecta and D. yakuba are sisterspecies. Using the whole genomes of each of these species as well as thefour other fully sequenced species in the subgenus Sophophora, we set outto investigate the placement of D. erecta and D. yakuba in the D.melanogaster species group and to understand the cause of the pastincongruence. Though we find that the phylogeny grouping D. erecta and D.yakuba together is the best supported, we also find widespreadincongruence in nucleotide and amino acid substitutions, insertions anddeletions, and gene trees. The time inferred to span the two keyspeciation events is short enough that under the coalescent model, theincongruence could be the result of incomplete lineage sorting.Consistent with the lineage-sorting hypothesis, substitutions supportingthe same tree were spatially clustered. Support for the different treeswas found to be linked to recombination such that adjacent genes supportthe same tree most often in regions of low recombination andsubstitutions supporting the same tree are most enriched roughly on thesame scale as linkage disequilibrium, also consistent with lineagesorting. The incongruence was found to be statistically significant androbust to model and species choice. No systematic biases were found. Weconclude that phylogenetic incongruence in the D. melanogaster speciescomplex is the result, at least in part, of incomplete lineage sorting.Incomplete lineage sorting will likely cause phylogenetic incongruence inmany comparative genomics datasets. Methods to infer the correct speciestree, the history of every base in the genome, and comparative methodsthat control for and/or utilize this information will be

  10. A multigene species tree for Western Mediterranean painted frogs (Discoglossus).

    PubMed

    Pabijan, Maciej; Crottini, Angelica; Reckwell, Dennis; Irisarri, Iker; Hauswaldt, J Susanne; Vences, Miguel

    2012-09-01

    Painted frogs (Discoglossus) are an anuran clade that originated in the Upper Miocene. Extant species are morphologically similar and have a circum-Mediterranean distribution. We assembled a multilocus dataset from seven nuclear and four mitochondrial genes for several individuals of all but one of the extant species and reconstructed a robust phylogeny by applying a coalescent-based species-tree method and a concatenation approach, both of which gave congruent results. The earliest phylogenetic split within Discoglossus separates D. montalentii from a clade comprising all other species. Discoglossus montalentii is monophyletic for haplotype variation at all loci and has distinct morphological, bioacoustic and karyotypic characters. We find moderate support for a sister-group relationship between the Iberian taxa and the Moroccan D. scovazzi, and high support for a D. pictus -D. sardus clade distributed around the Tyrrhenian basin. Topological discordance among gene trees during the speciation of D. galganoi, D. scovazzi, D. pictus and D. sardus is interpreted as the consequence of nearly simultaneous, vicariant diversification. The timing of these events is unclear, but possibly coincided with the final geotectonic rearrangement of the Western Mediterranean in the Middle Miocene or later during the Messinian salinity crisis. The Iberian taxa D. galganoi galganoi and D. g. jeanneae are reciprocally monophyletic in mitochondrial DNA but not in nuclear gene trees, and are therefore treated as subspecies of D. galganoi. PMID:22641173

  11. Diversification rates and species richness across the Tree of Life.

    PubMed

    Scholl, Joshua P; Wiens, John J

    2016-09-14

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. PMID:27605507

  12. Early recovery of a Hawaiian lowland rainforest following clearcutting at Kalapana on the Island of Hawaii

    SciTech Connect

    Grossman, D.H.

    1992-01-01

    The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms, represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.

  13. A new species of Falsocaenia Pic, 1922 from Amazonian Rainforest (Coleoptera: Lycidae) with an updated key to the species.

    PubMed

    Ferreira, Vinicius S

    2016-01-01

    While searching for Calochromini (Coleoptera: Lycidae) specimens in entomological collections and identifying other Lycidae, a new species of Falsocaenia Pic, 1922 was found in the collection of Instituto Nacional de Pesquisas da Amazônia (INPA). This genus is one of the smallest in the tribe Calopterini with 13 known species, two of which were recently described by Bocákova et al. (2012) in their revision of the genus, and can be found in Central and South America. PMID:27394794

  14. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C., Jr.; Meier, E.S.; Thuiller, W.; Guisan, A.; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  15. Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest.

    PubMed

    Badejo, Mosadoluwa Adetola; Akinwole, Philips Olugbemiga

    2006-01-01

    The vertical distribution, microenvironmental preference, canopy cover, as well as monthly fluctuations of recently described species of three genera of macropyline oribatid mites, Mesoplophora, Bicyrthermannia and Nothrus and three genera of brachypyline mites, Scheloribates, Muliercula and Galumnella were investigated over a 9-month period in shaded and unshaded areas of a secondary regrowth forest floor in Ile Ife, Nigeria. Sampling was done monthly from August 2002 to April 2003 covering the two seasons of the annual cycle. There was an overwhelming predominance of mite populations in the 5 cm topsoil compared with the fermentation and litter layers. The preference of M. ifeana and B. nigeriana extracted from the topsoil for the shaded plot was attributed to highly conducive moisture conditions provided by the canopy. It is suggested that M. ifeana, B. nigeriana, N. lasebikani, S. mochlosimilaris, M. inexpectata and G. sonpona, that exhibited a single peak density in the wet season in this study, had similar ecological needs. The populations of M. ifeana and S. mochlosimilaris were relatively stable in the fermentation layer. The study concluded that canopy cover affected the sensitivity of soil dwelling mites on the floor of a secondary regrowth forest with regard to vertical gradients of light, microclimate and foliage quality in a complex way. PMID:17103084

  16. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species.

    PubMed

    Iida, Yoshiko; Poorter, Lourens; Sterck, Frank; Kassim, Abd Rahman; Potts, Matthew D; Kubo, Takuya; Kohyama, Takashi S

    2014-02-01

    Tree architecture, growth, and mortality change with increasing tree size and associated light conditions. To date, few studies have quantified how size-dependent changes in growth and mortality rates co-vary with architectural traits, and how such size-dependent changes differ across species and possible light capture strategies. We applied a hierarchical Bayesian model to quantify size-dependent changes in demographic rates and correlated demographic rates and architectural traits for 145 co-occurring Malaysian rain-forest tree species covering a wide range of tree sizes. Demographic rates were estimated using relative growth rate in stem diameter (RGR) and mortality rate as a function of stem diameter. Architectural traits examined were adult stature measured as the 95-percentile of the maximum stem diameter (upper diameter), wood density, and three tree architectural variables: tree height, foliage height, and crown width. Correlations between demographic rates and architectural traits were examined for stem diameters ranging from 1 to 47 cm. As a result, RGR and mortality varied significantly with increasing stem diameter across species. At smaller stem diameters, RGR was higher for tall trees with wide crowns, large upper diameter, and low wood density. Increased mortality was associated with low wood density at small diameters, and associated with small upper diameter and wide crowns over a wide range of stem diameters. Positive correlations between RGR and mortality were found over the whole range of stem diameters, but they were significant only at small stem diameters. Associations between architectural traits and demographic rates were strongest at small stem diameters. In the dark understory of tropical rain forests, the limiting amount of light is likely to make the interspecific difference in the effects of functional traits on demography more clear. Demographic performance is therefore tightly linked with architectural traits such as adult stature

  17. Clarification of the katydid genus Uchuca Giglio-tos, 1898 (Orthoptera: Tettigoniidae): A new species in the Brazilian Amazon Rainforest.

    PubMed

    Tavares, Gustavo Costa; Sovano, Rafael Segtowick Da Silva; Gutjahr, Ana Lúcia Nunes

    2016-01-01

    This paper accomplishes three tasks: Firstly, description of a new species, Uchuca almeirina sp. nov., from the Brazilian Amazon Rainforest, specifically from Monte Dourado, Almeirim, Pará. Secondly, it is proposed that Uchuca macroptera Montealegre-Z & Morris, 2003 be made a synonym of Uchuca ferreirai (Piza, 1976). Thirdly, a compilation of the generic distribution is presented, which includes new records of Uchuca amacayaca Montealegre-Z & Morris (2003) in Brazil and Uchuca similis Montealegre-Z & Morris (2003) in Colombia and Brazil, and the amplification of the occurrences of U. ferreirai. PMID:27470824

  18. Semi-supervised SVM for individual tree crown species classification

    NASA Astrophysics Data System (ADS)

    Dalponte, Michele; Ene, Liviu Theodor; Marconcini, Mattia; Gobakken, Terje; Næsset, Erik

    2015-12-01

    In this paper a novel semi-supervised SVM classifier is presented, specifically developed for tree species classification at individual tree crown (ITC) level. In ITC tree species classification, all the pixels belonging to an ITC should have the same label. This assumption is used in the learning of the proposed semi-supervised SVM classifier (ITC-S3VM). This method exploits the information contained in the unlabeled ITC samples in order to improve the classification accuracy of a standard SVM. The ITC-S3VM method can be easily implemented using freely available software libraries. The datasets used in this study include hyperspectral imagery and laser scanning data acquired over two boreal forest areas characterized by the presence of three information classes (Pine, Spruce, and Broadleaves). The experimental results quantify the effectiveness of the proposed approach, which provides classification accuracies significantly higher (from 2% to above 27%) than those obtained by the standard supervised SVM and by a state-of-the-art semi-supervised SVM (S3VM). Particularly, by reducing the number of training samples (i.e. from 100% to 25%, and from 100% to 5% for the two datasets, respectively) the proposed method still exhibits results comparable to the ones of a supervised SVM trained with the full available training set. This property of the method makes it particularly suitable for practical forest inventory applications in which collection of in situ information can be very expensive both in terms of cost and time.

  19. Inferring Species Trees from Gene Trees in a Radiation of California Trapdoor Spiders (Araneae, Antrodiaetidae, Aliatypus)

    PubMed Central

    Satler, Jordan D.; Starrett, James; Hayashi, Cheryl Y.; Hedin, Marshal

    2011-01-01

    Background The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats. Methodology/Principal Findings We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches) recovered a general “3 clade” structure for the genus (A. gulosus, californicus group, erebus group), with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations). Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism. Conclusions/Significance This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages

  20. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines. PMID:16012820

  1. Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savanna.

    PubMed

    Tng, David Y P; Jordan, Greg J; Bowman, David M J S

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  2. Urban Tree Species Show the Same Hydraulic Response to Vapor Pressure Deficit across Varying Tree Size and Environmental Conditions

    PubMed Central

    Chen, Lixin; Zhang, Zhiqiang; Ewers, Brent E.

    2012-01-01

    Background The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations. Methodology/Principal Findings We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (Ec) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between Gc at VPD = 1 kPa (Gcref) and the Gc sensitivity to VPD (−dGc/dlnVPD) across studied species as well as under contrasting soil water and Rs conditions in the urban area. Conclusions/Significance We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of Gcref. PMID:23118904

  3. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.

    PubMed

    Martínez-Izquierdo, Laura; García, María M; Powers, Jennifer S; Schnitzer, Stefan A

    2016-01-01

    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well-replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large-scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 x 80 m plots (eight liana-removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two-yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana-removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter

  4. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  5. The Impact of Missing Data on Species Tree Estimation.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2016-03-01

    Phylogeneticists are increasingly assembling genome-scale data sets that include hundreds of genes to resolve their focal clades. Although these data sets commonly include a moderate to high amount of missing data, there remains no consensus on their impact to species tree estimation. Here, using several simulated and empirical data sets, we assess the effects of missing data on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and gene rate heterogeneity. We demonstrate that concatenation (RAxML), gene-tree-based coalescent (ASTRAL, MP-EST, and STAR), and supertree (matrix representation with parsimony [MRP]) methods perform reliably, so long as missing data are randomly distributed (by gene and/or by species) and that a sufficiently large number of genes are sampled. When data sets are indecisive sensu Sanderson et al. (2010. Phylogenomics with incomplete taxon coverage: the limits to inference. BMC Evol Biol. 10:155) and/or ILS is high, however, high amounts of missing data that are randomly distributed require exhaustive levels of gene sampling, likely exceeding most empirical studies to date. Moreover, missing data become especially problematic when they are nonrandomly distributed. We demonstrate that STAR produces inconsistent results when the amount of nonrandom missing data is high, regardless of the degree of ILS and gene rate heterogeneity. Similarly, concatenation methods using maximum likelihood can be misled by nonrandom missing data in the presence of gene rate heterogeneity, which becomes further exacerbated when combined with high ILS. In contrast, ASTRAL, MP-EST, and MRP are more robust under all of these scenarios. These results underscore the importance of understanding the influence of missing data in the phylogenomics era. PMID:26589995

  6. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  7. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P

    NASA Astrophysics Data System (ADS)

    Cárate Tandalla, Daisy; Leuschner, Christoph; Homeier, Jürgen

    2015-12-01

    Nitrogen deposition to tropical forests is predicted to increase in future in many regions due to agricultural intensification. We conducted a seedling transplantation experiment in a tropical premontane forest in Ecuador with a locally abundant late-successional tree species (Pouteria torta, Sapotaceae) aimed at detecting species-specific responses to moderate N and P addition and to understand how increasing nutrient availability will affect regeneration. From locally collected seeds, 320 seedlings were produced and transplanted to the plots of the Ecuadorian Nutrient Manipulation Experiment (NUMEX) with three treatments (moderate N addition: 50 kg N ha-1 yr-1, moderate P addition: 10 kg P ha-1 yr-1 and combined N and P addition) and a control (80 plants per treatment). After 12 months, mortality, relative growth rate, leaf nutrient content and leaf herbivory rate were measured. N and NP addition significantly increased the mortality rate (70 % vs. 54 % in the control). However, N and P addition also increased the diameter growth rate of the surviving seedlings. N and P addition did not alter foliar nutrient concentrations and leaf N:P ratio, but N addition decreased the leaf C:N ratio and increased SLA. P addition (but not N addition) resulted in higher leaf area loss to herbivore consumption and also shifted carbon allocation to root growth. This fertilization experiment with a common rainforest tree species conducted in old-growth forest shows that already moderate doses of added N and P are affecting seedling performance which most likely will have consequences for the competitive strength in the understory and the recruitment success of P. torta. Simultaneous increases in growth, herbivory and mortality rates make it difficult to assess the species' overall performance and predict how a future increase in nutrient deposition will alter the abundance of this species in the Andean tropical montane forests.

  8. Vegetation and floristics of a lowland tropical rainforest in northeast Australia

    PubMed Central

    Apgaua, Deborah M. G.; Campbell, Mason J; Cox, Casey J; Crayn, Darren M; Ishida, Françoise Y; Laidlaw, Melinda J; Liddell, Michael J; Seager, Michael; Laurance, Susan G. W.

    2016-01-01

    Abstract Background Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m2 quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m2 ha-1, of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. New information We present a floristic checklist, a

  9. Occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees distributed in a South-east Asian tropical rainforest in Peninsular Malaysia.

    PubMed

    Kamakura, Mai; Kosugi, Yoshiko; Takanashi, Satoru; Uemura, Akira; Utsugi, Hajime; Kassim, Abd Rahman

    2015-01-01

    In this study, we demonstrated the occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees grown in a lowland dipterocarp forest in Peninsular Malaysia. To evaluate the patterns of stomatal behavior, we used three techniques simultaneously to analyze heterobaric or homobaric leaves from five tree species ranging from 0.6 to 31 m in height: (i) diurnal changes in chlorophyll fluorescence imaging, (ii) observation and simulation of leaf gas-exchange rates and (iii) a pressure-infiltration method. Measurements were performed in situ with 1000 or 500 μmol m(-2) s(-1) photosynthetic photon flux density. Diurnal patterns in the spatial distribution of photosynthetic electron transport rate (J) mapped from chlorophyll fluorescence images, a comparison of observed and simulated leaf gas-exchange rates, and the spatial distribution of stomatal apertures obtained from the acid-fuchsin-infiltrated area showed that patchy stomatal closure coupled with severe midday depression of photosynthesis occurred in Neobalanocarpus heimii (King) Ashton, a higher canopy tree with heterobaric leaves due to the higher leaf temperature and vapor pressure deficit. However, subcanopy or understory trees showed uniform stomatal behavior throughout the day, although they also have heterobaric leaves. These results suggest that the occurrence of stomatal patchiness is determined by tree size and/or environmental conditions. The analysis of spatial scale by chlorophyll fluorescence imaging showed that several adjacent anatomical patches (lamina areas bounded by bundle-sheath extensions within the lamina) may co-operate for the distributed patterns of J and stomatal apertures. PMID:25595752

  10. Tree Species Specific Soil Moisture Patterns and Dynamics

    NASA Astrophysics Data System (ADS)

    Heidbuechel, I.; Dreibrodt, J.; Guntner, A.; Blume, T.

    2014-12-01

    Land use has a major influence on the hydrologic processes that take place in soils. Soil compaction on pastures for example leads to infiltration patterns that differ considerably from the ones observable in forests. It is not clear, however, how different forest stands influence soil infiltration and soil moisture distributions. Factors that that vary amongst different stands and potentially affect soil moisture processes in forests are, amongst others, canopy density, throughfall patterns, the intensity and frequency of stem flow, litter type, root distributions and rooting depth. To investigate how different tree species influence the way soils partition, store and conduct incoming precipitation we selected 15 locations under different tree stands within the TERENO observatory in north-east Germany. The forest stands under investigation were mature oak, young pine, mature pine, young beech and mature beech. At each location we installed 30 FDR soil moisture sensors grouped into five depth profiles (monitoring soil moisture from 10 cm to 200 cm) and 5 additional near surface sensors. The profile locations within each forest stand covered most of the anticipated variability by ranging from minimum to maximum distance to the trees including locations under more and less dense canopy. Supplementary to the FDR sensors, throughfall measurements, tensiometers and groundwater data were available to observe dynamics of tree water availability, water fluxes within the soils and percolation towards the groundwater. To identify patterns in space and time we referred to the statistical methods of wavelet analysis and temporal stability analysis. Finally, we tried to link the results from these analyses to specific hydrologic processes at the different locations.

  11. DNA barcoding reveals species level divergence between populations of the microhylid frog genus Arcovomer (Anura: Microhylidae) in the Atlantic Rainforest of southeastern Brazil.

    PubMed

    Jennings, W Bryan; Wogel, Henrique; Bilate, Marcos; Salles, Rodrigo de O L; Buckup, Paulo A

    2016-09-01

    The microhylid frogs belonging to the genus Arcovomer have been reported from lowland Atlantic Rainforest in the Brazilian states of Espírito Santo, Rio de Janeiro, and São Paulo. Here, we use DNA barcoding to assess levels of genetic divergence between apparently isolated populations in Espírito Santo and Rio de Janeiro. Our mtDNA data consisting of cytochrome oxidase subunit I (COI) nucleotide sequences reveals 13.2% uncorrected and 30.4% TIM2 + I + Γ corrected genetic divergences between these two populations. This level of divergence exceeds the suggested 10% uncorrected divergence threshold for elevating amphibian populations to candidate species using this marker, which implies that the Espírito Santo population is a species distinct from Arcovomer passarellii. Calibration of our model-corrected sequence divergence estimates suggests that the time of population divergence falls between 12 and 29 million years ago. PMID:26016873

  12. Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure.

    PubMed

    DeGiorgio, Michael; Rosenberg, Noah A

    2016-08-01

    In the last few years, several statistically consistent consensus methods for species tree inference have been devised that are robust to the gene tree discordance caused by incomplete lineage sorting in unstructured ancestral populations. One source of gene tree discordance that has only recently been identified as a potential obstacle for phylogenetic inference is ancestral population structure. In this article, we describe a general model of ancestral population structure, and by relying on a single carefully constructed example scenario, we show that the consensus methods Democratic Vote, STEAC, STAR, R(∗) Consensus, Rooted Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus are statistically inconsistent under the model. We find that among the consensus methods evaluated, the only method that is statistically consistent in the presence of ancestral population structure is GLASS/Maximum Tree. We use simulations to evaluate the behavior of the various consensus methods in a model with ancestral population structure, showing that as the number of gene trees increases, estimates on the basis of GLASS/Maximum Tree approach the true species tree topology irrespective of the level of population structure, whereas estimates based on the remaining methods only approach the true species tree topology if the level of structure is low. However, through simulations using species trees both with and without ancestral population structure, we show that GLASS/Maximum Tree performs unusually poorly on gene trees inferred from alignments with little information. This practical limitation of GLASS/Maximum Tree together with the inconsistency of other methods prompts the need for both further testing of additional existing methods and development of novel methods under conditions that incorporate ancestral population structure. PMID:27086043

  13. Neogene origins and implied warmth tolerance of Amazon tree species

    PubMed Central

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2013-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late-Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely. PMID:23404439

  14. Evaluating Summary Methods for Multilocus Species Tree Estimation in the Presence of Incomplete Lineage Sorting.

    PubMed

    Mirarab, Siavash; Bayzid, Md Shamsuzzoha; Warnow, Tandy

    2016-05-01

    Species tree estimation is complicated by processes, such as gene duplication and loss and incomplete lineage sorting (ILS), that cause discordance between gene trees and the species tree. Furthermore, while concatenation, a traditional approach to tree estimation, has excellent performance under many conditions, the expectation is that the best accuracy will be obtained through the use of species tree estimation methods that are specifically designed to address gene tree discordance. In this article, we report on a study to evaluate MP-EST-one of the most popular species tree estimation methods designed to address ILS-as well as concatenation under maximum likelihood, the greedy consensus, and two supertree methods (Matrix Representation with Parsimony and Matrix Representation with Likelihood). Our study shows that several factors impact the absolute and relative accuracy of methods, including the number of gene trees, the accuracy of the estimated gene trees, and the amount of ILS. Concatenation can be more accurate than the best summary methods in some cases (mostly when the gene trees have poor phylogenetic signal or when the level of ILS is low), but summary methods are generally more accurate than concatenation when there are an adequate number of sufficiently accurate gene trees. Our study suggests that coalescent-based species tree methods may be key to estimating highly accurate species trees from multiple loci. PMID:25164915

  15. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa

    NASA Astrophysics Data System (ADS)

    Klinger, L. F.; Greenburg, J.; Guenther, A.; Tyndall, G.; Zimmerman, P.; M'bangui, M.; Moutsamboté, J.-M.; Kenfack, D.

    1998-01-01

    In temperate regions the chemistry of the lower troposphere is known to be significantly affected by biogenic volatile organic compounds (VOCs) emitted by plants. The chemistry of the lower troposphere over the tropics, however, is poorly understood, in part because of the considerable uncertainties in VOC emissions from tropical ecosystems. Present global VOC models predict that base emissions of isoprene from tropical rainforests are considerably higher than from savannas. These global models of VOC emissions which rely mainly on species inventories are useful, but significant improvement might be made with more ecologically based models of VOC emissions by plants. Ecosystems along a successional transect from woodland savanna to primary rainforest in central Africa were characterized for species composition and vegetation abundance using ground surveys and remotely sensed data. A total of 336 species (mostly trees) at 13 sites were recorded, and 208 of these were measured for VOC emissions at near-optimal light and temperature conditions using a leaf cuvette and hand-held photoionization detector (PID). A subset of 59 species was also sampled using conventional VOC emission techniques in order to validate the PID technique. Results of ecological and VOC emission surveys indicate both phylogenetic and successional patterns along the savanna-rainforest transect. Genera and families of trees which tend to emit isoprene include Lophira, Irvingia, Albizia, Artocarpus, Ficus, Pterocarpus, Caesalpiniaceae, Arecaceae, and Moraceae. Other taxa tend to contain stored VOCs (Annonaceae and Asteraceae). Successional patterns suggest that isoprene emissions are highest in the relatively early successional Isoberlinia forest communities and progressively decrease in the later successional secondary and primary rainforest communities. Stored VOCs appear to increase along the savanna-rainforest succession, but these data are more tentative. These findings are consistent with

  16. Influence of tree size, taxonomy, and edaphic conditions on heart rot in mixed-dipterocarp Bornean rainforests: implications for aboveground biomass estimates

    NASA Astrophysics Data System (ADS)

    Heineman, K. D.; Russo, S. E.; Baillie, I. C.; Mamit, J. D.; Chai, P. P.-K.; Chai, L.; Hindley, E. W.; Lau, B.-T.; Tan, S.; Ashton, P. S.

    2015-05-01

    Fungal decay of heartwood creates hollows and areas of reduced wood density within the stems of living trees known as heart rot. Although heart rot is acknowledged as a source of error in forest aboveground biomass estimates, there are few datasets available to evaluate the environmental controls over heart rot infection and severity in tropical forests. Using legacy and recent data from drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of heart rot, and used generalized linear mixed effect models to characterize the association of heart rot with tree size, wood density, taxonomy, and edaphic conditions. Heart rot was detected in 55% of felled stems > 30 cm DBH, while the detection frequency was lower for stems of the same size evaluated by non-destructive drilling (45%) and coring (23%) methods. Heart rot severity, defined as the percent stem volume lost in infected stems, ranged widely from 0.1-82.8%. Tree taxonomy explained the greatest proportion of variance in heart rot frequency and severity among the fixed and random effects evaluated in our models. Heart rot frequency, but not severity, increased sharply with tree diameter, ranging from 56% infection across all datasets in stems > 50 cm DBH to 11% in trees 10-30 cm DBH. The frequency and severity of heart rot increased significantly in soils with low pH and cation concentrations in topsoil, and heart rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the percent of stem biomass lost to heart rot varied significantly with soil properties, and we estimate that 7% of the forest biomass is in some stage of heart rot decay. This study demonstrates not only that heart rot is a significant source of error in forest carbon estimates, but also that it strongly covaries with soil resources, underscoring the need to account for edaphic variation in

  17. Firewood crops: shrub and tree species for energy production

    SciTech Connect

    Not Available

    1980-01-01

    In the face of global concern over the dwindling supply of fuelwood, the rate of forest decimation to provide basic human necessities in developing countries is alarming. We must look upon woody plants as renewable resources that, if effectively managed, could alleviate the problem not only for the present,but for posterity. This report suggests potential significant fuelwood species for introduction to suitable environments, although it does not suggest a solution for the fuelwood crisis. The emphasis is on species suitable for individual crops, but species suited to plantation cultivation for fueling small industrial factories, electric generators, and crop driers are also considered. Most of the plants are little known in traditional forest production. Some are woody shrubs rather than trees, but all are aggressive and quick growing. They should be introduced with care in areas where the climate and soil conditions are not harsh. The substitution of well-designed stoves, kilns, or boilers could improve fuel efficiency. Each species is illustrated with photographs and diagrams. (Refs. 420).

  18. Aluminium Accumulation and Intra-Tree Distribution Patterns in Three Arbor aluminosa (Symplocos) Species from Central Sulawesi

    PubMed Central

    Schmitt, Marco; Boras, Sven; Tjoa, Aiyen; Watanabe, Toshihiro; Jansen, Steven

    2016-01-01

    Accumulation of Aluminium (Al) at concentrations far above 1,000 mg kg-1 in aboveground plant tissues of Arbor aluminosa (Symplocos) species is the main reason why traditional Indonesian weavers rely on their leaves and bark as a mordant for dyeing textile. Recently, Symplocos species have become a flagship species for the conservation efforts of weaving communities due to their traditionally non-sustainable sampling and increasing demand for Symplocos plant material. Here we investigated Symplocos odoratissima, S. ophirensis and S. ambangensis at three montane rainforest sites in Central Sulawesi to measure Al levels in different tissues and organs. The highest Al concentrations were found in old leaves (24,180 ± 7,236 mg·kg-1 dry weight, mean ± SD), while young leaves had significantly lower Al levels (20,708 ± 7,025 mg·kg-1). Al accumulation was also lower in bark and wood tissue of the trunk (17,231 ± 8,356 mg·kg-1 and 5,181 ± 2,032 mg·kg-1, respectively). Two Al excluding species (Syzigium sp. and Lithocarpus sp.) contained only high Al levels in their roots. Moreover, no difference was found in soil pH (4.7 ± 0.61) and nutrient (K, Ca, Fe, Mg) availability at different soil levels and within or outside the crown of Symplocos trees, except for the upper soil layer. Furthermore, a positive and significant correlation between Al and Ca concentrations was found at the whole plant level for Symplocos, and at the leaf level for S. ophirensis and S. ambangensis, suggesting a potential role of Ca in Al uptake and/or detoxification within the plant. Our results provide evidence for strong Al accumulation in Symplocos species and illustrate that both Al accumulation and exclusion represent two co-occurring strategies of montane rainforest plants for dealing with Al toxicity. Indonesian weavers should be encouraged to harvest old leaves, which have the most efficient mordant capacity due to high Al concentrations. PMID:26871698

  19. Aluminium Accumulation and Intra-Tree Distribution Patterns in Three Arbor aluminosa (Symplocos) Species from Central Sulawesi.

    PubMed

    Schmitt, Marco; Boras, Sven; Tjoa, Aiyen; Watanabe, Toshihiro; Jansen, Steven

    2016-01-01

    Accumulation of Aluminium (Al) at concentrations far above 1,000 mg kg-1 in aboveground plant tissues of Arbor aluminosa (Symplocos) species is the main reason why traditional Indonesian weavers rely on their leaves and bark as a mordant for dyeing textile. Recently, Symplocos species have become a flagship species for the conservation efforts of weaving communities due to their traditionally non-sustainable sampling and increasing demand for Symplocos plant material. Here we investigated Symplocos odoratissima, S. ophirensis and S. ambangensis at three montane rainforest sites in Central Sulawesi to measure Al levels in different tissues and organs. The highest Al concentrations were found in old leaves (24,180 ± 7,236 mg·kg-1 dry weight, mean ± SD), while young leaves had significantly lower Al levels (20,708 ± 7,025 mg·kg-1). Al accumulation was also lower in bark and wood tissue of the trunk (17,231 ± 8,356 mg·kg-1 and 5,181 ± 2,032 mg·kg-1, respectively). Two Al excluding species (Syzigium sp. and Lithocarpus sp.) contained only high Al levels in their roots. Moreover, no difference was found in soil pH (4.7 ± 0.61) and nutrient (K, Ca, Fe, Mg) availability at different soil levels and within or outside the crown of Symplocos trees, except for the upper soil layer. Furthermore, a positive and significant correlation between Al and Ca concentrations was found at the whole plant level for Symplocos, and at the leaf level for S. ophirensis and S. ambangensis, suggesting a potential role of Ca in Al uptake and/or detoxification within the plant. Our results provide evidence for strong Al accumulation in Symplocos species and illustrate that both Al accumulation and exclusion represent two co-occurring strategies of montane rainforest plants for dealing with Al toxicity. Indonesian weavers should be encouraged to harvest old leaves, which have the most efficient mordant capacity due to high Al concentrations. PMID:26871698

  20. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    PubMed

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback

  1. Does Diversity Matter In Modeling? Testing A New Version Of The FORMIX3 Growth Model For Madagascar Rainforests

    NASA Astrophysics Data System (ADS)

    Armstrong, A. H.; Fischer, R.; Shugart, H. H.; Huth, A.

    2012-12-01

    Ecological forecasting has become an essential tool used by ecologists to understand the dynamics of growth and disturbance response in threatened ecosystems such as the rainforests of Madagascar. In the species rich tropics, forest conservation is often eclipsed by anthropogenic factors, resulting in a heightened need for accurate assessment of biomass before these ecosystems disappear. The objective of this study was to test a new Madagascar rainforest specific version of the FORMIX3 growth model (Huth and Ditzer, 2000; Huth et al 1998) to assess how accurately biomass can be simulated in high biodiversity forests using a method of functional type aggregation in an individual-based model framework. Rainforest survey data collected over three growing seasons, including 265 tree species, was aggregated into 12 plant functional types based on size and light requirements. Findings indicated that the forest study site compared best when the simulated forest reached mature successional status. Multiple level comparisons between model simulation data and survey plot data found that though some features, such as the dominance of canopy emergent species and relative absence of small woody treelets are captured by the model, other forest attributes were not well reflected. Overall, the ability to accurately simulate the Madagascar rainforest was slightly diminished by the aggregation of tree species into size and light requirement functional type groupings.

