Science.gov

Sample records for ralstonia solanacearum species

  1. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence

    PubMed Central

    2010-01-01

    Background The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. Results The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. Conclusions Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic

  2. Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles

    PubMed Central

    Cellier, Gilles; Jacobs, Jonathan M.; Mangenot, Sophie; Barbe, Valérie; Lajus, Aurélie; Vallenet, David; Medigue, Claudine; Fegan, Mark; Allen, Caitilyn; Prior, Philippe

    2011-01-01

    The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical

  3. A computer program for fast and easy typing of a partial endoglucanase gene sequence into genospecies and sequevars 1&2 of the Ralstonia solanacearum species complex.

    PubMed

    Stulberg, Michael J; Huang, Qi

    2016-04-01

    The phytopathogen Ralstonia solanacearum is a species complex that contains race 3 biovar 2 strains belonging to phylotype IIB sequevars 1 and 2 that are quarantined or select agent pathogens. Recently, the R. solanacearum species complex strains have been reclassified into three genospecies: R. solanacearum, Ralstonia pseudosolanacearum and Ralstonia syzygii. An unidentified R. solanacearum strain is considered a select agent in the US until proven to be a non-race 3 biovar 2 (non-phylotype IIB sequevars 1&2). Currently, sequevars of R. solanacearum species complex strains can only be determined by phylogenetic analysis of a partial endoglucanase (egl) sequence of approximately 700-bp in length. Such analysis, however, requires expert knowledge to properly trim the sequence, to include the correct reference strains, and to interpret the results. By comparing GenBank egl sequences of representative R. solanacearum species-complex strains, we identified genospecies- and sequevar 1 and 2-specific single nucleotide polymorphisms (SNPs). We also designed primers to amplify a shorter, 526-bp, egl fragment from R. solanacearum species complex strains for easy sequencing of the amplicon, and to facilitate direct and specific amplification of egl from R. solanacearum-infected plant samples without the need of bacterial isolation. We wrote a computer program (Ralstonia solanacearum typing program) that analyzes a minimum 400-bp user-input egl sequence from a R. solanacearum strain for egl homology and SNP content to determine 1) whether it belongs to the R. solanacearum species complex, 2) if so, to which genospecies, and 3) whether it is of the sequevar type (sequevars 1 and 2) associated with the select agent/quarantined R. solanacearum strain. The program correctly typed all 371 tested egl sequences with known sequevars, obtained either from GenBank or through personal communication. Additionally, the program successfully typed 25 R. solanacearum strains in our

  4. Improved biovar test for Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Race 3, biovar 2 strains of Ralstonia solanacearum are quarantined pathogens in Europe and Canada and Select Agent pathogens in the United States. The biovar classification of R. solanacearum strains is based on their biochemical abilities to utilize a carbohydrate panel. The standard biovar test us...

  5. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex.

    PubMed

    Lebeau, A; Daunay, M-C; Frary, A; Palloix, A; Wang, J-F; Dintinger, J; Chiroleu, F; Wicker, E; Prior, P

    2011-01-01

    Bacterial wilt, caused by strains belonging to the Ralstonia solanacearum species complex, inflicts severe economic losses in many crops worldwide. Host resistance remains the most effective control strategy against this disease. However, wilt resistance is often overcome due to the considerable variation among pathogen strains. To help breeders circumvent this problem, we assembled a worldwide collection of 30 accessions of tomato, eggplant and pepper (Core-TEP), most of which are commonly used as sources of resistance to R. solanacearum or for mapping quantitative trait loci. The Core-TEP lines were challenged with a core collection of 12 pathogen strains (Core-Rs2) representing the phylogenetic diversity of R. solanacearum. We observed six interaction phenotypes, from highly susceptible to highly resistant. Intermediate phenotypes resulted from the plants' ability to tolerate latent infections (i.e., bacterial colonization of vascular elements with limited or no wilting). The Core-Rs2 strains partitioned into three pathotypes on pepper accessions, five on tomato, and six on eggplant. A "pathoprofile" concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions. Neither pathotypes nor pathoprofiles were phylotype specific. Pathoprofiles with high aggressiveness were mainly found in strains from phylotypes I, IIB, and III. One pathoprofile included a strain that overcame almost all resistance sources. PMID:20795852

  6. [Serological characteristic of lipopolysaccharides of Ralstonia solanacearum].

    PubMed

    Hrytsaĭ, R V; Brovars'ka, O S; Zhytkevich, N V; Varbanets', L D

    2012-01-01

    By immunochemical investigations of eight strains of Ralstonia solanacearum six strains were attributed to four serogroups. Two of them are formed by pairs of R. solanacearum strains 4 and 526; 758 and 7954; two others are represented by single strains--TX1 Ta TS3, correspondingly. Antigenic structure of R. solanacearum 7954 O-polysaccharide unites antigenic epitopes of R. solanacearum strains 4, 35, 526, 749, however the absence of cross-reactivity does not permit uniting them into the same group. The latter, and also the fact that the antiserum to R. solanacearum 749 in the reaction with LPS of R solanacearum 526 forms two precipitation lines (while in the homological system it forms only one line) may be explained by differences in the component composition of heat-stable immunogens (which were used for antiserum obtaining), and also purified LPS which were utilized as antigens in immunochemical reactions. PMID:23120981

  7. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    PubMed

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between

  8. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity

    PubMed Central

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47–91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other’s EBEs. Investigation of sequence divergence

  9. Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Li, Zefeng; Wu, Sanling; Bai, Xuefei; Liu, Yun; Lu, Jianfei; Liu, Yong; Xiao, Bingguang; Lu, Xiuping; Fan, Longjiang

    2011-11-01

    Ralstonia solanacearum is a causal agent of plant bacterial wilt with thousands of distinct strains in a heterogeneous species complex. Here we report the genome sequence of a phylotype IB strain, Y45, isolated from tobacco (Nicotiana tabacum) in China. Compared with the published genomes of eight strains which were isolated from other hosts and habitats, 794 specific genes and many rearrangements/inversion events were identified in the tobacco strain, demonstrating that this strain represents an important node within the R. solanacearum complex. PMID:21994922

  10. Molecular Diversity of Ralstonia solanacearum Isolated from Ginger in Hawaii.

    PubMed

    Yu, Q; Alvarez, A M; Moore, P H; Zee, F; Kim, M S; de Silva, A; Hepperly, P R; Ming, R

    2003-09-01

    ABSTRACT The genetic diversity of Ralstonia solanacearum strains isolated from ginger (Zingiber officinale) growing on the island of Hawaii was determined by analysis of amplified fragment length polymorphisms (AFLPs). Initially 28 strains of R. solanacearum collected from five host plant species worldwide were analyzed by AFLP. A second analysis was conducted on 55 R. solanacearum strains collected from three ginger farms along the Hamakua Coast of Hawaii, the principle area of ginger cultivation in the state. From the initial analysis, R. solanacearum strains from ginger in Hawaii showed a high degree of similarity at 0.853. In contrast, the average genetic similarity between R. solanacearum strains from heliconia and ginger was only 0.165, and strains from ginger showed little similarity with strains from all other hosts. The second analysis of 55 strains from ginger on different Hawaiian farms confirmed that they were distinct from race 1 strains from tomato. Strains from ginger also showed greater diversity among themselves in the second analysis, and the greatest diversity occurred among strains from a farm where ginger is frequently imported and maintained. Our results provide evidence that R. solanacearum strains from ginger in Hawaii are genetically distinct from local strains from tomato (race 1) and heliconia (race 2). PMID:18944096

  11. [Phytotoxic properties of Ralstonia solanacearum lipopolysaccharides].

    PubMed

    Hrytsaĭ, R V; Iakovleva, L M; Varbanets', L D

    2014-01-01

    The study is dedicated to research of phytotoxic properties of Ralstonia solanacearum lipopolysaccharides. This causative agent is one of the most dangerous among potato bacterial diseases. It is revealed that the inhibitory effect of LPS solution on seedlings germination is more noticeable on crops susceptible to brown rot. Maximal total phytotoxic properties have been shown by LPS from strains 35, 52b, TX1 and TS3, which were characterized by relatively low rhamnose content. Relative to the control plants LPS may diminish and some ones--increase the root length, height and weight of seedlings, subject to particular strain. But the stimulation revealed is minor. PMID:25000727

  12. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  13. Susceptibility of Geranium Cultivars (Pelargonium spp.) to Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-one cultivars of geraniums including zonal, regal, ivy, and scented were tested for susceptibility to three strains of Ralstonia solanacearum: a Race 1 Biovar 1 (R1B1) strain P597 isolated from tomato in Florida, a R1B1 strain P673 obtained from pothos originating in Costa Rica, and a Race 3 B...

  14. A novel multilocus variable number tandem repeat analysis typing scheme for African phylotype III strains of the Ralstonia solanacearum species complex

    PubMed Central

    Ravelomanantsoa, Santatra; Robène, Isabelle; Chiroleu, Frédéric; Guérin, Fabien; Poussier, Stéphane; Pruvost, Olivier

    2016-01-01

    Background. Reliable genotyping that provides an accurate description of diversity in the context of pathogen emergence is required for the establishment of strategies to improve disease management. MultiLocus variable number tandem repeat analysis (MLVA) is a valuable genotyping method. It can be performed at small evolutionary scales where high discriminatory power is needed. Strains of the Ralstonia solanacearum species complex (RSSC) are highly genetically diverse. These destructive pathogens are the causative agent of bacterial wilt on an unusually broad range of host plants worldwide. In this study, we developed an MLVA scheme for genotyping the African RSSC phylotype III. Methods. We selected different publicly available tandem repeat (TR) loci and additional TR loci from the genome of strain CMR15 as markers. Based on these loci, a new phylotype III-MLVA scheme is presented. MLVA and multiLocus sequence typing (MLST) were compared at the global, regional, and local scales. Different populations of epidemiologically related and unrelated RSSC phylotype III strains were used. Results and Discussion. Sixteen polymorphic TR loci, which included seven microsatellites and nine minisatellites, were selected. These TR loci were distributed throughout the genome (chromosome and megaplasmid) and located in both coding and intergenic regions. The newly developed RS3-MLVA16 scheme was more discriminative than MLST. RS3-MLVA16 showed good ability in differentiating strains at global, regional, and local scales, and it especially highlighted epidemiological links between closely related strains at the local scale. RS3-MLVA16 also underlines genetic variability within the same MLST-type and clonal complex, and gives a first overview of population structure. Overall, RS3-MLVA16 is a promising genotyping method for outbreak investigation at a fine scale, and it could be used for outbreak investigation as a first-line, low-cost assay for the routine screening of RSSC

  15. A novel multilocus variable number tandem repeat analysis typing scheme for African phylotype III strains of the Ralstonia solanacearum species complex.

    PubMed

    Ravelomanantsoa, Santatra; Robène, Isabelle; Chiroleu, Frédéric; Guérin, Fabien; Poussier, Stéphane; Pruvost, Olivier; Prior, Philippe

    2016-01-01

    Background. Reliable genotyping that provides an accurate description of diversity in the context of pathogen emergence is required for the establishment of strategies to improve disease management. MultiLocus variable number tandem repeat analysis (MLVA) is a valuable genotyping method. It can be performed at small evolutionary scales where high discriminatory power is needed. Strains of the Ralstonia solanacearum species complex (RSSC) are highly genetically diverse. These destructive pathogens are the causative agent of bacterial wilt on an unusually broad range of host plants worldwide. In this study, we developed an MLVA scheme for genotyping the African RSSC phylotype III. Methods. We selected different publicly available tandem repeat (TR) loci and additional TR loci from the genome of strain CMR15 as markers. Based on these loci, a new phylotype III-MLVA scheme is presented. MLVA and multiLocus sequence typing (MLST) were compared at the global, regional, and local scales. Different populations of epidemiologically related and unrelated RSSC phylotype III strains were used. Results and Discussion. Sixteen polymorphic TR loci, which included seven microsatellites and nine minisatellites, were selected. These TR loci were distributed throughout the genome (chromosome and megaplasmid) and located in both coding and intergenic regions. The newly developed RS3-MLVA16 scheme was more discriminative than MLST. RS3-MLVA16 showed good ability in differentiating strains at global, regional, and local scales, and it especially highlighted epidemiological links between closely related strains at the local scale. RS3-MLVA16 also underlines genetic variability within the same MLST-type and clonal complex, and gives a first overview of population structure. Overall, RS3-MLVA16 is a promising genotyping method for outbreak investigation at a fine scale, and it could be used for outbreak investigation as a first-line, low-cost assay for the routine screening of RSSC

  16. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues.

    PubMed

    Spraker, Joseph E; Sanchez, Laura M; Lowe, Tiffany M; Dorrestein, Pieter C; Keller, Nancy P

    2016-09-01

    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus. PMID:26943626

  17. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues

    PubMed Central

    Spraker, Joseph E; Sanchez, Laura M; Lowe, Tiffany M; Dorrestein, Pieter C; Keller, Nancy P

    2016-01-01

    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus. PMID:26943626

  18. A computer program for fast and easy typing of partial endoglucanase gene sequence into phylotypes and sequevars 1&2 (select agents) of Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytopathogen Ralstonia solanacearum is a species complex that contains a subset of strains that are quarantined or select agent pathogens. An unidentified R. solanacearum strain is considered a select agent in the US until proven otherwise, which can be done by phylogenetic analysis of a partia...

  19. Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031.

    PubMed

    Guarischi-Sousa, Rodrigo; Puigvert, Marina; Coll, Núria S; Siri, María Inés; Pianzzola, María Julia; Valls, Marc; Setubal, João C

    2016-01-01

    Ralstonia solanacearum is the causative agent of bacterial wilt of potato. Ralstonia solanacearum strain UY031 belongs to the American phylotype IIB, sequevar 1, also classified as race 3 biovar 2. Here we report the completely sequenced genome of this strain, the first complete genome for phylotype IIB, sequevar 1, and the fourth for the R. solanacearum species complex. In addition to standard genome annotation, we have carried out a curated annotation of type III effector genes, an important pathogenicity-related class of genes for this organism. We identified 60 effector genes, and observed that this effector repertoire is distinct when compared to those from other phylotype IIB strains. Eleven of the effectors appear to be nonfunctional due to disruptive mutations. We also report a methylome analysis of this genome, the first for a R. solanacearum strain. This analysis helped us note the presence of a toxin gene within a region of probable phage origin, raising the hypothesis that this gene may play a role in this strain's virulence. PMID:26779304

  20. A multiplex PCR assay to detect and differentiate select agent strains of Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia solanacearum causes bacterial wilt in a variety of cash crops. R. solanacearum race 3 biovar 2 strains are considered select agents by the U.S. Government because they are not endemic to the U.S. and have the potential to cause brown rot disease in our potato production fields. Simple and...

  1. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum.

    PubMed

    Elhenawy, Wael; Scott, Nichollas E; Tondo, M Laura; Orellano, Elena G; Foster, Leonard J; Feldman, Mario F

    2016-03-01

    Ralstonia solanacearum is one of the most lethal phytopathogens in the world. Due to its broad host range, it can cause wilting disease in many plant species of economic interest. In this work, we identified the O-oligosaccharyltransferase (O-OTase) responsible for protein O-glycosylation in R. solanacearum. An analysis of the glycoproteome revealed that 20 proteins, including type IV pilins are substrates of this general glycosylation system. Although multiple glycan forms were identified, the majority of the glycopeptides were modified with a pentasaccharide composed of HexNAc-(Pen)-dHex(3), similar to the O antigen subunit present in the lipopolysaccharide of multiple R. solanacearum strains. Disruption of the O-OTase led to the total loss of protein glycosylation, together with a defect in biofilm formation and reduced pathogenicity towards tomato plants. Comparative proteomic analysis revealed that the loss of glycosylation is not associated with widespread proteome changes. Only the levels of a single glycoprotein, the type IV pilin, were diminished in the absence of glycosylation. In parallel, disruption of glycosylation triggered an increase in the levels of a surface lectin homologous to Pseudomonas PA-IIL. These results reveal the important role of glycosylation in the pathogenesis of R. solanacearum. PMID:26531228

  2. Ralstonia solanacearum Strains from Martinique (French West Indies) Exhibiting a New Pathogenic Potential▿ †

    PubMed Central

    Wicker, Emmanuel; Grassart, Laurence; Coranson-Beaudu, Régine; Mian, Danièle; Guilbaud, Caroline; Fegan, Mark; Prior, Philippe

    2007-01-01

    We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America. PMID:17720825

  3. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential.

    PubMed

    Wicker, Emmanuel; Grassart, Laurence; Coranson-Beaudu, Régine; Mian, Danièle; Guilbaud, Caroline; Fegan, Mark; Prior, Philippe

    2007-11-01

    We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America. PMID:17720825

  4. Draft Genome Sequence of Ralstonia solanacearum Strain Rs-T02, Which Represents the Most Prevalent Phylotype in Guangxi, China

    PubMed Central

    Zou, Chengwu; Wang, Kaihao; Meng, Jiaorong; Yuan, Gaoqing; Lin, Wei; Peng, Haowen

    2016-01-01

    Ralstonia solanacearum strain Rs-T02 was originally isolated from a bacterial wilt of tomato plant in Nanning City of Guangxi Province, China. It represents the most prevalent phylotype in Guangxi. Here, we present the draft genome sequence of this strain, which comprises 5,225 genes and 5,976,011 nucleotides with an average G+C content of 66.79%. There are 968 different genes between this isolate and the previously reported genome sequence of Ralstonia solanacearum GMl l000 (race l, biovar 3, phylotype I), and the genome sequence information of this isolate may be useful for comparative genomic studies to determine the genetic diversity in this species. PMID:27081126

  5. Genetic diversity of the bacterial wilt pathogen Ralstonia solanacearum using a RAPD marker.

    PubMed

    Nishat, Sayeda; Hamim, Islam; Khalil, M Ibrahim; Ali, Md Ayub; Hossain, Muhammed Ali; Meah, M Bahadur; Islam, Md Rashidul

    2015-11-01

    Bacterial wilt caused by Ralstonia solanacearum is a destructive disease of many economically important crop species. A significant variation in wilt incidence and severity in eggplant and potato was observed among the growing areas surveyed. R. solanacearum isolates obtained both from eggplant and potato belong to biovar III, while isolates from eggplant belong to race 1 and isolates obtained from potato belong to race 3. Random amplified polymorphic DNA (RAPD) technique was used as a tool for assessing genetic variation and relationship among seven isolate groups of R. solanacearum viz., RsB-1, RsB-2, RsB-3, RsP-1, RsP-2, RsP-3 and RsP-4, consisting in a total of 28 isolates. Out of the RAPD markers used, amplification with four decamer primers produced 70 bands with sizes ranging from 100 to 1400 bp. Out of 70 bands, 68 bands (97.06%) were polymorphic and two bands (2.94%) were monomorphic amongst the seven R. solanacearum isolates group. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei's genetic distance produced two main clusters of the seven isolates of R. solanacearum. The isolates RsB-1, RsB-2, RsB-3 and R-4 grouped in cluster І, while RsP-2, RsP-3 and RsP-4 grouped in cluster ІІ. The highest intra-variety similarity index (Si) was found in RsB-1 isolate (86.35%) and the lowest one in RsP-2 (56.59%). The results indicated that relatively higher and lower levels of genetic variation were found in RsP-3 and RsB-3, respectively. The coefficient of gene differentiation (G(st)) was 0.5487, reflecting the existence of a high level of genetic variations among seven isolates of R. solanacearum. Comparatively higher genetic distance (0.4293) and lower genetic identity (0.6510) were observed between RsB-2 and RsP-4 combinations. The lowest genetic distance (0.0357) and highest genetic identity (0.9650) were found in RsB-1 vs. RsB-2 pair. Thus, RAPD offers a potentially simple, rapid and reliable method to evaluate

  6. Genetic Diversity of Japanese Strains of Ralstonia solanacearum.

    PubMed

    Horita, M; Tsuchiya, K

    2001-04-01

    ABSTRACT The genetic diversity of 74 Japanese strains of Ralstonia solanacearum was assessed by pathogenicity tests and the repetitive sequencebased polymerase chain reaction (rep-PCR) fingerprint method. Based on their genomic fingerprints, biovar N2 strains were divided into two distinct groups, one consisting of potato isolates belonging to race 3, and the other consisting of tomato, eggplant, pepper, and tobacco isolates belonging to race 1. Biovar 3 strains had low average similarity and were divided into five groups that differed in original host or pathogenicity. Biovar 4 strains consisted of only one group at the 80% similarity level. Comparative analysis of the rep-PCR fingerprints of 78 strains, including six biovars from Japan and various countries, revealed two main clusters. Cluster 1 comprised all biovar 3, 4, and 5 strains, biovar 1 strains from Reunion, and some biovar N2 strains from Japan. Cluster 2 included most of the biovar 1, 2, and N2 strains. The fingerprints showed low average similarity with biovar N2 strains from Japan and Brazil. PMID:18943853

  7. Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations.

    PubMed

    Yuan, Kat Xiaoli; Cullis, Jeff; Lévesque, C André; Tambong, James; Chen, Wen; Lewis, Christopher T; De Boer, Solke H; Li, Xiang Sean

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations. Analysis of these genome sequences will provide detailed insight on virulence, functionality, and plant/pest interactions of this widely distributed and regulated pathogen. PMID:26272559

  8. Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations

    PubMed Central

    Yuan, Kat (Xiaoli); Cullis, Jeff; Lévesque, C. André; Tambong, James; Chen, Wen; Lewis, Christopher T.; De Boer, Solke H.

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations. Analysis of these genome sequences will provide detailed insight on virulence, functionality, and plant/pest interactions of this widely distributed and regulated pathogen. PMID:26272559

  9. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum

    PubMed Central

    Kong, Hyun Gi; Jo, Eun Jeong; Choi, Hye Kyung; Khan, Raees; Lee, Seon-Woo

    2016-01-01

    Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress. PMID:27513990

  10. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum.

    PubMed

    Ahmad, Shabir; Lee, Seung Yeup; Kong, Hyun Gi; Jo, Eun Jeong; Choi, Hye Kyung; Khan, Raees; Lee, Seon-Woo

    2016-01-01

    Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress. PMID:27513990

  11. Antagonistic activity and mechanisms of Bacillus subtilis SB1 against Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, showed a broad-spectrum of antimicrobial activity in vitro experiments. In addition to Ralstonia solanacearum, strain SB1 inhibited the growth of many other plant pathogens, including Fusarium oxysporum, Botrytis cinerea, Phytoph...

  12. Draft Genome Sequences of Nine Strains of Ralstonia solanacearum Differing in Virulence to Eggplant (Solanum melongena)

    PubMed Central

    Guinard, Jérémy; Vinatzer, Boris A.; Poussier, Stéphane; Lefeuvre, Pierre

    2016-01-01

    Ralstonia solanacearum displays variability in its virulence to solanaceous crops. We report here the draft genome sequences of eight phylotype I strains and one phylotype III strain differing in virulence to the resistant eggplant genotype AG91-25. These data will allow the identification of virulence- and avirulence-related genes. PMID:26823572

  13. Draft Genome Sequences of Nine Strains of Ralstonia solanacearum Differing in Virulence to Eggplant (Solanum melongena).

    PubMed

    Guinard, Jérémy; Vinatzer, Boris A; Poussier, Stéphane; Lefeuvre, Pierre; Wicker, Emmanuel

    2016-01-01

    Ralstonia solanacearum displays variability in its virulence to solanaceous crops. We report here the draft genome sequences of eight phylotype I strains and one phylotype III strain differing in virulence to the resistant eggplant genotype AG91-25. These data will allow the identification of virulence- and avirulence-related genes. PMID:26823572

  14. Effect of plant essential oils on Ralstonia solanacearum race 4 causing bacterial wilt of edible ginger

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmarosa (Cymbopogon martini), lemongrass (C. citratus) and eucalyptus (Eucalyptus globulus) oils were investigated for their effects on Ralstonia solanacearum race 4, and their potential use as bio-fumigants for treating pathogen- infested edible ginger (Zingiber officinale R.) fields. Three conce...

  15. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage.

    PubMed

    Kim, Sang Gyu; Hur, On-Sook; Ro, Na-Young; Ko, Ho-Cheol; Rhee, Ju-Hee; Sung, Jung Sook; Ryu, Kyoung-Yul; Lee, Sok-Young; Baek, Hyung Jin

    2016-02-01

    Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt. PMID:26889116

  16. Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage

    PubMed Central

    Kim, Sang Gyu; Hur, On-Sook; Ro, Na-Young; Ko, Ho-Cheol; Rhee, Ju-Hee; Sung, Jung Sook; Ryu, Kyoung-Yul; Lee, Sok-Young; Baek, Hyung Jin

    2016-01-01

    Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt. PMID:26889116

  17. Tropical Strains of Ralstonia solanacearum Outcompete Race 3 Biovar 2 Strains at Lowland Tropical Temperatures

    PubMed Central

    Huerta, Alejandra I.; Milling, Annett

    2015-01-01

    Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands. PMID:25769835

  18. Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum.

    PubMed

    Wang, Keke; Remigi, Philippe; Anisimova, Maria; Lonjon, Fabien; Kars, Ilona; Kajava, Andrey; Li, Chien-Hui; Cheng, Chiu-Ping; Vailleau, Fabienne; Genin, Stéphane; Peeters, Nemo

    2016-05-01

    The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts. PMID:26300048

  19. Draft Genome Sequence of Ralstonia solanacearum Strain Rs-T02, Which Represents the Most Prevalent Phylotype in Guangxi, China.

    PubMed

    Zou, Chengwu; Wang, Kaihao; Meng, Jiaorong; Yuan, Gaoqing; Lin, Wei; Peng, Haowen; Li, Qiqin

    2016-01-01

    Ralstonia solanacearumstrain Rs-T02 was originally isolated from a bacterial wilt of tomato plant in Nanning City of Guangxi Province, China. It represents the most prevalent phylotype in Guangxi. Here, we present the draft genome sequence of this strain, which comprises 5,225 genes and 5,976,011 nucleotides with an average G+C content of 66.79%. There are 968 different genes between this isolate and the previously reported genome sequence ofRalstonia solanacearumGMl l000 (race l, biovar 3, phylotype I), and the genome sequence information of this isolate may be useful for comparative genomic studies to determine the genetic diversity in this species. PMID:27081126

  20. Synthesis and antibacterial activity against ralstonia solanacearum for novel hydrazone derivatives containing a pyridine moiety

    PubMed Central

    2012-01-01

    Background Ralstonia solanacearum, one of the most important bacterial diseases on plants, is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. In order to discover new bioactive molecules and pesticides acting on tobacco bacterial wilt, we sought to combine the active structure of hydrazone and pyridine together to design and synthesize a series of novel hydrazone derivatives containing a pyridine moiety. Results A series of hydrazone derivatives containing a pyridine moiety were synthesized. Their structures were characterized by 1 H-NMR, 13 C-NMR, IR, and elemental analysis. The preliminary biological activity tests showed that compound 3e and 3g exhibited more than 80% activity against Ralstonia solanacearum at 500 mg/L, especially compound 3g displayed relatively good activity to reach 57.0% at 200 mg/L. Conclusion A practical synthetic route to hydrazone derivatives containing a pyridine moiety by the reaction of intermediates 2 with different aldehydes in ethanol at room temperature using 2-chloronicotinic acid and 2-amino-5-chloro-3-methylbenzoic acid as start materials is presented. This study suggests that the hydrazone derivatives containing a substituted pyridine ring could inhibit the growth of Ralstonia solanacearum. PMID:22483270

  1. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    PubMed Central

    Lowe-Power, Tiffany M.; Jacobs, Jonathan M.; Ailloud, Florent; Fochs, Brianna; Prior, Philippe

    2016-01-01

    ABSTRACT Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum. SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA degradation pathway during tomato pathogenesis. Transcriptional analysis revealed that subinhibitory SA levels induced expression of the SA degradation pathway, toxin efflux pumps, and some general stress responses. Interestingly, SA treatment repressed expression of virulence factors, including the type III secretion system, suggesting that this pathogen may suppress virulence functions when stressed. A GMI1000 mutant lacking SA degradation activity was much more susceptible to SA toxicity but retained the wild-type colonization ability and virulence on tomato. This may be because SA is less important than gentisic acid in tomato defense signaling. However, another host, tobacco, responds strongly to SA. To test the hypothesis that SA degradation contributes to virulence on tobacco, we measured the effect of adding this pathway to the tobacco-pathogenic R. solanacearum strain K60, which lacks SA degradation genes. Ectopic addition of the GMI1000 SA degradation locus, including adjacent genes encoding two porins and a LysR-type transcriptional regulator, significantly increased the virulence of strain K60 on tobacco. Together, these results suggest that R. solanacearum degrades plant SA to protect itself from inhibitory levels of this compound and also to enhance its virulence on plant hosts like tobacco that use SA as a defense signal molecule. PMID:27329752

  2. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

    PubMed

    Flores-Cruz, Zomary; Allen, Caitilyn

    2011-09-01

    The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence. PMID:21803891

  3. Using the Ralstonia solanacearum Tat Secretome To Identify Bacterial Wilt Virulence Factors▿ †

    PubMed Central

    González, Enid T.; Brown, Darby G.; Swanson, Jill K.; Allen, Caitilyn

    2007-01-01

    To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome. PMID:17468289

  4. New Insights into the Antibacterial Activity of Hydroxycoumarins against Ralstonia solanacearum.

    PubMed

    Yang, Liang; Ding, Wei; Xu, Yuquan; Wu, Dousheng; Li, Shili; Chen, Juanni; Guo, Bing

    2016-01-01

    Coumarins are important plant-derived natural products with wide-ranging bioactivities and extensive applications. In this study, we evaluated for the first time the antibacterial activity and mechanisms of action of coumarins against the phytopathogen Ralstonia solanacearum, and investigated the effect of functional group substitution. We first tested the antibacterial activity of 18 plant-derived coumarins with different substitution patterns, and found that daphnetin, esculetin, xanthotol, and umbelliferone significantly inhibited the growth of R. solanacearum. Daphnetin showed the strongest antibacterial activity, followed by esculetin and umbelliferone, with MICs of 64, 192, and 256 mg/L, respectively, better than the archetypal coumarin with 384 mg/L. We further demonstrated that the hydroxylation of coumarins at the C-6, C-7 or C-8 position significantly enhanced the antibacterial activity against R. solanacearum. Transmission electron microscope (TEM) and fluorescence microscopy images showed that hydroxycoumarins may interact with the pathogen by mechanically destroying the cell membrane and inhibiting biofilm formation. The antibiofilm effect of hydroxycoumarins may relate to the repression of flagellar genes fliA and flhC. These physiological changes in R. solanacearum caused by hydroxycoumarins can provide information for integral pathogen control. The present findings demonstrated that hydroxycoumarins have superior antibacterial activity against the phytopathogen R. solanacearum, and thus have the potential to be applied for controlling plant bacterial wilt. PMID:27070570

  5. Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts

    PubMed Central

    Remigi, Philippe; Anisimova, Maria; Guidot, Alice; Genin, Stéphane; Peeters, Nemo

    2011-01-01

    Type III effectors from phytopathogenic bacteria exhibit a high degree of functional redundancy, hampering the evaluation of their precise contribution to pathogenicity. This is illustrated by the GALA type III effectors from Ralstonia solanacearum, which have been shown to be collectively, but not individually, required for disease on Arabidopsis thaliana and tomato. We investigated evolution, redundancy and diversification of this family in order to understand the individual contribution of the GALA effectors to pathogenicity. From sequences available, we reconstructed GALA phylogeny and performed selection studies. We then focused on the GALAs from the reference strain GMI1000 to examine their ability to suppress plant defense responses and contribution to pathogenicity on three different host plants: A. thaliana, tomato (Lycopersicum esculentum) and eggplant (Solanum melongena). The GALA family is well conserved within R. solanacearum species. Patterns of selection detected on some GALA family members, together with experimental results, show that GALAs underwent functional diversification. We conclude that functional divergence of the GALA family likely accounts for its remarkable conservation during R. solanacearum evolution and could contribute to R. solanacearum’s adaptation on several host plants. PMID:21902695

  6. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil.

    PubMed

    Gorissen, A; van Overbeek, L S; van Elsas, J D

    2004-08-01

    The effect of added pig slurry and solarization on the survival of Ralstonia solanacearum biovar 2 strain 1609 in soil was analysed in soil microcosms and field plots. In addition, the invasion of potato plants by R. solanacearum and the development of disease symptoms were determined, as measures of induced disease suppressiveness. In untreated soil, R. solanacearum showed slow population declines in both microcosms and the field from, initially, 10(6-)10(7) to 10(3)-10(4) CFU.(g dry soil)(-1) in about 9 weeks. The suppressiveness assays of these untreated soils after this period revealed that most of the plants that were used developed wilting symptoms and (or) contained the pathogen in their lower stem parts, as shown by immunofluorescence colony staining and PCR. The addition of pig slurry resulted in a significantly lower population size of R. solanacearum as well as reduced numbers of infected and (or) diseased plants in the soil suppressiveness tests. On the other hand, solarization of soil also decreased R. solanacearum survival but did not enhance soil suppressiveness as measured by development of disease symptoms and (or) plant invasion after 9 weeks. Combined soil solarization and pig slurry addition showed an additive effect of both treatments. Healthy-looking plants, primarily from soils treated with pig slurry and solarization, incidentally revealed the latent presence of R. solanacearum in the lower stem parts. The mechanism behind the enhanced population declines and disease suppressiveness induced by pig slurry is unclear but shifts in community profiles were clearly discernible by PCR - denaturing gradient gel electrophoresis 9 weeks after pig slurry addition in the field experiment, indicating induced changes in the bacterial community structure. PMID:15467784

  7. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids

    PubMed Central

    Qiu, Ailian; Liu, Zhiqin; Li, Jiazhi; Chen, Yanshen; Guan, Deyi; He, Shuilin

    2016-01-01

    In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes’s response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery. PMID:27551287

  8. Ralstonia solanacearum Uses Inorganic Nitrogen Metabolism for Virulence, ATP Production, and Detoxification in the Oxygen-Limited Host Xylem Environment

    PubMed Central

    Dalsing, Beth L.; Truchon, Alicia N.; Gonzalez-Orta, Enid T.; Milling, Annett S.

