Science.gov

Sample records for ralstonia eutropha class

  1. A new shuttle vector for gene expression in biopolymer-producing Ralstonia eutropha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia eutropha is a fascinating microorganism with a great scientific importance and an immense commercial potential. A new genetic transformation system for the organism would greatly facilitate the biological study and the molecular engineering of this organism. We have developed a versatile...

  2. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha.

    PubMed

    Lu, Jingnan; Brigham, Christopher J; Gai, Claudia S; Sinskey, Anthony J

    2012-10-01

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. PMID:22864971

  3. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    SciTech Connect

    Lu, JN; Brigham, CJ; Gai, CS; Sinskey, AJ

    2012-08-04

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.

  4. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose.

    PubMed

    Park, Si Jae; Jang, Young-Ah; Noh, Won; Oh, Young Hoon; Lee, Hyuk; David, Yokimiko; Baylon, Mary Grace; Shin, Jihoon; Yang, Jung Eun; Choi, So Young; Lee, Seung Hwan; Lee, Sang Yup

    2015-03-01

    A sucrose utilization pathway was established in Ralstonia eutropha NCIMB11599 and R. eutropha 437-540 by introducing the Mannheimia succiniciproducens MBEL55E sacC gene that encodes β-fructofuranosidase. These engineered strains were examined for the production of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)], respectively, from sucrose as a carbon source. It was found that β-fructofuranosidase excreted into the culture medium could hydrolyze sucrose to glucose and fructose, which were efficiently used as carbon sources by recombinant R. eutropha strains. When R. eutropha NCIMB11599 expressing the sacC gene was cultured in nitrogen-free chemically defined medium containing 20 g/L of sucrose, a high P(3HB) content of 73.2 wt% could be obtained. In addition, R. eutropha 437-540 expressing the Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene accumulated P(3HB-co-21.5 mol% LA) to a polymer content of 19.5 wt% from sucrose by the expression of the sacC gene and the Escherichia coli ldhA gene. The molecular weights of P(3HB) and P(3HB-co-21.5 mol%LA) synthesized in R. eutropha using sucrose as a carbon source were 3.52 × 10(5) (Mn ) and 2.19 × 10(4) (Mn ), respectively. The engineered R. eutropha strains reported here will be useful for the production of polyhydroxyalkanoates (PHAs) from sucrose, one of the most abundant and relatively inexpensive carbon sources. PMID:25258020

  5. Genomic Plasticity in Ralstonia eutropha and Ralstonia pickettii: Evidence for Rapid Genomic Change and Adaptation

    SciTech Connect

    Terence L. MArsh

    2007-06-27

    The proposed foci of our investigations were on Ralstonia eutropha and Rasltonia pickettii. We have 18 derived lineages of the former as well as their progenitor and eleven isolates of the latter. Our goal was to measure the level of plasticity in these strains and attempt to derive a mechanistic understanding of how genomic plasticity formed. Extensive attempts to reproducibly induce conformational changes in the genome of R. eutropha were unsuccessful. We thought that we had a reasonable lead on this inasmuch as we had shown that the ancestral strain along with many of the derivative lineages exhibited “temperature induced mutation and mortality akin to R. metallodurans. However we were unable to get subtractive hybridization working to the degree that it revealed differences between the lineages. During this time the R. pickettii analysis was proving quite fruitful and so we concentrated our efforts on our analyses of R. pickettii. These strains were isolated from a copper-contaminated lake sediment and were resistant to copper at 800 µg/ml (CuSO4). Our results in the investigation of R. pickettii permitted a view into the adaptation of a beta-proteobacteria to an extreme environment. Our worked revealed that within the same ecosystem two genomovars with structurally different genomes and genome sizes were present and apparently filling similar if not identical niches. The genomovars were detected with REP & BOX-PCR, pulse field gel electrophoresis, and DNA:DNA hybridizations. Moreover there were different metal resistance patterns associated with the different genomovars, one showing resistance to Zn and Cd while the other had resistance to Ni. Five of the isolates had a high-copy number extrachromosomal element that was identified as the replicative form of a filamentous phage. Mature virions were isolated from culture broth using PEG precipitation and CsCl density centrifugation. The DNA associated with the filamentous particles was single stranded and had

  6. Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha.

    PubMed

    Bernardi, Amanda C; Gai, Claudia S; Lu, Jingnan; Sinskey, Anthony J; Brigham, Christopher J

    2016-07-01

    Isobutanol (IBT) has attracted much attention from researchers as a next generation drop-in biofuel. Ralstonia eutropha is a gram-negative bacterium which naturally produces polyhydroxybutyrate (PHB), and has been reported to produce IBT after metabolic engineering. Similar to other microbes, R. eutropha experiences toxicity from branched-chain alcohols and is unable to grow in the presence of IBT concentrations higher than 0.5% (v v(-1)). Such low tolerance greatly limits the ability of R. eutropha to grow and produce IBT. In order to study toxicity to the cells, IBT-tolerant strains were developed by experimental evolution, revealing that two genes, previously described as being related to IBT tolerance in Escherichia coli (acrA and acrA6), also presented mutations in R. eutropha evolved strains. The effect on the physiology of the cells of in-frame deletions of each of these genes was assessed in wild type and engineered IBT-producing strains in an attempt to reproduce a tolerant phenotype. The mutant strains' ability to tolerate, consume, and produce IBT were also analyzed. Although deletions of acrA6 and acrA did not significantly improve R. eutropha growth in the presence of IBT, these deletions improved cell survival in the presence of high concentrations of IBT in the extracellular milieu. Moreover, an in-frame acrA deletion in an engineered IBT-producing R. eutropha enhanced the strain's ability to produce IBT, which could potentially be associated with enhanced survival at high IBT concentrations. PMID:26811221

  7. Cloning and Expression of a Ralstonia eutropha HF39 Gene Mediating Indigo Formation in Escherichia coli

    PubMed Central

    Drewlo, Sascha; Brämer, Christian O.; Madkour, Mohamed; Mayer, Frank; Steinbüchel, Alexander

    2001-01-01

    On complex medium Escherichia coli strains carrying hybrid plasmid pBEC/EE:11.0, pSKBEC/BE:9.0, pSKBEC/PP:3.3, or pSKBEC/PP:2.4 harboring genomic DNA of Ralstonia eutropha HF39 produced a blue pigment characterized as indigo by several chemical and spectroscopic methods. A 1,251-bp open reading frame (bec) was cloned and sequenced. The deduced amino acid sequence of bec showed only weak similarities to short-chain acyl-coenzyme A dehydrogenases, and the gene product catalyzed formation of indoxyl, a reactive preliminary stage for production of indigo. PMID:11282658

  8. Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production

    PubMed Central

    2013-01-01

    Background The chemoautotrophic bacterium Ralstonia eutropha can utilize H2/CO2 for growth under aerobic conditions. While this microbial host has great potential to be engineered to produce desired compounds (beyond polyhydroxybutyrate) directly from CO2, little work has been done to develop genetic part libraries to enable such endeavors. Results We report the development of a toolbox for the metabolic engineering of Ralstonia eutropha H16. We have constructed a set of broad-host-range plasmids bearing a variety of origins of replication, promoters, 5’ mRNA stem-loop structures, and ribosomal binding sites. Specifically, we analyzed the origins of replication pCM62 (IncP), pBBR1, pKT (IncQ), and their variants. We tested the promoters PBAD, T7, Pxyls/PM, PlacUV5, and variants thereof for inducible expression. We also evaluated a T7 mRNA stem-loop structure sequence and compared a set of ribosomal binding site (RBS) sequences derived from Escherichia coli, R. eutropha, and a computational RBS design tool. Finally, we employed the toolbox to optimize hydrocarbon production in R. eutropha and demonstrated a 6-fold titer improvement using the appropriate combination of parts. Conclusion We constructed and evaluated a versatile synthetic biology toolbox for Ralstonia eutropha metabolic engineering that could apply to other microbial hosts as well. PMID:24219429

  9. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.

    PubMed

    Riedel, Sebastian L; Jahns, Stefan; Koenig, Steven; Bock, Martina C E; Brigham, Christopher J; Bader, Johannes; Stahl, Ulf

    2015-11-20

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here. An emulsification strategy, without any mechanical or chemical pre-treatment, was developed to increase the bioavailability of solid, poorly-consumable fats. Wild type R. eutropha strain H16 produced 79-82% (w/w) polyhydroxybutyrate (PHB) per cell dry weight (CDW) when cultivated on various fats. A productivity of 0.3g PHB/(L × h) with a total PHB production of 24 g/L was achieved using tallow as carbon source. Using a recombinant strain of R. eutropha that produces poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)], 49-72% (w/w) of PHA per CDW with a HHx content of 16-27 mol% were produced in shaking flask experiments. The recombinant strain was grown on waste animal fat of the lowest quality available at lab fermenter scale, resulting in 45 g/L CDW with 60% (w/w) PHA per CDW and a productivity of 0.4 g PHA/(L × h). The final HHx content of the polymer was 19 mol%. The use of low quality waste animal fats as an inexpensive carbon feedstock exhibits a high potential to accelerate the commercialization of PHAs. PMID:26428087

  10. Production of Poly (3-Hydroxybutyric Acid) by Ralstonia eutropha in a Biocalorimeter and its Thermokinetic Studies.

    PubMed

    Anusha, Subramanian Mohanakrishnan; Leelaram, Santharam; Surianarayanan, Mahadevan

    2016-07-01

    Bioplastic production from microbial sources is an emerging area which provides opportunities even to convert the wastes into bioplastics. Poly (3-hydroxybutyric acid), commonly called as PHB, is a bioplastic, which is stored as intracellular cytoplasmic inclusions in microorganisms. The objectives of this study are to calorimetrically monitor the PHB production and evaluate the thermokinetic data in a bioreaction calorimeter (BioRC1e). Thus, a well-known PHB-producing bacteria Ralstonia eutropha was selected for batch process in a bioreaction calorimeter. The metabolic heat generated was found to be correlated with the biomass, substrate consumption, oxygen uptake rate (OUR), carbon dioxide evolution rate (CER) and PHB production. The OUR pattern explained the oxidative metabolism of the strain R. eutropha. The heat yields due to biomass and glucose consumption during PHB production were found to be 12.56 and 13.56 kJ/g, respectively. The oxycalorific value obtained for the PHB production was 443.80 kJ/mol of O2. The concentration of PHB obtained in BioRC1e was 4.33 g/L with a production rate of 0.09 g/L/h. The chemical structure of the extracted PHB by R. eutropha was confirmed using fourier transform infrared spectroscopy (FT-IR) and (1)H and (13)C nuclear magnetic resonance (NMR) analysis. PMID:27003281

  11. Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16.

    PubMed

    Fleige, Christian; Kroll, Jens; Steinbüchel, Alexander

    2011-08-01

    The β-proteobacterium Ralstonia eutropha H16 utilizes fructose and gluconate as carbon sources for heterotrophic growth exclusively via the Entner-Doudoroff pathway with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase. By deletion of the responsible gene eda, we constructed a KDPG aldolase-negative strain, which is disabled to supply pyruvate for energy metabolism from fructose or gluconate as sole carbon sources. To restore growth on fructose, an alternative pathway, similar to the fructose-6-phosphate shunt of heterofermentative bifidobacteria, was established. For this, the xfp gene from Bifidobacterium animalis, coding for a bifunctional xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp; Meile et al. in J Bacteriol 183:2929-2936, 2001), was expressed in R. eutropha H16 PHB(-)4 Δeda. This Xfp catalyzes the phosphorolytic cleavage of fructose 6-phosphate to erythrose 4-phosphate and acetylphosphate as well as of xylulose 5-phosphate to glyceralaldehyde 3-phosphate and acetylphosphate. The recombinant strain showed phosphoketolase (PKT) activity on either substrate, and was able to use fructose as sole carbon source for growth, because PKT is the only enzyme that is missing in R. eutropha H16 to establish the artificial fructose-6-phosphate shunt. The Xfp-expressing strain R. eutropha H16 PHB(-)4 Δeda (pBBR1MCS-3::xfp) should be applicable for a novel variant of a plasmid addiction system to stably maintain episomally encoded genetic information during fermentative production processes. Plasmid addiction systems are often used to ensure plasmid stability in many biotechnology relevant microorganisms and processes without the need to apply external selection pressure, like the addition of antibiotics. By episomal expression of xfp in a R. eutropha H16 mutant lacking KDPG aldolase activity and cultivation in mineral salt medium with fructose as sole carbon source, the growth of this bacterium was addicted to the constructed xfp

  12. Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite

    PubMed Central

    2012-01-01

    Isolation of polyhydroxyalkanoates (PHAs) from bacterial cell matter is a critical step in order to achieve a profitable production of the polymer. Therefore, an extraction method must lead to a high recovery of a pure product at low costs. This study presents a simplified method for large scale poly(3-hydroxybutyrate), poly(3HB), extraction using sodium hypochlorite. Poly(3HB) was extracted from cells of Ralstonia eutropha H16 at almost 96% purity. At different extraction volumes, a maximum recovery rate of 91.32% was obtained. At the largest extraction volume of 50 L, poly(3HB) with an average purity of 93.32% ± 4.62% was extracted with a maximum recovery of 87.03% of the initial poly(3HB) content. This process is easy to handle and requires less efforts than previously described processes. PMID:23164136

  13. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16

    PubMed Central

    Wenning, Leonie; Stöveken, Nadine; Wübbeler, Jan Hendrik

    2015-01-01

    Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs. PMID:26590284

  14. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  15. Catalytic and Molecular Properties of the Quinohemoprotein Tetrahydrofurfuryl Alcohol Dehydrogenase from Ralstonia eutropha Strain Bo

    PubMed Central

    Zarnt, Grit; Schräder, Thomas; Andreesen, Jan R.

    2001-01-01

    The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparent kcat/Km and Ki values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a kcat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases. PMID:11222593

  16. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    SciTech Connect

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2

  17. NAD(P)-Dependent Aldehyde Dehydrogenases Induced during Growth of Ralstonia eutropha Strain Bo on Tetrahydrofurfuryl Alcohol

    PubMed Central

    Schräder, Thomas; Zarnt, Grit; Andreesen, Jan R.

    2001-01-01

    Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4. PMID:11717302

  18. Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation

    SciTech Connect

    Fei, Q; Brigham, CJ; Lu, JN; Fu, RZ; Sinskey, AJ

    2013-09-01

    Branched-chain alcohols are considered promising green energy sources due to their compatibility with existing infrastructure and their high energy density. We utilized a strain of Ralstonia eutropha capable of producing branched-chain alcohols and examined its production in flask cultures. In order to increase isobutanol and 3-methyl-1-butanol (isoamyl alcohol) productivity in the engineered strain, batch, fed-batch, and two-stage fed-batch cultures were carried out in this work. The effects of nitrogen source concentration on branched-chain alcohol production were investigated under four different initial concentrations in fermenters. A maximum 380 g m(-3) of branched-chain alcohol production was observed with 2 kg m(-3) initial NH4Cl concentration in batch cultures. A pH-stat control strategy was utilized to investigate the optimum carbon source amount fed during fed-batch cultures for higher cell density. In cultures of R. eutropha strains that did not produce polyhydroxyalkanoate or branched-chain alcohols, a maximum cell dry weight of 36 kg m(-3) was observed using a fed-batch strategy, when 10 kg m(-3) carbon source was fed into culture medium. Finally, a total branched-chain alcohol titer of 790 g m(-3), the highest branched-chain alcohol yield of 0.03 g g(-1), and the maximum branched-chain alcohol productivity of 8.23 g m(-3) h(-1) were obtained from the engineered strain Re2410/pJL26 in a two-stage fed-batch culture system with pH-stat control. Isobutanol made up over 95% (mass fraction) of the total branched-chain alcohols titer produced in this study. (C) 2013 Published by Elsevier Ltd.

  19. Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16.

    PubMed

    Karstens, Katja; Zschiedrich, Christopher P; Bowien, Botho; Stülke, Jörg; Görke, Boris

    2014-04-01

    EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the β-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB). PHB accumulation is controlled by the stringent response and induced under conditions of nitrogen deprivation. Knockout of EIIA(Ntr) increases the PHB content. In contrast, absence of enzyme I or HPr, which deliver phosphoryl groups to EIIA(Ntr), has the opposite effect. To clarify the role of EIIA(Ntr) in PHB formation, we screened for interacting proteins that co-purify with Strep-tagged EIIA(Ntr) from R. eutropha cells. This approach identified the bifunctional ppGpp synthase/hydrolase SpoT1, a key enzyme of the stringent response. Two-hybrid and far-Western analyses confirmed the interaction and indicated that only non-phosphorylated EIIA(Ntr) interacts with SpoT1. Interestingly, this interaction does not occur between the corresponding proteins of E. coli. Vice versa, interaction of EIIA(Ntr) with KdpD appears to be absent in R. eutropha, although R. eutropha EIIA(Ntr) can perfectly substitute its homologue in E. coli in regulation of KdpD activity. Thus, interaction with KdpD might be an evolutionary 'ancient' task of EIIA(Ntr) that was subsequently replaced by interaction with SpoT1 in R. eutropha. In conclusion, EIIA(Ntr) might integrate information about nutritional status, as reflected by its phosphorylation state, into the stringent response, thereby controlling cellular PHB content in R. eutropha. PMID:24515609

  20. Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16

    PubMed Central

    2014-01-01

    Carbonic anhydrase (CA) enzymes catalyze the interconversion of CO2 and bicarbonate. These enzymes play important roles in cellular metabolism, CO2 transport, ion transport, and internal pH regulation. Understanding the metabolic role of CAs in the chemolithoautotropic bacterium Ralstonia eutropha is important for the development of high performance fermentation processes based on the bacterium’s capability to fix carbon using the Calvin-Benson-Bassham (CBB) cycle. Analysis of the R. eutropha H16 genome sequence revealed the presence of four CA genes: can, can2, caa and cag. We evaluated the importance of each of the CAs in the metabolism of R. eutropha by examination of growth and enzyme activity in gene deletion, complementation, and overexpression strains. All four purified CAs were capable of performing the interconversion of CO2 and HCO3–, although the equilibrium towards the formation of CO2 or HCO3– differs with each CA. Deletion of can, encoding a β-CA, affected the growth of R. eutropha; however the growth defect could be compensated by adding CO2 to the culture. Deletion of the caa, encoding an α-CA, had the strongest deleterious influence on cell growth. Strains with deletion or overexpression of can2 or cag genes exhibited similar behavior to wild type under most of the conditions tested. In this work, Caa was studied in greater detail using microscopy and complementation experiments, which helped confirm its periplasmic localization and determine its importance for robust growth of R. eutropha. A hypothesis for the coordinated role of these four enzymes in the metabolism of R. eutropha is proposed. PMID:24410804

  1. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here. PMID:24343766

  2. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications

    PubMed Central

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P.

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: • Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication. • Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha. • The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry. PMID:27077052

  3. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications.

    PubMed

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: •Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication.•Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha.•The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry. PMID:27077052

  4. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage.

    PubMed

    Chen, Janice S; Colón, Brendan; Dusel, Brendon; Ziesack, Marika; Way, Jeffrey C; Torella, Joseph P

    2015-01-01

    Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB's physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-type R. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligase fadD3, an entry point for fatty acids into β-oxidation. As ΔfadD3 mutants still consumed laurate, and because the R. eutropha genome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologous β-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives in R. eutropha. PMID:26664804

  5. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage

    PubMed Central

    Chen, Janice S.; Colón, Brendan; Dusel, Brendon; Ziesack, Marika; Torella, Joseph P.

    2015-01-01

    Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB’s physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-type R. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligase fadD3, an entry point for fatty acids into β-oxidation. As ΔfadD3 mutants still consumed laurate, and because the R. eutropha genome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologous β-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives in R. eutropha. PMID:26664804

  6. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc. PMID:24584238

  7. Whole-cell kinetics of trichloroethylene degradation by phenol hydroxylase in a Ralstonia eutropha JMP134 derivative

    SciTech Connect

    Ayoubi, P.J.; Harker, A.R.

    1998-11-01

    The rate, progress, and limits of trichloroethylene (TCE) degradation by Ralstonia eutropha AEK301/pYK3021 whole cells were examined in the absence of aromatic induction. At TCE concentrations up to 800 {micro}M, degradation rates were sustained until TCE was no longer detectable. The K{sub s} and V{sub max} for TCE degradation by AEK301/pYK3021 whole cells were determined to be 630 {micro}M and 22.6 nmol/min/mg of total protein, respectively. The sustained linear rates of TCE degradation by AEK301/pYK3021 up to a concentration of 800 {micro}M TCE suggest that solvent effects are limited during the degradation of TCE and that this construct is little affected by the formation of toxic intermediates at the TCE levels and assay duration tested. TCE degradation by this strain is subject to carbon catabolite repression.

  8. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  9. Genome-based analysis and gene dosage studies provide new insight into 3-hydroxy-4-methylvalerate biosynthesis in Ralstonia eutropha.

    PubMed

    Saika, Azusa; Ushimaru, Kazunori; Mizuno, Shoji; Tsuge, Takeharu

    2015-04-01

    Recombinant Ralstonia eutropha strain PHB(-)4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB(-)4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB(-)4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  10. Genome-Based Analysis and Gene Dosage Studies Provide New Insight into 3-Hydroxy-4-Methylvalerate Biosynthesis in Ralstonia eutropha

    PubMed Central

    Ushimaru, Kazunori; Mizuno, Shoji

    2015-01-01

    Recombinant Ralstonia eutropha strain PHB−4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB−4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB−4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  11. Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha.

    PubMed

    Ushimaru, Kazunori; Tsuge, Takeharu

    2016-05-01

    The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction. PMID:26728018

  12. Impact of Ralstonia eutropha's Poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB Storage in Recombinant Escherichia coli

    PubMed Central

    Eggers, Jessica

    2014-01-01

    The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay

  13. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  14. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16

    SciTech Connect

    Kim, Eun-Jung; Son, Hyeoncheol Francis; Kim, Sangwoo; Ahn, Jae-Woo; Kim, Kyung-Jin

    2014-02-14

    Highlights: • We determined a crystal structure of β-keto thiolase from Ralstonia eutropha H16 (ReBktB). • Distinct substrate binding mode ReBktB was elucidated. • Enzymatic kinetic parameters of ReBktB were revealed. - Abstract: ReBktB is a β-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3 Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, such as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K{sub m}, V{sub max}, and K{sub cat} values of 11.58 μM, 1.5 μmol/min, and 102.18 s{sup −1}, respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.

  15. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock.

    PubMed

    Saratale, Ganesh D; Oh, Min-Kyu

    2015-09-01

    Alkaline pretreatment using NaOH, KOH, or NaOCl has been applied to various types of waste biomass to enhance enzymatic digestibility. Pretreatment (2% NaOH, 121 °C, 30 min) of rice paddy straw (PS) resulted in a maximum yield of 703 mg of reducing sugar per gram of PS with 84.19% hydrolysis yield after a two-step enzymatic hydrolysis process. Ralstonia eutropha ATCC 17699 was tested for its ability to synthesize poly-3-hydroxybutyrate (PHB) using PS hydrolysates as its sole carbon source. It is noteworthy that dry cell weight, polyhydroxyalkanoate (PHA) accumulation and PHB yield with the use of laboratory-grade sugars were similar to those achieved with PS-derived sugars. Under optimized conditions, we observed maximal PHA accumulation (75.45%) and PHB production (11.42 g/L) within 48 h of fermentation. After PHB recovery, the physicochemical properties of PHB were determined by various analytical techniques, showed the results were consistent with the characteristics of a standard polymer of PHB. Thus, the PS hydrolysate proved to be an excellent cheap carbon substrate for PHB production. PMID:26206741

  16. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.

    PubMed

    Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ

    2016-01-15

    We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD(+)-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its Mo(V) state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877

  17. A Closer Look on the Polyhydroxybutyrate- (PHB-) Negative Phenotype of Ralstonia eutropha PHB-4

    PubMed Central

    Raberg, Matthias; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2014-01-01

    The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby

  18. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.

    PubMed

    Esparza, Mario; Jedlicki, Eugenia; Dopson, Mark; Holmes, David S

    2015-08-01

    Autotrophic fixation of carbon dioxide into cellular carbon occurs via several pathways but quantitatively, the Calvin-Benson-Bassham cycle is the most important. CbbR regulates the expression of the cbb genes involved in CO2 fixation via the Calvin-Benson-Bassham cycle in a number of autotrophic bacteria. A gene potentially encoding CbbR (cbbR(AF)) has been predicted in the genome of the chemolithoautotrophic, extreme acidophile Acidithiobacillus ferrooxidans. However, this microorganism is recalcitrant to genetic manipulation impeding the experimental validation of bioinformatic predictions. Two novel functional assays were devised to advance our understanding of cbbR(AF) function using the mutated facultative autotroph Ralstonia eutropha H14 ΔcbbR as a surrogate host to test gene function: (i) cbbR(AF) was expressed in R. eutropha and was able to complement ΔcbbR; and (ii) CbbR(AF) was able to regulate the in vivo activity of four A. ferrooxidans cbb operon promoters in R. eutropha. These results open up the use of R. eutropha as a surrogate host to explore cbbR(AF) activity. PMID:26152700

  19. Stable Carbon Isotope Discrimination by Form IC Rubisco Enzymes of the Extremely Metabolically Versatile Rhodobacter sphaeroides and Ralstonia eutropha}

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.; Boller, A. J.; Zhao, Z.; Tabita, F. R.; Cavanaugh, C. M.; Scott, K. M.