  2. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program

    NASA Astrophysics Data System (ADS)

    Curtis, A. J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S.

    2014-10-01

    The biogenic volatile organic compound (BVOC) emissions of nine urban tree species were studied to assess the air quality impacts from planting a large quantity of these trees in the City and County of Denver, Colorado, through the Mile High Million tree-planting initiative. The deciduous tree species studied were Sugar maple, Ohio buckeye, northern hackberry, Turkish hazelnut, London planetree, American basswood, Littleleaf linden, Valley Forge elm, and Japanese zelkova. These tree species were selected using the i-Tree Species Selector (itreetools.org). BVOC emissions from the selected tree species were investigated to evaluate the Species Selector data under the Colorado climate and environmental growing conditions. Individual tree species were subjected to branch enclosure experiments in which foliar emissions of BVOC were collected onto solid adsorbent cartridges. The cartridge samples were analyzed for monoterpenes (MT), sesquiterpenes (SQT), and other C10-C15 BVOC using thermal desorption-gas chromatography-flame ionization detection/mass spectroscopy (GC-FID/MS). Individual compounds and their emission rates (ER) were identified. MT were observed in all tree species, exhibiting the following total MT basal emission rates (BER; with a 1-σ lower bound, upper bound uncertainty window): Sugar maple, 0.07 (0.02, 0.11) μg g-1 h-1; London planetree, 0.15 (0.02, 0.27) μg g-1 h-1; northern hackberry, 0.33 (0.09, 0.57) μg g-1 h-1; Japanese zelkova, 0.42 (0.26, 0.58) μg g-1 h-1; Littleleaf linden, 0.71 (0.33, 1.09) μg g-1 h-1; Valley Forge elm, 0.96 (0.01, 1.92) μg g-1 h-1; Turkish hazelnut, 1.30 (0.32, 2.23) μg g-1 h-1; American basswood, 1.50 (0.40, 2.70) μg g-1 h-1; and Ohio buckeye, 6.61 (1.76, 11.47) μg g-1 h-1. SQT emissions were seen in five tree species with total SQT BER of: London planetree, 0.11 (0.01, 0.20) μg g-1 h-1; Japanese zelkova, 0.11 (0.05, 0.16) μg g-1 h-1; Littleleaf linden, 0.13 (0.06, 0.21) μg g-1 h-1; northern hackberry, 0.20 (0

  3. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  4. Dipterans Associated with a Decomposing Animal Carcass in a Rainforest Fragment in Brazil: Notes on the Early Arrival and Colonization by Necrophagous Species

    PubMed Central

    Vasconcelos, Simao D.; Cruz, Tadeu M.; Salgado, Roberta L.; Thyssen, Patricia J.

    2013-01-01

    This study aimed to provide the first checklist of forensically-important dipteran species in a rainforest environment in Northeastern Brazil, a region exposed to high rates of homicides. Using a decomposing pig, Sus scrofa L. (Artiodactyla: Suidae), carcass as a model, adult flies were collected immediately after death and in the early stages of carcass decomposition. To confirm actual colonization of the carcass, insects that completed their larval development on the resource were also collected and reared until adult stage. A diverse assemblage of dipterans composed of at least 28 species from seven families with necrophagous habits was observed within minutes after death. Besides Calliphoridae and Sarcophagidae, species from forensically-important families such as Phoridae, Anthomyiidae, and Fanniidae were also registered. Eleven species were shown to complete their development on the carcass. The majority of individuals emerged from larvae collected at the dry stage of decomposition. Hemilucilia segmentaria Fabricius (Diptera: Calliphoridae), H. semidiaphana (Rondani), and Ophyra chalcogaster (Wiedemann) (Muscidae) were the dominant species among the colonizers, which supports their importance as forensic evidence in Brazil. PMID:24787899

  5. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests

    PubMed Central

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-01-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  6. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests.

    PubMed

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-03-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  7. Higher levels of multiple ecosystem services are found in forests with more tree species.

    PubMed

    Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan

    2013-01-01

    Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km(2), we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890

  8. Higher levels of multiple ecosystem services are found in forests with more tree species

    PubMed Central

    Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C.; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D.; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan

    2013-01-01

    Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km2, we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890

  9. Temporal changes of soil respiration under different tree species.

    PubMed

    Akburak, Serdar; Makineci, Ender

    2013-04-01

    Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest-Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m(2) and 883.71 g/m(2) indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g C/m(2)/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R (2) = 0.562) and the lowest (R (2) = 0.223) under Turkish fir. PMID:22828980

  10. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. PMID:25588119

  11. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  12. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions

    PubMed Central

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2015-01-01

    Species diversity may increase the productivity of tree communities through complementarity (CE) and/or selection effects (SE), but it is not well known how this relationship changes under water limitation. We tested the stress-gradient hypothesis, which predicts that resource use complementarity and facilitation are more important under water-limited conditions. We conducted a growth experiment with saplings of five temperate broad-leaved tree species that were grown in assemblages of variable diversity (1, 3, or 5 species) and species composition under ample and limited water supply to examine effects of species richness and species identity on stand- and tree-level productivity. Special attention was paid to effects of neighbor identity on the growth of target trees in mixture as compared to growth in monoculture. Stand productivity was strongly influenced by species identity while a net biodiversity effect (NE) was significant in the moist treatment (mostly assignable to CE) but of minor importance. The growth performance of some of the species in the mixtures was affected by tree neighborhood characteristics with neighbor size likely being more important than neighbor species identity. Diversity and neighbor identity effects visible in the moist treatment mostly disappeared in the dry treatment, disproving the stress-gradient hypothesis. The mixtures were similarly sensitive to drought-induced growth reduction as the monocultures, which may relate to the decreased CE on growth upon drought in the mixtures. PMID:26579136

  13. Species identity and neighbor size surpass the impact of tree species diversity on productivity in experimental broad-leaved tree sapling assemblages under dry and moist conditions.

    PubMed

    Lübbe, Torben; Schuldt, Bernhard; Leuschner, Christoph

    2015-01-01

    Species diversity may increase the productivity of tree communities through complementarity (CE) and/or selection effects (SE), but it is not well known how this relationship changes under water limitation. We tested the stress-gradient hypothesis, which predicts that resource use complementarity and facilitation are more important under water-limited conditions. We conducted a growth experiment with saplings of five temperate broad-leaved tree species that were grown in assemblages of variable diversity (1, 3, or 5 species) and species composition under ample and limited water supply to examine effects of species richness and species identity on stand- and tree-level productivity. Special attention was paid to effects of neighbor identity on the growth of target trees in mixture as compared to growth in monoculture. Stand productivity was strongly influenced by species identity while a net biodiversity effect (NE) was significant in the moist treatment (mostly assignable to CE) but of minor importance. The growth performance of some of the species in the mixtures was affected by tree neighborhood characteristics with neighbor size likely being more important than neighbor species identity. Diversity and neighbor identity effects visible in the moist treatment mostly disappeared in the dry treatment, disproving the stress-gradient hypothesis. The mixtures were similarly sensitive to drought-induced growth reduction as the monocultures, which may relate to the decreased CE on growth upon drought in the mixtures. PMID:26579136

  14. Archipelago colonization by ecologically dissimilar amphibians: evaluating the expectation of common evolutionary history of geographical diffusion in co-distributed rainforest tree frogs in islands of Southeast Asia.

    PubMed

    Gonzalez, Paulette; Su, Yong-Chao; Siler, Cameron D; Barley, Anthony J; Sanguila, Marites B; Diesmos, Arvin C; Brown, Rafe M

    2014-03-01

    Widespread, co-distributed species with limited relative dispersal abilities represent compelling focal taxa for comparative phylogeography. Forest vertebrates in island archipelagos often exhibit pronounced population structure resulting from limited dispersal abilities or capacity to overcome marine barriers to dispersal. The exceptionally diverse Old World tree frogs of the family Rhacophoridae have colonized the forested island archipelagos of Southeast Asia on multiple occasions, entering the islands of Indonesia and the Philippines via a "stepping stone" mode of dispersal along elongate island chains, separated by a series of marine channels. Here we evaluate the prediction that two tightly co-distributed Philippine rhacophorids colonized the archipelago during concomitant timescales and in the same, linear, "island-hopping" progression. We use a new multilocus dataset, utilize dense genetic sampling from the eastern arc of the Philippines, and we take a model-based phylogeographic approach to examining the two species for similar topological patterns of diversification, genetic structure, and timescales of diversification. Our results support some common mechanistic predictions (a general south-to-north polarity of colonization) but not others (timescale for colonization and manner and degree of lineage diversification), suggesting differing biogeographic scenarios of geographical diffusion through the archipelago and unique and idiosyncratic ecological capacities and evolutionary histories of each species. PMID:24389467

  15. Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives

    PubMed Central

    Blair, Jaime E.; Coffey, Michael D.; Martin, Frank N.

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred. PMID:22615869

  16. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction

    PubMed Central

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-01-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. PMID:25281847

  17. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  18. Landscape Variation in Tree Species Richness in Northern Iran Forests

    PubMed Central

    Bourque, Charles P.-A.; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area’s unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area’s digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to

  19. Landscape variation in tree species richness in northern Iran forests.

    PubMed

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  20. ECOLOGICAL RESPONSE SURFACES FOR NORTH AMERICAN BOREAL TREE SPECIES AND THEIR USE IN FOREST CLASSIFICATION

    EPA Science Inventory

    Empirical ecological response surfaces were derived for eight dominant tree species in the boreal forest region of Canada. tepwise logistic regression was used to model species dominance as a response to five climatic predictor variables. he predictor variables (annual snowfall, ...

  1. The description of Paramblynotus delaneyi (Hymenoptera: Liopteridae), a new species from Joshua Tree National Park

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species, Paramblynotus delaneyi (Hymenoptera: Liopteridae), is described and characters separating it from the Nearctic species P. zonatus Weld and P. virginianus Liu are discussed. A discussion of the insect biodiversity survey at Joshua Tree National Park is provided....

  2. Fire controls population structure in four dominant tree species in a tropical savanna.

    PubMed

    Lehmann, Caroline E R; Prior, Lynda D; Bowman, David M J S

    2009-09-01

    The persistence of mesic savannas has been theorised as being dependent on disturbances that restrict the number of juveniles growing through the sapling size class to become fire-tolerant trees. We analysed the population structures of four dominant tropical savanna tree species from 30 locations in Kakadu National Park (KNP), northern Australia. We found that across KNP as a whole, the population size structures of these species do not exhibit recruitment bottlenecks. However, individual stands had multimodal size-class distributions and mixtures of tree species consistent with episodic and individualistic recruitment of co-occurring tree species. Using information theory and multimodel inference, we examined the relative importance of fire frequency, stand basal area and elevation difference between a site and permanent water in explaining variations in the proportion of sapling to adult stems in four dominant tree species. This showed that the proportion of the tree population made up of saplings was negatively related to both fire frequencies and stand basal area. Overall, fire frequency has density-dependent effects in the regulation of the transition of saplings to trees in this Australian savanna, due to interactions with stem size, regeneration strategies, growth rates and tree-tree competition. Although stable at the regional scale, the spatiotemporal variability of fire can result in structural and floristic diversity of savanna tree populations. PMID:19629532

  3. Indicator species of essential forest tree species in the Burdur district.

    PubMed

    Negiz, Mehmet Güvenç; Eser, Yunus; Kuzugüdenll, Emre; Izkan, Kürşad

    2015-01-01

    The forests of Burdur district for long have been subjected to over grazing and individual selection. As a result of this, majority of the forest areas in the district were degraded. In the district, afforestation efforts included majority of forestry implementations. It is well known that selecting suitable species plays an important role for achieving afforestation efforts. In this context, knowing the indicator species among the target species would be used in afforestation efforts, studies on the interrelationships between environmental factors and target species distribution is vital for selecting suitable species for a given area. In this study, Anatolian Black pine (Pinus nigra), Red pine (Pinus brutia), Crimean juniper (Juniperus excelsa) and Taurus cedar (Cedrus libani), essential tree species, were considered as target species. The data taken from 100 sample plots in Burdur district was used. Interspecific correlation analysis was performed to determine the positive and negative indicator species among each of the target species. As a result of ICA, 2 positive (Berberis crataegina, Juniperus oxycedrus), 2 negative (Phillyrea latifolia, Quercus coccifera) for Crimean Juniper, I positive (Juniperus oxycedrus), 3 negative (Onopordium acanthium, Fraxinus ornus, Phillyrea latifolia) for Anatolian black pine, 3 positive (Paliurus spina-christi, Quercus coccifer, Crataegus orientalis), 2 negative (Berberis crataegina, Astragalus nanus) for Red pine and 3 positive (Berberis crataegina, Rhamnus oleoides, Astragalus prusianus) 2 negative (Paliurus spina-christi, Quercus cerris) for Taurus cedarwere defined as indicator plant species. In this way, practical information was obtained for selecting the most suitable species, among the target species, for afforestation efforts in Burdur district. PMID:26591889

  4. Effect of bait decomposition on the attractiveness to species of Diptera of veterinary and forensic importance in a rainforest fragment in Brazil.

    PubMed

    Oliveira, Diego L; Soares, Thiago F; Vasconcelos, Simão D

    2016-01-01

    Insects associated with carrion can have parasitological importance as vectors of several pathogens and causal agents of myiasis to men and to domestic and wild animals. We tested the attractiveness of animal baits (chicken liver) at different stages of decomposition to necrophagous species of Diptera (Calliphoridae, Fanniidae, Muscidae, Phoridae and Sarcophagidae) in a rainforest fragment in Brazil. Five types of bait were used: fresh and decomposed at room temperature (26 °C) for 24, 48, 72 and 96 h. A positive correlation was detected between the time of decomposition and the abundance of Calliphoridae and Muscidae, whilst the abundance of adults of Phoridae decreased with the time of decomposition. Ten species of calliphorids were registered, of which Chrysomya albiceps, Chrysomya megacephala and Chloroprocta idioidea showed a positive significant correlation between abundance and decomposition. Specimens of Sarcophagidae and Fanniidae did not discriminate between fresh and highly decomposed baits. A strong female bias was registered for all species of Calliphoridae irrespective of the type of bait. The results reinforce the feasibility of using animal tissues as attractants to a wide diversity of dipterans of medical, parasitological and forensic importance in short-term surveys, especially using baits at intermediate stages of decomposition. PMID:26547564

  5. Genetic Differentiation in the Stingless Bee, Scaptotrigona xanthotricha Moure, 1950 (Apidae, Meliponini): a Species with Wide Geographic Distribution in the Atlantic Rainforest.

    PubMed

    Duarte, Olívia M P; Gaiotto, Fernanda A; Costa, Marco A

    2014-05-14

    Stingless bees are important pollinators that are severely threatened by anthropic interference, resulting in a strong population decline. Scaptotrigona xanthotricha has a wide distribution in the Atlantic Rainforest, ranging from the northeastern state of Bahia to Santa Catarina in southern Brazil. To understand the genetic structure of S. xanthotricha, 12 species-specific microsatellite loci were analyzed in 42 colonies sampled throughout the species range. The results indicated 5 distinct clusters throughout the sampled area with high rates of genetic diversity, and the greatest diversity was found in southern Bahia. Greater differentiation was observed between samples from the extremes of the distribution, with an F ST value of 0.189 between cluster 1 and 5. The genetic differentiation analysis for all loci had an F ST value of 0.113, a result that is consistent with the analysis of molecular variance, which revealed 7.72% of the variation occurring between groups. The Mantel correlation between a genetic differentiation matrix and a geographic distance matrix (r = 0.184, P = 0.043) indicated a tendency toward increased differentiation with increased distance. This study revealed the profile of differentiation and distribution of genetic diversity in this species and indicates parameters that should be considered in future taxonomic revisions and activities for its management and conservation. PMID:24829365

  6. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  7. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  8. Characterizing tropical tree species growth strategies: learning from inter-individual variability and scale invariance.

    PubMed

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  9. Characterizing Tropical Tree Species Growth Strategies: Learning from Inter-Individual Variability and Scale Invariance

    PubMed Central

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  10. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    PubMed Central

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  11. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    PubMed

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  12. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  13. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    PubMed Central

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as “Endangered” on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions

  14. Tree species richness promotes productivity in temperate forests through strong complementarity between species.

    PubMed

    Morin, Xavier; Fahse, Lorenz; Scherer-Lorenzen, Michael; Bugmann, Harald

    2011-12-01

    Understanding the link between biodiversity and ecosystem functioning (BEF) is pivotal in the context of global biodiversity loss. Yet, long-term effects have been explored only weakly, especially for forests, and no clear evidence has been found regarding the underlying mechanisms. We explore the long-term relationship between diversity and productivity using a forest succession model. Extensive simulations show that tree species richness promotes productivity in European temperate forests across a large climatic gradient, mostly through strong complementarity between species. We show that this biodiversity effect emerges because increasing species richness promotes higher diversity in shade tolerance and growth ability, which results in forests responding faster to small-scale mortality events. Our study generalises results from short-term experiments in grasslands to forest ecosystems and demonstrates that competition for light alone induces a positive effect of biodiversity on productivity, thus providing a new angle for explaining BEF relationships. PMID:21955682

  15. Mortality rates associated with crown health for eastern forest tree species.

    PubMed

    Morin, Randall S; Randolph, KaDonna C; Steinman, Jim

    2015-03-01

    The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during inventories of the US Forest Service Forest Inventory and Analysis (FIA) program since 1999. In this study, remeasured data from 55,013 trees on 2616 FIA plots in the eastern USA were used to assess the probability of survival among various tree species using the suite of FIA crown condition variables. Logistic regression procedures were employed to develop models for predicting tree survival. Results of the regression analyses indicated that crown dieback was the most important crown condition variable for predicting tree survival for all species combined and for many of the 15 individual species in the study. The logistic models were generally successful in representing recent tree mortality responses to multiyear infestations of beech bark disease and hemlock woolly adelgid. Although our models are only applicable to trees growing in a forest setting, the utility of models that predict impending tree mortality goes beyond forest inventory or traditional forestry growth and yield models and includes any application where managers need to assess tree health or predict tree mortality including urban forest, recreation, wildlife, and pest management. PMID:25655130

  16. Independent domestications of cultivated tree peonies from different wild peony species.

    PubMed

    Yuan, Jun-Hui; Cornille, Amandine; Giraud, Tatiana; Cheng, Fang-Yun; Hu, Yong-Hong

    2014-01-01

    An understanding of plant domestication history provides insights into general mechanisms of plant adaptation and diversification and can guide breeding programmes that aim to improve cultivated species. Cultivated tree peonies (genus Paeonia L.) are among the most popular ornamental plants in the world; yet, the history of their domestication is still unresolved. Here, we explored whether the domestication in China of historically cultivated peonies, that is, the common and flare cultivated tree peonies, was a single event or whether independent domestications occurred. We used 14 nuclear microsatellite markers and a comprehensive set of 553 tree peonies collected across China, including common tree peonies, flare tree peonies and the wild species or subspecies that are potential contributors to the cultivated tree peonies, that is, Paeonia rockii ssp. rockii, P. rockii ssp. atava, P. jishanensis and P. decomposita. Assignment methods, a principal component analysis and approximate Bayesian computations provided clear evidence for independent domestications of these common tree and flare tree peonies from two distinct and allopatric wild species, P. jishanensis and P. rockii ssp. atava, respectively. This study provides the first example of independent domestications of cultivated trees from distinct species and locations. This work also yields crucial insight into the history of domestication of one of the most popular woody ornamental plants. The cultivated peonies represent an interesting case of parallel and convergent evolution. The information obtained in this study will be valuable both for improving current tree peony breeding strategies and for understanding the mechanisms of domestication, diversification and adaptation in plants. PMID:24138195

  17. Tree traits and canopy closure data from an experiment with 34 planted species native to Sabah, Borneo

    PubMed Central

    Gustafsson, Malin; Gustafsson, Lena; Alloysius, David; Falck, Jan; Yap, Sauwai; Karlsson, Anders; Ilstedt, Ulrik

    2016-01-01

    The data presented in this paper is supporting the research article “Life history traits predict the response to increased light among 33 tropical rainforest tree species” [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment. PMID:26900591

  18. Species tree discordance traces to phylogeographic clade boundaries in North American fence lizards (Sceloporus).

    PubMed

    Leaché, Adam D

    2009-12-01

    I investigated the impacts of phylogeographic sampling decisions on species tree estimation in the Sceloporus undulatus species group, a recent radiation of small, insectivorous lizards connected by parapatric and peripatric distribution across North America, using a variety of species tree inference methods (Bayesian estimation of species trees, Bayesian untangling of concordance knots, and minimize deep coalescences). Phylogenetic analyses of 16 specimens representing 4 putative species within S. "undulatus" using complete (8 loci, >5.5 kb) and incomplete (29 loci, >23.6 kb) nuclear data sets result in species trees that share features with the mitochondrial DNA (mtDNA) genealogy at the phylogeographic level but provide new insights into the evolutionary history of the species group. The concatenated nuclear data and mtDNA data both recover 4 major clades connecting populations across North America; however, instances of discordance are localized at the contact zones between adjacent phylogeographic groups. A random sub-sampling experiment designed to vary the phylogeographic samples included across hundreds of replicate species tree inferences suggests that inaccurate species assignments can result in inferred phylogenetic relationships that are dependent upon which particular populations are used as exemplars to represent species and can lead to increased estimates of effective population size. For the phylogeographic data presented here, reassigning specimens with introgressed mtDNA genomes to their prospective species, or excluding them from the analysis altogether, produces species tree topologies that are distinctly different from analyses that utilize mtDNA-based species assignments. Evolutionary biologists working at the interface of phylogeography and phylogenetics are likely to encounter multiple processes influencing gene trees congruence, which increases the relevance of estimating species trees with multilocus nuclear data and models that accommodate

  19. Species-specific effects on throughfall kinetic energy below 12 subtropical tree species are related to leaf traits and tree architecture

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Kröber, Wenzel; Bruelheide, Helge; Li, Ying; von Oheimb, Goddert; Scholten, Thomas

    2015-04-01

    Soil erosion impacts environmental systems widely, especially in subtropical China where high erosion rates occur. The comprehension about the mechanisms that induce soil erosion on agricultural land is broad, but erosion processes below forests are only rarely understood. Especially throughfall kinetic energy (TKE) is influenced by forests and their structure as well as their succession in many ways. Today, many forests are monoculture tree stands due to economic reasons by providing timber, fuel and pulp wood. Therefore, this study investigates the role of different monoculture forest stands on TKE that were afforestated in 2008. The main questions are: Is TKE species-specific? What are characteristic leaf traits and tree architectural parameters that induce a species-specific effect on TKE and by what extend do they contribute to a mediation of species-specific effects on TKE? We measured TKE of 12 different species in subtropical China using sand-filled splash cups during five rainfall events in summer 2013. In addition, 14 leaf traits and tree architectural parameters were registered to link species-specific effects on TKE to vegetation parameters. Our results show that TKE is highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus mukorossi, while Schima superba showed lowest TKE. The latter species can be regarded as key species for reduced erosion occurrence. This species effect is mediated by leaf habit, leaf area, leaf pinnation, leaf margin, tree ground diameter, crown base height, tree height, number of branches and LAI as biotic factors and rainfall amount as abiotic factor. Moreover, leaf habit, tree height and LA show high effect sizes on TKE and can be considered as major drivers evoking TKE differences below vegetation.

  20. Ethnobotany and the identification of therapeutic agents from the rainforest.

    PubMed

    Balick, M J

    1990-01-01

    Many rainforest plant species, including trees and herbaceous plants, are employed as medicines by indigenous people. In much of the American tropics, locally harvested herbal medicines are used for a significant portion of the primary health care, in both rural and urban areas. An experienced curandero or herbal healer is familiar with those species with marked biological activity, which are often classified as 'powerful plants'. Examples are given from studies in progress since 1987 in Belize, Central America. The Institute of Economic Botany of The New York Botanical Garden is collaborating with the National Cancer Institute in Bethesda, Maryland (USA) in the search for higher plants with anti-AIDS and anticancer activity. Several strategies are cited for identification of promising leads from among the circa 110,000 species of higher plants that are present in the neotropics, the focus of this search. Recommendations are offered for the design of future efforts to identify plant leads for pharmaceutical testing. PMID:2086039

  1. Surface Water Storage Capacity of Twenty Tree Species in Davis, California.

    PubMed

    Xiao, Qingfu; McPherson, E Gregory

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage capacity is known to vary widely among tree species, but it is little studied. This research measured surface storage capacities of 20 urban tree species in a rainfall simulator. The measurement system included a rainfall simulator, digital balance, digital camera, and computer. Eight samples were randomly collected from each tree species. Twelve rainfall intensities (3.5-139.5 mm h) were simulated. Leaf-on and leaf-off simulations were conducted for deciduous species. Stem and foliar surface areas were estimated using an image analysis method. Results indicated that surface storage capacities varied threefold among tree species, 0.59 mm for crape myrtle ( L.) and 1.81 mm for blue spruce ( Engelm.). The mean value across all species was 0.86 mm (0.11 mm SD). To illustrate application of the storage values, interception was simulated and compared across species for a 40-yr period with different rainfall intensities and durations. By quantifying the potential for different tree species to intercept rainfall under a variety of meteorological conditions, this study provides new knowledge that is fundamental to validating the cost-effectiveness of urban forestry as a green infrastructure strategy and designing functional plantings. PMID:26828174

  2. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  3. Species tree estimation for a deep phylogenetic divergence in the New World monkeys (Primates: Platyrrhini).

    PubMed

    Perez, S Ivan; Klaczko, Julia; dos Reis, Sérgio F

    2012-11-01

    The estimation of a robust phylogeny is a necessary first step in understanding the biological diversification of the platyrrhines. Although the most recent phylogenies are generally robust, they differ from one another in the relationship between Aotus and other genera as well as in the relationship between Pitheciidae and other families. Here, we used coding and non-coding sequences to infer the species tree and embedded gene trees of the platyrrhine genera using the Bayesian Markov chain Monte Carlo method for the multispecies coalescent (*BEAST) for the first time and to compared the results with those of a Bayesian concatenated phylogenetic analysis. Our species tree, based on all available sequences, shows a closer phylogenetic relationship between Atelidae and Cebidae and a closer relationship between Aotus and the Cebidae clade. The posterior probabilities are lower for these conflictive tree nodes compared to those in the concatenated analysis; this finding could be explained by some gene trees showing no concordant topologies between Aotus and the other genera. Moreover, the topology of our species tree also differs from the findings of previous molecular and morphological studies regarding the position of Aotus. The existence of discrepancies between morphological data, gene trees and the species tree is widely reported and can be related to processes such as incomplete lineage sorting or selection. Although these processes are common in species trees with low divergence, they can also occur in species trees with deep and rapid divergence. The sources of the inconsistency of morphological and molecular traits with the species tree could be a main focus of further research on platyrrhines. PMID:22841656

  4. Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer

    PubMed Central

    2015-01-01

    Background Species tree estimation is challenged by gene tree heterogeneity resulting from biological processes such as duplication and loss, hybridization, incomplete lineage sorting (ILS), and horizontal gene transfer (HGT). Mathematical theory about reconstructing species trees in the presence of HGT alone or ILS alone suggests that quartet-based species tree methods (known to be statistically consistent under ILS, or under bounded amounts of HGT) might be effective techniques for estimating species trees when both HGT and ILS are present. Results We evaluated several publicly available coalescent-based methods and concatenation under maximum likelihood on simulated datasets with moderate ILS and varying levels of HGT. Our study shows that two quartet-based species tree estimation methods (ASTRAL-2 and weighted Quartets MaxCut) are both highly accurate, even on datasets with high rates of HGT. In contrast, although NJst and concatenation using maximum likelihood are highly accurate under low HGT, they are less robust to high HGT rates. Conclusion Our study shows that quartet-based species-tree estimation methods can be highly accurate under the presence of both HGT and ILS. The study suggests the possibility that some quartet-based methods might be statistically consistent under phylogenomic models of gene tree heterogeneity with both HGT and ILS. PMID:26450506

  5. Seasonal variations of isoprene emissions from five oak tree species in East Asia

    NASA Astrophysics Data System (ADS)

    Lim, Yong-Jae; Armendariz, Al; Son, Youn-Suk; Kim, Jo-Chun

    2011-04-01

    Emissions of biogenic volatile organic compounds (BVOC) from trees can enhance the photochemical production of tropospheric ozone. Isoprene is one of the most environmentally important BVOCs, since its emission rate from certain tree species can be high and its chemical structure gives it high ozone forming potential. Understanding of isoprene emission rates from many tree species is limited, including influences of tree age, season, and other factors. Five oak species were studied which represent approximately 85 percent of the deciduous trees in South Korean forests. In general, there were obvious seasonal variations of isoprene emissions from five oak trees. Especially, Quercus aliena B. and Quercus mongolica F showed substantial seasonal variations of isoprene emissions; However, Quercus serrata T. and Quercus acutissima C. generally did not. It was found that Q. serrata T. showed the highest isoprene emission rates among the species tested (up to 130.5 μgC gdw -1 h -1) and its emission rates were highest during spring followed by summer and fall. The emission rates from two ( Q. acutissima C., Quercus variabilis B.) of the other tested oak species were lower by more than 3 orders of magnitude. Besides, two oak species, Q. aliena B. and Q. mongolica F. were chosen to determine the effect of tree age on isoprene emissions. Trees at the age of 21˜30 years had significantly higher isoprene emission rates than those at the age of 41˜50.

  6. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  7. Floristic and phytosociology in dense "terra firme" rainforest in the Belo Monte Hydroelectric Plant influence area, Pará, Brazil.

    PubMed

    Lemos, D A N; Ferreira, B G A; Siqueira, J D P; Oliveira, M M; Ferreira, A M

    2015-08-01

    The objective of the present study was to characterise the floristic and phytosociological composition on a stretch of dense "Terra Firme" rainforest located in the Belo Monte hydroelectric plant area of influence, located in the state of Pará, Brazil. All trees with DAP >10 cm situated in 75 permanent plots of 1 ha were inventoried. 27,126 individuals trees (361 ind.ha-1), distributed in 59 botanical families, comprising 481 species were observed. The families with the largest number of species were Fabaceae (94), Araceae (65) and Arecaceae (43), comprising 43.7% of total species. The species Alexa grandiflora (4.41), Cenostigma tocantinum (2.50) and Bertholletia excelsa (2.28) showed the highest importance values (IV). The ten species with greater IV are concentrated (22%). The forest community has high species richness and can be classified as diverse age trees, heterogeneous and of medium conservation condition. PMID:26691099

  8. Species-environment relationships and vegetation patterns: Effects of spatial scale and tree life-stage

    USGS Publications Warehouse

    Stohlgren, T.J.; Bachand, R.R.; Onami, Y.; Binkley, D.