    2015-01-01

    ABSTRACT Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3−), nitrite (NO2−), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3−, corresponding to R. solanacearum’s optimal NO3− concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3− compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3− respiration directly enhanced growth, AniA-dependent NO2− reduction did not. NO2− and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3− acts as a TEA, but the resulting NO2− and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2− reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3− to respire, grow, and cause disease. Degradation of NO2− and NO is also important for successful infection and depends on denitrification and NO detoxification systems. PMID:25784703

  9. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids.

    PubMed

    Qiu, Ailian; Liu, Zhiqin; Li, Jiazhi; Chen, Yanshen; Guan, Deyi; He, Shuilin

    2016-01-01

    In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes's response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery. PMID:27551287

  10. Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum

    PubMed Central

    Wu, Dousheng; Ding, Wei; Zhang, Yong; Liu, Xuejiao; Yang, Liang

    2015-01-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, can naturally infect a wide range of host plants. The type III secretion system (T3SS) is a major virulence determinant in this bacterium. Studies have shown that plant-derived compounds are able to inhibit or induce the T3SS in some plant pathogenic bacteria, though no specific T3SS inhibitor or inducer has yet been identified in R. solanacearum. In this study, a total of 50 different compounds were screened and almost half of them (22 of 50) significantly inhibited or induced the T3SS expression of R. solanacearum. Based on the strong induction activity on T3SS, the T3SS inducer oleanolic acid (OA) was chosen for further study. We found that OA induced the expression of T3SS through the HrpG-HrpB pathway. Some type III effector genes were induced in T3SS inducing medium supplemented with OA. In addition, OA targeted only the T3SS and did not affect other virulence determinants. Finally, we observed that induction of T3SS by OA accelerated disease progress on tobacco. Overall our results suggest that plant-derived compounds are an abundant source of R. solanacearum T3SS regulators, which could prove useful as tools to interrogate the regulation of this key virulence pathway. PMID:26732647

  11. Integrated approach for detection of nonculturable cells of Ralstonia solanacearum in asymptomatic Pelargonium spp. cuttings.

    PubMed

    Marco-Noales, E; Bertolini, E; Morente, C; López, M M

    2008-08-01

    Ralstonia solanacearum (biovar 2, race 3) is a soil and water-borne pathogen that causes serious diseases in several solanaceous hosts. It can also infect geranium plants, posing an important threat to their culture when latently infected cuttings are imported from countries where the pathogen is endemic. R. solanacearum can be present in very low numbers in asymptomatic geranium cuttings, and/or in a particular stressed physiological state that escapes direct isolation on the solid media usually employed. Consequently, an integrated protocol has been developed to analyze asymptomatic geranium cuttings routinely. The first screening tests include isolation and co-operational-polymerase chain reaction (Co-PCR), based on the simultaneous and co-operational action of three primers from 16S rRNA of R. solanacearum. This method was selected as the most sensitive one, able to detect only 1 cell/ml including nonculturable cells. When isolation is negative but Co-PCR is positive, the bioassay in tomato plants is proposed, since stressed bacterial cells or those present in low numbers that do not grow on solid media can be recovered from inoculated tomato plants and retain pathogenicity. This methodology has been demonstrated to be useful and has allowed us to assess the relevance of the physiological status of bacterial cells and its implications in detection. It also reveals the risk of introducing R. solanacearum through asymptomatic geranium material when relying only on bacterial isolation. PMID:18943214

  12. New type IV pili-related genes involved in early stages of Ralstonia solanacearum potato infection.

    PubMed

    Siri, María Inés; Sanabria, Analía; Boucher, Christian; Pianzzola, María Julia

    2014-07-01

    This study provides insights into the pathogenesis of Ralstonia solanacearum, in particular with regards to strains belonging to phylotype IIB, sequevar 1 (IIB-1) and their interaction with potato, its natural host. We performed a comparative genomic analysis among IIB-1 R. solanacearum strains with different levels of virulence in order to identify candidate virulence genes. With this approach, we identified a 33.7-kb deletion in a strain showing reduced virulence on potato. This region contains a cluster of six genes putatively involved in type IV pili (Tfp) biogenesis. Functional analysis suggests that these proteins contribute to several Tfp-related functions such as twitching motility and biofilm formation. In addition, this genetic cluster was found to contribute to early bacterial wilt pathogenesis and colonization fitness of potato roots. PMID:24625029

  13. Development and Comparison of TaqMan-Based Real-Time PCR Assays for Detection and Differentiation of Ralstonia solanacearum strains.

    PubMed

    Stulberg, Michael J; Rascoe, John; Li, Wenbin; Yan, Zonghe; Nakhla, Mark K; Huang, Qi

    2016-10-01

    Bacterial wilt caused by Ralstonia solanacearum is destructive to many plant species worldwide. The race 3 biovar 2 (r3b2) strains of R. solanacearum infect potatoes in temperate climates and are listed as select agents by the U.S. government. TaqMan-based real-time quantitative PCR (qPCR) is commonly used in federal and state diagnostic laboratories over conventional PCR due to its speed and sensitivity. We developed the Rs16S primers and probe set and compared it with a widely used set (RS) for detecting R. solanacearum species complex strains. We also developed the RsSA3 primers and probe set and compared it with the previously published B2 and RsSA2 sets for specific detection of r3b2 strains. Both comparisons were done under standardized qPCR master mix and cycling conditions. The Rs16S and RS assays detected all 90 R. solanacearum species complex strains and none of the five outgroups, but the former was more sensitive than the latter. For r3b2 strain detection, the RsSA2 and RsSA3 sets specifically detected the 34 r3b2 strains and none of the 56 R. solanacearum non-r3b2 strains or out-group strains. The B2 set, however, detected five non-r3b2 R. solanacearum strains and was less sensitive than the other two sets under the same testing conditions. We conclude that the Rs16S, RsSA2, and RsSA3 sets are best suited under the standardized conditions for the detection of R. solanacearum species complex and r3b2 strains by TaqMan-based qPCR assays. PMID:27402488

  14. Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors

    PubMed Central

    2014-01-01

    Background Ralstonia solanacearum, the causal agent of bacterial wilt, is a genetically diverse bacterial plant pathogen present in tropical and subtropical regions of the world that infects more than 200 plant species, including economically important solanaceous crops. Most strains of R. solanacearum are only pathogenic at temperatures between 25 to 30°C with strains that can cause disease below 20°C considered a threat to agriculture in temperate areas. Identifying key molecular factors that distinguish strains virulent at cold temperatures from ones that are not is needed to develop effective management tools for this pathogen. We compared protein profiles of two strains virulent at low temperature and two strains not virulent at low temperature when incubated in the rhizosphere of tomato seedlings at 30 and 18°C using quantitative 2D DIGE gel methods. Spot intensities were quantified and compared, and differentially expressed proteins were sequenced and identified by mass spectrometry (MS/MS). Results Four hundred and eighteen (418) differentially expressed protein spots sequenced produced 101 unique proteins. The identified proteins were classified in the Gene Ontology biological processes categories of metabolism, cell processes, stress response, transport, secretion, motility, and virulence. Identified virulence factors included catalase (KatE), exoglucanase A (ChbA), drug efflux pump, and twitching motility porin (PilQ). Other proteins identified included two components of a putative type VI secretion system. We confirmed differential expression of 13 candidate genes using real time PCR techniques. Global regulators HrpB and HrpG also had temperature dependent expression when quantified by real time PCR. Conclusions The putative involvement of the identified proteins in virulence at low temperature is discussed. The discovery of a functional type VI secretion system provides a new potential virulence mechanism to explore. The global regulators HrpG and

  15. Whole-Genome Sequence of Ralstonia solanacearum P673, a Strain Capable of Infecting Tomato Plants at Low Temperatures

    PubMed Central

    Huguet-Tapia, Jose C.

    2014-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive bacterial plant diseases. We present the whole-genome sequence of the strain P673 (phylotype IIB, sequevar 4). This strain is capable of producing disease in tomato plants at low temperatures. P673 has 311 unique genes. PMID:24558246

  16. Specific and Sensitive Detection of Ralstonia solanacearum in Soil on the Basis of PCR Amplification of fliC Fragments

    PubMed Central

    Schönfeld, J.; Heuer, H.; van Elsas, J. D.; Smalla, K.

    2003-01-01

    Ralstonia solanacearum is the causative agent of bacterial wilt in many important crops. A specific and sensitive PCR detection method that uses primers targeting the gene coding for the flagella subunit, fliC, was established. Based on the first fliC gene sequence of R. solanacearum strain K60 available at GenBank, the Ral_fliC PCR primer system was designed; this system yielded a single 724-bp product with the DNAs of all of the R. solanacearum strains tested. However, R. pickettii and four environmental Ralstonia isolates also yielded amplicons. The Ral_fliC PCR products obtained with 12 strains (R. solanacearum, R. pickettii, and environmental isolates) were sequenced. By sequence alignment, Rsol_fliC primers specific for R. solanacearum were designed. With this primer system, a specific 400-bp PCR product was obtained from all 82 strains of R. solanacearum tested. Six strains of R. pickettii and several closely related environmental isolates yielded no PCR product; however, a product was obtained with one Pseudomonas syzygii strain. A GC-clamped 400-bp fliC product could be separated in denaturing gradient gels and allowed us to distinguish P. syzygii from R. solanacearum. The Rsol_fliC PCR system was applied to detect R. solanacearum in soil. PCR amplification, followed by Southern blot hybridization, allowed us to detect about one target DNA molecule per PCR, which is equivalent to 103 CFU g of bulk soil−1. The system was applied to survey soils from different geographic origins for the presence of R. solanacearum. PMID:14660373

  17. Methyl 3-Hydroxymyristate, a Diffusible Signal Mediating phc Quorum Sensing in Ralstonia solanacearum.

    PubMed

    Kai, Kenji; Ohnishi, Hideyuki; Shimatani, Mika; Ishikawa, Shiho; Mori, Yuka; Kiba, Akinori; Ohnishi, Kouhei; Tabuchi, Mitsuaki; Hikichi, Yasufumi

    2015-11-01

    Ralstonia solanacearum, a plant pathogenic bacterium causing "bacterial wilt" on crops, uses a quorum sensing (QS) system consisting of phc regulatory elements to control its virulence. Methyl 3-hydroxypalmitate (3-OH PAME) was previously identified as the QS signal in strain AW1. However, 3-OH PAME has not been reportedly detected from any other strains, and this suggests that they produce another unknown QS signal. Here we identify (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME] as a new QS signal that regulates the production of virulence factors and secondary metabolites. (R)-3-OH MAME was synthesized by the methyltransferase PhcB and sensed by the histidine kinase PhcS. The phylogenetic trees of these proteins from R. solanacearum strains were divided into two groups, according to their QS signal types--(R)-3-OH MAME or (R)-3-OH PAME. These results demonstrate that (R)-3-OH MAME is another crucial QS signal and highlight the unique evolution of QS systems in R. solanacearum. PMID:26360813

  18. Elicitor-Induced Defense Responses in Solanum lycopersicum against Ralstonia solanacearum

    PubMed Central

    Kar, Itishree; Mukherjee, Arup K.; Acharya, Priyambada

    2013-01-01

    We investigated on important parameters of induced resistance in hydroponic tomato (Solanum lycopersicum) against Ralstonia solanacearum using the elicitors chitosan (CHT), salicylic acid (SA), and jasmonic acid (JA). The increase in total phenolic content of roots by the elicitors was significantly higher than control. Most pronounced increase in lignin synthesis was triggered by SA followed by CHT. At 24 h post-elicitation (hpe), the activity of phenylalanine ammonia lyase was 4.5 times higher than control elicited by CHT. The peroxidase activity was about 86 nkat/mg protein at 24 hpe in case of SA and 78 nkat/mg protein in case of CHT. The activity of polyphenol oxidase increased several folds by the elicitors. Cinnamyl alcohol dehydrogenase activity increased to the maximum at 48 hpe under the influence of CHT. The results indicate that the elicitors SA and CHT induced effective defense responses in tomato plants against R. solanacearum. This was evident from reduced vascular browning and wilting symptoms of tomato plants treated with SA and CHT and challenged subsequently with R. solanacearum. This reduced disease incidence in tomato by SA and CHT may be a result of cell wall strengthening through deposition of lignin and the coincident induction of defense enzymes. PMID:24187521

  19. Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II.

    PubMed

    Cellier, G; Remenant, B; Chiroleu, F; Lefeuvre, P; Prior, P

    2012-04-01

    The ancient soilborne plant vascular pathogen Ralstonia solanacearum has evolved and adapted to cause severe damage in an unusually wide range of plants. In order to better describe and understand these adaptations, strains with very similar lifestyles and host specializations are grouped into ecotypes. We used comparative genomic hybridization (CGH) to investigate three particular ecotypes in the American phylotype II group: (i) brown rot strains from phylotypes IIB-1 and IIB-2, historically known as race 3 biovar 2 and clonal; (ii) new pathogenic variants from phylotype IIB-4NPB that lack pathogenicity for banana but can infect many other plant species; and (iii) Moko disease-causing strains from phylotypes IIB-3, IIB-4, and IIA-6, historically known as race 2, that cause wilt on banana, plantain, and Heliconia spp. We compared the genomes of 72 R. solanacearum strains, mainly from the three major ecotypes of phylotype II, using a newly developed pangenomic microarray to decipher their population structure and gain clues about the epidemiology of these ecotypes. Strain phylogeny and population structure were reconstructed. The results revealed a phylogeographic structure within brown rot strains, allowing us to distinguish European outbreak strains of Andean and African origins. The pangenomic CGH data also demonstrated that Moko ecotype IIB-4 is phylogenetically distinct from the emerging IIB-4NPB strains. These findings improved our understanding of the epidemiology of important ecotypes in phylotype II and will be useful for evolutionary analyses and the development of new DNA-based diagnostic tools. PMID:22286995

  20. Moko Disease-Causing Strains of Ralstonia solanacearum from Brazil Extend Known Diversity in Paraphyletic Phylotype II.

    PubMed

    Albuquerque, Greecy M R; Santos, Liliana A; Felix, Kátia C S; Rollemberg, Christtianno L; Silva, Adriano M F; Souza, Elineide B; Cellier, Gilles; Prior, Philippe; Mariano, Rosa L R

    2014-11-01

    The epidemic situation of Moko disease-causing strains in Latin America and Brazil is unclear. Thirty-seven Ralstonia solanacearum strains from Brazil that cause the Moko disease on banana and heliconia plants were sampled and phylogenetically typed using the endoglucanase (egl) and DNA repair (mutS) genes according to the phylotype and sequevar classification. All of the strains belonged to phylotype II and a portion of the strains was typed as the Moko disease-related sequevars IIA-6 and IIA-24. Nevertheless, two unsuspected sequevars also harbored the Moko disease-causing strains IIA-41 and IIB-25, and a new sequevar was described and named IIA-53. All of the strains were pathogenic to banana and some of the strains of sequevars IIA-6, IIA-24, and IIA-41 were also pathogenic to tomato. The Moko disease-causing strains from sequevar IIB-25 were pathogenic to potato but not to tomato. These results highlight the high diversity of strains of Moko in Brazil, reinforce the efficiency of the egl gene to reveal relationships among these strains, and contribute to a better understanding of the diversity of paraphyletic Moko disease-causing strains of the R. solanacearum species complex, where the following seven distinct genetic clusters have been described: IIA-6, IIA-24, IIA-41, IIA-53, IIB-3, IIB-4, and IIB-25. PMID:24848276

  1. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall.

    PubMed

    Li, Jian-Gang; Liu, Hong-Xia; Cao, Jing; Chen, Li-Feng; Gu, Chun; Allen, Caitilyn; Guo, Jian-Hua

    2010-05-01

    Harpins are extracellular glycine-rich proteins eliciting a hypersensitive response (HR). In this study, we identified a new harpin, PopW, from Ralstonia solanacearum strain ZJ3721. This 380-amino-acid protein is acidic, rich in glycine and serine, and lacks cysteine. When infiltrated into the leaves of tobacco (non-host), PopW induced a rapid tissue collapse via a heat-stable but protease-sensitive HR-eliciting activity. PopW has an N-terminal harpin domain (residues 1-159) and a C-terminal pectate lyase (PL) domain (residues 160-366); its HR-eliciting activity depends on its N-terminal domain. Analyses of subcellular localization and plasmolysis demonstrated that PopW targeted the onion cell wall. This was further confirmed by its ability to specifically bind to calcium pectate, a major component of the plant cell wall. However, PopW had no detectable PL activity. Western blotting revealed that PopW was secreted by the type III secretion system in an hrpB-dependent manner. Gene sequencing indicated that popW is conserved among 20 diverse strains of R. solanacearum. A popW-deficient mutant retained the ability of wild-type strain ZJ3721 to elicit HR in tobacco and to cause wilt disease in tomato (a host). We conclude that PopW is a new cell wall-associated, hrpB-dependent, two-domain harpin that is conserved across the R. solanacearum species complex. PMID:20447285

  2. Two different evolutionary lines of filamentous phages in Ralstonia solanacearum: their effects on bacterial virulence

    PubMed Central

    Askora, Ahmed; Yamada, Takashi

    2015-01-01

    The integration and excision of various filamentous phage genomes into and out of their host chromosomes occurs by site-specific recombination. The mechanisms proposed for these events include reactions mediated by phage-encoded recombinases and host recombination systems. Site-specific integration of filamentous phages plays a vital role in a variety of biological functions of the host, such as phase variation of certain pathogenic bacterial virulence factors. The importance of these filamentous phages in bacterial evolution is rapidly increasing with the discovery of new phages that are involved in pathogenicity. Studies of the diversity of two different filamentous phages infecting the phytopathogen Ralstonia solanacearum provide us with novel insights into the dynamics of phage genomes, biological roles of prophages, and the regulation and importance of phage–host interactions. PMID:26150828

  3. Towards the Identification of Type III Effectors Associated with Ralstonia solanacearum Virulence on Tomato and Eggplant.

    PubMed

    Pensec, Flora; Lebeau, Aurore; Daunay, M C; Chiroleu, Frédéric; Guidot, Alice; Wicker, Emmanuel

    2015-12-01

    For the development of pathogen-informed breeding strategies, identifying the microbial genes involved in interactions with the plant is a critical step. To identify type III effector (T3E) repertoires associated with virulence of the bacterial wilt pathogen Ralstonia solanacearum on Solanaceous crops, we used an original association genetics approach combining DNA microarray data and pathogenicity data on resistant eggplant, pepper, and tomato accessions. From this first screen, 25 T3Es were further full-length polymerase chain reaction-amplified within a 35-strain field collection, to assess their distribution and allelic diversity. Six T3E repertoire groups were identified, within which 11 representative strains were chosen to challenge the bacterial wilt-resistant egg plants 'Dingras multiple Purple' and 'AG91-25', and tomato Hawaii 7996. The virulence or avirulence phenotypes could not be explained by specific T3E repertoires, but rather by individual T3E genes. We identified seven highly avirulence-associated genes, among which ripP2, primarily referenced as conferring avirulence to Arabidopsis thaliana. Interestingly, no T3E was associated with avirulence to both egg-plants. Highly virulence-associated genes were also identified: ripA5_2, ripU, and ripV2. This study should be regarded as a first step toward investigating both avirulence and virulence function of the highlighted genes, but also their evolutionary dynamics in natural R. solanacearum populations. PMID:26368514

  4. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum.

    PubMed

    Kumar, J Shiva; Umesha, S; Prasad, K Shiva; Niranjana, P

    2016-03-01

    Many bacteria use small diffusible signaling molecules to communicate each other termed as quorum sensing (QS). Most Gram-negative bacteria use acyl homoserine lactone (AHL) as QS signal molecules. Using these signaling molecules, bacteria are able to express specific genes in response to population density. This work aimed to detect the production of QS signal molecules and biofilm formation in Ralstonia solanacearum isolated from various diseased tomato plants with symptoms of bacterial wilt. A total of 30 R. solanacearum strains were investigated for the production of QS signal molecules using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1 (pZLR4) biosensor systems. All 30 bacterial isolates from various bacterial wilt-affected tomato plants produced AHL molecules that induced the biosensor. The microtiter plate assay demonstrated that of the 30 bacterial isolates, 60 % formed biofilm, among which four isolates exhibited a higher degree of biofilm formation. The biofilm-inducing factor was purified from these four culture supernatants. The structure of the responsible molecule was solved using nuclear magnetic resonance and mass spectroscopy and was determined to be 2-hydroxy-4-((methylamino)(phenyl)methyl) cyclopentanone (HMCP), which was confirmed by chemical synthesis and NMR. The Confocal laser scanning microscopic analysis showed well-developed biofilm architecture of bacteria when treated with HMCP. The knowledge we obtained from this study will be useful for further researcher on the role of HMCP molecule in biofilm formation. PMID:26620535

  5. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    PubMed Central

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  6. In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum.

    PubMed

    Ailloud, Florent; Lowe, Tiffany M; Robène, Isabelle; Cruveiller, Stéphane; Allen, Caitilyn; Prior, Philippe

    2016-01-01

    Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes. PMID:26788428

  7. Nitrate Assimilation Contributes to Ralstonia solanacearum Root Attachment, Stem Colonization, and Virulence

    PubMed Central

    Dalsing, Beth L.

    2014-01-01

    Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium's gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum's sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production. PMID:24363343

  8. Nitrate assimilation contributes to Ralstonia solanacearum root attachment, stem colonization, and virulence.

    PubMed

    Dalsing, Beth L; Allen, Caitilyn

    2014-03-01

    Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium's gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum's sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production. PMID:24363343

  9. In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum

    PubMed Central

    Ailloud, Florent; Lowe, Tiffany M.; Robène, Isabelle; Cruveiller, Stéphane; Allen, Caitilyn

    2016-01-01

    Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes. PMID:26788428

  10. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus.

    PubMed

    Spraker, Joseph E; Jewell, Kelsea; Roze, Ludmila V; Scherf, Jacob; Ndagano, Dora; Beaudry, Randolph; Linz, John E; Allen, Caitilyn; Keller, Nancy P

    2014-05-01

    Microbes in the rhizosphere have a suite of extracellular compounds, both primary and secondary, that communicate with other organisms in their immediate environment. Here, we describe a two-way volatile interaction between two widespread and economically important soil-borne pathogens of peanut, Aspergillus flavus and Ralstonia solanacearum, a fungus and bacterium, respectively. In response to A. flavus volatiles, R. solanacearum reduced production of the major virulence factor extracellular polysaccharide (EPS). In parallel, A. flavus responded to R. solanacearum volatiles by reducing conidia production, both on plates and on peanut seeds and by increasing aflatoxin production on peanut. Volatile profiling of these organisms using solid-phase micro-extraction gas chromatography mass spectroscopy (SPME-GCMS) provided a first glimpse at the compounds that may drive these interactions. PMID:24801606

  11. Insights into the diversity of φRSM phages infecting strains of the phytopathogen Ralstonia solanacearum complex: regulation and evolution.

    PubMed

    Askora, Ahmed; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2014-08-01

    The filamentous φRSM phages (φRSM1 and φRSM3) have integration/excision capabilities in the phytopathogenic bacterium Ralstonia solanacearum. In the present study, we further investigated φRSM-like sequences present in the genomes of R. solanacearum strains belonging to the four major evolutionary lineages (phylotypes I-IV). Based on bioinformatics and comparative genomic analyses, we found that φRSM homologs are highly diverse in R. solanacearum complex strains. We detected an open reading frame (ORF)15 located upstream of the gene for φRSM integrase, which exhibited amino acid sequence similarity to phage repressor proteins. ORF15-encoded protein (a putative repressor) was found to encode a 104-residue polypeptide containing a DNA-binding (helix-turn-helix) domain and was expressed in R. solanacearum lysogenic strains. This suggested that φRSM3-ORF15 might be involved in the establishment and maintenance of a lysogenic state, as well as in phage immunity. Comparison of the putative repressor proteins and their binding sites within φRSM-related prophages provides insights into how these regulatory systems of filamentous phages have evolved and diverged in the R. solanacearum complex. In conclusion, φRSM phages represent a unique group of filamentous phages that are equipped with innate integration/excision (ORF14) and regulatory systems (ORF15). PMID:24619102

  12. Comparative Transcriptome Analysis Reveals Cool Virulence Factors of Ralstonia solanacearum Race 3 Biovar 2

    PubMed Central

    Meng, Fanhong; Babujee, Lavanya; Jacobs, Jonathan M.; Allen, Caitilyn

    2015-01-01

    While most strains of the plant pathogenic bacterium Ralstonia solanacearum are tropical, the race 3 biovar 2 (R3bv2) subgroup attacks plants in cooler climates. To identify mechanisms underlying this trait, we compared the transcriptional profiles of R. solanacearum R3bv2 strain UW551 and tropical strain GMI1000 at 20°C and 28°C, both in culture and during tomato pathogenesis. 4.2% of the ORFs in the UW551 genome and 7.9% of the GMI1000 ORFs were differentially expressed by temperature in planta. The two strains had distinct transcriptional responses to temperature change. GMI1000 up-regulated several stress response genes at 20°C, apparently struggling to cope with plant defenses. At the cooler temperature, R3bv2 strain UW551 up-regulated a cluster encoding a mannose-fucose binding lectin, LecM; a quorum sensing-dependent protein, AidA; and a related hypothetical protein, AidC. The last two genes are absent from the GMI1000 genome. In UW551, all three genes were positively regulated by the adjacent SolI/R quorum sensing system. These temperature-responsive genes were required for full virulence in R3bv2. Mutants lacking lecM, aidA, or aidC were each significantly more reduced in virulence on tomato at 20°C than at 28°C in both a naturalistic soil soak inoculation assay and when they were inoculated directly into tomato stems. The lecM and aidC mutants also survived poorly in potato tubers at the seed tuber storage temperature of 4°C, and the lecM mutant was defective in biofilm formation in vitro. Together, these results suggest novel mechanisms, including a lectin, are involved in the unique temperate epidemiology of R3bv2. PMID:26445498

  13. Characterization of biofumigated Ralstonia solanacearum cells using micro-Raman spectroscopy and electron microscopy.

    PubMed

    Paret, Mathews L; Sharma, Shiv K; Alvarez, Anne M

    2012-01-01

    Essential oils of palmarosa, lemongrass, and eucalyptus have shown promise as biofumigants for control of the bacterial wilt disease of edible ginger (Zingiber officinale) caused by Ralstonia solanacearum race 4 in previous potting medium studies. Biochemical changes in R. solanacearum cells were evaluated with micro-Raman spectroscopy following treatment with essential oils at different concentrations (0.04, 0.07, and 0.14% [vol/vol] of culture medium) and changes in cell structure were observed using electron microscopy. All treatments except palmarosa oil at 0.04% caused significant reductions in levels of amino acids, purine and pyrimidine bases of nucleic acids, carbohydrates, and lipids, as indicated by significant reduction in Raman peak heights at 621, 1,003, and 1,031 inverse centimeters (cm(-1)) (phenylalanine); 643, 827, 852, 1,158, and 1,172 cm(-1) (tyrosine); 758 cm(-1) (tryptophan); 725, 782, 1,337, and 1,578 cm(-1) (adenine, cytosine plus uracil, adenine, and adenine plus guanine, respectively); 1,097 cm(-1) (carbohydrates); and 1,127, 1,450, and 2,932 cm(-1) (lipids) compared with untreated controls. Lemongrass oil treatments were the most effective in degrading cellular components. Scanning electron microscopy of palmarosa and lemongrass-oil-treated cells showed rupture of cell walls and cell debris but no degradation was noted for eucalyptus-oil-treated cells. Palmarosa- and lemongrass-oil-treated cells were positively stained with uranyl acetate when viewed by transmission electron microscopy whereas controls and eucalyptus-oil-treated cells were negatively stained, indicating that the cell membranes were intact. The viability of eucalyptus-oil-treated cells was confirmed by cell culture following treatment. Micro-Raman spectroscopy is a powerful tool which can be further employed to better understand effects of fumigants and other bactericides on bacterial cells. PMID:21899389

  14. Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum.

    PubMed

    Kawasaki, Takeru; Narulita, Erlia; Matsunami, Minaho; Ishikawa, Hiroki; Shimizu, Mio; Fujie, Makoto; Bhunchoth, Anjana; Phironrit, Namthip; Chatchawankanphanich, Orawan; Yamada, Takashi

    2016-05-01

    The genome organization, gene structure, and host range of five podoviruses that infect Ralstonia solanacearum, the causative agent of bacterial wilt disease were characterized. The phages fell into two distinctive groups based on the genome position of the RNA polymerase gene (i.e., T7-type and ϕKMV-type). One-step growth experiments revealed that ϕRSB2 (a T7-like phage) lysed host cells more efficiently with a shorter infection cycle (ca. 60min corresponding to half the doubling time of the host) than ϕKMV-like phages such as ϕRSB1 (with an infection cycle of ca. 180min). Co-infection experiments with ϕRSB1 and ϕRSB2 showed that ϕRSB2 always predominated in the phage progeny independent of host strains. Most phages had wide host-ranges and the phage particles usually did not attach to the resistant strains; when occasionally some did, the phage genome was injected into the resistant strain׳s cytoplasm, as revealed by fluorescence microscopy with SYBR Gold-labeled phage particles. PMID:26901487

  15. Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

    PubMed Central

    Park, Sangryeol; Gupta, Ravi; Krishna, R.; Kim, Sun Tae; Lee, Dong Yeol; Hwang, Duk-ju; Bae, Shin-Chul; Ahn, Il-Pyung

    2016-01-01

    Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato. PMID:26889112

  16. Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10.

    PubMed

    Park, Sangryeol; Gupta, Ravi; Krishna, R; Kim, Sun Tae; Lee, Dong Yeol; Hwang, Duk-Ju; Bae, Shin-Chul; Ahn, Il-Pyung

    2016-02-01

    Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato. PMID:26889112

  17. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    DOE PAGESBeta

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  18. A TaqMan-Based Multiplex qPCR Assay and DNA Extraction Method for Phylotype IIB Sequevars 1&2 (Select Agent) Strains of Ralstonia solanacearum

    PubMed Central

    Stulberg, Michael J.; Huang, Qi

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354

  19. A TaqMan-Based Multiplex qPCR Assay and DNA Extraction Method for Phylotype IIB Sequevars 1&2 (Select Agent) Strains of Ralstonia solanacearum.

    PubMed

    Stulberg, Michael J; Huang, Qi

    2015-01-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354

  20. Isolation of an Insertion Sequence from Ralstonia solanacearum Race 1 and Its Potential Use for Strain Characterization and Detection

    PubMed Central

    Lee, Yung-An; Fan, Shu-Chung; Chiu, Ling-Ya; Hsia, Kuo-Chiang

    2001-01-01

    A new insertion sequence (IS), IS1405, was isolated and characterized from a Ralstonia solanacearum race 1 strain by the method of insertional inactivation of the sacB gene. Sequence analysis indicated that the IS is closely related to the members of IS5 family, but the extent of nucleotide sequence identity in 5′ and 3′ noncoding regions between IS1405 and other members of IS5 family is only 23 to 31%. Nucleotide sequences of these regions were used to design specific oligonucleotide primers for detection of race 1 strains by PCR. The PCR amplified a specific DNA fragment for all R. solanacearum race 1 strains tested, and no amplification was observed with some other plant-pathogenic bacteria. Analysis of nucleotide sequences flanking IS1405 and additional five endogenous IS1405s that reside in the chromosome of R. solanacearum race 1 strains indicated that IS1405 prefers a target site of CTAR and has two different insertional orientations with respect to this target site. Restriction fragment length polymorphism (RFLP) pattern analysis using IS1405 as a probe revealed extensive genetic variation among strains of R. solanacearum race 1 isolated from eight different host plants in Taiwan. The RFLP patterns were then used to subdivide the race 1 strains into two groups and several subgroups, which allowed for tracking different subgroup strains of R. solanacearum through a host plant community. Furthermore, specific insertion sites of IS1405 in certain subgroups were used as a genetic marker to develop subgroup-specific primers for detection of R. solanacearum, and thus, the subgroup strains can be easily identified through a rapid PCR assay rather than RFLP analysis. PMID:11525989

  1. A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere.

    PubMed

    van Overbeek, Leo S; Cassidy, Mike; Kozdroj, Jacek; Trevors, Jack T; van Elsas, Jan D

    2002-01-01

    Ralstonia solanacearum biovar 2, the causative agent of brown rot in potato, has been responsible for large crop losses in Northwest Europe during the last decade. Knowledge on the ecological behaviour of R. solanacearum and its antagonists is required to develop sound procedures for its control and eradication in infested fields.A polyphasic approach was used to study the invasion of plants by a selected R. solanacearum biovar 2 strain, denoted 1609, either or not in combination with the antagonistic strains Pseudomonas corrugata IDV1 and P. fluorescens UA5-40. Thus, this study combined plating (spread and drop plate methods), reporter gene technology (gfp mutants) and serological (imunofluorescence colony staining [IFC]) and molecular techniques (fluorescent in situ hybridization [FISH], PCR with R. solanacearum specific primers and PCR-DGGE on plant DNA extracts). The behaviour of R. solanacearum 1609 and the two control strains was studied in bulk and (tomato) rhizosphere soil and the rhizoplane and stems of tomato plants. The results showed that an interaction between the pathogen and the control strains at the root surface was likely. In particular, R. solanacearum 1609 CFU numbers were significantly reduced on tomato roots treated with P. corrugata IDV1(chr:gfp1) cells as compared to those on untreated roots. Concomitant with the presence of P. corrugata IDV1(chr:gfp1), plant invasion by the pathogen was hampered, but not abolished.PCR-DGGE analyses of the tomato rhizoplane supported the evidence for antagonistic activity against the pathogen; as only weak R. solanacearum 1609 specific bands were detected in profiles derived from mixed systems versus strong bands in profiles from systems containing only the pathogen. Using FISH, a difference in root colonization was demonstrated between the pathogen and one of the two antagonists, i.e. P. corrugata IDV1(chr:gfp1); R. solanacearum strain 1609 was clearly detected in the vascular cylinder of tomato plants

  2. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000.