    2006-12-01

    Variations in the relative amounts of 12C and 13C in microbial biomass can be used to infer the pathway(s) autotrophs use to fix and assimilate dissolved inorganic carbon. Discrimination against 13C by the enzymes catalyzing autotrophic carbon fixation is a major factor dictating biomass stable carbon isotopic compositions (δ13C = {[13C/12Csample/13C/12Cstandard] - 1} × 1000). Five different forms of RubisCO (IA, IB, IC, ID, and II) are utilized by algae and autotrophic bacteria reliant on the Calvin-Benson cycle for carbon fixation. To date, isotope discrimination has been measured for form IA, IB, and II RubisCOs, and their ɛ values (={[12k/13k] - 1} × 1000; 12k and 13k = rates of 12C and 13C fixation) range from 18 to 29‰, explaining the variation in biomass δ13C values of autotrophs utilizing these enzymes. Isotope discrimination by form IC RubisCO has not been measured, despite the presence of this enzyme in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides and Ralstonia eutropha. The purpose of this work was to determine the ɛ values for form IC RubisCO enzymes from R. sphaeroides and R. eutropha. Recombinant form IC RubisCOs were purified by conventional column chromatography procedures. Assay conditions (pH, dissolved inorganic carbon concentration) were tested to determine which parameters were conducive to the high rates of carbon fixation necessary for ɛ determination. Under standard conditions (pH 8.5 and 5 mM DIC), form IC RubisCO activities were sufficient for ɛ determination. Experiments are currently being conducted to measure the ɛ values of these enzymes. Sampling the full phylogenetic breadth of RubisCO enzymes for isotopic discrimination makes it possible to constrain the range of δ13C values of organisms fixing carbon via the Calvin-Benson cycle. These results are

  20. Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16

    PubMed Central

    Sznajder, Anna; Pfeiffer, Daniel

    2014-01-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058

  1. Formation of Polyphosphate by Polyphosphate Kinases and Its Relationship to Poly(3-Hydroxybutyrate) Accumulation in Ralstonia eutropha Strain H16

    PubMed Central

    Tumlirsch, Tony; Sznajder, Anna

    2015-01-01

    A protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion of phaX resulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs. In vivo colocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of the Ralstonia eutropha ppk (ppkReu) genes in an Escherichia coli Δppk background and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds. PMID:26407880

  2. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    PubMed Central

    Brigham, Christopher J.; Speth, Daan R.; Rha, ChoKyun

    2012-01-01

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor σ54 increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with dl-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process. PMID:22961894

  3. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    SciTech Connect

    Brigham, CJ; Speth, DR; Rha, C; Sinskey, AJ

    2012-10-22

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.

  4. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.

    PubMed

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-06-25

    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics. PMID:26017299

  5. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.

    PubMed

    Lindenkamp, Nicole; Schürmann, Marc; Steinbüchel, Alexander

    2013-09-01

    In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating

  6. Characterization of a Second tfd Gene Cluster for Chlorophenol and Chlorocatechol Metabolism on Plasmid pJP4 in Ralstonia eutropha JMP134(pJP4)

    PubMed Central

    Laemmli, Caroline M.; Leveau, Johan H. J.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof

    2000-01-01

    Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdDIICIIEIIFII and tfdBII (in short, the tfdII cluster), by analogy to tfdCDEF and tfdB (the tfdI cluster). Primer extension analysis of mRNA isolated from 2,4-D-grown R. eutropha JMP134 identified a single transcription start site in front of the first gene of the cluster, tfdDII, suggesting an operon-like organization for the tfdII genes. By expressing each ORF in Escherichia coli, we confirmed that tfdDII coded for a chloromuconate cycloisomerase, tfdCII coded for a chlorocatechol 1,2-dioxygenase, tfdEII coded for a dienelactone hydrolase, tfdFII coded for a maleylacetate reductase, and tfdBII coded for a chlorophenol hydroxylase. Dot blot hybridizations of mRNA isolated from R. eutropha JMP134 showed that both tfdI and tfdII genes are transcribed upon induction with 2,4-D. Thus, the functions encoded by the tfdII genes seem to be redundant with respect to those of the tfdI cluster. One reason why the tfdII genes do not disappear from plasmid pJP4 might be the necessity for keeping the regulatory genes for the 2,4-D pathway expression tfdR and tfdS. PMID:10894723

  7. Modification of the aggregation behaviour of the environmental Ralstonia eutropha-like strain AE815 is reflected by both surface hydrophobicity and amplified fragment length polymorphism (AFLP) patterns.

    PubMed

    Bossier, P; Top, E M; Huys, G; Kersters, K; Boonaert, C J; Rouxhet, P G; Verstraete, W

    2000-02-01

    After inoculation of the plasmid-free non-aggregative Ralstonia eutropha-like strain AE815 in activated sludge, followed by reisolation on a selective medium, a mutant strain A3 was obtained, which was characterized by an autoaggregative behaviour. Strain A3 had also acquired an IncP1 plasmid, pLME1, co-aggregated with yeast cells when co-cultured, and stained better with Congo red than did the AE815 strain. Contact angle measurements showed that the mutant strain was considerably more hydrophobic than the parent strain AE815, and scanning electron microscopy (SEM) revealed the production of an extracellular substance. A similar hydrophobic mutant (AE176R) could be isolated from the AE815-isogenic R. eutropha-like strain AE176. With the DNA fingerprinting technique repetitive extragenic palindromic-polymerase chain reaction (REP-PCR), no differences between these four strains, AE815, A3, AE176 and AE176R, could be revealed. However, using the amplified fragment length polymorphism (AFLP) DNA fingerprinting technique with three different primer combinations, small but clear reproducible differences between the banding patterns of the autoaggregative mutants and their non-autoaggregative parent strains were observed for each primer set. These studies demonstrate that, upon introduction of a strain in an activated sludge microbial community, minor genetic changes readily occur, which can nevertheless have major consequences for the phenotype of the strain and its aggregation behaviour. PMID:11243262

  8. Impact of the core components of the phosphoenolpyruvate-carbohydrate phosphotransferase system, HPr and EI, on differential protein expression in Ralstonia eutropha H16.

    PubMed

    Kaddor, Chlud; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2012-07-01

    In Ralstonia eutropha H16, seven genes encoding proteins being involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified. In order to provide more insights into the poly(3-hydroxybutyrate) (PHB)-leaky phenotype of the HPr/EI deletion mutants H16ΔptsH, H16ΔptsI, and H16ΔptsHI when grown on the non-PTS substrate gluconate, parallel fermentations for comparison of their growth behavior were performed. Samples from the exponential, the early stationary, and late stationary growth phases were investigated by microscopy, gas chromatography and (phospho-) proteome analysis. A total of 71 differentially expressed proteins were identified using 2D-PAGE, Pro-Q Diamond and Coomassie staining, and MALDI-TOF analysis. Detected proteins were classified into five major functional groups: carbon metabolism, energy metabolism, amino acid metabolism, translation, and membrane transport/outer membrane proteins. Proteome analyses revealed enhanced expression of proteins involved in the Entner-Doudoroff pathway and in subsequent reactions in cells of strain H16 compared to the mutant H16ΔptsHI. Furthermore, proteins involved in PHB accumulation showed increased abundance in the wild-type. This expression pattern allowed us to identify proteins affecting carbon metabolism/PHB biosynthesis in strain H16 and translation/amino acid metabolism in strain H16ΔptsHI, and to gain insight into the molecular response of R. eutropha to the deletion of HPr/EI. PMID:22630130

  9. Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil.

    PubMed

    Insomphun, Chayatip; Mifune, Jun; Orita, Izumi; Numata, Keiji; Nakamura, Satoshi; Fukui, Toshiaki

    2014-02-01

    Ralstonia eutropha H16 is a useful platform for metabolic engineering aiming at efficient production of polyhydroxyalkanaotes being attracted as practical bioplastics. This study focused on bifunctional (S)-specific 2-enoyl-CoA hydratase/(S)-3-hydroxyacyl-CoA dehydrogenase encoded by fadB to obtain information regarding β-oxidation in this bacterium and to achieve compositional regulation of poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] synthesized from soybean oil. In addition to two FadB homologs (FadB1 and FadB') encoded within the previously identified β-oxidation gene clusters on the chromosome 1, a gene of third homolog (FadB2) was found on chromosome 2 of R. eutropha. The fadB homologs were disrupted in R. eutropha strain NSDG expressing a mutant gene of PHA synthase from Aeromonas caviae. The gene disruptions affected neither growth nor PHA production on fructose. On soybean oil, fadB' deletion led to reduction of PHA quantity attributed to decrease of 3HB unit, while fadB1 deletion slightly increased 3HHx composition without serious negative impact on both cell growth and PHA biosynthesis. Double deletion of fadB1 and fadB' significantly impaired the cell growth and PHA biosynthesis, indicating the major roles of fadB1 and fadB' in β-oxidation. When fadB1 was deleted in several engineered strains of R. eutropha possessing additional (R)-enoyl-CoA hydratase gene(s), the net amounts of 3HHx unit in the PHA fractions showed 6-21% increase probably due to slightly enhanced supply of medium-chain-length 2-enoyl-CoAs through the partially impaired β-oxidation. These results demonstrated that modification of β-oxidation by fadB1 deletion was effective for increasing 3HHx composition in the copolyesters produced from soybean oil. PMID:23999062

  10. PHA Productivity and Yield of Ralstonia eutropha When Intermittently or Continuously Fed a Mixture of Short Chain Fatty Acids

    PubMed Central

    Chakraborty, Panchali; Muthukumarappan, Kasiviswanathan; Gibbons, William R.

    2012-01-01

    The research described in this present study was part of a larger effort focused on developing a dual substrate, dual fermentation process to produce Polyhydroxyalkanoate (PHA). The focus of this study was developing and optimizing a strategy for feeding a mixture of SCFAs (simulated ARF) and maximizing PHA production in a cost-effective way. Three different feeding strategies were examined in this study. The substrate evaluated in this study for the growth phase of R. eutropha was condensed corn solubles, a low-value byproduct of the dry-mill, corn ethanol industry. The culture was grown to high cell densities in nitrogen-supplemented condensed corn solubles media in 5 L bioreactors. The overall growth rate of R. eutropha was 0.2 h−1. The 20 mL ARF feeding every 3 h from 48 to 109 h strategy gave the best results in terms of PHA production. PHA productivity (0.0697 g L−1 h−1), PHA concentration (8.37 g L−1), and PHA content (39.52%) were the highest when ARF was fed every 3 h for 61 h. This study proved that condensed corn solubles can be potentially used as a growth medium to boost PHA production by R. eutropha thus reducing the overall cost of biopolymer production. PMID:23118512

  11. Phenol degradation by Ralstonia eutropha: Colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations

    SciTech Connect

    Leonard, D.; Destruhaut, C.; Lindley, N.D.; Youssef, C.B.; Queinnec, I.

    1999-11-20

    Phenol biodegradation by Ralstonia eutropha was modeled in different culture modes to assess phenol feeding in biotechnological depollution processes. The substrate-inhibited growth of R. eutropha was described by the Haldane equation with a K{sub s} of 2 mg/L, a K{sub i} of 350 mg/L and a {micro}{sub max} of 0.41 h{sup {minus}1}. Furthermore, growth in several culture modes was characterized by the appearance of a yellow color, due to production of a metabolic intermediate of the phenol catabolic pathway, 2-hydroxymuconic semialdehyde (2phms) which was directly correlated to the growth rate and/or the phenol-degradation rate, because these two parameters are coupled. This correlation between color appearance and metabolic activity was used to develop a control procedure for optimal phenol degradation. A mass-balance equation modeling approach combined with a filtering step using an extended Kalman filter enabled state variables of the biological system to be simulated. A PI controller, using the estimation of the phenol concentration provided by the modeling step, was then built to maintain the phenol concentration at a constant set-point of 0.1 g/L which corresponded to a constant specific growth rate of 0.3 h{sup {minus}1}, close to the maximal specific growth value of the strain. This monitoring strategy, validated for two fed-batch cultures, could lead, in self-cycling fermentation systems, to a productivity of more than 19 kg of phenol consumed/m{sup 3}/d which is the highest value reported to date in the literature. This system of monitoring metabolic activity also protected the bacterial culture against toxicity problems due to the transient accumulation of phenol.

  12. Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways.

    PubMed

    Trefault, N; De la Iglesia, R; Molina, A M; Manzano, M; Ledger, T; Pérez-Pantoja, D; Sánchez, M A; Stuardo, M; González, B

    2004-07-01

    Ralstonia eutropha JMP134 (pJP4) is a useful model for the study of bacterial degradation of substituted aromatic pollutants. Several key degrading capabilities, encoded by tfd genes, are located in the 88 kb, self-transmissible, IncP-1 beta plasmid pJP4. The complete sequence of the 87,688 nucleotides of pJP4, encoding 83 open reading frames (ORFs), is reported. Most of the coding sequence corresponds to a well-conserved IncP-1 beta backbone and the previously reported tfd genes. In addition, we found hypothetical proteins putatively involved in the transport of aromatic compounds and short-chain fatty acid oxidation. ORFs related to mobile elements, including the Tn501-encoded mercury resistance determinants, an IS1071-based composite transposon and a cryptic class II transposon, are also present in pJP4. These mobile elements are inefficient in transposition and are located in two regions of pJP4 that are rich in remnants of lateral gene transfer events. pJP4 plasmid was able to capture chromosomal genes and form hybrid plasmids with the IncP-1 alpha plasmid RP4. These observations are integrated into a model for the evolution of pJP4, which reveals mechanisms of bacterial adaptation to degrade pollutants. PMID:15186344

  13. The Soluble NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 Consists of Six Subunits and Can Be Specifically Activated by NADPH

    PubMed Central

    Burgdorf, Tanja; van der Linden, Eddy; Bernhard, Michael; Yuan Yin, Qing; Back, Jaap W.; Hartog, Aloysius F.; Muijsers, Anton O.; de Koster, Chris G.; Albracht, Simon P. J.; Friedrich, Bärbel

    2005-01-01

    The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD+ at the expense of H2. We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI2. Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I). PMID:15838039

  14. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO.

    PubMed

    Ash, Philip A; Liu, Juan; Coutard, Nathan; Heidary, Nina; Horch, Marius; Gudim, Ingvild; Simler, Thomas; Zebger, Ingo; Lenz, Oliver; Vincent, Kylie A

    2015-10-29

    The regulatory hydrogenase (RH) from Ralstonia eutropha acts as the H2-sensing unit of a two-component system that regulates biosynthesis of the energy conserving hydrogenases of the organism according to the availability of H2. The H2 oxidation activity, which was so far determined in vitro with artificial electron acceptors, has been considered to be insensitive to O2 and CO. It is assumed that bulky isoleucine and phenylalanine amino acid residues close to the NiFe active site "gate" gas access, preventing molecules larger than H2 interacting with the active site. We have carried out sensitive electrochemical measurements to demonstrate that O2 is in fact an inhibitor of H2 oxidation by the RH, and that both H(+) reduction and H2 oxidation are inhibited by CO. Furthermore, we have demonstrated that the inhibitory effect of O2 arises due to interaction of O2 with the active site. Using protein film infrared electrochemistry (PFIRE) under H2 oxidation conditions, in conjunction with solution infrared measurements, we have identified previously unreported oxidized inactive and catalytically active reduced states of the RH active site. These findings suggest that the RH has a rich active site chemistry similar to that of other NiFe hydrogenases. PMID:26115011

  15. Use of a packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha.

    PubMed

    Jalilnejad, Elham; Vahabzadeh, Farzaneh

    2014-03-01

    Biodegradation of naphthalene by Ralstonia eutropha (also known as Cupriavidus necator) in a packed-bed airlift reactor with net draft tube (PBALR-nd) was studied; the Kissiris pieces were the packing material. The reactor hydrodynamics has been characterized under abiotic conditions and the dependencies of the superficial gas velocity (U G) on the gas holdup (εG), liquid mixing time, and mass transfer coefficient were determined. The improving role of the net draft tube in this small column reactor (height 42 cm, ID 5 cm) was confirmed. The flow regime was described using the εG α U G (n) expression, and bubbly flow was observed in PBALR-nd at U G < 2.83 cm/s. In the second step of the present work, the kinetics of biodegradation was modeled using the Haldane and Aiba equations. The fitting of the experimental results to the models were done according to the nonlinear least square regression technique. The biokinetic constants (q m, K s, and K i) were estimated and q m as the specific biodegradation rate was equaled to 0.415 and 0.24 mgnaph./mgcell h for the Haldane and Aiba equations, respectively. The goodness of fit reported as R (2) and root-mean-square error (RMSE) showed the adequate fitness of the Haldane and Aiba models in predicting naphthalene biodegradation kinetics. On the basis of the HPLC results, a hypothetical pathway for the biodegradation was presented. PMID:24338109

  16. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.

    PubMed

    Magomedova, Zalina; Grecu, Andreea; Sensen, Christoph W; Schwab, Helmut; Heidinger, Petra

    2016-03-10

    Biocatalysis has significant advantages over organic synthesis in the field of chiral molecule production and several types of stereoselective enzymes are already in use in industrial biotechnology. However, there is still a high demand for new enzymes capable of transforming bulky molecules with sufficient operability. In order to reveal novel high-potential biocatalysts, the complete genome of the β-proteobacterium Ralstonia eutropha H16 was screened for potential short-chain dehydrogenases/reductases (SDRs). We were able to identify two (S)-enantioselective SDRs named A5 and B3. These showed clear preference towards long-chain and aromatic secondary alcohols, aldehydes and ketones, with diaryl diketone benzil as one of the best substrates. In addition the phylogenetic analysis of all enzyme types, which are known to facilitate benzil reduction, revealed at least two separate evolutionary clusters. Our results indicate the biotechnological potential of SDRs A5 and B3 for the production of chiral compounds with potential commercial value. PMID:26812656

  17. Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures

    PubMed Central

    Grunwald, Stephan; Mottet, Alexis; Grousseau, Estelle; Plassmeier, Jens K; Popović, Milan K; Uribelarrea, Jean-Louis; Gorret, Nathalie; Guillouet, Stéphane E; Sinskey, Anthony

    2015-01-01

    Formic acid, acting as both carbon and energy source, is a safe alternative to a carbon dioxide, hydrogen and dioxygen mix for studying the conversion of carbon through the Calvin–Benson–Bassham (CBB) cycle into value-added chemical compounds by non-photosynthetic microorganisms. In this work, organoautotrophic growth of Ralstonia eutropha on formic acid was studied using an approach combining stoichiometric modeling and controlled cultures in bioreactors. A strain deleted of its polyhydroxyalkanoate production pathway was used in order to carry out a physiological characterization. The maximal growth yield was determined at 0.16 Cmole Cmole−1 in a formate-limited continuous culture. The measured yield corresponded to 76% to 85% of the theoretical yield (later confirmed in pH-controlled fed-batch cultures). The stoichiometric study highlighted the imbalance between carbon and energy provided by formic acid and explained the low growth yields measured. Fed-batch cultures were also used to determine the maximum specific growth rate (μmax = 0.18 h−1) and to study the impact of increasing formic acid concentrations on growth yields. High formic acid sensitivity was found in R eutropha since a linear decrease in the biomass yield with increasing residual formic acid concentrations was observed between 0 and 1.5 g l−1. PMID:25123319

  18. (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB’) from fatty acid degradation operon of Ralstonia eutropha H16

    PubMed Central

    2014-01-01

    In this study (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (H16_A0461/FadB’, gene ID: 4247876) from one of two active fatty acid degradation operons of Ralstonia eutropha H16 has been heterologously expressed in Escherichia coli, purified as protein possessing a His-Tag and initially characterized. FadB’ is an enzyme with two catalytic domains exhibiting a single monomeric structure and possessing a molecular weight of 86 kDa. The C-terminal part of the enzyme harbors enoyl-CoA hydratase activity and is able to convert trans-crotonyl-CoA to 3-hydroxybutyryl-CoA. The N-terminal part of FadB’ comprises an NAD+ binding site and is responsible for 3-hydroxyacyl-CoA dehydrogenase activity converting (S)-3-hydroxybutyryl-CoA to acetoacetyl-CoA. Enoyl-CoA hydratase activity was detected spectrophotometrically with trans-crotonyl-CoA. (S)-3-Hydroxyacyl-CoA dehydrogenase activity was measured in both directions with acetoacetyl-CoA and 3-hydroxybutyryl-CoA. FadB’ was found to be strictly stereospecific to (S)-3-hydroxybutyryl-CoA and to prefer NAD+. The Km value for acetoacetyl-CoA was 48 μM and Vmax 149 μmol mg−1 min−1. NADP(H) was utilized at a rate of less than 10% in comparison to activity with NAD(H). FadB’ exhibited optimal activity at pH 6–7 and the activity decreased at alkaline and acidic pH values. Acetyl-CoA, propionyl-CoA and CoA were found to have an inhibitory effect on FadB’. This study is a first report on biochemical properties of purified (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase with the inverted domain order from R. eutropha H16. In addition to fundamental information about FadB’ and fatty acid metabolism, FadB’ might be also interesting for biotechnological applications. PMID:25401070

  19. Physiological conditions conducive to high cell density and high cyanophycin content in Ralstonia eutropha strain H16 possessing a KDPG aldolase gene-dependent addiction system.

    PubMed

    Lin, Kaichien; Elbahloul, Yasser; Steinbüchel, Alexander

    2012-03-01

    The recombinant strain of Ralstonia eutropha H16-PHB(-)4-∆eda (pBBR1MCS-2::cphA (6308)/eda (H16)) presenting a 2-keto-3-desoxy-phosphogluconate (KDPG) aldolase (eda) gene-dependent catabolic addiction system for plasmid maintenance when using gluconate or fructose as sole carbon source was used in this study. The effects of the initial pH, the nitrogen-to-carbon ratio, the inorganic components of medium, the oxygen supply, and the different carbon and nitrogen sources on the cell dry matter (CDM) and the cyanophycin granule polypeptide (CGP) content of the cells were studied in a mineral salts medium (MSM) without any additional amino acids or CGP precursor substrates. The experiments were designed to systematically find out the optimal conditions for growth of cells to high densities and for high CGP contents of the cells. Maximum contents of water-insoluble CGP and water-soluble CGP, contributing to 47.5% and 5.8% (w/w) of CDM, respectively, were obtained at the 30-L scale cultivation when cells were cultivated in MSM medium containing sufficient supplements of fructose, NH(3), K(2)SO(4), MgSO(4)[Symbol: see text]7H(2)O, Fe(Ш)NH(4)-citrate, CaCl(2)[Symbol: see text]2H(2)O, and trace elements (SL6). The molecular masses of water-insoluble and water-soluble CGP ranged from 25 to 31 kDa and from 15 to 21 kDa, respectively. High cell densities of up to 82.8 g CDM/L containing up to 37.8% (w/w) water-insoluble CGP at the 30-L scale cultivation were also obtained. This is by far the best combination of high cell density and high cellular CGP contents ever reported, and it showed that efficient production of CGP at the industrial scale in white biotechnology could be achieved. PMID:22080348

  20. Altered Composition of Ralstonia eutropha Poly(hydroxyalkanoate) through Expression of PHA Synthase from Allochromatium vinosum ATCC 35206

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The class III poly(hydroxyalkanoate) synthase (PHAS) genes (phaC and phaE) of a photosynthetic bacterium, Allochromatium vinosum ATCC 35206, were cloned, sequenced and expressed in a heterologous host. We employed a PCR technique coupled with a chromosomal gene-walking method to clone and subsequen...