    1998-01-01

    Do relationships between species and environmental gradients strengthen or weaken with tree life-stage (i.e., small seedlings, large seedlings, saplings, and mature trees)? Strengthened relationships may lead to distinct forest type boundaries, or weakening connections could lead to gradual ecotones and heterogeneous forest landscapes. We quantified the changes in forest dominance (basal area of tree species by life-stage) and environmental factors (elevation, slope, aspect, intercepted photosynthetically active radiation (PAR), summer soil moisture, and soil depth and texture) across 14 forest ecotones (n = 584, 10 m x 10 m plots) in Rocky Mountain National Park, Colorado, U.S.A. Local, ecotone-specific species-environment relationships, based on multiple regression techniques, generally strengthened from the small seedling stage (multiple R2 ranged from 0.00 to 0.26) to the tree stage (multiple R2 ranged from 0.20 to 0.61). At the landscape scale, combined canonical correspondence analysis (CCA) among species and for all tree life-stages suggested that the seedlings of most species became established in lower-elevation, drier sites than where mature trees of the same species dominated. However, conflicting evidence showed that species-environment relationships may weaken with tree life-stage. Seedlings were only found in a subset of plots (habitats) occupied by mature trees of the same species. At the landscape scale, CCA results showed that species-environment relationships weakened somewhat from the small seedling stage (86.4% of the variance explained by the first two axes) to the tree stage (76.6% of variance explained). The basal area of tree species co-occurring with Pinus contorta Doug. ex. Loud declined more gradually than P. contorta basal area declined across ecotones, resulting in less-distinct forest type boundaries. We conclude that broad, gradual ecotones and heterogeneous forest landscapes are created and maintained by: (1) sporadic establishment

  9. Tissue culture and top-fruit tree species.

    PubMed

    Ochatt, S J; Davey, M R; Power, J B

    1990-01-01

    The commercial cultivation of rosaceous fruit trees (e.g., pear, apple, cherry, peach, plum) relies heavily upon the quality and performance of the rootstocks. This is even more the case now that self-rooted scions produce larger trees with a longer juvenile phase (1). It would, therefore, be of special interest for the fruit breeder to have general purpose rootstocks with a wide ecophysiological adaptation and high compatibility coupled with early cropping. In addition, many of the older and highly adapted scion varieties of fruit trees could benefit greatly from the introduction of stable, yet minor changes in their genome. Fruit trees are generally highly heterozygous, outbreeding, and thus are asexually propagated (see Chapter 10 , this vol.). Consequently, genetic improvement is likely to be based on protoplast technology, and achieved mainly through somatic methods, such as somaclonal variation or somatic hybridization. PMID:21390607

  10. Origin of the Hawaiian rainforest and its transition states in long-term primary succession

    NASA Astrophysics Data System (ADS)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-07-01

    This paper addresses the question of transition states in the Hawaiian rainforest ecosystem with emphasis on their initial developments. Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millennia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e., islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life forms is similar to the assemblage during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris linearis), becomes established. It inhibits further regeneration of the dominant 'ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After the disturbance, the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands loses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern

  11. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    PubMed

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. PMID:23399405

  12. Three New Species of Phytotelm-Breeding Melanophryniscus from the Atlantic Rainforest of Southern Brazil (Anura: Bufonidae)

    PubMed Central

    Bornschein, Marcos R.; Firkowski, Carina R.; Baldo, Diego; Ribeiro, Luiz F.; Belmonte-Lopes, Ricardo; Corrêa, Leandro; Morato, Sérgio A. A.; Pie, Marcio R.

    2015-01-01

    Three new species of Melanophryniscus are described from the Serra do Mar mountain range of the state of Santa Catarina, southern Brazil. All species are found at intermediate to high altitudes and share phytotelm-breeding as their reproductive strategy. The new species are distinguished from other phytotelm-breeding Melanophryniscus based on different combinations of the following traits: snout-vent length, presence of white and/or yellow spots on forearms, mouth, belly and cloaca, pattern and arrangement of warts, and presence and number of corneous spines. The discovery of these species in a rather restricted geographical area suggests that the diversity of phytotelm-breeding species of Melanophryniscus might be severely underestimated. The conservation status of these species is of particular concern, given that one of them is at risk of extinction not only due to its restricted habitat, but also because of anthropogenic disturbances. PMID:26630281

  13. Three New Species of Phytotelm-Breeding Melanophryniscus from the Atlantic Rainforest of Southern Brazil (Anura: Bufonidae).

    PubMed

    Bornschein, Marcos R; Firkowski, Carina R; Baldo, Diego; Ribeiro, Luiz F; Belmonte-Lopes, Ricardo; Corrêa, Leandro; Morato, Sérgio A A; Pie, Marcio R

    2015-01-01

    Three new species of Melanophryniscus are described from the Serra do Mar mountain range of the state of Santa Catarina, southern Brazil. All species are found at intermediate to high altitudes and share phytotelm-breeding as their reproductive strategy. The new species are distinguished from other phytotelm-breeding Melanophryniscus based on different combinations of the following traits: snout-vent length, presence of white and/or yellow spots on forearms, mouth, belly and cloaca, pattern and arrangement of warts, and presence and number of corneous spines. The discovery of these species in a rather restricted geographical area suggests that the diversity of phytotelm-breeding species of Melanophryniscus might be severely underestimated. The conservation status of these species is of particular concern, given that one of them is at risk of extinction not only due to its restricted habitat, but also because of anthropogenic disturbances. PMID:26630281

  14. Concatenation and Species Tree Methods Exhibit Statistically Indistinguishable Accuracy under a Range of Simulated Conditions

    PubMed Central

    Tonini, João; Moore, Andrew; Stern, David; Shcheglovitova, Maryia; Ortí, Guillermo

    2015-01-01

    Phylogeneticists have long understood that several biological processes can cause a gene tree to disagree with its species tree. In recent years, molecular phylogeneticists have increasingly foregone traditional supermatrix approaches in favor of species tree methods that account for one such source of error, incomplete lineage sorting (ILS). While gene tree-species tree discordance no doubt poses a significant challenge to phylogenetic inference with molecular data, researchers have only recently begun to systematically evaluate the relative accuracy of traditional and ILS-sensitive methods. Here, we report on simulations demonstrating that concatenation can perform as well or better than methods that attempt to account for sources of error introduced by ILS. Based on these and similar results from other researchers, we argue that concatenation remains a useful component of the phylogeneticist’s toolbox and highlight that phylogeneticists should continue to make explicit comparisons of results produced by contemporaneous and classical methods. PMID:25901289

  15. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-02-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se. PMID:26172210

  16. Leapfrogging of tree species provenances? Interaction of microclimate and genetics on upward shifts in tree species' range limits

    NASA Astrophysics Data System (ADS)

    Reinhardt, K.; Castanha, C.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    The elevation limit of tree growth (alpine treeline) is considered to be constrained by environmental (i.e., thermal) and genetic (i.e., inability to adapt to climatic conditions) limitations to growth. Warming conditions due to climate change are predicted to cause upward shifts in the elevation of alpine treelines, through relief of cold-induced physiological limitations on seedling recruitment beyond current treeline boundaries. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone at Niwot Ridge, CO. We compared differences in microclimate and seedling ecophysiology among sites and between provenances. During the first summer of growth, frequently cloudy skies resulted in similar solar radiation incidence and air and soil temperatures among sites, despite nearly a 500 m-span in elevation across all sites. Preliminary findings suggest that survival of seedlings was similar between the lowest and highest elevations, with greater survival of LO (60%) compared to HI (40%) seedlings at each of these sites. Photosynthesis, carbon balance (photosynthesis/respiration), and conductance increased more than 2X with elevation for both provenances, and were 35-77% greater in LO seedlings compared to HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. However, in a common-garden study at low elevation, we observed no differences in carbon or water relations between two naturally-germinated mitochondrial haplotypes of P. flexilis (of narrow and wide-ranging distributions). We did observe water-related thresholds on seedling carbon balance and survival that occurred when soil volumetric water content dropped below 10% and seedling water

  17. Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co-occurring shrub and tree species.

    PubMed

    Smith, Duncan D; Sperry, John S

    2014-12-01

    The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co-occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth-based water-use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77-0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size-dependent increase in their growth-based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated. PMID:25041417

  18. SIMULATION OF OZONE EFFECTS ON EIGHT TREE SPECIES AT SHENANDOAH NATIONAL PARK

    EPA Science Inventory

    As part of an assessment of potential effects of air pollutants on the vegetation of Shenandoah National Park (SHEN), we simulated the growth of eight important tree species using TREGRO, a mechanistic model of individual tree growth. Published TREGRO parameters for black cherry...

  19. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China.

    PubMed

    Thomas, S C; Malczewski, G; Saprunoff, M

    2007-11-01

    Although the native forests of China are exceptionally diverse, only a small number of tree species have been widely utilized in forest plantations and reforestation efforts. We used dendrochronological sampling methods to assess the potential growth and carbon sequestration of native tree species in Jilin Province, Northeast China. Trees were sampled in and near the Changbaishan Biosphere Reserve, with samples encompassing old-growth, disturbed forest, and plantations. To approximate conditions for planted trees, sampling focused on trees with exposed crowns (dominant and co-dominant individuals). A log-linear relationship was found between diameter increment and tree diameter, with a linear decrease in increment with increasing local basal area; no significant differences in these patterns between plantations and natural stands were detected for two commonly planted species (Pinus koraiensis and Larix olgensis). A growth model that incorporates observed feedbacks with individual tree size and local basal area (in conjunction with allometric models for tree biomass), was used to project stand-level biomass increment. Predicted growth trajectories were then linked to the carbon process model InTEC to provide estimates of carbon sequestration potential. Results indicate substantial differences among species, and suggest that certain native hardwoods (in particular Fraxinus mandshurica and Phellodendron amurense), have high potential for use in carbon forestry applications. Increased use of native hardwoods in carbon forestry in China is likely to have additional benefits in terms of economic diversification and enhanced provision of "ecosystem services", including biodiversity protection. PMID:17188419

  20. Slope variation and population structure of tree species from different ecological groups in South Brazil.

    PubMed

    Bianchini, Edmilson; Garcia, Cristina C; Pimenta, José A; Torezan, José M D

    2010-09-01

    Size structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment in Paraná State, South Brazil (23°16'S and 51°01'W). The studied species were Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. and Gallesia integrifolia (Spreng) Harms (emergent species); Alseis floribunda Schott, Ruprechtia laxiflora Meisn. and Bougainvillea spectabilis Willd. (shade-intolerant canopy species); Machaerium paraguariense Hassl, Myroxylum peruiferum L. and Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl. (shade-tolerant canopy species); Sorocea bonplandii (Baill.) Bürger, Trichilia casaretti C. Dc, Trichilia catigua A. Juss. and Actinostemon concolor (Spreng.) Müll. Arg. (understory small trees species). Height and diameter structures and basal area of species were analyzed. Spatial patterns and slope correlation were analyzed by Moran's / spatial autocorrelation coefficient and partial Mantel test, respectively. The emergent and small understory species showed the highest and the lowest variations in height, diameter and basal area. Size distribution differed among emergent species and also among canopy shade-intolerant species. The spatial pattern ranged among species in all groups, except in understory small tree species. The slope was correlated with spatial pattern for A. polyneuron, A. graveolens, A. floribunda, R. laxiflora, M. peruiferum and T. casaretti. The results indicated that most species occurred in specific places, suggesting that niche differentiation can be an important factor in structuring the tree community. PMID:21562693

  1. Helmdon's First Rainforest

    ERIC Educational Resources Information Center

    Blackburn, Sue

    2003-01-01

    This article describes how Helmdon Primary School is transformed in a memorable learning experience. It started out as a simple idea, a whole-school art exhibition centred on the theme of a tropical rainforest. The focal point was to be a life-sized rainforest created using a variety of media in the school hall. The school wanted the children to…

  2. Method for estimating potential tree-grade distributions for northeastern forest species. Forest Service research paper (Final)

    SciTech Connect

    Yaussy, D.A.

    1993-03-01

    The generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive variables, allowing the equations to be incorporated into individual-tree growth and yield simulators such as NE-TWIGS.

  3. Pythium species Associated with Forest Tree Nurseries of Oregon and Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium species are one of several pathogen genera responsible for damping off of conifer seedlings in forest tree nurseries. Species identification has been traditionally based on morphology. However, DNA-based identification methods may allow more accurate identification of species associated wi...

  4. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    ERIC Educational Resources Information Center

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the…

  5. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and

  6. Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree Species Metrosideros polymorpha.

    PubMed

    Melcher; Cordell; Jones; Scowcroft; Niemczura; Giambelluca; Goldstein

    2000-05-01

    Population-specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8-yr-old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low-elevation field plants exhibited damage at -2 degrees C, before the onset of ice formation, which occurred at -5.7 degrees C. Leaves of high-elevation plants exhibited damage at ca. -8.5 degrees C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra- and intracellular leaf water fractions from high-elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant's foliage at tree line. The irreversible tissue-damage temperature decreased by ca. 7 degrees C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively

  7. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  8. Mountain landscapes offer few opportunities for high-elevation tree species migration

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.

  9. Mountain landscapes offer few opportunities for high-elevation tree species migration.

    PubMed

    Bell, David M; Bradford, John B; Lauenroth, William K

    2014-05-01

    Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes. PMID:24353188

  10. Anonymous nuclear markers data supporting species tree phylogeny and divergence time estimates in a cactus species complex in South America.

    PubMed

    Perez, Manolo F; Carstens, Bryan C; Rodrigues, Gustavo L; Moraes, Evandro M

    2016-03-01

    Supportive data related to the article "Anonymous nuclear markers reveal taxonomic incongruence and long-term disjunction in a cactus species complex with continental-island distribution in South America" (Perez et al., 2016) [1]. Here, we present pyrosequencing results, primer sequences, a cpDNA phylogeny, and a species tree phylogeny. PMID:26900589

  11. Version 5 of Forecasts; Forecasts of Climate-Associated Shifts in Tree Species

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Kumar, J.; Potter, K. M.; Hoffman, F. M.

    2014-12-01

    Version 5 of the ForeCASTS tree range shift atlas (www.geobabble.org/~hnw/global/treeranges5/climate_change/atlas.html) now predicts global shifts in the suitable ranges of 335 tree species (essentially all woody species measured in Forest Inventory Analysis (FIA)) under forecasts from the Parallel Climate Model, and the Hadley Model, each under future climatic scenarios A1 and B1, each at two future dates (2050 and 2100). Version 5 includes more Global Biodiversity Information Facility (GBIF) occurrence points, uses improved heuristics for occurrence training, and recovers occurrence points that fall in water. A multivariate clustering procedure was used to quantitatively delineate 30 thousand environmentally homogeneous ecoregions across present and 8 potential future global locations at once, using global maps of 17 environmental characteristics describing temperature, precipitation, soils, topography and solar insolation. Occurrence of each tree species on FIA plots and in GBIF samples was used to identify a subset of suitable ecoregions from the full set of 30 thousand. This subset of suitable ecoregions was compared to the known current present range of the tree species. Predicted present ranges correspond well with existing ranges for all but a few of the 335 tree species. The subset of suitable ecoregions can then be tracked into the future to determine whether the suitable home range remains the same, moves, grows, shrinks, or disappears under each model/scenario combination. A quantitative niche breadth analysis allows sorting of the 17 environmental variables from the narrowest, most important, to the broadest, least restrictive environmental factors limiting each tree species. Potential tree richness maps were produced, along with a quantitative potential tree endemism map for present and future CONUS. Using a new empirical imputation method which associates sparse measurements of dependent variables with particular clustered combinations of the

  12. Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity.

    PubMed

    Koenen, Erik J M; Clarkson, James J; Pennington, Terence D; Chatrou, Lars W

    2015-07-01

    Tropical rainforest hyperdiversity is often suggested to have evolved over a long time-span (the 'museum' model), but there is also evidence for recent rainforest radiations. The mahoganies (Meliaceae) are a prominent plant group in lowland tropical rainforests world-wide but also occur in all other tropical ecosystems. We investigated whether rainforest diversity in Meliaceae has accumulated over a long time or has more recently evolved. We inferred the largest time-calibrated phylogeny for the family to date, reconstructed ancestral states for habitat and deciduousness, estimated diversification rates and modeled potential shifts in macro-evolutionary processes using a recently developed Bayesian method. The ancestral Meliaceae is reconstructed as a deciduous species that inhabited seasonal habitats. Rainforest clades have diversified from the Late Oligocene or Early Miocene onwards. Two contemporaneous Amazonian clades have converged on similar ecologies and high speciation rates. Most species-level diversity of Meliaceae in rainforest is recent. Other studies have found steady accumulation of lineages, but the large majority of plant species diversity in rainforests is recent, suggesting (episodic) species turnover. Rainforest hyperdiversity may best be explained by recent radiations from a large stock of higher level taxa. PMID:26053172

  13. Extending the dormant bud cryopreservation method to new tree species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cryopreservation of germplasm, using dormant winter buds (DB) as source plant material is economically favorable over tissue culture options. Although the DB cryopreservation method has been known for many years, the approach is feasible only for cryopreserving a select number of temperate tree s...

  14. North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes.

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Prediger, Jitka; McEvoy, John M

    2015-12-01

    Wildlife-associated Cryptosporidium are an emerging cause of cryptosporidiosis in humans. The present study was undertaken to determine the extent to which North American tree squirrels and ground squirrels host zoonotic Cryptosporidium species and genotypes. Fragments of the Cryptosporidium 18S rRNA and actin genes were amplified and sequenced from fecal samples obtained from three tree squirrel and three ground squirrel species. In tree squirrels, Cryptosporidium was identified in 40.5% (17/42) of American red squirrels (Tamiasciurus hudsonicus), 40.4% (55/136) of eastern gray squirrels (Sciurus carolinensis), and 28.6% (2/7) of fox squirrels (Sciurus niger). Human-pathogenic Cryptosporidium ubiquitum and Cryptosporidium skunk genotype were the most prevalent species/genotypes in tree squirrels. Because tree squirrels live in close proximity to humans and are frequently infected with potentially zoonotic Cryptosporidium species/genotypes, they may be a significant reservoir of infection in humans. In ground squirrels, Cryptosporidium was detected in 70.2% (33/47) of 13-lined ground squirrels (Ictidomys tridecemlineatus), 35.1% (27/77) of black-tailed prairie dogs (Cynomys ludovicianus), and the only golden-mantled ground squirrel (Callospermophilus lateralis) that was sampled. Cryptosporidium rubeyi and ground squirrel genotypes I, II, and III were identified in isolates from these ground squirrel species. In contrast to the Cryptosporidium infecting tree squirrels, these species/genotypes appear to be specific for ground squirrels and are not associated with human disease. PMID:26437239

  15. Long range correlations in tree ring chronologies of the USA: Variation within and across species

    NASA Astrophysics Data System (ADS)

    Bowers, M. C.; Gao, J. B.; Tung, W. W.