    PubMed

    Lundgren, Benjamin R; Connolly, Morgan P; Choudhary, Pratibha; Brookins-Little, Tiffany S; Chatterjee, Snigdha; Raina, Ramesh; Nomura, Christopher T

    2015-01-01

    The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000. PMID:26659655

  3. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000

    PubMed Central

    Lundgren, Benjamin R.; Connolly, Morgan P.; Choudhary, Pratibha; Brookins-Little, Tiffany S.; Chatterjee, Snigdha; Raina, Ramesh; Nomura, Christopher T.

    2015-01-01

    The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000. PMID:26659655

  4. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis

    PubMed Central

    Zhang, Bo; Tremousaygue, Dominique; Denancé, Nicolas; van Esse, H Peter; Hörger, Anja C; Dabos, Patrick; Goffner, Deborah; Thomma, Bart P H J; van der Hoorn, Renier A L; Tuominen, Hannele

    2014-01-01

    PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis. PMID:24947605

  5. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis.

    PubMed

    Zhang, Bo; Tremousaygue, Dominique; Denancé, Nicolas; van Esse, H Peter; Hörger, Anja C; Dabos, Patrick; Goffner, Deborah; Thomma, Bart P H J; van der Hoorn, Renier A L; Tuominen, Hannele

    2014-09-01

    PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis. PMID:24947605

  6. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects.

    PubMed

    Upreti, Reshmi; Thomas, Pious

    2015-01-01

    This study was undertaken to assess if the root-associated native bacterial endophytes in tomato have any bearing in governing the host resistance to the wilt pathogen Ralstonia solanacearum. Internal colonization of roots by bacterial endophytes was confirmed through confocal imaging after SYTO-9 staining. Endophytes were isolated from surface-sterilized roots of 4-weeks-old seedlings of known wilt resistant (R) tomato cultivar Arka Abha and susceptible (S) cv. Arka Vikas on nutrient agar after plating the tissue homogenate. Arka Abha displayed more diversity with nine distinct organisms while Arka Vikas showed five species with two common organisms (Pseudomonas oleovorans and Agrobacterium tumefaciens). Screening for general indicators of biocontrol potential showed more isolates from Arka Abha positive for siderophore, HCN and antibiotic biosynthesis than from Arka Vikas. Direct challenge against the pathogen indicated strong antagonism by three Arka Abha isolates (P. oleovorans, Pantoea ananatis, and Enterobacter cloacae) and moderate activity by three others, while just one isolate from Arka Vikas (P. oleovorans) showed strong antagonism. Validation for the presence of bacterial endophytes on three R cultivars (Arka Alok, Arka Ananya, Arka Samrat) showed 8-9 antagonistic bacteria in them in comparison with four species in the three S cultivars (Arka Ashish, Arka Meghali, Arka Saurabhav). Altogether 34 isolates belonging to five classes, 16 genera and 27 species with 23 of them exhibiting pathogen antagonism were isolated from the four R cultivars against 17 isolates under three classes, seven genera and 13 species from the four S cultivars with eight isolates displaying antagonistic effects. The prevalence of higher endophytic bacterial diversity and more antagonistic organisms associated with the seedling roots of resistant cultivars over susceptible genotypes suggest a possible role by the root-associated endophytes in natural defense against the pathogen

  7. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects

    PubMed Central

    Upreti, Reshmi; Thomas, Pious

    2015-01-01

    This study was undertaken to assess if the root-associated native bacterial endophytes in tomato have any bearing in governing the host resistance to the wilt pathogen Ralstonia solanacearum. Internal colonization of roots by bacterial endophytes was confirmed through confocal imaging after SYTO-9 staining. Endophytes were isolated from surface-sterilized roots of 4-weeks-old seedlings of known wilt resistant (R) tomato cultivar Arka Abha and susceptible (S) cv. Arka Vikas on nutrient agar after plating the tissue homogenate. Arka Abha displayed more diversity with nine distinct organisms while Arka Vikas showed five species with two common organisms (Pseudomonas oleovorans and Agrobacterium tumefaciens). Screening for general indicators of biocontrol potential showed more isolates from Arka Abha positive for siderophore, HCN and antibiotic biosynthesis than from Arka Vikas. Direct challenge against the pathogen indicated strong antagonism by three Arka Abha isolates (P. oleovorans, Pantoea ananatis, and Enterobacter cloacae) and moderate activity by three others, while just one isolate from Arka Vikas (P. oleovorans) showed strong antagonism. Validation for the presence of bacterial endophytes on three R cultivars (Arka Alok, Arka Ananya, Arka Samrat) showed 8–9 antagonistic bacteria in them in comparison with four species in the three S cultivars (Arka Ashish, Arka Meghali, Arka Saurabhav). Altogether 34 isolates belonging to five classes, 16 genera and 27 species with 23 of them exhibiting pathogen antagonism were isolated from the four R cultivars against 17 isolates under three classes, seven genera and 13 species from the four S cultivars with eight isolates displaying antagonistic effects. The prevalence of higher endophytic bacterial diversity and more antagonistic organisms associated with the seedling roots of resistant cultivars over susceptible genotypes suggest a possible role by the root-associated endophytes in natural defense against the pathogen

  8. First Report of Bacterial Wilt Caused by Ralstonia solanacearum Biovar 2 Race 1 on Tomato in Egypt

    PubMed Central

    Seleim, Mohamed A. A.; Abo-Elyousr, Kamal A. M.; Abd-El-Moneem, Kenawy M.; Saead, Farag A.

    2014-01-01

    This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt. PMID:25289016

  9. Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana.

    PubMed

    Ito, Makoto; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development. PMID:25482800

  10. A duplex PCR assay for the detection of Ralstonia solanacearum phylotype II strains in Musa spp.

    PubMed

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae. PMID:25811378

  11. A Duplex PCR Assay for the Detection of Ralstonia solanacearum Phylotype II Strains in Musa spp.

    PubMed Central

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae. PMID:25811378

  12. The Ralstonia solanacearum pathogenicity regulator HrpB induces 3-hydroxy-oxindole synthesis.

    PubMed

    Delaspre, Fabien; Nieto Peñalver, Carlos G; Saurel, Olivier; Kiefer, Patrick; Gras, Emmanuel; Milon, Alain; Boucher, Christian; Genin, Stéphane; Vorholt, Julia A

    2007-10-01

    The transcriptional activator HrpB of the bacterial wilt causing betaproteobacterium Ralstonia solanacearum represents a key regulator for pathogenicity. In particular, it drives expression of hrp genes encoding a type III secretion system (T3SS) as well as effector molecules for delivery into the host cytosol to promote disease. However, the HrpB regulon extends beyond this T3SS. We describe here an HrpB-activated operon of six genes that is responsible for the synthesis of a fluorescent isatin derivative of 149 Amu that we named HDF for HrpB-dependent factor and that we purified from culture supernatants. The structure of the labile molecule was solved by using NMR and CD spectroscopy to be (3S)-3-hydroxy-indolin-2-one and confirmed by its chemical synthesis and MS spectrometry. HDF was found to be present at 20 nM in wild-type cultures grown on minimal medium, and its synthesis increased 15-fold upon overproduction of HrpB, confirming that HrpB activates HDF synthesis. The addition of tryptophan significantly stimulated HDF biosynthesis and was shown to represent the precursor molecule for HDF synthesis. A search for the biological function of the molecule revealed that HDF induces acyl-homoserine lactone receptor-mediated reporter activity of the well studied LuxR transcriptional regulator of Vibrio fischeri. Thus, our results provide evidence that the specificity of acyl-homoserine lactone (acyl-HSL) receptors is clearly broader than previously considered. The failure to detect induction by HDF of the described endogenous quorum-sensing circuits of the pathogen points to a role in interfering with cell-cell signaling of rivalling bacteria. PMID:17890323

  13. A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization.

    PubMed

    Stevens, Patricia; van Elsas, Jan Dirk

    2010-10-01

    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato. PMID:20467813

  14. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (Bacterial Wilt)

    PubMed Central

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW−1, 140% greater than that of the control. Activities of POD (421.3 U gFW−1), PPO (508.8 U gFW−1) and PAL (707.3 U gFW−1) were also greater in the treated plants than in the controls (103.0 U gFW−1, 166.0 U gFW−1 and 309.4 U gFW−1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  15. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt).

    PubMed

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW-1, 140% greater than that of the control. Activities of POD (421.3 U gFW-1), PPO (508.8 U gFW-1) and PAL (707.3 U gFW-1) were also greater in the treated plants than in the controls (103.0 U gFW-1, 166.0 U gFW-1 and 309.4 U gFW-1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  16. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia solanacearum race 3 biovar 2 strains have the ability to cause brown rot of potato in temperate climates. Since these strains are not established in the U.S. and because of the potential risk they pose to the potato industry, the U.S. government has listed them as select agents. Cultivated...

  17. Genome Sequencing of Ralstonia solanacearum Biovar 3, Phylotype I, Strains Rs-09-161 and Rs-10-244, Isolated from Eggplant and Chili in India

    PubMed Central

    Gaitonde, Sapna; Achari, Gauri; Asolkar, Trupti; Singh, Narendra Pratap; Carrere, Sebastien; Genin, Stephane; Peeters, Nemo

    2014-01-01

    Ralstonia solanacearum Indian strains Rs-09-161 and Rs-10-244 were isolated from the coastal region of Goa and from the Andaman Islands. We report the draft genome sequences of these representative isolates infecting solanaceous vegetables in India. PMID:24874667

  18. Cold Tolerance of some Ralstonia solanacearum strains, including Race3 Biovar2, is conferred in part by variation in cold shock gene cspD3.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia solanacearum race 3 biovar 2 (R3B2) strains are one of only 10 USDA Select Agents, a category of quarantined pathogens reserved for the most serious threats to U.S. plant industry. The threat of R3B2 strains was not considered to be likely due to race (these are poorly defined) or biovar ...

  19. Rapid differentiation of Ralstonia solanacearum avirulent and virulent strains by cell fractioning of an isolate using high performance liquid chromatography.

    PubMed

    Zheng, Xuefang; Zhu, Yujing; Liu, Bo; Yu, Qian; Lin, Naiquan

    2016-01-01

    Ralstonia solanacearum is one of the most destructive plant bacterial pathogens worldwide. The population dynamics and genetic stability are important issues, especially when an avirulent strain is used for biocontrol. In this study, we developed a rapid method to differentiate the virulent and avirulent strains of R. solanacearum and to predict the biocontrol efficiency of an avirulent strain using high performance liquid chromatography (HPLC). Three chromatographic peaks P1, P2 and P3 were observed on the HPLC spectra among 68 avirulent and 28 virulent R. solanacearum strains. Based on the HPLC peaks, 96 strains total were assigned to three categories. For avirulent strains, the intense peak is P1, while for virulent strains, P3 is the majority. Based on the HLPC spectra of R. solanacearum strains, a chromatography titer index (CTI) was established as CTIi = Si/(S1+S2+S3) × 100% (i represents an individual HPLC peak; S1, S2 and S3 represent peak areas of P1, P2 and P3, respectively). The avirulent strains had high values of CTI1 ranging from 63.6 to 100.0%, while the virulent strains displayed high values of CTI3 ranging from 90.2 to 100.0%. Biological inoculation studies of 68 avirulent strains revealed that the biocontrol efficacy was the best when CTI1 = 100%. The purity and genetic stability of R. solanacearum strains were confirmed in the P1 fraction of avirulent strain FJAT-1957 and P3 fraction of virulent strain FJAT-1925 after 30 generations of consecutive subculture. These results confirmed that fractioning by HPLC and their deduced CTI can be used for rapid and efficient evaluation and prediction of an isolate of R. solanacearum. To the best of our knowledge, this is the first report that HPLC fractioning can be used for rapid differentiation of virulent and avirulent strains of R. solanacearum. PMID:26606869

  20. Control Efficacy of an Endophytic Bacillus amyloliquefaciens Strain BZ6-1 against Peanut Bacterial Wilt, Ralstonia solanacearum

    PubMed Central

    Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (108 cfu mL−1) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  1. Comparative effect of low temperature on virulence and twitching motility of Ralstonia solanacearum strains present in Florida.

    PubMed

    Bocsanczy, Ana M; Achenbach, Ute C M; Mangravita-Novo, Arianna; Yuen, Jeanne M F; Norman, David J

    2012-02-01

    Ralstonia solanacearum causes bacterial wilt on a wide range of plant hosts. Most strains of R. solanacearum are nonpathogenic below 20°C; however, Race 3 Biovar 2 (R3B2) strains are classified as quarantine pathogens because of their ability to infect crops, cause disease, and survive in temperate climates. We have identified race 1 biovar 1 Phylotype IIB Sequevar 4 strains present in Florida which were able to infect and produce wilt symptoms on potato and tomato at 18°C. Moreover they infected tomato plants at rates similar to strains belonging to R3B2. We determined that strains naturally nonpathogenic at 18°C were able to multiply, move in planta, and cause partial wilt when inoculated directly into the stem, suggesting that low temperature affects virulence of strains differently at early stages of infection. Bacterial growth in vitro was delayed at low temperatures, however it was not attenuated. Twitching motility observed on growing colonies was attenuated in nonpathogenic strains at 18°C, while not affected in the cool virulent ones. Using pilQ as a marker to evaluate the relative expression of the twitching activity of R. solanacearum strains, we confirmed that cool virulent strains maintained a similar level of pilQ expression at both temperatures, while in nonpathogenic strains pilQ was downregulated at 18°C. PMID:21936660

  2. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial Wilt, Ralstonia solanacearum.

    PubMed

    Wang, Xiaobing; Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (10(8) cfu mL(-1)) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  3. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers.

    PubMed

    Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Drenova, Natalia V; Kornev, Konstantin P; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-05-15

    Ralstonia solanacearum is a dangerous and economically important pathogen of potatoes and other agricultural crops. Therefore, rapid and sensitive methods for its routine diagnostics are necessary. The aim of this study was to develop a rapid control method for R. solanacearum with a low limit of detection (LOD) based on a lateral flow immunoassay (LFIA) with silver enhancement. To minimize the LOD, the membrane type, antibody amount for conjugation with gold nanoparticles, conjugate concentration and antibody concentration in the analytical zone were optimized. Silver enhancement was used to decrease the LOD of the LFIA. For silver enhancement, release fiberglass membranes with pre-absorbed silver lactate and hydroquinone were placed on the analytical zone, and a drop of silver lactate was added. The LFIA with silver enhancement was found to be 10-fold more sensitive (LOD 2×10(2) CFU/mL; 20 min) in comparison with the common analysis (LOD 2×10(3) CFU/mL; 10 min). The specificity of the developed LFIA was studied using different strains of R. solanacearum (54 samples) and other widespread bacterial pathogens (18 samples). The LFIA detected all tested strains, whereas non-specific reactions were not observed. The developed tests were used for the control of bacteria in extracts of infected and non-infected potato tubers, and the quantitative analysis results (based on the densitometry of line colouration) were confirmed by ELISA with a correlation coefficient equal to 0.965. PMID:26992550

  4. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    PubMed

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-06-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  5. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  6. Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Lenarčič, Rok; Morisset, Dany; Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  7. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway

    PubMed Central

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S.; Ariño, Joaquín; Valls, Marc

    2016-01-01

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation. PMID:27257085

  8. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    PubMed

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-01-01

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation. PMID:27257085

  9. The involvement of the PilQ secretin of type IV pili in phage infection in Ralstonia solanacearum.

    PubMed

    Narulita, Erlia; Addy, Hardian Susilo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2016-01-22

    PilQ is a member of the secretin family of outer membrane proteins and specifically involved in type IV secretion. Here we report the effects of pilQ mutation in Ralstonia solanacearum on the host physiology including susceptibility to several phage types (Inoviridae, Podoviridae and Myoviridae). With three lines of cells, namely wild type, ΔpilQ and pilQ-complemented cells, the cell surface proteins, twitching motility and sensitivity to phages were compared. SDS-PAGE analysis revealed that the major TFP pilin (PilA) was specifically lost in pilQ mutants and was recovered in the complemented cells. Drastically inactivated twitching motility in pilQ mutants was recovered to the wild type level in the complemented cells. Several phages of different types including those of Inoviridae, Podoviridae, and Myoviridae that infect wild type cells could not form plaques on pilQ mutants but showed infectivity to pilQ-complemented cells. These results indicate that PilQ function is generally required for phage infection in R. solanacearum. PMID:26718404

  10. Significant Effects Due to Peptone in Kelman Medium on Colony Characteristics and Virulence of Ralstonia solanacearum in Tomato

    PubMed Central

    Thomas, Pious; Upreti, Reshmi

    2014-01-01

    The study was taken up to assess if the media constituents played any role in governing the variable colony characteristics or pathogenicity of the bacterial wilt pathogen, Ralstonia solanacearum cultured on the widely employed Kelman medium. The effects due to the constituents 2,3,5-triphenyl tetrazolium chloride (TTC), peptone, casein hydrolysate and glucose on colony characteristics were investigated using -80°C stored culture of strain ‘NH-Av01’ (race 1, biovar 3) isolated from tomato. Comparing the pigment inducing TTC from two brands, its source or mode of storage/incorporation did not impart any significant effects. The source of peptone, on the other hand, displayed striking effects on the extent of colony growth, fluidity and red pigmentation depending on type, brand or batch / lot of manufacture as documented with 20 different formulations. Significant differences in the pathogenicity of isolate derived from different peptone sources in seedling-challenge assay on tomato were observed. The observations on peptone effects were endorsed with four other isolates belonging to distinct geographic locations, crops (eggplant, chilli, ginger) or races (race 1 or 4). The peptone source did not influence the pathogen-responses in biovar tests but notably altered the pattern of lawn formation and inhibition zone development during antagonistic assays. Casein hydrolysate displayed some variable effects while glucose source had no effect. This study brings to light the significant modifying effects by the peptone-constituent in Kelman medium on the physiology of R. solanacearum and the virulence of isolate and the need to consider the source of media components during culture maintenance, host-pathogen interaction studies or microbe-microbe interaction investigations. PMID:25408775

  11. Significant Effects Due to Peptone in Kelman Medium on Colony Characteristics and Virulence of Ralstonia solanacearum in Tomato.

    PubMed

    Thomas, Pious; Upreti, Reshmi

    2014-01-01

    The study was taken up to assess if the media constituents played any role in governing the variable colony characteristics or pathogenicity of the bacterial wilt pathogen, Ralstonia solanacearum cultured on the widely employed Kelman medium. The effects due to the constituents 2,3,5-triphenyl tetrazolium chloride (TTC), peptone, casein hydrolysate and glucose on colony characteristics were investigated using -80°C stored culture of strain 'NH-Av01' (race 1, biovar 3) isolated from tomato. Comparing the pigment inducing TTC from two brands, its source or mode of storage/incorporation did not impart any significant effects. The source of peptone, on the other hand, displayed striking effects on the extent of colony growth, fluidity and red pigmentation depending on type, brand or batch / lot of manufacture as documented with 20 different formulations. Significant differences in the pathogenicity of isolate derived from different peptone sources in seedling-challenge assay on tomato were observed. The observations on peptone effects were endorsed with four other isolates belonging to distinct geographic locations, crops (eggplant, chilli, ginger) or races (race 1 or 4). The peptone source did not influence the pathogen-responses in biovar tests but notably altered the pattern of lawn formation and inhibition zone development during antagonistic assays. Casein hydrolysate displayed some variable effects while glucose source had no effect. This study brings to light the significant modifying effects by the peptone-constituent in Kelman medium on the physiology of R. solanacearum and the virulence of isolate and the need to consider the source of media components during culture maintenance, host-pathogen interaction studies or microbe-microbe interaction investigations. PMID:25408775

  12. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Raza, Waseem; Wang, Jichen; Wu, Yuncheng; Ling, Ning; Wei, Zhong; Huang, Qiwei; Shen, Qirong

    2016-09-01

    The production of volatile organic compounds (VOCs) by microbes is an important characteristic for their selection as biocontrol agents against plant pathogens. In this study, we identified the VOCs produced by the biocontrol strain Bacillus amyloliquefaciens T-5 and evaluated their impact on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. The results showed that the VOCs of strain T-5 significantly inhibited the growth of R. solanacearum in agar medium and in soil. In addition, VOCs significantly inhibited the motility traits, root colonization, biofilm formation, and production of antioxidant enzymes and exopolysaccharides by R. solanacearum. However, no effect of VOCs on the production of hydrolytic enzymes by R. solanacearum was observed. The strain T-5 produced VOCs, including benzenes, ketones, aldehydes, alkanes, acids, and one furan and naphthalene compound; among those, 13 VOCs showed 1-10 % antibacterial activity against R. solanacearum in their produced amounts by T-5; however, the consortium of all VOCs produced on agar medium, in sterilized soil, and in natural soil showed 75, 62, and 85 % growth inhibition of R. solanacearum, respectively. The real-time PCR analysis further confirmed the results when the expression of different virulence- and metabolism-related genes in R. solanacearum cells was decreased after exposure to the VOCs of strain T-5. The results of this study clearly revealed the significance of VOCs in the control of plant pathogens. This information would help to better comprehend the microbial interactions mediated by VOCs in nature and to develop safer strategies to control plant disease. PMID:27183998

  13. Genome-Enabled Phylogeographic Investigation of the Quarantine Pathogen Ralstonia solanacearum Race 3 Biovar 2 and Screening for Sources of Resistance Against Its Core Effectors.

    PubMed

    Clarke, Christopher R; Studholme, David J; Hayes, Byron; Runde, Brendan; Weisberg, Alexandra; Cai, Rongman; Wroblewski, Tadeusz; Daunay, Marie-Christine; Wicker, Emmanuel; Castillo, Jose A; Vinatzer, Boris A

    2015-05-01

    Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of 17 isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a Select Agent in the United States, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and tended to carry ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of 31 type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Toward this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned, and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited. PMID:25710204

  14. Evaluation of the Antibacterial Effects and Mechanism of Action of Protocatechualdehyde against Ralstonia solanacearum.

    PubMed

    Li, Shili; Yu, Yanmei; Chen, Juanni; Guo, Bing; Yang, Liang; Ding, Wei

    2016-01-01

    Protocatechualdehyde (PCA) is an important plant-derived natural product that has been associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging and an anti-inflammatory agent. However, fewer reports concerning its antibacterial effects on plant-pathogenic bacteria exist. Therefore, in this study, protocatechualdehyde was evaluated for its antibacterial activity against plant pathogens along with the mechanism of its antibacterial action. PCA at 40 μg/mL was highly active against R. solanacearum and significantly inhibited its growth. The minimum bactericidal concentration and minimum inhibitory concentration values for PCA were 40 μg/mL and 20 μg/mL, respectively. Further investigation of the mechanism of action of PCA via transmission electron microscopy and biological assays indicated that the destruction of the cell structure, the shapes and the inhibition of biofilm formation were important. In addition, the application of PCA effectively reduced the incidence of bacterial wilt on tobacco under greenhouse conditions, and the control efficiency was as high as 92.01% at nine days after inoculation. Taken together, these findings suggest that PCA exhibits strong antibacterial activity against R. solanacearum and has the potential to be applied as an effective antibacterial agent for controlling bacterial wilt caused by R. solanacearum. PMID:27294898

  15. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    SciTech Connect

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.

  16. Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence.

    PubMed

    Lowe, Tiffany M; Ailloud, Florent; Allen, Caitilyn

    2015-03-01

    Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity. PMID:25423265

  17. Hydroxycinnamic acid degradation, a broadly conserved trait, protects Ralstonia solanacearum from chemical plant defenses and contributes to root colonization and virulence

    PubMed Central

    Lowe, Tiffany M.; Ailloud, Florent; Allen, Caitilyn

    2014-01-01

    Plants produce hydroxycinnamic acid defense compounds (HCAs) to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a Δfcs (feruloyl-CoA synthetase) mutant that cannot degrade HCAs was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen (1) grow, as a carbon source; (2) spread, by reducing physical barriers HCA-derived; and (3) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCAs in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCAs are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCAs: caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCAs contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity. PMID:25423265

  18. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses.

    PubMed

    Liu, Hongxia; Zhou, Xianyao; Dong, Na; Liu, Xin; Zhang, Huaiyu; Zhang, Zengyan

    2011-09-01

    MYB transcription factors play diverse roles in plant growth, developmental processes and stress responses. A full-length cDNA sequence of a MYB gene, namely TaPIMP1, was isolated from wheat (Triticum aestivum L.). The TaPIMP1 transcript level was significantly up-regulated by inoculation with a fungal pathogen Bipolaris sorokiniana and by drought treatment. TaPIMP1 encodes the MYB protein TaPIMP1 consisting of 323 amino acids. TaPIMP1 contains two MYB DNA binding domains (R2, R3), two putative nuclear localization sites and two putative transcription activation domains. TaPIMP1 is a new member of the R2R3-MYB transcription factor subfamily. Transient expression in onion epidermal cells of GFP fused with TaPIMP1 proved that subcellular localization of TaPIMP1 occurred in the nucleus. The TaPIMP1 gene was transferred into tobacco (Nicotiana tabacum L.) cultivar W38 by Agrobacterium-mediated transformation. After screening through PCR and RT-PCR analyses, transgenic tobacco lines expressing TaPIMP1 were identified and evaluated for pathogen resistance, and drought and salt tolerance. Compared to untransformed tobacco host plants, TaPIMP1 expressing plants displayed significantly enhanced resistance to Ralstonia solanacearum and exhibited improved tolerances to drought and salt stresses. In these transgenic lines, the activities of phenylalanine ammonia-lyase (PAL) and superoxide dismutase (SOD) were significantly increased relative to wild-type tobacco plants. The results suggested that the wheat R2R3-MYB transcription factor plays an important role in modulating responses to biotic and abiotic stresses. PMID:21597961

  19. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco.

    PubMed

    Lai, Yan; Dang, Fengfeng; Lin, Jing; Yu, Lu; Shi, Youliang; Xiao, Yuhua; Huang, Mukun; Lin, Jinhui; Chen, Chengcong; Qi, Aihua; Liu, Zhiqin; Guan, Deyi; Mou, Shaoliang; Qiu, Ailian; He, Shuilin

    2013-01-01

    Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H(2)O(2)). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H(2)O(2) and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms. PMID:23201563

  20. rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum

    PubMed Central

    Ray, Suvendra K.; Kumar, Rahul; Peeters, Nemo; Boucher, Christian; Genin, Stephane

    2015-01-01

    The plant pathogen Ralstonia solanacearum has two genes encoding for the sigma factor σ54: rpoN1, located in the chromosome and rpoN2, located in a distinct “megaplasmid” replicon. In this study, individual mutants as well as a double mutant of rpoN were created in R. solanacearum strain GMI1000 in order to determine the extent of functional overlap between these two genes. By virulence assay we observed that rpoN1 is required for virulence whereas rpoN2 is not. In addition rpoN1 controls other important functions such twitching motility, natural transformation and growth on nitrate, unlike rpoN2. The rpoN1 and rpoN2 genes have different expression pattern, the expression of rpoN1 being constitutive whereas rpoN2 expression is induced in minimal medium and in the presence of plant cells. Moreover, the expression of rpoN2 is dependent upon rpoN1. Our work therefore reveals that the two rpoN genes are not functionally redundant in R. solanacearum. A list of potential σ54 targets was identified in the R. solanacearum genome and suggests that multiple traits are under the control of these regulators. Based on these findings, we provide a model describing the functional connection between RpoN1 and the PehR pathogenicity regulator and their dual role in the control of several R. solanacearum virulence determinants. PMID:25852679

  1. Induction of the Viable but Nonculturable State of Ralstonia solanacearum by Low Temperature in the Soil Microcosm and Its Resuscitation by Catalase

    PubMed Central

    Kong, Hyun Gi; Bae, Ju Young; Lee, Hyoung Ju; Joo, Hae Jin; Jung, Eun Joo; Chung, Eunsook; Lee, Seon-Woo

    2014-01-01

    Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at 4°C in modified ASM (mASM), while it was stably maintained at 25°C in mASM. We hypothesized that bacterial cells at 4°C in mASM are viable but nonculturable. Total protein profiles of SL341 cells at 4°C in mASM did not differ from those of SL341 culturable cells at 25°C in mASM. Moreover, the VBNC cells maintained in the mASM retained respiration activity. Catalase treatment effectively restored the culturability of nonculturable cells in mASM, while temperature increase or other treatments used for resuscitation of other bacteria were not effective. The resuscitated R. solanacearum from VBNC state displayed normal level of bacterial virulence on tomato plants compared with its original culturable bacteria. Expression of omp, oxyR, rpoS, dps, and the 16S rRNA gene quantified by RT-qPCR did not differ significantly between the culturable and VBNC states of R. solanacearum. Our results suggested that the VBNC bacterial cells in mASM induced by low temperature exist in a physiologically unique state. PMID:25296177

  2. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity

    PubMed Central

    Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji

    2016-01-01

    ABSTRACT The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. PMID:27073091

  3. Development of variable number of tandem repeats typing schemes for Ralstonia solanacearum, the agent of bacterial wilt, banana Moko disease and potato brown rot.

    PubMed

    N'guessan, Carine Aya; Brisse, Sylvain; Le Roux-Nio, Anne-Claire; Poussier, Stéphane; Koné, Daouda; Wicker, Emmanuel

    2013-03-01

    Ralstonia solanacearum is an important soil borne bacterial plant pathogen causing bacterial wilt on many important crops. To better monitor epidemics, efficient tools that can identify and discriminate populations are needed. In this study, we assessed variable number of tandem repeats (VNTR) genotyping as a new tool for epidemiological surveillance of R. solanacearum phylotypes, and more specifically for the monitoring of the monomorphic ecotypes "Moko" (banana-pathogenic) and "brown rot" (potato-pathogenic under cool conditions). Screening of six R. solanacearum genome sequences lead to select 36 VNTR loci that were preliminarily amplified on 24 strains. From this step, 26 single-locus primer pairs were multiplexed, and applied to a worldwide collection of 337 strains encompassing the whole phylogenetic diversity, with revelation on a capillary-electrophoresis genotype. Four loci were monomorphic within all phylotypes and were not retained; the other loci were highly polymorphic but displayed a clear phylotype-specificity. Phylotype-specific MLVA schemes were thus defined, based on 13 loci for phylotype I, 12 loci for phylotype II, 11 loci for phylotype III and 6 for phylotype IV. MLVA typing was significantly more discriminative than egl-based sequevar typing, particularly on monomorphic "brown rot" ecotype (phylotype IIB/sequevar 1) and "Moko disease" clade 4 (Phylotype IIB/sequevar 4). Our results raise promising prospects for studies of population genetic structures and epidemiological monitoring. PMID:23376194

  4. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

    PubMed Central

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-01-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from −2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  5. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum.

    PubMed

    Chandrasekaran, Murugesan; Subramanian, Dharaneedharan; Yoon, Ee; Kwon, Taehoon; Chun, Se-Chul

    2016-06-01

    Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression. PMID:27298597

  6. Application of variable-number tandem-repeat typing to discriminate Ralstonia solanacearum strains associated with English watercourses and disease outbreaks.

    PubMed

    Parkinson, Neil; Bryant, Ruth; Bew, Janice; Conyers, Christine; Stones, Robert; Alcock, Michael; Elphinstone, John

    2013-10-01

    Variable-number tandem-repeat (VNTR) analysis was used for high-resolution discrimination among Ralstonia solanacearum phylotype IIB sequevar 1 (PIIB-1) isolates and further evaluated for use in source tracing. Five tandem-repeat-containing loci (comprising six tandem repeats) discriminated 17 different VNTR profiles among 75 isolates from potato, geranium, bittersweet (Solanum dulcamara), tomato, and the environment. R. solanacearum isolates from crops at three unrelated outbreak sites where river water had been used for irrigation had distinct VNTR profiles that were shared with PIIB-1 isolates from infected bittersweet growing upriver of each site. The VNTR profiling results supported the implication that the source of R. solanacearum at each outbreak was contaminated river water. Analysis of 51 isolates from bittersweet growing in river water at different locations provided a means to evaluate the technique for studying the epidemiology of the pathogen in the environment. Ten different VNTR profiles were identified among bittersweet PIIB-1 isolates from the River Thames. Repeated findings of contiguous river stretches that produced isolates that shared single VNTR profiles supported the hypothesis that the pathogen had disseminated from infected bittersweet plants located upriver. VNTR profiles shared between bittersweet isolates from two widely separated Thames tributaries (River Ray and River Colne) suggested they were independently contaminated with the same clonal type. Some bittersweet isolates had VNTR profiles that were shared with potato isolates collected outside the United Kingdom. It was concluded that VNTR profiling could contribute to further understanding of R. solanacearum epidemiology and assist in control of future disease outbreaks. PMID:23892739

  7. Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence.