  1. To Be or Not To Be a Poly(3-Hydroxybutyrate) (PHB) Depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, Highly Active PHB Depolymerases with No Detectable Role in Mobilization of Accumulated PHB

    PubMed Central

    Sznajder, Anna

    2014-01-01

    The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure. PMID:24907326

  2. Kinetic Studies of Polyhydroxybutyrate Granule Formation in Wautersia eutropha H16 by Transmission Electron Microscopy

    PubMed Central

    Tian, Jiamin; Sinskey, Anthony J.; Stubbe, JoAnne

    2005-01-01

    Wautersia eutropha, formerly known as Ralstonia eutropha, a gram-negative bacterium, accumulates polyhydroxybutyrate (PHB) as insoluble granules inside the cell when nutrients other than carbon are limited. In this paper, we report findings from kinetic studies of granule formation and degradation in W. eutropha H16 obtained using transmission electron microscopy (TEM). In nitrogen-limited growth medium, the phenotype of the cells at the early stages of granule formation was revealed for the first time. At the center of the cells, dark-stained “mediation elements” with small granules attached were observed. These mediation elements are proposed to serve as nucleation sites for granule initiation. TEM images also revealed that when W. eutropha cells were introduced into nitrogen-limited medium from nutrient-rich medium, the cell size increased two- to threefold, and the cells underwent additional volume changes during growth. Unbiased stereology was used to analyze the two-dimensional TEM images, from which the average volume of a W. eutropha H16 cell and the total surface area of granules per cell in nutrient-rich and PHB production media were obtained. These parameters were essential in the calculation of the concentration of proteins involved in PHB formation and utilization and their changes with time. The extent of protein coverage of the granule surface area is presented in the accompanying paper (J. Tian, A. He, A. Lawrence, P. Liu, N. Watson, A. J. Sinskey, and J. Stubbe, J. Bacteriol. 187:3825-3832, 2005). PMID:15901706

  3. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation

    SciTech Connect

    Stein, Lisa Y; Arp, D J; Berube, PM; Chain, Patrick S. G.; Hauser, Loren John; Jetten, MSM; Klotz, Martin G; Larimer, Frank W; Norton, Jeanette M.; Op den Camp, HJM; Shin, M; Wei, Xueming

    2007-12-01

    Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O2 concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.

  4. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant.

    PubMed

    Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar

    2005-09-01

    Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9. PMID:16215858

  5. Targeted Enhancement of H2 and CO2 Uptake for Autotrophic Production of Biodiesel in the Lithoautotrophic Bacterium Ralsonia Eutropha

    SciTech Connect

    Eckert, C. A.; Sullivan, R.; Johnson, C.; Yu, J.; Maness, P. C.

    2013-01-01

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expression and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.

  6. Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors.

    PubMed

    Setiadi, Tjandra; Aznury, Martha; Trianto, Azis; Pancoro, Adi

    2015-01-01

    The highest volatile fatty acids (VFAs) concentration from palm oil mill effluent (POME) treated by anaerobic fermentation was achieved for a 1-day process when the main acids used were acetic, propionic and butyric acids. Polyhydroxyalkanoate (PHA) production with VFAs from POME as precursors in the fed-batch mode has advantages over batch mode, both in terms of its productivity and 3HV (3-hydroxyvalerate) composition in the produced polymer. With the fed batch, the productivity increased to 343% and contained more 3HV than those of the batch. The structures of the PHA were identified by different methods and they supported each other; the resulting products consisted of functional groups of 3HB (3-hydroxybutyrate) and 3HV. PMID:26606081

  7. Ralstonia pickettii traced in blood culture bottles.

    PubMed

    Boutros, Névine; Gonullu, Nevriye; Casetta, Anne; Guibert, Michèle; Ingrand, Didier; Lebrun, Léa

    2002-07-01

    Over a 9-month period, 14 strains of Ralstonia pickettii were isolated from various biological samples inoculated in a blood culture medium. Molecular epidemiological investigation confirmed the relatedness of the strains. The source of the contamination proved to be the blood culture bottle caps. PMID:12089303

  8. Improved biovar test for Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Race 3, biovar 2 strains of Ralstonia solanacearum are quarantined pathogens in Europe and Canada and Select Agent pathogens in the United States. The biovar classification of R. solanacearum strains is based on their biochemical abilities to utilize a carbohydrate panel. The standard biovar test us...

  9. [Phytotoxic properties of Ralstonia solanacearum lipopolysaccharides].

    PubMed

    Hrytsaĭ, R V; Iakovleva, L M; Varbanets', L D

    2014-01-01

    The study is dedicated to research of phytotoxic properties of Ralstonia solanacearum lipopolysaccharides. This causative agent is one of the most dangerous among potato bacterial diseases. It is revealed that the inhibitory effect of LPS solution on seedlings germination is more noticeable on crops susceptible to brown rot. Maximal total phytotoxic properties have been shown by LPS from strains 35, 52b, TX1 and TS3, which were characterized by relatively low rhamnose content. Relative to the control plants LPS may diminish and some ones--increase the root length, height and weight of seedlings, subject to particular strain. But the stimulation revealed is minor. PMID:25000727

  10. Incidence, Relevance and Response for Ralstonia Respiratory Infections

    PubMed Central

    Granger, Wesley M.; Gaggar, Amit

    2014-01-01

    BACKGROUND Cases of Ralstonia colonization/infection occasionally reported by hospitals has generated increased interest in an organism previously little known to most clinicians. Our goal was to determine the incidence of respiratory colonizations and infections involving Ralstonia and the association of mechanical ventilation (limited to reports on respiratory-related occurrences in the USA). METHODS We performed a secondary analysis of published clinical reports of Ralstonia to determine the potential risks for respiratory colonization and infection in the USA and if being on mechanical ventilation (MV) had an influence on colonization and conversion to infection (symptomatic). RESULTS The odds of developing colonization with Ralstonia were eight times higher and the likelihood of developing infection with Ralstonia was twelve times higher in those mechanically ventilated compared to those not mechanically ventilated. CONCLUSIONS Our results suggest that individuals who are currently on mechanical ventilation and are Ralstonia culture-positive have an increased risk for colonization and may have increased propensity to the development of infection (two decision trees for approaching diagnosis and therapy included). PMID:20499534

  11. [Serological characteristic of lipopolysaccharides of Ralstonia solanacearum].

    PubMed

    Hrytsaĭ, R V; Brovars'ka, O S; Zhytkevich, N V; Varbanets', L D

    2012-01-01

    By immunochemical investigations of eight strains of Ralstonia solanacearum six strains were attributed to four serogroups. Two of them are formed by pairs of R. solanacearum strains 4 and 526; 758 and 7954; two others are represented by single strains--TX1 Ta TS3, correspondingly. Antigenic structure of R. solanacearum 7954 O-polysaccharide unites antigenic epitopes of R. solanacearum strains 4, 35, 526, 749, however the absence of cross-reactivity does not permit uniting them into the same group. The latter, and also the fact that the antiserum to R. solanacearum 749 in the reaction with LPS of R solanacearum 526 forms two precipitation lines (while in the homological system it forms only one line) may be explained by differences in the component composition of heat-stable immunogens (which were used for antiserum obtaining), and also purified LPS which were utilized as antigens in immunochemical reactions. PMID:23120981

  12. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  13. Arsenite Oxidase from Ralstonia sp. 22

    PubMed Central

    Lieutaud, Aurélie; van Lis, Robert; Duval, Simon; Capowiez, Line; Muller, Daniel; Lebrun, Régine; Lignon, Sabrina; Fardeau, Marie-Laure; Lett, Marie-Claire; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara

    2010-01-01

    We characterized the aro arsenite oxidation system in the novel strain Ralstonia sp. 22, a β-proteobacterium isolated from soil samples of the Salsigne mine in southern France. The inducible aro system consists of a heterodimeric membrane-associated enzyme reacting with a dedicated soluble cytochrome c554. Our biochemical results suggest that the weak association of the enzyme to the membrane probably arises from a still unknown interaction partner. Analysis of the phylogeny of the aro gene cluster revealed that it results from a lateral gene transfer from a species closely related to Achromobacter sp. SY8. This constitutes the first clear cut case of such a transfer in the Aro phylogeny. The biochemical study of the enzyme demonstrates that it can accommodate in vitro various cytochromes, two of which, c552 and c554, are from the parent species. Cytochrome c552 belongs to the sox and not the aro system. Kinetic studies furthermore established that sulfite and sulfide, substrates of the sox system, are both inhibitors of Aro activity. These results reinforce the idea that sulfur and arsenic metabolism are linked. PMID:20421652

  14. Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031.

    PubMed

    Guarischi-Sousa, Rodrigo; Puigvert, Marina; Coll, Núria S; Siri, María Inés; Pianzzola, María Julia; Valls, Marc; Setubal, João C

    2016-01-01

    Ralstonia solanacearum is the causative agent of bacterial wilt of potato. Ralstonia solanacearum strain UY031 belongs to the American phylotype IIB, sequevar 1, also classified as race 3 biovar 2. Here we report the completely sequenced genome of this strain, the first complete genome for phylotype IIB, sequevar 1, and the fourth for the R. solanacearum species complex. In addition to standard genome annotation, we have carried out a curated annotation of type III effector genes, an important pathogenicity-related class of genes for this organism. We identified 60 effector genes, and observed that this effector repertoire is distinct when compared to those from other phylotype IIB strains. Eleven of the effectors appear to be nonfunctional due to disruptive mutations. We also report a methylome analysis of this genome, the first for a R. solanacearum strain. This analysis helped us note the presence of a toxin gene within a region of probable phage origin, raising the hypothesis that this gene may play a role in this strain's virulence. PMID:26779304

  15. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  16. Susceptibility of Geranium Cultivars (Pelargonium spp.) to Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-one cultivars of geraniums including zonal, regal, ivy, and scented were tested for susceptibility to three strains of Ralstonia solanacearum: a Race 1 Biovar 1 (R1B1) strain P597 isolated from tomato in Florida, a R1B1 strain P673 obtained from pothos originating in Costa Rica, and a Race 3 B...

  17. Genotypic and phenotypic diversity of Ralstonia pickettii and Ralstonia insidiosa isolates from clinical and environmental sources including High-purity Water. Diversity in Ralstonia pickettii

    PubMed Central

    2011-01-01

    Background Ralstonia pickettii is a nosocomial infectious agent and a significant industrial contaminant. It has been found in many different environments including clinical situations, soil and industrial High Purity Water. This study compares the phenotypic and genotypic diversity of a selection of strains of Ralstonia collected from a variety of sources. Results Ralstonia isolates (fifty-nine) from clinical, industrial and environmental origins were compared genotypically using i) Species-specific-PCR, ii) PCR and sequencing of the 16S-23S rRNA Interspatial region (ISR) iii) the fliC gene genes, iv) RAPD and BOX-PCR and v) phenotypically using biochemical testing. The species specific-PCR identified fifteen out of fifty-nine designated R. pickettii isolates as actually being the closely related species R. insidiosa. PCR-ribotyping of the 16S-23S rRNA ISR indicated few major differences between the isolates. Analysis of all isolates demonstrated different banding patterns for both the RAPD and BOX primers however these were found not to vary significantly. Conclusions R. pickettii species isolated from wide geographic and environmental sources appear to be reasonably homogenous based on genotypic and phenotypic characteristics. R. insidiosa can at present only be distinguished from R. pickettii using species specific PCR. R. pickettii and R. insidiosa isolates do not differ significantly phenotypically or genotypically based on environmental or geographical origin. PMID:21878094

  18. Ralstonia pickettii bacteremia in hemodialysis patients: a report of two cases

    PubMed Central

    Tejera, Darwin; Limongi, Gino; Bertullo, Mauricio; Cancela, Mario

    2016-01-01

    Ralstonia pickettii is a low-virulence gram-negative bacillus that may be associated with infections related to health care and may cause bacteremia. Ralstonia pickettii bacteremia is uncommon but is related to the contamination of medical products, mainly in immunodepressed patients. We present two cases of patients on chronic hemodialysis with Ralstonia pickettii bacteremia linked to contamination of the dialysis water. Similar cases have been published with links to intravenous fluid administration, medication ampules, and the use of extracorporeal oxygenation membranes, among other factors. The detection of Ralstonia pickettii bacteremia should provoke suspicion and a search for contaminated medical products, fluids, and/or medications. PMID:27410414

  19. Draft Genome Assembly of Ralstonia pickettii Type Strain K-288 (ATCC 27853)

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Gibbons, H. S.; Jaissle, J.; Lo, C.-C.; Meincke, L.; Munk, A. C.; Rosenzweig, C. N.

    2014-01-01

    We present the genome assembly of Ralstonia pickettii K-288 (ATCC 27511), consisting of 27 contigs placed into a single scaffold. This 4.76-Mbp genome has 64.0% G+C content and 4,425 coding sequences. Because this is the type strain, inclusion of its data set among other Ralstonia genomes should provide a historical genomic perspective. PMID:25258272

  20. Draft Genome Assembly of Ralstonia pickettii Type Strain K-288 (ATCC 27853).

    PubMed

    Daligault, H E; Davenport, K W; Minogue, T D; Broomall, S M; Bruce, D C; Chain, P S; Coyne, S R; Gibbons, H S; Jaissle, J; Lo, C-C; Meincke, L; Munk, A C; Rosenzweig, C N; Johnson, S L

    2014-01-01

    We present the genome assembly of Ralstonia pickettii K-288 (ATCC 27511), consisting of 27 contigs placed into a single scaffold. This 4.76-Mbp genome has 64.0% G+C content and 4,425 coding sequences. Because this is the type strain, inclusion of its data set among other Ralstonia genomes should provide a historical genomic perspective. PMID:25258272

  1. Native Valve Endocarditis due to Ralstonia pickettii: A Case Report and Literature Review.

    PubMed

    Orme, Joseph; Rivera-Bonilla, Tomas; Loli, Akil; Blattman, Negin N

    2015-01-01

    Ralstonia pickettii is a rare pathogen and even more rare in healthy individuals. Here we report a case of R. pickettii bacteremia leading to aortic valve abscess and complete heart block. To our knowledge this is the first case report of Ralstonia species causing infective endocarditis with perivalvular abscess. PMID:25648998

  2. Native Valve Endocarditis due to Ralstonia pickettii: A Case Report and Literature Review

    PubMed Central

    Orme, Joseph; Rivera-Bonilla, Tomas; Loli, Akil; Blattman, Negin N.

    2015-01-01

    Ralstonia pickettii is a rare pathogen and even more rare in healthy individuals. Here we report a case of R. pickettii bacteremia leading to aortic valve abscess and complete heart block. To our knowledge this is the first case report of Ralstonia species causing infective endocarditis with perivalvular abscess. PMID:25648998

  3. Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Li, Zefeng; Wu, Sanling; Bai, Xuefei; Liu, Yun; Lu, Jianfei; Liu, Yong; Xiao, Bingguang; Lu, Xiuping; Fan, Longjiang

    2011-11-01

    Ralstonia solanacearum is a causal agent of plant bacterial wilt with thousands of distinct strains in a heterogeneous species complex. Here we report the genome sequence of a phylotype IB strain, Y45, isolated from tobacco (Nicotiana tabacum) in China. Compared with the published genomes of eight strains which were isolated from other hosts and habitats, 794 specific genes and many rearrangements/inversion events were identified in the tobacco strain, demonstrating that this strain represents an important node within the R. solanacearum complex. PMID:21994922

  4. Bicarbonate Requirement for Elimination of the Lag Period of Hydrogenomonas eutropha

    PubMed Central

    Repaske, Roy; Ambrose, Carol A.; Repaske, Anne C.; De Lacy, Margaret L.

    1971-01-01

    Carbon dioxide and oxygen concentrations have a profound effect on the lag period of chemoautotrophically grown Hydrogenomonas eutropha. Minimum lag periods and high growth rates were obtained in shaken flask cultures with a prepared gas mixture containing 70% H2, 20% O2, and 10% CO2. However, excessively long lag periods resulted when the same gas mixture was sparged through the culture. The lag period was shortened in sparged cultures by decreasing both the pO2 and the pCO2, indicating that gas medium equilibration had not occurred in shaken cultures. The lag period was completely eliminated at certain concentrations of O2 and CO2. The optimum pO2 was 0.05 atm, but the optimum pCO2 varied according to the pH of the medium and physiological age of the inoculum. At pH 6.4, the pCO2 required to obtain immediate growth of exponential, postexponential, and stationary phase inocula at equal specific rates was 0.02, 0.05, and 0.16 atm, respectively. With each 0.3-unit increase in the pH of the medium, a 50% decrease in the CO2 concentration was needed to permit growth to occur at the same rate. The pCO2 changes required to compensate for the pH changes of the medium had the net effect of maintaining a constant bicarbonate ion concentration. Initial growth of H. eutropha was therefore indirectly related to pCO2 and directly dependent upon a constant bicarbonate ion concentration. PMID:4999412

  5. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment

    PubMed Central

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C. Mark; Leys, Natalie

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  6. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment.

    PubMed

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C Mark; Leys, Natalie; Van Houdt, Rob

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  7. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    PubMed

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between

  8. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity

    PubMed Central

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47–91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other’s EBEs. Investigation of sequence divergence

  9. Mobilization of selenite by Ralstonia metallidurans CH34.

    PubMed

    Roux, M; Sarret, G; Pignot-Paintrand, I; Fontecave, M; Coves, J

    2001-02-01

    Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites. PMID:11157242

  10. Synergistic interaction in dual-species biofilms formation by Escherichia coli O157:H7 and Ralstonia spp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Ralstonia spp., a heterotrophic bacterium that are isolated from produce processing environments as part of the native microflora, have strong potentials for formaing biofilms on various surfaces. When co-cultured, Escherichia coli O157:H7 (EcO157) and Ralstonia spp. displayed a synerg...

  11. Molecular Diversity of Ralstonia solanacearum Isolated from Ginger in Hawaii.

    PubMed

    Yu, Q; Alvarez, A M; Moore, P H; Zee, F; Kim, M S; de Silva, A; Hepperly, P R; Ming, R

    2003-09-01

    ABSTRACT The genetic diversity of Ralstonia solanacearum strains isolated from ginger (Zingiber officinale) growing on the island of Hawaii was determined by analysis of amplified fragment length polymorphisms (AFLPs). Initially 28 strains of R. solanacearum collected from five host plant species worldwide were analyzed by AFLP. A second analysis was conducted on 55 R. solanacearum strains collected from three ginger farms along the Hamakua Coast of Hawaii, the principle area of ginger cultivation in the state. From the initial analysis, R. solanacearum strains from ginger in Hawaii showed a high degree of similarity at 0.853. In contrast, the average genetic similarity between R. solanacearum strains from heliconia and ginger was only 0.165, and strains from ginger showed little similarity with strains from all other hosts. The second analysis of 55 strains from ginger on different Hawaiian farms confirmed that they were distinct from race 1 strains from tomato. Strains from ginger also showed greater diversity among themselves in the second analysis, and the greatest diversity occurred among strains from a farm where ginger is frequently imported and maintained. Our results provide evidence that R. solanacearum strains from ginger in Hawaii are genetically distinct from local strains from tomato (race 1) and heliconia (race 2). PMID:18944096

  12. Genomic analyses of transport proteins in Ralstonia metallidurans.

    PubMed

    von Rozycki, Torsten; Nies, Dietrich H; Saier, Milton H

    2005-01-01

    Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3 : 1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium. PMID:18629293

  13. An outbreak of Ralstonia pickettii endophthalmitis following intravitreal methotrexate injection

    PubMed Central

    Choudhury, Himadri; Jindal, Animesh; Pathengay, Avinash; Flynn, Harry W

    2015-01-01

    Purpose To report an outbreak of endophthalmitis in three eyes of two patients following intravitreal methotrexate, caused by Ralstonia pickettii. Design Retrospective, noncomparative, consecutive case series. Methods Medical records and microbiology results of two patients who presented with acute endophthalmitis following intravitreal methotrexate injection in November 2013 were reviewed. Results Following intravitreal injections, the patients experienced pain and decrease in vision in the affected eye within 24 hours of receiving intravitreal methotrexate injection. The presenting visual acuity in case 1 was 20/50 in the left eye. The presenting visual acuity in case 2 was hand motions in the right eye and counting fingers at 1 m in the left eye. Both the patients received methotrexate prepared in the same manufacturing facility. Both the patients underwent vitreous biopsy and intravitreal injection of vancomycin 1 mg/0.1 mL, amikacin 400 µg/0.1 mL, and dexamethasone 400 µg/0.1 mL. Microbiology cultures from vitreous, and used and unused vials of methotrexate from the same batch grew R. pickettii. After 8 months of follow-up, both the patients had visual acuity 20/60 or better. Conclusion R. pickettii can be rarely associated with outbreak of endophthalmitis. Timely intervention can be associated with good visual outcome in such patients. PMID:26150690

  14. Genetic Diversity of Japanese Strains of Ralstonia solanacearum.

    PubMed

    Horita, M; Tsuchiya, K

    2001-04-01

    ABSTRACT The genetic diversity of 74 Japanese strains of Ralstonia solanacearum was assessed by pathogenicity tests and the repetitive sequencebased polymerase chain reaction (rep-PCR) fingerprint method. Based on their genomic fingerprints, biovar N2 strains were divided into two distinct groups, one consisting of potato isolates belonging to race 3, and the other consisting of tomato, eggplant, pepper, and tobacco isolates belonging to race 1. Biovar 3 strains had low average similarity and were divided into five groups that differed in original host or pathogenicity. Biovar 4 strains consisted of only one group at the 80% similarity level. Comparative analysis of the rep-PCR fingerprints of 78 strains, including six biovars from Japan and various countries, revealed two main clusters. Cluster 1 comprised all biovar 3, 4, and 5 strains, biovar 1 strains from Reunion, and some biovar N2 strains from Japan. Cluster 2 included most of the biovar 1, 2, and N2 strains. The fingerprints showed low average similarity with biovar N2 strains from Japan and Brazil. PMID:18943853

  15. Genomic Analyses of Transport Proteins in Ralstonia metallidurans

    PubMed Central

    von Rozycki, Torsten; Nies, Dietrich H.

    2005-01-01

    Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3 : 1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium. PMID:18629293

  16. Novel Tn4371-ICE like element in Ralstonia pickettii and Genome mining for comparative elements

    PubMed Central

    2009-01-01

    Background Integrative Conjugative Elements (ICEs) are important factors in the plasticity of microbial genomes. An element related to the ICE Tn4371 was discovered during a bioinformatic search of the Ralstonia pickettii 12J genome. This element was analysed and further searches carried out for additional elements. A PCR method was designed to detect and characterise new elements of this type based on this scaffold and a culture collection of fifty-eight Ralstonia pickettii and Ralstonia insidiosa strains were analysed for the presence of the element. Results Comparative sequence analysis of bacterial genomes has revealed the presence of a number of uncharacterised Tn4371-like ICEs in the genomes of several β and γ- Proteobacteria. These elements vary in size, GC content, putative function and have a mosaic-like structure of plasmid- and phage-like sequences which is typical of Tn4371-like ICEs. These elements were found after a through search of the GenBank database. The elements, which are found in Ralstonia, Delftia, Acidovorax, Bordetella, Comamonas, Acidovorax, Congregibacter, Shewanella, Pseudomonas Stenotrophomonas, Thioalkalivibrio sp. HL-EbGR7, Polaromonas, Burkholderia and Diaphorobacter sp. share a common scaffold. A PCR method was designed (based on the Tn4371- like element detected in the Ralstonia pickettii 12J genome) to detect and characterise new elements of this type. Conclusion All elements found in this study possess a common scaffold of core genes but contain different accessory genes. A new uniform nomenclature is suggested for ICEs of the Tn4371 family. Two novel Tn4371-like ICE were discovered and characterised, using the novel PCR method described in two different isolates of Ralstonia pickettii from laboratory purified water. PMID:19941653

  17. [A community acquired pneumonia case caused by Ralstonia pickettii].

    PubMed

    Küçükbayrak, Abdulkadir; Uğurman, Feza; Dereli, Necla; Cizmeci, Zeynep; Günay, Ersin

    2009-04-01

    Ralstonia pickettii, formerly known as Burkholderia pickettii, is a non-fermentative gram-negative bacillus. It is emerging as an opportunistic pathogen both in the hospital setting and in the environment, leading to outbreaks especially in the intensive care units. The available literature revealed two case reports of pneumonia associated with R. pickettii in adults. In this report, a case of pneumoniae due to R. pickettii, in a patient with chronic obstructive pulmonary disease was presented. Fifty-six years old male patient was admitted to the hospital with complaints of shortness of breath, cough, purulent sputum, weakness, fatigue and green colorred diarrhea lacking blood. Lung auscultation revealed decreased respiratory sounds in the right lower lobe. Laboratory findings yielded decreased arterial pH and paO2 and increased pCO2 values, while hemoglobin, hematocrite, blood urea and creatinine levels were increased. Chest X-ray showed an infiltration on right lower zone. The patient was intubated and imipenem 1 x 500 mg/day and netilmicin 1 x 80 mg/day were initiated. Deep tracheal aspirate specimen revealed gram-negative rods and leukocytes, and cultures yielded growth of non-fermentative gram-negative bacilli on blood agar and EMB agar. These bacilli were identified as R. pickettii by using VITEK 2 system (bi-oMerieux Inc, Mercy L'etoil, France). Antibiotic sensitivity test performed by VITEK 2 GP system (bioMerieux Inc, Mercy L'etoil, France) revealed sensitivity to ceftriaxone, imipenem/cilastatin, piperacillin/tazobactam, amikacin, gentamicin, cefoperazone-sulbactam and ciprofloxacin. Treatment with imipenem/cilastatin was continued for 14 days and the patient was completely recovered. This case was presented in order to call attention to R. pickettii as a pathogen that may cause community-acquired lower respiratory tract infection. PMID:19621622

  18. Draft Genome Sequences of Nine Strains of Ralstonia solanacearum Differing in Virulence to Eggplant (Solanum melongena).