    2013-02-01

    Abstract <span class="hlt">Tree</span> ring width data are among the best proxies for reconstructing past temperature and precipitation records. The discovery of fractal scaling and long-memory in meteorological and hydrological signals motivates us to investigate such properties in <span class="hlt">tree</span> ring chronologies. Detrended fluctuation analysis and adaptive fractal analysis are utilized to estimate the Hurst parameter values of 697 <span class="hlt">tree</span> ring chronologies from the continental United States. We find significant differences in the Hurst parameter values across the 10 <span class="hlt">species</span> studied in the work. The long-range scaling relations found here suggest that the behavior of <span class="hlt">tree</span> ring growth observed in a short calibration period may be similar to the general behavior of <span class="hlt">tree</span> ring growth in a much longer period, and therefore, the limited calibration period may be more useful than originally thought. The variations of the long-range correlations within and across <span class="hlt">species</span> may be further explored in future to better reconstruct paleoclimatic records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3178650','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3178650"><span id="translatedtitle">Growth Strategies of Tropical <span class="hlt">Tree</span> <span class="hlt">Species</span>: Disentangling Light and Size Effects</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rüger, Nadja; Berger, Uta; Hubbell, Stephen P.; Vieilledent, Ghislain; Condit, Richard</p> <p>2011-01-01</p> <p>An understanding of the drivers of <span class="hlt">tree</span> growth at the <span class="hlt">species</span> level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in <span class="hlt">species</span>-rich tropical forests, it is largely unknown how <span class="hlt">species</span> differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian approach to quantify the impact of light availability and <span class="hlt">tree</span> diameter on growth of 274 woody <span class="hlt">species</span> in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual <span class="hlt">tree</span> was estimated from yearly vertical censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare <span class="hlt">species</span> correctly weighted by their abundance. All <span class="hlt">species</span> grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all <span class="hlt">species</span> exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the <span class="hlt">species</span>. As a consequence, growth rankings of the <span class="hlt">species</span> at low (2%) and high light (20%) were highly correlated. Rare <span class="hlt">species</span> tended to grow faster and showed a greater sensitivity to light than abundant <span class="hlt">species</span>. Overall, <span class="hlt">tree</span> size was less important for growth than light and about half the <span class="hlt">species</span> were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and <span class="hlt">tree</span> diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping <span class="hlt">tree</span> growth in the tropics. PMID:21966498</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JHyd..395..169G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JHyd..395..169G"><span id="translatedtitle">Have we underestimated stemflow? Lessons from an open tropical <span class="hlt">rainforest</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Germer, Sonja; Werther, Lisa; Elsenbeer, Helmut</p> <p>2010-12-01</p> <p>SummaryStemflow was monitored on event-basis in an undisturbed open tropical <span class="hlt">rainforest</span> with a large number of palm <span class="hlt">trees</span> located in the southwestern Amazon basin of Brazil. We estimated stemflow of 24 <span class="hlt">trees</span> with a diameter at breast height (DBH) over 5 cm and of 16 juvenile and eight aborescent babassu palms ( Orbignya phalerata Mart.). To obtain within-event stemflow variability we monitored stemflow of one additional aborescent babassu palm with a tipping-bucket rain gauge at 5-min intervals. Total stemflow of the forest accounted for 8.0 ± 1.8% (S.E.) of incident rainfall and reached the forest floor over an area corresponding to the total basal area that sums up to only 0.3% of the plot area. The most influential predictive variables for stemflow generation were DBH and rainfall amount. The stemflow parameter 'funneling ratio', which is normalized for DBH and rainfall amount, was particularly useful to highlight the relevance of small <span class="hlt">trees</span> (DBH ⩽ 10 cm) for stemflow generation. Small <span class="hlt">trees</span> and babassu palms had significantly higher funneling ratios than larger <span class="hlt">trees</span> (median funneling ratios: 15-27 and 1-2, respectively). The maximum 5-min stemflow intensity (1232 mm h -1) was 15-fold that of rainfall. High funneling ratios of small <span class="hlt">trees</span> and babassu palms suggest that high stemflow intensities are the rule rather than the exception. Therefore, we expect small <span class="hlt">trees</span> and babassu palms to influence hydrologic processes as subsurface flow, saturation overland flow or groundwater recharge. Consequently, stemflow studies should include all DBH classes and <span class="hlt">species</span> with exceptionally high funneling ratios. For modeling purposes, stemflow should be estimated and not just assumed if study sites have a large number of palms or of small <span class="hlt">trees</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25684460','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25684460"><span id="translatedtitle">The dynamics of ant mosaics in tropical <span class="hlt">rainforests</span> characterized using the Self-Organizing Map algorithm.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dejean, Alain; Azémar, Frédéric; Céréghino, Régis; Leponce, Maurice; Corbara, Bruno; Orivel, Jérôme; Compin, Arthur</p> <p>2016-08-01</p> <p>Ants, the most abundant taxa among canopy-dwelling animals in tropical <span class="hlt">rainforests</span>, are mostly represented by territorially dominant arboreal ants (TDAs) whose territories are distributed in a mosaic pattern (arboreal ant mosaics). Large TDA colonies regulate insect herbivores, with implications for forestry and agronomy. What generates these mosaics in vegetal formations, which are dynamic, still needs to be better understood. So, from empirical research based on 3 Cameroonian <span class="hlt">tree</span> <span class="hlt">species</span> (Lophira alata, Ochnaceae; Anthocleista vogelii, Gentianaceae; and Barteria fistulosa, Passifloraceae), we used the Self-Organizing Map (SOM, neural network) to illustrate the succession of TDAs as their host <span class="hlt">trees</span> grow and age. The SOM separated the <span class="hlt">trees</span> by <span class="hlt">species</span> and by size for L. alata, which can reach 60 m in height and live several centuries. An ontogenic succession of TDAs from sapling to mature <span class="hlt">trees</span> is shown, and some ecological traits are highlighted for certain TDAs. Also, because the SOM permits the analysis of data with many zeroes with no effect of outliers on the overall scatterplot distributions, we obtained ecological information on rare <span class="hlt">species</span>. Finally, the SOM permitted us to show that functional groups cannot be selected at the genus level as congeneric <span class="hlt">species</span> can have very different ecological niches, something particularly true for Crematogaster spp., which include a <span class="hlt">species</span> specifically associated with B. fistulosa, nondominant <span class="hlt">species</span> and TDAs. Therefore, the SOM permitted the complex relationships between TDAs and their growing host <span class="hlt">trees</span> to be analyzed, while also providing new information on the ecological traits of the ant <span class="hlt">species</span> involved. PMID:25684460</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016JHyd..537....1S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016JHyd..537....1S&link_type=ABSTRACT"><span id="translatedtitle">Inter- and intra-specific variation in stemflow for evergreen <span class="hlt">species</span> and deciduous <span class="hlt">tree</span> <span class="hlt">species</span> in a subtropical forest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Lei; Xu, Wenting; Zhao, Changming; Xie, Zongqiang; Ju, Hua</p> <p>2016-06-01</p> <p>Quantification of stemflow is necessary for the assessment of forest ecosystem hydrological effects. Nevertheless, variation of stemflow among plant functional groups is currently not well understood. Stemflow production of co-occurring evergreen broadleaved <span class="hlt">trees</span> (Cyclobalanopsis multinervis and Cyclobalanopsis oxyodon) and deciduous broadleaved <span class="hlt">trees</span> (Fagus engleriana and Quercus serrata var. brevipetiolata) was quantified through field observations in a mixed evergreen and deciduous broadleaved forest. The research results revealed that stemflow increased linearly with increasing rainfall magnitude, with precipitation depths of 6.9, 7.2, 10.0 and 14.8 mm required for the initiation of stemflow for C. multinervis, C. oxyodon, F. engleriana and Q. serrata, respectively. Stemflow percentage and funneling ratio (FR) increased with increasing rainfall in a logarithmic fashion. Stemflow percentage and FR tended to grow rapidly with increasing rainfall magnitude up to a rainfall threshold of 50 mm, above which, further rainfall increases brought about only small increases. For C. multinervis, C. oxyodon, F. engleriana and Q. serrata, FR averaged 19.8, 14.8, 8.9 and 2.8, respectively. The stemflow generating rainfall thresholds for evergreen <span class="hlt">species</span> were smaller than for deciduous <span class="hlt">species</span>. Furthermore, stemflow percentage and FR of the former was greater than the latter. For both evergreen <span class="hlt">species</span> and deciduous <span class="hlt">species</span>, overall funneling ratio (FRs) decreased with increasing basal area. We concluded that: (1) although stemflow partitioning represented a fairly low percentage of gross rainfall in mixed evergreen and deciduous broadleaved forests, it was capable of providing substantial amount of rainwater to <span class="hlt">tree</span> boles; (2) the evergreen <span class="hlt">species</span> were more likely to generate stemflow than deciduous <span class="hlt">species</span>, and directed more intercepted rainwater to the root zone; (3) small <span class="hlt">trees</span> were more productive in funneling stemflow than larger <span class="hlt">trees</span>, which may provide a favorable</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26699612','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26699612"><span id="translatedtitle">Photosynthetic Light Responses May Explain Vertical Distribution of Hymenophyllaceae <span class="hlt">Species</span> in a Temperate <span class="hlt">Rainforest</span> of Southern Chile.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parra, María José; Acuña, Karina I; Sierra-Almeida, Angela; Sanfuentes, Camila; Saldaña, Alfredo; Corcuera, Luis J; Bravo, León A</p> <p>2015-01-01</p> <p>Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (< 60 cm; 10-100 μmol photons m(-2) s(-1)) in a secondary forest of Southern Chile; other <span class="hlt">species</span> occupy the whole host height (≥ 10 m; max PPFD > 1000 μmol photons m(-2) s(-1)). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae <span class="hlt">species</span> in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (A max) than H. cruentum, but the former <span class="hlt">species</span> kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs > 60 μmol photons m(-2) s(-1). H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both <span class="hlt">species</span> allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both <span class="hlt">species</span>, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m(-2)s(-1). Differences in photosynthetic responses to light suggest that light tolerance and <span class="hlt">species</span> plasticity could explain their contrasting vertical distribution</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4699196','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4699196"><span id="translatedtitle">Photosynthetic Light Responses May Explain Vertical Distribution of Hymenophyllaceae <span class="hlt">Species</span> in a Temperate <span class="hlt">Rainforest</span> of Southern Chile</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Parra, María José; Acuña, Karina I.; Sierra-Almeida, Angela; Sanfuentes, Camila; Saldaña, Alfredo; Corcuera, Luis J.; Bravo, León A.</p> <p>2015-01-01</p> <p>Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (<60 cm; 10–100 μmol photons m-2 s-1) in a secondary forest of Southern Chile; other <span class="hlt">species</span> occupy the whole host height (≥10 m; max PPFD >1000 μmol photons m-2 s-1). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae <span class="hlt">species</span> in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (Amax) than H. cruentum, but the former <span class="hlt">species</span> kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs >60 μmol photons m-2 s-1. H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both <span class="hlt">species</span> allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both <span class="hlt">species</span>, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m-2s-1. Differences in photosynthetic responses to light suggest that light tolerance and <span class="hlt">species</span> plasticity could explain their contrasting vertical distribution. PMID:26699612</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24869524','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24869524"><span id="translatedtitle">A new genus and <span class="hlt">species</span> of myrmecophilous brentid beetle (Coleoptera: Brentidae) inhabiting the myrmecophytic epiphytes in the Bornean <span class="hlt">rainforest</span> canopy.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maruyama, Munetoshi; Bartolozzi, Luca; Inui, Yoko; Tanaka, Hiroshi O; Hyodo, Fujio; Shimizu-Kaya, Usun; Takematsu, Yoko; Hishi, Takuo; Itioka, Takao</p> <p>2014-01-01</p> <p>Pycnotarsobrentus inuiae Maruyama & Bartolozzi, gen. nov. and sp. nov. (Brentinae: Eremoxenini) is described from the Lambir Hills National Park, Borneo (Sarawak, Malaysia) based on specimens collected from Crematogaster difformis F. Smith, 1857 ant nests in the myrmecophytic epiphytic ferns Platycerium crustacea Copel. and Lecanopteris ridleyi H. Christ. A second <span class="hlt">species</span> of Pycnotarsobrentus is known from Malaysia but is represented by only one female and consequently not yet described pending discovery of a male. Pycnotarsobrentus belongs to the tribe Eremoxenini and shares some character states with the African genus Pericordus Kolbe, 1883. No <span class="hlt">species</span> of Eremoxenini with similar morphological modifications are known from the Oriental region. PMID:24869524</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3837498','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3837498"><span id="translatedtitle">Four new <span class="hlt">species</span> of Oidardis Hermann, 1912 (Diptera, Asilidae, Laphriinae, Atomosiini) from two major faunistic surveys in the Atlantic <span class="hlt">Rainforest</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cezar, Lucas A.; Fisher, Eric M.; Lamas, Carlos J. E.</p> <p>2013-01-01</p> <p>Abstract Two recent faunistic surveys in the Brazilian Atlantic Forests region, the PROFAUPAR and the Biota/FAPESP Program, have provided important material for the discovery of new taxa from Brazil. We describe herein four new <span class="hlt">species</span> of robber-flies of the genus Oidardis (O. falcimystax sp. n., O. fontenellei sp. n., O. maculiseta sp. n. and O. marinonii sp. n.), including illustrations and details on male hypopygia and female genitalia. A distribution map and a key to the <span class="hlt">species</span> of Oidardis from the Brazilian Atlantic Forests region, including O. triangularis (Hermann), 1912, are also provided. PMID:24294083</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2694365','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2694365"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">Species</span> Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D.; Simmons, Breana L.; Wall, Diana H.</p> <p>2009-01-01</p> <p>Background Previous studies have shown that plants often have <span class="hlt">species</span>-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single <span class="hlt">tree</span> <span class="hlt">species</span> are often adjacent to areas dominated by another <span class="hlt">tree</span> <span class="hlt">species</span>. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant <span class="hlt">tree</span> <span class="hlt">species</span> in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different <span class="hlt">tree</span> <span class="hlt">species</span> and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. Methodology/Principal Findings We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the <span class="hlt">tree</span> <span class="hlt">species</span>, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among <span class="hlt">tree</span> <span class="hlt">species</span>, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the <span class="hlt">tree</span> <span class="hlt">species</span>, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26957015','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26957015"><span id="translatedtitle">Diversification of Bromelioideae (Bromeliaceae) in the Brazilian Atlantic <span class="hlt">rainforest</span>: A case study in Aechmea subgenus Ortgiesia.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goetze, Márcia; Schulte, Katharina; Palma-Silva, Clarisse; Zanella, Camila M; Büttow, Miriam V; Capra, Fernanda; Bered, Fernanda</p> <p>2016-05-01</p> <p>Aechmea subgenus Ortgiesia comprises ca. 20 <span class="hlt">species</span> distributed in Brazil, Argentina, Paraguay, and Uruguay, with a center of diversity in the Brazilian Atlantic <span class="hlt">rainforest</span>. We examined interspecific relationships of Ortgiesia based on Amplified Fragment Length Polymorphisms (AFLP). Ninety-six accessions belonging to 14 <span class="hlt">species</span> of Ortgiesia were sampled, and genotyped with 11 AFLP primer combinations. The neighbor joining (NJ) <span class="hlt">tree</span> depicted two main genetic groups within Aechmea subgenus Ortgiesia, and four subgroups. The NJ <span class="hlt">tree</span> showed short internal branches, indicating an overall shallow genetic divergence among Ortgiesia <span class="hlt">species</span> as expected for the recently radiated subfamily Bromelioideae. Our results suggest that hybridization and/or incomplete lineage sorting may have hampered the reconstruction of interspecific relationships in Aechmea subgenus Ortgiesia. The mapping of petal color (yellow, blue, pink, or white), inflorescence type (simple or compound), and inflorescence shape (ellipsoid, subcylindric, cylindric, or pyramidal) against the NJ <span class="hlt">tree</span> indicated that these characters are of limited taxonomic use in Aechmea subgenus Ortgiesia due to homoplasy. An analysis of the current distribution of Ortgiesia identified the southern region of the Brazilian Atlantic <span class="hlt">rainforest</span>, between latitudes of 26° and 27°S, as the center of diversity for the subgenus. PMID:26957015</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26249483','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26249483"><span id="translatedtitle">The tribe Dysoniini part IV: New <span class="hlt">species</span> of Quiva Hebard, 1927 (Orthoptera: Tettigoniidae: Phaneropterinae) from Brazilian <span class="hlt">rainforest</span> and some clarifications.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cadena-Castañeda, Oscar J; Mendes, Diego Matheus De Mello; Sovano, Rafael S Da Silva</p> <p>2015-01-01</p> <p>Two new <span class="hlt">species</span> of the genus Quiva: Quiva buhrnheimi n. sp. and Quiva gutjahrae n. sp. from Brazilian Amazon are described. Determinations for distributional data previously published by Sovano & Mendes (2013) are clarified and the synonymy of Ituana dorisae under Q. abacata is confirmed. In this paper, an updated key to subgenus Quiva is provided. PMID:26249483</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64306&keyword=Taxonomy&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=65294418&CFTOKEN=71908534','EPA-EIMS'); return false;" href="http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64306&keyword=Taxonomy&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50&CFID=65294418&CFTOKEN=71908534"><span id="translatedtitle">ISOPRENE EMISSION CAPACITY FOR U.S. <span class="hlt">TREE</span> <span class="hlt">SPECIES</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Isoprene emission capacity measurements are presented from 18 North American oak <I>(Quercus)</I> <span class="hlt">species</span> and <span class="hlt">species</span> from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24233419','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24233419"><span id="translatedtitle">Ozone exposure : Areas of potential ozone risk for selected <span class="hlt">tree</span> <span class="hlt">species</span> in Austria.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Loibl, W; Smidt, S</p> <p>1996-12-01</p> <p>Increased tropospheric ozone concentrations cause damage to both human health and the environment. To assess the exposure of forest areas and selected <span class="hlt">tree</span> <span class="hlt">species</span> to ozone, it is necessary to calculate the ozone exposure distribution. The present article describes the application of an ozone interpolation model to the calculation of the ozone exposure distribution in combination with forest inventory data.The exposure of forest regions to ozone was assessed by means of an AOT40 map (accumulated ozone exposure over a threshold of 40 ppb). The calculation was performed by hourly running of the model during the summer term and accumulation of the patterns that exceeded 40 ppb.The exposure of the primary Austrian <span class="hlt">tree</span> <span class="hlt">species</span> to ozone can be assessed due to the spatial relation of ozone exposure and <span class="hlt">tree</span> <span class="hlt">species</span> patterns. This spatial relation also allows the verification of assumptions concerning ozone-related <span class="hlt">tree</span> damage. PMID:24233419</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015EGUGA..17.8279L&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015EGUGA..17.8279L&link_type=ABSTRACT"><span id="translatedtitle">Temporal and Spatial Dynamics of <span class="hlt">Tree</span> <span class="hlt">Species</span> Composition in Temperate Mountains of South Korea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Boknam; Park, Juhan; Cho, Sungsik; Ryu, Daun; Zaw Wynn, Khine; Park, Minji; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok</p> <p>2015-04-01</p> <p>Long term studies on vegetation dynamics are important to identify changes of ecosystem-level responses to climate change. To learn how <span class="hlt">tree</span> <span class="hlt">species</span> composition and stand structure change across temperate mountains, the temporal and spatial variations in <span class="hlt">tree</span> <span class="hlt">species</span> diversity and structure were investigated using the <span class="hlt">species</span> composition and DBH size collected over the fourteen-year period across 134 sites in Jiri and Baekoon Mountains, South Korea. The overall temporal changes over fourteen years showed significant increase in stand density, <span class="hlt">species</span> diversity and evenness according to the indices of Shannon-Weiner diversity, Bray-Curtis dissimilarity, and Pielou's evenness, contributing to the increase of basal area and biomass growth. The change of <span class="hlt">tree</span> <span class="hlt">species</span> composition could be categorized into five <span class="hlt">species</span> communities, representing gradual increase or decrease, establishment, extinction, fluctuation of <span class="hlt">species</span> population. However, in general, the change in <span class="hlt">species</span> composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean <span class="hlt">species</span> traits including <span class="hlt">species</span> richness, pole growth rate, adult growth rate, and adult stature with five common dominant <span class="hlt">species</span> (Quercus mongolica, Quercus variabilis, Quercus serrata, Carpinus laxiflora, and Styrax japonicus). The spatial patterns of <span class="hlt">species</span> composition appeared to have a higher stand density and <span class="hlt">species</span> diversity along with the low latitude and high slope ecosystem. The climate change was another main driver to vary the distribution of <span class="hlt">species</span> abundance. Overall, both temporal and spatial changes of composition in <span class="hlt">tree</span> <span class="hlt">species</span> community was clear and further analysis to clarify the reasons for such fast and <span class="hlt">species</span>-specific changes is underway especially to separate the effect of successional change and climate change. Keywords <span class="hlt">species</span> composition; climate change; temporal and spatial variation ; forest structure; temperate forest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25761711','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25761711"><span id="translatedtitle">Glacial refugia and modern genetic diversity of 22 western North American <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roberts, David R; Hamann, Andreas</p> <p>2015-04-01</p> <p>North American <span class="hlt">tree</span> <span class="hlt">species</span>, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American <span class="hlt">trees</span> since the last glacial maximum using <span class="hlt">species</span> distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 <span class="hlt">tree</span> <span class="hlt">species</span>. We find that <span class="hlt">species</span> with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas <span class="hlt">species</span> with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r(2) = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4375868','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4375868"><span id="translatedtitle">Glacial refugia and modern genetic diversity of 22 western North American <span class="hlt">tree</span> <span class="hlt">species</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Roberts, David R.; Hamann, Andreas</p> <p>2015-01-01</p> <p>North American <span class="hlt">tree</span> <span class="hlt">species</span>, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American <span class="hlt">trees</span> since the last glacial maximum using <span class="hlt">species</span> distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 <span class="hlt">tree</span> <span class="hlt">species</span>. We find that <span class="hlt">species</span> with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas <span class="hlt">species</span> with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/1015692','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/1015692"><span id="translatedtitle">Relationships among environmental variables and distribution of <span class="hlt">tree</span> <span class="hlt">species</span> at high elevation in the Olympic Mountains</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Woodward, Andrea</p> <p>1998-01-01</p> <p>Relationships among environmental variables and occurrence of <span class="hlt">tree</span> <span class="hlt">species</span> were investigated at Hurricane Ridge in Olympic National Park, Washington, USA. A transect consisting of three plots was established down one north-and one south-facing slope in stands representing the typical elevational sequence of <span class="hlt">tree</span> <span class="hlt">species</span>. <span class="hlt">Tree</span> <span class="hlt">species</span> included subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), mountain hemlock (Tsuga mertensiana), and Pacific silver fir (Abies amabilis). Air and soil temperature, precipitation, and soil moisture were measured during three growing seasons. Snowmelt patterns, soil carbon and moisture release curves were also determined. The plots represented a wide range in soil water potential, a major determinant of <span class="hlt">tree</span> <span class="hlt">species</span> distribution (range of minimum values = -1.1 to -8.0 MPa for Pacific silver fir and Douglas-fir plots, respectively). Precipitation intercepted at plots depended on topographic location, storm direction and storm type. Differences in soil moisture among plots was related to soil properties, while annual differences at each plot were most often related to early season precipitation. Changes in climate due to a doubling of atmospheric CO2 will likely shift <span class="hlt">tree</span> <span class="hlt">species</span> distributions within, but not among aspects. Change will be buffered by innate tolerance of adult <span class="hlt">trees</span> and the inertia of soil properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25712048','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25712048"><span id="translatedtitle">Regional-scale directional changes in abundance of <span class="hlt">tree</span> <span class="hlt">species</span> along a temperature gradient in Japan.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane</p> <p>2015-09-01</p> <p>Climate changes are assumed to shift the ranges of <span class="hlt">tree</span> <span class="hlt">species</span> and forest biomes. Such range shifts result from changes in abundances of <span class="hlt">tree</span> <span class="hlt">species</span> or functional types. Owing to global warming, the abundance of a <span class="hlt">tree</span> <span class="hlt">species</span> or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest <span class="hlt">trees</span> along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each <span class="hlt">species</span> (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved <span class="hlt">trees</span> increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved <span class="hlt">trees</span>. Similarly, relative abundance of deciduous broad-leaved <span class="hlt">trees</span> increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual <span class="hlt">species</span> at colder sites. This is the first report to show that <span class="hlt">tree</span> <span class="hlt">species</span> abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. PMID:25712048</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26851758','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26851758"><span id="translatedtitle">Assessing redox potential of a native <span class="hlt">tree</span> from the Brazilian Atlantic <span class="hlt">Rainforest</span>: a successful evaluation of oxidative stress associated to a new power generation source of an oil refinery.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Esposito, Marisia Pannia; Pedroso, Andrea Nunes Vaz; Domingos, Marisa</p> <p>2016-04-15</p> <p>The antioxidant responses in saplings of Tibouchina pulchra (a native <span class="hlt">tree</span> from the Brazilian Atlantic <span class="hlt">Rainforest</span>) exposed around an oil refinery in the city of Cubatão (SE Brazil), varied during the exchange of its power generation source, from boilers fueled with oil to a thermoelectric fueled with natural gas. The redox potential changed in response to an interaction of air pollution and meteorological parameters, indicating that the pro-oxidant/antioxidant balance was not reached after the exchange of the power generation system. The gain in environmental quality in the region was not achieved as expected due the technological modernization, at least relative to oxidative stressors. These conclusions were based on results of analyses of enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR); non-enzymatic antioxidants: reduced, oxidized and total ascorbic acid (AsA, DHA, totAA) and glutathione (GSH, GSSG, totG), their redox state (AsA/totAA and GSH/totG) and an indicator of lipid peroxidation (MDA). We also applied exploratory multivariate statistics in order to verify if the temporal sequence of changes in the plant redox capacity coincided with changes in the profile of air pollution, climatic conditions or with their interactions and if the environmental benefits that would supposedly be promoted by the mentioned exchange of power generation system were achieved in the region. PMID:26851758</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/12620063','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/12620063"><span id="translatedtitle">Identification, measurement and interpretation of <span class="hlt">tree</span> rings in woody <span class="hlt">species</span> from mediterranean climates.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cherubini, Paolo; Gartner, Barbara L; Tognetti, Roberto; Bräker, Otto U; Schoch, Werner; Innes, John L</p> <p>2003-02-01</p> <p>We review the literature dealing with mediterranean climate, vegetation, phenology and ecophysiology relevant to the understanding of <span class="hlt">tree</span>-ring formation in mediterranean regions. <span class="hlt">Tree</span> rings have been used extensively in temperate regions to reconstruct responses of forests to past environmental changes. In mediterranean regions, studies of <span class="hlt">tree</span> rings are scarce, despite their potential for understanding and predicting the effects of global change on important ecological processes such as desertification. In mediterranean regions, due to the great spatio-temporal variability of mediterranean environmental conditions, <span class="hlt">tree</span> rings are sometimes not formed. Often, clear seasonality is lacking, and vegetation activity is not always associated with regular dormancy periods. We present examples of <span class="hlt">tree</span>-ring morphology of five <span class="hlt">species</span> (Arbutus unedo, Fraxinus ornus, Quercus cerris, Q. ilex, Q. pubescens) sampled in Tuscany, Italy, focusing on the difficulties we encountered during the dating. We present an interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments. Furthermore, we propose a classification of <span class="hlt">tree</span>-ring formation in mediterranean environments. Mediterranean <span class="hlt">tree</span> rings can be dated and used for dendrochronological purposes, but great care should be taken in selecting sampling sites, <span class="hlt">species</span> and sample <span class="hlt">trees</span>. PMID:12620063</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25556633','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25556633"><span id="translatedtitle">Primate extirpation from <span class="hlt">rainforest</span> fragments does not appear to influence seedling recruitment.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaves, Oscarm M; Arroyo-Rodríguez, Víctor; Martínez-Ramos, Miguel; Stoner, Kathryne E</p> <p>2015-04-01</p> <p>Primates are important seed dispersers, especially of large-seeded <span class="hlt">tree</span> <span class="hlt">species</span>, but the impact that these animals have on seedling recruitment is unclear. Evidence suggests that forest regeneration might be disrupted in forest fragments in which primates were extirpated. We tested this hypothesis by assessing seedling recruitment in 3 forest fragments occupied (OF) by primates, 3 fragments unoccupied (UF) by primates, and 3 areas within a continuous forest (CF) in the Lacandona <span class="hlt">rainforest</span>, Mexico. <span class="hlt">Species</span> and stem densities of <span class="hlt">tree</span>, palm and liana seedlings were recorded over 16 months. Individuals were classified according to dispersal mode: large-seeded animal-dispersed (LS), small- and medium-seeded animal-dispersed (SS), and abiotically-dispersed <span class="hlt">species</span> (AD). We assessed the influence of primate presence, adult <span class="hlt">tree</span> assemblage, and fragment spatial metrics (size, age, distance to nearest fragment, and distance to continuous forest) on seedling assemblages. We recorded 6879 seedlings belonging to 90 <span class="hlt">species</span>, and 59 genera in 405 1-m(2) plots. Both seedlings and adults showed similar differences in <span class="hlt">species</span> and stem densities of LS, SS and AD <span class="hlt">species</span> among forest types, suggesting that seedling assemblages were strongly influenced by the adult assemblages. The recruitment of each LS <span class="hlt">species</span> varied among study sites, but evidence supporting higher recruitment enhancement of these <span class="hlt">species</span> in continuous forest and occupied fragments was weak. Distance to continuous forest was the unique fragment spatial metric related (negatively) to the recruitment of LS <span class="hlt">species</span>. Thus, primate extirpation does not appear to disrupt seedling assemblages in the Lancandona <span class="hlt">rainforest</span>. Nevertheless, we cannot reject the hypothesis that certain LS <span class="hlt">species</span> such as Spondias radlkoferi may be affected by the extirpation of primates. PMID:25556633</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015EGUGA..1712601J&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015EGUGA..1712601J&link_type=ABSTRACT"><span id="translatedtitle">Does deciduous <span class="hlt">tree</span> <span class="hlt">species</span> identity affect carbon storage in temperate soils?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix</p> <p>2015-04-01</p> <p>Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate <span class="hlt">tree</span> <span class="hlt">species</span> identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous <span class="hlt">trees</span>. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and <span class="hlt">tree</span> <span class="hlt">species</span> composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a <span class="hlt">tree</span> diversity gradient , i.e., 1- (beech), 3- (plus ash and lime <span class="hlt">tree</span>)- and 5-(plus maple and hornbeam) <span class="hlt">species</span>. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant <span class="hlt">species</span> identity or <span class="hlt">species</span> diversity effect on C stabilization. In contrast to the subsoil, no <span class="hlt">tree</span> <span class="hlt">species</span> effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous <span class="hlt">tree</span> <span class="hlt">species</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17665219','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17665219"><span id="translatedtitle">Population structure, physiology and ecohydrological impacts of dioecious riparian <span class="hlt">tree</span> <span class="hlt">species</span> of western North America.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hultine, K R; Bush, S E; West, A G; Ehleringer, J R</p> <p>2007-11-01</p> <p>The global water cycle is intimately linked to vegetation structure and function. Nowhere is this more apparent than in the arid west where riparian forests serve as ribbons of productivity in otherwise mostly unproductive landscapes. Dioecy is common among <span class="hlt">tree</span> <span class="hlt">species</span> that make up western North American riparian forests. There are intrinsic physiological differences between male and female dioecious riparian <span class="hlt">trees</span> that may influence population structure (i.e., the ratio of male to female <span class="hlt">trees</span>) and impact ecohydrology at large scales. In this paper, we review the current literature on sex ratio patterns and physiology of dioecious riparian <span class="hlt">tree</span> <span class="hlt">species</span>. Then develop a conceptual framework of the mechanisms that underlie population structure of dominant riparian <span class="hlt">tree</span> <span class="hlt">species</span>. Finally, we identify linkages between population structure and ecohydrological processes such as evapotranspiration and streamflow. A more thorough understanding of the mechanisms that underlie population structure of dominant riparian <span class="hlt">tree</span> <span class="hlt">species</span> will enable us to better predict global change impacts on vegetation and water cycling at multiple scales. PMID:17665219</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/861330','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/861330"><span id="translatedtitle">Ambrosia Beetle (Coleoptera: Scolytidae) <span class="hlt">Species</span>, Flight, and Attack on Living Eastern Cottonwood <span class="hlt">Trees</span>.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Coyle, D R; D.C. Booth: M.S. Wallace</p> <p>2005-12-01</p> <p>ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha <span class="hlt">tree</span> plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 <span class="hlt">species</span> were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic <span class="hlt">species</span>. Five <span class="hlt">species</span> [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four <span class="hlt">tree</span> <span class="hlt">species</span> in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the <span class="hlt">trees</span> sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 <span class="hlt">trees</span> receiving fertilization were attacked more frequently than <span class="hlt">trees</span> receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 <span class="hlt">trees</span> attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=rainforest&pg=4&id=EJ456261','ERIC'); return false;" href="http://eric.ed.gov/?q=rainforest&pg=4&id=EJ456261"><span id="translatedtitle">People, Parks and <span class="hlt">Rainforests</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Singer, Judith Y.</p> <p>1992-01-01</p> <p>The MLE Learning Center, a publicly funded day care center and after-school program in Brooklyn, New York, helps children develop awareness of a global community by using local resources to teach the children about the <span class="hlt">rainforest</span>. (LB)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010004212','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010004212"><span id="translatedtitle">BOREAS TE-4 Branch Bag Data From Boreal <span class="hlt">Tree</span> <span class="hlt">Species</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Berry, Joseph A.; Fu, Wei; Fredeen, Art; Gamon, John</p> <p>2000-01-01</p> <p>The BOREAS TE-4 team collected continuous records of gas exchange under ambient conditions from intact boreal forest <span class="hlt">trees</span> in the BOREAS NSA from 23-Jul-1996 until 14-Aug-1996. These measurements can be used to test models of photosynthesis, stomatal conductance, and leaf respiration, such as SiB2 (Sellers et al., 1996) or the leaf model (Collatz et al., 1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B13B0476R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B13B0476R"><span id="translatedtitle">Wind Disturbance Produced Changes in <span class="hlt">Tree</span> <span class="hlt">Species</span> Assemblage in the Peruvian Amazon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rifai, S. W.; Chambers, J. Q.; Negron Juarez, R. I.; Ramirez, F.; Tello, R.; Alegria Muñoz, W.</p> <p>2010-12-01</p> <p>Wind disturbance has been a frequently overlooked abiotic cause of mass <span class="hlt">tree</span> mortality in the Amazon basin. In the Peruvian Amazon these wind disturbances are produced by meteorological events such as convective systems. Downbursts for example produce short term descendent wind speeds that can be in excess of 30 m s-1. These are capable of producing <span class="hlt">tree</span> blowdowns which have been reported to be as large as 33 km2 in the Amazon basin. We used the chronosequence of Landsat Satellite imagery to find and locate where these blowdowns have occurred in the Loreto region of the Peruvian Amazon. Spectral Mixture Analysis was used to estimate the proportion landcover of green vegetation, non-photosynthetic vegetation (NPV), soil and shade in each pixel. The change in NPV was calculated by subtracting the NPV signal in the Landsat image prior to the blowdown occurrence, from the image following the disturbance. Our prior research has established a linear relationship between <span class="hlt">tree</span> mortality and change in NPV. It is hypothesized that these mass <span class="hlt">tree</span> mortality events result in changes in the <span class="hlt">tree</span> <span class="hlt">species</span> assemblage of affected forests. Here we present preliminary <span class="hlt">tree</span> <span class="hlt">species</span> assemblage data from two sites in the Peruvian Amazon near Iquitos, Peru. The site (ALP) at the Allpahuayo Mishana reserve (3.945 S, 73.455 W) is 30 km south of Iquitos, Peru, and hosts the remnants of a 50 ha blowdown that occurred in either 1992 or 1993. Another site (NAPO) on the Napo river about 60 km north of Iquitos, is the location of an approximately 300 ha blowdown that occurred in 1998. At each site, a 3000 m x 10 m transect encompassing non disturbed and disturbed areas was installed, and <span class="hlt">trees</span> greater than 10 cm diameter at breast height were measured for diameter, height and were identified to the <span class="hlt">species</span>. Stem density of <span class="hlt">trees</span> with diameter at breast height > 10 cm, and <span class="hlt">tree</span> height appear to be similar both inside and outside the blowdown affected areas of the forests at both sites. At the ALP</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=238475','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=238475"><span id="translatedtitle">Impact of Fumigation on Pythium <span class="hlt">Species</span> Associated with Forest <span class="hlt">Tree</span> Nurseries of Oregon and Washington</span></a></p> <p><a target="_blank" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p></p> <p></p> <p>Pythium <span class="hlt">species</span> cause damping off of conifer seedlings in forest <span class="hlt">tree</span> nurseries. Identification of the <span class="hlt">species</span> responsible for the disease has been traditionally based on morphology. However, newer DNA-based identification methods may allow more accurate identification and assessment of soil popul...