    PubMed

    Brown, Darby G; Swanson, Jill K; Allen, Caitilyn

    2007-05-01

    Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>10(7) CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds. PMID:17337552

  8. Deciphering the route of Ralstonia solanacearum colonization in Arabidopsis thaliana roots during a compatible interaction: focus at the plant cell wall.

    PubMed

    Digonnet, Catherine; Martinez, Yves; Denancé, Nicolas; Chasseray, Marine; Dabos, Patrick; Ranocha, Philippe; Marco, Yves; Jauneau, Alain; Goffner, Deborah

    2012-11-01

    The compatible interaction between the model plant, Arabidopsis thaliana, and the GMI1000 strain of the phytopathogenic bacterium, Ralstonia solanacearum, was investigated in an in vitro pathosystem. We describe the progression of the bacteria in the root from penetration at the root surface to the xylem vessels and the cell type-specific, cell wall-associated modifications that accompanies bacterial colonization. Within 6 days post inoculation, R. solanacearum provoked a rapid plasmolysis of the epidermal, cortical, and endodermal cells, including those not directly in contact with the bacteria. Plasmolysis was accompanied by a global degradation of pectic homogalacturonanes as shown by the loss of JIM7 and JIM5 antibody signal in the cell wall of these cell types. As indicated by immunolabeling with Rsol-I antibodies that specifically recognize R. solanacearum, the bacteria progresses through the root in a highly directed, centripetal manner to the xylem poles, without extensive multiplication in the intercellular spaces along its path. Entry into the vascular cylinder was facilitated by cell collapse of the two pericycle cells located at the xylem poles. Once the bacteria reached the xylem vessels, they multiplied abundantly and moved from vessel to vessel by digesting the pit membrane between adjacent vessels. The degradation of the secondary walls of xylem vessels was not a prerequisite for vessel colonization as LM10 antibodies strongly labeled xylem cell walls, even at very late stages in disease development. Finally, the capacity of R. solanacearum to specifically degrade certain cell wall components and not others could be correlated with the arsenal of cell wall hydrolytic enzymes identified in the bacterial genome. PMID:22729825

  9. Quick adaptation of Ralstonia Solanacearum to copper stress to recover culturability and growth in water and soil.

    PubMed

    Ascarrunz, Sergio Daniel Moreira; Natsuaki, Tomohide; Honjo, Hitoshi; Fukui, Ryo

    2011-04-01

    Cells of Ralstonia solanacearum were exposed to Cu in distilled water, and the resulting Cu-stressed non-culturable cells were inoculated to natural (non-pasteurized) and pasteurized soils in order to examine their culturability and recovery. Exposing the cells to 20 μM CuSO4 produced transitory non-culturable cells, which exhibited a remarkable recovery in culturability after incubation in the solution for 36 h, reaching a density near the initial level by 108 h. To determine whether such non-culturable cells actually "resuscitated" or multiplied after adapting to Cu toxicity, growth curves were constructed in order to contrast the rates of increase in culturable cell numbers between Cu-stressed or non-stressed inocula. Additionally, fresh non-stressed cells were exposed to CuSO4 in the presence of nalidixic acid by adding the antibiotic at different times after the onset of Cu stress to verify any cell multiplication during the population increase. The results revealed that the non-culturable cells surviving Cu toxicity adapted very quickly to Cu and began multiplying within 12 h, because only the Cu-stressed cells that were increasing in the exponential growth phase, but not those in the stationary phase, were killed by the antibiotic. Such cells exhibited an apparent tolerance to this metal when inoculated to a freshly prepared solution of CuSO4, and also detoxified the ion in the solution in which they grew. The presence of nutrients greatly counteracted the effect of Cu in water microcosms, since culturable cells were detected and increased in number even when exposed to 40 μM CuSO4. In contrast, when inoculated to non-pasteurized soil, Cu-stressed cells showed no such recoveries. However, when the soil was pasteurized before inoculation or added with nutrients, culturable cells were recovered and increased in number. This indicates that increased nutrient availability in soil allows Cu-stressed cells to quickly overcome the stress and increase in

  10. Quick adaptation of Ralstonia Solanacearum to copper stress to recover culturability and growth in water and soil

    PubMed Central

    Ascarrunz, Sergio Daniel Moreira; Natsuaki, Tomohide; Honjo, Hitoshi; Fukui, Ryo

    2011-01-01

    Cells of Ralstonia solanacearum were exposed to Cu in distilled water, and the resulting Cu-stressed non-culturable cells were inoculated to natural (non-pasteurized) and pasteurized soils in order to examine their culturability and recovery. Exposing the cells to 20 μM CuSO4 produced transitory non-culturable cells, which exhibited a remarkable recovery in culturability after incubation in the solution for 36 h, reaching a density near the initial level by 108 h. To determine whether such non-culturable cells actually “resuscitated” or multiplied after adapting to Cu toxicity, growth curves were constructed in order to contrast the rates of increase in culturable cell numbers between Cu-stressed or non-stressed inocula. Additionally, fresh non-stressed cells were exposed to CuSO4 in the presence of nalidixic acid by adding the antibiotic at different times after the onset of Cu stress to verify any cell multiplication during the population increase. The results revealed that the non-culturable cells surviving Cu toxicity adapted very quickly to Cu and began multiplying within 12 h, because only the Cu-stressed cells that were increasing in the exponential growth phase, but not those in the stationary phase, were killed by the antibiotic. Such cells exhibited an apparent tolerance to this metal when inoculated to a freshly prepared solution of CuSO4, and also detoxified the ion in the solution in which they grew. The presence of nutrients greatly counteracted the effect of Cu in water microcosms, since culturable cells were detected and increased in number even when exposed to 40 μM CuSO4. In contrast, when inoculated to non-pasteurized soil, Cu-stressed cells showed no such recoveries. However, when the soil was pasteurized before inoculation or added with nutrients, culturable cells were recovered and increased in number. This indicates that increased nutrient availability in soil allows Cu-stressed cells to quickly overcome the stress and increase in

  11. Comparative Secretome Analysis of Ralstonia solanacearum Type 3 Secretion-Associated Mutants Reveals a Fine Control of Effector Delivery, Essential for Bacterial Pathogenicity.

    PubMed

    Lonjon, Fabien; Turner, Marie; Henry, Céline; Rengel, David; Lohou, David; van de Kerkhove, Quitterie; Cazalé, Anne-Claire; Peeters, Nemo; Genin, Stéphane; Vailleau, Fabienne

    2016-02-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume

  12. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community.

    PubMed

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2(-) contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg(-1) soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  13. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community

    PubMed Central

    Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong

    2016-01-01

    The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2− contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg−1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601

  14. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway.

    PubMed

    Hanemian, Mathieu; Barlet, Xavier; Sorin, Céline; Yadeta, Koste A; Keller, Harald; Favery, Bruno; Simon, Rüdiger; Thomma, Bart P H J; Hartmann, Caroline; Crespi, Martin; Marco, Yves; Tremousaygue, Dominique; Deslandes, Laurent

    2016-07-01

    Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial plant diseases. Although many molecular determinants involved in R. solanacearum adaptation to hosts and pathogenesis have been described, host components required for disease establishment remain poorly characterized. Phenotypical analysis of Arabidopsis mutants for leucine-rich repeat (LRR)-receptor-like proteins revealed that mutations in the CLAVATA1 (CLV1) and CLAVATA2 (CLV2) genes confer enhanced disease resistance to bacterial wilt. We further investigated the underlying mechanisms using genetic, transcriptomic and molecular approaches. The enhanced resistance of both clv1 and clv2 mutants to the bacteria did not require the well characterized CLV signalling modules involved in shoot meristem homeostasis, and was conditioned by neither salicylic acid nor ethylene defence-related hormones. Gene expression microarray analysis performed on clv1 and clv2 revealed deregulation of genes encoding nuclear transcription factor Y subunit alpha (NF-YA) transcription factors whose post-transcriptional regulation is known to involve microRNAs from the miR169 family. Both clv mutants showed a defect in miR169 accumulation. Conversely, overexpression of miR169 abrogated the resistance phenotype of clv mutants. We propose that CLV1 and CLV2, two receptors involved in CLV3 perception during plant development, contribute to bacterial wilt through a signalling pathway involving the miR169/NF-YA module. PMID:26990325

  15. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces.

    PubMed

    Mori, Yuka; Inoue, Kanako; Ikeda, Kenichi; Nakayashiki, Hitoshi; Higashimoto, Chikaki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2016-08-01

    The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence. PMID:26609568

  16. So near and yet so far: the specific case of Ralstonia Solanacearum populations from Côte d'Ivoire in Africa.

    PubMed

    N'guessan, C A; Abo, K; Fondio, L; Chiroleu, F; Lebeau, A; Poussier, S; Wicker, E; Koné, D

    2012-08-01

    The genetic and phenotypic diversity of Côte d'Ivoire Ralstonia solanacearum strains was assessed on a 168-strain collection sampled on Solanaceae both in the southern lowlands and western highlands. Phylotypes I, II, and III were prevalent, though at unexpected frequencies. Phylotype I strains (87.5%) were genetically diverse and overrepresented in all agroecological areas, including highlands (AEZ III). Phylotype II strains (10.7%) only belonged to one tropical lowland-adapted broad host range lineage (IIA-35), whereas no highland-adapted potato brown rot (IIB-1) or Moko strains were detected. African phylotype III strains were rare (1.8%). They originated from a single Burkina Faso lineage (III-23) and were only found in lowlands. Three phylotype I strains were found harboring pRSC35, a plasmid identified in phylotype III strains in Cameroon. From pathogenicity tests performed on commercial varieties and tomato/eggplant/pepper references, the virulence diversity observed was high, with five pathoprofiles described. Eggplant accessions MM152 and EG203 and tomato HW7996 displayed the largest resistance spectrum and highest level. Two highly virulent phylotype I strains were able to bypass resistance of HW7996 and the eggplant reference AG91-25. Collectively, these points lead to the conclusion that the situation in Côte d'Ivoire is specific towards other African countries, and specifically from the Cameroon reference, and that within phylotype I can exist a high virulence diversity. This calls for similar studies in neighboring West African countries, linking R. solanacearum pathogen genetic diversity to strain virulence at the regional level, for the rationalization of regional resistance deployment strategies and future resistance durability studies. PMID:22533876

  17. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages.

    PubMed

    Bhunchoth, Anjana; Blanc-Mathieu, Romain; Mihara, Tomoko; Nishimura, Yosuke; Askora, Ahmed; Phironrit, Namthip; Leksomboon, Chalida; Chatchawankanphanich, Orawan; Kawasaki, Takeru; Nakano, Miyako; Fujie, Makoto; Ogata, Hiroyuki; Yamada, Takashi

    2016-07-01

    Jumbo phages infecting Ralstonia solanacearum were isolated in Thailand (ϕRSL2) and Japan (ϕRSF1). They were similar regarding virion morphology, genomic arrangement, and host range. Phylogenetic and proteomic tree analyses demonstrate that the ϕRSL2 and ϕRSF1 belong to a group of evolutionary related phages, including Pseudomonas phages ϕKZ, 201ϕ2-1 and all previously described ϕKZ-related phages. Despite conserved genomic co-linearity between the ϕRSL2 and ϕRSF1, they differ in protein separation patterns. A major difference was seen in the detection of virion-associated-RNA polymerase subunits. All β- and β'-subunits were detected in ϕRSF1, but one β'-subunit was undetected in ϕRSL2. Furthermore, ϕRSF1 infected host cells faster (latent period: 60 and 150min for ϕRSF1 and ϕRSL2, respectively) and more efficiently than ϕRSL2. Therefore, the difference in virion-associated-RNA polymerase may affect infection efficiency. Finally, we show that ϕRSF1 is able to inhibit bacterial wilt progression in tomato plants. PMID:27081857

  18. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9

    PubMed Central

    Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

    2016-01-01

    It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1–11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

  19. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9.

    PubMed

    Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

    2016-01-01

    It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1-11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

  20. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling.

    PubMed

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  1. Ralstonia solanacearum ΔPGI-1 strain KZR-5 is affected in growth, response to cold stress and invasion of tomato.

    PubMed

    Stevens, Patricia; van Overbeek, Leonard Simon; van Elsas, Jan Dirk

    2011-01-01

    The survival and persistence of Ralstonia solanacearum biovar 2 in temperate climates is still poorly understood. To assess whether genomic variants of the organism show adaptation to local conditions, we compared the behaviour of environmental strain KZR-5, which underwent a deletion of the 17.6 kb genomic island PGI-1, with that of environmental strain KZR-1 and potato-derived strains 1609 and 715. PGI-1 harbours two genes of potential ecological relevance, i.e. one encoding a hypothetical protein with a RelA/SpoT domain and one a putative cellobiohydrolase. We thus assessed bacterial fate under conditions of amino acid starvation, during growth, upon incubation at low temperature and invasion of tomato plants. In contrast to the other strains, environmental strain KZR-5 did not grow on media that induce amino acid starvation. In addition, its maximum growth rate at 28°C in rich medium was significantly reduced. On the other hand, long-term survival at 4°C was significantly enhanced as compared to that of strains 1609, 715 and KZR-1. Although strain KZR-5 showed growth rates (at 28°C) in two different media, which were similar to those of strains 1609 and 715, its ability to compete with these strains under these conditions was reduced. In singly inoculated tomato plants, no significant differences in invasiveness were observed among strains KZR-5, KZR-1, 1609 and 715. However, reduced competitiveness of strain KZR-5 was found in experiments on tomato plant colonisation and wilting when using 1:1 or 5:1 mixtures of strains. The potential role of PGI-1 in plant invasion, response to stress and growth in competition at high and moderate temperatures is discussed. PMID:20717661

  2. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling

    PubMed Central

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  3. Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins.

    PubMed

    Sudakevitz, Dvora; Imberty, Anne; Gilboa-Garber, Nechama

    2002-08-01

    The worldwide distributed plant aggressive pathogen Ralstonia solanacearum, which causes lethal wilt in many agricultural crops, produces a potent L-fucose-binding lectin (RSL) exhibiting sugar specificity similar to that of PA-IIL of the human aggressive opportunistic pathogen Pseudomonas aeruginosa. Both lectins show L-fucose > L-galactose > D-arabinose > D-mannose specificity, but the affinities of RSL to these sugars are substantially lower. Unlike Ulex europaeus anti-H lectin, but like PA-IIL and Aleuria aurantia lectin (AAL), RSL agglutinates H-positive human erythrocytes regardless of their type, O, A, B, or AB, and animal erythrocytes (papain-treated ones more strongly than untreated ones). It also interacts with H and Lewis chains in the saliva of "secretors" and "nonsecretors." RSL purification is easier than that of PA-IIL since R. solanacearum extracts do not contain a galactophilic PA-IL-like activity. Mass spectrometry and 35 N-terminal amino acid sequencing enabled identification of the RSL protein (subunit approximately 9.9 kDa, approximately 90 amino acids) in the complete genome sequence of this bacterium. Despite the greater phylogenetic proximity of R. solanacearum to P. aeruginosa, and the presence of a PA-IIL-like gene in its genome, the RSL structure is not related to that of PA-IIL, but to that of the fucose-binding lectin of the mushroom (fungus) Aleuria aurantia, which like the two bacteria is a soil inhabitant. PMID:12153735

  4. Identification and Biochemical Characterization of an Acid Sphingomyelinase-Like Protein from the Bacterial Plant Pathogen Ralstonia solanacearum that Hydrolyzes ATP to AMP but Not Sphingomyelin to Ceramide

    PubMed Central

    Airola, Michael V.; Tumolo, Jessica M.; Snider, Justin; Hannun, Yusuf A.

    2014-01-01

    Acid sphingomyelinase (aSMase) is a human enzyme that catalyzes the hydrolysis of sphingomyelin to generate the bioactive lipid ceramide and phosphocholine. ASMase deficiency is the underlying cause of the genetic diseases Niemann-Pick Type A and B and has been implicated in the onset and progression of a number of other human diseases including cancer, depression, liver, and cardiovascular disease. ASMase is the founding member of the aSMase protein superfamily, which is a subset of the metallophosphatase (MPP) superfamily. To date, MPPs that share sequence homology with aSMase, termed aSMase-like proteins, have been annotated and presumed to function as aSMases. However, none of these aSMase-like proteins have been biochemically characterized to verify this. Here we identify RsASML, previously annotated as RSp1609: acid sphingomyelinase-like phosphodiesterase, as the first bacterial aSMase-like protein from the deadly plant pathogen Ralstonia solanacearum based on sequence homology with the catalytic and C-terminal domains of human aSMase. A biochemical characterization of RsASML does not support a role in sphingomyelin hydrolysis but rather finds RsASML capable of acting as an ATP diphosphohydrolase, catalyzing the hydrolysis of ATP and ADP to AMP. In addition, RsASML displays a neutral, not acidic, pH optimum and prefers Ni2+ or Mn2+, not Zn2+, for catalysis. This alters the expectation that all aSMase-like proteins function as acid SMases and expands the substrate possibilities of this protein superfamily to include nucleotides. Overall, we conclude that sequence homology with human aSMase is not sufficient to predict substrate specificity, pH optimum for catalysis, or metal dependence. This may have implications to the biochemically uncharacterized human aSMase paralogs, aSMase-like 3a (aSML3a) and aSML3b, which have been implicated in cancer and kidney disease, respectively, and assumed to function as aSMases. PMID:25144372

  5. Identification of a Bifunctional UDP-4-keto-pentose/UDP-xylose Synthase in the Plant Pathogenic Bacterium Ralstonia solanacearum Strain GMI1000, a Distinct Member of the 4,6-Dehydratase and Decarboxylase Family*

    PubMed Central

    Gu, Xiaogang; Glushka, John; Yin, Yanbin; Xu, Ying; Denny, Timothy; Smith, James; Jiang, Yingnan; Bar-Peled, Maor

    2010-01-01

    The UDP-sugar interconverting enzymes involved in UDP-GlcA metabolism are well described in eukaryotes but less is known in prokaryotes. Here we identify and characterize a gene (RsU4kpxs) from Ralstonia solanacearum str. GMI1000, which encodes a dual function enzyme not previously described. One activity is to decarboxylate UDP-glucuronic acid to UDP-β-l-threo-pentopyranosyl-4″-ulose in the presence of NAD+. The second activity converts UDP-β-l-threo-pentopyranosyl-4″-ulose and NADH to UDP-xylose and NAD+, albeit at a lower rate. Our data also suggest that following decarboxylation, there is stereospecific protonation at the C5 pro-R position. The identification of the R. solanacearum enzyme enables us to propose that the ancestral enzyme of UDP-xylose synthase and UDP-apiose/UDP-xylose synthase was diverged to two distinct enzymatic activities in early bacteria. This separation gave rise to the current UDP-xylose synthase in animal, fungus, and plant as well as to the plant Uaxs and bacterial ArnA and U4kpxs homologs. PMID:20118241

  6. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40.

    PubMed

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-04-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH. PMID:26936828

  7. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40

    PubMed Central

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature–high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63 (pCabZIP63) and CaWRKY40 (pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper’s response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper’s response to RSI and HTHH. PMID:26936828

  8. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction.

    PubMed Central

    Seal, S E; Jackson, L A; Daniels, M J

    1992-01-01

    A subtraction hybridization technique was employed to make a library enriched for Pseudomonas solanacearum-specific sequences. One cloned fragment, PS2096, hybridized under stringent conditions to DNA of 82 P. solanacearum strains representing all subgroups of the species. Other plant-associated bacteria, including closely related species such as Pseudomonas capacia, Pseudomonas picketti, or Pseudomonas syzygii, did not hybridize to PS2096. A minimum number of between 4 x 10(5) and 4 x 10(6) P. solanacearum cells could routinely be detected with PS2096 labelled either with [32P]dCTP or with digoxigenin-11-dUTP. To improve the sensitivity of detection, PS2096 was sequenced to allow the construction of specific oligonucleotide primers to be used for polymerase chain reaction (PCR) amplification. After 50 cycles of amplification, 5 to 116 cells, depending on the strain, could reproducibly be detected by visualization of a 148-bp PCR product on an agarose gel. A preliminary field trial in Burundi with the probe and PCR primers has confirmed that they are sensitive tools for specifically detecting low-level infections of P. solanacearum in potato tubers. Images PMID:1482193

  9. Synergistic interaction in dual-species biofilms formation by Escherichia coli O157:H7 and Ralstonia spp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Ralstonia spp., a heterotrophic bacterium that are isolated from produce processing environments as part of the native microflora, have strong potentials for formaing biofilms on various surfaces. When co-cultured, Escherichia coli O157:H7 (EcO157) and Ralstonia spp. displayed a synerg...

  10. Genomes of 'Candidatus Liberibacter solanacearum' Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species.

    PubMed

    Thompson, Sarah M; Johnson, Chris P; Lu, Ashley Y; Frampton, Rebekah A; Sullivan, Kerry L; Fiers, Mark W E J; Crowhurst, Ross N; Pitman, Andrew R; Scott, Ian A W; Wen, Aimin; Gudmestad, Neil C; Smith, Grant R

    2015-07-01

    'Candidatus Liberibacter solanacearum' contains two solanaceous crop-infecting haplotypes, A and B. Two haplotype A draft genomes were assembled and compared with ZC1 (haplotype B), revealing inversion and relocation genomic rearrangements, numerous single-nucleotide polymorphisms, and differences in phage-related regions. Differences in prophage location and sequence were seen both within and between haplotype comparisons. OrthoMCL and BLAST analyses identified 46 putative coding sequences present in haplotype A that were not present in haplotype B. Thirty-eight of these loci were not found in sequences from other Liberibacter spp. Quantitative polymerase chain reaction (qPCR) assays designed to amplify sequences from 15 of these loci were screened against a panel of 'Ca. L. solanacearum'-positive samples to investigate genetic diversity. Seven of the assays demonstrated within-haplotype diversity; five failed to amplify loci in at least one haplotype A sample while three assays produced amplicons from some haplotype B samples. Eight of the loci assays showed consistent A-B differentiation. Differences in genome arrangements, prophage, and qPCR results suggesting locus diversity within the haplotypes provide more evidence for genetic complexity in this emerging bacterial species. PMID:25822188

  11. Identification of the mcpA and mcpM Genes, Encoding Methyl-Accepting Proteins Involved in Amino Acid and l-Malate Chemotaxis, and Involvement of McpM-Mediated Chemotaxis in Plant Infection by Ralstonia pseudosolanacearum (Formerly Ralstonia solanacearum Phylotypes I and III)

    PubMed Central

    Hida, Akiko; Oku, Shota; Kawasaki, Takeru; Nakashimada, Yutaka; Tajima, Takahisa

    2015-01-01

    Sequence analysis has revealed the presence of 22 putative methyl-accepting chemotaxis protein (mcp) genes in the Ralstonia pseudosolanacearum GMI1000 genome. PCR analysis and DNA sequencing showed that the highly motile R. pseudosolanacearum strain Ps29 possesses homologs of all 22 R. pseudosolanacearum GMI1000 mcp genes. We constructed a complete collection of single mcp gene deletion mutants of R. pseudosolanacearum Ps29 by unmarked gene deletion. Screening of the mutant collection revealed that R. pseudosolanacearum Ps29 mutants of RSp0507 and RSc0606 homologs were defective in chemotaxis to l-malate and amino acids, respectively. RSp0507 and RSc0606 homologs were designated mcpM and mcpA. While wild-type R. pseudosolanacearum strain Ps29 displayed attraction to 16 amino acids, the mcpA mutant showed no response to 12 of these amino acids and decreased responses to 4 amino acids. We constructed mcpA and mcpM deletion mutants of highly virulent R. pseudosolanacearum strain MAFF106611 to investigate the contribution of chemotaxis to l-malate and amino acids to tomato plant infection. Neither single mutant exhibited altered virulence for tomato plants when tested by root dip inoculation assays. In contrast, the mcpM mutant (but not the mcpA mutant) was significantly less infectious than the wild type when tested by a sand soak inoculation assay, which requires bacteria to locate and invade host roots from sand. Thus, McpM-mediated chemotaxis, possibly reflecting chemotaxis to l-malate, facilitates R. pseudosolanacearum motility to tomato roots in sand. PMID:26276117

  12. Incorporation of Escherichia coli O157:H7 in dual-species biofilms with Ralstonia insidiosa, a primary colonizer for the development of heterogeneous biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of strong biofilm forming microflora could potentially enhance the survival of Escherichia coli O157:H7 (EcO157) in harsh environment. One strain of Ralstonia insidiosa isolated from produce processing environments, previously displayed a synergistic interaction with EcO157 in dual-spec...

  13. Use of tRNA consensus primers to indicate subgroups of Pseudomonas solanacearum by polymerase chain reaction amplification.

    PubMed Central

    Seal, S E; Jackson, L A; Daniels, M J

    1992-01-01

    Polymerase chain reaction amplification of DNA from 112 Pseudomonas solanacearum strains with the tRNA consensus primers T3A and T5A divided the species into three fingerprint groups. These groups correspond well with previous divisions made by restriction fragment length polymorphism analysis. This polymerase chain reaction test is a facile method for rapidly classifying P. solanacearum strains. Images PMID:1482194

  14. Native Valve Endocarditis due to Ralstonia pickettii: A Case Report and Literature Review.

    PubMed

    Orme, Joseph; Rivera-Bonilla, Tomas; Loli, Akil; Blattman, Negin N

    2015-01-01

    Ralstonia pickettii is a rare pathogen and even more rare in healthy individuals. Here we report a case of R. pickettii bacteremia leading to aortic valve abscess and complete heart block. To our knowledge this is the first case report of Ralstonia species causing infective endocarditis with perivalvular abscess. PMID:25648998

  15. Native Valve Endocarditis due to Ralstonia pickettii: A Case Report and Literature Review

    PubMed Central

    Orme, Joseph; Rivera-Bonilla, Tomas; Loli, Akil; Blattman, Negin N.

    2015-01-01

    Ralstonia pickettii is a rare pathogen and even more rare in healthy individuals. Here we report a case of R. pickettii bacteremia leading to aortic valve abscess and complete heart block. To our knowledge this is the first case report of Ralstonia species causing infective endocarditis with perivalvular abscess. PMID:25648998

  16. Genotypic and phenotypic diversity of Ralstonia pickettii and Ralstonia insidiosa isolates from clinical and environmental sources including High-purity Water. Diversity in Ralstonia pickettii

    PubMed Central

    2011-01-01

    Background Ralstonia pickettii is a nosocomial infectious agent and a significant industrial contaminant. It has been found in many different environments including clinical situations, soil and industrial High Purity Water. This study compares the phenotypic and genotypic diversity of a selection of strains of Ralstonia collected from a variety of sources. Results Ralstonia isolates (fifty-nine) from clinical, industrial and environmental origins were compared genotypically using i) Species-specific-PCR, ii) PCR and sequencing of the 16S-23S rRNA Interspatial region (ISR) iii) the fliC gene genes, iv) RAPD and BOX-PCR and v) phenotypically using biochemical testing. The species specific-PCR identified fifteen out of fifty-nine designated R. pickettii isolates as actually being the closely related species R. insidiosa. PCR-ribotyping of the 16S-23S rRNA ISR indicated few major differences between the isolates. Analysis of all isolates demonstrated different banding patterns for both the RAPD and BOX primers however these were found not to vary significantly. Conclusions R. pickettii species isolated from wide geographic and environmental sources appear to be reasonably homogenous based on genotypic and phenotypic characteristics. R. insidiosa can at present only be distinguished from R. pickettii using species specific PCR. R. pickettii and R. insidiosa isolates do not differ significantly phenotypically or genotypically based on environmental or geographical origin. PMID:21878094

  17. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms. PMID:25581186

  18. Characterization and DNA-Binding Specificities of Ralstonia TAL-Like Effectors

    PubMed Central

    Mahfouz, Magdy M.

    2013-01-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  19. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors.

    PubMed

    Li, Lixin; Atef, Ahmed; Piatek, Agnieszka; Ali, Zahir; Piatek, Marek; Aouida, Mustapha; Sharakuu, Altanbadralt; Mahjoub, Ali; Wang, Guangchao; Khan, Suhail; Fedoroff, Nina V; Zhu, Jian-Kang; Mahfouz, Magdy M

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  20. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut processing plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been ...

  1. First report of bacterial wilt caused by Ralstonia solanacearum on Mesona chinensis in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jellywort (Mesona chinensis Benth) is a herbaceous plant in the Lamiaceae Family. The plant is referred to as ‘Xiancao’ (Weed from Angels) in Chinese and is primarily used to make grass jelly, a popular refreshing drink. Currently, Xiancao cultivation is a fast growing industry with a high profit ma...

  2. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. PMID:26993531

  3. Arsenite Oxidase from Ralstonia sp. 22

    PubMed Central

    Lieutaud, Aurélie; van Lis, Robert; Duval, Simon; Capowiez, Line; Muller, Daniel; Lebrun, Régine; Lignon, Sabrina; Fardeau, Marie-Laure; Lett, Marie-Claire; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara

    2010-01-01

    We characterized the aro arsenite oxidation system in the novel strain Ralstonia sp. 22, a β-proteobacterium isolated from soil samples of the Salsigne mine in southern France. The inducible aro system consists of a heterodimeric membrane-associated enzyme reacting with a dedicated soluble cytochrome c554. Our biochemical results suggest that the weak association of the enzyme to the membrane probably arises from a still unknown interaction partner. Analysis of the phylogeny of the aro gene cluster revealed that it results from a lateral gene transfer from a species closely related to Achromobacter sp. SY8. This constitutes the first clear cut case of such a transfer in the Aro phylogeny. The biochemical study of the enzyme demonstrates that it can accommodate in vitro various cytochromes, two of which, c552 and c554, are from the parent species. Cytochrome c552 belongs to the sox and not the aro system. Kinetic studies furthermore established that sulfite and sulfide, substrates of the sox system, are both inhibitors of Aro activity. These results reinforce the idea that sulfur and arsenic metabolism are linked. PMID:20421652

  4. Ralstonia pickettii traced in blood culture bottles.

    PubMed

    Boutros, Névine; Gonullu, Nevriye; Casetta, Anne; Guibert, Michèle; Ingrand, Didier; Lebrun, Léa

    2002-07-01

    Over a 9-month period, 14 strains of Ralstonia pickettii were isolated from various biological samples inoculated in a blood culture medium. Molecular epidemiological investigation confirmed the relatedness of the strains. The source of the contamination proved to be the blood culture bottle caps. PMID:12089303

  5. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.

    PubMed

    Coenye, T; Falsen, E; Vancanneyt, M; Hoste, B; Govan, J R; Kersters, K; Vandamme, P

    1999-04-01

    A polyphasic taxonomic study that included DNA-DNA hybridizations, DNA base ratio determinations, 16S rDNA sequence analysis, whole-cell protein and fatty acid analyses, AFLP (amplified fragment length polymorphism) fingerprinting and an extensive biochemical characterization was performed on 10 strains provisionally identified as Alcaligenes faecalis-like bacteria. The six environmental and four human isolates belonged to the genus Ralstonia and were assigned to a new species for which the name Ralstonia gilardii sp. nov. is proposed. The type strain is LMG 5886T. PMID:10319461

  6. Genomic Plasticity in Ralstonia eutropha and Ralstonia pickettii: Evidence for Rapid Genomic Change and Adaptation

    SciTech Connect

    Terence L. MArsh

    2007-06-27

    a sequence identical to the intracellular replicative form. Using PCR targeting phage-specific genes we showed that seven out of the eleven isolates carried the phage. The seven isolates positive for phage were formed one of the genomovar groups, hence the presence of the phage may have generated the divergent lineage. One representative of each of these genomovars was sequence by JGI. While the genomes have not been closed completely, the results so far are provocative. Strain 12J, which carries the phage, revealed four integrated copies of the phage genome, each copy at a different level of divergence from the active replicative form. A comparative analysis of the common genes found in these integrated phage copies revealed that the gene complements were incongruent with one another within a phage copy, suggesting that the copies had become sites of recombination or that the cell had recruited genes for different functions. One of the integrated copies had the exact sequence as the replicative form and we assume this to be the most recent integration event. Evidence for a recent integration was revealed in a repeated sequence element found on each terminus of the phage genome. Finally, these isolates are of interest in bioremediation and reclamation of metals from waste streams. We have determined that each Ralstonia cell is capable of binding 6 x 107 Cu (II) ions and that 90% of the binding occurs within 12 hours of exposure to Cu(II). Our studies have revealed a species with a uniquely fluid genome. This Ralstonia population has been under extreme selective pressure over the past hundred years as it responded to the accumulation of copper in the lake sediment as a result of unregulated mining practices. In addition to the selective pressure of copper, the population was repeatedly infected with a filamentous phage that may have contributed to the divergence of the genomovars. This dynamic population could help reveal the selective forces and their consequences

  7. Intraspecific Variability within Globodera tabacum solanacearum Using Random Amplified Polymorphic DNA

    PubMed Central

    Syracuse, A. J.; Johnson, C. S.; Eisenback, J. D.; Nessler, C. L.; Smith, E. P.