    PubMed

    Guinard, Jérémy; Vinatzer, Boris A; Poussier, Stéphane; Lefeuvre, Pierre; Wicker, Emmanuel

    2016-01-01

    Ralstonia solanacearum displays variability in its virulence to solanaceous crops. We report here the draft genome sequences of eight phylotype I strains and one phylotype III strain differing in virulence to the resistant eggplant genotype AG91-25. These data will allow the identification of virulence- and avirulence-related genes. PMID:26823572

  19. A multiplex PCR assay to detect and differentiate select agent strains of Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia solanacearum causes bacterial wilt in a variety of cash crops. R. solanacearum race 3 biovar 2 strains are considered select agents by the U.S. Government because they are not endemic to the U.S. and have the potential to cause brown rot disease in our potato production fields. Simple and...

  20. Antagonistic activity and mechanisms of Bacillus subtilis SB1 against Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, showed a broad-spectrum of antimicrobial activity in vitro experiments. In addition to Ralstonia solanacearum, strain SB1 inhibited the growth of many other plant pathogens, including Fusarium oxysporum, Botrytis cinerea, Phytoph...

  1. Draft Genome Sequences of Nine Strains of Ralstonia solanacearum Differing in Virulence to Eggplant (Solanum melongena)

    PubMed Central

    Guinard, Jérémy; Vinatzer, Boris A.; Poussier, Stéphane; Lefeuvre, Pierre

    2016-01-01

    Ralstonia solanacearum displays variability in its virulence to solanaceous crops. We report here the draft genome sequences of eight phylotype I strains and one phylotype III strain differing in virulence to the resistant eggplant genotype AG91-25. These data will allow the identification of virulence- and avirulence-related genes. PMID:26823572

  2. Effect of plant essential oils on Ralstonia solanacearum race 4 causing bacterial wilt of edible ginger

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmarosa (Cymbopogon martini), lemongrass (C. citratus) and eucalyptus (Eucalyptus globulus) oils were investigated for their effects on Ralstonia solanacearum race 4, and their potential use as bio-fumigants for treating pathogen- infested edible ginger (Zingiber officinale R.) fields. Three conce...

  3. Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations.

    PubMed

    Yuan, Kat Xiaoli; Cullis, Jeff; Lévesque, C André; Tambong, James; Chen, Wen; Lewis, Christopher T; De Boer, Solke H; Li, Xiang Sean

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations. Analysis of these genome sequences will provide detailed insight on virulence, functionality, and plant/pest interactions of this widely distributed and regulated pathogen. PMID:26272559

  4. Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations

    PubMed Central

    Yuan, Kat (Xiaoli); Cullis, Jeff; Lévesque, C. André; Tambong, James; Chen, Wen; Lewis, Christopher T.; De Boer, Solke H.

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations. Analysis of these genome sequences will provide detailed insight on virulence, functionality, and plant/pest interactions of this widely distributed and regulated pathogen. PMID:26272559

  5. Genome Sequence of a Carbapenem-Resistant Strain of Ralstonia mannitolilytica

    PubMed Central

    Nishio, Hisaaki; Asagoe, Kohsuke; Kida, Kaneyuki; Suzuki, Satowa; Matsui, Mari; Shibayama, Keigo

    2015-01-01

    Ralstonia mannitolilytica, a Gram-negative aerobic bacterium, is an opportunistic human pathogen that is becoming more common in cases of nosocomial infections. We report for the first time the whole-genome sequence analysis of R. mannitolilytica strain MRY14-0246, which carries the intrinsic OXA-443/OXA-22-like and OXA-444/OXA-60-like β-lactamase genes and is resistant to meropenem. PMID:25953190

  6. Synthesis and antibacterial activity against ralstonia solanacearum for novel hydrazone derivatives containing a pyridine moiety

    PubMed Central

    2012-01-01

    Background Ralstonia solanacearum, one of the most important bacterial diseases on plants, is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. In order to discover new bioactive molecules and pesticides acting on tobacco bacterial wilt, we sought to combine the active structure of hydrazone and pyridine together to design and synthesize a series of novel hydrazone derivatives containing a pyridine moiety. Results A series of hydrazone derivatives containing a pyridine moiety were synthesized. Their structures were characterized by 1 H-NMR, 13 C-NMR, IR, and elemental analysis. The preliminary biological activity tests showed that compound 3e and 3g exhibited more than 80% activity against Ralstonia solanacearum at 500 mg/L, especially compound 3g displayed relatively good activity to reach 57.0% at 200 mg/L. Conclusion A practical synthetic route to hydrazone derivatives containing a pyridine moiety by the reaction of intermediates 2 with different aldehydes in ethanol at room temperature using 2-chloronicotinic acid and 2-amino-5-chloro-3-methylbenzoic acid as start materials is presented. This study suggests that the hydrazone derivatives containing a substituted pyridine ring could inhibit the growth of Ralstonia solanacearum. PMID:22483270

  7. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects.

    PubMed

    Upreti, Reshmi; Thomas, Pious

    2015-01-01

    This study was undertaken to assess if the root-associated native bacterial endophytes in tomato have any bearing in governing the host resistance to the wilt pathogen Ralstonia solanacearum. Internal colonization of roots by bacterial endophytes was confirmed through confocal imaging after SYTO-9 staining. Endophytes were isolated from surface-sterilized roots of 4-weeks-old seedlings of known wilt resistant (R) tomato cultivar Arka Abha and susceptible (S) cv. Arka Vikas on nutrient agar after plating the tissue homogenate. Arka Abha displayed more diversity with nine distinct organisms while Arka Vikas showed five species with two common organisms (Pseudomonas oleovorans and Agrobacterium tumefaciens). Screening for general indicators of biocontrol potential showed more isolates from Arka Abha positive for siderophore, HCN and antibiotic biosynthesis than from Arka Vikas. Direct challenge against the pathogen indicated strong antagonism by three Arka Abha isolates (P. oleovorans, Pantoea ananatis, and Enterobacter cloacae) and moderate activity by three others, while just one isolate from Arka Vikas (P. oleovorans) showed strong antagonism. Validation for the presence of bacterial endophytes on three R cultivars (Arka Alok, Arka Ananya, Arka Samrat) showed 8-9 antagonistic bacteria in them in comparison with four species in the three S cultivars (Arka Ashish, Arka Meghali, Arka Saurabhav). Altogether 34 isolates belonging to five classes, 16 genera and 27 species with 23 of them exhibiting pathogen antagonism were isolated from the four R cultivars against 17 isolates under three classes, seven genera and 13 species from the four S cultivars with eight isolates displaying antagonistic effects. The prevalence of higher endophytic bacterial diversity and more antagonistic organisms associated with the seedling roots of resistant cultivars over susceptible genotypes suggest a possible role by the root-associated endophytes in natural defense against the pathogen

  8. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects

    PubMed Central

    Upreti, Reshmi; Thomas, Pious

    2015-01-01

    This study was undertaken to assess if the root-associated native bacterial endophytes in tomato have any bearing in governing the host resistance to the wilt pathogen Ralstonia solanacearum. Internal colonization of roots by bacterial endophytes was confirmed through confocal imaging after SYTO-9 staining. Endophytes were isolated from surface-sterilized roots of 4-weeks-old seedlings of known wilt resistant (R) tomato cultivar Arka Abha and susceptible (S) cv. Arka Vikas on nutrient agar after plating the tissue homogenate. Arka Abha displayed more diversity with nine distinct organisms while Arka Vikas showed five species with two common organisms (Pseudomonas oleovorans and Agrobacterium tumefaciens). Screening for general indicators of biocontrol potential showed more isolates from Arka Abha positive for siderophore, HCN and antibiotic biosynthesis than from Arka Vikas. Direct challenge against the pathogen indicated strong antagonism by three Arka Abha isolates (P. oleovorans, Pantoea ananatis, and Enterobacter cloacae) and moderate activity by three others, while just one isolate from Arka Vikas (P. oleovorans) showed strong antagonism. Validation for the presence of bacterial endophytes on three R cultivars (Arka Alok, Arka Ananya, Arka Samrat) showed 8–9 antagonistic bacteria in them in comparison with four species in the three S cultivars (Arka Ashish, Arka Meghali, Arka Saurabhav). Altogether 34 isolates belonging to five classes, 16 genera and 27 species with 23 of them exhibiting pathogen antagonism were isolated from the four R cultivars against 17 isolates under three classes, seven genera and 13 species from the four S cultivars with eight isolates displaying antagonistic effects. The prevalence of higher endophytic bacterial diversity and more antagonistic organisms associated with the seedling roots of resistant cultivars over susceptible genotypes suggest a possible role by the root-associated endophytes in natural defense against the pathogen

  9. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.

    PubMed

    Coenye, T; Falsen, E; Vancanneyt, M; Hoste, B; Govan, J R; Kersters, K; Vandamme, P

    1999-04-01

    A polyphasic taxonomic study that included DNA-DNA hybridizations, DNA base ratio determinations, 16S rDNA sequence analysis, whole-cell protein and fatty acid analyses, AFLP (amplified fragment length polymorphism) fingerprinting and an extensive biochemical characterization was performed on 10 strains provisionally identified as Alcaligenes faecalis-like bacteria. The six environmental and four human isolates belonged to the genus Ralstonia and were assigned to a new species for which the name Ralstonia gilardii sp. nov. is proposed. The type strain is LMG 5886T. PMID:10319461

  10. Characterization and DNA-Binding Specificities of Ralstonia TAL-Like Effectors

    PubMed Central

    Mahfouz, Magdy M.

    2013-01-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  11. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors.

    PubMed

    Li, Lixin; Atef, Ahmed; Piatek, Agnieszka; Ali, Zahir; Piatek, Marek; Aouida, Mustapha; Sharakuu, Altanbadralt; Mahjoub, Ali; Wang, Guangchao; Khan, Suhail; Fedoroff, Nina V; Zhu, Jian-Kang; Mahfouz, Magdy M

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  12. Draft Genome Sequence of Ralstonia sp. MD27, a Poly(3-Hydroxybutyrate)-Degrading Bacterium, Isolated from Compost

    PubMed Central

    Zhu, Morgan; McCully, Lucy M.; Silby, Mark W.; Charles-Ogan, Tamunonengiyeofori I.

    2015-01-01

    Ralstonia sp. strain MD27, a novel biopolymer-degrading betaproteobacterium, was isolated from compost samples. This organism has been shown to utilize the biopolymer poly(3-hydroxybutyrate) [P(3HB)] as a carbon source for growth. We report the draft genome sequence of MD27 with an estimated total sequence length of 5.9 Mb. PMID:26450738

  13. Whole-Genome Sequence of Ralstonia solanacearum P673, a Strain Capable of Infecting Tomato Plants at Low Temperatures

    PubMed Central

    Huguet-Tapia, Jose C.

    2014-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive bacterial plant diseases. We present the whole-genome sequence of the strain P673 (phylotype IIB, sequevar 4). This strain is capable of producing disease in tomato plants at low temperatures. P673 has 311 unique genes. PMID:24558246

  14. Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and enterohemorrhagic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation on abiotic surfaces in fresh produce processing facilities might play a role in foodborne outbreaks by providing protective microniches for pathogenic bacteria. Our previous study showed that a strain of Ralstonia insidiosa isolated from a fresh produce processing plant could enhan...

  15. Evaluation of Chloropicrin as a Soil Fumigant against Ralstonia solanacarum in Ginger (Zingiber officinale Rosc.) Production in China

    PubMed Central

    Ma, Taotao; Liu, Pengfei; Shen, Jin; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2014-01-01

    Background Chloropicrin (Pic) offers a potential alternative to methyl bromide (MB) against Ralstonia solanacarum in ginger (Zingiber officinale Rosc.) production. MB is scheduled to be withdrawn from routine use by 2015 in developing countries. Methods Pic treatments were evaluated in a laboratory study and in three commercial ginger fields. Results Laboratory studies showed that the EC50 value and EC80 value of Pic were 2.7 and 3.7 mg a.i. kg−1 soil, respectively. Field trials in highly infested soil revealed that treatments of Pic at the dose of 50 g m−2 covered with totally impermeable film (TIF) or polyethylene film (PE) sharply reduced Ralstonia solanacarum and maintained high ginger yields. Both of the Pic treatments provided results similar to, or in some cases slightly lower than, MB with respect to Ralstonia solanacarum control, plant survival, plant growth and yield. All of the fumigant treatments were significantly better than the non-treated control. Conclusions The present study confirms that the Pic is a promising alternative with good efficacy against Ralstonia solanacarum for ginger production and could be used in integrated pest management programs in China. PMID:24618853

  16. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans

    PubMed Central

    Iqbal, Hala A.; Craig, Jeffrey W.; Brady, Sean F.

    2014-01-01

    Phenotype-based screening of bacterial metagenomic libraries provides an avenue for the discovery of novel genes, enzymes and metabolites that have a variety of potential clinical and industrial uses. Here we report the identification of a functionally diverse collection of antibacterially active enzymes from the phenotypic screening of 700,000 cosmid clones prepared from Arizona soil DNA and hosted in Ralstonia metallidurans. Environmental DNA clones surrounded by zones of growth inhibition in a bacterial overlay assay were found, through bioinformatics and functional analyses, to encode enzymes with predicted peptidase, lipase and glycolytic activities conferring antibiosis. The antibacterial activities observed in our R. metallidurans-based assay could not be replicated with the same clones in screens using Escherichia coli as a heterologous host, suggesting that the large-scale screening of metagenomic libraries for antibiosis using phylogenetically diverse hosts should be a productive strategy for identifying enzymes with functionally diverse antibacterial activities. PMID:24661178

  17. New type IV pili-related genes involved in early stages of Ralstonia solanacearum potato infection.

    PubMed

    Siri, María Inés; Sanabria, Analía; Boucher, Christian; Pianzzola, María Julia

    2014-07-01

    This study provides insights into the pathogenesis of Ralstonia solanacearum, in particular with regards to strains belonging to phylotype IIB, sequevar 1 (IIB-1) and their interaction with potato, its natural host. We performed a comparative genomic analysis among IIB-1 R. solanacearum strains with different levels of virulence in order to identify candidate virulence genes. With this approach, we identified a 33.7-kb deletion in a strain showing reduced virulence on potato. This region contains a cluster of six genes putatively involved in type IV pili (Tfp) biogenesis. Functional analysis suggests that these proteins contribute to several Tfp-related functions such as twitching motility and biofilm formation. In addition, this genetic cluster was found to contribute to early bacterial wilt pathogenesis and colonization fitness of potato roots. PMID:24625029

  18. Two different evolutionary lines of filamentous phages in Ralstonia solanacearum: their effects on bacterial virulence

    PubMed Central

    Askora, Ahmed; Yamada, Takashi

    2015-01-01

    The integration and excision of various filamentous phage genomes into and out of their host chromosomes occurs by site-specific recombination. The mechanisms proposed for these events include reactions mediated by phage-encoded recombinases and host recombination systems. Site-specific integration of filamentous phages plays a vital role in a variety of biological functions of the host, such as phase variation of certain pathogenic bacterial virulence factors. The importance of these filamentous phages in bacterial evolution is rapidly increasing with the discovery of new phages that are involved in pathogenicity. Studies of the diversity of two different filamentous phages infecting the phytopathogen Ralstonia solanacearum provide us with novel insights into the dynamics of phage genomes, biological roles of prophages, and the regulation and importance of phage–host interactions. PMID:26150828

  19. Draft Genome Sequence of Ralstonia solanacearum Strain Rs-T02, Which Represents the Most Prevalent Phylotype in Guangxi, China.

    PubMed

    Zou, Chengwu; Wang, Kaihao; Meng, Jiaorong; Yuan, Gaoqing; Lin, Wei; Peng, Haowen; Li, Qiqin

    2016-01-01

    Ralstonia solanacearumstrain Rs-T02 was originally isolated from a bacterial wilt of tomato plant in Nanning City of Guangxi Province, China. It represents the most prevalent phylotype in Guangxi. Here, we present the draft genome sequence of this strain, which comprises 5,225 genes and 5,976,011 nucleotides with an average G+C content of 66.79%. There are 968 different genes between this isolate and the previously reported genome sequence ofRalstonia solanacearumGMl l000 (race l, biovar 3, phylotype I), and the genome sequence information of this isolate may be useful for comparative genomic studies to determine the genetic diversity in this species. PMID:27081126

  20. Draft Genome Sequence of Ralstonia solanacearum Strain Rs-T02, Which Represents the Most Prevalent Phylotype in Guangxi, China

    PubMed Central

    Zou, Chengwu; Wang, Kaihao; Meng, Jiaorong; Yuan, Gaoqing; Lin, Wei; Peng, Haowen

    2016-01-01

    Ralstonia solanacearum strain Rs-T02 was originally isolated from a bacterial wilt of tomato plant in Nanning City of Guangxi Province, China. It represents the most prevalent phylotype in Guangxi. Here, we present the draft genome sequence of this strain, which comprises 5,225 genes and 5,976,011 nucleotides with an average G+C content of 66.79%. There are 968 different genes between this isolate and the previously reported genome sequence of Ralstonia solanacearum GMl l000 (race l, biovar 3, phylotype I), and the genome sequence information of this isolate may be useful for comparative genomic studies to determine the genetic diversity in this species. PMID:27081126

  1. Using the Ralstonia solanacearum Tat Secretome To Identify Bacterial Wilt Virulence Factors▿ †

    PubMed Central

    González, Enid T.; Brown, Darby G.; Swanson, Jill K.; Allen, Caitilyn

    2007-01-01

    To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome. PMID:17468289

  2. Towards the Identification of Type III Effectors Associated with Ralstonia solanacearum Virulence on Tomato and Eggplant.

    PubMed

    Pensec, Flora; Lebeau, Aurore; Daunay, M C; Chiroleu, Frédéric; Guidot, Alice; Wicker, Emmanuel

    2015-12-01

    For the development of pathogen-informed breeding strategies, identifying the microbial genes involved in interactions with the plant is a critical step. To identify type III effector (T3E) repertoires associated with virulence of the bacterial wilt pathogen Ralstonia solanacearum on Solanaceous crops, we used an original association genetics approach combining DNA microarray data and pathogenicity data on resistant eggplant, pepper, and tomato accessions. From this first screen, 25 T3Es were further full-length polymerase chain reaction-amplified within a 35-strain field collection, to assess their distribution and allelic diversity. Six T3E repertoire groups were identified, within which 11 representative strains were chosen to challenge the bacterial wilt-resistant egg plants 'Dingras multiple Purple' and 'AG91-25', and tomato Hawaii 7996. The virulence or avirulence phenotypes could not be explained by specific T3E repertoires, but rather by individual T3E genes. We identified seven highly avirulence-associated genes, among which ripP2, primarily referenced as conferring avirulence to Arabidopsis thaliana. Interestingly, no T3E was associated with avirulence to both egg-plants. Highly virulence-associated genes were also identified: ripA5_2, ripU, and ripV2. This study should be regarded as a first step toward investigating both avirulence and virulence function of the highlighted genes, but also their evolutionary dynamics in natural R. solanacearum populations. PMID:26368514

  3. Integrated approach for detection of nonculturable cells of Ralstonia solanacearum in asymptomatic Pelargonium spp. cuttings.

    PubMed

    Marco-Noales, E; Bertolini, E; Morente, C; López, M M

    2008-08-01

    Ralstonia solanacearum (biovar 2, race 3) is a soil and water-borne pathogen that causes serious diseases in several solanaceous hosts. It can also infect geranium plants, posing an important threat to their culture when latently infected cuttings are imported from countries where the pathogen is endemic. R. solanacearum can be present in very low numbers in asymptomatic geranium cuttings, and/or in a particular stressed physiological state that escapes direct isolation on the solid media usually employed. Consequently, an integrated protocol has been developed to analyze asymptomatic geranium cuttings routinely. The first screening tests include isolation and co-operational-polymerase chain reaction (Co-PCR), based on the simultaneous and co-operational action of three primers from 16S rRNA of R. solanacearum. This method was selected as the most sensitive one, able to detect only 1 cell/ml including nonculturable cells. When isolation is negative but Co-PCR is positive, the bioassay in tomato plants is proposed, since stressed bacterial cells or those present in low numbers that do not grow on solid media can be recovered from inoculated tomato plants and retain pathogenicity. This methodology has been demonstrated to be useful and has allowed us to assess the relevance of the physiological status of bacterial cells and its implications in detection. It also reveals the risk of introducing R. solanacearum through asymptomatic geranium material when relying only on bacterial isolation. PMID:18943214

  4. Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum.

    PubMed

    Kawasaki, Takeru; Narulita, Erlia; Matsunami, Minaho; Ishikawa, Hiroki; Shimizu, Mio; Fujie, Makoto; Bhunchoth, Anjana; Phironrit, Namthip; Chatchawankanphanich, Orawan; Yamada, Takashi

    2016-05-01

    The genome organization, gene structure, and host range of five podoviruses that infect Ralstonia solanacearum, the causative agent of bacterial wilt disease were characterized. The phages fell into two distinctive groups based on the genome position of the RNA polymerase gene (i.e., T7-type and ϕKMV-type). One-step growth experiments revealed that ϕRSB2 (a T7-like phage) lysed host cells more efficiently with a shorter infection cycle (ca. 60min corresponding to half the doubling time of the host) than ϕKMV-like phages such as ϕRSB1 (with an infection cycle of ca. 180min). Co-infection experiments with ϕRSB1 and ϕRSB2 showed that ϕRSB2 always predominated in the phage progeny independent of host strains. Most phages had wide host-ranges and the phage particles usually did not attach to the resistant strains; when occasionally some did, the phage genome was injected into the resistant strain׳s cytoplasm, as revealed by fluorescence microscopy with SYBR Gold-labeled phage particles. PMID:26901487

  5. Methyl 3-Hydroxymyristate, a Diffusible Signal Mediating phc Quorum Sensing in Ralstonia solanacearum.

    PubMed

    Kai, Kenji; Ohnishi, Hideyuki; Shimatani, Mika; Ishikawa, Shiho; Mori, Yuka; Kiba, Akinori; Ohnishi, Kouhei; Tabuchi, Mitsuaki; Hikichi, Yasufumi

    2015-11-01

    Ralstonia solanacearum, a plant pathogenic bacterium causing "bacterial wilt" on crops, uses a quorum sensing (QS) system consisting of phc regulatory elements to control its virulence. Methyl 3-hydroxypalmitate (3-OH PAME) was previously identified as the QS signal in strain AW1. However, 3-OH PAME has not been reportedly detected from any other strains, and this suggests that they produce another unknown QS signal. Here we identify (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME] as a new QS signal that regulates the production of virulence factors and secondary metabolites. (R)-3-OH MAME was synthesized by the methyltransferase PhcB and sensed by the histidine kinase PhcS. The phylogenetic trees of these proteins from R. solanacearum strains were divided into two groups, according to their QS signal types--(R)-3-OH MAME or (R)-3-OH PAME. These results demonstrate that (R)-3-OH MAME is another crucial QS signal and highlight the unique evolution of QS systems in R. solanacearum. PMID:26360813

  6. New Insights into the Antibacterial Activity of Hydroxycoumarins against Ralstonia solanacearum.

    PubMed

    Yang, Liang; Ding, Wei; Xu, Yuquan; Wu, Dousheng; Li, Shili; Chen, Juanni; Guo, Bing

    2016-01-01

    Coumarins are important plant-derived natural products with wide-ranging bioactivities and extensive applications. In this study, we evaluated for the first time the antibacterial activity and mechanisms of action of coumarins against the phytopathogen Ralstonia solanacearum, and investigated the effect of functional group substitution. We first tested the antibacterial activity of 18 plant-derived coumarins with different substitution patterns, and found that daphnetin, esculetin, xanthotol, and umbelliferone significantly inhibited the growth of R. solanacearum. Daphnetin showed the strongest antibacterial activity, followed by esculetin and umbelliferone, with MICs of 64, 192, and 256 mg/L, respectively, better than the archetypal coumarin with 384 mg/L. We further demonstrated that the hydroxylation of coumarins at the C-6, C-7 or C-8 position significantly enhanced the antibacterial activity against R. solanacearum. Transmission electron microscope (TEM) and fluorescence microscopy images showed that hydroxycoumarins may interact with the pathogen by mechanically destroying the cell membrane and inhibiting biofilm formation. The antibiofilm effect of hydroxycoumarins may relate to the repression of flagellar genes fliA and flhC. These physiological changes in R. solanacearum caused by hydroxycoumarins can provide information for integral pathogen control. The present findings demonstrated that hydroxycoumarins have superior antibacterial activity against the phytopathogen R. solanacearum, and thus have the potential to be applied for controlling plant bacterial wilt. PMID:27070570

  7. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum.