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26936241','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26936241"><span id="translatedtitle">Selective logging in tropical forests decreases the robustness of liana-<span class="hlt">tree</span> interaction networks to the loss of host <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P</p> <p>2016-03-16</p> <p>Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in <span class="hlt">species</span> composition. Whether such changes modify interactions between <span class="hlt">species</span> and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their <span class="hlt">tree</span> hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher <span class="hlt">species</span> richness, and different <span class="hlt">species</span> compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing <span class="hlt">tree</span> <span class="hlt">species</span>, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host <span class="hlt">tree</span> local <span class="hlt">species</span> loss indicated that logging might decrease the robustness of liana-<span class="hlt">tree</span> interaction networks if heavily infested <span class="hlt">trees</span> (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host <span class="hlt">trees</span> by a greater diversity of liana <span class="hlt">species</span> within logged forests, yet this might not compensate for the loss of preferred <span class="hlt">tree</span> hosts in the long term. As a consequence, <span class="hlt">species</span> interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in <span class="hlt">species</span> richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. PMID:26936241</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/12625013','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/12625013"><span id="translatedtitle">[Feasibility to introduce rare <span class="hlt">tree</span> <span class="hlt">species</span> Pinus sibirica into China].</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Guifeng; Yang, Chuanping; Zhao, Guangyi</p> <p>2002-11-01</p> <p>Pinus sibirica growing mainly in Siberia of Russia is distributed over the Euro-Asia Taiga forest belt. There are many high-quality populations due to a great deal of variations. This kind of <span class="hlt">tree</span> has an advantage of standing up to frigid environment, and can spread out in such places that have cold weather and high altitude. In China, boreal forest is a wide-spreaded type of forest that has the largest area and high volume. For this reason, it is feasible to introduce Pinus sibirica into the region that the condition is suitable. Introducing this kind of <span class="hlt">tree</span> is a strategic project that can improve the structure and quality of our boreal forest. Introducing it can not only meet the demands of improved variety in short time, but also do the experiment of producing edible seeds and build up the developing center of nut, which can be a way of getting rid of poverty of forest region in heavy frigid area where is regarded as infertile area for farming formerly. PMID:12625013</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26364482','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26364482"><span id="translatedtitle">Fuel wood properties of some oak <span class="hlt">tree</span> <span class="hlt">species</span> of Manipur, India.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meetei, Shougrakpam Bijen; Singh, E J; Das, Ashesh Kumar</p> <p>2015-07-01</p> <p>Five indigenous oak <span class="hlt">tree</span> <span class="hlt">species</span>, i.e., Castanopsis indica (Roxb. ex Lindl.) A.DC., Lithocarpus fenestratus (Roxb.) Rehder, Lithocarpus pachyphyllus (Kurz) Rehder, Lithocarpus polystachyus (Wall. ex A.DC.) Rehder and Quercus serrata Murray were estimated for their wood properties such as calorific value, density, moisture content and ash content from a sub-tropical forest of Haraothel hill, Senapati District, Manipur. Wood biomass components were found to have higher calorific value (kJ g(-)) than bark components. The calorific values for <span class="hlt">tree</span> <span class="hlt">species</span> were found highest in L. pachyphyllus (17.99 kJ g(-1)) followed by C. indica (17.98 kJ g1), L. fenestratus (17.96 kJ g"), L. polystachyus (17.80 kJ g(-1)) and Q. serrata (17.49 kJ g(-1)). Calorific values for bole bark, bole wood and branch bark were found significantly different (F > 3.48 at p = 0.05) in five oak <span class="hlt">tree</span> <span class="hlt">species</span>. Percentage of ash on dry weight basis was found to be highest in Q. serrata (4.73%) and lowest in C. indica (2.19%). Ash content of <span class="hlt">tree</span> components gives a singnificant factor in determining fuelwood value index (FVI). Of all the five oak <span class="hlt">tree</span> <span class="hlt">species</span>, Q. serrata exhibited highest value of wood density (0.78 g cm-) and lowest was observed in C. indica (0.63 g cm(-3)). There was significant correlation between wood density (p<0.05), ash content (p<0.01) with calorific value in oak <span class="hlt">tree</span> <span class="hlt">species</span>. Fuelwood value index (FVI) was in the following order: C. indica (1109.70) > L. pachyphyllus (898.41)> L. polystachyus (879.02)> L. fenestratus (824.61)> Q. serrata (792.50). Thus, the present study suggests that C. indica may be considered as a fuelwood oak <span class="hlt">tree</span> <span class="hlt">species</span> in Manipur. PMID:26364482</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4988811','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4988811"><span id="translatedtitle">Early establishment of <span class="hlt">trees</span> at the alpine treeline: idiosyncratic <span class="hlt">species</span> responses to temperature-moisture interactions</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.</p> <p>2016-01-01</p> <p>On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, <span class="hlt">tree</span> <span class="hlt">species</span> ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline <span class="hlt">tree</span> populations and will depend differently on climatic conditions than adult <span class="hlt">trees</span>. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline <span class="hlt">tree</span> <span class="hlt">species</span> were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these <span class="hlt">species</span> to low temperatures under controlled conditions in growth chambers. The early establishment of these <span class="hlt">trees</span> at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly <span class="hlt">species</span>-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each <span class="hlt">species</span>. We show that temperature and water availability are both important contributors to establishment patterns of treeline <span class="hlt">trees</span> and hence to <span class="hlt">species</span>-specific forms and positions of alpine treelines. The observed idiosyncratic <span class="hlt">species</span> responses highlight the need for studies including several <span class="hlt">species</span> and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27402618','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27402618"><span id="translatedtitle">Early establishment of <span class="hlt">trees</span> at the alpine treeline: idiosyncratic <span class="hlt">species</span> responses to temperature-moisture interactions.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y</p> <p>2016-01-01</p> <p>On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, <span class="hlt">tree</span> <span class="hlt">species</span> ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline <span class="hlt">tree</span> populations and will depend differently on climatic conditions than adult <span class="hlt">trees</span>. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline <span class="hlt">tree</span> <span class="hlt">species</span> were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these <span class="hlt">species</span> to low temperatures under controlled conditions in growth chambers. The early establishment of these <span class="hlt">trees</span> at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly <span class="hlt">species</span>-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each <span class="hlt">species</span>. We show that temperature and water availability are both important contributors to establishment patterns of treeline <span class="hlt">trees</span> and hence to <span class="hlt">species</span>-specific forms and positions of alpine treelines. The observed idiosyncratic <span class="hlt">species</span> responses highlight the need for studies including several <span class="hlt">species</span> and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25377453','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25377453"><span id="translatedtitle">Multiple <span class="hlt">species</span> of wild <span class="hlt">tree</span> peonies gave rise to the 'king of flowers', Paeonia suffruticosa Andrews.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Shi-Liang; Zou, Xin-Hui; Zhou, Zhi-Qin; Liu, Jing; Xu, Chao; Yu, Jing; Wang, Qiang; Zhang, Da-Ming; Wang, Xiao-Quan; Ge, Song; Sang, Tao; Pan, Kai-Yu; Hong, De-Yuan</p> <p>2014-12-22</p> <p>The origin of cultivated <span class="hlt">tree</span> peonies, known as the 'king of flowers' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of <span class="hlt">tree</span> peonies and all wild <span class="hlt">species</span> from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild <span class="hlt">species</span> inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast <span class="hlt">trees</span> suggested that there had been gene flow between the wild <span class="hlt">species</span>. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated <span class="hlt">tree</span> peonies originated from homoploid hybridization among five wild <span class="hlt">species</span>. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental <span class="hlt">species</span> are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in <span class="hlt">tree</span> peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication. PMID:25377453</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3436813','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3436813"><span id="translatedtitle">Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary <span class="hlt">species</span> <span class="hlt">trees</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie</p> <p>2012-01-01</p> <p>Motivation: Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and <span class="hlt">species</span> <span class="hlt">trees</span>, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. Results: We present an algorithm to reconcile a binary gene <span class="hlt">tree</span> with a nonbinary <span class="hlt">species</span> <span class="hlt">tree</span> under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving <span class="hlt">tree</span> incongruence and the first to reconcile non-binary <span class="hlt">species</span> <span class="hlt">trees</span> with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and <span class="hlt">species</span> lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum <span class="hlt">species</span> outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Availability: Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. Contact: mstolzer@andrew.cmu.edu PMID:22962460</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4657984','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4657984"><span id="translatedtitle">Discrimination of Deciduous <span class="hlt">Tree</span> <span class="hlt">Species</span> from Time Series of Unmanned Aerial System Imagery</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe</p> <p>2015-01-01</p> <p>Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at <span class="hlt">tree</span> level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous <span class="hlt">tree</span> <span class="hlt">species</span>. The goal of this research is to determine when is the best time window to achieve an optimal <span class="hlt">species</span> discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest <span class="hlt">tree</span> phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within <span class="hlt">tree</span> <span class="hlt">species</span> groups and, at the same time, maximizes the phenologic differences between <span class="hlt">species</span>. Sunlit <span class="hlt">tree</span> crowns (5 deciduous <span class="hlt">species</span> groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26600422','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26600422"><span id="translatedtitle">Discrimination of Deciduous <span class="hlt">Tree</span> <span class="hlt">Species</span> from Time Series of Unmanned Aerial System Imagery.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe</p> <p>2015-01-01</p> <p>Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at <span class="hlt">tree</span> level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous <span class="hlt">tree</span> <span class="hlt">species</span>. The goal of this research is to determine when is the best time window to achieve an optimal <span class="hlt">species</span> discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest <span class="hlt">tree</span> phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within <span class="hlt">tree</span> <span class="hlt">species</span> groups and, at the same time, maximizes the phenologic differences between <span class="hlt">species</span>. Sunlit <span class="hlt">tree</span> crowns (5 deciduous <span class="hlt">species</span> groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4604832','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4604832"><span id="translatedtitle">PoMo: An Allele Frequency-Based Approach for <span class="hlt">Species</span> <span class="hlt">Tree</span> Estimation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>De Maio, Nicola; Schrempf, Dominik; Kosiol, Carolin</p> <p>2015-01-01</p> <p>Incomplete lineage sorting can cause incongruencies of the overall <span class="hlt">species</span>-level phylogenetic <span class="hlt">tree</span> with the phylogenetic <span class="hlt">trees</span> for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in <span class="hlt">species</span> <span class="hlt">tree</span> estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we have recently shown to efficiently estimate mutation rates and fixation biases from within and between-<span class="hlt">species</span> variation data. We extend this model to perform efficient estimation of <span class="hlt">species</span> <span class="hlt">trees</span>. We test the performance of PoMo in several different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele frequency based. We show that PoMo is well suited for genome-wide <span class="hlt">species</span> <span class="hlt">tree</span> estimation and that on such data it is more accurate than previous approaches. PMID:26209413</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21910838','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21910838"><span id="translatedtitle">Fruit availability, frugivore satiation and seed removal in 2 primate-dispersed <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ratiarison, Sandra; Forget, Pierre-Michel</p> <p>2011-09-01</p> <p>During a mast-fruiting event we investigated spatial variability in fruit availability, consumption, and seed removal at two sympatric <span class="hlt">tree</span> <span class="hlt">species</span>, Manilkara bidentata and M. huberi (Sapotaceae) at Nouragues Natural Reserve, French Guiana. We addressed the question of how Manilkara density and fruits at the community level might be major causes of variability in feeding assemblages between <span class="hlt">tree</span> <span class="hlt">species</span>. We thus explored how the frugivore assemblages differed between forest patches with contrasting relative Manilkara density and fruiting context. During the daytime, Alouatta seniculus was more often observed in M. huberi crowns at Petit Plateau (PP) with the greatest density of Manilkara spp. and the lowest fruit diversity and availability, whereas Cebus apella and Saguinus midas were more often observed in M. bidentata crowns at both Grand Plateau (GP), with a lowest density of M. bidentata and overall greater fruit supply, and PP. Overall, nearly 53% and 15% of the M. bidentata seed crop at GP and PP, respectively, and about 47% of the M. huberi seed crop were removed, otherwise either spit out or defecated beneath <span class="hlt">trees</span>, or dropped in fruits. Small-bodied primates concentrated fallen seeds beneath parent <span class="hlt">trees</span> while large-bodied primate <span class="hlt">species</span> removed and dispersed more seeds away from parents. However, among the latter, satiated A. seniculus wasted seeds under conspecific <span class="hlt">trees</span> at PP. Variations in feeding assemblages, seed removal rates and fates possibly reflected interactions with extra-generic fruit <span class="hlt">species</span> at the community level, according to feeding choice, habitat preferences and ranging patterns of primate <span class="hlt">species</span>. PMID:21910838</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.treesearch.fs.fed.us/pubs/4893','USGSPUBS'); return false;" href="http://www.treesearch.fs.fed.us/pubs/4893"><span id="translatedtitle">Supplemental planting of early successional <span class="hlt">tree</span> <span class="hlt">species</span> during bottomland hardwood afforestation</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Twedt, D.J.; Wilson, R.R.</p> <p>2002-01-01</p> <p>Reforestation of former bottom land hardwood forests that have been cleared for agriculture (i.e., afforestation) has historically emphasized planting heavy-seeded oaks (Quercus spp.) and pecans (Carya spp.). These <span class="hlt">species</span> are slow to develop vertical forest structure. However, vertical forest structure is key to colonization of afforested sites by forest birds. Although early-successional <span class="hlt">tree</span> <span class="hlt">species</span> often enhance vertical structure, few of these <span class="hlt">species</span> invade afforested sites that are distant from seed sources. Furthermore, many land mangers are reluctant to establish and maintain stands of fast-growing plantation <span class="hlt">trees</span>. Therefore, on 40 afforested bottomland sites, we supplemented heavy-seeded seedlings with 8 patches of fast-growing <span class="hlt">trees</span>: 4 patches of 12 eastern cottonwood (Populus deltoides) stem cuttings and 4 patches of 12 American sycamore (Platanus occidentalis) seedlings. To enhance survival and growth, <span class="hlt">tree</span> patches were subjected to 4 weed control treatments: (1) physical weed barriers, (2) chemical herbicide, (3) both physical and chemical weed control, or (4) no weed control. Overall, first-year survival of cottonwood and sycamore was 25 percent and 47 percent, respectively. Second-year survival of extant <span class="hlt">trees</span> was 52 percent for cottonwood and 77 percent for sycamore. Physical weed barriers increased survival of cottonwoods to 30 percent versus 18 percent survival with no weed control. Similarly, sycamore survival was increased from 49 percent without weed control to 64 percent with physical weed barriers. Chemical weed control adversely impacted sycamore and reduced survival to 35 percent. <span class="hlt">Tree</span> heights did not differ between <span class="hlt">species</span> or among weed control treatments. Girdling of <span class="hlt">trees</span> by deer often destroyed saplings. Thus, little increase in vertical structure was detected between growing seasons. Application of fertilizer and protection via <span class="hlt">tree</span> shelters did not improve survival or vertical development of sycamore or cottonwood.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1461003','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1461003"><span id="translatedtitle">Effects of colonization processes on genetic diversity: differences between annual plants and <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Austerlitz, F; Mariette, S; Machon, N; Gouyon, P H; Godelle, B</p> <p>2000-01-01</p> <p><span class="hlt">Tree</span> <span class="hlt">species</span> are striking for their high within-population diversity and low among-population differentiation for nuclear genes. In contrast, annual plants show much more differentiation for nuclear genes but much less diversity than <span class="hlt">trees</span>. The usual explanation for this difference is that pollen flow, and therefore gene flow, is much higher for <span class="hlt">trees</span>. This explanation is problematic because it relies on equilibrium hypotheses. Because <span class="hlt">trees</span> have very recently recolonized temperate areas, they have experienced many foundation events, which usually reduce within-population diversity and increase differentiation. Only extremely high levels of gene flow could counterbalance these successive founder effects. We develop a model to study the impact of life cycle of forest <span class="hlt">trees</span>, in particular of the length of their juvenile phase, on genetic diversity and differentiation during the glacial period and the following colonization period. We show that both a reasonably high level of pollen flow and the life-cycle characteristics of <span class="hlt">trees</span> are needed to explain the observed structure of genetic diversity. We also show that gene flow and life cycle both have an impact on maternally inherited cytoplasmic genes, which are characterized both in <span class="hlt">trees</span> and annual <span class="hlt">species</span> by much less diversity and much more differentiation than nuclear genes. PMID:10757772</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26153693','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26153693"><span id="translatedtitle">Operational <span class="hlt">Tree</span> <span class="hlt">Species</span> Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baldeck, Claire A; Asner, Gregory P; Martin, Robin E; Anderson, Christopher B; Knapp, David E; Kellner, James R; Wright, S Joseph</p> <p>2015-01-01</p> <p>Remote identification and mapping of canopy <span class="hlt">tree</span> <span class="hlt">species</span> can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote <span class="hlt">species</span> mapping of non-flowering <span class="hlt">tree</span> crowns in these ecosystems. We set out to identify individuals of three focal canopy <span class="hlt">tree</span> <span class="hlt">species</span> amongst a diverse background of <span class="hlt">tree</span> and liana <span class="hlt">species</span> on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods--binary support vector machine (SVM) and biased SVM--for their performance in identifying pixels of a single focal <span class="hlt">species</span>. From this comparison we determined that biased SVM was more precise and created a multi-<span class="hlt">species</span> classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal <span class="hlt">species</span> and the prediction results were then processed to create a map of focal <span class="hlt">species</span> crown objects. Crown-level cross-validation of the training data indicated that the multi-<span class="hlt">species</span> classification model had pixel-level producer's accuracies of 94-97% for the three focal <span class="hlt">species</span>, and field validation of the predicted crown objects indicated that these had user's accuracies of 94-100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal <span class="hlt">species</span> within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to <span class="hlt">species</span> detection in diverse closed-canopy forests, which can pave the way for remote <span class="hlt">species</span> mapping in a wider variety of ecosystems. PMID:26153693</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4496029','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4496029"><span id="translatedtitle">Operational <span class="hlt">Tree</span> <span class="hlt">Species</span> Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph</p> <p>2015-01-01</p> <p>Remote identification and mapping of canopy <span class="hlt">tree</span> <span class="hlt">species</span> can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote <span class="hlt">species</span> mapping of non-flowering <span class="hlt">tree</span> crowns in these ecosystems. We set out to identify individuals of three focal canopy <span class="hlt">tree</span> <span class="hlt">species</span> amongst a diverse background of <span class="hlt">tree</span> and liana <span class="hlt">species</span> on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal <span class="hlt">species</span>. From this comparison we determined that biased SVM was more precise and created a multi-<span class="hlt">species</span> classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal <span class="hlt">species</span> and the prediction results were then processed to create a map of focal <span class="hlt">species</span> crown objects. Crown-level cross-validation of the training data indicated that the multi-<span class="hlt">species</span> classification model had pixel-level producer’s accuracies of 94–97% for the three focal <span class="hlt">species</span>, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal <span class="hlt">species</span> within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to <span class="hlt">species</span> detection in diverse closed-canopy forests, which can pave the way for remote <span class="hlt">species</span> mapping in a wider variety of ecosystems. PMID:26153693</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70041741','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70041741"><span id="translatedtitle">Quantifying <span class="hlt">tree</span> mortality in a mixed <span class="hlt">species</span> woodland using multitemporal high spatial resolution satellite imagery</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael</p> <p>2013-01-01</p> <p>Widespread <span class="hlt">tree</span> mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray <span class="hlt">tree</span> canopies during and shortly after <span class="hlt">tree</span> damage or mortality has occurred. However, detecting <span class="hlt">trees</span> in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for <span class="hlt">tree</span> mortality detection in a southwestern U.S. mixed <span class="hlt">species</span> woodland using archived satellite images acquired prior to mortality and well after dead <span class="hlt">trees</span> had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-<span class="hlt">tree</span> image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead <span class="hlt">tree</span> classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of <span class="hlt">tree</span> mortality across areas with differences in <span class="hlt">tree</span> <span class="hlt">species</span> composition. We found that 38% of <span class="hlt">tree</span> crown area was lost during the drought period between 2002 and 2006. The majority of <span class="hlt">tree</span> mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the <span class="hlt">tree</span> canopy died or was removed between 2006 and 2011, primarily in areas</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25405587','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25405587"><span id="translatedtitle">Solving the supply of resveratrol tetramers from Papua New Guinean <span class="hlt">rainforest</span> anisoptera <span class="hlt">species</span> that inhibit bacterial type III secretion systems.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davis, Rohan A; Beattie, Karren D; Xu, Min; Yang, Xinzhou; Yin, Sheng; Holla, Harish; Healy, Peter C; Sykes, Melissa; Shelper, Todd; Avery, Vicky M; Elofsson, Mikael; Sundin, Charlotta; Quinn, Ronald J</p> <p>2014-12-26</p> <p>The supply of (-)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to provide material for preclinical investigation. High-throughput screening of a prefractionated natural product library aimed to identify compounds that inhibit the bacterial virulence type III secretion system (T3SS) identified several fractions derived from two Papua New Guinean Anisoptera <span class="hlt">species</span>, showing activity against Yersinia pseudotuberculosis outer proteins E and H (YopE and YopH). Bioassay-directed isolation from the leaves of A. thurifera, and similarly A. polyandra, resulted in three known resveratrol tetramers, (-)-hopeaphenol (1), vatalbinoside A (2), and vaticanol B (3). Compounds 1-3 displayed IC50 values of 8.8, 12.5, and 9.9 μM in a luminescent reporter-gene assay (YopE) and IC50 values of 2.9, 4.5, and 3.3 μM in an enzyme-based YopH assay, respectively, which suggested that they could potentially act against the T3SS in Yersinia. The structures of 1-3 were confirmed through a combination of spectrometric, chemical methods, and single-crystal X-ray structure determinations of the natural product 1 and the permethyl ether analogue of 3. The enzymatic hydrolysis of the β-glycoside 2 to the aglycone 1 was achieved through biotransformation using the endogenous leaf enzymes. This significantly enhanced the yield of the target bioactive natural product from 0.08% to 1.3% and facilitates ADMET studies of (-)-hopeaphenol (1). PMID:25405587</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19880241','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19880241"><span id="translatedtitle">Estimating <span class="hlt">tree</span> bole volume using artificial neural network models for four <span class="hlt">species</span> in Turkey.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V</p> <p>2010-01-01</p> <p><span class="hlt">Tree</span> bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) <span class="hlt">trees</span> were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in <span class="hlt">tree</span> volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, <span class="hlt">tree</span> bole volume estimates were compared to other established <span class="hlt">tree</span> bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the <span class="hlt">tree</span> bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the <span class="hlt">tree</span> bole volume of the four examined <span class="hlt">tree</span> <span class="hlt">species</span> since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. PMID:19880241</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013BGD....10.2415M&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013BGD....10.2415M&link_type=ABSTRACT"><span id="translatedtitle">Origin of the Hawaiian <span class="hlt">rainforest</span> ecosystem and its evolution in long-term primary succession</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller-Dombois, D.; Boehmer, H. J.</p> <p>2013-02-01</p> <p>Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian <span class="hlt">rainforest</span> became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millenia evolved into ca. 1000 endemic <span class="hlt">species</span>. Outstanding among the forest builders were the <span class="hlt">tree</span> ferns (Cibotium spp.) and the 'Ōhi'a lehua <span class="hlt">trees</span> (Metrosideros spp.), which still dominate the Hawaiian <span class="hlt">rainforest</span> ecosystem today. The structure of this forest is simple. The canopy in closed mature <span class="hlt">rainforests</span> is dominated by cohorts of Metrosideros polymorpha and the undergrowth by <span class="hlt">tree</span> fern <span class="hlt">species</span> of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e. islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life-forms is similar as during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris lineraris) becomes established. It inhibits further regeneration of the dominant 'Ōhi'a <span class="hlt">tree</span>, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After that disturbance the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'Ōhi'a <span class="hlt">rainforest</span> redeveloping in the more dissected landscapes of the older islands looses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern. The 'Ōhi'a <span class="hlt">trees</span> still thrive on soils rejuvenated from landslides and from Asian dust on the oldest (5 million year old) island Kaua'i but their</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAnII22..175M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAnII22..175M"><span id="translatedtitle">Identification and Mapping of <span class="hlt">Tree</span> <span class="hlt">Species</span> in Urban Areas Using WORLDVIEW-2 Imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mustafa, Y. T.; Habeeb, H. N.; Stein, A.; Sulaiman, F. Y.</p> <p>2015-10-01</p> <p>Monitoring and mapping of urban <span class="hlt">trees</span> are essential to provide urban forestry authorities with timely and consistent information. Modern techniques increasingly facilitate these tasks, but require the development of semi-automatic <span class="hlt">tree</span> detection and classification methods. In this article, we propose an approach to delineate and map the crown of 15 <span class="hlt">tree</span> <span class="hlt">species</span> in the city of Duhok, Kurdistan Region of Iraq using WorldView-2 (WV-2) imagery. A <span class="hlt">tree</span> crown object is identified first and is subsequently delineated as an image object (IO) using vegetation indices and texture measurements. Next, three classification methods: Maximum Likelihood, Neural Network, and Support Vector Machine were used to classify IOs using selected IO features. The best results are obtained with Support Vector Machine classification that gives the best map of urban <span class="hlt">tree</span> <span class="hlt">species</span> in Duhok. The overall accuracy was between 60.93% to 88.92% and κ-coefficient was between 0.57 to 0.75. We conclude that fifteen <span class="hlt">tree</span> <span class="hlt">species</span> were identified and mapped at a satisfactory accuracy in urban areas of this study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23869490','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23869490"><span id="translatedtitle">Effects of growth form and functional traits on response of woody plants to clearing and fragmentation of subtropical <span class="hlt">rainforest</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H</p> <p>2013-12-01</p> <p>The conservation implications of large-scale <span class="hlt">rainforest</span> clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant <span class="hlt">species</span> to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by <span class="hlt">species</span> functional traits, particularly those related to dispersal. We used <span class="hlt">species</span> occurrence data for woody plants in 46 <span class="hlt">rainforest</span> patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical <span class="hlt">rainforest</span>. We compiled <span class="hlt">species</span> trait values for leaf area, seed dry mass, wood density, and maximum height and calculated <span class="hlt">species</span> niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger <span class="hlt">rainforest</span> patches had higher <span class="hlt">species</span> richness. <span class="hlt">Species</span> in smaller patches were taxonomically less related than <span class="hlt">species</span> in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing <span class="hlt">species</span>, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower <span class="hlt">species</span> richness. The response of woody plants to clearing and fragmentation of subtropical <span class="hlt">rainforest</span> differed between climbers and slow-growing mature-phase forest <span class="hlt">trees</span> but not between climbers and pioneer <span class="hlt">trees</span>. Quantifying taxonomic structure and functional diversity provides an improved basis for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AcO....43..126S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AcO....43..126S"><span id="translatedtitle">Are <span class="hlt">tree</span> ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.</p> <p>2012-08-01</p> <p>In temperate and tropical <span class="hlt">rainforests</span>, ontogenetic structure and allometry during <span class="hlt">tree</span> ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of <span class="hlt">tree</span> growth would be enough to produce an ontogenetic structure and allometric growth similar to <span class="hlt">rainforest</span> canopy <span class="hlt">trees</span>. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy <span class="hlt">tree</span> of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of <span class="hlt">rainforest</span> <span class="hlt">tree</span> <span class="hlt">species</span>, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae <span class="hlt">tree</span> <span class="hlt">species</span> in tropical <span class="hlt">rainforests</span>, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from <span class="hlt">rainforest</span> <span class="hlt">trees</span>. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low <span class="hlt">tree</span> density and more frequent xylem embolism as the main drivers of <span class="hlt">tree</span> allometric shape in DTW. This indicates that <span class="hlt">tree</span> ontogenetic structure and allometric relationships depend on vegetation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693432','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693432"><span id="translatedtitle">Mechanisms and tempo of evolution in the African Guineo-Congolian <span class="hlt">rainforest</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Plana, Vanessa</p> <p>2004-01-01</p> <p>This paper reviews how and when African <span class="hlt">rainforest</span> diversity arose, presenting evidence from both plant and animal studies. Preliminary investigations show that these African forests are an assemblage of <span class="hlt">species</span> of varying age. Phylogenetic evidence, from both African <span class="hlt">rainforest</span> angiosperms and vertebrates, suggest a Tertiary origin for the major lineages in some of these groups. In groups where savannah <span class="hlt">species</span> are well represented and <span class="hlt">rainforest</span> <span class="hlt">species</span> are a minority, the latter appear to be relics of a Mid-Tertiary <span class="hlt">rainforest</span>. By contrast, <span class="hlt">species</span> that are primarily adapted to <span class="hlt">rainforest</span> have arisen in the past 10 Myr with the main morphological innovations dating from the Late Miocene, and Quaternary speciation dominating in large, morphologically homogeneous groups. The small number of <span class="hlt">species</span>-level phylogenies for African <span class="hlt">rainforest</span> plants hinders a more incisive and detailed study into the historical assembly of these continental forests. PMID:15519974</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1099325.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1099325.pdf"><span id="translatedtitle"><span class="hlt">Trees</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Al-Khaja, Nawal</p> <p>2007-01-01</p> <p>This is a thematic lesson plan for young learners about palm <span class="hlt">trees</span> and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a <span class="hlt">tree</span>; the modal auxiliary, can; dialogues and a role play activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9592I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9592I"><span id="translatedtitle">The response of European <span class="hlt">tree</span> <span class="hlt">species</span> to drought: a meta-analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irschick, C.; Mayr, S.; Wohlfahrt, G.</p> <p>2012-04-01</p> <p>Here we provide first results of a meta-analysis of the response of European <span class="hlt">tree</span> <span class="hlt">species</span> to drought. A literature search was conducted in order to collect available studies of the response of the gas exchange of European <span class="hlt">tree</span> <span class="hlt">species</span> to either natural or imposed water shortage. The resulting publications were screened and parameters at organ (e.g. leaf or shoot), individual (i.e. <span class="hlt">tree</span>) and ecosystem scale were transferred to a data base. Here we present preliminary results from queries of the data base aiming at identifying differences in the drought response between <span class="hlt">species</span> that may have implications for forest productivity and composition under likely future warmer and drier conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4840356','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4840356"><span id="translatedtitle">Warming effects on photosynthesis of subtropical <span class="hlt">tree</span> <span class="hlt">species</span>: a translocation experiment along an altitudinal gradient</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yiyong; Liu, Juxiu; Zhou, Guoyi; Huang, Wenjuan; Duan, Honglang</p> <p>2016-01-01</p> <p>Ongoing climate warming induced by human activities may have great impacts on <span class="hlt">trees</span>, yet it remains unresolved how subtropical <span class="hlt">tree</span> <span class="hlt">species</span> respond to rising temperature in the field. Here, we used downward translocation to investigate the effects of climate warming on leaf photosynthesis of six common <span class="hlt">tree</span> <span class="hlt">species</span> in subtropical China. During the experimental period between 2012 and 2014, the mean average photosynthetic rates (Asat) under saturating light for Schima superba, Machilus breviflora, Pinus massoniana and Ardisia lindleyana in the warm site were7%, 19%, 20% and 29% higher than those in the control site. In contrast, seasonal Asat for Castanopsis hystrix in the warm site were lower compared to the control site. Changes in Asat in response to translocation were mainly associated with those in leaf stomatal conductance (gs) and photosynthetic capacity (RuBP carboxylation, RuBP regeneration capacity). Our results imply that climate warming could have potential impacts on <span class="hlt">species</span> composition and community structure in subtropical forests. PMID:27102064</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021425','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021425"><span id="translatedtitle">An empirical evaluation of two-stage <span class="hlt">species</span> <span class="hlt">tree</span> inference strategies using a multilocus dataset from North American pines</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Background As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, <span class="hlt">species</span> <span class="hlt">trees</span> are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. Results Here, using North American pines, we empirically evaluate the behavior of 24 strategies for <span class="hlt">species</span> <span class="hlt">tree</span> inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup <span class="hlt">species</span> from subsection Strobus and three outgroup <span class="hlt">species</span> from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each “strategy” for inferring <span class="hlt">species</span> <span class="hlt">trees</span> consists of three features: a <span class="hlt">species</span> <span class="hlt">tree</span> construction method, a gene <span class="hlt">tree</span> inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify <span class="hlt">tree</span> characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce <span class="hlt">trees</span> with similar features. We find that strategies that construct <span class="hlt">species</span> <span class="hlt">trees</span> using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a <span class="hlt">species</span> to infer gene <span class="hlt">trees</span> tend to produce estimates of <span class="hlt">species</span> <span class="hlt">trees</span> that contain clades present in <span class="hlt">trees</span> estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct <span class="hlt">species</span> <span class="hlt">trees</span> tend to produce <span class="hlt">species</span> <span class="hlt">tree</span> estimates that contain clades that are not present in <span class="hlt">trees</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27348264','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27348264"><span id="translatedtitle">The role of selected <span class="hlt">tree</span> <span class="hlt">species</span> in industrial sewage sludge/flotation tailing management.