    2004-01-01

    Random amplified polymorphic DNA (RAPDs) were used to investigate the intraspecific variability among 19 geographic isolates of Globodera tabacum solanacearum from eight counties in Virginia and one county in North Carolina. Globodera tabacum tabacum, G. t. virginiae, and the Mexican cyst nematode (MCN) were included as outgroups. Six primers were used and 119 amplification products were observed. Each primer yielded reproducible differences in fragment patterns that differentiated the isolates and species. Hierarchical cluster analysis was performed to illustrate the relatedness among isolates and species. The average Jaccard's similarity index among isolates of G. t. solanacearum was 74%, possibly representing greater variation than that reported in the literature across different pathotypes of the potato cyst nematode, Globodera pallida, in studies where RAPD were also employed. The RAPD markers described here may be useful for the development of specific primers or probes that could improve the identification of TCN populations. Such improvements in the characterization of TCN genotypes would facilitate the effective deployment of existing and future resistant cultivars to control these economically important pests. PMID:19262823

  8. Incidence, Relevance and Response for Ralstonia Respiratory Infections

    PubMed Central

    Granger, Wesley M.; Gaggar, Amit

    2014-01-01

    BACKGROUND Cases of Ralstonia colonization/infection occasionally reported by hospitals has generated increased interest in an organism previously little known to most clinicians. Our goal was to determine the incidence of respiratory colonizations and infections involving Ralstonia and the association of mechanical ventilation (limited to reports on respiratory-related occurrences in the USA). METHODS We performed a secondary analysis of published clinical reports of Ralstonia to determine the potential risks for respiratory colonization and infection in the USA and if being on mechanical ventilation (MV) had an influence on colonization and conversion to infection (symptomatic). RESULTS The odds of developing colonization with Ralstonia were eight times higher and the likelihood of developing infection with Ralstonia was twelve times higher in those mechanically ventilated compared to those not mechanically ventilated. CONCLUSIONS Our results suggest that individuals who are currently on mechanical ventilation and are Ralstonia culture-positive have an increased risk for colonization and may have increased propensity to the development of infection (two decision trees for approaching diagnosis and therapy included). PMID:20499534

  9. Similarities and differences in physiological responses to 'Candidatus Liberibacter solanacearum' infection among different potato cultivars.

    PubMed

    Wallis, C M; Rashed, A; Wallingford, A K; Paetzold, L; Workneh, F; Rush, C M

    2014-02-01

    Zebra chip disease (ZC), putatively caused by the fastidious bacterium 'Candidatus Liberibacter solanacearum', is a threat to potato growers worldwide. However, little is known about biochemical shifts in different potato genotypes in response to 'Ca. L. solanacearum' infection. To address this, 'Red La Soda', 'Russet Norkotah', and 'FL 1867' potato were infected with 'Ca. L. solanacearum' 4, 3, 2, and 1 weeks before harvest to observe variability in cultivar responses to 'Ca. L. solanacearum' infection. ZC symptoms, 'Ca. L. solanacearum' titers, and tuber biochemistry were assessed. Red La Soda tubers exhibited greater symptoms when infected for 4 weeks than Russet Norkotah or FL 1867 tubers. 'Ca. L. solanacearum' titers did not vary among cultivars. Tuber levels of amino acids, carbohydrates, and phenolics varied among cultivars but no consistent trends were observed. Individual amino acids and phenolics were greater in FL 1867 than Red La Soda, whereas others were greater in Red La Soda or Russet Norkotah than FL 1867. Most amino acids, carbohydrates, and phenolics were positively associated with infection duration and symptoms regardless of cultivar. Associations between most of the evaluated compounds and 'Ca. L. solanacearum' titer were positive in Red La Soda. However, no associations between 'Ca. L. solanacearum' quantity and compounds were observed in FL 1867 and Russet Norkotah. PMID:23941779

  10. Effects of Potato-Psyllid-Vectored 'Candidatus Liberibacter solanacearum' Infection on Potato Leaf and Stem Physiology.

    PubMed

    Wallis, C M; Rashed, A; Chen, J; Paetzold, L; Workneh, F; Rush, C M

    2015-02-01

    The bacterium 'Candidatus Liberibacter solanacearum' is associated with zebra chip disease (ZC), a threat to potato production in North America and New Zealand. It is vectored by potato psyllids. Previous studies observed that 'Ca. L. solanacearum' infection causes potato tubers to undergo ZC-symptom-associated shifts in physiology, such as increased levels of amino acids, sugars, and phenolics. However, little is known about how 'Ca. L. solanacearum' infections caused by psyllid vector feeding may affect metabolism in potato foliage and stems. This study compared metabolism in potato plants fed upon by 'Ca. L. solanacearum'-positive psyllids with potato plants not exposed to psyllids. Foliar levels of asparagine, aspartic acid, glutamine, fructose, glucose, sucrose, a ferulic acid derivative, and quinic acid were lower in 'Ca. L. solanacearum'-inoculated than noninfected plants. However, foliar levels of proline, serine, four phenolic compounds, and most terpenoids were greater in 'Ca. L. solanacearum'-inoculated than noninfected plants. Upper stem levels of asparagine and aspartic acid, upper and lower stem levels of ellagitannins and most monoterpenoids, and lower stem level of sesquiterpenoids were greater in 'Ca. L. solanacearum'-inoculated than noninfected plants. These results suggest that many defense-related terpenoid compounds might increase in plants which had psyllids inoculate 'Ca. L. solanacearum'. This could impact progression and spread of ZC. PMID:25469656

  11. Reproduction of Globodera tabacum solanacearum in Seven Flue-Cured Tobacco-Producing Soils

    PubMed Central

    Rideout, S. L.; JOHNSON, C. S.; Eisenback, J. D.; Reed, T. D.

    2000-01-01

    The tobacco cyst nematode (Globodera tabacum solanacearum) continues to pose a serious threat to flue-cured tobacco production in Virginia and nearby states. Soils were sampled from five uninfested and two infested flue-cured tobacco-producing locations. Twenty-three edaphic factors were characterized to determine if any were correlated with G. t. solanacearum reproduction. Comparisons were also made between pasteurized and natural soils to determine if biological suppression of G. t. solanacearum reproduction might be occurring in currently uninfested areas. Differences in G. t. solanacearum reproduction were noted among the soils, but results were inconsistent across the three trials conducted in this study. Only soil pH correlated significantly with nematode reproduction, and then only in one of three trials. Globodera tabacum solanacearum reproduced with similar efficiency in natural and pasteurized soils. PMID:19270999

  12. Expression of L-ornithine Ndelta-oxygenase (PvdA) in fluorescent Pseudomonas species: an immunochemical and in silico study.

    PubMed

    Putignani, Lorenza; Ambrosi, Cecilia; Ascenzi, Paolo; Visca, Paolo

    2004-01-01

    Omega-amino acid monooxygenases (EC 1.14.13.-), catalysing the formation of hydroxamate precursors of microbial siderophores (e.g., pyoverdine), have so far eluded structural and biochemical characterisation. Here, the expression of recombinant L-ornithine-Ndelta-oxygenase (PvdA) from Pseudomonas aeruginosa PAO1 is reported. A library of eight monoclonal antibodies (MAbs) directed against PvdA has been generated. Two MAb families recognising the N- and C-terminal regions of PvdA were identified. The MAbs made it possible to demonstrate that 45-48 kDa PvdA homologues are expressed in response to iron limitation by different species and strains of fluorescent pseudomonads. Despite the different degrees in sequence similarity between P. aeruginosa PvdA and putative homologues from Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae, Burkholderia cepacia, and Ralstonia solanacearum, in silico domain scanning predicts an impressive conservation of putative cofactor and substrate binding domains. The MAb library was also used to monitor PvdA expression during the transition of P. aeruginosa from iron-sufficient to iron-deficient growth. PMID:14684153

  13. Ralstonia pickettii bacteremia in hemodialysis patients: a report of two cases

    PubMed Central

    Tejera, Darwin; Limongi, Gino; Bertullo, Mauricio; Cancela, Mario

    2016-01-01

    Ralstonia pickettii is a low-virulence gram-negative bacillus that may be associated with infections related to health care and may cause bacteremia. Ralstonia pickettii bacteremia is uncommon but is related to the contamination of medical products, mainly in immunodepressed patients. We present two cases of patients on chronic hemodialysis with Ralstonia pickettii bacteremia linked to contamination of the dialysis water. Similar cases have been published with links to intravenous fluid administration, medication ampules, and the use of extracorporeal oxygenation membranes, among other factors. The detection of Ralstonia pickettii bacteremia should provoke suspicion and a search for contaminated medical products, fluids, and/or medications. PMID:27410414

  14. First Report of 'Candidatus Liberibacter Solanacearum' Naturally Infecting Tomatoes in the State of Mexico, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato (Solanum lycopersicum) plants exhibiting stunting, yellow mosaic, short, chlorotic leaves, aborted flowers and reduced-size fruits, symptoms similar to those exhibited by plants infected by Candidatus Liberibacter solanacearum (Lso), were observed in greenhouses in Jocotitlan, Mexico. In addi...

  15. Sequence analysis of Candidatus Liberibacter solanacearum (Lso-C) isolated from carrot psyllids collected in Scandinavia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fastidious prokaryote Candidatus Liberibacter solanacearum (Lso), transmitted by the tomato potato psyllid (Bactericera cockerelli), is associated with the Zebra Chip disease of potato. Plants infected with Liberibacter may experience significant yield losses and these plants also serve as pote...

  16. Draft Genome Assembly of Ralstonia pickettii Type Strain K-288 (ATCC 27853)

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Gibbons, H. S.; Jaissle, J.; Lo, C.-C.; Meincke, L.; Munk, A. C.; Rosenzweig, C. N.

    2014-01-01

    We present the genome assembly of Ralstonia pickettii K-288 (ATCC 27511), consisting of 27 contigs placed into a single scaffold. This 4.76-Mbp genome has 64.0% G+C content and 4,425 coding sequences. Because this is the type strain, inclusion of its data set among other Ralstonia genomes should provide a historical genomic perspective. PMID:25258272

  17. Draft Genome Assembly of Ralstonia pickettii Type Strain K-288 (ATCC 27853).

    PubMed

    Daligault, H E; Davenport, K W; Minogue, T D; Broomall, S M; Bruce, D C; Chain, P S; Coyne, S R; Gibbons, H S; Jaissle, J; Lo, C-C; Meincke, L; Munk, A C; Rosenzweig, C N; Johnson, S L

    2014-01-01

    We present the genome assembly of Ralstonia pickettii K-288 (ATCC 27511), consisting of 27 contigs placed into a single scaffold. This 4.76-Mbp genome has 64.0% G+C content and 4,425 coding sequences. Because this is the type strain, inclusion of its data set among other Ralstonia genomes should provide a historical genomic perspective. PMID:25258272

  18. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment.

    PubMed

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C Mark; Leys, Natalie; Van Houdt, Rob

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  19. Draft Genome Sequences of Ralstonia pickettii Strains SSH4 and CW2, Isolated from Space Equipment

    PubMed Central

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C. Mark; Leys, Natalie

    2014-01-01

    Ralstonia pickettii SSH4 and CW2 were isolated from space equipment. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25189592

  20. Mobilization of selenite by Ralstonia metallidurans CH34.

    PubMed

    Roux, M; Sarret, G; Pignot-Paintrand, I; Fontecave, M; Coves, J

    2001-02-01

    Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites. PMID:11157242

  1. Whole-Genome Sequence of "Candidatus Liberibacter solanacearum" Strain R1 from California.

    PubMed

    Zheng, Z; Clark, N; Keremane, M; Lee, R; Wallis, C; Deng, X; Chen, J

    2014-01-01

    The draft whole-genome sequence of "Candidatus Liberibacter solanacearum" strain R1, isolated from and maintained in tomato plants in California, is reported. The R1 strain has the genome size of 1,204,257 bp, G+C content of 35.3%, 1,101 predicted open reading frames, and 57 RNA genes. PMID:25540355

  2. De Novo Genome Sequence of "Candidatus Liberibacter solanacearum" from a Single Potato Psyllid in California.

    PubMed

    Wu, F; Deng, X; Liang, G; Wallis, C; Trumble, J T; Prager, S; Chen, J

    2015-01-01

    The draft genome sequence of "Candidatus Liberibacter solanacearum" strain RSTM from a potato psyllid (Bactericera cockerelli) in California is reported here. The RSTM strain has a genome size of 1,286,787 bp, a G+C content of 35.1%, 1,211 predicted open reading frames (ORFs), and 43 RNA genes. PMID:26679599

  3. Comparison of Candiatus Liberibacter solanacearum genomic sequences isolated from carrot psyllids in Scandinavia and potato psyllids from Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fastidious prokaryote Candidatus Liberibacter solanacearum (Lso), transmitted by the tomato potato psyllid (Bactericera cockerelli), is associated with the Zebra Chip disease of potato. Plants infected with Liberibacter may experience significant yield losses and these plants also serve as poten...

  4. Zebra chip disease and potato biochemistry: tuber physiological changes in response to 'Candidatus Liberibacter solanacearum' infection over time.

    PubMed

    Rashed, A; Wallis, C M; Paetzold, L; Workneh, F; Rush, C M

    2013-05-01

    Zebra chip disease, putatively caused by the bacterium 'Candidatus Liberibacter solanacearum', is of increasing concern to potato production in Mexico, the United States, and New Zealand. However, little is known about the etiology of this disease and changes that occur within host tubers that result in its symptoms. Previous studies found that increased levels of phenolics, amino acids, defense proteins, and carbohydrates in 'Ca. L. solanacearum'-infected tubers are associated with symptoms of zebra chip. This study was conducted to quantify variations in levels of these biochemical components in relation to the time of infestation, symptom severity, and 'Ca. L. solanacearum' titer. Levels of phenolics, peroxidases, polyphenol oxidases, and reducing sugars (glucose and, to some extent, fructose) changed during infection, with higher levels occurring in tubers infected at least 5 weeks before harvest than in those infected only a week before harvest and those of controls. Compared with the apical tuber ends, greater levels of phenolics, peroxidases, and sucrose occurred at the basal (stolon attachment) end of infected tubers. With the exception of phenolics, concentrations of the evaluated compounds were not associated with 'Ca. L. solanacearum' titer. However, there were significant associations between biochemical responses and symptom severity. The lack of a linear correlation between most plant biochemical responses and 'Ca. L. solanacearum' titer suggests that shifts in metabolic profiles are independent of variations in 'Ca. L. solanacearum' levels. PMID:23425237

  5. Genomic analyses of transport proteins in Ralstonia metallidurans.

    PubMed

    von Rozycki, Torsten; Nies, Dietrich H; Saier, Milton H

    2005-01-01

    Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3 : 1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium. PMID:18629293

  6. Genomic Analyses of Transport Proteins in Ralstonia metallidurans

    PubMed Central

    von Rozycki, Torsten; Nies, Dietrich H.

    2005-01-01

    Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3 : 1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium. PMID:18629293

  7. An outbreak of Ralstonia pickettii endophthalmitis following intravitreal methotrexate injection

    PubMed Central

    Choudhury, Himadri; Jindal, Animesh; Pathengay, Avinash; Flynn, Harry W

    2015-01-01

    Purpose To report an outbreak of endophthalmitis in three eyes of two patients following intravitreal methotrexate, caused by Ralstonia pickettii. Design Retrospective, noncomparative, consecutive case series. Methods Medical records and microbiology results of two patients who presented with acute endophthalmitis following intravitreal methotrexate injection in November 2013 were reviewed. Results Following intravitreal injections, the patients experienced pain and decrease in vision in the affected eye within 24 hours of receiving intravitreal methotrexate injection. The presenting visual acuity in case 1 was 20/50 in the left eye. The presenting visual acuity in case 2 was hand motions in the right eye and counting fingers at 1 m in the left eye. Both the patients received methotrexate prepared in the same manufacturing facility. Both the patients underwent vitreous biopsy and intravitreal injection of vancomycin 1 mg/0.1 mL, amikacin 400 µg/0.1 mL, and dexamethasone 400 µg/0.1 mL. Microbiology cultures from vitreous, and used and unused vials of methotrexate from the same batch grew R. pickettii. After 8 months of follow-up, both the patients had visual acuity 20/60 or better. Conclusion R. pickettii can be rarely associated with outbreak of endophthalmitis. Timely intervention can be associated with good visual outcome in such patients. PMID:26150690

  8. Novel Tn4371-ICE like element in Ralstonia pickettii and Genome mining for comparative elements

    PubMed Central

    2009-01-01

    Background Integrative Conjugative Elements (ICEs) are important factors in the plasticity of microbial genomes. An element related to the ICE Tn4371 was discovered during a bioinformatic search of the Ralstonia pickettii 12J genome. This element was analysed and further searches carried out for additional elements. A PCR method was designed to detect and characterise new elements of this type based on this scaffold and a culture collection of fifty-eight Ralstonia pickettii and Ralstonia insidiosa strains were analysed for the presence of the element. Results Comparative sequence analysis of bacterial genomes has revealed the presence of a number of uncharacterised Tn4371-like ICEs in the genomes of several β and γ- Proteobacteria. These elements vary in size, GC content, putative function and have a mosaic-like structure of plasmid- and phage-like sequences which is typical of Tn4371-like ICEs. These elements were found after a through search of the GenBank database. The elements, which are found in Ralstonia, Delftia, Acidovorax, Bordetella, Comamonas, Acidovorax, Congregibacter, Shewanella, Pseudomonas Stenotrophomonas, Thioalkalivibrio sp. HL-EbGR7, Polaromonas, Burkholderia and Diaphorobacter sp. share a common scaffold. A PCR method was designed (based on the Tn4371- like element detected in the Ralstonia pickettii 12J genome) to detect and characterise new elements of this type. Conclusion All elements found in this study possess a common scaffold of core genes but contain different accessory genes. A new uniform nomenclature is suggested for ICEs of the Tn4371 family. Two novel Tn4371-like ICE were discovered and characterised, using the novel PCR method described in two different isolates of Ralstonia pickettii from laboratory purified water. PMID:19941653

  9. Regulation of extracellular polygalacturonase production in Pseudomonas solanacearum. Progress report, [May 1, 1992--April 30, 1994

    SciTech Connect

    Allen, C.

    1994-06-01

    Pseudomonas solanacearum is an economically important plant pathogen that causes bacterial wilt disease of diverse crops. The bacterium produces at least three isozymes of polygalacturonase, which degrade plant cell walls and contribute substantially to bacterial wilt disease development. The central objective of this research project is to determine how expression of these enzymes is regulated. To this end, we isolated a positive trans-acting regulator of polygalacturonase production (pehR). We have focused on further characterization of the pehR mutant pheonotype, and studies of pehR expression. Preliminary results suggest pehR also regulates bacterial motility. An investigation of two unusual tyrosine phosphoproteins in P. solanacearum is also described.

  10. Tests in vitro and in pots with certain chemicals for inhibition of Pseudomonas solanacearum.

    PubMed

    el-Goorani, M A; Abo-el-Dahab, M K; Wagih, E E

    1978-01-01

    Twenty one isolates of Pseudomonas solanacearum E. F. Smith (Race 3) from various parts of Egypt were inhibited in vitro by Ampicillin, Chloramphenicol, Kanamycin, Oxytetracycline. Tetracycline, Penicillin G, Streptomycin, Nabam (Dithane A-40), Maneb (Dithane M-22), Zinc-ion maneb complex (Dithane M-45), and the insecticide Chlorthion. On the basis of in vitro-sensitivity to the selected 11 chemicals the 21 isolates could not be separated into different groups. Carbendazin (Bavistin), Benomyl, Drazoxolon (Mil-Col), and Temik proved ineffective in inhibiting the in vitro growth of all isolates at all tested concentrations. Preliminary investigations indicate that drenching the soil with solutions of Dithane M-22 (0.25% w/v, Dithane M-45 (0.25%) w/v, or insecticide Chlorthion (50 microgram/ml active ingredient) decreased the incidence of potato wilt disease that developed in soil, artificially infested with P. solanacearum. PMID:696045

  11. Horizontal Transmission of "Candidatus Liberibacter solanacearum" by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae).

    PubMed

    Torres, Glenda L; Cooper, W Rodney; Horton, David R; Swisher, Kylie D; Garczynski, Stephen F; Munyaneza, Joseph E; Barcenas, Nina M

    2015-01-01

    "Candidatus Liberibacter solanacearum" (Proteobacteria) is an important pathogen of solanaceous crops (Solanales: Solanaceae) in North America and New Zealand, and is the putative causal agent of zebra chip disease of potato. This phloem-limited pathogen is transmitted to potato and other solanaceous plants by the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). While some plants in the Convolvulaceae (Solanales) are also known hosts for B. cockerelli, previous efforts to detect Liberibacter in Convolvulaceae have been unsuccessful. Moreover, studies to determine whether Liberibacter can be acquired from these plants by B. cockerelli are lacking. The goal of this study was to determine whether horizontal transmission of Liberibacter occurs among potato psyllids on two species of Convolvulaceae, sweet potato (Ipomoea batatas) and field bindweed (Convolvulus arvensis), which grows abundantly in potato growing regions of the United States. Results indicated that uninfected psyllids acquired Liberibacter from both I. batatas and C. arvensis if infected psyllids were present on plants concurrently with the uninfected psyllids. Uninfected psyllids did not acquire Liberibacter from plants if the infected psyllids were removed from the plants before the uninfected psyllids were allowed access. In contrast with previous reports, PCR did detect the presence of Liberibacter DNA in some plants. However, visible amplicons were faint and did not correspond with acquisition of the pathogen by uninfected psyllids. None of the plants exhibited disease symptoms. Results indicate that horizontal transmission of Liberibacter among potato psyllids can occur on Convolvulaceae, and that the association between Liberibacter and Convolvulaceae merits additional attention. PMID:26555359

  12. Assessing the Likelihood of Transmission of Candidatus Liberibacter solanacearum to Carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae).

    PubMed

    Munyaneza, Joseph E; Mustafa, Tariq; Fisher, Tonja W; Sengoda, Venkatesan G; Horton, David R

    2016-01-01

    'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited bacterium that severely affects important Solanaceae and Apiaceae crops, including potato, tomato, pepper, tobacco, carrot and celery. This bacterium is transmitted to solanaceous species by potato psyllid, Bactericera cockerelli, and to Apiaceae by carrot psyllids, including Trioza apicalis and Bactericera trigonica. Five haplotypes of Lso have so far been described, two are associated with solanaceous species and potato psyllids, whereas the other three are associated with carrot and celery crops and carrot psyllids. Little is known about cross-transmission of Lso to carrot by potato psyllids or to potato by carrot psyllids. Thus, the present study assessed whether potato psyllid can transmit Lso to carrot and whether Lso haplotypes infecting solanaceous species can also infect carrot and lead to disease symptom development. In addition, the stylet probing behavior of potato psyllid on carrot was assessed using electropenetrography (EPG) technology to further elucidate potential Lso transmission to Apiaceae by this potato insect pest. Results showed that, while potato psyllids survived on carrot for several weeks when confined on the plants under controlled laboratory and field conditions, the insects generally failed to infect carrot plants with Lso. Only three of the 200 carrot plants assayed became infected with Lso and developed characteristic disease symptoms. Lso infection in the symptomatic carrot plants was confirmed by polymerase chain reaction assay and Lso in the carrots was determined to be of the haplotype B, which is associated with solanaceous species. EPG results further revealed that potato psyllids readily feed on carrot xylem but rarely probe into the phloem tissue, explaining why little to no Lso infection occurred during the controlled laboratory and field cage transmission trials. Results of our laboratory and field transmission studies, combined with our EPG results, suggest

  13. [A community acquired pneumonia case caused by Ralstonia pickettii].

    PubMed

    Küçükbayrak, Abdulkadir; Uğurman, Feza; Dereli, Necla; Cizmeci, Zeynep; Günay, Ersin

    2009-04-01

    Ralstonia pickettii, formerly known as Burkholderia pickettii, is a non-fermentative gram-negative bacillus. It is emerging as an opportunistic pathogen both in the hospital setting and in the environment, leading to outbreaks especially in the intensive care units. The available literature revealed two case reports of pneumonia associated with R. pickettii in adults. In this report, a case of pneumoniae due to R. pickettii, in a patient with chronic obstructive pulmonary disease was presented. Fifty-six years old male patient was admitted to the hospital with complaints of shortness of breath, cough, purulent sputum, weakness, fatigue and green colorred diarrhea lacking blood. Lung auscultation revealed decreased respiratory sounds in the right lower lobe. Laboratory findings yielded decreased arterial pH and paO2 and increased pCO2 values, while hemoglobin, hematocrite, blood urea and creatinine levels were increased. Chest X-ray showed an infiltration on right lower zone. The patient was intubated and imipenem 1 x 500 mg/day and netilmicin 1 x 80 mg/day were initiated. Deep tracheal aspirate specimen revealed gram-negative rods and leukocytes, and cultures yielded growth of non-fermentative gram-negative bacilli on blood agar and EMB agar. These bacilli were identified as R. pickettii by using VITEK 2 system (bi-oMerieux Inc, Mercy L'etoil, France). Antibiotic sensitivity test performed by VITEK 2 GP system (bioMerieux Inc, Mercy L'etoil, France) revealed sensitivity to ceftriaxone, imipenem/cilastatin, piperacillin/tazobactam, amikacin, gentamicin, cefoperazone-sulbactam and ciprofloxacin. Treatment with imipenem/cilastatin was continued for 14 days and the patient was completely recovered. This case was presented in order to call attention to R. pickettii as a pathogen that may cause community-acquired lower respiratory tract infection. PMID:19621622

  14. A new shuttle vector for gene expression in biopolymer-producing Ralstonia eutropha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ralstonia eutropha is a fascinating microorganism with a great scientific importance and an immense commercial potential. A new genetic transformation system for the organism would greatly facilitate the biological study and the molecular engineering of this organism. We have developed a versatile...

  15. Low-level detection of Candidatus Liberibacter solanacearum in extracted Bactericera cockerelli (Hemiptera: Triozidae) DNA by 454 pyrosequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate detection and quantification of Candidatus Liberibacter solanacearum, the putative causal agent of zebra chip disease of potato (Solanum tuberosum), in the potato psyllid, Bactericera cockerelli, has become necessary to better understand the biology of the disease cycle. Studies on the tran...

  16. Genome Sequence of a Carbapenem-Resistant Strain of Ralstonia mannitolilytica

    PubMed Central

    Nishio, Hisaaki; Asagoe, Kohsuke; Kida, Kaneyuki; Suzuki, Satowa; Matsui, Mari; Shibayama, Keigo

    2015-01-01

    Ralstonia mannitolilytica, a Gram-negative aerobic bacterium, is an opportunistic human pathogen that is becoming more common in cases of nosocomial infections. We report for the first time the whole-genome sequence analysis of R. mannitolilytica strain MRY14-0246, which carries the intrinsic OXA-443/OXA-22-like and OXA-444/OXA-60-like β-lactamase genes and is resistant to meropenem. PMID:25953190

  17. Haplotypes of 'Candidatus Liberibacter solanacearum' suggest long-standing separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three haplotypes of the recently discovered bacterium species “Candidatus Liberibacter solanacearum” are described and related to geographic ranges. The first two are associated with Zebra Chip/Psyllid Yellows of potatoes and other solanaceous plants, vectored by the tomato/potato psyllid Bacterice...

  18. Multiplex real-time PCR for detection, identification and quantification of 'Candidatus Liberibacter solanacearum' in potato plants with zebra chip.

    PubMed

    Li, Wenbin; Abad, Jorge A; French-Monar, Ronald D; Rascoe, John; Wen, Aimin; Gudmestad, Neil C; Secor, Gary A; Lee, Ing-Ming; Duan, Yongping; Levy, Laurene

    2009-07-01

    The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated

  19. 78 FR 59628 - Importation of Potatoes From Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... bacterium that causes brown rot of potato.\\1\\ \\1\\ The PRA refers to this pest as ``Ralstonia solanacearum... solanacearum race 3 biovar 2 (Smith) Yabuuchi et al., a bacterium that causes brown rot of potato;...

  20. Solanum habrochaites, a potential source of resistance against Bactericera cockerelli (Hemiptera: Triozidae) and "Candidatus Liberibacter solanacearum".

    PubMed

    Levy, Julien; Tamborindeguy, Cecilia

    2014-06-01

    The potato psyllid, Bactericera cockerelli Sulc, also known as tomato psyllid, is a serious pest of solanaceous plants. Its host selection criteria are poorly understood. In this study, we tested whether the Solanum habrochaites (PI127826), a wild solanaceous plant known for its property to repel whiteflies, was repellent to potato psyllids. Using a combination of nonchoice assays and choice assays on different psyllid stages, we demonstrated that S. habrochaites is both repelling and toxic to potato psyllids compared with Solanum lycopersicum. However, those properties were not sufficient to avoid. transmission of the plant bacterial pathogen "Candidatus Liberibacter solanacearum" vectored by potato psyllids, the causative agent of potato zebra chip disease. However, a lower bacterial transmission rate to S. habrochaites was observed compared with S. lycopersicum. PMID:25026681

  1. Cloning and Expression of a Ralstonia eutropha HF39 Gene Mediating Indigo Formation in Escherichia coli

    PubMed Central

    Drewlo, Sascha; Brämer, Christian O.; Madkour, Mohamed; Mayer, Frank; Steinbüchel, Alexander

    2001-01-01

    On complex medium Escherichia coli strains carrying hybrid plasmid pBEC/EE:11.0, pSKBEC/BE:9.0, pSKBEC/PP:3.3, or pSKBEC/PP:2.4 harboring genomic DNA of Ralstonia eutropha HF39 produced a blue pigment characterized as indigo by several chemical and spectroscopic methods. A 1,251-bp open reading frame (bec) was cloned and sequenced. The deduced amino acid sequence of bec showed only weak similarities to short-chain acyl-coenzyme A dehydrogenases, and the gene product catalyzed formation of indoxyl, a reactive preliminary stage for production of indigo. PMID:11282658

  2. Loop-Mediated Isothermal Amplification Procedure (LAMP) for Detection of the Potato Zebra Chip Pathogen "Candidatus Liberibacter solanacearum".

    PubMed

    Ravindran, Aravind; Lévy, Julien; Pierson, Elizabeth; Gross, Dennis C

    2015-01-01

    An efficient loop-mediated isothermal amplification procedure (LAMP) for the detection of "Candidatus Liberibacter solanacearum" (Lso), the bacterial causal agent of potato zebra chip (ZC) disease, is described in this chapter. Similar to the polymerase chain reaction (PCR), the LAMP employs a bacterial polymerase to amplify specific DNA sequences. However, the method differs from conventional PCR in that it uses six primers specific to the target region to generate a loop structure and autocycling strand displacement rather than thermocycling for sequence amplification. Moreover, unlike PCR that requires agarose gel electrophoresis for resolution, the positive LAMP results can be visualized directly as a precipitate within the reaction tubes. The 16S rDNA gene of "Ca. Liberibacter solanacearum" was used as the target for the design of the six LAMP primers. The LAMP technique is a reliable, rapid, and cost-effective method of detecting the "Ca. Liberibacter solanacearum" pathogen in the potato/tomato psyllid, Bactericera cockerelli, and in field-grown potato plants and tubers. PMID:25981248

  3. Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16

    PubMed Central

    Sznajder, Anna; Pfeiffer, Daniel

    2014-01-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058

  4. Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and enterohemorrhagic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation on abiotic surfaces in fresh produce processing facilities might play a role in foodborne outbreaks by providing protective microniches for pathogenic bacteria. Our previous study showed that a strain of Ralstonia insidiosa isolated from a fresh produce processing plant could enhan...

  5. Draft Genome Sequence of Ralstonia sp. MD27, a Poly(3-Hydroxybutyrate)-Degrading Bacterium, Isolated from Compost

    PubMed Central

    Zhu, Morgan; McCully, Lucy M.; Silby, Mark W.; Charles-Ogan, Tamunonengiyeofori I.

    2015-01-01

    Ralstonia sp. strain MD27, a novel biopolymer-degrading betaproteobacterium, was isolated from compost samples. This organism has been shown to utilize the biopolymer poly(3-hydroxybutyrate) [P(3HB)] as a carbon source for growth. We report the draft genome sequence of MD27 with an estimated total sequence length of 5.9 Mb. PMID:26450738

  6. Evaluation of Chloropicrin as a Soil Fumigant against Ralstonia solanacarum in Ginger (Zingiber officinale Rosc.) Production in China

    PubMed Central

    Ma, Taotao; Liu, Pengfei; Shen, Jin; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2014-01-01

    Background Chloropicrin (Pic) offers a potential alternative to methyl bromide (MB) against Ralstonia solanacarum in ginger (Zingiber officinale Rosc.) production. MB is scheduled to be withdrawn from routine use by 2015 in developing countries. Methods Pic treatments were evaluated in a laboratory study and in three commercial ginger fields. Results Laboratory studies showed that the EC50 value and EC80 value of Pic were 2.7 and 3.7 mg a.i. kg−1 soil, respectively. Field trials in highly infested soil revealed that treatments of Pic at the dose of 50 g m−2 covered with totally impermeable film (TIF) or polyethylene film (PE) sharply reduced Ralstonia solanacarum and maintained high ginger yields. Both of the Pic treatments provided results similar to, or in some cases slightly lower than, MB with respect to Ralstonia solanacarum control, plant survival, plant growth and yield. All of the fumigant treatments were significantly better than the non-treated control. Conclusions The present study confirms that the Pic is a promising alternative with good efficacy against Ralstonia solanacarum for ginger production and could be used in integrated pest management programs in China. PMID:24618853

  7. Biological and chemical induction of resistance to the Globodera tabacum solanacearum in oriental and flue-cured tobacco (Nicotiana tabacum L.).