    PubMed

    Kumar, J Shiva; Umesha, S; Prasad, K Shiva; Niranjana, P

    2016-03-01

    Many bacteria use small diffusible signaling molecules to communicate each other termed as quorum sensing (QS). Most Gram-negative bacteria use acyl homoserine lactone (AHL) as QS signal molecules. Using these signaling molecules, bacteria are able to express specific genes in response to population density. This work aimed to detect the production of QS signal molecules and biofilm formation in Ralstonia solanacearum isolated from various diseased tomato plants with symptoms of bacterial wilt. A total of 30 R. solanacearum strains were investigated for the production of QS signal molecules using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1 (pZLR4) biosensor systems. All 30 bacterial isolates from various bacterial wilt-affected tomato plants produced AHL molecules that induced the biosensor. The microtiter plate assay demonstrated that of the 30 bacterial isolates, 60 % formed biofilm, among which four isolates exhibited a higher degree of biofilm formation. The biofilm-inducing factor was purified from these four culture supernatants. The structure of the responsible molecule was solved using nuclear magnetic resonance and mass spectroscopy and was determined to be 2-hydroxy-4-((methylamino)(phenyl)methyl) cyclopentanone (HMCP), which was confirmed by chemical synthesis and NMR. The Confocal laser scanning microscopic analysis showed well-developed biofilm architecture of bacteria when treated with HMCP. The knowledge we obtained from this study will be useful for further researcher on the role of HMCP molecule in biofilm formation. PMID:26620535

  8. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    PubMed Central

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  9. Derivatization of bioactive carbazoles by the biphenyl-degrading bacterium Ralstonia sp. strain SBUG 290.

    PubMed

    Waldau, Doreen; Mikolasch, Annett; Lalk, Michael; Schauer, Frieder

    2009-05-01

    Different 9H-carbazole derivatives have been investigated within the last decades due to their broad range of pharmacological applications. While the metabolism of 9H-carbazole has previously been reported, nothing was known about the bacterial transformation of 2,3,4,9-tetrahydro-1H-carbazole and 9-methyl-9H-carbazole. Thus, for the first time, the bacterial biotransformation of 2,3,4,9-tetrahydro-1H-carbazole and 9-methyl-9H-carbazole was analyzed using biphenyl-grown cells of Ralstonia sp. strain SBUG 290 expressing biphenyl 2,3-dioxygenase. This strain accumulated 3-hydroxy-1,2,3,5,6,7,8,9-octahydrocarbazol-4-one and 6'-iminobicyclohexylidene-2',4'-dien-2-one as major products during the incubation with 2,3,4,9-tetrahydro-1H-carbazole. Carbazol-9-yl-methanol was verified as the primary oxidation product of 9-methyl-9H-carbazole. In addition, 9H-carbazol-1-ol, 9H-carbazol-3-ol, and 3-hydroxy-1,2,3,9-tetrahydrocarbazol-4-one where detected in lower concentrations during the transformation of carbazol-9-yl-methanol and 9-methyl-9H-carbazole. Products were identified by high-performance liquid chromatography, gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, as well as (1)H and (13)C nuclear magnetic resonance analyses. PMID:19148631

  10. Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

    PubMed Central

    Park, Sangryeol; Gupta, Ravi; Krishna, R.; Kim, Sun Tae; Lee, Dong Yeol; Hwang, Duk-ju; Bae, Shin-Chul; Ahn, Il-Pyung

    2016-01-01

    Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato. PMID:26889112

  11. A novel alkaline lipase from Ralstonia with potential application in biodiesel production.

    PubMed

    Yoo, Hah-Young; Simkhada, Jaya Ram; Cho, Seung Sik; Park, Don Hee; Kim, Seung Wook; Seong, Chi Nam; Yoo, Jin Cheol

    2011-05-01

    With the aim of isolating a biocatalyst able to catalyze biodiesel production from microbial source, Ralstonia sp. CS274 was isolated and a lipase from the strain (RL74) was purified. Molecular weight of RL74 was estimated to be 28,000 Da by SDS-PAGE. The activity was highest at 50-55°C and pH 8.0-9.5 and was stable at pH 7.0-12.0 and up to 45°C. It was resistant to oxidizing and reducing agents and the activity was enhanced by detergents. RL74 was 1,3 specific and K(m) and V(max) for p-nitrophenyl palmitate were 2.73 ± 0.6mM and 101.4 ± 1.9 mM/min mg, respectively. N-terminal amino acid sequence showed partial homology with that of Penicillium lipases. RL74 produced biodiesel more efficiently in palm oil than in soybean oil; and the production was highest at pH 8.0, at 5% methanol and at 20% water content. PMID:21388805

  12. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues.

    PubMed

    Spraker, Joseph E; Sanchez, Laura M; Lowe, Tiffany M; Dorrestein, Pieter C; Keller, Nancy P

    2016-09-01

    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus. PMID:26943626

  13. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues

    PubMed Central

    Spraker, Joseph E; Sanchez, Laura M; Lowe, Tiffany M; Dorrestein, Pieter C; Keller, Nancy P

    2016-01-01

    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus. PMID:26943626

  14. Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments.

    PubMed

    Mijnendonckx, K; Provoost, A; Ott, C M; Venkateswaran, K; Mahillon, J; Leys, N; Van Houdt, R

    2013-02-01

    Four Cupriavidus metallidurans and eight Ralstonia pickettii isolates from the space industry and the International Space Station (ISS) were characterized in detail. Nine of the 12 isolates were able to form a biofilm on plastics and all were resistant to several antibiotics. R. pickettii isolates from the surface of the Mars Orbiter prior to flight were 2.5 times more resistant to UV-C(254nm) radiation compared to the R. pickettii type strain. All isolates showed moderate to high tolerance against at least seven different metal ions. They were tolerant to medium to high silver concentrations (0.5-4 μM), which are higher than the ionic silver disinfectant concentrations measured regularly in the drinking water aboard the ISS. Furthermore, all isolates survived a 23-month exposure to 2 μM AgNO(3) in drinking water. These resistance properties are putatively encoded by their endogenous megaplasmids. This study demonstrated that extreme resistance is not required to withstand the disinfection and sterilization procedures implemented in the ISS and space industry. All isolates acquired moderate to high tolerance against several stressors and can grow in oligotrophic conditions, enabling them to persist in these environments. PMID:23212653

  15. Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum

    PubMed Central

    Wu, Dousheng; Ding, Wei; Zhang, Yong; Liu, Xuejiao; Yang, Liang

    2015-01-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, can naturally infect a wide range of host plants. The type III secretion system (T3SS) is a major virulence determinant in this bacterium. Studies have shown that plant-derived compounds are able to inhibit or induce the T3SS in some plant pathogenic bacteria, though no specific T3SS inhibitor or inducer has yet been identified in R. solanacearum. In this study, a total of 50 different compounds were screened and almost half of them (22 of 50) significantly inhibited or induced the T3SS expression of R. solanacearum. Based on the strong induction activity on T3SS, the T3SS inducer oleanolic acid (OA) was chosen for further study. We found that OA induced the expression of T3SS through the HrpG-HrpB pathway. Some type III effector genes were induced in T3SS inducing medium supplemented with OA. In addition, OA targeted only the T3SS and did not affect other virulence determinants. Finally, we observed that induction of T3SS by OA accelerated disease progress on tobacco. Overall our results suggest that plant-derived compounds are an abundant source of R. solanacearum T3SS regulators, which could prove useful as tools to interrogate the regulation of this key virulence pathway. PMID:26732647

  16. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum.

    PubMed

    Elhenawy, Wael; Scott, Nichollas E; Tondo, M Laura; Orellano, Elena G; Foster, Leonard J; Feldman, Mario F

    2016-03-01

    Ralstonia solanacearum is one of the most lethal phytopathogens in the world. Due to its broad host range, it can cause wilting disease in many plant species of economic interest. In this work, we identified the O-oligosaccharyltransferase (O-OTase) responsible for protein O-glycosylation in R. solanacearum. An analysis of the glycoproteome revealed that 20 proteins, including type IV pilins are substrates of this general glycosylation system. Although multiple glycan forms were identified, the majority of the glycopeptides were modified with a pentasaccharide composed of HexNAc-(Pen)-dHex(3), similar to the O antigen subunit present in the lipopolysaccharide of multiple R. solanacearum strains. Disruption of the O-OTase led to the total loss of protein glycosylation, together with a defect in biofilm formation and reduced pathogenicity towards tomato plants. Comparative proteomic analysis revealed that the loss of glycosylation is not associated with widespread proteome changes. Only the levels of a single glycoprotein, the type IV pilin, were diminished in the absence of glycosylation. In parallel, disruption of glycosylation triggered an increase in the levels of a surface lectin homologous to Pseudomonas PA-IIL. These results reveal the important role of glycosylation in the pathogenesis of R. solanacearum. PMID:26531228

  17. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage

    PubMed Central

    Kim, Sang Gyu; Hur, On-Sook; Ro, Na-Young; Ko, Ho-Cheol; Rhee, Ju-Hee; Sung, Jung Sook; Ryu, Kyoung-Yul; Lee, Sok-Young; Baek, Hyung Jin

    2016-01-01

    Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt. PMID:26889116

  18. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage.

    PubMed

    Kim, Sang Gyu; Hur, On-Sook; Ro, Na-Young; Ko, Ho-Cheol; Rhee, Ju-Hee; Sung, Jung Sook; Ryu, Kyoung-Yul; Lee, Sok-Young; Baek, Hyung Jin

    2016-02-01

    Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt. PMID:26889116

  19. Elicitor-Induced Defense Responses in Solanum lycopersicum against Ralstonia solanacearum

    PubMed Central

    Kar, Itishree; Mukherjee, Arup K.; Acharya, Priyambada

    2013-01-01

    We investigated on important parameters of induced resistance in hydroponic tomato (Solanum lycopersicum) against Ralstonia solanacearum using the elicitors chitosan (CHT), salicylic acid (SA), and jasmonic acid (JA). The increase in total phenolic content of roots by the elicitors was significantly higher than control. Most pronounced increase in lignin synthesis was triggered by SA followed by CHT. At 24 h post-elicitation (hpe), the activity of phenylalanine ammonia lyase was 4.5 times higher than control elicited by CHT. The peroxidase activity was about 86 nkat/mg protein at 24 hpe in case of SA and 78 nkat/mg protein in case of CHT. The activity of polyphenol oxidase increased several folds by the elicitors. Cinnamyl alcohol dehydrogenase activity increased to the maximum at 48 hpe under the influence of CHT. The results indicate that the elicitors SA and CHT induced effective defense responses in tomato plants against R. solanacearum. This was evident from reduced vascular browning and wilting symptoms of tomato plants treated with SA and CHT and challenged subsequently with R. solanacearum. This reduced disease incidence in tomato by SA and CHT may be a result of cell wall strengthening through deposition of lignin and the coincident induction of defense enzymes. PMID:24187521

  20. Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10.

    PubMed

    Park, Sangryeol; Gupta, Ravi; Krishna, R; Kim, Sun Tae; Lee, Dong Yeol; Hwang, Duk-Ju; Bae, Shin-Chul; Ahn, Il-Pyung

    2016-02-01

    Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato. PMID:26889112

  1. In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum.

    PubMed

    Ailloud, Florent; Lowe, Tiffany M; Robène, Isabelle; Cruveiller, Stéphane; Allen, Caitilyn; Prior, Philippe

    2016-01-01

    Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes. PMID:26788428

  2. Nitrate Assimilation Contributes to Ralstonia solanacearum Root Attachment, Stem Colonization, and Virulence

    PubMed Central

    Dalsing, Beth L.

    2014-01-01

    Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium's gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum's sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production. PMID:24363343

  3. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum

    PubMed Central

    Kong, Hyun Gi; Jo, Eun Jeong; Choi, Hye Kyung; Khan, Raees; Lee, Seon-Woo

    2016-01-01

    Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress. PMID:27513990

  4. Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence.

    PubMed

    Dalsing, Beth L; Allen, Caitilyn

    2014-03-01

    Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium's gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum's sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production. PMID:24363343

  5. Comparative Transcriptome Analysis Reveals Cool Virulence Factors of Ralstonia solanacearum Race 3 Biovar 2

    PubMed Central

    Meng, Fanhong; Babujee, Lavanya; Jacobs, Jonathan M.; Allen, Caitilyn

    2015-01-01

    While most strains of the plant pathogenic bacterium Ralstonia solanacearum are tropical, the race 3 biovar 2 (R3bv2) subgroup attacks plants in cooler climates. To identify mechanisms underlying this trait, we compared the transcriptional profiles of R. solanacearum R3bv2 strain UW551 and tropical strain GMI1000 at 20°C and 28°C, both in culture and during tomato pathogenesis. 4.2% of the ORFs in the UW551 genome and 7.9% of the GMI1000 ORFs were differentially expressed by temperature in planta. The two strains had distinct transcriptional responses to temperature change. GMI1000 up-regulated several stress response genes at 20°C, apparently struggling to cope with plant defenses. At the cooler temperature, R3bv2 strain UW551 up-regulated a cluster encoding a mannose-fucose binding lectin, LecM; a quorum sensing-dependent protein, AidA; and a related hypothetical protein, AidC. The last two genes are absent from the GMI1000 genome. In UW551, all three genes were positively regulated by the adjacent SolI/R quorum sensing system. These temperature-responsive genes were required for full virulence in R3bv2. Mutants lacking lecM, aidA, or aidC were each significantly more reduced in virulence on tomato at 20°C than at 28°C in both a naturalistic soil soak inoculation assay and when they were inoculated directly into tomato stems. The lecM and aidC mutants also survived poorly in potato tubers at the seed tuber storage temperature of 4°C, and the lecM mutant was defective in biofilm formation in vitro. Together, these results suggest novel mechanisms, including a lectin, are involved in the unique temperate epidemiology of R3bv2. PMID:26445498

  6. In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum

    PubMed Central

    Ailloud, Florent; Lowe, Tiffany M.; Robène, Isabelle; Cruveiller, Stéphane; Allen, Caitilyn

    2016-01-01

    Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes. PMID:26788428

  7. A duplex PCR assay for the detection of Ralstonia solanacearum phylotype II strains in Musa spp.

    PubMed

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae. PMID:25811378

  8. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil.

    PubMed

    Gorissen, A; van Overbeek, L S; van Elsas, J D

    2004-08-01

    The effect of added pig slurry and solarization on the survival of Ralstonia solanacearum biovar 2 strain 1609 in soil was analysed in soil microcosms and field plots. In addition, the invasion of potato plants by R. solanacearum and the development of disease symptoms were determined, as measures of induced disease suppressiveness. In untreated soil, R. solanacearum showed slow population declines in both microcosms and the field from, initially, 10(6-)10(7) to 10(3)-10(4) CFU.(g dry soil)(-1) in about 9 weeks. The suppressiveness assays of these untreated soils after this period revealed that most of the plants that were used developed wilting symptoms and (or) contained the pathogen in their lower stem parts, as shown by immunofluorescence colony staining and PCR. The addition of pig slurry resulted in a significantly lower population size of R. solanacearum as well as reduced numbers of infected and (or) diseased plants in the soil suppressiveness tests. On the other hand, solarization of soil also decreased R. solanacearum survival but did not enhance soil suppressiveness as measured by development of disease symptoms and (or) plant invasion after 9 weeks. Combined soil solarization and pig slurry addition showed an additive effect of both treatments. Healthy-looking plants, primarily from soils treated with pig slurry and solarization, incidentally revealed the latent presence of R. solanacearum in the lower stem parts. The mechanism behind the enhanced population declines and disease suppressiveness induced by pig slurry is unclear but shifts in community profiles were clearly discernible by PCR - denaturing gradient gel electrophoresis 9 weeks after pig slurry addition in the field experiment, indicating induced changes in the bacterial community structure. PMID:15467784

  9. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum.

    PubMed

    Ahmad, Shabir; Lee, Seung Yeup; Kong, Hyun Gi; Jo, Eun Jeong; Choi, Hye Kyung; Khan, Raees; Lee, Seon-Woo

    2016-01-01

    Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress. PMID:27513990

  10. Ralstonia solanacearum Strains from Martinique (French West Indies) Exhibiting a New Pathogenic Potential▿ †

    PubMed Central

    Wicker, Emmanuel; Grassart, Laurence; Coranson-Beaudu, Régine; Mian, Danièle; Guilbaud, Caroline; Fegan, Mark; Prior, Philippe

    2007-01-01

    We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America. PMID:17720825

  11. A Duplex PCR Assay for the Detection of Ralstonia solanacearum Phylotype II Strains in Musa spp.

    PubMed Central

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae. PMID:25811378

  12. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1

    SciTech Connect

    Steinle, P.; Stucki, G.; Stettler, R.; Hanselmann, K.W.

    1998-07-01

    A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 {micro}M, 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 {micro}M in continuous reactor culture supplied with H{sub 2}O{sub 2} as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations with hydraulic residence times of 8 to 30 min.

  13. A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization.

    PubMed

    Stevens, Patricia; van Elsas, Jan Dirk

    2010-10-01

    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato. PMID:20467813

  14. Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes.

    PubMed

    Chakraborti, Pratim; Banerjee, Rachana; Roy, Ayan; Mandal, Sunanda; Mukhopadhyay, Subhasish

    2015-01-01

    Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs. PMID:26156561

  15. The Ralstonia solanacearum pathogenicity regulator HrpB induces 3-hydroxy-oxindole synthesis.

    PubMed

    Delaspre, Fabien; Nieto Peñalver, Carlos G; Saurel, Olivier; Kiefer, Patrick; Gras, Emmanuel; Milon, Alain; Boucher, Christian; Genin, Stéphane; Vorholt, Julia A

    2007-10-01

    The transcriptional activator HrpB of the bacterial wilt causing betaproteobacterium Ralstonia solanacearum represents a key regulator for pathogenicity. In particular, it drives expression of hrp genes encoding a type III secretion system (T3SS) as well as effector molecules for delivery into the host cytosol to promote disease. However, the HrpB regulon extends beyond this T3SS. We describe here an HrpB-activated operon of six genes that is responsible for the synthesis of a fluorescent isatin derivative of 149 Amu that we named HDF for HrpB-dependent factor and that we purified from culture supernatants. The structure of the labile molecule was solved by using NMR and CD spectroscopy to be (3S)-3-hydroxy-indolin-2-one and confirmed by its chemical synthesis and MS spectrometry. HDF was found to be present at 20 nM in wild-type cultures grown on minimal medium, and its synthesis increased 15-fold upon overproduction of HrpB, confirming that HrpB activates HDF synthesis. The addition of tryptophan significantly stimulated HDF biosynthesis and was shown to represent the precursor molecule for HDF synthesis. A search for the biological function of the molecule revealed that HDF induces acyl-homoserine lactone receptor-mediated reporter activity of the well studied LuxR transcriptional regulator of Vibrio fischeri. Thus, our results provide evidence that the specificity of acyl-homoserine lactone (acyl-HSL) receptors is clearly broader than previously considered. The failure to detect induction by HDF of the described endogenous quorum-sensing circuits of the pathogen points to a role in interfering with cell-cell signaling of rivalling bacteria. PMID:17890323

  16. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential.

    PubMed

    Wicker, Emmanuel; Grassart, Laurence; Coranson-Beaudu, Régine; Mian, Danièle; Guilbaud, Caroline; Fegan, Mark; Prior, Philippe

    2007-11-01

    We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America. PMID:17720825

  17. Characterization of biofumigated Ralstonia solanacearum cells using micro-Raman spectroscopy and electron microscopy.

    PubMed

    Paret, Mathews L; Sharma, Shiv K; Alvarez, Anne M

    2012-01-01

    Essential oils of palmarosa, lemongrass, and eucalyptus have shown promise as biofumigants for control of the bacterial wilt disease of edible ginger (Zingiber officinale) caused by Ralstonia solanacearum race 4 in previous potting medium studies. Biochemical changes in R. solanacearum cells were evaluated with micro-Raman spectroscopy following treatment with essential oils at different concentrations (0.04, 0.07, and 0.14% [vol/vol] of culture medium) and changes in cell structure were observed using electron microscopy. All treatments except palmarosa oil at 0.04% caused significant reductions in levels of amino acids, purine and pyrimidine bases of nucleic acids, carbohydrates, and lipids, as indicated by significant reduction in Raman peak heights at 621, 1,003, and 1,031 inverse centimeters (cm(-1)) (phenylalanine); 643, 827, 852, 1,158, and 1,172 cm(-1) (tyrosine); 758 cm(-1) (tryptophan); 725, 782, 1,337, and 1,578 cm(-1) (adenine, cytosine plus uracil, adenine, and adenine plus guanine, respectively); 1,097 cm(-1) (carbohydrates); and 1,127, 1,450, and 2,932 cm(-1) (lipids) compared with untreated controls. Lemongrass oil treatments were the most effective in degrading cellular components. Scanning electron microscopy of palmarosa and lemongrass-oil-treated cells showed rupture of cell walls and cell debris but no degradation was noted for eucalyptus-oil-treated cells. Palmarosa- and lemongrass-oil-treated cells were positively stained with uranyl acetate when viewed by transmission electron microscopy whereas controls and eucalyptus-oil-treated cells were negatively stained, indicating that the cell membranes were intact. The viability of eucalyptus-oil-treated cells was confirmed by cell culture following treatment. Micro-Raman spectroscopy is a powerful tool which can be further employed to better understand effects of fumigants and other bactericides on bacterial cells. PMID:21899389

  18. Tropical Strains of Ralstonia solanacearum Outcompete Race 3 Biovar 2 Strains at Lowland Tropical Temperatures

    PubMed Central

    Huerta, Alejandra I.; Milling, Annett

    2015-01-01

    Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands. PMID:25769835

  19. Inventorying the molecular potential of Cupriavidus and Ralstonia strains surviving harsh space-related environments

    NASA Astrophysics Data System (ADS)

    Mijnendonckx, Kristel; van Houdt, Rob; Provoost, Ann; Bossus, Albert; Ott, C. Mark; Venkateswaran, Kasthuri; Leys, Natalie

    The craving of modern man to explore life beyond earth presents a lot of challenges. The control of microbial contamination of the confined manned spacecraft is an important aspect that has to be taken into account in this journey. Because the human body contains a huge amount of microorganisms, the crew itself is the most important contamination source. But contamination can also originate from residing environmental microorganisms or from materials that are supplied from the Earth. These microbial contaminations can cause problems for the astronauts -well documented to have a decreased immunity -and the infrastructure of the space station. In this study, 14 different Cupriavidus metallidurans and Ralstonia pickettii strains, isolated from such space-related environments, where characterised in detail. These unique strains were isolated from drinking water that returned from ISS (3), from the cooling water system of the American ISS segment (4), from a swab sample of the Mars Odyssey Orbitor surface prior to flight (4), and from an air sample taken in the space assembly facility PHSF during Mars exploration Rover assembly (3). Their resistance to heavy metals and antibiotics was screened. The C. metallidurans isolates were more resistant to Zn2+ and Hg+ but more sensitive to Ni2+ than the R. pickettii strains. The MIC values for Cu2+ ranged from 1,5mM to 12mM, for Co2+ from 1,58mM to 12,63mM and for Cd2+ from 0,25mM to 1mM. For Ni2+ , the MIC values were between 2 and 8mM, except for the strain C. metallidurans IV (0502478) that was able to grow on Ni+2 concentrations up to 48mM. A metal of special interest was Ag+ because it is used to sanitize ISS drinking water. The strains isolated from air and surface samples showed a MIC value ranging from 0,35µM to 4µM. The isolates from the water samples had MIC values from 0,3µM to 2µM, which is lower than (or comparable with) the lowest limit of the silver concentration used in the ISS (1,9µM -4,6µM). However, all

  20. Incorporation of Escherichia coli O157:H7 in biofilms with Ralstonia insidiosa, a primary localizer for the development of heterogeneous biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hypothesized that the presence of strong biofilm forming microflora could potentially enhance the survival of Escherichia coli O157:H7 (EcO157) in harsh environment. In this study, a strong biofilm forming bacterium, Ralstonia insidiosa, previously isolated from a fresh-cut produce plant was c...

  1. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia solanacearum race 3 biovar 2 strains have the ability to cause brown rot of potato in temperate climates. Since these strains are not established in the U.S. and because of the potential risk they pose to the potato industry, the U.S. government has listed them as select agents. Cultivated...

  2. Incorporation of Escherichia coli O157:H7 in dual-species biofilms with Ralstonia insidiosa, a primary colonizer for the development of heterogeneous biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of strong biofilm forming microflora could potentially enhance the survival of Escherichia coli O157:H7 (EcO157) in harsh environment. One strain of Ralstonia insidiosa isolated from produce processing environments, previously displayed a synergistic interaction with EcO157 in dual-spec...

  3. Genome Sequencing of Ralstonia solanacearum Biovar 3, Phylotype I, Strains Rs-09-161 and Rs-10-244, Isolated from Eggplant and Chili in India

    PubMed Central

    Gaitonde, Sapna; Achari, Gauri; Asolkar, Trupti; Singh, Narendra Pratap; Carrere, Sebastien; Genin, Stephane; Peeters, Nemo

    2014-01-01

    Ralstonia solanacearum Indian strains Rs-09-161 and Rs-10-244 were isolated from the coastal region of Goa and from the Andaman Islands. We report the draft genome sequences of these representative isolates infecting solanaceous vegetables in India. PMID:24874667

  4. A computer program for fast and easy typing of partial endoglucanase gene sequence into phylotypes and sequevars 1&2 (select agents) of Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytopathogen Ralstonia solanacearum is a species complex that contains a subset of strains that are quarantined or select agent pathogens. An unidentified R. solanacearum strain is considered a select agent in the US until proven otherwise, which can be done by phylogenetic analysis of a partia...