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mleczek, Mirosław; Rutkowski, Paweł; Niedzielski, Przemysław; Goliński, Piotr; Gąsecka, Monika; Kozubik, Tomisław; Dąbrowski, Jędrzej; Budzyńska, Sylwia; Pakuła, Jarosław</p> <p>2016-11-01</p> <p>The aim of the study was to estimate the ability of ten <span class="hlt">tree</span> and bush <span class="hlt">species</span> to tolerate and accumulate Cd, Cu, Pb, Zn, and As <span class="hlt">species</span> [As(III), As(V), and total organic arsenic] in industrial sewage sludge extremely contaminated with arsenic (almost 27.5 g kg(-1)) in a pot experiment. The premise being that it will then be possible to select the most promising <span class="hlt">tree</span>/bush <span class="hlt">species</span>, able to grow in the vicinity of dams where sewage sludge/flotation tailings are used as landfill. Six of the ten tested <span class="hlt">tree</span> <span class="hlt">species</span> were able to grow on the sludge. The highest content of total As was observed in Betula pendula roots (30.0 ± 1.3 mg kg(-1) DW), where the dominant As <span class="hlt">species</span> was the toxic As(V). The highest biomass of Quercus Q1 robur (77.3 § 2.6 g) and Acer platanoides (76.0 § 4.9 g) was observed. A proper planting of selected <span class="hlt">tree</span> <span class="hlt">species</span> that are able to thrive on sewage sludge/flotation tailings could be an interesting and promising way to protect dams. By utilizing differences in their root systems and water needs, we will be able to reduce the risk of fatal environmental disasters. PMID:27348264</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24620581','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24620581"><span id="translatedtitle">Diversity and utilization of <span class="hlt">tree</span> <span class="hlt">species</span> in Meitei homegardens of Barak Valley, Assam.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Devi, N Linthoingambi; Das, Ashesh Kumar</p> <p>2013-03-01</p> <p>An inventory of <span class="hlt">tree</span> diversity in traditional homegardens of Meitei community was conducted in a Bontarapur village in Cachar district of Barak Valley, Assam. Meitei homegarden locally called Ingkhol exhibits a wide diversity in size, shape, location and composition. Seventy one <span class="hlt">tree</span> <span class="hlt">species</span> were enumerated from 50 homegardens belonging to 60 genus and 35 families. Among the families encountered, Rutaceae was the dominant family (4 genus and 7 <span class="hlt">species</span>) followed by Meliaceae (5 genus and 5 <span class="hlt">species</span>), Arecaceae (4 genus and 4 <span class="hlt">species</span>) and Moraceae (3 genus and 5 <span class="hlt">species</span>). Total 7946 <span class="hlt">tree</span> individuals were recorded, with the density of 831 No ha(-1) of and total basal area of 9.54 m2 ha(-1). Areco catechu was the dominant <span class="hlt">species</span> with the maximum number of individuals. Other dominant <span class="hlt">trees</span> include Mangifera indica, Artocarpus heterophyllus, Citrus grandis, Parkia timoriana, Syzygium cumini and Psidium guajava. Being a cash crop, the intensification of betel nut has been preferred in many homegardens. Homegardens form an important component of land use of Meitei community which fulfills the socio-cultural and economic needs of the family and helps in conserving plant diversity through utilization. PMID:24620581</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25058660','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25058660"><span id="translatedtitle">Negative density dependence regulates two <span class="hlt">tree</span> <span class="hlt">species</span> at later life stage in a temperate forest.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil</p> <p>2014-01-01</p> <p>Numerous studies have demonstrated that <span class="hlt">tree</span> survival is influenced by negative density dependence (NDD) and differences among <span class="hlt">species</span> in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects <span class="hlt">tree</span> <span class="hlt">species</span> with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for <span class="hlt">trees</span> with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) <span class="hlt">species</span>. We found NDD existed for both <span class="hlt">species</span> at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant <span class="hlt">tree</span> <span class="hlt">species</span> at later life stages and it is important to consider variation in <span class="hlt">species</span>' shade tolerance in NDD study. PMID:25058660</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70028562','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70028562"><span id="translatedtitle">Effects of sample survey design on the accuracy of classification <span class="hlt">tree</span> models in <span class="hlt">species</span> distribution models</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Edwards, T.C., Jr.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, G.G.</p> <p>2006-01-01</p> <p>We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification <span class="hlt">tree</span> models for predicting the presence of four lichen <span class="hlt">species</span> in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen <span class="hlt">species</span> irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all <span class="hlt">species</span> and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE <span class="hlt">tree</span> models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE <span class="hlt">tree</span> models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen <span class="hlt">species</span>, with 11 of the 12 possible <span class="hlt">species</span> and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification <span class="hlt">tree</span> structures also differed considerably both among and within the modelled <span class="hlt">species</span>, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE <span class="hlt">tree</span> models ranged from only 20% to 38%, indicating the classification <span class="hlt">trees</span> fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26094447','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26094447"><span id="translatedtitle">[Biomass allometric equations of nine common <span class="hlt">tree</span> <span class="hlt">species</span> in an evergreen broadleaved forest of subtropical China].</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian</p> <p>2015-02-01</p> <p>Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the <span class="hlt">species</span>-specific and generalized BAEs using biomass measurement for 9 common broadleaved <span class="hlt">trees</span> (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in <span class="hlt">species</span>-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total <span class="hlt">tree</span> than a combined variable (D2 H) of D and H (<span class="hlt">tree</span> height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 <span class="hlt">species</span> decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 <span class="hlt">tree</span> <span class="hlt">species</span> decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by <span class="hlt">tree</span> <span class="hlt">species</span> and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in <span class="hlt">tree</span> <span class="hlt">species</span> and model types. PMID:26094447</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25371435','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25371435"><span id="translatedtitle">Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of <span class="hlt">species</span> <span class="hlt">tree</span>-aware gene <span class="hlt">trees</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Groussin, Mathieu; Hobbs, Joanne K; Szöllősi, Gergely J; Gribaldo, Simonetta; Arcus, Vickery L; Gouy, Manolo</p> <p>2015-01-01</p> <p>The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on <span class="hlt">species</span> history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the <span class="hlt">tree</span> topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the <span class="hlt">species</span> phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using <span class="hlt">species</span> <span class="hlt">tree</span>-aware gene <span class="hlt">trees</span> on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify. PMID:25371435</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.springerlink.com/content/g4295k8x56wj20g0/','USGSPUBS'); return false;" href="http://www.springerlink.com/content/g4295k8x56wj20g0/"><span id="translatedtitle">Complementary models of <span class="hlt">tree</span> <span class="hlt">species</span>-soil relationships in old-growth temperate forests</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cross, Alison; Perakis, Steven S.</p> <p>2011-01-01</p> <p>Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and <span class="hlt">species</span> specific studies of <span class="hlt">tree</span> <span class="hlt">species</span> soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common <span class="hlt">tree</span> <span class="hlt">species</span> across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess <span class="hlt">tree</span> <span class="hlt">species</span> soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative <span class="hlt">species</span> based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. <span class="hlt">Tree</span> <span class="hlt">species</span> soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by <span class="hlt">tree</span> <span class="hlt">species</span> across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among <span class="hlt">species</span> in both forest floor and mineral soil, and most of ten followed adivergence model,where by <span class="hlt">species</span> differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent <span class="hlt">species</span> differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent <span class="hlt">species</span> differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26310383','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26310383"><span id="translatedtitle">Slow recovery of tropical old-field <span class="hlt">rainforest</span> regrowth and the value and limitations of active restoration.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shoo, Luke P; Freebody, Kylie; Kanowski, John; Catterall, Carla P</p> <p>2016-02-01</p> <p>There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self-organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native <span class="hlt">tree</span> <span class="hlt">species</span> at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1-59 years, some structural attributes reached reference <span class="hlt">rainforest</span> levels within 40 years, whereas wood volume and most tested components of native plant <span class="hlt">species</span> richness (classified by <span class="hlt">species</span>' origins, family, and ecological functions) reached less than 50% of reference <span class="hlt">rainforest</span> values. Development of native <span class="hlt">tree</span> and shrub richness was particularly slow among <span class="hlt">species</span> that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many <span class="hlt">species</span> with animal-dispersed seeds were from near-basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1-25 years in which wood volume developed more rapidly; native woody plant <span class="hlt">species</span> richness reached values similar to reference <span class="hlt">rainforest</span> and was better represented across all dispersal modes; and <span class="hlt">species</span> from near-basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in <span class="hlt">species</span> richness of vines and epiphytes and in overall resemblance to forest in <span class="hlt">species</span> composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old-growth forest is crucially important for sustaining tropical biodiversity. PMID:26310383</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4407066','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4407066"><span id="translatedtitle">How <span class="hlt">tree</span> <span class="hlt">species</span> fill geographic and ecological space in eastern North America</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ricklefs, Robert E.</p> <p>2015-01-01</p> <p>Background and Aims Ecologists broadly accept that the number of <span class="hlt">species</span> present within a region balances regional processes of immigration and speciation against competitive and other interactions between populations that limit distribution and constrain diversity. Although ecological theory has, for a long time, addressed the premise that ecological space can be filled to ‘capacity’ with <span class="hlt">species</span>, only with the availability of time-calibrated phylogenies has it been possible to test the hypothesis that diversification slows as the number of <span class="hlt">species</span> in a region increases. Focusing on the deciduous <span class="hlt">trees</span> of eastern North America, this study tested predictions from competition theory concerning the distribution and abundance of <span class="hlt">species</span>. Methods Local assemblages of <span class="hlt">trees</span> tabulated in a previous study published in 1950 were analysed. Assemblages were ordinated with respect to <span class="hlt">species</span> composition by non-metric multidimensional scaling (NMS). Distributions of <span class="hlt">trees</span> were analysed by taxonomically nested analysis of variance, discriminant analysis based on NMS scores, and canonical correlation analysis of NMS scores and Bioclim climate variables. Key Results Most of the variance in <span class="hlt">species</span> abundance and distribution was concentrated among closely related (i.e. congeneric) <span class="hlt">species</span>, indicating evolutionary lability. <span class="hlt">Species</span> distribution and abundance were unrelated to the number of close relatives, suggesting that competitive effects are diffuse. Distances between pairs of congeneric <span class="hlt">species</span> in NMS space did not differ significantly from distances between more distantly related <span class="hlt">species</span>, in contrast to the predictions of both competitive habitat partitioning and ecological sorting of <span class="hlt">species</span>. Conclusions Eastern deciduous forests of North America do not appear to be saturated with <span class="hlt">species</span>. The distributions and abundances of individual <span class="hlt">species</span> provide little evidence of being shaped by competition from related (i.e. ecologically similar) <span class="hlt">species</span> and, by inference, that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014EnMan..53..783S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014EnMan..53..783S&link_type=ABSTRACT"><span id="translatedtitle">The Right <span class="hlt">Tree</span> for the Job? Perceptions of <span class="hlt">Species</span> Suitability for the Provision of Ecosystem Services</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smaill, Simeon J.; Bayne, Karen M.; Coker, Graham W. R.; Paul, Thomas S. H.; Clinton, Peter W.</p> <p>2014-04-01</p> <p>Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing <span class="hlt">species</span> other than Pinus radiata D. Don (the dominant plantation <span class="hlt">species</span>) in the belief that alternative <span class="hlt">species</span> are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which <span class="hlt">species</span> were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 <span class="hlt">tree</span> attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate <span class="hlt">tree</span> <span class="hlt">species</span> possessed those attributes. These data were combined to identify the <span class="hlt">species</span> perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate <span class="hlt">species</span>. Stakeholder perceptions substantially influence <span class="hlt">tree</span> <span class="hlt">species</span> selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25292455','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25292455"><span id="translatedtitle">Stem CO2 efflux in six co-occurring <span class="hlt">tree</span> <span class="hlt">species</span>: underlying factors and ecological implications.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodríguez-Calcerrada, Jesús; López, Rosana; Salomón, Roberto; Gordaliza, Guillermo G; Valbuena-Carabaña, María; Oleksyn, Jacek; Gil, Luis</p> <p>2015-06-01</p> <p>Stem respiration plays a role in <span class="hlt">species</span> coexistence and forest dynamics. Here we examined the intra- and inter-specific variability of stem CO2 efflux (E) in dominant and suppressed <span class="hlt">trees</span> of six deciduous <span class="hlt">species</span> in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within <span class="hlt">species</span>, dominants had higher E per unit stem surface area (Es ) mainly because sapwood depth was higher than in suppressed <span class="hlt">trees</span>. Across <span class="hlt">species</span>, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non-structural carbohydrates (NSC). Across <span class="hlt">species</span>, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought-tolerant <span class="hlt">trees</span> is related to higher NSC concentration and Es . We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the <span class="hlt">species</span>, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within <span class="hlt">species</span>; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among <span class="hlt">species</span>. PMID:25292455</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21362638','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21362638"><span id="translatedtitle">Detecting phylogenetic breakpoints and discordance from genome-wide alignments for <span class="hlt">species</span> <span class="hlt">tree</span> reconstruction.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ané, Cécile</p> <p>2011-01-01</p> <p>With the easy acquisition of sequence data, it is now possible to obtain and align whole genomes across multiple related <span class="hlt">species</span> or populations. In this work, I assess the performance of a statistical method to reconstruct the whole distribution of phylogenetic <span class="hlt">trees</span> along the genome, estimate the proportion of the genome for which a given clade is true, and infer a concordance <span class="hlt">tree</span> that summarizes the dominant vertical inheritance pattern. There are two main issues when dealing with whole-genome alignments, as opposed to multiple genes: the size of the data and the detection of recombination breakpoints. These breakpoints partition the genomic alignment into phylogenetically homogeneous loci, where sites within a given locus all share the same phylogenetic <span class="hlt">tree</span> topology. To delimitate these loci, I describe here a method based on the minimum description length (MDL) principle, implemented with dynamic programming for computational efficiency. Simulations show that combining MDL partitioning with Bayesian concordance analysis provides an efficient and robust way to estimate both the vertical inheritance signal and the horizontal phylogenetic signal. The method performed well both in the presence of incomplete lineage sorting and in the presence of horizontal gene transfer. A high level of systematic bias was found here, highlighting the need for good individual <span class="hlt">tree</span> building methods, which form the basis for more elaborate gene <span class="hlt">tree/species</span> <span class="hlt">tree</span> reconciliation methods. PMID:21362638</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/15519975','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/15519975"><span id="translatedtitle">South American palaeobotany and the origins of neotropical <span class="hlt">rainforests</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burnham, Robyn J; Johnson, Kirk R</p> <p>2004-10-29</p> <p>Extant neotropical <span class="hlt">rainforest</span> biomes are characterized by a high diversity and abundance of angiosperm <span class="hlt">trees</span> and vines, high proportions of entire-margined leaves, high proportions of large leaves (larger than 4500 mm2), high abundance of drip tips and a suite of characteristic dominant families: Sapotaceae, Lauraceae, Leguminosae (Fabaceae), Melastomataceae and Palmae (Arecaceae). Our aim is to define parameters of extant <span class="hlt">rainforests</span> that will allow their recognition in the fossil record of South America and to evaluate all known South American plant fossil assemblages for first evidence and continued presence of those parameters. We ask when did these critical <span class="hlt">rainforest</span> characters arise? When did vegetative parameters reach the level of abundance that we see in neotropical forests? Also, when do specific lineages become common in neotropical forests? Our review indicates that evidence of neotropical <span class="hlt">rainforest</span> is exceedingly rare and equivocal before the Palaeocene. Even in the Palaeocene, the only evidence for tropical <span class="hlt">rainforest</span> in South America is the appearance of moderately high pollen diversity. By contrast, North American sites provide evidence that <span class="hlt">rainforest</span> leaf physiognomy was established early in the Palaeocene. By the Eocene in South America, several lines of evidence suggest that neotropical <span class="hlt">rainforests</span> were diverse, physiognomically recognizable as <span class="hlt">rainforest</span> and taxonomically allied to modern neotropical <span class="hlt">rainforests</span>. A mismatch of evidence regarding the age of origin between sites of palaeobotanical high diversity and sites of predicted tropical climates should be reconciled with intensified collecting efforts in South America. We identify several lines of promising research that will help to coalesce previously disparate approaches to the origin, longevity and maintenance of high diversity floras of South America. PMID:15519975</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693437','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1693437"><span id="translatedtitle">South American palaeobotany and the origins of neotropical <span class="hlt">rainforests</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Burnham, Robyn J; Johnson, Kirk R</p> <p>2004-01-01</p> <p>Extant neotropical <span class="hlt">rainforest</span> biomes are characterized by a high diversity and abundance of angiosperm <span class="hlt">trees</span> and vines, high proportions of entire-margined leaves, high proportions of large leaves (larger than 4500 mm2), high abundance of drip tips and a suite of characteristic dominant families: Sapotaceae, Lauraceae, Leguminosae (Fabaceae), Melastomataceae and Palmae (Arecaceae). Our aim is to define parameters of extant <span class="hlt">rainforests</span> that will allow their recognition in the fossil record of South America and to evaluate all known South American plant fossil assemblages for first evidence and continued presence of those parameters. We ask when did these critical <span class="hlt">rainforest</span> characters arise? When did vegetative parameters reach the level of abundance that we see in neotropical forests? Also, when do specific lineages become common in neotropical forests? Our review indicates that evidence of neotropical <span class="hlt">rainforest</span> is exceedingly rare and equivocal before the Palaeocene. Even in the Palaeocene, the only evidence for tropical <span class="hlt">rainforest</span> in South America is the appearance of moderately high pollen diversity. By contrast, North American sites provide evidence that <span class="hlt">rainforest</span> leaf physiognomy was established early in the Palaeocene. By the Eocene in South America, several lines of evidence suggest that neotropical <span class="hlt">rainforests</span> were diverse, physiognomically recognizable as <span class="hlt">rainforest</span> and taxonomically allied to modern neotropical <span class="hlt">rainforests</span>. A mismatch of evidence regarding the age of origin between sites of palaeobotanical high diversity and sites of predicted tropical climates should be reconciled with intensified collecting efforts in South America. We identify several lines of promising research that will help to coalesce previously disparate approaches to the origin, longevity and maintenance of high diversity floras of South America. PMID:15519975</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4538783','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4538783"><span id="translatedtitle"><span class="hlt">Tree</span> cover at fine and coarse spatial grains interacts with shade tolerance to shape plant <span class="hlt">species</span> distributions across the Alps</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain; Aeschimann, David; Dullinger, Stefan; Gégout, Jean-Claude; Guisan, Antoine; Pauli, Harald; Renaud, Julien; Theurillat, Jean-Paul; Thuiller, Wilfried; Van Es, Jérémie; Vittoz, Pascal; Willner, Wolfgang; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Svenning, Jens-Christian</p> <p>2015-01-01</p> <p>The role of competition for light among plants has long been recognised at local scales, but its importance for plant <span class="hlt">species</span> distributions at larger spatial scales has generally been ignored. <span class="hlt">Tree</span> cover modifies the local abiotic conditions below the canopy, notably by reducing light availability, and thus, also the performance of <span class="hlt">species</span> that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains, by affecting colonisation probabilities and local extinction risks of herbs and shrubs. To assess the effect of <span class="hlt">tree</span> cover at both the plot- and landscape-grain sizes (approximately 10-m and 1-km), we fit Generalised Linear Models (GLMs) for the plot-level distributions of 960 <span class="hlt">species</span> of herbs and shrubs using 6,935 vegetation plots across the European Alps. We ran four models with different combinations of variables (climate, soil and <span class="hlt">tree</span> cover) at both spatial grains for each <span class="hlt">species</span>. We used partial regressions to evaluate the independent effects of plot- and landscape-grain <span class="hlt">tree</span> cover on plot-level plant communities. Finally, the effects on <span class="hlt">species</span>-specific elevational range limits were assessed by simulating a removal experiment comparing the <span class="hlt">species</span> distributions under high and low <span class="hlt">tree</span> cover. Accounting for <span class="hlt">tree</span> cover improved the model performance, with the probability of the presence of shade-tolerant <span class="hlt">species</span> increasing with increasing <span class="hlt">tree</span> cover, whereas shade-intolerant <span class="hlt">species</span> showed the opposite pattern. The <span class="hlt">tree</span> cover effect occurred consistently at both the plot and landscape spatial grains, albeit most strongly at the former. Importantly, <span class="hlt">tree</span> cover at the two grain sizes had partially independent effects on plot-level plant communities. With high <span class="hlt">tree</span> cover, shade-intolerant <span class="hlt">species</span> exhibited narrower elevational ranges than with low <span class="hlt">tree</span> cover whereas shade-tolerant <span class="hlt">species</span> showed wider elevational ranges at both limits. These findings suggest that forecasts of climate-related range shifts for herb</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23376521','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23376521"><span id="translatedtitle">Forest floor leachate fluxes under six different <span class="hlt">tree</span> <span class="hlt">species</span> on a metal contaminated site.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris</p> <p>2013-03-01</p> <p><span class="hlt">Trees</span> play an important role in the biogeochemical cycling of metals, although the influence of different <span class="hlt">tree</span> <span class="hlt">species</span> on the mobilization of metals is not yet clear. This study examined effects of six <span class="hlt">tree</span> <span class="hlt">species</span> on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The <span class="hlt">tree</span> <span class="hlt">species</span> included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other <span class="hlt">species</span>' leachates, yet the relative differences between the <span class="hlt">species</span> were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No <span class="hlt">tree</span> <span class="hlt">species</span> effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those <span class="hlt">species</span> might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion. PMID:23376521</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27220216','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27220216"><span id="translatedtitle">Interspecific variation in growth responses to climate and competition of five eastern <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rollinson, Christine R; Kaye, Margot W; Canham, Charles D</p> <p>2016-04-01</p> <p>Climate and competition are often presented from two opposing views of the dominant driver of individual <span class="hlt">tree</span> growth and <span class="hlt">species</span> distribution in temperate forests, such as those in the eastern United States. Previous studies have provided abundant evidence indicating that both factors influence <span class="hlt">tree</span> growth, and we argue that these effects are not independent of one another and rather that interactions between climate, competition, and size best describe <span class="hlt">tree</span> growth. To illustrate this point, we describe the growth responses of five common eastern <span class="hlt">tree</span> <span class="hlt">species</span> to interacting effects of temperature, precipitation, competition, and individual size using maximum likelihood estimation. Models that explicitly include interactions among these four factors explained over half of the variance in annual growth for four out of five <span class="hlt">species</span> using annual climate. Expanding temperature and precipitation analyses to include seasonal interactions resulted in slightly improved models with a mean R2 of 0.61 (SD 0.10). Growth responses to individual factors as well their interactions varied greatly among <span class="hlt">species</span>. For example, growth sensitivity to temperature for Quercus rubra increased with maximum annual precipitation, but other <span class="hlt">species</span> showed no change in sensitivity or slightly reduced annual growth. Our results also indicate that three-way interactions among individual stem size, competition, and temperature may determine which of the five co-occurring <span class="hlt">species</span> in our study could have the highest growth rate in a given year. Continued consideration and quantification of interactions among climate, competition, and individual-based characteristics are likely to increase understanding of key biological processes such as <span class="hlt">tree</span> growth. Greater parameterization of interactions between traditionally segregated factors such as climate and competition may also help build a framework to reconcile drivers of individual-based processes such as growth with larger-scale patterns of <span class="hlt">species</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43C0563C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43C0563C"><span id="translatedtitle">A Section-based Method For <span class="hlt">Tree</span> <span class="hlt">Species</span> Classification Using Airborne LiDAR Discrete Points In Urban Areas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chunjing, Y. C.; Hui, T.; Zhongjie, R.; Guikai, B.</p> <p>2015-12-01</p> <p>As a new approach to forest inventory utilizing, LiDAR remote sensing has become an important research issue in the past. Lidar researches initially concentrate on the investigation for mapping forests at the <span class="hlt">tree</span> level and identifying important structural parameters, such as <span class="hlt">tree</span> height, crown size, crown base height, individual <span class="hlt">tree</span> <span class="hlt">species</span>, and stem volume etc. But for the virtual city visualization and mapping, the traditional methods of <span class="hlt">tree</span> classification can't satisfy the more complex conditions. Recently, the advanced LiDAR technology has generated new full waveform scanners that provide a higher point density and additional information about the reflecting characteristics of <span class="hlt">trees</span>. Subsequently, it was demonstrated that it is feasible to detect individual overstorey <span class="hlt">trees</span> in forests and classify <span class="hlt">species</span>. But the important issues like the calibration and the decomposition of full waveform data with a series of Gaussian functions usually take a lot of works. What's more, the detection and classification of vegetation results relay much on the prior outcomes. From all above, the section-based method for <span class="hlt">tree</span> <span class="hlt">species</span> classification using small footprint and high sampling density lidar data is proposed in this paper, which can overcome the <span class="hlt">tree</span> <span class="hlt">species</span> classification issues in urban areas. More specific objectives are to: (1)use local maximum height decision and four direction sections certification methods to get the precise locations of the <span class="hlt">trees</span>;(2) develop new lidar-derived features processing techniques for characterizing the section structure of individual <span class="hlt">tree</span> crowns;(3) investigate several techniques for filtering and analyzing vertical profiles of individual <span class="hlt">trees</span> to classify the <span class="hlt">trees</span>, and using the expert decision skills based on percentile analysis;(4) assess the accuracy of estimating <span class="hlt">tree</span> <span class="hlt">species</span> for each <span class="hlt">tree</span>, and (5) investigate which type of lidar data, point frequency or intensity, provides the most accurate estimate of <span class="hlt">tree</span> <span class="hlt">species</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26828175','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26828175"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">Species</span> Suitability to Bioswales and Impact on the Urban Water Budget.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scharenbroch, Bryant C; Morgenroth, Justin; Maule, Brian</p> <p>2016-01-01</p> <p>Water movement between soil and the atmosphere is restricted by hardscapes in the urban environment. Some green infrastructure is intended to increase infiltration and storage of water, thus decreasing runoff and discharge of urban stormwater. Bioswales are a critical component of a water-sensitive urban design (or a low-impact urban design), and incorporation of <span class="hlt">trees</span> into these green infrastructural components is believed to be a novel way to return stored water to the atmosphere via transpiration. This research was conducted in The Morton Arboretum's main parking lot, which is one of the first and largest green infrastructure installations in the midwestern United States. The parking lot is constructed of permeable pavers and <span class="hlt">tree</span> bioswales. <span class="hlt">Trees</span> in bioswales were evaluated for growth and condition and for their effects on water cycling via transpiration. Our data indicate that <span class="hlt">trees</span> in bioswales accounted for 46 to 72% of total water outputs via transpiration, thereby reducing runoff and discharge from the parking lot. By evaluating the stomatal conductance, diameter growth, and condition of a variety of <span class="hlt">tree</span> <span class="hlt">species</span> in these bioswales, we found that not all <span class="hlt">species</span> are equally suited for bioswales and that not all are equivalent in their transpiration and growth rates, thereby contributing differentially to the functional capacity of bioswales. We conclude that <span class="hlt">species</span> with high stomatal conductance and large mature form are likely to contribute best to bioswale function. PMID:26828175</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013EnMan..51..524M&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013EnMan..51..524M&link_type=ABSTRACT"><span id="translatedtitle">Certified and Uncertified Logging Concessions Compared in Gabon: Changes in Stand Structure, <span class="hlt">Tree</span> <span class="hlt">Species</span>, and Biomass</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medjibe, V. P.; Putz, Francis E.; Romero, Claudia</p> <p>2013-03-01</p> <p>Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and <span class="hlt">tree</span> <span class="hlt">species</span> diversity and composition. Before logging, we marked, mapped, and measured all <span class="hlt">trees</span> >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and <span class="hlt">tree</span> damage due to felling, skidding, and road-related activities was then assessed 2-3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m3/ha (0.39 <span class="hlt">trees</span>/ha) and 11.4 m3/ha (0.76 <span class="hlt">trees</span>/ha). For each <span class="hlt">tree</span> felled, averages of 9.1 and 20.9 other <span class="hlt">trees</span> were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in <span class="hlt">tree</span> <span class="hlt">species</span> composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23277438','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23277438"><span id="translatedtitle">Certified and uncertified logging concessions compared in Gabon: changes in stand structure, <span class="hlt">tree</span> <span class="hlt">species</span>, and biomass.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Medjibe, V P; Putz, Francis E; Romero, Claudia</p> <p>2013-03-01</p> <p>Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and <span class="hlt">tree</span> <span class="hlt">species</span> diversity and composition. Before logging, we marked, mapped, and measured all <span class="hlt">trees</span> >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and <span class="hlt">tree</span> damage due to felling, skidding, and road-related activities was then assessed 2-3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m(3)/ha (0.39 <span class="hlt">trees</span>/ha) and 11.4 m(3)/ha (0.76 <span class="hlt">trees</span>/ha). For each <span class="hlt">tree</span> felled, averages of 9.1 and 20.9 other <span class="hlt">trees</span> were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in <span class="hlt">tree</span> <span class="hlt">species</span> composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities. PMID:23277438</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27490180','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27490180"><span id="translatedtitle">Direct vs. Microclimate-Driven Effects of <span class="hlt">Tree</span> <span class="hlt">Species</span> Diversity on Litter Decomposition in Young Subtropical Forest Stands.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seidelmann, Katrin N; Scherer-Lorenzen, Michael; Niklaus, Pascal A</p> <p>2016-01-01</p> <p>Effects of <span class="hlt">tree</span> <span class="hlt">species</span> diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy <span class="hlt">tree</span> <span class="hlt">species</span> richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with <span class="hlt">tree</span> communities ranging from monocultures to mixtures of 24 native subtropical <span class="hlt">tree</span> <span class="hlt">species</span>. Litter bags filled with senescent leaves of three native <span class="hlt">tree</span> <span class="hlt">species</span> were placed from Nov. 2011 to Oct. 2012 on 134 plots along the <span class="hlt">tree</span> <span class="hlt">species</span> diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand <span class="hlt">species</span> richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. <span class="hlt">Tree</span> stands were 2-3 years old, but nevertheless <span class="hlt">tree</span> <span class="hlt">species</span> diversity explained more variation (54.3%) in decomposition than topography (7.7%). <span class="hlt">Tree</span> <span class="hlt">species</span> richness slowed litter decomposition, an effect that slightly depended on litter <span class="hlt">species</span> identity. A large part of the variance in decomposition was explained by <span class="hlt">tree</span> <span class="hlt">species</span> composition, with the presence of three <span class="hlt">tree</span> <span class="hlt">species</span> playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, <span class="hlt">species</span> diversity (without composition) explained 8.9% and topography 34.4% of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4973968','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4973968"><span id="translatedtitle">Direct vs. Microclimate-Driven Effects of <span class="hlt">Tree</span> <span class="hlt">Species</span> Diversity on Litter Decomposition in Young Subtropical Forest Stands</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Seidelmann, Katrin N.; Scherer-Lorenzen, Michael; Niklaus, Pascal A.</p> <p>2016-01-01</p> <p>Effects of <span class="hlt">tree</span> <span class="hlt">species</span> diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy <span class="hlt">tree</span> <span class="hlt">species</span> richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with <span class="hlt">tree</span> communities ranging from monocultures to mixtures of 24 native subtropical <span class="hlt">tree</span> <span class="hlt">species</span>. Litter bags filled with senescent leaves of three native <span class="hlt">tree</span> <span class="hlt">species</span> were placed from Nov. 2011 to Oct. 2012 on 134 plots along the <span class="hlt">tree</span> <span class="hlt">species</span> diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand <span class="hlt">species</span> richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. <span class="hlt">Tree</span> stands were 2–3 years old, but nevertheless <span class="hlt">tree</span> <span class="hlt">species</span> diversity explained more variation (54.3%) in decomposition than topography (7.7%). <span class="hlt">Tree</span> <span class="hlt">species</span> richness slowed litter decomposition, an effect that slightly depended on litter <span class="hlt">species</span> identity. A large part of the variance in decomposition was explained by <span class="hlt">tree</span> <span class="hlt">species</span> composition, with the presence of three <span class="hlt">tree</span> <span class="hlt">species</span> playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, <span class="hlt">species</span> diversity (without composition) explained 8.9% and topography 34.4% of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4134238','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4134238"><span id="translatedtitle">Patterns of <span class="hlt">Tree</span> <span class="hlt">Species</span> Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian</p> <p>2014-01-01</p> <p>Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within <span class="hlt">species</span>, between <span class="hlt">species</span>, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different <span class="hlt">species</span> of Pinus (ca. 22% on the whole), 54 <span class="hlt">species</span> of Quercus (ca. 9–14%), 7 <span class="hlt">species</span> of Arbutus (ca. 50%) and many other <span class="hlt">trees</span> <span class="hlt">species</span>. The objectives of this study were to model how <span class="hlt">tree</span> <span class="hlt">species</span> diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum <span class="hlt">tree</span> <span class="hlt">species</span> diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of <span class="hlt">tree</span> <span class="hlt">species</span> are generally higher in cold</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25127455','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25127455"><span id="translatedtitle">Patterns of <span class="hlt">tree</span> <span class="hlt">species</span> diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian</p> <p>2014-01-01</p> <p>Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within <span class="hlt">species</span>, between <span class="hlt">species</span>, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different <span class="hlt">species</span> of Pinus (ca. 22% on the whole), 54 <span class="hlt">species</span> of Quercus (ca. 9-14%), 7 <span class="hlt">species</span> of Arbutus (ca. 50%) and many other <span class="hlt">trees</span> <span class="hlt">species</span>. The objectives of this study were to model how <span class="hlt">tree</span> <span class="hlt">species</span> diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum <span class="hlt">tree</span> <span class="hlt">species</span> diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of <span class="hlt">tree</span> <span class="hlt">species</span> are generally higher in cold</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21691855','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21691855"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">species</span> identity and interactions with neighbors determine nutrient leaching in model tropical forests.