    PubMed

    Parkunan, Venkatesan; Johnson, Charles S; Eisenback, Jon D

    2009-09-01

    The effects of acibenzolar-S-methyl (ASM) and four combinations of plant growth-promoting rhizobacteria (PGPR) on the reproduction of a tobacco cyst nematode, Globodera tabacum solanacearum, and growth of Nicotiana tabacum (cv. K326 and Xanthi) were tested under greenhouse and field conditions. The PGPR included combinations of Bacillus subtilis A13 with B. pumilis INR7, B. pumilis SE34, B. licheniformis IN937b, or B. amyloliquefaciens IN937a, respectively. Among the four rhizobacterial combinations, IN937a + A13 exhibited the most consistent reduction in G. t. solanacearum cysts under greenhouse and field conditions. No undesirable effects of IN937a + A13 were observed on tobacco growth under greenhouse and field conditions. Use of INR7 + A13 reduced G. t. solanacearum reproduction on flue-cured tobacco cv. K326 but not on oriental tobacco cv. Xanthi. Application of ASM reduced final numbers of G. t. solanacearum cysts, but also resulted in phytotoxicity mainly under the greenhouse conditions. When oriental tobacco seedlings were pre-grown in a IN937a + A13-treated soil-less medium, a single application of ASM at 200 mg/L one week after transplanting significantly reduced G. t. solanacearum reproduction in the field. PMID:22736815

  8. Biological and Chemical Induction of Resistance to the Globodera tabacum solanacearum in Oriental and Flue-Cured Tobacco (Nicotiana tabacum L.)

    PubMed Central

    Johnson, Charles S.; Eisenback, Jon D.

    2009-01-01

    The effects of acibenzolar-S-methyl (ASM) and four combinations of plant growth-promoting rhizobacteria (PGPR) on the reproduction of a tobacco cyst nematode, Globodera tabacum solanacearum, and growth of Nicotiana tabacum (cv. K326 and Xanthi) were tested under greenhouse and field conditions. The PGPR included combinations of Bacillus subtilis A13 with B. pumilis INR7, B. pumilis SE34, B. licheniformis IN937b, or B. amyloliquefaciens IN937a, respectively. Among the four rhizobacterial combinations, IN937a + A13 exhibited the most consistent reduction in G. t. solanacearum cysts under greenhouse and field conditions. No undesirable effects of IN937a + A13 were observed on tobacco growth under greenhouse and field conditions. Use of INR7 + A13 reduced G. t. solanacearum reproduction on flue-cured tobacco cv. K326 but not on oriental tobacco cv. Xanthi. Application of ASM reduced final numbers of G. t. solanacearum cysts, but also resulted in phytotoxicity mainly under the greenhouse conditions. When oriental tobacco seedlings were pre-grown in a IN937a + A13-treated soil-less medium, a single application of ASM at 200 mg/L one week after transplanting significantly reduced G. t. solanacearum reproduction in the field. PMID:22736815

  9. Association of 'Candidatus Liberibacter solanacearum' with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection.

    PubMed

    Teresani, Gabriela R; Bertolini, Edson; Alfaro-Fernández, Ana; Martínez, Carmen; Tanaka, Francisco André Ossamu; Kitajima, Elliot W; Roselló, Montserrat; Sanjuán, Susana; Ferrándiz, Juan Carlos; López, María M; Cambra, Mariano; Font, María Isabel

    2014-08-01

    A new symptomatology was observed in celery (Apium graveolens) in Villena, Spain in 2008. Symptomatology included an abnormal amount of shoots per plant and curled stems. These vegetative disorders were associated with 'Candidatus Liberibacter solanacearum' and not with phytoplasmas. Samples from plant sap were immobilized on membranes based on the spot procedure and tested using a newly developed real-time polymerase chain reaction assay to detect 'Ca. L. solanacearum'. Then, a test kit was developed and validated by intralaboratory assays with an accuracy of 100%. Bacterial-like cells with typical morphology of 'Ca. Liberibacter' were observed using electron microscopy in celery plant tissues. A fifth haplotype of 'Ca. L. solanacearum', named E, was identified in celery and in carrot after analyzing partial sequences of 16S and 50S ribosomal RNA genes. From our results, celery (family Apiaceae) can be listed as a new natural host of this emerging bacterium. PMID:24502203

  10. A complex network regulates expression of eps and other virulence genes of Pseudomonas solanacearum.

    PubMed Central

    Huang, J; Carney, B F; Denny, T P; Weissinger, A K; Schell, M A

    1995-01-01

    We have discovered an unusual and complex regulatory network used by the phytopathogen Pseudomonas solanacearum to control transcription of eps, which encodes for production of its primary virulence factor, the exopolysaccharide EPS I. The major modules of this network were shown to be three separate signal transduction systems: PhcA, a LysR-type transcriptional regulator, an dual two-component regulatory systems, VsrA/VsrD and VsrB/VsrC. Using lacZ fusions and RNA analysis, we found that both PhcA and VsrA/VsrD control transcription of another network component, xpsR, which in turn acts in conjunction with vsrB/vsrC to increase transcription of the eps promoter by > 25-fold. Moreover, gel shift DNA binding assays showed that PhcA specifically binds to the xpsR promoter region. Thus, the unique XpsR protein interconnects the three signal transduction systems, forming a network for convergent control of EPS I in simultaneous response to multiple environmental inputs. In addition, we demonstrate that each individual signaling system of the network also acts independently to divergently regulate other unique sets of virulence factors. The purpose of this complex network may be to allow this phytopathogen to both coordinately or independently regulate diverse virulence factors in order to cope with the dynamic situations and conditions encountered during interactions with plants. PMID:7868600

  11. Influence of the pathogen Candidatus Liberibacter solanacearum on tomato host plant volatiles and psyllid vector settlement.

    PubMed

    Mas, Flore; Vereijssen, Jessica; Suckling, David M

    2014-12-01

    Candidatus Liberibacter solanacearum (CLso) is an unculturable bacterium vectored by the tomato potato psyllid (TPP) Bactericera cockerelli and has been associated with Zebra chip disease in potato and with other economically relevant symptoms observed in solanaceous crops. By altering their host and vector's biological system, pathogens are able to induce changes that benefit them by increasing their transmission rate. Understanding these changes can enable better targeting of mechanisms to control pathogen outbreaks. Here, we explored how the CLso infectious status affects the volatile organic compounds (VOCs) of the tomato plant, and whether the CLso infectious status of TPP influences host plant settlement. These chemical and behavioral changes can ultimately affect the rate of encounter between the host and the vector. Results from headspace volatile collection of tomato plants showed that CLso infected tomato plants emitted a qualitatively and quantitatively different blend of VOCs compared to sham-infected plants. By a factorial experiment, we showed that CLso negative (CLso-) TPP preferred to settle 70 % more often on infected tomato plants, while CLso positive (CLso+) TPP were found 68 % more often on sham-infected tomato plants. These results provide new evidence in favor of both host and vector manipulation by CLso. PMID:25378121

  12. Localization of 'Candidatus Liberibacter solanacearum' and Evidence for Surface Appendages in the Potato Psyllid Vector.

    PubMed

    Cicero, J M; Fisher, T W; Brown, J K

    2016-02-01

    The potato psyllid Bactericera cockerelli is implicated as the vector of the causal agent of zebra chip of potato and vein-greening of tomato diseases. Until now, visual identification of bacteria in the genus 'Candidatus Liberibacter' has relied on direct imaging by light and electron microscopy without labeling, or with whole-organ fluorescence labeling only. In this study, aldehyde fixative followed by a coagulant fixative, was used to process adult psyllids for transmission electron microscopy (TEM) colloidal gold in situ hybridization experiments. Results indicated that 'Ca. Liberibacter solanacearum' (CLso)-specific DNA probes annealed to a bacterium that formed extensive, monocultural biofilms on gut, salivary gland, and oral region tissues, confirming that it is one morphotype of potentially others, that is rod-shaped, approximately 2.5 µm in diameter and of variable length, and has a rough, granular cytosol. In addition, CLso, prepared from shredded midguts, and negatively stained for TEM, possessed pili- and flagella-like surface appendages. Genes implicating coding capacity for both types of surface structures are encoded in the CLso genome sequence. Neither type was seen for CLso associated with biofilms within or on digestive organs, suggesting that their production is stimulated only in certain environments, putatively, in the gut during adhesion leading to multiplication, and in hemolymph to afford systemic invasion. PMID:26551449

  13. Morphometrics of Globodera tabacum tabacum, G. t. virginiae, and G. t. solanacearum (Nemata: Heteroderinae)

    PubMed Central

    Mota, Manuel M.; Eisenback, Jonathan D.

    1993-01-01

    A morphometric evaluation of second-stage juveniles (J2), males, females, cysts, and eggs of several isolates of the tobacco cyst nematode (TCN) complex, Globodera tabacum tabacum (GTT), G. t. virginiae (GTV), and G. t. solanacearum (GTS) is presented. Morphometrics of eggs, J2, and males are considerably less variable than of females and cysts. No measurements of eggs and J2 are useful for identification of the three subspecies. Distance from the median bulb and excretory pore to the head end in J2 and males is quite stable. Stylet knob width of males is useful for identifying GTV isolates and tail length in separating males of GTT isolates from GTV and GTS. Body length/width (L/W) ratio of females and cysts discriminates GTT from GTV and GTS; stylet knob width is an auxiliary character for identifying GTV. This subspecies complex has a continuum of values for the other characters. Data suggest a close relationship between GTV and GTS, which also occur in close proximity in Virginia. PMID:19279753

  14. Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite

    PubMed Central

    2012-01-01

    Isolation of polyhydroxyalkanoates (PHAs) from bacterial cell matter is a critical step in order to achieve a profitable production of the polymer. Therefore, an extraction method must lead to a high recovery of a pure product at low costs. This study presents a simplified method for large scale poly(3-hydroxybutyrate), poly(3HB), extraction using sodium hypochlorite. Poly(3HB) was extracted from cells of Ralstonia eutropha H16 at almost 96% purity. At different extraction volumes, a maximum recovery rate of 91.32% was obtained. At the largest extraction volume of 50 L, poly(3HB) with an average purity of 93.32% ± 4.62% was extracted with a maximum recovery of 87.03% of the initial poly(3HB) content. This process is easy to handle and requires less efforts than previously described processes. PMID:23164136

  15. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans

    PubMed Central

    Iqbal, Hala A.; Craig, Jeffrey W.; Brady, Sean F.

    2014-01-01

    Phenotype-based screening of bacterial metagenomic libraries provides an avenue for the discovery of novel genes, enzymes and metabolites that have a variety of potential clinical and industrial uses. Here we report the identification of a functionally diverse collection of antibacterially active enzymes from the phenotypic screening of 700,000 cosmid clones prepared from Arizona soil DNA and hosted in Ralstonia metallidurans. Environmental DNA clones surrounded by zones of growth inhibition in a bacterial overlay assay were found, through bioinformatics and functional analyses, to encode enzymes with predicted peptidase, lipase and glycolytic activities conferring antibiosis. The antibacterial activities observed in our R. metallidurans-based assay could not be replicated with the same clones in screens using Escherichia coli as a heterologous host, suggesting that the large-scale screening of metagenomic libraries for antibiosis using phylogenetically diverse hosts should be a productive strategy for identifying enzymes with functionally diverse antibacterial activities. PMID:24661178

  16. NAD(P)-Dependent Aldehyde Dehydrogenases Induced during Growth of Ralstonia eutropha Strain Bo on Tetrahydrofurfuryl Alcohol

    PubMed Central

    Schräder, Thomas; Zarnt, Grit; Andreesen, Jan R.

    2001-01-01

    Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4. PMID:11717302

  17. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    SciTech Connect

    Brigham, CJ; Speth, DR; Rha, C; Sinskey, AJ

    2012-10-22

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.

  18. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    PubMed Central

    Brigham, Christopher J.; Speth, Daan R.; Rha, ChoKyun

    2012-01-01

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor σ54 increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with dl-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process. PMID:22961894

  19. Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production

    PubMed Central

    2013-01-01

    Background The chemoautotrophic bacterium Ralstonia eutropha can utilize H2/CO2 for growth under aerobic conditions. While this microbial host has great potential to be engineered to produce desired compounds (beyond polyhydroxybutyrate) directly from CO2, little work has been done to develop genetic part libraries to enable such endeavors. Results We report the development of a toolbox for the metabolic engineering of Ralstonia eutropha H16. We have constructed a set of broad-host-range plasmids bearing a variety of origins of replication, promoters, 5’ mRNA stem-loop structures, and ribosomal binding sites. Specifically, we analyzed the origins of replication pCM62 (IncP), pBBR1, pKT (IncQ), and their variants. We tested the promoters PBAD, T7, Pxyls/PM, PlacUV5, and variants thereof for inducible expression. We also evaluated a T7 mRNA stem-loop structure sequence and compared a set of ribosomal binding site (RBS) sequences derived from Escherichia coli, R. eutropha, and a computational RBS design tool. Finally, we employed the toolbox to optimize hydrocarbon production in R. eutropha and demonstrated a 6-fold titer improvement using the appropriate combination of parts. Conclusion We constructed and evaluated a versatile synthetic biology toolbox for Ralstonia eutropha metabolic engineering that could apply to other microbial hosts as well. PMID:24219429

  20. Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments.

    PubMed

    Mijnendonckx, K; Provoost, A; Ott, C M; Venkateswaran, K; Mahillon, J; Leys, N; Van Houdt, R

    2013-02-01

    Four Cupriavidus metallidurans and eight Ralstonia pickettii isolates from the space industry and the International Space Station (ISS) were characterized in detail. Nine of the 12 isolates were able to form a biofilm on plastics and all were resistant to several antibiotics. R. pickettii isolates from the surface of the Mars Orbiter prior to flight were 2.5 times more resistant to UV-C(254nm) radiation compared to the R. pickettii type strain. All isolates showed moderate to high tolerance against at least seven different metal ions. They were tolerant to medium to high silver concentrations (0.5-4 μM), which are higher than the ionic silver disinfectant concentrations measured regularly in the drinking water aboard the ISS. Furthermore, all isolates survived a 23-month exposure to 2 μM AgNO(3) in drinking water. These resistance properties are putatively encoded by their endogenous megaplasmids. This study demonstrated that extreme resistance is not required to withstand the disinfection and sterilization procedures implemented in the ISS and space industry. All isolates acquired moderate to high tolerance against several stressors and can grow in oligotrophic conditions, enabling them to persist in these environments. PMID:23212653

  1. Production of Poly (3-Hydroxybutyric Acid) by Ralstonia eutropha in a Biocalorimeter and its Thermokinetic Studies.

    PubMed

    Anusha, Subramanian Mohanakrishnan; Leelaram, Santharam; Surianarayanan, Mahadevan

    2016-07-01

    Bioplastic production from microbial sources is an emerging area which provides opportunities even to convert the wastes into bioplastics. Poly (3-hydroxybutyric acid), commonly called as PHB, is a bioplastic, which is stored as intracellular cytoplasmic inclusions in microorganisms. The objectives of this study are to calorimetrically monitor the PHB production and evaluate the thermokinetic data in a bioreaction calorimeter (BioRC1e). Thus, a well-known PHB-producing bacteria Ralstonia eutropha was selected for batch process in a bioreaction calorimeter. The metabolic heat generated was found to be correlated with the biomass, substrate consumption, oxygen uptake rate (OUR), carbon dioxide evolution rate (CER) and PHB production. The OUR pattern explained the oxidative metabolism of the strain R. eutropha. The heat yields due to biomass and glucose consumption during PHB production were found to be 12.56 and 13.56 kJ/g, respectively. The oxycalorific value obtained for the PHB production was 443.80 kJ/mol of O2. The concentration of PHB obtained in BioRC1e was 4.33 g/L with a production rate of 0.09 g/L/h. The chemical structure of the extracted PHB by R. eutropha was confirmed using fourier transform infrared spectroscopy (FT-IR) and (1)H and (13)C nuclear magnetic resonance (NMR) analysis. PMID:27003281

  2. Derivatization of bioactive carbazoles by the biphenyl-degrading bacterium Ralstonia sp. strain SBUG 290.

    PubMed

    Waldau, Doreen; Mikolasch, Annett; Lalk, Michael; Schauer, Frieder

    2009-05-01

    Different 9H-carbazole derivatives have been investigated within the last decades due to their broad range of pharmacological applications. While the metabolism of 9H-carbazole has previously been reported, nothing was known about the bacterial transformation of 2,3,4,9-tetrahydro-1H-carbazole and 9-methyl-9H-carbazole. Thus, for the first time, the bacterial biotransformation of 2,3,4,9-tetrahydro-1H-carbazole and 9-methyl-9H-carbazole was analyzed using biphenyl-grown cells of Ralstonia sp. strain SBUG 290 expressing biphenyl 2,3-dioxygenase. This strain accumulated 3-hydroxy-1,2,3,5,6,7,8,9-octahydrocarbazol-4-one and 6'-iminobicyclohexylidene-2',4'-dien-2-one as major products during the incubation with 2,3,4,9-tetrahydro-1H-carbazole. Carbazol-9-yl-methanol was verified as the primary oxidation product of 9-methyl-9H-carbazole. In addition, 9H-carbazol-1-ol, 9H-carbazol-3-ol, and 3-hydroxy-1,2,3,9-tetrahydrocarbazol-4-one where detected in lower concentrations during the transformation of carbazol-9-yl-methanol and 9-methyl-9H-carbazole. Products were identified by high-performance liquid chromatography, gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, as well as (1)H and (13)C nuclear magnetic resonance analyses. PMID:19148631

  3. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.

    PubMed

    Riedel, Sebastian L; Jahns, Stefan; Koenig, Steven; Bock, Martina C E; Brigham, Christopher J; Bader, Johannes; Stahl, Ulf

    2015-11-20

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here. An emulsification strategy, without any mechanical or chemical pre-treatment, was developed to increase the bioavailability of solid, poorly-consumable fats. Wild type R. eutropha strain H16 produced 79-82% (w/w) polyhydroxybutyrate (PHB) per cell dry weight (CDW) when cultivated on various fats. A productivity of 0.3g PHB/(L × h) with a total PHB production of 24 g/L was achieved using tallow as carbon source. Using a recombinant strain of R. eutropha that produces poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)], 49-72% (w/w) of PHA per CDW with a HHx content of 16-27 mol% were produced in shaking flask experiments. The recombinant strain was grown on waste animal fat of the lowest quality available at lab fermenter scale, resulting in 45 g/L CDW with 60% (w/w) PHA per CDW and a productivity of 0.4 g PHA/(L × h). The final HHx content of the polymer was 19 mol%. The use of low quality waste animal fats as an inexpensive carbon feedstock exhibits a high potential to accelerate the commercialization of PHAs. PMID:26428087

  4. Catalytic and Molecular Properties of the Quinohemoprotein Tetrahydrofurfuryl Alcohol Dehydrogenase from Ralstonia eutropha Strain Bo

    PubMed Central

    Zarnt, Grit; Schräder, Thomas; Andreesen, Jan R.

    2001-01-01

    The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparent kcat/Km and Ki values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a kcat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases. PMID:11222593

  5. A novel alkaline lipase from Ralstonia with potential application in biodiesel production.

    PubMed

    Yoo, Hah-Young; Simkhada, Jaya Ram; Cho, Seung Sik; Park, Don Hee; Kim, Seung Wook; Seong, Chi Nam; Yoo, Jin Cheol

    2011-05-01

    With the aim of isolating a biocatalyst able to catalyze biodiesel production from microbial source, Ralstonia sp. CS274 was isolated and a lipase from the strain (RL74) was purified. Molecular weight of RL74 was estimated to be 28,000 Da by SDS-PAGE. The activity was highest at 50-55°C and pH 8.0-9.5 and was stable at pH 7.0-12.0 and up to 45°C. It was resistant to oxidizing and reducing agents and the activity was enhanced by detergents. RL74 was 1,3 specific and K(m) and V(max) for p-nitrophenyl palmitate were 2.73 ± 0.6mM and 101.4 ± 1.9 mM/min mg, respectively. N-terminal amino acid sequence showed partial homology with that of Penicillium lipases. RL74 produced biodiesel more efficiently in palm oil than in soybean oil; and the production was highest at pH 8.0, at 5% methanol and at 20% water content. PMID:21388805

  6. Molecular characterization influencing metal resistance in the Cupriavidus/Ralstonia genomes.

    PubMed

    Chakraborti, Pratim; Banerjee, Rachana; Roy, Ayan; Mandal, Sunanda; Mukhopadhyay, Subhasish

    2015-01-01

    Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs. PMID:26156561

  7. Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha.

    PubMed

    Bernardi, Amanda C; Gai, Claudia S; Lu, Jingnan; Sinskey, Anthony J; Brigham, Christopher J

    2016-07-01

    Isobutanol (IBT) has attracted much attention from researchers as a next generation drop-in biofuel. Ralstonia eutropha is a gram-negative bacterium which naturally produces polyhydroxybutyrate (PHB), and has been reported to produce IBT after metabolic engineering. Similar to other microbes, R. eutropha experiences toxicity from branched-chain alcohols and is unable to grow in the presence of IBT concentrations higher than 0.5% (v v(-1)). Such low tolerance greatly limits the ability of R. eutropha to grow and produce IBT. In order to study toxicity to the cells, IBT-tolerant strains were developed by experimental evolution, revealing that two genes, previously described as being related to IBT tolerance in Escherichia coli (acrA and acrA6), also presented mutations in R. eutropha evolved strains. The effect on the physiology of the cells of in-frame deletions of each of these genes was assessed in wild type and engineered IBT-producing strains in an attempt to reproduce a tolerant phenotype. The mutant strains' ability to tolerate, consume, and produce IBT were also analyzed. Although deletions of acrA6 and acrA did not significantly improve R. eutropha growth in the presence of IBT, these deletions improved cell survival in the presence of high concentrations of IBT in the extracellular milieu. Moreover, an in-frame acrA deletion in an engineered IBT-producing R. eutropha enhanced the strain's ability to produce IBT, which could potentially be associated with enhanced survival at high IBT concentrations. PMID:26811221

  8. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16

    PubMed Central

    Wenning, Leonie; Stöveken, Nadine; Wübbeler, Jan Hendrik

    2015-01-01

    Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs. PMID:26590284

  9. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha.

    PubMed

    Lu, Jingnan; Brigham, Christopher J; Gai, Claudia S; Sinskey, Anthony J

    2012-10-01

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. PMID:22864971

  10. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1

    SciTech Connect

    Steinle, P.; Stucki, G.; Stettler, R.; Hanselmann, K.W.

    1998-07-01

    A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 {micro}M, 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 {micro}M in continuous reactor culture supplied with H{sub 2}O{sub 2} as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations with hydraulic residence times of 8 to 30 min.

  11. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    SciTech Connect

    Lu, JN; Brigham, CJ; Gai, CS; Sinskey, AJ

    2012-08-04

    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.

  12. Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation

    SciTech Connect

    Fei, Q; Brigham, CJ; Lu, JN; Fu, RZ; Sinskey, AJ

    2013-09-01

    Branched-chain alcohols are considered promising green energy sources due to their compatibility with existing infrastructure and their high energy density. We utilized a strain of Ralstonia eutropha capable of producing branched-chain alcohols and examined its production in flask cultures. In order to increase isobutanol and 3-methyl-1-butanol (isoamyl alcohol) productivity in the engineered strain, batch, fed-batch, and two-stage fed-batch cultures were carried out in this work. The effects of nitrogen source concentration on branched-chain alcohol production were investigated under four different initial concentrations in fermenters. A maximum 380 g m(-3) of branched-chain alcohol production was observed with 2 kg m(-3) initial NH4Cl concentration in batch cultures. A pH-stat control strategy was utilized to investigate the optimum carbon source amount fed during fed-batch cultures for higher cell density. In cultures of R. eutropha strains that did not produce polyhydroxyalkanoate or branched-chain alcohols, a maximum cell dry weight of 36 kg m(-3) was observed using a fed-batch strategy, when 10 kg m(-3) carbon source was fed into culture medium. Finally, a total branched-chain alcohol titer of 790 g m(-3), the highest branched-chain alcohol yield of 0.03 g g(-1), and the maximum branched-chain alcohol productivity of 8.23 g m(-3) h(-1) were obtained from the engineered strain Re2410/pJL26 in a two-stage fed-batch culture system with pH-stat control. Isobutanol made up over 95% (mass fraction) of the total branched-chain alcohols titer produced in this study. (C) 2013 Published by Elsevier Ltd.

  13. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc. PMID:24584238

  14. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  15. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose.

    PubMed

    Park, Si Jae; Jang, Young-Ah; Noh, Won; Oh, Young Hoon; Lee, Hyuk; David, Yokimiko; Baylon, Mary Grace; Shin, Jihoon; Yang, Jung Eun; Choi, So Young; Lee, Seung Hwan; Lee, Sang Yup

    2015-03-01

    A sucrose utilization pathway was established in Ralstonia eutropha NCIMB11599 and R. eutropha 437-540 by introducing the Mannheimia succiniciproducens MBEL55E sacC gene that encodes β-fructofuranosidase. These engineered strains were examined for the production of poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)], respectively, from sucrose as a carbon source. It was found that β-fructofuranosidase excreted into the culture medium could hydrolyze sucrose to glucose and fructose, which were efficiently used as carbon sources by recombinant R. eutropha strains. When R. eutropha NCIMB11599 expressing the sacC gene was cultured in nitrogen-free chemically defined medium containing 20 g/L of sucrose, a high P(3HB) content of 73.2 wt% could be obtained. In addition, R. eutropha 437-540 expressing the Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene accumulated P(3HB-co-21.5 mol% LA) to a polymer content of 19.5 wt% from sucrose by the expression of the sacC gene and the Escherichia coli ldhA gene. The molecular weights of P(3HB) and P(3HB-co-21.5 mol%LA) synthesized in R. eutropha using sucrose as a carbon source were 3.52 × 10(5) (Mn ) and 2.19 × 10(4) (Mn ), respectively. The engineered R. eutropha strains reported here will be useful for the production of polyhydroxyalkanoates (PHAs) from sucrose, one of the most abundant and relatively inexpensive carbon sources. PMID:25258020

  16. Inventorying the molecular potential of Cupriavidus and Ralstonia strains surviving harsh space-related environments

    NASA Astrophysics Data System (ADS)

    Mijnendonckx, Kristel; van Houdt, Rob; Provoost, Ann; Bossus, Albert; Ott, C. Mark; Venkateswaran, Kasthuri; Leys, Natalie

    The craving of modern man to explore life beyond earth presents a lot of challenges. The control of microbial contamination of the confined manned spacecraft is an important aspect that has to be taken into account in this journey. Because the human body contains a huge amount of microorganisms, the crew itself is the most important contamination source. But contamination can also originate from residing environmental microorganisms or from materials that are supplied from the Earth. These microbial contaminations can cause problems for the astronauts -well documented to have a decreased immunity -and the infrastructure of the space station. In this study, 14 different Cupriavidus metallidurans and Ralstonia pickettii strains, isolated from such space-related environments, where characterised in detail. These unique strains were isolated from drinking water that returned from ISS (3), from the cooling water system of the American ISS segment (4), from a swab sample of the Mars Odyssey Orbitor surface prior to flight (4), and from an air sample taken in the space assembly facility PHSF during Mars exploration Rover assembly (3). Their resistance to heavy metals and antibiotics was screened. The C. metallidurans isolates were more resistant to Zn2+ and Hg+ but more sensitive to Ni2+ than the R. pickettii strains. The MIC values for Cu2+ ranged from 1,5mM to 12mM, for Co2+ from 1,58mM to 12,63mM and for Cd2+ from 0,25mM to 1mM. For Ni2+ , the MIC values were between 2 and 8mM, except for the strain C. metallidurans IV (0502478) that was able to grow on Ni+2 concentrations up to 48mM. A metal of special interest was Ag+ because it is used to sanitize ISS drinking water. The strains isolated from air and surface samples showed a MIC value ranging from 0,35µM to 4µM. The isolates from the water samples had MIC values from 0,3µM to 2µM, which is lower than (or comparable with) the lowest limit of the silver concentration used in the ISS (1,9µM -4,6µM). However, all

  17. Incorporation of Escherichia coli O157:H7 in biofilms with Ralstonia insidiosa, a primary localizer for the development of heterogeneous biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is hypothesized that the presence of strong biofilm forming microflora could potentially enhance the survival of Escherichia coli O157:H7 (EcO157) in harsh environment. In this study, a strong biofilm forming bacterium, Ralstonia insidiosa, previously isolated from a fresh-cut produce plant was c...

  18. Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16.

    PubMed

    Fleige, Christian; Kroll, Jens; Steinbüchel, Alexander

    2011-08-01

    The β-proteobacterium Ralstonia eutropha H16 utilizes fructose and gluconate as carbon sources for heterotrophic growth exclusively via the Entner-Doudoroff pathway with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase. By deletion of the responsible gene eda, we constructed a KDPG aldolase-negative strain, which is disabled to supply pyruvate for energy metabolism from fructose or gluconate as sole carbon sources. To restore growth on fructose, an alternative pathway, similar to the fructose-6-phosphate shunt of heterofermentative bifidobacteria, was established. For this, the xfp gene from Bifidobacterium animalis, coding for a bifunctional xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp; Meile et al. in J Bacteriol 183:2929-2936, 2001), was expressed in R. eutropha H16 PHB(-)4 Δeda. This Xfp catalyzes the phosphorolytic cleavage of fructose 6-phosphate to erythrose 4-phosphate and acetylphosphate as well as of xylulose 5-phosphate to glyceralaldehyde 3-phosphate and acetylphosphate. The recombinant strain showed phosphoketolase (PKT) activity on either substrate, and was able to use fructose as sole carbon source for growth, because PKT is the only enzyme that is missing in R. eutropha H16 to establish the artificial fructose-6-phosphate shunt. The Xfp-expressing strain R. eutropha H16 PHB(-)4 Δeda (pBBR1MCS-3::xfp) should be applicable for a novel variant of a plasmid addiction system to stably maintain episomally encoded genetic information during fermentative production processes. Plasmid addiction systems are often used to ensure plasmid stability in many biotechnology relevant microorganisms and processes without the need to apply external selection pressure, like the addition of antibiotics. By episomal expression of xfp in a R. eutropha H16 mutant lacking KDPG aldolase activity and cultivation in mineral salt medium with fructose as sole carbon source, the growth of this bacterium was addicted to the constructed xfp

  19. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    SciTech Connect

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2

  20. Native interaction of Escherichia coli O157:H7 and Ralstonia insidiosa in forming dual-species biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation by native microflora in food processing environments can increase the risk of foodborne outbreaks by providing a protective microenvironment to foodborne pathogens. Hence the presence of strong biofilm producing bacteria in such an environment can be regarded as a risk factor. In t...

  1. Déjà vu: Ralstonia mannitolilytica infection associated with a humidifying respiratory therapy device, Israel, June to July 2011.

    PubMed

    Block, C; Ergaz-Shaltiel, Z; Valinsky, L; Temper, V; Hidalgo-Grass, C; Minster, N; Weissman, C; Benenson, S; Jaffe, J; Moses, A E; Bar-Oz, B

    2013-01-01

    Following a bloodstream infection in June 2011 with Ralstonia mannitolilytica in a premature infant treated with a humidifying respiratory therapy device, an investigation was initiated at the Hadassah Medical Centres in Jerusalem. The device delivers a warmed and humidified mixture of air and oxygen to patients by nasal cannula. The investigation revealed colonisation with R. mannitolilytica of two of 15 patients and contamination of components of five of six devices deployed in the premature units of the Hadassah hospitals. Ten isolates from the investigation were highly related and indistinguishable from isolates described in an outbreak in 2005 in the United States (US). Measures successful in containing the US outbreak were not included in user instructions provided to our hospitals by the distributor of the device. PMID:23725776

  2. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications

    PubMed Central

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P.

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: • Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication. • Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha. • The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry. PMID:27077052

  3. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications.

    PubMed

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: •Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication.•Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha.•The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry. PMID:27077052

  4. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  5. Whole-cell kinetics of trichloroethylene degradation by phenol hydroxylase in a Ralstonia eutropha JMP134 derivative

    SciTech Connect

    Ayoubi, P.J.; Harker, A.R.

    1998-11-01

    The rate, progress, and limits of trichloroethylene (TCE) degradation by Ralstonia eutropha AEK301/pYK3021 whole cells were examined in the absence of aromatic induction. At TCE concentrations up to 800 {micro}M, degradation rates were sustained until TCE was no longer detectable. The K{sub s} and V{sub max} for TCE degradation by AEK301/pYK3021 whole cells were determined to be 630 {micro}M and 22.6 nmol/min/mg of total protein, respectively. The sustained linear rates of TCE degradation by AEK301/pYK3021 up to a concentration of 800 {micro}M TCE suggest that solvent effects are limited during the degradation of TCE and that this construct is little affected by the formation of toxic intermediates at the TCE levels and assay duration tested. TCE degradation by this strain is subject to carbon catabolite repression.

  6. Genome Sequences of Ralstonia insidiosa Type Strain ATCC 49129 and Strain FC1138, a Strong Biofilm Producer Isolated from a Fresh-Cut Produce-Processing Plant

    PubMed Central

    Xu, Yunfeng; Nagy, Attila; Yan, Xianghe; Haley, Bradd J.; Kim, Seon Woo; Liu, Nancy T.

    2016-01-01

    Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. PMID:27540070

  7. Comparative studies of lipopolysaccharide and exopolysaccharide from a virulent strain of Pseudomonas solanacearum and from three avirulent mutants.