  5. Cold Tolerance of some Ralstonia solanacearum strains, including Race3 Biovar2, is conferred in part by variation in cold shock gene cspD3.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia solanacearum race 3 biovar 2 (R3B2) strains are one of only 10 USDA Select Agents, a category of quarantined pathogens reserved for the most serious threats to U.S. plant industry. The threat of R3B2 strains was not considered to be likely due to race (these are poorly defined) or biovar ...

  6. "Racializing" Class

    ERIC Educational Resources Information Center

    Hatt-Echeverria, Beth; Urrieta, Luis, Jr.

    2003-01-01

    In an effort to explore how racial and class oppressions intersect, the authors use their autobiographical narratives to depict cultural and experiential continuity and discontinuity in growing up white working class versus Chicano working class. They specifically focus on "racializing class" due to the ways class is often used as a copout by…

  7. Genetic diversity of the bacterial wilt pathogen Ralstonia solanacearum using a RAPD marker.

    PubMed

    Nishat, Sayeda; Hamim, Islam; Khalil, M Ibrahim; Ali, Md Ayub; Hossain, Muhammed Ali; Meah, M Bahadur; Islam, Md Rashidul

    2015-11-01

    Bacterial wilt caused by Ralstonia solanacearum is a destructive disease of many economically important crop species. A significant variation in wilt incidence and severity in eggplant and potato was observed among the growing areas surveyed. R. solanacearum isolates obtained both from eggplant and potato belong to biovar III, while isolates from eggplant belong to race 1 and isolates obtained from potato belong to race 3. Random amplified polymorphic DNA (RAPD) technique was used as a tool for assessing genetic variation and relationship among seven isolate groups of R. solanacearum viz., RsB-1, RsB-2, RsB-3, RsP-1, RsP-2, RsP-3 and RsP-4, consisting in a total of 28 isolates. Out of the RAPD markers used, amplification with four decamer primers produced 70 bands with sizes ranging from 100 to 1400 bp. Out of 70 bands, 68 bands (97.06%) were polymorphic and two bands (2.94%) were monomorphic amongst the seven R. solanacearum isolates group. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei's genetic distance produced two main clusters of the seven isolates of R. solanacearum. The isolates RsB-1, RsB-2, RsB-3 and R-4 grouped in cluster І, while RsP-2, RsP-3 and RsP-4 grouped in cluster ІІ. The highest intra-variety similarity index (Si) was found in RsB-1 isolate (86.35%) and the lowest one in RsP-2 (56.59%). The results indicated that relatively higher and lower levels of genetic variation were found in RsP-3 and RsB-3, respectively. The coefficient of gene differentiation (G(st)) was 0.5487, reflecting the existence of a high level of genetic variations among seven isolates of R. solanacearum. Comparatively higher genetic distance (0.4293) and lower genetic identity (0.6510) were observed between RsB-2 and RsP-4 combinations. The lowest genetic distance (0.0357) and highest genetic identity (0.9650) were found in RsB-1 vs. RsB-2 pair. Thus, RAPD offers a potentially simple, rapid and reliable method to evaluate

  8. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence

    PubMed Central

    2010-01-01

    Background The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. Results The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. Conclusions Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic

  9. Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors

    PubMed Central

    2014-01-01

    Background Ralstonia solanacearum, the causal agent of bacterial wilt, is a genetically diverse bacterial plant pathogen present in tropical and subtropical regions of the world that infects more than 200 plant species, including economically important solanaceous crops. Most strains of R. solanacearum are only pathogenic at temperatures between 25 to 30°C with strains that can cause disease below 20°C considered a threat to agriculture in temperate areas. Identifying key molecular factors that distinguish strains virulent at cold temperatures from ones that are not is needed to develop effective management tools for this pathogen. We compared protein profiles of two strains virulent at low temperature and two strains not virulent at low temperature when incubated in the rhizosphere of tomato seedlings at 30 and 18°C using quantitative 2D DIGE gel methods. Spot intensities were quantified and compared, and differentially expressed proteins were sequenced and identified by mass spectrometry (MS/MS). Results Four hundred and eighteen (418) differentially expressed protein spots sequenced produced 101 unique proteins. The identified proteins were classified in the Gene Ontology biological processes categories of metabolism, cell processes, stress response, transport, secretion, motility, and virulence. Identified virulence factors included catalase (KatE), exoglucanase A (ChbA), drug efflux pump, and twitching motility porin (PilQ). Other proteins identified included two components of a putative type VI secretion system. We confirmed differential expression of 13 candidate genes using real time PCR techniques. Global regulators HrpB and HrpG also had temperature dependent expression when quantified by real time PCR. Conclusions The putative involvement of the identified proteins in virulence at low temperature is discussed. The discovery of a functional type VI secretion system provides a new potential virulence mechanism to explore. The global regulators HrpG and

  10. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus.

    PubMed

    Spraker, Joseph E; Jewell, Kelsea; Roze, Ludmila V; Scherf, Jacob; Ndagano, Dora; Beaudry, Randolph; Linz, John E; Allen, Caitilyn; Keller, Nancy P

    2014-05-01

    Microbes in the rhizosphere have a suite of extracellular compounds, both primary and secondary, that communicate with other organisms in their immediate environment. Here, we describe a two-way volatile interaction between two widespread and economically important soil-borne pathogens of peanut, Aspergillus flavus and Ralstonia solanacearum, a fungus and bacterium, respectively. In response to A. flavus volatiles, R. solanacearum reduced production of the major virulence factor extracellular polysaccharide (EPS). In parallel, A. flavus responded to R. solanacearum volatiles by reducing conidia production, both on plates and on peanut seeds and by increasing aflatoxin production on peanut. Volatile profiling of these organisms using solid-phase micro-extraction gas chromatography mass spectroscopy (SPME-GCMS) provided a first glimpse at the compounds that may drive these interactions. PMID:24801606

  11. Déjà vu: Ralstonia mannitolilytica infection associated with a humidifying respiratory therapy device, Israel, June to July 2011.

    PubMed

    Block, C; Ergaz-Shaltiel, Z; Valinsky, L; Temper, V; Hidalgo-Grass, C; Minster, N; Weissman, C; Benenson, S; Jaffe, J; Moses, A E; Bar-Oz, B

    2013-01-01

    Following a bloodstream infection in June 2011 with Ralstonia mannitolilytica in a premature infant treated with a humidifying respiratory therapy device, an investigation was initiated at the Hadassah Medical Centres in Jerusalem. The device delivers a warmed and humidified mixture of air and oxygen to patients by nasal cannula. The investigation revealed colonisation with R. mannitolilytica of two of 15 patients and contamination of components of five of six devices deployed in the premature units of the Hadassah hospitals. Ten isolates from the investigation were highly related and indistinguishable from isolates described in an outbreak in 2005 in the United States (US). Measures successful in containing the US outbreak were not included in user instructions provided to our hospitals by the distributor of the device. PMID:23725776

  12. First Report of Bacterial Wilt Caused by Ralstonia solanacearum Biovar 2 Race 1 on Tomato in Egypt

    PubMed Central

    Seleim, Mohamed A. A.; Abo-Elyousr, Kamal A. M.; Abd-El-Moneem, Kenawy M.; Saead, Farag A.

    2014-01-01

    This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt. PMID:25289016

  13. Specific and Sensitive Detection of Ralstonia solanacearum in Soil on the Basis of PCR Amplification of fliC Fragments

    PubMed Central

    Schönfeld, J.; Heuer, H.; van Elsas, J. D.; Smalla, K.

    2003-01-01

    Ralstonia solanacearum is the causative agent of bacterial wilt in many important crops. A specific and sensitive PCR detection method that uses primers targeting the gene coding for the flagella subunit, fliC, was established. Based on the first fliC gene sequence of R. solanacearum strain K60 available at GenBank, the Ral_fliC PCR primer system was designed; this system yielded a single 724-bp product with the DNAs of all of the R. solanacearum strains tested. However, R. pickettii and four environmental Ralstonia isolates also yielded amplicons. The Ral_fliC PCR products obtained with 12 strains (R. solanacearum, R. pickettii, and environmental isolates) were sequenced. By sequence alignment, Rsol_fliC primers specific for R. solanacearum were designed. With this primer system, a specific 400-bp PCR product was obtained from all 82 strains of R. solanacearum tested. Six strains of R. pickettii and several closely related environmental isolates yielded no PCR product; however, a product was obtained with one Pseudomonas syzygii strain. A GC-clamped 400-bp fliC product could be separated in denaturing gradient gels and allowed us to distinguish P. syzygii from R. solanacearum. The Rsol_fliC PCR system was applied to detect R. solanacearum in soil. PCR amplification, followed by Southern blot hybridization, allowed us to detect about one target DNA molecule per PCR, which is equivalent to 103 CFU g of bulk soil−1. The system was applied to survey soils from different geographic origins for the presence of R. solanacearum. PMID:14660373

  14. Genome Sequences of Ralstonia insidiosa Type Strain ATCC 49129 and Strain FC1138, a Strong Biofilm Producer Isolated from a Fresh-Cut Produce-Processing Plant

    PubMed Central

    Xu, Yunfeng; Nagy, Attila; Yan, Xianghe; Haley, Bradd J.; Kim, Seon Woo; Liu, Nancy T.

    2016-01-01

    Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. PMID:27540070

  15. Class Size.

    ERIC Educational Resources Information Center

    Johnston, Holly R.

    Exploring the class-size issue, this paper focuses on the primary grades and asks questions such as "does a reduction in class size promote an increase in academic achievement?" and "how substantial does the reduction in numbers have to be in order for a significant increase to occur?" The paper surveys debates on class size and the social factors…

  16. Class Size.

    ERIC Educational Resources Information Center

    Underwood, Siobhan; Lumsden, Linda S.

    1994-01-01

    The items featured in this annotated bibliography touch on several aspects of the multifaceted class-size debate. Allen Odden reviews the literature and contends that class-size reduction should be used "sparingly and strategically." C. M. Achilles and colleagues examines two different class-size situations and find student test performance in the…

  17. Class Matters

    ERIC Educational Resources Information Center

    Valdata, Patricia

    2005-01-01

    Ever since George Washington opted for the title of president rather than king, Americans have been uncomfortable with the idea of class distinctions. This article presents an interview with Dr. Janet Galligani Casey regarding the idea of class distinctions. Galligani Casey, who grew up in a working-class neighborhood in Somerville, Massachusetts,…

  18. A computer program for fast and easy typing of a partial endoglucanase gene sequence into genospecies and sequevars 1&2 of the Ralstonia solanacearum species complex.

    PubMed

    Stulberg, Michael J; Huang, Qi

    2016-04-01

    The phytopathogen Ralstonia solanacearum is a species complex that contains race 3 biovar 2 strains belonging to phylotype IIB sequevars 1 and 2 that are quarantined or select agent pathogens. Recently, the R. solanacearum species complex strains have been reclassified into three genospecies: R. solanacearum, Ralstonia pseudosolanacearum and Ralstonia syzygii. An unidentified R. solanacearum strain is considered a select agent in the US until proven to be a non-race 3 biovar 2 (non-phylotype IIB sequevars 1&2). Currently, sequevars of R. solanacearum species complex strains can only be determined by phylogenetic analysis of a partial endoglucanase (egl) sequence of approximately 700-bp in length. Such analysis, however, requires expert knowledge to properly trim the sequence, to include the correct reference strains, and to interpret the results. By comparing GenBank egl sequences of representative R. solanacearum species-complex strains, we identified genospecies- and sequevar 1 and 2-specific single nucleotide polymorphisms (SNPs). We also designed primers to amplify a shorter, 526-bp, egl fragment from R. solanacearum species complex strains for easy sequencing of the amplicon, and to facilitate direct and specific amplification of egl from R. solanacearum-infected plant samples without the need of bacterial isolation. We wrote a computer program (Ralstonia solanacearum typing program) that analyzes a minimum 400-bp user-input egl sequence from a R. solanacearum strain for egl homology and SNP content to determine 1) whether it belongs to the R. solanacearum species complex, 2) if so, to which genospecies, and 3) whether it is of the sequevar type (sequevars 1 and 2) associated with the select agent/quarantined R. solanacearum strain. The program correctly typed all 371 tested egl sequences with known sequevars, obtained either from GenBank or through personal communication. Additionally, the program successfully typed 25 R. solanacearum strains in our

  19. The involvement of the PilQ secretin of type IV pili in phage infection in Ralstonia solanacearum.

    PubMed

    Narulita, Erlia; Addy, Hardian Susilo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2016-01-22

    PilQ is a member of the secretin family of outer membrane proteins and specifically involved in type IV secretion. Here we report the effects of pilQ mutation in Ralstonia solanacearum on the host physiology including susceptibility to several phage types (Inoviridae, Podoviridae and Myoviridae). With three lines of cells, namely wild type, ΔpilQ and pilQ-complemented cells, the cell surface proteins, twitching motility and sensitivity to phages were compared. SDS-PAGE analysis revealed that the major TFP pilin (PilA) was specifically lost in pilQ mutants and was recovered in the complemented cells. Drastically inactivated twitching motility in pilQ mutants was recovered to the wild type level in the complemented cells. Several phages of different types including those of Inoviridae, Podoviridae, and Myoviridae that infect wild type cells could not form plaques on pilQ mutants but showed infectivity to pilQ-complemented cells. These results indicate that PilQ function is generally required for phage infection in R. solanacearum. PMID:26718404

  20. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial Wilt, Ralstonia solanacearum.

    PubMed

    Wang, Xiaobing; Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (10(8) cfu mL(-1)) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  1. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway

    PubMed Central

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S.; Ariño, Joaquín; Valls, Marc

    2016-01-01

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation. PMID:27257085

  2. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    PubMed

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-01-01

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation. PMID:27257085

  3. Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts

    PubMed Central

    Remigi, Philippe; Anisimova, Maria; Guidot, Alice; Genin, Stéphane; Peeters, Nemo

    2011-01-01

    Type III effectors from phytopathogenic bacteria exhibit a high degree of functional redundancy, hampering the evaluation of their precise contribution to pathogenicity. This is illustrated by the GALA type III effectors from Ralstonia solanacearum, which have been shown to be collectively, but not individually, required for disease on Arabidopsis thaliana and tomato. We investigated evolution, redundancy and diversification of this family in order to understand the individual contribution of the GALA effectors to pathogenicity. From sequences available, we reconstructed GALA phylogeny and performed selection studies. We then focused on the GALAs from the reference strain GMI1000 to examine their ability to suppress plant defense responses and contribution to pathogenicity on three different host plants: A. thaliana, tomato (Lycopersicum esculentum) and eggplant (Solanum melongena). The GALA family is well conserved within R. solanacearum species. Patterns of selection detected on some GALA family members, together with experimental results, show that GALAs underwent functional diversification. We conclude that functional divergence of the GALA family likely accounts for its remarkable conservation during R. solanacearum evolution and could contribute to R. solanacearum’s adaptation on several host plants. PMID:21902695

  4. Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II.

    PubMed

    Cellier, G; Remenant, B; Chiroleu, F; Lefeuvre, P; Prior, P

    2012-04-01

    The ancient soilborne plant vascular pathogen Ralstonia solanacearum has evolved and adapted to cause severe damage in an unusually wide range of plants. In order to better describe and understand these adaptations, strains with very similar lifestyles and host specializations are grouped into ecotypes. We used comparative genomic hybridization (CGH) to investigate three particular ecotypes in the American phylotype II group: (i) brown rot strains from phylotypes IIB-1 and IIB-2, historically known as race 3 biovar 2 and clonal; (ii) new pathogenic variants from phylotype IIB-4NPB that lack pathogenicity for banana but can infect many other plant species; and (iii) Moko disease-causing strains from phylotypes IIB-3, IIB-4, and IIA-6, historically known as race 2, that cause wilt on banana, plantain, and Heliconia spp. We compared the genomes of 72 R. solanacearum strains, mainly from the three major ecotypes of phylotype II, using a newly developed pangenomic microarray to decipher their population structure and gain clues about the epidemiology of these ecotypes. Strain phylogeny and population structure were reconstructed. The results revealed a phylogeographic structure within brown rot strains, allowing us to distinguish European outbreak strains of Andean and African origins. The pangenomic CGH data also demonstrated that Moko ecotype IIB-4 is phylogenetically distinct from the emerging IIB-4NPB strains. These findings improved our understanding of the epidemiology of important ecotypes in phylotype II and will be useful for evolutionary analyses and the development of new DNA-based diagnostic tools. PMID:22286995

  5. Control Efficacy of an Endophytic Bacillus amyloliquefaciens Strain BZ6-1 against Peanut Bacterial Wilt, Ralstonia solanacearum

    PubMed Central

    Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (108 cfu mL−1) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  6. Moko Disease-Causing Strains of Ralstonia solanacearum from Brazil Extend Known Diversity in Paraphyletic Phylotype II.

    PubMed

    Albuquerque, Greecy M R; Santos, Liliana A; Felix, Kátia C S; Rollemberg, Christtianno L; Silva, Adriano M F; Souza, Elineide B; Cellier, Gilles; Prior, Philippe; Mariano, Rosa L R

    2014-11-01

    The epidemic situation of Moko disease-causing strains in Latin America and Brazil is unclear. Thirty-seven Ralstonia solanacearum strains from Brazil that cause the Moko disease on banana and heliconia plants were sampled and phylogenetically typed using the endoglucanase (egl) and DNA repair (mutS) genes according to the phylotype and sequevar classification. All of the strains belonged to phylotype II and a portion of the strains was typed as the Moko disease-related sequevars IIA-6 and IIA-24. Nevertheless, two unsuspected sequevars also harbored the Moko disease-causing strains IIA-41 and IIB-25, and a new sequevar was described and named IIA-53. All of the strains were pathogenic to banana and some of the strains of sequevars IIA-6, IIA-24, and IIA-41 were also pathogenic to tomato. The Moko disease-causing strains from sequevar IIB-25 were pathogenic to potato but not to tomato. These results highlight the high diversity of strains of Moko in Brazil, reinforce the efficiency of the egl gene to reveal relationships among these strains, and contribute to a better understanding of the diversity of paraphyletic Moko disease-causing strains of the R. solanacearum species complex, where the following seven distinct genetic clusters have been described: IIA-6, IIA-24, IIA-41, IIA-53, IIB-3, IIB-4, and IIB-25. PMID:24848276

  7. Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Lenarčič, Rok; Morisset, Dany; Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  8. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis

    PubMed Central

    Zhang, Bo; Tremousaygue, Dominique; Denancé, Nicolas; van Esse, H Peter; Hörger, Anja C; Dabos, Patrick; Goffner, Deborah; Thomma, Bart P H J; van der Hoorn, Renier A L; Tuominen, Hannele

    2014-01-01

    PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis. PMID:24947605

  9. Insights into the diversity of φRSM phages infecting strains of the phytopathogen Ralstonia solanacearum complex: regulation and evolution.

    PubMed

    Askora, Ahmed; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2014-08-01

    The filamentous φRSM phages (φRSM1 and φRSM3) have integration/excision capabilities in the phytopathogenic bacterium Ralstonia solanacearum. In the present study, we further investigated φRSM-like sequences present in the genomes of R. solanacearum strains belonging to the four major evolutionary lineages (phylotypes I-IV). Based on bioinformatics and comparative genomic analyses, we found that φRSM homologs are highly diverse in R. solanacearum complex strains. We detected an open reading frame (ORF)15 located upstream of the gene for φRSM integrase, which exhibited amino acid sequence similarity to phage repressor proteins. ORF15-encoded protein (a putative repressor) was found to encode a 104-residue polypeptide containing a DNA-binding (helix-turn-helix) domain and was expressed in R. solanacearum lysogenic strains. This suggested that φRSM3-ORF15 might be involved in the establishment and maintenance of a lysogenic state, as well as in phage immunity. Comparison of the putative repressor proteins and their binding sites within φRSM-related prophages provides insights into how these regulatory systems of filamentous phages have evolved and diverged in the R. solanacearum complex. In conclusion, φRSM phages represent a unique group of filamentous phages that are equipped with innate integration/excision (ORF14) and regulatory systems (ORF15). PMID:24619102

  10. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis.

    PubMed

    Zhang, Bo; Tremousaygue, Dominique; Denancé, Nicolas; van Esse, H Peter; Hörger, Anja C; Dabos, Patrick; Goffner, Deborah; Thomma, Bart P H J; van der Hoorn, Renier A L; Tuominen, Hannele

    2014-09-01

    PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis. PMID:24947605

  11. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex.

    PubMed

    Lebeau, A; Daunay, M-C; Frary, A; Palloix, A; Wang, J-F; Dintinger, J; Chiroleu, F; Wicker, E; Prior, P

    2011-01-01

    Bacterial wilt, caused by strains belonging to the Ralstonia solanacearum species complex, inflicts severe economic losses in many crops worldwide. Host resistance remains the most effective control strategy against this disease. However, wilt resistance is often overcome due to the considerable variation among pathogen strains. To help breeders circumvent this problem, we assembled a worldwide collection of 30 accessions of tomato, eggplant and pepper (Core-TEP), most of which are commonly used as sources of resistance to R. solanacearum or for mapping quantitative trait loci. The Core-TEP lines were challenged with a core collection of 12 pathogen strains (Core-Rs2) representing the phylogenetic diversity of R. solanacearum. We observed six interaction phenotypes, from highly susceptible to highly resistant. Intermediate phenotypes resulted from the plants' ability to tolerate latent infections (i.e., bacterial colonization of vascular elements with limited or no wilting). The Core-Rs2 strains partitioned into three pathotypes on pepper accessions, five on tomato, and six on eggplant. A "pathoprofile" concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions. Neither pathotypes nor pathoprofiles were phylotype specific. Pathoprofiles with high aggressiveness were mainly found in strains from phylotypes I, IIB, and III. One pathoprofile included a strain that overcame almost all resistance sources. PMID:20795852

  12. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers.

    PubMed

    Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Drenova, Natalia V; Kornev, Konstantin P; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-05-15

    Ralstonia solanacearum is a dangerous and economically important pathogen of potatoes and other agricultural crops. Therefore, rapid and sensitive methods for its routine diagnostics are necessary. The aim of this study was to develop a rapid control method for R. solanacearum with a low limit of detection (LOD) based on a lateral flow immunoassay (LFIA) with silver enhancement. To minimize the LOD, the membrane type, antibody amount for conjugation with gold nanoparticles, conjugate concentration and antibody concentration in the analytical zone were optimized. Silver enhancement was used to decrease the LOD of the LFIA. For silver enhancement, release fiberglass membranes with pre-absorbed silver lactate and hydroquinone were placed on the analytical zone, and a drop of silver lactate was added. The LFIA with silver enhancement was found to be 10-fold more sensitive (LOD 2×10(2) CFU/mL; 20 min) in comparison with the common analysis (LOD 2×10(3) CFU/mL; 10 min). The specificity of the developed LFIA was studied using different strains of R. solanacearum (54 samples) and other widespread bacterial pathogens (18 samples). The LFIA detected all tested strains, whereas non-specific reactions were not observed. The developed tests were used for the control of bacteria in extracts of infected and non-infected potato tubers, and the quantitative analysis results (based on the densitometry of line colouration) were confirmed by ELISA with a correlation coefficient equal to 0.965. PMID:26992550

  13. Comparative effect of low temperature on virulence and twitching motility of Ralstonia solanacearum strains present in Florida.

    PubMed

    Bocsanczy, Ana M; Achenbach, Ute C M; Mangravita-Novo, Arianna; Yuen, Jeanne M F; Norman, David J

    2012-02-01

    Ralstonia solanacearum causes bacterial wilt on a wide range of plant hosts. Most strains of R. solanacearum are nonpathogenic below 20°C; however, Race 3 Biovar 2 (R3B2) strains are classified as quarantine pathogens because of their ability to infect crops, cause disease, and survive in temperate climates. We have identified race 1 biovar 1 Phylotype IIB Sequevar 4 strains present in Florida which were able to infect and produce wilt symptoms on potato and tomato at 18°C. Moreover they infected tomato plants at rates similar to strains belonging to R3B2. We determined that strains naturally nonpathogenic at 18°C were able to multiply, move in planta, and cause partial wilt when inoculated directly into the stem, suggesting that low temperature affects virulence of strains differently at early stages of infection. Bacterial growth in vitro was delayed at low temperatures, however it was not attenuated. Twitching motility observed on growing colonies was attenuated in nonpathogenic strains at 18°C, while not affected in the cool virulent ones. Using pilQ as a marker to evaluate the relative expression of the twitching activity of R. solanacearum strains, we confirmed that cool virulent strains maintained a similar level of pilQ expression at both temperatures, while in nonpathogenic strains pilQ was downregulated at 18°C. PMID:21936660

  14. Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.