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ewel, John J; Bigelow, Seth W</p> <p>2011-12-01</p> <p>An ecosystem containing a mixture of <span class="hlt">species</span> that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single <span class="hlt">species</span>. We tested the effects of <span class="hlt">species</span> identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous <span class="hlt">tree</span> <span class="hlt">species</span> with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to <span class="hlt">tree</span> <span class="hlt">species</span> identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous <span class="hlt">tree</span> <span class="hlt">species</span> (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous <span class="hlt">tree</span> <span class="hlt">species</span>. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among <span class="hlt">species</span>, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to <span class="hlt">species</span>' characteristics and temporal changes in interspecific interactions. PMID:21691855</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4206468','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4206468"><span id="translatedtitle">Data Concatenation, Bayesian Concordance and Coalescent-Based Analyses of the <span class="hlt">Species</span> <span class="hlt">Tree</span> for the Rapid Radiation of Triturus Newts</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wielstra, Ben; Arntzen, Jan W.; van der Gaag, Kristiaan J.; Pabijan, Maciej; Babik, Wieslaw</p> <p>2014-01-01</p> <p>The phylogenetic relationships for rapid <span class="hlt">species</span> radiations are difficult to disentangle. Here we study one such case, namely the genus Triturus, which is composed of the marbled and crested newts. We analyze data for 38 genetic markers, positioned in 3-prime untranslated regions of protein-coding genes, obtained with 454 sequencing. Our dataset includes twenty Triturus newts and represents all nine <span class="hlt">species</span>. Bayesian analysis of population structure allocates all individuals to their respective <span class="hlt">species</span>. The branching patterns obtained by data concatenation, Bayesian concordance analysis and coalescent-based estimations of the <span class="hlt">species</span> <span class="hlt">tree</span> differ from one another. The data concatenation based <span class="hlt">species</span> <span class="hlt">tree</span> shows high branch support but branching order is considerably affected by allele choice in the case of heterozygotes in the concatenation process. Bayesian concordance analysis expresses the conflict between individual gene <span class="hlt">trees</span> for part of the Triturus <span class="hlt">species</span> <span class="hlt">tree</span> as low concordance factors. The coalescent-based <span class="hlt">species</span> <span class="hlt">tree</span> is relatively similar to a previously published <span class="hlt">species</span> <span class="hlt">tree</span> based upon morphology and full mtDNA and any conflicting internal branches are not highly supported. Our findings reflect high gene <span class="hlt">tree</span> discordance due to incomplete lineage sorting (possibly aggravated by hybridization) in combination with low information content of the markers employed (as can be expected for relatively recent <span class="hlt">species</span> radiations). This case study highlights the complexity of resolving rapid radiations and we acknowledge that to convincingly resolve the Triturus <span class="hlt">species</span> <span class="hlt">tree</span> even more genes will have to be consulted. PMID:25337997</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712942H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712942H"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">species</span> specific soil moisture patterns and dynamics through the seasons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heidbüchel, Ingo; Dreibrodt, Janek; Simard, Sonia; Güntner, Andreas; Blume, Theresa</p> <p>2015-04-01</p> <p>Soil moisture patterns in the landscape are largely controlled by soil types (pore size distributions) and landscape position. But how strong is the influence of vegetation on patterns within a single soil type? While we would envision a clear difference in soil moisture patterns and responses between for example bare soil, a pasture and a forest, our conceptual images start to become less clear when we move on to different forest stands. Do different <span class="hlt">tree</span> <span class="hlt">species</span> cause different moisture patterns to emerge? Could it be possible to identify the dominant <span class="hlt">tree</span> <span class="hlt">species</span> of a site by classifying its soil moisture pattern? To investigate this question we analyzed data from 15 sensor clusters in the lowlands of north-eastern Germany (within the TERENO observatory) which were instrumented with soil moisture sensors (5 profiles per site), tensiometers, sap flow sensors, throughfall and stemflow gages. Data has been collected at these sites since May 2014. While the summer data has already been analyzed, the analysis of the winter data and thus the possible seasonal shifts in patterns will be carried out in the coming months. Throughout the last summer we found different dynamics of soil moisture patterns under pine <span class="hlt">trees</span> compared to beech <span class="hlt">trees</span>. While the soils under beech <span class="hlt">trees</span> were more often relatively wet and more often relatively dry, the soils under pine <span class="hlt">trees</span> showed less variability and more often average soil moisture. These differences are most likely due to differences in both throughfall patterns as well as root water uptake. Further analysis includes the use of throughfall and stemflow data as well as stable water isotope samples that were taken at different depths in the soil, in the groundwater and from the sapwood. The manifestation of <span class="hlt">tree</span> <span class="hlt">species</span> differences in soil moisture patterns and dynamics is likely to have implications for groundwater recharge, transit times and hydrologic partitioning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70031880','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70031880"><span id="translatedtitle">Influences of calcium availability and <span class="hlt">tree</span> <span class="hlt">species</span> on Ca isotope fractionation in soil and vegetation</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Page, B.D.; Bullen, T.D.; Mitchell, M.J.</p> <p>2008-01-01</p> <p>The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk <span class="hlt">trees</span> were considerably lighter than those of soil pools at these sites, suggesting that the <span class="hlt">trees</span> were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both <span class="hlt">tree</span> <span class="hlt">species</span> with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both <span class="hlt">tree</span> <span class="hlt">species</span> suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing <span class="hlt">tree</span> <span class="hlt">species</span> demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the <span class="hlt">trees</span>. Inter-catchment differences in Ca isotope distributions in soils and <span class="hlt">trees</span> were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17204076','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17204076"><span id="translatedtitle">Large variation in whole-plant water-use efficiency among tropical <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cernusak, Lucas A; Aranda, Jorge; Marshall, John D; Winter, Klaus</p> <p>2007-01-01</p> <p>It is well known that whole-plant water-use efficiency (transpiration efficiency of carbon gain, TE(C)) varies among plant <span class="hlt">species</span> with different photosynthetic pathways. However, less is known of such variation among <span class="hlt">tree</span> <span class="hlt">species</span> within the C(3) group. Here we measured the TE(C) of seven C(3) tropical <span class="hlt">tree</span> <span class="hlt">species</span>. Isotopic analyses (delta(13)C, delta(18)O, and delta(15)N) and elemental analyses (carbon and nitrogen) were undertaken to provide insight into sources of variation in TE(C). Plants were grown over several months in approx. 80% full sunlight in individual 38-l containers in the Republic of Panama. Soil moisture content was nonlimiting. Significant variation was observed in TE(C) among the C(3) <span class="hlt">tree</span> <span class="hlt">species</span>. Values ranged from 1.6 mmol C mol(-1) H(2)O for teak (Tectona grandis) to 4.0 mmol C mol(-1) H(2)O for a legume, Platymiscium pinnatum. Variation in TE(C) was correlated with both leaf N concentration, a proxy for photosynthetic capacity, and oxygen-isotope enrichment, a proxy for stomatal conductance. The TE(C) varied with C-isotope discrimination within <span class="hlt">species</span>, but the relationship broke down among <span class="hlt">species</span>, reflecting the existence of <span class="hlt">species</span>-specific offsets. PMID:17204076</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B23A0359M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B23A0359M"><span id="translatedtitle">Leaf gas exchange traits of domestic and exotic <span class="hlt">tree</span> <span class="hlt">species</span> in Cambodia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miyazawa, Y.; Tateishi, M.; Kumagai, T.; Otsuki, K.</p> <p>2009-12-01</p> <p>In forests under the management by community villagers, exotic <span class="hlt">tree</span> <span class="hlt">species</span> with rapid growth rate are introduced in wide range of Cambodia. To evaluate the influence of the introduction on the forest gas exchange and water budget, we investigated the leaf gas exchange traits of two domestic (Dipterocarpus obtusifolius and Shorea roxburghii) and exotic <span class="hlt">tree</span> <span class="hlt">species</span> (Acasia auriculiformis and Eucalyptus camadilansis). We sampled shoots of each <span class="hlt">species</span> and measured the leaf gas exchange traits (photosynthetic rates under different CO2 concentrations, transpiration rate and stomatal conductance) (6 leaves x 3 <span class="hlt">trees</span> x 4 <span class="hlt">species</span>). We carried out this measurement at 2 months intervals for a year from the beginning of rainy season and compared the obtained traits among <span class="hlt">species</span>. Light saturated rate of net photosynthesis was higher in E. camadilansis but did not differ among other <span class="hlt">species</span> both in rainy and dry seasons. Seasonal patter in photosynthetic traits was not obvious. Each <span class="hlt">species</span> changed stomatal conductance in response to changes in environmental conditions. The response was more sensitive than reported values. In this presentation, we show details about the basic information about the leaf-level gas exchange traits, which are required to run soil- vegetation - atmosphere transfer model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010004211','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010004211"><span id="translatedtitle">BOREAS TE-4 Gas Exchange Data from Boreal <span class="hlt">Tree</span> <span class="hlt">Species</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Collatz, G. James; Berry, Joseph A.; Gamon, John; Fredeen, Art; Fu, Wei</p> <p>2000-01-01</p> <p>The BOREAS TE-4 team collected steady-state gas exchange and reflectance data from several <span class="hlt">species</span> in the BOREAS SSA during 1994 and in the NSA during 1996. Measurements of light, CO2, temperature, and humidity response curves were made by the BOREAS TE-4 team during the summers of 1994 and 1996 using intact attached leaves of boreal forest <span class="hlt">species</span> located in the BOREAS SSA and NSA. These measurements were conducted to calibrate models used to predict photosynthesis, stomatal conductance, and leaf respiration. The 1994 and 1996 data can be used to construct plots of response functions or for parameterizing models. Parameter values are suitable for application in SiB2 (Sellers et al., 1996) or the leaf model of Collatz et al. (1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3892915','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3892915"><span id="translatedtitle">Eco-physiological adaptation of dominant <span class="hlt">tree</span> <span class="hlt">species</span> at two contrasting karst habitats in southwestern China</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, Qian; Yan, Hui; Xu, Xinwu</p> <p>2013-01-01</p> <p>The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody <span class="hlt">species</span> to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the <span class="hlt">trees</span> were measured for three growth seasons. Photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of the <span class="hlt">tree</span> <span class="hlt">species</span> in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous <span class="hlt">species</span> were markedly higher than those for the evergreen <span class="hlt">species</span>. Habitat had no significant effect on water use efficiency (WUE) or photochemical characteristics of PSII. The stomatal sensitivity of woody <span class="hlt">species</span> in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N) and phosphorus (P) contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous <span class="hlt">species</span> was much higher than that of evergreen <span class="hlt">species</span>, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous <span class="hlt">species</span>. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE) of deciduous <span class="hlt">species</span> were much higher than those of evergreens. Further, the PPUE of the woody <span class="hlt">species</span> in Tianlongshan was much higher than that  of the woody <span class="hlt">species</span> in Daxiagu. The results from three growth seasons imply that the <span class="hlt">tree</span> <span class="hlt">species</span> were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China. PMID:24555059</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3586649','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3586649"><span id="translatedtitle">Epigenetic regulation of adaptive responses of forest <span class="hlt">tree</span> <span class="hlt">species</span> to the environment</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa</p> <p>2013-01-01</p> <p>Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant <span class="hlt">species</span>, and may be especially important for long-lived organisms with complex life cycles, including forest <span class="hlt">trees</span>. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest <span class="hlt">tree</span> <span class="hlt">species</span>. We consider the possible role of forest <span class="hlt">tree</span> epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25775797','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25775797"><span id="translatedtitle">[Effects of <span class="hlt">tree</span> <span class="hlt">species</span> on polysaccharides content of epiphytic Dendrobium officinale].</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Ying-Ying; Zhu, Yan; Si, Jin-Ping; Liu, Jing-Jing; Wu, Cheng-Yong; Li, Hui</p> <p>2014-11-01</p> <p>To reveals the effects of <span class="hlt">tree</span> <span class="hlt">species</span> on polysaccharides content of epiphytic Dendrobium officinale. The polysaccharides content of D. officinale attached to living tress in wild or stumps in bionic-facility was determined by phenol-sulfuric acid method. There were extremely significant differences of polysaccharides content of D. officinale attached to different <span class="hlt">tree</span> <span class="hlt">species</span>, but the differences had no relationship with the form and nutrition of barks. The polysaccharides content of D. officinale mainly affected by the light intensity of environment, so reasonable illumination favored the accumulation of polysaccharides. Various polysaccharides content of D. officinal from different attached <span class="hlt">trees</span> is due to the difference of light regulation, but not the form and nutrition of barks. PMID:25775797</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014AGUFM.B51B0028L&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014AGUFM.B51B0028L&link_type=ABSTRACT"><span id="translatedtitle">Dynamics of <span class="hlt">Tree</span> <span class="hlt">Species</span> Composition in Temperate Mountains of South Korea over Fourteen Years using 880 Permanent Plots</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, B.; Kim, H. S.; Park, J.; Moon, M.; Cho, S.; Ryu, D.; Wynn, K. Z.; Park, J.</p> <p>2014-12-01</p> <p>The structure of forest and diversity of <span class="hlt">tree</span> <span class="hlt">species</span> in temperate mountains have been influenced by changing climate conditions as well as successional changes. To understand how <span class="hlt">tree</span> <span class="hlt">species</span> composition and stand structure change across temperate mountains, the <span class="hlt">species</span> composition, size, and environmental information were collected over the past fourteen years in 880 quadrats of 20 m x 50 m of woodland communities distributed across Jiri and Baekoon Mountains, South Korea. The preliminary investigation on variations of <span class="hlt">tree</span> <span class="hlt">species</span> revealed that overall composition of <span class="hlt">tree</span> <span class="hlt">species</span> increased in terms of both diversity and biomass growth of <span class="hlt">tree</span> <span class="hlt">species</span>, reflecting fast and wide changes in temperate forests of Korea. Among dominant <span class="hlt">trees</span>, the Quercus mongolica, Styrax japonicu, and Acer pseudosieboldianum recorded the highest increase in stand density, implying the most prosperous <span class="hlt">species</span> under current conditions, while the <span class="hlt">species</span> of Quercus variabilis and Fraxinus mandshurica appeared as fast declining <span class="hlt">species</span> in the number. In terms of biomass growth of dominant <span class="hlt">species</span>, the Stewartia pseudocamellia showed the largest increase of biomass, followed by Quercus serrata and Quercus mongolica., while the Fraxinus mandshurica appeared to have a rapid decline, followed by Alnus japonica and Quercus dentata. Overall, the fast change of composition in <span class="hlt">tree</span> <span class="hlt">species</span> is clear and further analysis to clarify the reasons for such fast and <span class="hlt">species</span>-specific changes is underway especially to separate the effect of successional change and climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/11737299','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/11737299"><span id="translatedtitle">Fine-scale spatial genetic structure of eight tropical <span class="hlt">tree</span> <span class="hlt">species</span> as analysed by RAPDs.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Degen, B; Caron, H; Bandou, E; Maggia, L; Chevallier, M H; Leveau, A; Kremer, A</p> <p>2001-10-01</p> <p>The fine-scale spatial genetic structure of eight tropical <span class="hlt">tree</span> <span class="hlt">species</span> (Chrysophyllum sanguinolentum, Carapa procera, Dicorynia guianensis, Eperua grandiflora, Moronobea coccinea, Symphonia globulifera, Virola michelii, Vouacapoua americana) was studied in populations that were part of a silvicultural trial in French Guiana. The <span class="hlt">species</span> analysed have different spatial distribution, sexual system, pollen and seed dispersal agents, flowering phenology and environmental demands. The spatial position of <span class="hlt">trees</span> and a RAPD data set for each <span class="hlt">species</span> were combined using a multivariate genetic distance method to estimate spatial genetic structure. A significant spatial genetic structure was found for four of the eight <span class="hlt">species</span>. In contrast to most observations in temperate forests, where spatial structure is not usually detected at distances greater than 50 m, significant genetic structure was found at distances up to 300 m. The relationships between spatial genetic structure and life history characteristics are discussed. PMID:11737299</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25555688','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25555688"><span id="translatedtitle">Characterization of mariner-like transposons of the mauritiana Subfamily in seven <span class="hlt">tree</span> aphid <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kharrat, Imen; Mezghani, Maha; Casse, Nathalie; Denis, Françoise; Caruso, Aurore; Makni, Hanem; Capy, Pierre; Rouault, Jacques-Deric; Chénais, Benoît; Makni, Mohamed</p> <p>2015-02-01</p> <p>Mariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit <span class="hlt">tree</span> aphid <span class="hlt">species</span> out of eight <span class="hlt">species</span> studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers. All the sequences detected were deleted copies of full-length elements that included the 3'- and 5'-TIRs but displayed internal deletions affecting Mos1 activity. Networks based on the mtDNA cytochrome oxidase subunit-I (CO-I) and MLE sequences were incongruent, suggesting that mutations in transposon sequences had accumulated before speciation of <span class="hlt">tree</span> aphid <span class="hlt">species</span> occurred, and that they have been maintained in this <span class="hlt">species</span> via vertical transmissions. This is the first evidence of the widespread occurrence of MLEs in aphids. PMID:25555688</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27372101','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27372101"><span id="translatedtitle">Phthalate pollution in an Amazonian <span class="hlt">rainforest</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lenoir, Alain; Boulay, Raphaël; Dejean, Alain; Touchard, Axel; Cuvillier-Hot, Virginie</p> <p>2016-08-01</p> <p>Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian <span class="hlt">rainforest</span> and along an anthropogenic gradient of pollution (<span class="hlt">rainforest</span> vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine <span class="hlt">rainforest</span>, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant <span class="hlt">species</span>; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared <span class="hlt">species</span>. However, the presence of phthalates in isolated areas of pristine <span class="hlt">rainforests</span> suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a "pristine" zone. PMID:27372101</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=89709','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=89709"><span id="translatedtitle">In Vitro Activities of Ketoconazole, Econazole, Miconazole, and Melaleuca alternifolia (Tea <span class="hlt">Tree</span>) Oil against Malassezia <span class="hlt">Species</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hammer, K. A.; Carson, C. F.; Riley, T. V.</p> <p>2000-01-01</p> <p>The in vitro activities of ketoconazole, econazole, miconazole, and tea <span class="hlt">tree</span> oil against 54 Malassezia isolates were determined by agar and broth dilution methods. Ketoconazole was more active than both econazole and miconazole, which showed very similar activities. M. furfur was the least susceptible <span class="hlt">species</span>. M. sympodialis, M. slooffiae, M. globosa, and M. obtusa showed similar susceptibilities to the four agents. PMID:10639388</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19256435','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19256435"><span id="translatedtitle">[Reproductive phenology of <span class="hlt">tree</span> <span class="hlt">species</span> in the Tenosique tropical forest, Tabasco, Mexico].</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ochoa-Gaona, Susana; Hernández, Isidro Pérez; de Jong, Bernardus H J</p> <p>2008-06-01</p> <p>Between August 2003 and August 2005 we registered the flowering and fruiting of 75 <span class="hlt">tree</span> <span class="hlt">species</span> (341 individual <span class="hlt">trees</span>) in a tropical rain forest at Tenosique, Tabasco, Mexico. Monthly we checked five transects (500 m long; 5 m wide). To test the homogeneity of flowering and fruiting during the year, and between adjacent months, we applied a chi2 test. The flowering was bimodal, with a highest peak in March and April, coinciding with the dry season, and a second lower peak in July when precipitation is relatively low. The highest number of fruiting <span class="hlt">tree</span> <span class="hlt">species</span> occur between May and July, with its peak in May. Each of the most common botanical families showed a particular phenological pattern. Monthly rainfall and the number of <span class="hlt">species</span> flowering or fruiting were not significantly correlated. This means that <span class="hlt">trees</span> are flowering and fruiting all year long, with seasonal increases of both phenological phenomena in the dryer periods. We conclude that phenological patterns vary between individuals and between years and are not seasonally correlated. The data we generated are relevant to program the best periods of seed collections according to individual or groups of <span class="hlt">species</span>, as part of forest management and conservation practices. PMID:19256435</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26164201','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26164201"><span id="translatedtitle">New flux based dose-response relationships for ozone for European forest <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D</p> <p>2015-11-01</p> <p>To derive O3 dose-response relationships (DRR) for five European forest <span class="hlt">trees</span> <span class="hlt">species</span> and broadleaf deciduous and needleleaf <span class="hlt">tree</span> plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual <span class="hlt">tree</span> <span class="hlt">species</span> differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean <span class="hlt">tree</span> <span class="hlt">species</span>, this simplified model led to similarly robust DRR as compared to a <span class="hlt">species</span>- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate. PMID:26164201</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25065257','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25065257"><span id="translatedtitle">Responses of <span class="hlt">tree</span> <span class="hlt">species</span> to heat waves and extreme heat events.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teskey, Robert; Wertin, Timothy; Bauweraerts, Ingvar; Ameye, Maarten; McGuire, Mary Anne; Steppe, Kathy</p> <p>2015-09-01</p> <p>The number and intensity of heat waves has increased, and this trend is likely to continue throughout the 21st century. Often, heat waves are accompanied by drought conditions. It is projected that the global land area experiencing heat waves will double by 2020, and quadruple by 2040. Extreme heat events can impact a wide variety of <span class="hlt">tree</span> functions. At the leaf level, photosynthesis is reduced, photooxidative stress increases, leaves abscise and the growth rate of remaining leaves decreases. In some <span class="hlt">species</span>, stomatal conductance increases at high temperatures, which may be a mechanism for leaf cooling. At the whole plant level, heat stress can decrease growth and shift biomass allocation. When drought stress accompanies heat waves, the negative effects of heat stress are exacerbated and can lead to <span class="hlt">tree</span> mortality. However, some <span class="hlt">species</span> exhibit remarkable tolerance to thermal stress. Responses include changes that minimize stress on photosynthesis and reductions in dark respiration. Although there have been few studies to date, there is evidence of within-<span class="hlt">species</span> genetic variation in thermal tolerance, which could be important to exploit in production forestry systems. Understanding the mechanisms of differing <span class="hlt">tree</span> responses to extreme temperature events may be critically important for understanding how <span class="hlt">tree</span> <span class="hlt">species</span> will be affected by climate change. PMID:25065257</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=276289','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=276289"><span id="translatedtitle">Conspecific plant-soil feedbacks of temperate <span class="hlt">tree</span> <span class="hlt">species</span> in the southern Appalachians, USA</span></a></p> <p><a target="_blank" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p></p> <p></p> <p>Many <span class="hlt">tree</span> <span class="hlt">species</span> have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependence effects and whether variation in these e...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70045618','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70045618"><span id="translatedtitle">Effects of canopy <span class="hlt">tree</span> <span class="hlt">species</span> on belowground biogeochemistry in a lowland wet tropical forest</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.</p> <p>2013-01-01</p> <p>Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the <span class="hlt">species</span>-rich forests of the wet tropics. To investigate the effects of individual <span class="hlt">tree</span> <span class="hlt">species</span> on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy <span class="hlt">tree</span> <span class="hlt">species</span> – including three legume and six non-legume <span class="hlt">species</span> – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy <span class="hlt">tree</span> <span class="hlt">species</span>: total C, N and P pools in standing litter varied by <span class="hlt">species</span>, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among <span class="hlt">species</span> and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all <span class="hlt">tree</span> <span class="hlt">species</span>, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/5224196','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/5224196"><span id="translatedtitle">Narrowing historical uncertainty: probabilistic classification of ambiguously identified <span class="hlt">tree</span> <span class="hlt">species</span> in historical forest survey data</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mladenoff, D.J.; Dahir, S.E.; Nordheim, E.V.; Schulte, L.A.; Guntenspergen, G.R.</p> <p>2002-01-01</p> <p>Historical data have increasingly become appreciated for insight into the past conditions of ecosystems. Uses of such data include assessing the extent of ecosystem change; deriving ecological baselines for management, restoration, and modeling; and assessing the importance of past conditions on the composition and function of current systems. One historical data set of this type is the Public Land Survey (PLS) of the United States General Land Office, which contains data on multiple <span class="hlt">tree</span> <span class="hlt">species</span>, sizes, and distances recorded at each survey point, located at half-mile (0.8 km) intervals on a 1-mi (1.6 km) grid. This survey method was begun in the 1790s on US federal lands extending westward from Ohio. Thus, the data have the potential of providing a view of much of the US landscape from the mid-1800s, and they have been used extensively for this purpose. However, historical data sources, such as those describing the <span class="hlt">species</span> composition of forests, can often be limited in the detail recorded and the reliability of the data, since the information was often not originally recorded for ecological purposes. Forest <span class="hlt">trees</span> are sometimes recorded ambiguously, using generic or obscure common names. For the PLS data of northern Wisconsin, USA, we developed a method to classify ambiguously identified <span class="hlt">tree</span> <span class="hlt">species</span> using logistic regression analysis, using data on <span class="hlt">trees</span> that were clearly identified to <span class="hlt">species</span> and a set of independent predictor variables to build the models. The models were first created on partial data sets for each <span class="hlt">species</span> and then tested for fit against the remaining data. Validations were conducted using repeated, random subsets of the data. Model prediction accuracy ranged from 81% to 96% in differentiating congeneric <span class="hlt">species</span> among oak, pine, ash, maple, birch, and elm. Major predictor variables were <span class="hlt">tree</span> size, associated <span class="hlt">species</span>, landscape classes indicative of soil type, and spatial location within the study region. Results help to clarify ambiguities</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B52C..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B52C..06K"><span id="translatedtitle">Leaf nitrate assimilation during leaf expansion period: comparison of temperate and boreal <span class="hlt">tree</span> <span class="hlt">species</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koyama, L.; Tokuchi, N.; Kielland, K.</p> <p>2011-12-01</p> <p>We examined nitrate assimilation in several <span class="hlt">tree</span> <span class="hlt">species</span> to test the hypothesis that plant N acquisition is highest in early spring due to the N demands of leaf growth and the seasonal availability of soil N. Specifically, we advance the idea that <span class="hlt">trees</span> acquire N most actively during the leaf expansion period, which serves to offset growth-dilution of foliar N. However, it has been observed that boreal <span class="hlt">species</span> expand their leaves more rapidly than do temperate <span class="hlt">species</span>, suggesting that they exhibit a different seasonal pattern of N acquisition than do temperate <span class="hlt">species</span>. To examine these relationships we measured leaf nitrate reductase activity (NRA) as a proxy for nitrate assimilation, leaf expansion rates, and foliar N concentrations on three boreal <span class="hlt">tree</span> <span class="hlt">species</span> and three temperate <span class="hlt">tree</span> <span class="hlt">species</span> throughout their leaf expansion period. An evergreen <span class="hlt">species</span> (Quercus glauca) and two deciduous <span class="hlt">species</span> (Acer palmatum and Zelkova serrata) were investigated in temperate Japan, and three deciduous <span class="hlt">species</span> Alnus crispa, Betula papyrifera and Populus tremuloides were chosen in a boreal forest in interior Alaska, US. The patterns of foliar N concentrations were very similar across all six <span class="hlt">species</span>, but the mean leaf expansion period was shorter in the boreal <span class="hlt">species</span> (about 25 days) than in temperate <span class="hlt">species</span> (about 29 days). All temperate <span class="hlt">species</span> showed clear peaks of leaf NRA in the middle of leaf expansion period, suggesting that leaves partly compensate for the N dilution during expansion via foliar nitrate assimilation, and that plant nitrate acquisition was effectively timed to coincide with soil N availability generally increased in early spring. By contrast, peak NRA in the boreal <span class="hlt">species</span> were observed in different stage of leaf expansion, but as in the temperate <span class="hlt">species</span> declined to very low levels after the leaves were fully expanded. Our results demonstrate that plant nitrate assimilation is concentrated during leaf expansion in spring and early summer, but declines to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27481793','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27481793"><span id="translatedtitle">The Trichoptera barcode initiative: a strategy for generating a <span class="hlt">species</span>-level <span class="hlt">Tree</span> of Life.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Xin; Frandsen, Paul B; Holzenthal, Ralph W; Beet, Clare R; Bennett, Kristi R; Blahnik, Roger J; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V; Collins, Gemma E; deWaard, Jeremy; Dean, John; Flint, Oliver S; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D; Kondratieff, Boris C; Malicky, Hans; Milton, Megan A; Morinière, Jérôme; Morse, John C; Mwangi, François Ngera; Pauls, Steffen U; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A; Zamora-Muñoz, Carmen; Ziesmann, Tanja; Kjer, Karl M</p> <p>2016-09-01</p> <p>DNA barcoding was intended as a means to provide <span class="hlt">species</span>-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the <span class="hlt">Tree</span> of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described <span class="hlt">species</span>. Most Trichoptera, as with most of life's <span class="hlt">species</span>, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained <span class="hlt">tree</span> searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the <span class="hlt">tree</span>. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous <span class="hlt">species</span> boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and '<span class="hlt">species</span>' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for <span class="hlt">species</span> description.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481793</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4406680','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4406680"><span id="translatedtitle">Mapping and Characterizing Selected Canopy <span class="hlt">Tree</span> <span class="hlt">Species</span> at the Angkor World Heritage Site in Cambodia Using Aerial Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean</p> <p>2015-01-01</p> <p>At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s <span class="hlt">tree</span> <span class="hlt">species</span> to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., <span class="hlt">tree</span> height and crown width) of selected <span class="hlt">tree</span> <span class="hlt">species</span> found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual <span class="hlt">tree</span> crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and <span class="hlt">tree</span> height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the <span class="hlt">trees</span> (Spearman’s rho 0.782 and 0.589, respectively). Individual <span class="hlt">tree</span> crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas <span class="hlt">tree</span> crowns delineated using watershed segmentation underestimated the field-measured <span class="hlt">tree</span> crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected <span class="hlt">tree</span> <span class="hlt">species</span>. The latter was found to be more suitable for <span class="hlt">tree</span> <span class="hlt">species</span> classification. Individual <span class="hlt">tree</span> <span class="hlt">species</span> were identified with high accuracy. Inclusion of textural information further improved <span class="hlt">species</span> identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for <span class="hlt">tree</span> <span class="hlt">species</span> mapping and for studies of the forest mensuration variables. PMID:25902148</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25902148','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25902148"><span id="translatedtitle">Mapping and characterizing selected canopy <span class="hlt">tree</span> <span class="hlt">species</span> at the Angkor World Heritage site in Cambodia using aerial data.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean</p> <p>2015-01-01</p> <p>At present, there is very limited information on the ecology, distribution, and structure of Cambodia's <span class="hlt">tree</span> <span class="hlt">species</span> to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., <span class="hlt">tree</span> height and crown width) of selected <span class="hlt">tree</span> <span class="hlt">species</span> found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual <span class="hlt">tree</span> crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and <span class="hlt">tree</span> height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the <span class="hlt">trees</span> (Spearman's rho 0.782 and 0.589, respectively). Individual <span class="hlt">tree</span> crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas <span class="hlt">tree</span> crowns delineated using watershed segmentation underestimated the field-measured <span class="hlt">tree</span> crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected <span class="hlt">tree</span> <span class="hlt">species</span>. The latter was found to be more suitable for <span class="hlt">tree</span> <span class="hlt">species</span> classification. Individual <span class="hlt">tree</span> <span class="hlt">species</span> were identified with high accuracy. Inclusion of textural information further improved <span class="hlt">species</span> identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for <span class="hlt">tree</span> <span class="hlt">species</span> mapping and for studies of the forest mensuration variables. PMID:25902148</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMPP11D..07U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMPP11D..07U"><span id="translatedtitle">Did tropical <span class="hlt">rainforest</span> vegetation exist during the Late Cretaceous? New data from the late Campanian to early Maastrichtian Olmos Formation, Coahuila, Mexico.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Upchurch, G. R.; Estrada-Ruiz, E.; Cevallos-Ferriz, S. S.</p> <p>2008-12-01</p> <p>A major problem in paleobotany and paleoclimatology is the origin of modern tropical and paratropical <span class="hlt">rainforests</span>. Studies of leaf macrofossils, beginning with those of Wolfe and Upchurch, have suggested that tropical and paratropical (i.e., megathermal) <span class="hlt">rainforests</span> with dominant angiosperms are of Cenozoic origin, and that comparable vegetation was either absent or greatly restricted during the Late Cretaceous. Earth System modeling studies, in contrast, predict the existence of megathermal <span class="hlt">rainforest</span> vegetation during the mid- and Late Cretaceous, though with less areal extent than during the Late Cenozoic and Recent. Megathermal climate with year-round precipitation is simulated along the paleoequator and along the northern margin of the Tethys Ocean, and tends to occur in highly focused regions, in contrast to the more latitudinally zoned pattern of the Recent. Low-resolution climatic indicators, such as the distribution of coals and <span class="hlt">tree</span> fern spores, are consistent with evidence from climate modeling for megathermal wet climates during the Late Cretaceous, and by extension megathermal <span class="hlt">rainforest</span> vegetation. However, corroborative data from plant macrofossil assemblages is needed, because the physiognomy of leaves and woods directly reflects plant adaptation to the environment and can estimate climate independently of the generic and familial affinities of the paleoflora. Newly collected plant macrofossil assemblages from the late Campian to early Maastrichtian Olmos Formation of Coahuila, Mexico, provide evidence for megathermal <span class="hlt">rainforest</span> vegetation on the northern margin of the Tethys Ocean at approximately 35 degrees paleolatitude. The newly collected leaf flora is 72 percent entire- margined and has abundant palms, features typical of modern megathermal <span class="hlt">rainforests</span>. Thirty percent of the <span class="hlt">species</span> have large leaves, and 50 percent of the <span class="hlt">species</span> have drip tips, features indicative of wet conditions. Simple and multiple regression functions based on the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/18608895','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/18608895"><span id="translatedtitle">The expanding host <span class="hlt">tree</span> <span class="hlt">species</span> spectrum of Cryptococcus gattii and Cryptococcus neoformans and their isolations from surrounding soil in India.