    PubMed Central

    Drigues, P; Demery-Lafforgue, D; Trigalet, A; Dupin, P; Samain, D; Asselineau, J

    1985-01-01

    The composition of the Pseudomonas solanacearum lipolysaccharide (LPS) was found to be similar to that described for the LPS of enterobacteria. The lipid A contained fatty acids and glucosamine in a molar ratio of 5:2. The LPS fraction contained 2-keto-3-deoxyoctulosonic acid, L-glycero-D-mannoheptose, hexoses (glucose, rhamnose, and glucosamine), and a pentose (xylose). The LPSs from the wild-type strain (GMI1000), from the spontaneous rough mutant (GMI2000), and from their respective acridine orange-resistant (Acrr) mutants (GMI1178 and GMI2179) contained the same component sugars in their polysaccharide moieties, but the relative amounts of each sugar varied greatly. Spontaneous mutation to the rough type was characterized by a decrease in the ratio of rhamnose to glucose, whereas a reverse effect was seen for the acridine orange resistance mutation from the parent strains (GMI1000 and GMI2000) to the respective mutant strains (GMI1178 and GMI2179). The exopolysaccharide (EPS) from GMI1000 was found to be composed of two fractions: a heteropolysaccharide (galactosamine, glucose, and rhamnose) excluded from Sephadex G-50 and an additional glucan with a lower molecular weight. Strains GMI1000 and GMI1178 produced comparable amounts of EPS, GMI2179 synthesized less EPS, and GMI2000 produced no detectable EPS. High-pressure liquid chromatography and 13C nuclear magnetic resonance analyses revealed some differences between these EPSs. The glucan fraction seemed to be the major component of the EPS from GMI2179, whereas GMI1000 and GMI1178 EPSs contained both fractions and appeared to differ in the structures of their heteropolysaccharide fractions. Viscosity measurements confirmed differences between whole EPSs produced by the three strains. PMID:3988700

  8. Effects of temperature on 'Candidatus Liberibacter solanacearum' and zebra chip potato disease symptom development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature has been shown to have significant impact on development of liberibacter species associated with citrus Huanglongbing disease. “Candidatus Liberibacter africanus” and “Ca. L. americanus” are both heat sensitive, whereas “Ca. L. asiaticus” is heat tolerant. The recently described “Ca. L. ...

  9. 75 FR 30303 - Importation of Peppers From Panama

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... introduced into the United States via peppers, including 8 insect pests, 1 bacterium, 1 fungus, and 2 viruses...). Melon thrips (Thrips palmi). Bacterium: Bacterial wilt (Ralstonia solanacearum race 3 biovar 2)....

  10. Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the antibacterial activity of clove oil against seven different genera of plant pathogenic bacteria including Gram-negative Agrobacterium tumefaciens, Erwinia carotovora pv. carotovora, Pseudomonas syringae pv. syringae, Ralstonia solanacearum, and Xanthomonas campestris pv. pelargonii...

  11. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16

    SciTech Connect

    Kim, Eun-Jung; Son, Hyeoncheol Francis; Kim, Sangwoo; Ahn, Jae-Woo; Kim, Kyung-Jin

    2014-02-14

    Highlights: • We determined a crystal structure of β-keto thiolase from Ralstonia eutropha H16 (ReBktB). • Distinct substrate binding mode ReBktB was elucidated. • Enzymatic kinetic parameters of ReBktB were revealed. - Abstract: ReBktB is a β-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3 Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, such as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K{sub m}, V{sub max}, and K{sub cat} values of 11.58 μM, 1.5 μmol/min, and 102.18 s{sup −1}, respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.

  12. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.

    PubMed

    Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ

    2016-01-15

    We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD(+)-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its Mo(V) state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877

  13. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock.

    PubMed

    Saratale, Ganesh D; Oh, Min-Kyu

    2015-09-01

    Alkaline pretreatment using NaOH, KOH, or NaOCl has been applied to various types of waste biomass to enhance enzymatic digestibility. Pretreatment (2% NaOH, 121 °C, 30 min) of rice paddy straw (PS) resulted in a maximum yield of 703 mg of reducing sugar per gram of PS with 84.19% hydrolysis yield after a two-step enzymatic hydrolysis process. Ralstonia eutropha ATCC 17699 was tested for its ability to synthesize poly-3-hydroxybutyrate (PHB) using PS hydrolysates as its sole carbon source. It is noteworthy that dry cell weight, polyhydroxyalkanoate (PHA) accumulation and PHB yield with the use of laboratory-grade sugars were similar to those achieved with PS-derived sugars. Under optimized conditions, we observed maximal PHA accumulation (75.45%) and PHB production (11.42 g/L) within 48 h of fermentation. After PHB recovery, the physicochemical properties of PHB were determined by various analytical techniques, showed the results were consistent with the characteristics of a standard polymer of PHB. Thus, the PS hydrolysate proved to be an excellent cheap carbon substrate for PHB production. PMID:26206741

  14. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here. PMID:24343766

  15. Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha.

    PubMed

    Ushimaru, Kazunori; Tsuge, Takeharu

    2016-05-01

    The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction. PMID:26728018

  16. vsrB, a regulator of virulence genes of Pseudomonas solanacearum, is homologous to sensors of the two-component regulator family.

    PubMed Central

    Huang, J; Denny, T P; Schell, M A

    1993-01-01

    Pseudomonas solanacearum, an important wilt pathogen of many plants, produces several extracellular proteins (EXPs) and extracellular polysaccharides (EPSs) that contribute to its virulence. Using TnphoA mutagenesis, we discovered a new gene, vsrB, that when inactivated causes a major reduction in the virulence and production of an EPS. Analysis of eps::lacZ reporters showed that vsrB is required for maximal expression (transcription) of eps, whose products are required for production of EPS I, a major virulence determinant. Analysis of EXPs in culture supernatants revealed that inactivation of vsrB also causes reduced production of two major EXPs, with molecular masses of 28 and 97 kDa, and a simultaneous 15-fold increase in levels of another EXP, PglA endopolygalacturonase. The vsrB gene was cloned from a P. solanacearum genomic library by complementation of the nonmucoid phenotype of the vsrB::TnphoA mutant and then subcloned on a 2.4-kb DNA fragment. TnphoA fusion analysis and subcellular localization of the vsrB gene product in Escherichia coli maxicells suggest that it is a ca. 60-kDa transmembrane protein. The nucleotide sequence of the 2.4-kb DNA fragment was determined, and a 638-amino-acid open reading frame was found for VsrB. A search of the GenBank data base found that the central part of VsrB has homology with the histidine kinase domain of sensors in the two-component regulator family, while the C terminus has homology with the phosphate receiver domain of response regulators in the same family. Genetic analysis suggests that the receiver domain is not required for vsrB function. Images PMID:8407789

  17. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids. PMID:26080741

  18. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage

    PubMed Central

    Chen, Janice S.; Colón, Brendan; Dusel, Brendon; Ziesack, Marika; Torella, Joseph P.

    2015-01-01

    Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB’s physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-type R. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligase fadD3, an entry point for fatty acids into β-oxidation. As ΔfadD3 mutants still consumed laurate, and because the R. eutropha genome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologous β-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives in R. eutropha. PMID:26664804

  19. Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16

    PubMed Central

    2014-01-01

    Carbonic anhydrase (CA) enzymes catalyze the interconversion of CO2 and bicarbonate. These enzymes play important roles in cellular metabolism, CO2 transport, ion transport, and internal pH regulation. Understanding the metabolic role of CAs in the chemolithoautotropic bacterium Ralstonia eutropha is important for the development of high performance fermentation processes based on the bacterium’s capability to fix carbon using the Calvin-Benson-Bassham (CBB) cycle. Analysis of the R. eutropha H16 genome sequence revealed the presence of four CA genes: can, can2, caa and cag. We evaluated the importance of each of the CAs in the metabolism of R. eutropha by examination of growth and enzyme activity in gene deletion, complementation, and overexpression strains. All four purified CAs were capable of performing the interconversion of CO2 and HCO3–, although the equilibrium towards the formation of CO2 or HCO3– differs with each CA. Deletion of can, encoding a β-CA, affected the growth of R. eutropha; however the growth defect could be compensated by adding CO2 to the culture. Deletion of the caa, encoding an α-CA, had the strongest deleterious influence on cell growth. Strains with deletion or overexpression of can2 or cag genes exhibited similar behavior to wild type under most of the conditions tested. In this work, Caa was studied in greater detail using microscopy and complementation experiments, which helped confirm its periplasmic localization and determine its importance for robust growth of R. eutropha. A hypothesis for the coordinated role of these four enzymes in the metabolism of R. eutropha is proposed. PMID:24410804

  20. Genome-Based Analysis and Gene Dosage Studies Provide New Insight into 3-Hydroxy-4-Methylvalerate Biosynthesis in Ralstonia eutropha

    PubMed Central

    Ushimaru, Kazunori; Mizuno, Shoji

    2015-01-01

    Recombinant Ralstonia eutropha strain PHB−4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB−4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB−4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  1. Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16.

    PubMed

    Karstens, Katja; Zschiedrich, Christopher P; Bowien, Botho; Stülke, Jörg; Görke, Boris

    2014-04-01

    EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the β-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB). PHB accumulation is controlled by the stringent response and induced under conditions of nitrogen deprivation. Knockout of EIIA(Ntr) increases the PHB content. In contrast, absence of enzyme I or HPr, which deliver phosphoryl groups to EIIA(Ntr), has the opposite effect. To clarify the role of EIIA(Ntr) in PHB formation, we screened for interacting proteins that co-purify with Strep-tagged EIIA(Ntr) from R. eutropha cells. This approach identified the bifunctional ppGpp synthase/hydrolase SpoT1, a key enzyme of the stringent response. Two-hybrid and far-Western analyses confirmed the interaction and indicated that only non-phosphorylated EIIA(Ntr) interacts with SpoT1. Interestingly, this interaction does not occur between the corresponding proteins of E. coli. Vice versa, interaction of EIIA(Ntr) with KdpD appears to be absent in R. eutropha, although R. eutropha EIIA(Ntr) can perfectly substitute its homologue in E. coli in regulation of KdpD activity. Thus, interaction with KdpD might be an evolutionary 'ancient' task of EIIA(Ntr) that was subsequently replaced by interaction with SpoT1 in R. eutropha. In conclusion, EIIA(Ntr) might integrate information about nutritional status, as reflected by its phosphorylation state, into the stringent response, thereby controlling cellular PHB content in R. eutropha. PMID:24515609

  2. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage.

    PubMed

    Chen, Janice S; Colón, Brendan; Dusel, Brendon; Ziesack, Marika; Way, Jeffrey C; Torella, Joseph P

    2015-01-01

    Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB's physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-type R. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligase fadD3, an entry point for fatty acids into β-oxidation. As ΔfadD3 mutants still consumed laurate, and because the R. eutropha genome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologous β-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives in R. eutropha. PMID:26664804

  3. Formation of Polyphosphate by Polyphosphate Kinases and Its Relationship to Poly(3-Hydroxybutyrate) Accumulation in Ralstonia eutropha Strain H16

    PubMed Central

    Tumlirsch, Tony; Sznajder, Anna

    2015-01-01

    A protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion of phaX resulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs. In vivo colocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of the Ralstonia eutropha ppk (ppkReu) genes in an Escherichia coli Δppk background and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds. PMID:26407880

  4. Genome-based analysis and gene dosage studies provide new insight into 3-hydroxy-4-methylvalerate biosynthesis in Ralstonia eutropha.

    PubMed

    Saika, Azusa; Ushimaru, Kazunori; Mizuno, Shoji; Tsuge, Takeharu

    2015-04-01

    Recombinant Ralstonia eutropha strain PHB(-)4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB(-)4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB(-)4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  5. Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO2) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface.

    PubMed

    Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-06-25

    An enzyme complex for biological conversion of CO to CO2 was anchored on the cell surface of the CO2-utilizing Ralstonia eutropha and successfully resulted in a 3.3-fold increase in conversion efficiency. These results suggest that this complexed system may be a promising strategy for CO2 utilization as a biological tool for the production of bioplastics. PMID:26017299

  6. Candidatus liberibacter solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zebra chip (ZC) is a new and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. This disease has caused millions of dollars in losses to the potato industry. Whole crops might be rejected because of high levels of ZC. Chips or fries processed fro...

  7. Impact of Ralstonia eutropha's Poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB Storage in Recombinant Escherichia coli

    PubMed Central

    Eggers, Jessica

    2014-01-01

    The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay

  8. Stable Carbon Isotope Discrimination by Form IC Rubisco Enzymes of the Extremely Metabolically Versatile Rhodobacter sphaeroides and Ralstonia eutropha}

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.; Boller, A. J.; Zhao, Z.; Tabita, F. R.; Cavanaugh, C. M.; Scott, K. M.

    2006-12-01

    Variations in the relative amounts of 12C and 13C in microbial biomass can be used to infer the pathway(s) autotrophs use to fix and assimilate dissolved inorganic carbon. Discrimination against 13C by the enzymes catalyzing autotrophic carbon fixation is a major factor dictating biomass stable carbon isotopic compositions (δ13C = {[13C/12Csample/13C/12Cstandard] - 1} × 1000). Five different forms of RubisCO (IA, IB, IC, ID, and II) are utilized by algae and autotrophic bacteria reliant on the Calvin-Benson cycle for carbon fixation. To date, isotope discrimination has been measured for form IA, IB, and II RubisCOs, and their ɛ values (={[12k/13k] - 1} × 1000; 12k and 13k = rates of 12C and 13C fixation) range from 18 to 29‰, explaining the variation in biomass δ13C values of autotrophs utilizing these enzymes. Isotope discrimination by form IC RubisCO has not been measured, despite the presence of this enzyme in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides and Ralstonia eutropha. The purpose of this work was to determine the ɛ values for form IC RubisCO enzymes from R. sphaeroides and R. eutropha. Recombinant form IC RubisCOs were purified by conventional column chromatography procedures. Assay conditions (pH, dissolved inorganic carbon concentration) were tested to determine which parameters were conducive to the high rates of carbon fixation necessary for ɛ determination. Under standard conditions (pH 8.5 and 5 mM DIC), form IC RubisCO activities were sufficient for ɛ determination. Experiments are currently being conducted to measure the ɛ values of these enzymes. Sampling the full phylogenetic breadth of RubisCO enzymes for isotopic discrimination makes it possible to constrain the range of δ13C values of organisms fixing carbon via the Calvin-Benson cycle. These results are

  9. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2.

    PubMed

    Fang, Ti; Zhou, Ning-Yi

    2014-01-01

    Salicylate is an important intermediate in the bacterial degradation of polycyclic aromatic hydrocarbons and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. Unlike the well-characterized salicylate 1-hydroxylases, the rarely occurred salicylate 5-hydroxylase (S5H) has not been characterized in detail. In this study, the three-component Fe-S protein complex (NagAaGHAb) of S5H from Ralstonia sp. strain U2 was purified, and its biochemical and catalytic properties were characterized. The oxygenase component NagGH exhibited an α₃β₃ heterohexameric structure and contained one Rieske-type [2Fe-2S] cluster and one mononuclear iron per α subunit. NagAa is the ferredoxin-NADP⁺ reductase component containing flavin and plant type [2Fe-2S] cluster. The ferredoxin component NagAb was characterized as a [2Fe-2S] dimer which remains remarkably stable in denaturing gel electrophoresis after being heated at 100 °C for 1 h. Purified NagAa and NagAb, NagGH catalyzed the hydroxylation of salicylate to gentisate with a specific activity of 107.12 ± 14.38 U/g and showed an apparent K(m) for salicylate of 102.79 ± 27.20 μM and a similar K(m) value for both NADH and NADPH (59.76 ± 7.81 μM versus 56.41 ± 12.76 μM). The hydroxylase exhibited different affinities for two hydroxysalicylates (2,4-dihydroxybenzoate K(m) of 93.54 ± 18.50 μM versus 2,6-dihydroxybenzoate K(m) of 939.80 ± 199.46 μM). Interestingly, this S5H also showed catalytic activity to the pollutant 2-nitrophenol and exhibited steady-state kinetic data of the same order of magnitude as those for salicylate. This study will allow further comparative studies of structure-function relationships of the ring hydroxylating mono- and di-oxygenase systems. PMID:23624660

  10. A Closer Look on the Polyhydroxybutyrate- (PHB-) Negative Phenotype of Ralstonia eutropha PHB-4

    PubMed Central

    Raberg, Matthias; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2014-01-01

    The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby

  11. Comparison of the Transcriptomes of Ginger (Zingiber officinale Rosc.) and Mango Ginger (Curcuma amada Roxb.) in Response to the Bacterial Wilt Infection

    PubMed Central

    Prasath, Duraisamy; Karthika, Raveendran; Habeeba, Naduva Thadath; Suraby, Erinjery Jose; Rosana, Ottakandathil Babu; Shaji, Avaroth; Eapen, Santhosh Joseph; Deshpande, Uday; Anandaraj, Muthuswamy

    2014-01-01

    Bacterial wilt in ginger (Zingiber officinale Rosc.) caused by Ralstonia solanacearum is one of the most important production constraints in tropical, sub-tropical and warm temperature regions of the world. Lack of resistant genotype adds constraints to the crop management. However, mango ginger (Curcuma amada Roxb.), which is resistant to R. solanacearum, is a potential donor, if the exact mechanism of resistance is understood. To identify genes involved in resistance to R. solanacearum, we have sequenced the transcriptome from wilt-sensitive ginger and wilt-resistant mango ginger using Illumina sequencing technology. A total of 26387032 and 22268804 paired-end reads were obtained after quality filtering for C. amada and Z. officinale, respectively. A total of 36359 and 32312 assembled transcript sequences were obtained from both the species. The functions of the unigenes cover a diverse set of molecular functions and biological processes, among which we identified a large number of genes associated with resistance to stresses and response to biotic stimuli. Large scale expression profiling showed that many of the disease resistance related genes were expressed more in C. amada. Comparative analysis also identified genes belonging to different pathways of plant defense against biotic stresses that are differentially expressed in either ginger or mango ginger. The identification of many defense related genes differentially expressed provides many insights to the resistance mechanism to R. solanacearum and for studying potential pathways involved in responses to pathogen. Also, several candidate genes that may underline the difference in resistance to R. solanacearum between ginger and mango ginger were identified. Finally, we have developed a web resource, ginger transcriptome database, which provides public access to the data. Our study is among the first to demonstrate the use of Illumina short read sequencing for de novo transcriptome assembly and comparison in

  12. Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon.

    PubMed

    Wang, Guangli; Liu, Yuan

    2016-09-01

    Diazinon is a widely used organophosphorus insecticide often detected in the environment. A highly effective diazinon-degrading Ralstonia sp. strain DI-3 was isolated from agricultural soil. Strain DI-3 can utilize dimethoate as its sole carbon source for growth and degrade an initial concentration of 100 mg L-1 diazinon to non-detectable levels within 60 h in liquid culture. A small amount of second carbon source as co-substrate could slightly enhance the biodegradation of diazinon. In addition, a less toxic metabolic intermediate formed during the degradation of diazinon mediated by strain DI-3 was purified using thin-layer chromatography (TLC) and identified based on single-crystal Xray diffraction analysis, allowing a degradation pathway for diazinon by pure culture to be proposed. Finally, this is the first providing authentic evidence to describe the metabolite. PMID:27581928

  13. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  14. Use of Electrical Penetration Graph Technology to Examine Transmission of 'Candidatus Liberibacter solanacearum' to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae).

    PubMed

    Mustafa, Tariq; Horton, David R; Cooper, W Rodney; Swisher, Kylie D; Zack, Richard S; Pappu, Hanu R; Munyaneza, Joseph E

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato ("inoculation access period", or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring questions

  15. 'Candidatus Liberibacter solanacearum' Titers in and Infection Effects on Potato Tuber Chemistry of Promising Germplasm Exhibiting Tolerance to Zebra Chip Disease.

    PubMed

    Wallis, C M; Munyaneza, J E; Chen, J; Novy, R; Bester, G; Buchman, J L; Nordgaard, J; van Hest, P

    2015-12-01

    Long-term sustainable management of zebra chip (ZC) disease of potato requires development of tolerant or resistant germplasm. To this end, 283 potato varieties and breeding clones were infected with the ZC putative causal agent 'Candidatus Liberibacter solanacearum' (Lso) by potato psyllid vector inoculations in 2010, 2011, 2012, and 2013. Potato germplasm was then examined for development of fresh and fried ZC symptoms. Over multiple years 29 breeding clones exhibited little to no symptoms in freshly cut tuber slices, and five exhibited little to no symptoms in fried slices. These five presumed tolerant breeding clones were chosen for further screening to determine whether the lack of physiological responses to Lso infection was the cause of observed tolerance. To this end, tuber amino acid, sugar, and phenolic levels were compared between noninfected and Lso-infected plants. The five putative tolerant clones had less dramatic shifts in host physiology following Lso infection than the susceptible Atlantic cultivar. This suggested lack of host responses to Lso infection that result in major changes in tuber biochemistry is a potential mechanism of ZC resistance. However, the susceptible Atlantic cultivar did have consistently greater Lso titers compared with two of the tolerant entries, so for these reductions in Lso pathogen progression also might be a factor. Regardless, lack of host responses could still remain one trait that could be used to aid in selection of ZC-resistant potato varieties, as other tolerant lines had infection levels consistent with susceptible Atlantic cultivar. These results also suggest that germplasm derived from relatives of cultivated potato plants are viable sources of ZC disease resistance. PMID:26312966

  16. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    PubMed Central

    Hong, Jeum Kyu; Kang, Su Ran; Kim, Yeon Hwa; Yoon, Dong June; Kim, Do Hoon; Kim, Hyeon Ji; Sung, Chang Hyun; Kang, Han Sol; Choi, Chang Won; Kim, Seong Hwan; Kim, Young Shik

    2013-01-01

    Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2−) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H2O2and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H2O2and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 106 and 107 cfu/ml of R. solanacearum. H2O2- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC)’ was calculated to compare disease protection by H2O2 and/or SNP with untreated control. Neither H2O2 nor SNP protect the tomato seedlings from the bacterial wilt, but H2O2+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H2O2 and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents. PMID:25288967

  17. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

    PubMed Central

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop

    2015-01-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  18. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato.

    PubMed

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop; Kang, Hee Wan

    2015-09-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  19. Assessing the Likelihood of Transmission of Candidatus Liberibacter solanacearum to Carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae)

    PubMed Central

    Munyaneza, Joseph E.; Mustafa, Tariq; Fisher, Tonja W.; Sengoda, Venkatesan G.; Horton, David R.

    2016-01-01

    ‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited bacterium that severely affects important Solanaceae and Apiaceae crops, including potato, tomato, pepper, tobacco, carrot and celery. This bacterium is transmitted to solanaceous species by potato psyllid, Bactericera cockerelli, and to Apiaceae by carrot psyllids, including Trioza apicalis and Bactericera trigonica. Five haplotypes of Lso have so far been described, two are associated with solanaceous species and potato psyllids, whereas the other three are associated with carrot and celery crops and carrot psyllids. Little is known about cross-transmission of Lso to carrot by potato psyllids or to potato by carrot psyllids. Thus, the present study assessed whether potato psyllid can transmit Lso to carrot and whether Lso haplotypes infecting solanaceous species can also infect carrot and lead to disease symptom development. In addition, the stylet probing behavior of potato psyllid on carrot was assessed using electropenetrography (EPG) technology to further elucidate potential Lso transmission to Apiaceae by this potato insect pest. Results showed that, while potato psyllids survived on carrot for several weeks when confined on the plants under controlled laboratory and field conditions, the insects generally failed to infect carrot plants with Lso. Only three of the 200 carrot plants assayed became infected with Lso and developed characteristic disease symptoms. Lso infection in the symptomatic carrot plants was confirmed by polymerase chain reaction assay and Lso in the carrots was determined to be of the haplotype B, which is associated with solanaceous species. EPG results further revealed that potato psyllids readily feed on carrot xylem but rarely probe into the phloem tissue, explaining why little to no Lso infection occurred during the controlled laboratory and field cage transmission trials. Results of our laboratory and field transmission studies, combined with our EPG results

  20. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.

    PubMed

    Esparza, Mario; Jedlicki, Eugenia; Dopson, Mark; Holmes, David S

    2015-08-01

    Autotrophic fixation of carbon dioxide into cellular carbon occurs via several pathways but quantitatively, the Calvin-Benson-Bassham cycle is the most important. CbbR regulates the expression of the cbb genes involved in CO2 fixation via the Calvin-Benson-Bassham cycle in a number of autotrophic bacteria. A gene potentially encoding CbbR (cbbR(AF)) has been predicted in the genome of the chemolithoautotrophic, extreme acidophile Acidithiobacillus ferrooxidans. However, this microorganism is recalcitrant to genetic manipulation impeding the experimental validation of bioinformatic predictions. Two novel functional assays were devised to advance our understanding of cbbR(AF) function using the mutated facultative autotroph Ralstonia eutropha H14 ΔcbbR as a surrogate host to test gene function: (i) cbbR(AF) was expressed in R. eutropha and was able to complement ΔcbbR; and (ii) CbbR(AF) was able to regulate the in vivo activity of four A. ferrooxidans cbb operon promoters in R. eutropha. These results open up the use of R. eutropha as a surrogate host to explore cbbR(AF) activity. PMID:26152700

  1. Impact of the core components of the phosphoenolpyruvate-carbohydrate phosphotransferase system, HPr and EI, on differential protein expression in Ralstonia eutropha H16.

    PubMed

    Kaddor, Chlud; Voigt, Birgit; Hecker, Michael; Steinbüchel, Alexander

    2012-07-01

    In Ralstonia eutropha H16, seven genes encoding proteins being involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified. In order to provide more insights into the poly(3-hydroxybutyrate) (PHB)-leaky phenotype of the HPr/EI deletion mutants H16ΔptsH, H16ΔptsI, and H16ΔptsHI when grown on the non-PTS substrate gluconate, parallel fermentations for comparison of their growth behavior were performed. Samples from the exponential, the early stationary, and late stationary growth phases were investigated by microscopy, gas chromatography and (phospho-) proteome analysis. A total of 71 differentially expressed proteins were identified using 2D-PAGE, Pro-Q Diamond and Coomassie staining, and MALDI-TOF analysis. Detected proteins were classified into five major functional groups: carbon metabolism, energy metabolism, amino acid metabolism, translation, and membrane transport/outer membrane proteins. Proteome analyses revealed enhanced expression of proteins involved in the Entner-Doudoroff pathway and in subsequent reactions in cells of strain H16 compared to the mutant H16ΔptsHI. Furthermore, proteins involved in PHB accumulation showed increased abundance in the wild-type. This expression pattern allowed us to identify proteins affecting carbon metabolism/PHB biosynthesis in strain H16 and translation/amino acid metabolism in strain H16ΔptsHI, and to gain insight into the molecular response of R. eutropha to the deletion of HPr/EI. PMID:22630130

  2. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO.

    PubMed

    Ash, Philip A; Liu, Juan; Coutard, Nathan; Heidary, Nina; Horch, Marius; Gudim, Ingvild; Simler, Thomas; Zebger, Ingo; Lenz, Oliver; Vincent, Kylie A

    2015-10-29

    The regulatory hydrogenase (RH) from Ralstonia eutropha acts as the H2-sensing unit of a two-component system that regulates biosynthesis of the energy conserving hydrogenases of the organism according to the availability of H2. The H2 oxidation activity, which was so far determined in vitro with artificial electron acceptors, has been considered to be insensitive to O2 and CO. It is assumed that bulky isoleucine and phenylalanine amino acid residues close to the NiFe active site "gate" gas access, preventing molecules larger than H2 interacting with the active site. We have carried out sensitive electrochemical measurements to demonstrate that O2 is in fact an inhibitor of H2 oxidation by the RH, and that both H(+) reduction and H2 oxidation are inhibited by CO. Furthermore, we have demonstrated that the inhibitory effect of O2 arises due to interaction of O2 with the active site. Using protein film infrared electrochemistry (PFIRE) under H2 oxidation conditions, in conjunction with solution infrared measurements, we have identified previously unreported oxidized inactive and catalytically active reduced states of the RH active site. These findings suggest that the RH has a rich active site chemistry similar to that of other NiFe hydrogenases. PMID:26115011

  3. The Soluble NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 Consists of Six Subunits and Can Be Specifically Activated by NADPH

    PubMed Central

    Burgdorf, Tanja; van der Linden, Eddy; Bernhard, Michael; Yuan Yin, Qing; Back, Jaap W.; Hartog, Aloysius F.; Muijsers, Anton O.; de Koster, Chris G.; Albracht, Simon P. J.; Friedrich, Bärbel

    2005-01-01

    The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD+ at the expense of H2. We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI2. Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I). PMID:15838039

  4. Modification of the aggregation behaviour of the environmental Ralstonia eutropha-like strain AE815 is reflected by both surface hydrophobicity and amplified fragment length polymorphism (AFLP) patterns.

    PubMed

    Bossier, P; Top, E M; Huys, G; Kersters, K; Boonaert, C J; Rouxhet, P G; Verstraete, W

    2000-02-01

    After inoculation of the plasmid-free non-aggregative Ralstonia eutropha-like strain AE815 in activated sludge, followed by reisolation on a selective medium, a mutant strain A3 was obtained, which was characterized by an autoaggregative behaviour. Strain A3 had also acquired an IncP1 plasmid, pLME1, co-aggregated with yeast cells when co-cultured, and stained better with Congo red than did the AE815 strain. Contact angle measurements showed that the mutant strain was considerably more hydrophobic than the parent strain AE815, and scanning electron microscopy (SEM) revealed the production of an extracellular substance. A similar hydrophobic mutant (AE176R) could be isolated from the AE815-isogenic R. eutropha-like strain AE176. With the DNA fingerprinting technique repetitive extragenic palindromic-polymerase chain reaction (REP-PCR), no differences between these four strains, AE815, A3, AE176 and AE176R, could be revealed. However, using the amplified fragment length polymorphism (AFLP) DNA fingerprinting technique with three different primer combinations, small but clear reproducible differences between the banding patterns of the autoaggregative mutants and their non-autoaggregative parent strains were observed for each primer set. These studies demonstrate that, upon introduction of a strain in an activated sludge microbial community, minor genetic changes readily occur, which can nevertheless have major consequences for the phenotype of the strain and its aggregation behaviour. PMID:11243262

  5. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.

    PubMed

    Magomedova, Zalina; Grecu, Andreea; Sensen, Christoph W; Schwab, Helmut; Heidinger, Petra

    2016-03-10

    Biocatalysis has significant advantages over organic synthesis in the field of chiral molecule production and several types of stereoselective enzymes are already in use in industrial biotechnology. However, there is still a high demand for new enzymes capable of transforming bulky molecules with sufficient operability. In order to reveal novel high-potential biocatalysts, the complete genome of the β-proteobacterium Ralstonia eutropha H16 was screened for potential short-chain dehydrogenases/reductases (SDRs). We were able to identify two (S)-enantioselective SDRs named A5 and B3. These showed clear preference towards long-chain and aromatic secondary alcohols, aldehydes and ketones, with diaryl diketone benzil as one of the best substrates. In addition the phylogenetic analysis of all enzyme types, which are known to facilitate benzil reduction, revealed at least two separate evolutionary clusters. Our results indicate the biotechnological potential of SDRs A5 and B3 for the production of chiral compounds with potential commercial value. PMID:26812656

  6. Use of a packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha.

    PubMed

    Jalilnejad, Elham; Vahabzadeh, Farzaneh

    2014-03-01

    Biodegradation of naphthalene by Ralstonia eutropha (also known as Cupriavidus necator) in a packed-bed airlift reactor with net draft tube (PBALR-nd) was studied; the Kissiris pieces were the packing material. The reactor hydrodynamics has been characterized under abiotic conditions and the dependencies of the superficial gas velocity (U G) on the gas holdup (εG), liquid mixing time, and mass transfer coefficient were determined. The improving role of the net draft tube in this small column reactor (height 42 cm, ID 5 cm) was confirmed. The flow regime was described using the εG α U G (n) expression, and bubbly flow was observed in PBALR-nd at U G < 2.83 cm/s. In the second step of the present work, the kinetics of biodegradation was modeled using the Haldane and Aiba equations. The fitting of the experimental results to the models were done according to the nonlinear least square regression technique. The biokinetic constants (q m, K s, and K i) were estimated and q m as the specific biodegradation rate was equaled to 0.415 and 0.24 mgnaph./mgcell h for the Haldane and Aiba equations, respectively. The goodness of fit reported as R (2) and root-mean-square error (RMSE) showed the adequate fitness of the Haldane and Aiba models in predicting naphthalene biodegradation kinetics. On the basis of the HPLC results, a hypothetical pathway for the biodegradation was presented. PMID:24338109

  7. Horizontal Transmission of "Candidatus Liberibacter solanacearum" by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae)

    PubMed Central

    Torres, Glenda L.; Cooper, W. Rodney; Horton, David R.; Swisher, Kylie D.; Garczynski, Stephen F.; Munyaneza, Joseph E.; Barcenas, Nina M.

    2015-01-01

    “Candidatus Liberibacter solanacearum” (Proteobacteria) is an important pathogen of solanaceous crops (Solanales: Solanaceae) in North America and New Zealand, and is the putative causal agent of zebra chip disease of potato. This phloem-limited pathogen is transmitted to potato and other solanaceous plants by the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). While some plants in the Convolvulaceae (Solanales) are also known hosts for B. cockerelli, previous efforts to detect Liberibacter in Convolvulaceae have been unsuccessful. Moreover, studies to determine whether Liberibacter can be acquired from these plants by B. cockerelli are lacking. The goal of this study was to determine whether horizontal transmission of Liberibacter occurs among potato psyllids on two species of Convolvulaceae, sweet potato (Ipomoea batatas) and field bindweed (Convolvulus arvensis), which grows abundantly in potato growing regions of the United States. Results indicated that uninfected psyllids acquired Liberibacter from both I. batatas and C. arvensis if infected psyllids were present on plants concurrently with the uninfected psyllids. Uninfected psyllids did not acquire Liberibacter from plants if the infected psyllids were removed from the plants before the uninfected psyllids were allowed access. In contrast with previous reports, PCR did detect the presence of Liberibacter DNA in some plants. However, visible amplicons were faint and did not correspond with acquisition of the pathogen by uninfected psyllids. None of the plants exhibited disease symptoms. Results indicate that horizontal transmission of Liberibacter among potato psyllids can occur on Convolvulaceae, and that the association between Liberibacter and Convolvulaceae merits additional attention. PMID:26555359

  8. Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria.