    PubMed

    Wang, Keke; Remigi, Philippe; Anisimova, Maria; Lonjon, Fabien; Kars, Ilona; Kajava, Andrey; Li, Chien-Hui; Cheng, Chiu-Ping; Vailleau, Fabienne; Genin, Stéphane; Peeters, Nemo

    2016-05-01

    The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts. PMID:26300048

  15. Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles

    PubMed Central

    Cellier, Gilles; Jacobs, Jonathan M.; Mangenot, Sophie; Barbe, Valérie; Lajus, Aurélie; Vallenet, David; Medigue, Claudine; Fegan, Mark; Allen, Caitilyn; Prior, Philippe

    2011-01-01

    The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical

  16. Ralstonia solanacearum Uses Inorganic Nitrogen Metabolism for Virulence, ATP Production, and Detoxification in the Oxygen-Limited Host Xylem Environment

    PubMed Central

    Dalsing, Beth L.; Truchon, Alicia N.; Gonzalez-Orta, Enid T.; Milling, Annett S.

    2015-01-01

    ABSTRACT Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3−), nitrite (NO2−), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3−, corresponding to R. solanacearum’s optimal NO3− concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3− compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3− respiration directly enhanced growth, AniA-dependent NO2− reduction did not. NO2− and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3− acts as a TEA, but the resulting NO2− and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2− reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3− to respire, grow, and cause disease. Degradation of NO2− and NO is also important for successful infection and depends on denitrification and NO detoxification systems. PMID:25784703

  17. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

    PubMed

    Flores-Cruz, Zomary; Allen, Caitilyn

    2011-09-01

    The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence. PMID:21803891

  18. Significant Effects Due to Peptone in Kelman Medium on Colony Characteristics and Virulence of Ralstonia solanacearum in Tomato.

    PubMed

    Thomas, Pious; Upreti, Reshmi

    2014-01-01

    The study was taken up to assess if the media constituents played any role in governing the variable colony characteristics or pathogenicity of the bacterial wilt pathogen, Ralstonia solanacearum cultured on the widely employed Kelman medium. The effects due to the constituents 2,3,5-triphenyl tetrazolium chloride (TTC), peptone, casein hydrolysate and glucose on colony characteristics were investigated using -80°C stored culture of strain 'NH-Av01' (race 1, biovar 3) isolated from tomato. Comparing the pigment inducing TTC from two brands, its source or mode of storage/incorporation did not impart any significant effects. The source of peptone, on the other hand, displayed striking effects on the extent of colony growth, fluidity and red pigmentation depending on type, brand or batch / lot of manufacture as documented with 20 different formulations. Significant differences in the pathogenicity of isolate derived from different peptone sources in seedling-challenge assay on tomato were observed. The observations on peptone effects were endorsed with four other isolates belonging to distinct geographic locations, crops (eggplant, chilli, ginger) or races (race 1 or 4). The peptone source did not influence the pathogen-responses in biovar tests but notably altered the pattern of lawn formation and inhibition zone development during antagonistic assays. Casein hydrolysate displayed some variable effects while glucose source had no effect. This study brings to light the significant modifying effects by the peptone-constituent in Kelman medium on the physiology of R. solanacearum and the virulence of isolate and the need to consider the source of media components during culture maintenance, host-pathogen interaction studies or microbe-microbe interaction investigations. PMID:25408775

  19. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses.

    PubMed

    Liu, Hongxia; Zhou, Xianyao; Dong, Na; Liu, Xin; Zhang, Huaiyu; Zhang, Zengyan

    2011-09-01

    MYB transcription factors play diverse roles in plant growth, developmental processes and stress responses. A full-length cDNA sequence of a MYB gene, namely TaPIMP1, was isolated from wheat (Triticum aestivum L.). The TaPIMP1 transcript level was significantly up-regulated by inoculation with a fungal pathogen Bipolaris sorokiniana and by drought treatment. TaPIMP1 encodes the MYB protein TaPIMP1 consisting of 323 amino acids. TaPIMP1 contains two MYB DNA binding domains (R2, R3), two putative nuclear localization sites and two putative transcription activation domains. TaPIMP1 is a new member of the R2R3-MYB transcription factor subfamily. Transient expression in onion epidermal cells of GFP fused with TaPIMP1 proved that subcellular localization of TaPIMP1 occurred in the nucleus. The TaPIMP1 gene was transferred into tobacco (Nicotiana tabacum L.) cultivar W38 by Agrobacterium-mediated transformation. After screening through PCR and RT-PCR analyses, transgenic tobacco lines expressing TaPIMP1 were identified and evaluated for pathogen resistance, and drought and salt tolerance. Compared to untransformed tobacco host plants, TaPIMP1 expressing plants displayed significantly enhanced resistance to Ralstonia solanacearum and exhibited improved tolerances to drought and salt stresses. In these transgenic lines, the activities of phenylalanine ammonia-lyase (PAL) and superoxide dismutase (SOD) were significantly increased relative to wild-type tobacco plants. The results suggested that the wheat R2R3-MYB transcription factor plays an important role in modulating responses to biotic and abiotic stresses. PMID:21597961

  20. Isolation of an Insertion Sequence from Ralstonia solanacearum Race 1 and Its Potential Use for Strain Characterization and Detection

    PubMed Central

    Lee, Yung-An; Fan, Shu-Chung; Chiu, Ling-Ya; Hsia, Kuo-Chiang

    2001-01-01

    A new insertion sequence (IS), IS1405, was isolated and characterized from a Ralstonia solanacearum race 1 strain by the method of insertional inactivation of the sacB gene. Sequence analysis indicated that the IS is closely related to the members of IS5 family, but the extent of nucleotide sequence identity in 5′ and 3′ noncoding regions between IS1405 and other members of IS5 family is only 23 to 31%. Nucleotide sequences of these regions were used to design specific oligonucleotide primers for detection of race 1 strains by PCR. The PCR amplified a specific DNA fragment for all R. solanacearum race 1 strains tested, and no amplification was observed with some other plant-pathogenic bacteria. Analysis of nucleotide sequences flanking IS1405 and additional five endogenous IS1405s that reside in the chromosome of R. solanacearum race 1 strains indicated that IS1405 prefers a target site of CTAR and has two different insertional orientations with respect to this target site. Restriction fragment length polymorphism (RFLP) pattern analysis using IS1405 as a probe revealed extensive genetic variation among strains of R. solanacearum race 1 isolated from eight different host plants in Taiwan. The RFLP patterns were then used to subdivide the race 1 strains into two groups and several subgroups, which allowed for tracking different subgroup strains of R. solanacearum through a host plant community. Furthermore, specific insertion sites of IS1405 in certain subgroups were used as a genetic marker to develop subgroup-specific primers for detection of R. solanacearum, and thus, the subgroup strains can be easily identified through a rapid PCR assay rather than RFLP analysis. PMID:11525989

  1. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (Bacterial Wilt)

    PubMed Central

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW−1, 140% greater than that of the control. Activities of POD (421.3 U gFW−1), PPO (508.8 U gFW−1) and PAL (707.3 U gFW−1) were also greater in the treated plants than in the controls (103.0 U gFW−1, 166.0 U gFW−1 and 309.4 U gFW−1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  2. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco.

    PubMed

    Lai, Yan; Dang, Fengfeng; Lin, Jing; Yu, Lu; Shi, Youliang; Xiao, Yuhua; Huang, Mukun; Lin, Jinhui; Chen, Chengcong; Qi, Aihua; Liu, Zhiqin; Guan, Deyi; Mou, Shaoliang; Qiu, Ailian; He, Shuilin

    2013-01-01

    Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H(2)O(2)). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H(2)O(2) and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms. PMID:23201563

  3. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    PubMed Central

    Lowe-Power, Tiffany M.; Jacobs, Jonathan M.; Ailloud, Florent; Fochs, Brianna; Prior, Philippe

    2016-01-01

    ABSTRACT Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum. SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA degradation pathway during tomato pathogenesis. Transcriptional analysis revealed that subinhibitory SA levels induced expression of the SA degradation pathway, toxin efflux pumps, and some general stress responses. Interestingly, SA treatment repressed expression of virulence factors, including the type III secretion system, suggesting that this pathogen may suppress virulence functions when stressed. A GMI1000 mutant lacking SA degradation activity was much more susceptible to SA toxicity but retained the wild-type colonization ability and virulence on tomato. This may be because SA is less important than gentisic acid in tomato defense signaling. However, another host, tobacco, responds strongly to SA. To test the hypothesis that SA degradation contributes to virulence on tobacco, we measured the effect of adding this pathway to the tobacco-pathogenic R. solanacearum strain K60, which lacks SA degradation genes. Ectopic addition of the GMI1000 SA degradation locus, including adjacent genes encoding two porins and a LysR-type transcriptional regulator, significantly increased the virulence of strain K60 on tobacco. Together, these results suggest that R. solanacearum degrades plant SA to protect itself from inhibitory levels of this compound and also to enhance its virulence on plant hosts like tobacco that use SA as a defense signal molecule. PMID:27329752

  4. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    PubMed

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-06-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  5. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids

    PubMed Central

    Qiu, Ailian; Liu, Zhiqin; Li, Jiazhi; Chen, Yanshen; Guan, Deyi; He, Shuilin

    2016-01-01

    In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes’s response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery. PMID:27551287

  6. Significant Effects Due to Peptone in Kelman Medium on Colony Characteristics and Virulence of Ralstonia solanacearum in Tomato

    PubMed Central

    Thomas, Pious; Upreti, Reshmi

    2014-01-01

    The study was taken up to assess if the media constituents played any role in governing the variable colony characteristics or pathogenicity of the bacterial wilt pathogen, Ralstonia solanacearum cultured on the widely employed Kelman medium. The effects due to the constituents 2,3,5-triphenyl tetrazolium chloride (TTC), peptone, casein hydrolysate and glucose on colony characteristics were investigated using -80°C stored culture of strain ‘NH-Av01’ (race 1, biovar 3) isolated from tomato. Comparing the pigment inducing TTC from two brands, its source or mode of storage/incorporation did not impart any significant effects. The source of peptone, on the other hand, displayed striking effects on the extent of colony growth, fluidity and red pigmentation depending on type, brand or batch / lot of manufacture as documented with 20 different formulations. Significant differences in the pathogenicity of isolate derived from different peptone sources in seedling-challenge assay on tomato were observed. The observations on peptone effects were endorsed with four other isolates belonging to distinct geographic locations, crops (eggplant, chilli, ginger) or races (race 1 or 4). The peptone source did not influence the pathogen-responses in biovar tests but notably altered the pattern of lawn formation and inhibition zone development during antagonistic assays. Casein hydrolysate displayed some variable effects while glucose source had no effect. This study brings to light the significant modifying effects by the peptone-constituent in Kelman medium on the physiology of R. solanacearum and the virulence of isolate and the need to consider the source of media components during culture maintenance, host-pathogen interaction studies or microbe-microbe interaction investigations. PMID:25408775

  7. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  8. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall.

    PubMed

    Li, Jian-Gang; Liu, Hong-Xia; Cao, Jing; Chen, Li-Feng; Gu, Chun; Allen, Caitilyn; Guo, Jian-Hua

    2010-05-01

    Harpins are extracellular glycine-rich proteins eliciting a hypersensitive response (HR). In this study, we identified a new harpin, PopW, from Ralstonia solanacearum strain ZJ3721. This 380-amino-acid protein is acidic, rich in glycine and serine, and lacks cysteine. When infiltrated into the leaves of tobacco (non-host), PopW induced a rapid tissue collapse via a heat-stable but protease-sensitive HR-eliciting activity. PopW has an N-terminal harpin domain (residues 1-159) and a C-terminal pectate lyase (PL) domain (residues 160-366); its HR-eliciting activity depends on its N-terminal domain. Analyses of subcellular localization and plasmolysis demonstrated that PopW targeted the onion cell wall. This was further confirmed by its ability to specifically bind to calcium pectate, a major component of the plant cell wall. However, PopW had no detectable PL activity. Western blotting revealed that PopW was secreted by the type III secretion system in an hrpB-dependent manner. Gene sequencing indicated that popW is conserved among 20 diverse strains of R. solanacearum. A popW-deficient mutant retained the ability of wild-type strain ZJ3721 to elicit HR in tobacco and to cause wilt disease in tomato (a host). We conclude that PopW is a new cell wall-associated, hrpB-dependent, two-domain harpin that is conserved across the R. solanacearum species complex. PMID:20447285

  9. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt).

    PubMed

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW-1, 140% greater than that of the control. Activities of POD (421.3 U gFW-1), PPO (508.8 U gFW-1) and PAL (707.3 U gFW-1) were also greater in the treated plants than in the controls (103.0 U gFW-1, 166.0 U gFW-1 and 309.4 U gFW-1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  10. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids.

    PubMed

    Qiu, Ailian; Liu, Zhiqin; Li, Jiazhi; Chen, Yanshen; Guan, Deyi; He, Shuilin

    2016-01-01

    In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes's response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery. PMID:27551287

  11. Project CLASS.

    ERIC Educational Resources Information Center

    McBain, Susan L.; And Others

    Project CLASS (Competency-Based Live-Ability Skills) uses a series of 60 modules to teach life survival skills to adults with low-level reading ability--especially Adult Basic Education/English as a Second Language students. Two versions of the modules have been developed: one for use with teacher-directed instruction and another for independent…

  12. Class Trash.

    ERIC Educational Resources Information Center

    Chemecology, 1992

    1992-01-01

    Presents a classroom activity in which students calculate the amount and types of trash thrown out by their class at school to investigate how much trash is generated, where it goes, and speculate about alternatives. Students need to be familiar with the concepts of weight, volume, and numbers. (MCO)

  13. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut processing plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been ...

  14. Quick adaptation of Ralstonia Solanacearum to copper stress to recover culturability and growth in water and soil

    PubMed Central

    Ascarrunz, Sergio Daniel Moreira; Natsuaki, Tomohide; Honjo, Hitoshi; Fukui, Ryo

    2011-01-01

    Cells of Ralstonia solanacearum were exposed to Cu in distilled water, and the resulting Cu-stressed non-culturable cells were inoculated to natural (non-pasteurized) and pasteurized soils in order to examine their culturability and recovery. Exposing the cells to 20 μM CuSO4 produced transitory non-culturable cells, which exhibited a remarkable recovery in culturability after incubation in the solution for 36 h, reaching a density near the initial level by 108 h. To determine whether such non-culturable cells actually “resuscitated” or multiplied after adapting to Cu toxicity, growth curves were constructed in order to contrast the rates of increase in culturable cell numbers between Cu-stressed or non-stressed inocula. Additionally, fresh non-stressed cells were exposed to CuSO4 in the presence of nalidixic acid by adding the antibiotic at different times after the onset of Cu stress to verify any cell multiplication during the population increase. The results revealed that the non-culturable cells surviving Cu toxicity adapted very quickly to Cu and began multiplying within 12 h, because only the Cu-stressed cells that were increasing in the exponential growth phase, but not those in the stationary phase, were killed by the antibiotic. Such cells exhibited an apparent tolerance to this metal when inoculated to a freshly prepared solution of CuSO4, and also detoxified the ion in the solution in which they grew. The presence of nutrients greatly counteracted the effect of Cu in water microcosms, since culturable cells were detected and increased in number even when exposed to 40 μM CuSO4. In contrast, when inoculated to non-pasteurized soil, Cu-stressed cells showed no such recoveries. However, when the soil was pasteurized before inoculation or added with nutrients, culturable cells were recovered and increased in number. This indicates that increased nutrient availability in soil allows Cu-stressed cells to quickly overcome the stress and increase in

  15. Rapid differentiation of Ralstonia solanacearum avirulent and virulent strains by cell fractioning of an isolate using high performance liquid chromatography.

    PubMed

    Zheng, Xuefang; Zhu, Yujing; Liu, Bo; Yu, Qian; Lin, Naiquan

    2016-01-01

    Ralstonia solanacearum is one of the most destructive plant bacterial pathogens worldwide. The population dynamics and genetic stability are important issues, especially when an avirulent strain is used for biocontrol. In this study, we developed a rapid method to differentiate the virulent and avirulent strains of R. solanacearum and to predict the biocontrol efficiency of an avirulent strain using high performance liquid chromatography (HPLC). Three chromatographic peaks P1, P2 and P3 were observed on the HPLC spectra among 68 avirulent and 28 virulent R. solanacearum strains. Based on the HPLC peaks, 96 strains total were assigned to three categories. For avirulent strains, the intense peak is P1, while for virulent strains, P3 is the majority. Based on the HLPC spectra of R. solanacearum strains, a chromatography titer index (CTI) was established as CTIi = Si/(S1+S2+S3) × 100% (i represents an individual HPLC peak; S1, S2 and S3 represent peak areas of P1, P2 and P3, respectively). The avirulent strains had high values of CTI1 ranging from 63.6 to 100.0%, while the virulent strains displayed high values of CTI3 ranging from 90.2 to 100.0%. Biological inoculation studies of 68 avirulent strains revealed that the biocontrol efficacy was the best when CTI1 = 100%. The purity and genetic stability of R. solanacearum strains were confirmed in the P1 fraction of avirulent strain FJAT-1957 and P3 fraction of virulent strain FJAT-1925 after 30 generations of consecutive subculture. These results confirmed that fractioning by HPLC and their deduced CTI can be used for rapid and efficient evaluation and prediction of an isolate of R. solanacearum. To the best of our knowledge, this is the first report that HPLC fractioning can be used for rapid differentiation of virulent and avirulent strains of R. solanacearum. PMID:26606869

  16. Quick adaptation of Ralstonia Solanacearum to copper stress to recover culturability and growth in water and soil.

    PubMed

    Ascarrunz, Sergio Daniel Moreira; Natsuaki, Tomohide; Honjo, Hitoshi; Fukui, Ryo

    2011-04-01

    Cells of Ralstonia solanacearum were exposed to Cu in distilled water, and the resulting Cu-stressed non-culturable cells were inoculated to natural (non-pasteurized) and pasteurized soils in order to examine their culturability and recovery. Exposing the cells to 20 μM CuSO4 produced transitory non-culturable cells, which exhibited a remarkable recovery in culturability after incubation in the solution for 36 h, reaching a density near the initial level by 108 h. To determine whether such non-culturable cells actually "resuscitated" or multiplied after adapting to Cu toxicity, growth curves were constructed in order to contrast the rates of increase in culturable cell numbers between Cu-stressed or non-stressed inocula. Additionally, fresh non-stressed cells were exposed to CuSO4 in the presence of nalidixic acid by adding the antibiotic at different times after the onset of Cu stress to verify any cell multiplication during the population increase. The results revealed that the non-culturable cells surviving Cu toxicity adapted very quickly to Cu and began multiplying within 12 h, because only the Cu-stressed cells that were increasing in the exponential growth phase, but not those in the stationary phase, were killed by the antibiotic. Such cells exhibited an apparent tolerance to this metal when inoculated to a freshly prepared solution of CuSO4, and also detoxified the ion in the solution in which they grew. The presence of nutrients greatly counteracted the effect of Cu in water microcosms, since culturable cells were detected and increased in number even when exposed to 40 μM CuSO4. In contrast, when inoculated to non-pasteurized soil, Cu-stressed cells showed no such recoveries. However, when the soil was pasteurized before inoculation or added with nutrients, culturable cells were recovered and increased in number. This indicates that increased nutrient availability in soil allows Cu-stressed cells to quickly overcome the stress and increase in

  17. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2.

    PubMed

    Fang, Ti; Zhou, Ning-Yi

    2014-01-01

    Salicylate is an important intermediate in the bacterial degradation of polycyclic aromatic hydrocarbons and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. Unlike the well-characterized salicylate 1-hydroxylases, the rarely occurred salicylate 5-hydroxylase (S5H) has not been characterized in detail. In this study, the three-component Fe-S protein complex (NagAaGHAb) of S5H from Ralstonia sp. strain U2 was purified, and its biochemical and catalytic properties were characterized. The oxygenase component NagGH exhibited an α₃β₃ heterohexameric structure and contained one Rieske-type [2Fe-2S] cluster and one mononuclear iron per α subunit. NagAa is the ferredoxin-NADP⁺ reductase component containing flavin and plant type [2Fe-2S] cluster. The ferredoxin component NagAb was characterized as a [2Fe-2S] dimer which remains remarkably stable in denaturing gel electrophoresis after being heated at 100 °C for 1 h. Purified NagAa and NagAb, NagGH catalyzed the hydroxylation of salicylate to gentisate with a specific activity of 107.12 ± 14.38 U/g and showed an apparent K(m) for salicylate of 102.79 ± 27.20 μM and a similar K(m) value for both NADH and NADPH (59.76 ± 7.81 μM versus 56.41 ± 12.76 μM). The hydroxylase exhibited different affinities for two hydroxysalicylates (2,4-dihydroxybenzoate K(m) of 93.54 ± 18.50 μM versus 2,6-dihydroxybenzoate K(m) of 939.80 ± 199.46 μM). Interestingly, this S5H also showed catalytic activity to the pollutant 2-nitrophenol and exhibited steady-state kinetic data of the same order of magnitude as those for salicylate. This study will allow further comparative studies of structure-function relationships of the ring hydroxylating mono- and di-oxygenase systems. PMID:23624660

  18. A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere.

    PubMed

    van Overbeek, Leo S; Cassidy, Mike; Kozdroj, Jacek; Trevors, Jack T; van Elsas, Jan D

    2002-01-01

    Ralstonia solanacearum biovar 2, the causative agent of brown rot in potato, has been responsible for large crop losses in Northwest Europe during the last decade. Knowledge on the ecological behaviour of R. solanacearum and its antagonists is required to develop sound procedures for its control and eradication in infested fields.A polyphasic approach was used to study the invasion of plants by a selected R. solanacearum biovar 2 strain, denoted 1609, either or not in combination with the antagonistic strains Pseudomonas corrugata IDV1 and P. fluorescens UA5-40. Thus, this study combined plating (spread and drop plate methods), reporter gene technology (gfp mutants) and serological (imunofluorescence colony staining [IFC]) and molecular techniques (fluorescent in situ hybridization [FISH], PCR with R. solanacearum specific primers and PCR-DGGE on plant DNA extracts). The behaviour of R. solanacearum 1609 and the two control strains was studied in bulk and (tomato) rhizosphere soil and the rhizoplane and stems of tomato plants. The results showed that an interaction between the pathogen and the control strains at the root surface was likely. In particular, R. solanacearum 1609 CFU numbers were significantly reduced on tomato roots treated with P. corrugata IDV1(chr:gfp1) cells as compared to those on untreated roots. Concomitant with the presence of P. corrugata IDV1(chr:gfp1), plant invasion by the pathogen was hampered, but not abolished.PCR-DGGE analyses of the tomato rhizoplane supported the evidence for antagonistic activity against the pathogen; as only weak R. solanacearum 1609 specific bands were detected in profiles derived from mixed systems versus strong bands in profiles from systems containing only the pathogen. Using FISH, a difference in root colonization was demonstrated between the pathogen and one of the two antagonists, i.e. P. corrugata IDV1(chr:gfp1); R. solanacearum strain 1609 was clearly detected in the vascular cylinder of tomato plants

  19. Class distinction

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    Typical 101 courses discourage many students from pursuing higher level science and math courses. Introductory classes in science and math serve largely as a filter, screening out all but the most promising students, and leaving the majority of college graduates—including most prospective teachers—with little understanding of how science works, according to a study conducted for the National Science Foundation. Because few teachers, particularly at the elementary level, experience any collegiate science teaching that stresses skills of inquiry and investigation, they simply never learn to use those methods in their teaching, the report states.

  20. Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon.

    PubMed

    Wang, Guangli; Liu, Yuan

    2016-09-01

    Diazinon is a widely used organophosphorus insecticide often detected in the environment. A highly effective diazinon-degrading Ralstonia sp. strain DI-3 was isolated from agricultural soil. Strain DI-3 can utilize dimethoate as its sole carbon source for growth and degrade an initial concentration of 100 mg L-1 diazinon to non-detectable levels within 60 h in liquid culture. A small amount of second carbon source as co-substrate could slightly enhance the biodegradation of diazinon. In addition, a less toxic metabolic intermediate formed during the degradation of diazinon mediated by strain DI-3 was purified using thin-layer chromatography (TLC) and identified based on single-crystal Xray diffraction analysis, allowing a degradation pathway for diazinon by pure culture to be proposed. Finally, this is the first providing authentic evidence to describe the metabolite. PMID:27581928

  1. Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana.

    PubMed

    Ito, Makoto; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development. PMID:25482800

  2. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

    PubMed Central

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-01-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from −2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  3. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum.

    PubMed

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-06-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  4. Teachers in Class

    ERIC Educational Resources Information Center

    Van Galen, Jane

    2008-01-01

    In this article, I argue for a closer read of the daily "class work" of teachers, as posited by Reay, 1998. In developing exploratory class portraits of four teachers who occupy distinctive social positions (two from working-class homes now teaching upper-middle-class children and two from upper-middle-class homes now teaching poor children), I…

  5. Comparative Secretome Analysis of Ralstonia solanacearum Type 3 Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for Bacterial Pathogenicity.