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Randhawa, H S; Kowshik, T; Chowdhary, Anuradha; Preeti Sinha, K; Khan, Z U; Sun, Sheng; Xu, Jianping</p> <p>2008-12-01</p> <p>This study reports the widespread prevalence of Cryptococcus neoformans and Cryptococcus gattii in decayed wood inside trunk hollows of 14 <span class="hlt">species</span> representing 12 families of <span class="hlt">trees</span> and from soil near the base of various host <span class="hlt">trees</span> from Delhi and several places in the Indian states of Uttar Pradesh, Haryana, Tamil Nadu and Chandigarh Union Territory. Of the 311 <span class="hlt">trees</span> from which samples were obtained, 64 (20.5%) were found to contain strains of the C. neoformans <span class="hlt">species</span> complex. The number of <span class="hlt">trees</span> positive for C. neoformans var grubii (serotypeA) was 51 (16.3%), for C. gattii (serotype B) 24 (7.7%) and for both C. neoformans and C. gattii 11 (3.5%). The overall prevalence of C. neoformans <span class="hlt">species</span> complex in decayed wood samples was 19.9% (111/556). There was no obvious correlation between the prevalence of these two yeast <span class="hlt">species</span> and the <span class="hlt">species</span> of host <span class="hlt">trees</span>. The data on prevalence of C. gattii (24%) and C. neoformans (26%) in soil around the base of some host <span class="hlt">trees</span> indicated that soil is another important ecologic niche for these two Cryptococcus <span class="hlt">species</span> in India. Among our sampled <span class="hlt">tree</span> <span class="hlt">species</span>, eight and six were recorded for the first time as hosts for C. neoformans var grubii and C. gattii, respectively. A longitudinal surveillance of 8 host <span class="hlt">tree</span> <span class="hlt">species</span> over 0.7 to 2.5 years indicated long term colonization of Polyalthia longifolia, Mimusops elengi and Manilkara hexandra <span class="hlt">trees</span> by C. gattii and/or C. neoformans. The mating type was determined for 153 of the isolates, including 98 strains of serotype A and 55 of serotype B and all proved to be mating type alpha (MAT alpha). Our observations document the rapidly expanding spectrum of host <span class="hlt">tree</span> <span class="hlt">species</span> for C. gattii and C. neoformans and indicate that decayed woods of many <span class="hlt">tree</span> <span class="hlt">species</span> are potentially suitable ecological niches for both pathogens. PMID:18608895</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009601','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009601"><span id="translatedtitle"><span class="hlt">Tree</span> Density and <span class="hlt">Species</span> Decline in the African Sahel Attributable to Climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gonzalez, Patrick; Tucker, Compton J.; Sy, H.</p> <p>2012-01-01</p> <p>Increased aridity and human population have reduced <span class="hlt">tree</span> cover in parts of the African Sahel and degraded resources for local people. Yet, <span class="hlt">tree</span> cover trends and the relative importance of climate and population remain unresolved. From field measurements, aerial photos, and Ikonos satellite images, we detected significant 1954-2002 <span class="hlt">tree</span> density declines in the western Sahel of 18 +/- 14% (P = 0.014, n = 204) and 17 +/- 13% (P = 0.0009, n = 187). From field observations, we detected a significant 1960-2000 <span class="hlt">species</span> richness decline of 21 +/- 11% (P = 0.0028, n = 14) across the Sahel and a southward shift of the Sahel, Sudan, and Guinea zones. Multivariate analyses of climate, soil, and population showed that temperature most significantly (P < 0.001) explained <span class="hlt">tree</span> cover changes. Multivariate and bivariate tests and field observations indicated the dominance of temperature and precipitation, supporting attribution of <span class="hlt">tree</span> cover changes to climate variability. Climate change forcing of Sahel climate variability, particularly the significant (P < 0.05) 1901-2002 temperature increases and precipitation decreases in the research areas, connects Sahel <span class="hlt">tree</span> cover changes to global climate change. This suggests roles for global action and local adaptation to address ecological change in the Sahel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25526843','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25526843"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">species</span> diversity mitigates disturbance impacts on the forest carbon cycle.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert</p> <p>2015-03-01</p> <p>Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that <span class="hlt">tree</span> <span class="hlt">species</span> diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how <span class="hlt">tree</span> <span class="hlt">species</span> diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of <span class="hlt">tree</span> <span class="hlt">species</span> richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of <span class="hlt">tree</span> <span class="hlt">species</span> diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing <span class="hlt">tree</span> <span class="hlt">species</span> diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation. PMID:25526843</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3626689','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3626689"><span id="translatedtitle">Winning and Losing <span class="hlt">Tree</span> <span class="hlt">Species</span> of Reassembly in Minnesota’s Mixed and Broadleaf Forests</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hanberry, Brice B.; Palik, Brian J.; He, Hong S.</p> <p>2013-01-01</p> <p>We examined reassembly of winning and losing <span class="hlt">tree</span> <span class="hlt">species</span>, <span class="hlt">species</span> traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing <span class="hlt">species</span> by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant <span class="hlt">tree</span> <span class="hlt">species</span>. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive <span class="hlt">species</span> on mesic sites. The proportion of shade-tolerant <span class="hlt">species</span> increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant <span class="hlt">species</span>, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing <span class="hlt">species</span> and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of <span class="hlt">species</span> identity. PMID:23613911</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2714761','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2714761"><span id="translatedtitle">Temperature dependence, spatial scale, and <span class="hlt">tree</span> <span class="hlt">species</span> diversity in eastern Asia and North America</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Zhiheng; Brown, James H.; Tang, Zhiyao; Fang, Jingyun</p> <p>2009-01-01</p> <p>The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of <span class="hlt">species</span> diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of <span class="hlt">species</span> richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of <span class="hlt">tree</span> distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of <span class="hlt">species</span> diversity. We find that number of <span class="hlt">species</span> increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in <span class="hlt">species</span> composition (slope of the <span class="hlt">species</span>-area relationship). The magnitude of temperature dependence of <span class="hlt">species</span> richness increases with spatial scale. Moreover, the relationship between <span class="hlt">species</span> richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more <span class="hlt">tree</span> <span class="hlt">species</span> in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity. PMID:19628692</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/16995629','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/16995629"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">species</span> effects on decomposition and forest floor dynamics in a common garden.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hobbie, Sarah E; Reich, Peter B; Oleksyn, Jacek; Ogdahl, Megan; Zytkowiak, Roma; Hale, Cynthia; Karolewski, Piotr</p> <p>2006-09-01</p> <p>We studied the effects of <span class="hlt">tree</span> <span class="hlt">species</span> on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 <span class="hlt">tree</span> <span class="hlt">species</span> (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart <span class="hlt">species</span> effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across <span class="hlt">species</span>. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that <span class="hlt">tree</span> <span class="hlt">species</span> influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) <span class="hlt">species</span> decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while <span class="hlt">species</span> influence microbially mediated decomposition primarily through differences in litter lignin, differences among <span class="hlt">species</span> in litter Ca are most important in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRG..117.0N16Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRG..117.0N16Z"><span id="translatedtitle">Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing <span class="hlt">tree</span> <span class="hlt">species</span> and non-N-fixing <span class="hlt">tree</span> <span class="hlt">species</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wei; Zhu, Xiaomin; Liu, Lei; Fu, Shenglei; Chen, Hao; Huang, Juan; Lu, Xiankai; Liu, Zhanfeng; Mo, Jiangming</p> <p>2012-12-01</p> <p>The responses of soil methane (CH4) net fluxes to nitrogen (N) addition in a N-fixing <span class="hlt">tree</span> <span class="hlt">species</span> (Acacia auriculiformis (AA)) and a non-N-fixing <span class="hlt">tree</span> <span class="hlt">species</span> (Eucalyptus citriodora (EU)) plantation were studied in southern China. Treatments were conducted at each plantation with three N levels (0, 50, and 100 kg N ha-1 yr-1 for control, medium-N, and high-N treatment, respectively, abbreviated as C, MN, and HN). From August 2010 to July 2011, CH4 flux was measured biweekly using a static chamber and gas chromatography technique. The soils of both sites acted as sink of atmospheric CH4. The CH4 uptake rate in control of the AA site (36.3 ± 3.2 μg CH4-C m-2 h-1) was greater than that of the EU plantation (29.9 ± 0.9 μg CH4-C m-2 h-1). In the AA plantation, the averaged rates of CH4 uptake for the MN (28.6 ± 2.3 μg CH4-C m-2 h-1) and HN treatment (23.8 ± 2.8 μg CH4-C m-2 h-1) were decreased by 21% and 35%, respectively, compared to the control. However, there was no change of soil CH4 uptake between N-treated plots and the controls in the EU site. Our results indicated that there might be large difference of inhibitive effect of N deposition on soil CH4 oxidation between the AA and EU plantations. The projected increase of N deposition would weaken the capability of N-fixing <span class="hlt">tree</span> <span class="hlt">species</span> plantations for atmospheric CH4 sink in tropical and subtropical regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/20472645','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/20472645"><span id="translatedtitle">The influence of mixed <span class="hlt">tree</span> plantations on the nutrition of individual <span class="hlt">species</span>: a review.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richards, Anna E; Forrester, David I; Bauhus, Jürgen; Scherer-Lorenzen, Michael</p> <p>2010-09-01</p> <p>Productivity of <span class="hlt">tree</span> plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. <span class="hlt">Species</span> interactions in mixed-<span class="hlt">species</span> stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given <span class="hlt">species</span> can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within <span class="hlt">species</span>, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N₂ fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-<span class="hlt">species</span> studies report a shift to greater above-ground nutrient content of <span class="hlt">species</span> grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given <span class="hlt">species</span> in a mixture containing N₂-fixing <span class="hlt">species</span>, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given <span class="hlt">species</span>, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of <span class="hlt">species</span> in a mixture. We recommend that future research</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/283030','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/283030"><span id="translatedtitle">Anatomical, chemical, and ecological factors affecting <span class="hlt">tree</span> <span class="hlt">species</span> choice in dendrochemistry studies</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Cutter, B.E.; Guyette, R.P.</p> <p>1993-07-01</p> <p>Recently, element concentrations in <span class="hlt">tree</span> rings have been used to monitor metal contamination, fertilization, and the effects of acid precipitation on soils. This has stimulated interest in which <span class="hlt">tree</span> <span class="hlt">species</span> may be suitable for use in studies of long-term trends in environmental chemistry. Potential radial translocation of elements across living boundaries can be a confounding factor in assessing environmental change. The selection of <span class="hlt">species</span> which minimizes radial translocation of elements can be critical to the success of dendrochemical research. Criteria for selection of <span class="hlt">species</span> with characteristics favorable for dendrochemical analysis are categorized into (1) habitat-based factors, (2) xylem-based factors, and (3) element-based factors. A wide geographic range and ecological amplitude provide an advantage in calibration and better controls on the effects of soil chemistry. The most important xylem-based criteria are heartwood moisture content, permeability, and the nature of the sapwood-heartwood transition. The element of interest is important in determining suitable <span class="hlt">tree</span> <span class="hlt">species</span> because all elements are not equally mobile or detectable in the xylem. Ideally, the <span class="hlt">tree</span> <span class="hlt">species</span> selected for dendrochemical study will be long-lived, grow on a wide range of sites over a large geographic distribution, have a distinct heartwood with a low number of rings in the sapwood, a low heartwood moisture content, and have low radial permeability. Recommended temperate zone North American <span class="hlt">species</span> include white oak (Quercus alba L.), post oak (Q. stellate Wangenh.), eastern redcedar (funiperus virginiana L.), old-growth Douglas-fir [Pseudoaugu menziesii (Mirb.) Franco] and big sagebrush (Artemisia tridentata Nutt.). In addition, <span class="hlt">species</span> such as bristlecone pine (Pinus aristata Engelm. syn. longaeva), old-growth redwood [Sequoia sempervirens (D. Don) Endl.], and giant sequoia [S. gigantea (Lindl.) Deene] may be suitable for local purposes. 118 refs., 2 tabs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70025565','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70025565"><span id="translatedtitle">Impacts of the Brown <span class="hlt">Tree</span> Snake: Patterns of Decline and <span class="hlt">Species</span> Persistence in Guam's Avifauna</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wiles, G.J.; Bart, J.; Beck, R.E., Jr.; Aguon, C.F.</p> <p>2003-01-01</p> <p>Predation by brown <span class="hlt">tree</span> snakes (Boiga irregularis) devastated the avifauna of Guam in the Mariana Islands during the last half of the twentieth century, causing the extirpation or serious reduction of most of the island's 25 resident bird <span class="hlt">species</span>. Past studies have provided qualitative descriptions of the decline of native forest birds but have not considered all <span class="hlt">species</span> or presented quantitative analyses. We analyzed two sets of survey data gathered in northern Guam between 1976 and 1998 and reviewed unpublished sources to provide a comprehensive account of the impact of brown <span class="hlt">tree</span> snakes on the island's birds. Our results indicate that 22 <span class="hlt">species</span>, including 17 of 18 native <span class="hlt">species</span>, were severely affected by snakes. Twelve <span class="hlt">species</span> were likely extirpated as breeding residents on the main island, 8 others experienced declines of ???90% throughout the island or at least in the north, and 2 were kept at reduced population levels during all or much of the study. Declines of ???90% occurred rapidly, averaging just 8.9 years along three roadside survey routes combined and 1.6 years at a 100-ha forested study site. Declines in northern Guam were also relatively synchronous and occurred from about 1976 to 1986 for most <span class="hlt">species</span>. The most important factor predisposing a <span class="hlt">species</span> to coexistence with brown <span class="hlt">tree</span> snakes was its ability to nest and roost at locations where snakes were uncommon. Large clutch size and large body size were also related to longer persistence times, although large body size appeared to delay, but not prevent, extirpation. Our results draw attention to the enormous detrimental impact that brown <span class="hlt">tree</span> snakes are likely to have upon invading new areas. Increased containment efforts on Guam are needed to prevent further colonizations, but a variety of additional management efforts would also benefit the island's remaining bird populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21302839','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21302839"><span id="translatedtitle">The trait contribution to wood decomposition rates of 15 Neotropical <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C</p> <p>2010-12-01</p> <p>The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in <span class="hlt">species</span> traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 <span class="hlt">tree</span> <span class="hlt">species</span> in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in <span class="hlt">species</span> traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all <span class="hlt">species</span>. The <span class="hlt">species</span>' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the <span class="hlt">tree</span> <span class="hlt">species</span> (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead <span class="hlt">trees</span> sampled for decomposition rate determination were used as a predictor variable, the final model (including dead <span class="hlt">tree</span> dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-<span class="hlt">species</span> study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems. PMID:21302839</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GPC...133..298B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GPC...133..298B"><span id="translatedtitle">Oxygen isotopes in <span class="hlt">tree</span> rings show good coherence between <span class="hlt">species</span> and sites in Bolivia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, Jessica C. A.; Hunt, Sarah F. P.; Clerici, Santiago J.; Newton, Robert J.; Bottrell, Simon H.; Leng, Melanie J.; Heaton, Timothy H. E.; Helle, Gerhard; Argollo, Jaime; Gloor, Manuel; Brienen, Roel J. W.</p> <p>2015-10-01</p> <p>A <span class="hlt">tree</span> ring oxygen isotope (δ18OTR) chronology developed from one <span class="hlt">species</span> (Cedrela odorata) growing in a single site has been shown to be a sensitive proxy for rainfall over the Amazon Basin, thus allowing reconstructions of precipitation in a region where meteorological records are short and scarce. Although these results suggest that there should be large-scale (> 100 km) spatial coherence of δ18OTR records in the Amazon, this has not been tested. Furthermore, it is of interest to investigate whether other, possibly longer-lived, <span class="hlt">species</span> similarly record interannual variation of Amazon precipitation, and can be used to develop climate sensitive isotope chronologies. In this study, we measured δ18O in <span class="hlt">tree</span> rings from seven lowland and one highland <span class="hlt">tree</span> <span class="hlt">species</span> from Bolivia. We found that cross-dating with δ18OTR gave more accurate <span class="hlt">tree</span> ring dates than using ring width. Our "isotope cross-dating approach" is confirmed with radiocarbon "bomb-peak" dates, and has the potential to greatly facilitate development of δ18OTR records in the tropics, identify dating errors, and check annual ring formation in tropical <span class="hlt">trees</span>. Six of the seven lowland <span class="hlt">species</span> correlated significantly with C. odorata, showing that variation in δ18OTR has a coherent imprint across very different <span class="hlt">species</span>, most likely arising from a dominant influence of source water δ18O on δ18OTR. In addition we show that δ18OTR series cohere over large distances, within and between <span class="hlt">species</span>. Comparison of two C. odorata δ18OTR chronologies from sites several hundreds of kilometres apart showed a very strong correlation (r = 0.80, p < 0.001, 1901-2001), and a significant (but weaker) relationship was found between lowland C. odorata <span class="hlt">trees</span> and a Polylepis tarapacana <span class="hlt">tree</span> growing in the distant Altiplano (r = 0.39, p < 0.01, 1931-2001). This large-scale coherence of δ18OTR records is probably triggered by a strong spatial coherence in precipitation δ18O due to large-scale controls. These results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26663665','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26663665"><span id="translatedtitle">Drought stress limits the geographic ranges of two <span class="hlt">tree</span> <span class="hlt">species</span> via different physiological mechanisms.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderegg, Leander D L; HilleRisLambers, Janneke</p> <p>2016-03-01</p> <p>Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in <span class="hlt">trees</span>, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) <span class="hlt">tree</span> <span class="hlt">species</span> in the southwestern USA. Specifically, we quantified <span class="hlt">tree-to-tree</span> variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, <span class="hlt">tree</span> height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each <span class="hlt">species</span>. Although water stress increased and growth declined strongly at lower range margins of both <span class="hlt">species</span>, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to <span class="hlt">tree</span> biogeography. Further, we show that comparing intraspecific patterns of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=Amphibians&pg=2&id=EJ747287','ERIC'); return false;" href="http://eric.ed.gov/?q=Amphibians&pg=2&id=EJ747287"><span id="translatedtitle"><span class="hlt">Rainforest</span>: Reptiles and Amphibians</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Olson, Susanna</p> <p>2006-01-01</p> <p><span class="hlt">Rainforest</span> reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://eric.ed.gov/?q=Deciduous+AND+forest&id=EJ540011','ERIC'); return false;" href="http://eric.ed.gov/?q=Deciduous+AND+forest&id=EJ540011"><span id="translatedtitle">Making <span class="hlt">Rainforests</span> Relevant.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lustbader, Sara</p> <p>1995-01-01</p> <p>Describes a program for teaching about tropical <span class="hlt">rainforests</span> in a concrete way using what's outside the door. This activity uses an eastern deciduous hardwood forest as an example. Step-by-step instructions include introductory activities, plus descriptions of stations in the forest to be visited. Resources include books, audio-visual materials,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2533C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2533C"><span id="translatedtitle">Different <span class="hlt">tree</span> <span class="hlt">species</span> affect soil respiration spatial distribution in a subtropical forest of southern Taiwan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen</p> <p>2014-05-01</p> <p>Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in <span class="hlt">tree</span> and soil. Therefore, the objective of this study is to clarify the relationship of <span class="hlt">tree</span> <span class="hlt">species</span> and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved <span class="hlt">tree</span> <span class="hlt">species</span> were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. <span class="hlt">tree</span> height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live <span class="hlt">tree</span> C pool among 16 plots were affected by growth characteristic of <span class="hlt">tree</span> <span class="hlt">species</span>. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different <span class="hlt">tree</span> <span class="hlt">species</span> planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4748750','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4748750"><span id="translatedtitle">SimPhy: Phylogenomic Simulation of Gene, Locus, and <span class="hlt">Species</span> <span class="hlt">Trees</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mallo, Diego; De Oliveira Martins, Leonardo; Posada, David</p> <p>2016-01-01</p> <p>We present a fast and flexible software package—SimPhy—for the simulation of multiple gene families evolving under incomplete lineage sorting, gene duplication and loss, horizontal gene transfer—all three potentially leading to <span class="hlt">species</span> <span class="hlt">tree</span>/gene <span class="hlt">tree</span> discordance—and gene conversion. SimPhy implements a hierarchical phylogenetic model in which the evolution of <span class="hlt">species</span>, locus, and gene <span class="hlt">trees</span> is governed by global and local parameters (e.g., genome-wide, <span class="hlt">species</span>-specific, locus-specific), that can be fixed or be sampled from a priori statistical distributions. SimPhy also incorporates comprehensive models of substitution rate variation among lineages (uncorrelated relaxed clocks) and the capability of simulating partitioned nucleotide, codon, and protein multilocus sequence alignments under a plethora of substitution models using the program INDELible. We validate SimPhy's output using theoretical expectations and other programs, and show that it scales extremely well with complex models and/or large <span class="hlt">trees</span>, being an order of magnitude faster than the most similar program (DLCoal-Sim). In addition, we demonstrate how SimPhy can be useful to understand interactions among different evolutionary processes, conducting a simulation study to characterize the systematic overestimation of the duplication time when using standard reconciliation methods. SimPhy is available at https://github.com/adamallo/SimPhy, where users can find the source code, precompiled executables, a detailed manual and example cases. PMID:26526427</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4814042','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4814042"><span id="translatedtitle">Mechanism Underlying the Spatial Pattern Formation of Dominant <span class="hlt">Tree</span> <span class="hlt">Species</span> in a Natural Secondary Forest</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo</p> <p>2016-01-01</p> <p>Studying the spatial pattern of plant <span class="hlt">species</span> may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley’s L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant <span class="hlt">tree</span> <span class="hlt">species</span> (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of <span class="hlt">trees</span>. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large <span class="hlt">trees</span> did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer <span class="hlt">trees</span> occurred among other <span class="hlt">species</span>, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26526427','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26526427"><span id="translatedtitle">SimPhy: Phylogenomic Simulation of Gene, Locus, and <span class="hlt">Species</span> <span class="hlt">Trees</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mallo, Diego; De Oliveira Martins, Leonardo; Posada, David</p> <p>2016-03-01</p> <p>We present a fast and flexible software package--SimPhy--for the simulation of multiple gene families evolving under incomplete lineage sorting, gene duplication and loss, horizontal gene transfer--all three potentially leading to <span class="hlt">species</span> <span class="hlt">tree</span>/gene <span class="hlt">tree</span> discordance--and gene conversion. SimPhy implements a hierarchical phylogenetic model in which the evolution of <span class="hlt">species</span>, locus, and gene <span class="hlt">trees</span> is governed by global and local parameters (e.g., genome-wide, <span class="hlt">species</span>-specific, locus-specific), that can be fixed or be sampled from a priori statistical distributions. SimPhy also incorporates comprehensive models of substitution rate variation among lineages (uncorrelated relaxed clocks) and the capability of simulating partitioned nucleotide, codon, and protein multilocus sequence alignments under a plethora of substitution models using the program INDELible. We validate SimPhy's output using theoretical expectations and other programs, and show that it scales extremely well with complex models and/or large <span class="hlt">trees</span>, being an order of magnitude faster than the most similar program (DLCoal-Sim). In addition, we demonstrate how SimPhy can be useful to understand interactions among different evolutionary processes, conducting a simulation study to characterize the systematic overestimation of the duplication time when using standard reconciliation methods. SimPhy is available at https://github.com/adamallo/SimPhy, where users can find the source code, precompiled executables, a detailed manual and example cases. PMID:26526427</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27028757','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27028757"><span id="translatedtitle">Mechanism Underlying the Spatial Pattern Formation of Dominant <span class="hlt">Tree</span> <span class="hlt">Species</span> in a Natural Secondary Forest.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo</p> <p>2016-01-01</p> <p>Studying the spatial pattern of plant <span class="hlt">species</span> may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant <span class="hlt">tree</span> <span class="hlt">species</span> (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of <span class="hlt">trees</span>. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large <span class="hlt">trees</span> did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer <span class="hlt">trees</span> occurred among other <span class="hlt">species</span>, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26702442','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26702442"><span id="translatedtitle">Estimating the global conservation status of more than 15,000 Amazonian <span class="hlt">tree</span> <span class="hlt">species</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ter Steege, Hans; Pitman, Nigel C A; Killeen, Timothy J; Laurance, William F; Peres, Carlos A; Guevara, Juan Ernesto; Salomão, Rafael P; Castilho, Carolina V; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E; Phillips, Oliver L; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R; Honorio Coronado, Euridice N; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G W; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F; Mogollón, Hugo F; Piedade, Maria Teresa Fernandez; Aymard C, Gerardo A; Comiskey, James A; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W; Jimenez, Eliana M; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R; Silva, Natalino; Vela, César I A; Vos, Vincent A; Zent, Eglée L; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H; Gamarra, Luis Valenzuela</p> <p>2015-11-01</p> <p>Estimates of extinction risk for Amazonian plant and animal <span class="hlt">species</span> are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian <span class="hlt">tree</span> <span class="hlt">species</span> are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant <span class="hlt">species</span> on Earth by 22%. We show that the trends observed in Amazonia apply to <span class="hlt">trees</span> throughout the tropics, and we predict that most of the world's >40,000 tropical <span class="hlt">tree</span> <span class="hlt">species</span> now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened <span class="hlt">species</span> if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century. PMID:26702442</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23360009','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23360009"><span id="translatedtitle">Floristic diversity of regenerated <span class="hlt">tree</span> <span class="hlt">species</span> in Dipterocarp forests in Western Ghats of Karnataka, India.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prasad, A G Devi; Al-Sagheer, Nageeb A</p> <p>2012-07-01</p> <p>The research was focused on exploring the structure, diversity and form of regeneration process of the Dipterocarp forests in Western Ghats in relation to environmental factors. Eight populations in the distribution range of Dipterocarp forests were selected. In each population 32 plots of 2mx2m were laid down randomly. Atotal of 1243 seedlings < or = 10 cm dbh (diameter at breast height) belonging to 99 <span class="hlt">species</span> and 48 families were recorded. The number of regenerated <span class="hlt">tree</span> <span class="hlt">species</span> was found to be high in the populations of Mudigere (40), Sakleshpura (40) and Makuta (39), which are characterized by favorable locality factors and lower disturbances. The highest similarity index in <span class="hlt">species</span> composition was recorded between the populations of Sampaje in Kodagu district and Gundya in Dakshina Kannada (60%) whereas the lowest similarity index was observed between the population of Sringeri in Chikmagalore and Sampaje (53%) and Gundya and Makuta (35%) in Kodagu district. Dipterocarpus indicus was found to be dominant among the regenerated <span class="hlt">tree</span> <span class="hlt">species</span> in all the sites studied except Gundy and Sampaje. The frequencies of regeneration classes (seedlings, saplings, poles and adult <span class="hlt">trees</span>) were shaped as inverse J curve indicating the normal regeneration pattern under the present disturbance. The average disturbance of litter collection, grazing, fire, weeds and canopy opening were significant among different populations (p < or = 0.05). Negative correlation was observed between disturbance and <span class="hlt">species</span> richness, number of individuals and density. PMID:23360009</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681336','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4681336"><span id="translatedtitle">Estimating the global conservation status of more than 15,000 Amazonian <span class="hlt">tree</span> <span class="hlt">species</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.; Laurance, William F.; Peres, Carlos A.; Guevara, Juan Ernesto; Salomão, Rafael P.; Castilho, Carolina V.; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E.; Phillips, Oliver L.; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R.; Honorio Coronado, Euridice N.; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L.; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G. W.; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S.; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F.; Mogollón, Hugo F.; Piedade, Maria Teresa Fernandez; Aymard C., Gerardo A.; Comiskey, James A.; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W.; Jimenez, Eliana M.; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R.; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R.; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R.; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R.; Silva, Natalino; Vela, César I. A.; Vos, Vincent A.; Zent, Eglée L.; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A.; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R.; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N.; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H.; Gamarra, Luis Valenzuela</p> <p>2015-01-01</p> <p>Estimates of extinction risk for Amazonian plant and animal <span class="hlt">species</span> are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian <span class="hlt">tree</span> <span class="hlt">species</span> are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant <span class="hlt">species</span> on Earth by 22%. We show that the trends observed in Amazonia apply to <span class="hlt">trees</span> throughout the tropics, and we predict that most of the world’s >40,000 tropical <span class="hlt">tree</span> <span class="hlt">species</span> now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened <span class="hlt">species</span> if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century. PMID:26702442</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971193','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971193"><span id="translatedtitle">The Trichoptera barcode initiative: a strategy for generating a <span class="hlt">species</span>-level <span class="hlt">Tree</span> of Life</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Frandsen, Paul B.; Holzenthal, Ralph W.; Beet, Clare R.; Bennett, Kristi R.; Blahnik, Roger J.; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V.; Collins, Gemma E.; deWaard, Jeremy; Dean, John; Flint, Oliver S.; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D.; Kondratieff, Boris C.; Malicky, Hans; Milton, Megan A.; Morinière, Jérôme; Morse, John C.; Mwangi, François Ngera; Pauls, Steffen U.; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L.; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A.; Zamora-Muñoz, Carmen; Ziesmann, Tanja</p> <p>2016-01-01</p> <p>DNA barcoding was intended as a means to provide <span class="hlt">species</span>-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the <span class="hlt">Tree</span> of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described <span class="hlt">species</span>. Most Trichoptera, as with most of life's <span class="hlt">species</span>, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained <span class="hlt">tree</span> searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the <span class="hlt">tree</span>. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous <span class="hlt">species</span> boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for <span class="hlt">species</span> description. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481793</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/927777','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/927777"><span id="translatedtitle">Managing Commercial <span class="hlt">Tree</span> <span class="hlt">Species</span> for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Gary D. Kronrad</p> <p>2006-09-19</p> <p>A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial <span class="hlt">tree</span> <span class="hlt">species</span> so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the <span class="hlt">tree</span> <span class="hlt">species</span>, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each <span class="hlt">species</span>, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4255775','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4255775"><span id="translatedtitle">Multispecies Coalescent Analysis of the Early Diversification of Neotropical Primates: Phylogenetic Inference under Strong Gene <span class="hlt">Trees/Species</span> <span class="hlt">Tree</span> Conflict</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schrago, Carlos G.; Menezes, Albert N.; Furtado, Carolina; Bonvicino, Cibele R.; Seuanez, Hector N.</p> <p>2014-01-01</p> <p>Neotropical primates (NP) are presently distributed in the New World from Mexico to northern Argentina, comprising three large families, Cebidae, Atelidae, and Pitheciidae, consequently to their diversification following their separation from Old World anthropoids near the Eocene/Oligocene boundary, some 40 Ma. The evolution of NP has been intensively investigated in the last decade by studies focusing on their phylogeny and timescale. However, despite major efforts, the phylogenetic relationship between these three major clades and the age of their last common ancestor are still controversial because these inferences were based on limited numbers of loci and dating analyses that did not consider the evolutionary variation associated with the distribution of gene <span class="hlt">trees</span> within the proposed phylogenies. We show, by multispecies coalescent analyses of selected genome segments, spanning along 92,496,904 bp that the early diversification of extant NP was marked by a 2-fold increase of their effective population size and that Atelids and Cebids are more closely related respective to Pitheciids. The molecular phylogeny of NP has been difficult to solve because of population-level phenomena at the early evolution of the lineage. The association of evolutionary variation with the distribution of gene <span class="hlt">trees</span> within proposed phylogenies is crucial for distinguishing the mean genetic divergence between <span class="hlt">species</span> (the mean coalescent time between loci) from speciation time. This approach, based on extensive genomic data provided by new generation DNA sequencing, provides more accurate reconstructions of phylogenies and timescales for all organisms. PMID:25377940</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGeo...11.1649L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGeo...11.1649L"><span id="translatedtitle">Soil greenhouse gas fluxes from different <span class="hlt">tree</span> <span class="hlt">species</span> on Taihang Mountain, North China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.</p> <p>2014-03-01</p> <p>The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how <span class="hlt">tree</span> <span class="hlt">species</span>, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each <span class="hlt">tree</span> <span class="hlt">species</span>. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all <span class="hlt">tree</span> <span class="hlt">species</span> were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six <span class="hlt">tree</span> <span class="hlt">species</span> acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all <span class="hlt">tree</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B53F..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B53F..04M"><span id="translatedtitle"><span class="hlt">Tree</span> <span class="hlt">Species</span> Linked to Large Differences in Ecosystem Carbon Distribution in the Boreal Forest of Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A. G.; Genet, H.; McGuire, A. D.</p> <p>2014-12-01</p> <p>In the boreal forest of Alaska, increased fire severity associated with climate change is altering plant-soil-microbial feedbacks and ecosystem carbon (C) dynamics. The boreal landscape has historically been dominated by black spruce (Picea mariana), a <span class="hlt">tree</span> <span class="hlt">species</span> associated with slow C turnover and large soil organic matter (SOM) accumulation. Historically, low severity fires have led to black spruce regeneration post-fire, thereby maintaining slow C cycling rates and large SOM pools. In recent decades however, an increase in high severity fires has led to greater consumption of the soil organic layer (SOL) during fire and subsequent establishment of deciduous <span class="hlt">tree</span> <span class="hlt">species</span> in areas previously dominated by black spruce. This shift to a more deciduous dominated landscape has many implications for ecosystem structure and function, as well as feedbacks to global C cycling. To improve our understanding of how boreal <span class="hlt">tree</span> <span class="hlt">species</span> affect C cycling, we quantified above- and belowground C stocks and fluxes in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1958 fire near Fairbanks, Alaska. Although total ecosystem C pools (aboveground live <span class="hlt">tree</span> biomass + dead wood + SOL + top 10 cm of mineral soil) were similar for the two stand types, the distr