    PubMed

    Lonjon, Fabien; Turner, Marie; Henry, Céline; Rengel, David; Lohou, David; van de Kerkhove, Quitterie; Cazalé, Anne-Claire; Peeters, Nemo; Genin, Stéphane; Vailleau, Fabienne

    2016-02-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume

  6. Does Class Size Matter?

    ERIC Educational Resources Information Center

    Ehrenberg, Ronald G.; Brewer, Dominic J.; Gamoran, Adam; Willms, J. Douglas

    2001-01-01

    Reports on the significance of class size to student learning. Includes an overview of class size in various countries, the importance of teacher adaptability, and the Asian paradox of large classes allied to high test scores. (MM)

  7. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages.

    PubMed

    Bhunchoth, Anjana; Blanc-Mathieu, Romain; Mihara, Tomoko; Nishimura, Yosuke; Askora, Ahmed; Phironrit, Namthip; Leksomboon, Chalida; Chatchawankanphanich, Orawan; Kawasaki, Takeru; Nakano, Miyako; Fujie, Makoto; Ogata, Hiroyuki; Yamada, Takashi

    2016-07-01

    Jumbo phages infecting Ralstonia solanacearum were isolated in Thailand (ϕRSL2) and Japan (ϕRSF1). They were similar regarding virion morphology, genomic arrangement, and host range. Phylogenetic and proteomic tree analyses demonstrate that the ϕRSL2 and ϕRSF1 belong to a group of evolutionary related phages, including Pseudomonas phages ϕKZ, 201ϕ2-1 and all previously described ϕKZ-related phages. Despite conserved genomic co-linearity between the ϕRSL2 and ϕRSF1, they differ in protein separation patterns. A major difference was seen in the detection of virion-associated-RNA polymerase subunits. All β- and β'-subunits were detected in ϕRSF1, but one β'-subunit was undetected in ϕRSL2. Furthermore, ϕRSF1 infected host cells faster (latent period: 60 and 150min for ϕRSF1 and ϕRSL2, respectively) and more efficiently than ϕRSL2. Therefore, the difference in virion-associated-RNA polymerase may affect infection efficiency. Finally, we show that ϕRSF1 is able to inhibit bacterial wilt progression in tomato plants. PMID:27081857

  8. Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence.

    PubMed

    Lowe, Tiffany M; Ailloud, Florent; Allen, Caitilyn

    2015-03-01

    Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity. PMID:25423265

  9. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9

    PubMed Central

    Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

    2016-01-01

    It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1–11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

  10. Genome-Enabled Phylogeographic Investigation of the Quarantine Pathogen Ralstonia solanacearum Race 3 Biovar 2 and Screening for Sources of Resistance Against Its Core Effectors.

    PubMed

    Clarke, Christopher R; Studholme, David J; Hayes, Byron; Runde, Brendan; Weisberg, Alexandra; Cai, Rongman; Wroblewski, Tadeusz; Daunay, Marie-Christine; Wicker, Emmanuel; Castillo, Jose A; Vinatzer, Boris A

    2015-05-01

    Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of 17 isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a Select Agent in the United States, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and tended to carry ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of 31 type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Toward this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned, and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited. PMID:25710204

  11. Development of variable number of tandem repeats typing schemes for Ralstonia solanacearum, the agent of bacterial wilt, banana Moko disease and potato brown rot.

    PubMed

    N'guessan, Carine Aya; Brisse, Sylvain; Le Roux-Nio, Anne-Claire; Poussier, Stéphane; Koné, Daouda; Wicker, Emmanuel

    2013-03-01

    Ralstonia solanacearum is an important soil borne bacterial plant pathogen causing bacterial wilt on many important crops. To better monitor epidemics, efficient tools that can identify and discriminate populations are needed. In this study, we assessed variable number of tandem repeats (VNTR) genotyping as a new tool for epidemiological surveillance of R. solanacearum phylotypes, and more specifically for the monitoring of the monomorphic ecotypes "Moko" (banana-pathogenic) and "brown rot" (potato-pathogenic under cool conditions). Screening of six R. solanacearum genome sequences lead to select 36 VNTR loci that were preliminarily amplified on 24 strains. From this step, 26 single-locus primer pairs were multiplexed, and applied to a worldwide collection of 337 strains encompassing the whole phylogenetic diversity, with revelation on a capillary-electrophoresis genotype. Four loci were monomorphic within all phylotypes and were not retained; the other loci were highly polymorphic but displayed a clear phylotype-specificity. Phylotype-specific MLVA schemes were thus defined, based on 13 loci for phylotype I, 12 loci for phylotype II, 11 loci for phylotype III and 6 for phylotype IV. MLVA typing was significantly more discriminative than egl-based sequevar typing, particularly on monomorphic "brown rot" ecotype (phylotype IIB/sequevar 1) and "Moko disease" clade 4 (Phylotype IIB/sequevar 4). Our results raise promising prospects for studies of population genetic structures and epidemiological monitoring. PMID:23376194

  12. Hydroxycinnamic acid degradation, a broadly conserved trait, protects Ralstonia solanacearum from chemical plant defenses and contributes to root colonization and virulence

    PubMed Central

    Lowe, Tiffany M.; Ailloud, Florent; Allen, Caitilyn

    2014-01-01

    Plants produce hydroxycinnamic acid defense compounds (HCAs) to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a Δfcs (feruloyl-CoA synthetase) mutant that cannot degrade HCAs was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen (1) grow, as a carbon source; (2) spread, by reducing physical barriers HCA-derived; and (3) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCAs in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCAs are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCAs: caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCAs contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity. PMID:25423265

  13. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway.

    PubMed

    Hanemian, Mathieu; Barlet, Xavier; Sorin, Céline; Yadeta, Koste A; Keller, Harald; Favery, Bruno; Simon, Rüdiger; Thomma, Bart P H J; Hartmann, Caroline; Crespi, Martin; Marco, Yves; Tremousaygue, Dominique; Deslandes, Laurent

    2016-07-01

    Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial plant diseases. Although many molecular determinants involved in R. solanacearum adaptation to hosts and pathogenesis have been described, host components required for disease establishment remain poorly characterized. Phenotypical analysis of Arabidopsis mutants for leucine-rich repeat (LRR)-receptor-like proteins revealed that mutations in the CLAVATA1 (CLV1) and CLAVATA2 (CLV2) genes confer enhanced disease resistance to bacterial wilt. We further investigated the underlying mechanisms using genetic, transcriptomic and molecular approaches. The enhanced resistance of both clv1 and clv2 mutants to the bacteria did not require the well characterized CLV signalling modules involved in shoot meristem homeostasis, and was conditioned by neither salicylic acid nor ethylene defence-related hormones. Gene expression microarray analysis performed on clv1 and clv2 revealed deregulation of genes encoding nuclear transcription factor Y subunit alpha (NF-YA) transcription factors whose post-transcriptional regulation is known to involve microRNAs from the miR169 family. Both clv mutants showed a defect in miR169 accumulation. Conversely, overexpression of miR169 abrogated the resistance phenotype of clv mutants. We propose that CLV1 and CLV2, two receptors involved in CLV3 perception during plant development, contribute to bacterial wilt through a signalling pathway involving the miR169/NF-YA module. PMID:26990325

  14. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9.

    PubMed

    Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

    2016-01-01

    It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1-11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

  15. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces.

    PubMed

    Mori, Yuka; Inoue, Kanako; Ikeda, Kenichi; Nakayashiki, Hitoshi; Higashimoto, Chikaki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2016-08-01

    The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence. PMID:26609568

  16. Ralstonia solanacearum ΔPGI-1 strain KZR-5 is affected in growth, response to cold stress and invasion of tomato.

    PubMed

    Stevens, Patricia; van Overbeek, Leonard Simon; van Elsas, Jan Dirk

    2011-01-01

    The survival and persistence of Ralstonia solanacearum biovar 2 in temperate climates is still poorly understood. To assess whether genomic variants of the organism show adaptation to local conditions, we compared the behaviour of environmental strain KZR-5, which underwent a deletion of the 17.6 kb genomic island PGI-1, with that of environmental strain KZR-1 and potato-derived strains 1609 and 715. PGI-1 harbours two genes of potential ecological relevance, i.e. one encoding a hypothetical protein with a RelA/SpoT domain and one a putative cellobiohydrolase. We thus assessed bacterial fate under conditions of amino acid starvation, during growth, upon incubation at low temperature and invasion of tomato plants. In contrast to the other strains, environmental strain KZR-5 did not grow on media that induce amino acid starvation. In addition, its maximum growth rate at 28°C in rich medium was significantly reduced. On the other hand, long-term survival at 4°C was significantly enhanced as compared to that of strains 1609, 715 and KZR-1. Although strain KZR-5 showed growth rates (at 28°C) in two different media, which were similar to those of strains 1609 and 715, its ability to compete with these strains under these conditions was reduced. In singly inoculated tomato plants, no significant differences in invasiveness were observed among strains KZR-5, KZR-1, 1609 and 715. However, reduced competitiveness of strain KZR-5 was found in experiments on tomato plant colonisation and wilting when using 1:1 or 5:1 mixtures of strains. The potential role of PGI-1 in plant invasion, response to stress and growth in competition at high and moderate temperatures is discussed. PMID:20717661

  17. Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence.

    PubMed

    Brown, Darby G; Swanson, Jill K; Allen, Caitilyn

    2007-05-01

    Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>10(7) CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds. PMID:17337552

  18. A novel multilocus variable number tandem repeat analysis typing scheme for African phylotype III strains of the Ralstonia solanacearum species complex.

    PubMed

    Ravelomanantsoa, Santatra; Robène, Isabelle; Chiroleu, Frédéric; Guérin, Fabien; Poussier, Stéphane; Pruvost, Olivier; Prior, Philippe

    2016-01-01

    Background. Reliable genotyping that provides an accurate description of diversity in the context of pathogen emergence is required for the establishment of strategies to improve disease management. MultiLocus variable number tandem repeat analysis (MLVA) is a valuable genotyping method. It can be performed at small evolutionary scales where high discriminatory power is needed. Strains of the Ralstonia solanacearum species complex (RSSC) are highly genetically diverse. These destructive pathogens are the causative agent of bacterial wilt on an unusually broad range of host plants worldwide. In this study, we developed an MLVA scheme for genotyping the African RSSC phylotype III. Methods. We selected different publicly available tandem repeat (TR) loci and additional TR loci from the genome of strain CMR15 as markers. Based on these loci, a new phylotype III-MLVA scheme is presented. MLVA and multiLocus sequence typing (MLST) were compared at the global, regional, and local scales. Different populations of epidemiologically related and unrelated RSSC phylotype III strains were used. Results and Discussion. Sixteen polymorphic TR loci, which included seven microsatellites and nine minisatellites, were selected. These TR loci were distributed throughout the genome (chromosome and megaplasmid) and located in both coding and intergenic regions. The newly developed RS3-MLVA16 scheme was more discriminative than MLST. RS3-MLVA16 showed good ability in differentiating strains at global, regional, and local scales, and it especially highlighted epidemiological links between closely related strains at the local scale. RS3-MLVA16 also underlines genetic variability within the same MLST-type and clonal complex, and gives a first overview of population structure. Overall, RS3-MLVA16 is a promising genotyping method for outbreak investigation at a fine scale, and it could be used for outbreak investigation as a first-line, low-cost assay for the routine screening of RSSC

  19. Induction of the Viable but Nonculturable State of Ralstonia solanacearum by Low Temperature in the Soil Microcosm and Its Resuscitation by Catalase

    PubMed Central

    Kong, Hyun Gi; Bae, Ju Young; Lee, Hyoung Ju; Joo, Hae Jin; Jung, Eun Joo; Chung, Eunsook; Lee, Seon-Woo

    2014-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at 4°C in modified ASM (mASM), while it was stably maintained at 25°C in mASM. We hypothesized that bacterial cells at 4°C in mASM are viable but nonculturable. Total protein profiles of SL341 cells at 4°C in mASM did not differ from those of SL341 culturable cells at 25°C in mASM. Moreover, the VBNC cells maintained in the mASM retained respiration activity. Catalase treatment effectively restored the culturability of nonculturable cells in mASM, while temperature increase or other treatments used for resuscitation of other bacteria were not effective. The resuscitated R. solanacearum from VBNC state displayed normal level of bacterial virulence on tomato plants compared with its original culturable bacteria. Expression of omp, oxyR, rpoS, dps, and the 16S rRNA gene quantified by RT-qPCR did not differ significantly between the culturable and VBNC states of R. solanacearum. Our results suggested that the VBNC bacterial cells in mASM induced by low temperature exist in a physiologically unique state. PMID:25296177

  20. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity

    PubMed Central

    Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji

    2016-01-01

    ABSTRACT The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. PMID:27073091

  1. rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum

    PubMed Central

    Ray, Suvendra K.; Kumar, Rahul; Peeters, Nemo; Boucher, Christian; Genin, Stephane

    2015-01-01

    The plant pathogen Ralstonia solanacearum has two genes encoding for the sigma factor σ54: rpoN1, located in the chromosome and rpoN2, located in a distinct “megaplasmid” replicon. In this study, individual mutants as well as a double mutant of rpoN were created in R. solanacearum strain GMI1000 in order to determine the extent of functional overlap between these two genes. By virulence assay we observed that rpoN1 is required for virulence whereas rpoN2 is not. In addition rpoN1 controls other important functions such twitching motility, natural transformation and growth on nitrate, unlike rpoN2. The rpoN1 and rpoN2 genes have different expression pattern, the expression of rpoN1 being constitutive whereas rpoN2 expression is induced in minimal medium and in the presence of plant cells. Moreover, the expression of rpoN2 is dependent upon rpoN1. Our work therefore reveals that the two rpoN genes are not functionally redundant in R. solanacearum. A list of potential σ54 targets was identified in the R. solanacearum genome and suggests that multiple traits are under the control of these regulators. Based on these findings, we provide a model describing the functional connection between RpoN1 and the PehR pathogenicity regulator and their dual role in the control of several R. solanacearum virulence determinants. PMID:25852679

  2. A novel multilocus variable number tandem repeat analysis typing scheme for African phylotype III strains of the Ralstonia solanacearum species complex

    PubMed Central

    Ravelomanantsoa, Santatra; Robène, Isabelle; Chiroleu, Frédéric; Guérin, Fabien; Poussier, Stéphane; Pruvost, Olivier

    2016-01-01

    Background. Reliable genotyping that provides an accurate description of diversity in the context of pathogen emergence is required for the establishment of strategies to improve disease management. MultiLocus variable number tandem repeat analysis (MLVA) is a valuable genotyping method. It can be performed at small evolutionary scales where high discriminatory power is needed. Strains of the Ralstonia solanacearum species complex (RSSC) are highly genetically diverse. These destructive pathogens are the causative agent of bacterial wilt on an unusually broad range of host plants worldwide. In this study, we developed an MLVA scheme for genotyping the African RSSC phylotype III. Methods. We selected different publicly available tandem repeat (TR) loci and additional TR loci from the genome of strain CMR15 as markers. Based on these loci, a new phylotype III-MLVA scheme is presented. MLVA and multiLocus sequence typing (MLST) were compared at the global, regional, and local scales. Different populations of epidemiologically related and unrelated RSSC phylotype III strains were used. Results and Discussion. Sixteen polymorphic TR loci, which included seven microsatellites and nine minisatellites, were selected. These TR loci were distributed throughout the genome (chromosome and megaplasmid) and located in both coding and intergenic regions. The newly developed RS3-MLVA16 scheme was more discriminative than MLST. RS3-MLVA16 showed good ability in differentiating strains at global, regional, and local scales, and it especially highlighted epidemiological links between closely related strains at the local scale. RS3-MLVA16 also underlines genetic variability within the same MLST-type and clonal complex, and gives a first overview of population structure. Overall, RS3-MLVA16 is a promising genotyping method for outbreak investigation at a fine scale, and it could be used for outbreak investigation as a first-line, low-cost assay for the routine screening of RSSC

  3. Application of variable-number tandem-repeat typing to discriminate Ralstonia solanacearum strains associated with English watercourses and disease outbreaks.

    PubMed

    Parkinson, Neil; Bryant, Ruth; Bew, Janice; Conyers, Christine; Stones, Robert; Alcock, Michael; Elphinstone, John

    2013-10-01

    Variable-number tandem-repeat (VNTR) analysis was used for high-resolution discrimination among Ralstonia solanacearum phylotype IIB sequevar 1 (PIIB-1) isolates and further evaluated for use in source tracing. Five tandem-repeat-containing loci (comprising six tandem repeats) discriminated 17 different VNTR profiles among 75 isolates from potato, geranium, bittersweet (Solanum dulcamara), tomato, and the environment. R. solanacearum isolates from crops at three unrelated outbreak sites where river water had been used for irrigation had distinct VNTR profiles that were shared with PIIB-1 isolates from infected bittersweet growing upriver of each site. The VNTR profiling results supported the implication that the source of R. solanacearum at each outbreak was contaminated river water. Analysis of 51 isolates from bittersweet growing in river water at different locations provided a means to evaluate the technique for studying the epidemiology of the pathogen in the environment. Ten different VNTR profiles were identified among bittersweet PIIB-1 isolates from the River Thames. Repeated findings of contiguous river stretches that produced isolates that shared single VNTR profiles supported the hypothesis that the pathogen had disseminated from infected bittersweet plants located upriver. VNTR profiles shared between bittersweet isolates from two widely separated Thames tributaries (River Ray and River Colne) suggested they were independently contaminated with the same clonal type. Some bittersweet isolates had VNTR profiles that were shared with potato isolates collected outside the United Kingdom. It was concluded that VNTR profiling could contribute to further understanding of R. solanacearum epidemiology and assist in control of future disease outbreaks. PMID:23892739

  4. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling.

    PubMed

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  5. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Raza, Waseem; Wang, Jichen; Wu, Yuncheng; Ling, Ning; Wei, Zhong; Huang, Qiwei; Shen, Qirong

    2016-09-01

    The production of volatile organic compounds (VOCs) by microbes is an important characteristic for their selection as biocontrol agents against plant pathogens. In this study, we identified the VOCs produced by the biocontrol strain Bacillus amyloliquefaciens T-5 and evaluated their impact on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. The results showed that the VOCs of strain T-5 significantly inhibited the growth of R. solanacearum in agar medium and in soil. In addition, VOCs significantly inhibited the motility traits, root colonization, biofilm formation, and production of antioxidant enzymes and exopolysaccharides by R. solanacearum. However, no effect of VOCs on the production of hydrolytic enzymes by R. solanacearum was observed. The strain T-5 produced VOCs, including benzenes, ketones, aldehydes, alkanes, acids, and one furan and naphthalene compound; among those, 13 VOCs showed 1-10 % antibacterial activity against R. solanacearum in their produced amounts by T-5; however, the consortium of all VOCs produced on agar medium, in sterilized soil, and in natural soil showed 75, 62, and 85 % growth inhibition of R. solanacearum, respectively. The real-time PCR analysis further confirmed the results when the expression of different virulence- and metabolism-related genes in R. solanacearum cells was decreased after exposure to the VOCs of strain T-5. The results of this study clearly revealed the significance of VOCs in the control of plant pathogens. This information would help to better comprehend the microbial interactions mediated by VOCs in nature and to develop safer strategies to control plant disease. PMID:27183998

  6. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000.

    PubMed

    Lundgren, Benjamin R; Connolly, Morgan P; Choudhary, Pratibha; Brookins-Little, Tiffany S; Chatterjee, Snigdha; Raina, Ramesh; Nomura, Christopher T

    2015-01-01

    The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000. PMID:26659655

  7. Novel Gene Clusters and Metabolic Pathway Involved in 3,5,6-Trichloro-2-Pyridinol Degradation by Ralstonia sp. Strain T6

    PubMed Central

    Li, Jingquan; Huang, Yan; Hou, Ying; Li, Xiangmin; Cao, Hui

    2013-01-01

    3,5,6-Trichloro-2-pyridinol (TCP) is a widespread pollutant. Some bacteria and fungi have been reported to degrade TCP, but the gene clusters responsible for TCP biodegradation have not been characterized. In this study, a fragment of the reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase gene tcpA was amplified from the genomic DNA of Ralstonia sp. strain T6 with degenerate primers. The tcpA disruption mutant strain T6-ΔtcpA could not degrade TCP but could degrade the green intermediate metabolite 3,6-dihydroxypyridine-2,5-dione (DHPD), which was generated during TCP biodegradation by strain T6. The flanking sequences of tcpA were obtained by self-formed adaptor PCR. tcpRXA genes constitute a gene cluster. TcpR and TcpX are closely related to the LysR family transcriptional regulator and flavin reductase, respectively. T6-ΔtcpA-com, the complementation strain for the mutant strain T6-ΔtcpA, recovered the ability to degrade TCP, and the strain Escherichia coli DH10B-tcpRXA, which expressed the tcpRXA gene cluster, had the ability to transform TCP to DHPD, indicating that tcpA is a key gene in the initial step of TCP degradation and that TcpA dechlorinates TCP to DHPD. A library of DHPD degradation-deficient mutants of strain T6 was obtained by random transposon mutagenesis. The fragments flanking the Mariner transposon were amplified and sequenced, and the dhpRIJK gene cluster was cloned. DhpJ could transform DHPD to yield an intermediate product, 5-amino-2,4,5-trioxopentanoic acid (ATOPA), which was further degraded by DhpI. DhpR and DhpK are closely related to the AraC family transcriptional regulator and the MFS family transporter, respectively. PMID:24056464

  8. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling

    PubMed Central

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  9. Deciphering the route of Ralstonia solanacearum colonization in Arabidopsis thaliana roots during a compatible interaction: focus at the plant cell wall.

    PubMed

    Digonnet, Catherine; Martinez, Yves; Denancé, Nicolas; Chasseray, Marine; Dabos, Patrick; Ranocha, Philippe; Marco, Yves; Jauneau, Alain; Goffner, Deborah

    2012-11-01

    The compatible interaction between the model plant, Arabidopsis thaliana, and the GMI1000 strain of the phytopathogenic bacterium, Ralstonia solanacearum, was investigated in an in vitro pathosystem. We describe the progression of the bacteria in the root from penetration at the root surface to the xylem vessels and the cell type-specific, cell wall-associated modifications that accompanies bacterial colonization. Within 6 days post inoculation, R. solanacearum provoked a rapid plasmolysis of the epidermal, cortical, and endodermal cells, including those not directly in contact with the bacteria. Plasmolysis was accompanied by a global degradation of pectic homogalacturonanes as shown by the loss of JIM7 and JIM5 antibody signal in the cell wall of these cell types. As indicated by immunolabeling with Rsol-I antibodies that specifically recognize R. solanacearum, the bacteria progresses through the root in a highly directed, centripetal manner to the xylem poles, without extensive multiplication in the intercellular spaces along its path. Entry into the vascular cylinder was facilitated by cell collapse of the two pericycle cells located at the xylem poles. Once the bacteria reached the xylem vessels, they multiplied abundantly and moved from vessel to vessel by digesting the pit membrane between adjacent vessels. The degradation of the secondary walls of xylem vessels was not a prerequisite for vessel colonization as LM10 antibodies strongly labeled xylem cell walls, even at very late stages in disease development. Finally, the capacity of R. solanacearum to specifically degrade certain cell wall components and not others could be correlated with the arsenal of cell wall hydrolytic enzymes identified in the bacterial genome. PMID:22729825

  10. Development and Comparison of TaqMan-Based Real-Time PCR Assays for Detection and Differentiation of Ralstonia solanacearum strains.

    PubMed

    Stulberg, Michael J; Rascoe, John; Li, Wenbin; Yan, Zonghe; Nakhla, Mark K; Huang, Qi

    2016-10-01

    Bacterial wilt caused by Ralstonia solanacearum is destructive to many plant species worldwide. The race 3 biovar 2 (r3b2) strains of R. solanacearum infect potatoes in temperate climates and are listed as select agents by the U.S. government. TaqMan-based real-time quantitative PCR (qPCR) is commonly used in federal and state diagnostic laboratories over conventional PCR due to its speed and sensitivity. We developed the Rs16S primers and probe set and compared it with a widely used set (RS) for detecting R. solanacearum species complex strains. We also developed the RsSA3 primers and probe set and compared it with the previously published B2 and RsSA2 sets for specific detection of r3b2 strains. Both comparisons were done under standardized qPCR master mix and cycling conditions. The Rs16S and RS assays detected all 90 R. solanacearum species complex strains and none of the five outgroups, but the former was more sensitive than the latter. For r3b2 strain detection, the RsSA2 and RsSA3 sets specifically detected the 34 r3b2 strains and none of the 56 R. solanacearum non-r3b2 strains or out-group strains. The B2 set, however, detected five non-r3b2 R. solanacearum strains and was less sensitive than the other two sets under the same testing conditions. We conclude that the Rs16S, RsSA2, and RsSA3 sets are best suited under the standardized conditions for the detection of R. solanacearum species complex and r3b2 strains by TaqMan-based qPCR assays. PMID:27402488