    PubMed

    Wattana-Amorn, Pakorn; Charoenwongsa, Waranya; Williams, Christopher; Crump, Matthew P; Apichaisataienchote, Busaya

    2016-09-01

    Two bioactive cyclic dipeptides, cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr), were isolated from the culture broth of Streptomyces sp. strain 22-4 and tested against three economically important plant pathogens, Xanthomonas axonopodis pv. citri, Ralstonia solanacearum and Clavibacter michiganensis. Both cyclic dipeptides were active against X. axonopodis pv. citri and R. Solanacearum with MIC of 31.25 μg/mL. No activity could be observed against C. michiganensis. PMID:26469746

  9. Potential economic pests of solanaceous crops: a new species of Solanum-feeding psyllid from Australia and first record from New Zealand of Acizzia solanicola (Hemiptera: Psyllidae).

    PubMed

    Taylor, Gary S; Kent, Deborah S

    2013-01-01

    Acizzia credoensis sp. n. is described from a single population on the native plant, Solanum lasiophyllum, from semi-arid Western Australia. The host range of Acizzia solanicola Kent & Taylor, initially recorded as damaging eggplant, S. melongena, in commercial crops and gardens and on wild tobacco bush, S. mauritianum in eastern Australia, is expanded to include the following Solanaceae: rock nightshade, S. petrophilum, cape gooseberry, Physalis peruviana, and an undetermined species of angel's trumpet Brugmansia and Datura. New Zealand specimens of A. solanicola collected in early 2012 from S. mauritianum are the first record for this species from outside Australia, and possibly represent a very recent incursion. The potential for the solanaceous-inhabiting Psyllidae to vector Candidatus Liberibacter solanacearum, an economically important plant pathogen, on native Australian Solanaceae is discussed. The occurrence of A. credoensis and A. solanicola on native Australian Solanum supports the Australian origin for the solanaceous-inhabiting Acizzia psyllids. PMID:24698916

  10. Phenol degradation by Ralstonia eutropha: Colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations

    SciTech Connect

    Leonard, D.; Destruhaut, C.; Lindley, N.D.; Youssef, C.B.; Queinnec, I.

    1999-11-20

    Phenol biodegradation by Ralstonia eutropha was modeled in different culture modes to assess phenol feeding in biotechnological depollution processes. The substrate-inhibited growth of R. eutropha was described by the Haldane equation with a K{sub s} of 2 mg/L, a K{sub i} of 350 mg/L and a {micro}{sub max} of 0.41 h{sup {minus}1}. Furthermore, growth in several culture modes was characterized by the appearance of a yellow color, due to production of a metabolic intermediate of the phenol catabolic pathway, 2-hydroxymuconic semialdehyde (2phms) which was directly correlated to the growth rate and/or the phenol-degradation rate, because these two parameters are coupled. This correlation between color appearance and metabolic activity was used to develop a control procedure for optimal phenol degradation. A mass-balance equation modeling approach combined with a filtering step using an extended Kalman filter enabled state variables of the biological system to be simulated. A PI controller, using the estimation of the phenol concentration provided by the modeling step, was then built to maintain the phenol concentration at a constant set-point of 0.1 g/L which corresponded to a constant specific growth rate of 0.3 h{sup {minus}1}, close to the maximal specific growth value of the strain. This monitoring strategy, validated for two fed-batch cultures, could lead, in self-cycling fermentation systems, to a productivity of more than 19 kg of phenol consumed/m{sup 3}/d which is the highest value reported to date in the literature. This system of monitoring metabolic activity also protected the bacterial culture against toxicity problems due to the transient accumulation of phenol.

  11. Characterization of a Second tfd Gene Cluster for Chlorophenol and Chlorocatechol Metabolism on Plasmid pJP4 in Ralstonia eutropha JMP134(pJP4)

    PubMed Central

    Laemmli, Caroline M.; Leveau, Johan H. J.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof

    2000-01-01

    Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdDIICIIEIIFII and tfdBII (in short, the tfdII cluster), by analogy to tfdCDEF and tfdB (the tfdI cluster). Primer extension analysis of mRNA isolated from 2,4-D-grown R. eutropha JMP134 identified a single transcription start site in front of the first gene of the cluster, tfdDII, suggesting an operon-like organization for the tfdII genes. By expressing each ORF in Escherichia coli, we confirmed that tfdDII coded for a chloromuconate cycloisomerase, tfdCII coded for a chlorocatechol 1,2-dioxygenase, tfdEII coded for a dienelactone hydrolase, tfdFII coded for a maleylacetate reductase, and tfdBII coded for a chlorophenol hydroxylase. Dot blot hybridizations of mRNA isolated from R. eutropha JMP134 showed that both tfdI and tfdII genes are transcribed upon induction with 2,4-D. Thus, the functions encoded by the tfdII genes seem to be redundant with respect to those of the tfdI cluster. One reason why the tfdII genes do not disappear from plasmid pJP4 might be the necessity for keeping the regulatory genes for the 2,4-D pathway expression tfdR and tfdS. PMID:10894723

  12. Biophysical characterization of the MerP-like amino-terminal extension of the mercuric reductase from Ralstonia metallidurans CH34.

    PubMed

    Rossy, Emmanuel; Champier, Ludovic; Bersch, Beate; Brutscher, Bernhard; Blackledge, Martin; Covès, Jacques

    2004-01-01

    The purified native mercuric reductase (MerA) from Ralstonia metallidurans CH34 contains an N-terminal sequence of 68 amino acids predicted to be homologous to MerP, the periplasmic mercury-binding protein. This MerP-like protein has now been expressed independently. The protein was named MerAa by homology with Ccc2a, the first soluble domain of the copper-transporting ATPase from yeast. Deltaa has been characterized using a set of biophysical techniques. The binding of mercury was followed using circular dichroism spectroscopy and electrospray mass spectrometry. The two cysteine residues contained in the consensus sequence GMTC XXC are involved in the binding of one mercury atom, with an apparent affinity comparable to that of MerP for the same metal. The metal-binding site is confirmed by NMR chemical shift changes observed between apo- and metal-bound MerAa in solution. NMR shift and NOE data also indicate that only minor structural changes occur upon metal binding. Further NMR investigation of the fold of MerAa using long-range methyl-methyl NOE and backbone residual dipolar coupling data confirm the expected close structural homology with MerP. (15)N relaxation data show that MerAa is a globally rigid molecule. An increased backbone mobility was observed for the loop region connecting the first beta-strand and the first alpha-helix and comprising the metal-binding domain. Although significantly reduced, this loop region keeps some conformational flexibility upon metal binding. Altogether, our data suggest a role of MerAa in mercury trafficking. PMID:14624351

  13. Abundance of Dioxygenase Genes Similar to Ralstonia sp. Strain U2 nagAc Is Correlated with Naphthalene Concentrations in Coal Tar-Contaminated Freshwater Sediments

    PubMed Central

    Dionisi, Hebe M.; Chewning, Christopher S.; Morgan, Katherine H.; Menn, Fu-Min; Easter, James P.; Sayler, Gary S.

    2004-01-01

    We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-μl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 ± 0.7) × 103 to (2.9 ± 0.3) × 105 copies of nagAc-like dioxygenase genes per μg of DNA extracted from sediment samples. These values corresponded to (1.2 ± 0.6) × 105 to (5.4 ± 0.4) × 107 copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene. PMID:15240274

  14. Novel Gene Clusters and Metabolic Pathway Involved in 3,5,6-Trichloro-2-Pyridinol Degradation by Ralstonia sp. Strain T6

    PubMed Central

    Li, Jingquan; Huang, Yan; Hou, Ying; Li, Xiangmin; Cao, Hui

    2013-01-01

    3,5,6-Trichloro-2-pyridinol (TCP) is a widespread pollutant. Some bacteria and fungi have been reported to degrade TCP, but the gene clusters responsible for TCP biodegradation have not been characterized. In this study, a fragment of the reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase gene tcpA was amplified from the genomic DNA of Ralstonia sp. strain T6 with degenerate primers. The tcpA disruption mutant strain T6-ΔtcpA could not degrade TCP but could degrade the green intermediate metabolite 3,6-dihydroxypyridine-2,5-dione (DHPD), which was generated during TCP biodegradation by strain T6. The flanking sequences of tcpA were obtained by self-formed adaptor PCR. tcpRXA genes constitute a gene cluster. TcpR and TcpX are closely related to the LysR family transcriptional regulator and flavin reductase, respectively. T6-ΔtcpA-com, the complementation strain for the mutant strain T6-ΔtcpA, recovered the ability to degrade TCP, and the strain Escherichia coli DH10B-tcpRXA, which expressed the tcpRXA gene cluster, had the ability to transform TCP to DHPD, indicating that tcpA is a key gene in the initial step of TCP degradation and that TcpA dechlorinates TCP to DHPD. A library of DHPD degradation-deficient mutants of strain T6 was obtained by random transposon mutagenesis. The fragments flanking the Mariner transposon were amplified and sequenced, and the dhpRIJK gene cluster was cloned. DhpJ could transform DHPD to yield an intermediate product, 5-amino-2,4,5-trioxopentanoic acid (ATOPA), which was further degraded by DhpI. DhpR and DhpK are closely related to the AraC family transcriptional regulator and the MFS family transporter, respectively. PMID:24056464

  15. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.

    PubMed

    Lindenkamp, Nicole; Schürmann, Marc; Steinbüchel, Alexander

    2013-09-01

    In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating

  16. Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil.

    PubMed

    Insomphun, Chayatip; Mifune, Jun; Orita, Izumi; Numata, Keiji; Nakamura, Satoshi; Fukui, Toshiaki

    2014-02-01

    Ralstonia eutropha H16 is a useful platform for metabolic engineering aiming at efficient production of polyhydroxyalkanaotes being attracted as practical bioplastics. This study focused on bifunctional (S)-specific 2-enoyl-CoA hydratase/(S)-3-hydroxyacyl-CoA dehydrogenase encoded by fadB to obtain information regarding β-oxidation in this bacterium and to achieve compositional regulation of poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] synthesized from soybean oil. In addition to two FadB homologs (FadB1 and FadB') encoded within the previously identified β-oxidation gene clusters on the chromosome 1, a gene of third homolog (FadB2) was found on chromosome 2 of R. eutropha. The fadB homologs were disrupted in R. eutropha strain NSDG expressing a mutant gene of PHA synthase from Aeromonas caviae. The gene disruptions affected neither growth nor PHA production on fructose. On soybean oil, fadB' deletion led to reduction of PHA quantity attributed to decrease of 3HB unit, while fadB1 deletion slightly increased 3HHx composition without serious negative impact on both cell growth and PHA biosynthesis. Double deletion of fadB1 and fadB' significantly impaired the cell growth and PHA biosynthesis, indicating the major roles of fadB1 and fadB' in β-oxidation. When fadB1 was deleted in several engineered strains of R. eutropha possessing additional (R)-enoyl-CoA hydratase gene(s), the net amounts of 3HHx unit in the PHA fractions showed 6-21% increase probably due to slightly enhanced supply of medium-chain-length 2-enoyl-CoAs through the partially impaired β-oxidation. These results demonstrated that modification of β-oxidation by fadB1 deletion was effective for increasing 3HHx composition in the copolyesters produced from soybean oil. PMID:23999062

  17. (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB’) from fatty acid degradation operon of Ralstonia eutropha H16

    PubMed Central

    2014-01-01

    In this study (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (H16_A0461/FadB’, gene ID: 4247876) from one of two active fatty acid degradation operons of Ralstonia eutropha H16 has been heterologously expressed in Escherichia coli, purified as protein possessing a His-Tag and initially characterized. FadB’ is an enzyme with two catalytic domains exhibiting a single monomeric structure and possessing a molecular weight of 86 kDa. The C-terminal part of the enzyme harbors enoyl-CoA hydratase activity and is able to convert trans-crotonyl-CoA to 3-hydroxybutyryl-CoA. The N-terminal part of FadB’ comprises an NAD+ binding site and is responsible for 3-hydroxyacyl-CoA dehydrogenase activity converting (S)-3-hydroxybutyryl-CoA to acetoacetyl-CoA. Enoyl-CoA hydratase activity was detected spectrophotometrically with trans-crotonyl-CoA. (S)-3-Hydroxyacyl-CoA dehydrogenase activity was measured in both directions with acetoacetyl-CoA and 3-hydroxybutyryl-CoA. FadB’ was found to be strictly stereospecific to (S)-3-hydroxybutyryl-CoA and to prefer NAD+. The Km value for acetoacetyl-CoA was 48 μM and Vmax 149 μmol mg−1 min−1. NADP(H) was utilized at a rate of less than 10% in comparison to activity with NAD(H). FadB’ exhibited optimal activity at pH 6–7 and the activity decreased at alkaline and acidic pH values. Acetyl-CoA, propionyl-CoA and CoA were found to have an inhibitory effect on FadB’. This study is a first report on biochemical properties of purified (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase with the inverted domain order from R. eutropha H16. In addition to fundamental information about FadB’ and fatty acid metabolism, FadB’ might be also interesting for biotechnological applications. PMID:25401070

  18. Physiological conditions conducive to high cell density and high cyanophycin content in Ralstonia eutropha strain H16 possessing a KDPG aldolase gene-dependent addiction system.

    PubMed

    Lin, Kaichien; Elbahloul, Yasser; Steinbüchel, Alexander

    2012-03-01

    The recombinant strain of Ralstonia eutropha H16-PHB(-)4-∆eda (pBBR1MCS-2::cphA (6308)/eda (H16)) presenting a 2-keto-3-desoxy-phosphogluconate (KDPG) aldolase (eda) gene-dependent catabolic addiction system for plasmid maintenance when using gluconate or fructose as sole carbon source was used in this study. The effects of the initial pH, the nitrogen-to-carbon ratio, the inorganic components of medium, the oxygen supply, and the different carbon and nitrogen sources on the cell dry matter (CDM) and the cyanophycin granule polypeptide (CGP) content of the cells were studied in a mineral salts medium (MSM) without any additional amino acids or CGP precursor substrates. The experiments were designed to systematically find out the optimal conditions for growth of cells to high densities and for high CGP contents of the cells. Maximum contents of water-insoluble CGP and water-soluble CGP, contributing to 47.5% and 5.8% (w/w) of CDM, respectively, were obtained at the 30-L scale cultivation when cells were cultivated in MSM medium containing sufficient supplements of fructose, NH(3), K(2)SO(4), MgSO(4)[Symbol: see text]7H(2)O, Fe(Ш)NH(4)-citrate, CaCl(2)[Symbol: see text]2H(2)O, and trace elements (SL6). The molecular masses of water-insoluble and water-soluble CGP ranged from 25 to 31 kDa and from 15 to 21 kDa, respectively. High cell densities of up to 82.8 g CDM/L containing up to 37.8% (w/w) water-insoluble CGP at the 30-L scale cultivation were also obtained. This is by far the best combination of high cell density and high cellular CGP contents ever reported, and it showed that efficient production of CGP at the industrial scale in white biotechnology could be achieved. PMID:22080348

  19. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

    PubMed Central

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  20. Root Border Cells and Their Role in Plant Defense.

    PubMed

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-01

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control. PMID:27215971

  1. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    PubMed

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. PMID:26572322

  2. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  3. Identification and Chacterization of new strains of Enterobacter spp. causing Mulberry (Morus alba) wilt disease in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are dark brown discolorations in vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the bacterial wilt disease caused by Ralstonia solanacearum, the leaf w...

  4. 78 FR 25939 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Program for Imported Articles to Prevent Introduction of Potato Brown Rot. OMB Control Number: 0579-0221... bacterium Ralstonia solanacearum race 3 biovar 2 is known to occur. This bacterial strain causes potato brown rot, which causes potatoes to rot through, making them inedible and seriously affecting...

  5. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  6. 75 FR 14123 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Certificates for Imported Articles to Prevent Introduction of Potato Brown Rot. OMB Control Number: 0579-0221... bacterium Ralstonia solanacearum race 3 biovar 2 is known to occur. This bacterial strain causes potato brown rot, which causes potatoes to rot through, making them unusable and seriously affecting...

  7. Emerging Plant Pathogenic Bacteria and Global Warming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several bacteria, previously classified as non-fluorescent, oxidase positive pseudomonads, Ralstonia, Acidovorax, and Burkholdria have emerged as serious problems world-wide. Perhaps the most destructive is R. solanacearum (RS), a soilborne pathogen with a very wide host range. RS race 3, biovar 2...

  8. A case study of a bacterial pathogen in irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents a case study of how exotic strains of Ralstonia solanacearum were disseminated throughout Europe and Florida via waterways used for irrigation. Several studies have demonstrated that aquatic weeds that commonly grow in rivers and ponds are able to harbor the pathogen and allow ...

  9. Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    PubMed Central

    Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.

    2011-01-01

    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained

  10. A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species.

    PubMed

    Spilker, Theodore; Vandamme, Peter; Lipuma, John J

    2012-09-01

    The genus Achromobacter currently is comprised of seven species, including Achromobacter xylosoxidans, an opportunistic and nosocomial pathogen that displays broad-spectrum antimicrobial resistance and is recognized as causing chronic respiratory tract infection in persons with cystic fibrosis (CF). To enable strain typing for global epidemiologic investigations, to clarify the taxonomy of "Achromobacter-like" strains, and to elucidate the population structure of this genus, we developed a genus-level multilocus sequence typing (MLST) scheme. We employed in silico analyses of whole-genome sequences of several phylogenetically related genera, including Bordetella, Burkholderia, Cupriavidus, Herminiimonas, Janthinobacterium, Methylibium, and Ralstonia, for selecting loci and designing PCR primers. Using this MLST scheme, we analyzed 107 genetically diverse Achromobacter isolates cultured from biologic specimens from CF and non-CF patients, 1 isolate recovered from sludge, and an additional 39 strains obtained from culture collections. Sequence data from these 147 strains, plus three recently genome-sequenced Achromobacter strains, were assigned to 129 sequence types based on seven loci. Calculation of the nucleotide divergence of concatenated locus sequences within and between MLST clusters confirmed the seven previously named Achromobacter species and revealed 14 additional genogroups. Indices of association showed significant linkage disequilibrium in all of the species/genogroups able to be tested, indicating that each group has a clonal population structure. No clear segregation of species/genogroups between CF and non-CF sources was found. PMID:22785192

  11. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana.

    PubMed

    Nakano, Masahito; Yoshioka, Hirofumi; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-07-20

    We previously identified DS1 plants that showed resistance to compatible Ralstonia solanacearum with accelerated defense responses. Here, we describe activation mechanisms of defense responses in DS1 plants. After inoculation with incompatible R. solanacearum 8107, DS1 plants showed hyperinduction of hypersensitive response (HR) and reactive oxygen species (ROS) generation. Transient expression of PopP1 and AvrA induced hyperinduction of HR and ROS generation. Furthermore, Pseudomonas cichorii (Pc) and a type III secretion system (TTSS)-deficient mutant of P. cichorii showed accelerated induction of HR and ROS generation. Chitin and flg22 did not induce either HR or ROS hyperaccumulation; however, INF1 accelerated HR and ROS in DS1 plants. Activation of these defense responses was closely associated with increased phosphatidic acid (PA) content. Our results show that DS1 plants exhibit PA-mediated sensitization of plant defenses and that cell death-inducing stress is required to achieve full activation of defense responses. PMID:26188395

  12. Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana.

    PubMed

    Li, Yuzhen; Zhang, Liang; Lu, Wenjing; Wang, Xiuling; Wu, Chang-Ai; Guo, Xingqi

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades are involved in plant development, stress responses and hormonal signal transduction. MAPK kinases (MAPKKs), as the key nodes in these cascades, link MAPKs and MAPKK kinases (MAPKKKs). In this study, GhMKK4, a novel group C MAPKK gene from cotton (Gossypium hirsutum), was isolated and identified. Its expression can be induced by various stresses and signalling molecules. The overexpression of GhMKK4 in Nicotiana benthamiana enhanced its susceptibility to bacterial and fungal pathogens, but had no significant effects on salt or drought tolerance. Notably, the overexpressing plants showed increased sensitivity to abscisic acid (ABA) and gibberellin A3 (GA3), and ABA and gibberellin (GA) signalling were affected on infection with Ralstonia solanacearum bacteria. Furthermore, the overexpressing plants showed more reactive oxygen species (ROS) accumulation and stronger inhibition of catalase (CAT), a ROS-scavenging enzyme, than control plants after salicylic acid (SA) treatment. Interestingly, two genes encoding ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC), the key enzymes in polyamine synthesis, exhibited reduced R. solanacearum-induced expression in overexpressing plants. These findings broaden our knowledge about the functions of MAPKKs in diverse signalling pathways and the negative regulation of disease resistance in the cotton crop. PMID:23980654

  13. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot.

    PubMed

    Dreo, Tanja; Pirc, Manca; Ramšak, Živa; Pavšič, Jernej; Milavec, Mojca; Zel, Jana; Gruden, Kristina

    2014-10-01

    Here we report on the first assessment of droplet digital PCR (ddPCR) for detection and absolute quantification of two quarantine plant pathogenic bacteria that infect many species of the Rosaceae and Solanaceae families: Erwinia amylovora and Ralstonia solanacearum. An open-source R script was written for the ddPCR data analysis. Analysis of a set of samples with known health status aided the assessment and selection of different threshold settings (QuantaSoft analysis, definetherain pipeline and manual threshold), which led to optimal diagnostic specificity. The interpretation of the E. amylovora ddPCR was straightforward, and the analysis approach had little influence on the final results and the concentrations determined. The sensitivity and linear range were similar to those for real-time PCR (qPCR), for the analysis of both bacterial suspensions and plant material, making ddPCR a viable choice when both detection and quantification are desired. With the R. solanacearum ddPCR, the use of a high global threshold was necessary to exclude false-positive reactions that are sometimes observed in healthy plant material. ddPCR significantly improved the analytical sensitivity over that of qPCR, and improved the detection of low concentrations of R. solanacearum in potato tuber samples. Accurate and rapid absolute quantification of both of these bacteria in pure culture was achieved by direct ddPCR. Our data confirm the suitability of these ddPCR assays for routine detection and quantification of plant pathogens and for preparation of defined in-house reference materials with known target concentrations. PMID:25173868

  14. Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways.

    PubMed

    Trefault, N; De la Iglesia, R; Molina, A M; Manzano, M; Ledger, T; Pérez-Pantoja, D; Sánchez, M A; Stuardo, M; González, B

    2004-07-01

    Ralstonia eutropha JMP134 (pJP4) is a useful model for the study of bacterial degradation of substituted aromatic pollutants. Several key degrading capabilities, encoded by tfd genes, are located in the 88 kb, self-transmissible, IncP-1 beta plasmid pJP4. The complete sequence of the 87,688 nucleotides of pJP4, encoding 83 open reading frames (ORFs), is reported. Most of the coding sequence corresponds to a well-conserved IncP-1 beta backbone and the previously reported tfd genes. In addition, we found hypothetical proteins putatively involved in the transport of aromatic compounds and short-chain fatty acid oxidation. ORFs related to mobile elements, including the Tn501-encoded mercury resistance determinants, an IS1071-based composite transposon and a cryptic class II transposon, are also present in pJP4. These mobile elements are inefficient in transposition and are located in two regions of pJP4 that are rich in remnants of lateral gene transfer events. pJP4 plasmid was able to capture chromosomal genes and form hybrid plasmids with the IncP-1 alpha plasmid RP4. These observations are integrated into a model for the evolution of pJP4, which reveals mechanisms of bacterial adaptation to degrade pollutants. PMID:15186344

  15. Nitrogen species

    NASA Astrophysics Data System (ADS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; McCormick, M. P.; Noxon, J.; Owens, A. J.

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  16. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  17. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    PubMed

    Wu, Fengnian; Cen, Yijing; Wallis, Christopher M; Trumble, John T; Prager, Sean; Yokomi, Ray; Zheng, Zheng; Deng, Xiaoling; Chen, Jianchi; Liang, Guangwen

    2016-01-01

    Potato psyllid (Bactericera cockerelli) is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC) disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome) sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq). The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli. PMID:27227976

  18. LOUISIANA INVASIVE SPECIES PLAN

    EPA Science Inventory

    Identify the species, locations, and effects of invasive species within the state and the effects of these invasive species in Louisiana. Also identify how these species are spread, and the authorities that exist to manage and control them. With this information, create a m...

  19. Endangered species: Deciding which species to save

    NASA Astrophysics Data System (ADS)

    Thibodeau, Francis R.

    1983-03-01

    Many species face extinction because preservation organizations do not have the resources to mount all of the interventions that are needed. Decision analysis provides techniques that can help managers of these organizations to make judgments about which species they will attempt to rescue. A formal analysis of the choices available to the US Fish and Wildlife Services' endangered species program with regard to Isotria medeoloides illustrates how the difficulties of making preservation decisions can be lessened. I. medeoloides is perhaps the rarest orchid in the United States. Little is known of the species' biology and less about effective management. Yet unless a preservation effort is mounted, the species will continue to be threatened by habitat destruction and botanical collecting. The analysis employs formal probabalistic techniques to weigh the utility of possible intervention strategies, that is, their likelihood of achieving different amounts of increase in the longevity of the species, and to balance these gains against their costs. If similar decision analyses are performed on other endangered species, the technique can be used to choose among them, as well as among strategies for individual species.

  20. The Earth's Vanishing Species.

    ERIC Educational Resources Information Center

    USA Today, 1981

    1981-01-01

    Elaborates on the problem of expanding human activity to the world's plant and animal species. Concludes that preserving an individual species is largely a waste of time and effort and that the best way to protect the most species of plants and animals is to save their environments over large tracts of land. (DB)

  1. Aquatic invasive species

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    Invasive species are plants or animals that are present in an ecosystem beyond their native range. They may have few natural controls in their new environment and proliferate. They can threaten native species and interfere with human activities. The Western Fisheries Research Center (WFRC) has been conducting research to understand how non-native species invade and affect ecosystems, thus aiding management efforts.

  2. Antibacterial activity of caffeine against plant pathogenic bacteria.

    PubMed

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions. PMID:26307771

  3. Species, essence and explanation.

    PubMed

    Lewens, Tim

    2012-12-01

    Michael Devitt (2008, 2010) has argued that species have intrinsic essences. This paper rebuts Devitt's arguments, but in so doing it shores up the anti-essentialist consensus in two ways that have more general interest. First, species membership can be explanatory even when species have no essences; that is, Tamsin's membership of the tiger species can explain her stripyness, without this committing us to any further claim about essential properties of tigers. Second, even the views of species that appear most congenial to essentialism-namely phenetic and genotypic cluster accounts-do not entail strong forms of intrinsic essentialism. PMID:23107092

  4. Splitting of asphaltene species

    SciTech Connect

    Galimov, R.A.; Yusupova, T.N.; Abushaeva, V.V.

    1994-05-10

    The extent of splitting of asphaltene species under the action of solvents correlates with their nature, and primarily with their electron- and proton-donor properties. According to the data of thermal analysis asphaltene species being retained after the action of solvents differ in the weight ratio of peripheral substituents to condensed part and in the fraction of labile bonds. 12 refs., 4 tabs.

  5. Delimitating species in paleoanthropology.

    PubMed

    White, Tim D

    2014-01-01

    Evolutionary biologists created a large twentieth-century literature about delimiting biological species. Paleontologists contributed the unique complications of deep time. Toward century's end, one participant wrote: "In all probability more paper has been consumed on the questions of the nature and definition of the species than any other subject in evolutionary and systematic biology." PMID:24591140

  6. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    PubMed

    Yang, Wei; Xu, Xiaonan; Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1. PMID:26751786

  7. Comparative Genome Analyses of Serratia marcescens FS14 Reveals Its High Antagonistic Potential

    PubMed Central

    Li, Pengpeng; Kwok, Amy H. Y.; Jiang, Jingwei; Ran, Tingting; Xu, Dongqing; Wang, Weiwu; Leung, Frederick C.

    2015-01-01

    S. marcescens FS14 was isolated from an Atractylodes macrocephala Koidz plant that was infected by Fusarium oxysporum and showed symptoms of root rot. With the completion of the genome sequence of FS14, the first comprehensive comparative-genomic analysis of the Serratia genus was performed. Pan-genome and COG analyses showed that the majority of the conserved core genes are involved in basic cellular functions, while genomic factors such as prophages contribute considerably to genome diversity. Additionally, a Type I restriction-modification system, a Type III secretion system and tellurium resistance genes are found in only some Serratia species. Comparative analysis further identified that S. marcescens FS14 possesses multiple mechanisms for antagonism against other microorganisms, including the production of prodigiosin, bacteriocins, and multi-antibiotic resistant determinants as well as chitinases. The presence of two evolutionarily distinct Type VI secretion systems (T6SSs) in FS14 may provide further competitive advantages for FS14 against other microbes. To our knowledge, this is the first report of comparative analysis on T6SSs in the genus, which identifies four types of T6SSs in Serratia spp.. Competition bioassays of FS14 against the vital plant pathogenic bacterium Ralstonia solanacearum and fungi Fusarium oxysporum and Sclerotinia sclerotiorum were performed to support our genomic analyses, in which FS14 demonstrated high antagonistic activities against both bacterial and fungal phytopathogens. PMID:25856195

  8. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja.

    PubMed

    Fock, I; Collonnier, C; Purwito, A; Luisetti, J; Souvannavong, V; Vedel, F; Servaes, A; Ambroise, A; Kodja, H; Ducreux, G; Sihachakr, D

    2000-12-01

    Somatic hybrid plants were produced after protoplast electrofusion between a dihaploid potato, cv. BF15, and a wild tuber-bearing relative, Solanum phureja, with a view to transferring bacterial wilt resistance into potato lines. A total of ten putative hybrids were selected. DNA analysis using flow cytometry revealed that six were tetraploids, two mixoploids, one amphiploid and one octoploid. In the greenhouse, the putative hybrids exhibited strong vigor and were morphologically intermediate, including leaf form, flowers and tuber characteristics. The hybrid nature of the ten selected plants was confirmed by examining isoenzyme patterns for esterases and peroxidases, and analysis of RAPD and SSR markers. Analysis of chloroplast genome revealed that eight hybrids possessed chloroplast (ct) DNA of the wild species, S. phureja, and only two contained Solanum tuberosum ct type. Six hybrid clones, including five tetraploids and one amphiploid, were evaluated for resistance to bacterial wilt by using race 1 and race 3 strains of Ralstonia solanacearum, originating from Reunion Island. Inoculations were performed by an in vitro root dipping method. The cultivated potato was susceptible to both bacterial strains tested. All somatic hybrids except two were tolerant to race 1 strain, and susceptible to race 3 strain. Interestingly, the amphiploid hybrid clone showed a good tolerance to both strains. PMID:11164589

  9. New Detection Systems of Bacteria Using Highly Selective Media Designed by SMART: Selective Medium-Design Algorithm Restricted by Two Constraints

    PubMed Central

    Kawanishi, Takeshi; Shiraishi, Takuya; Okano, Yukari; Sugawara, Kyoko; Hashimoto, Masayoshi; Maejima, Kensaku; Komatsu, Ken; Kakizawa, Shigeyuki; Yamaji, Yasuyuki; Hamamoto, Hiroshi; Oshima, Kenro; Namba, Shigetou

    2011-01-01

    Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria. PMID:21304596

  10. The expansion of brown rot disease throughout Bolivia: possible role of climate change.

    PubMed

    Castillo, José Antonio; Plata, Giovanna

    2016-05-01

    Bacterial wilt is a devastating plant disease caused by the bacterial pathogen Ralstonia solanacearum species complex and affects different crops. Bacterial wilt infecting potato is also known as brown rot (BR) and is responsible for significant economic losses in potato production, especially in developing countries. In Bolivia, BR affects up to 75% of the potato crop in areas with high incidence and 100% of stored potatoes. The disease has disseminated since its introduction to the country in the mid-1980s mostly through contaminated seed tubers. To avoid this, local farmers multiply seed tubers in highlands because the strain infecting potatoes cannot survive near-freezing temperatures that are typical in the high mountains. Past disease surveys have shown an increase in seed tubers with latent infection in areas at altitudes lower than 3000 m a.s.l. Since global warming is increasing in the Andes Mountains, in this work, we explored the incidence of BR in areas at altitudes above 3000 m a.s.l. Results showed BR presence in the majority of these areas, suggesting a correlation between the increase in disease incidence and the increase in temperature and the number of irregular weather events resulting from climate change. However, it cannot be excluded that the increasing availability of latently infected seed tubers has boosted the spread of BR. PMID:26991236

  11. The Brassicaceae-Specific EWR1 Gene Provides Resistance to Vascular Wilt Pathogens

    PubMed Central

    Yadeta, Koste A.; Valkenburg, Dirk-Jan; Hanemian, Mathieu; Marco, Yves; Thomma, Bart P. H. J.

    2014-01-01

    Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well. PMID:24505441

  12. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana.

    PubMed

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  13. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. PMID:24965864

  14. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    PubMed Central

    Mbah, Andreas N.; Isokpehi, Raphael D.

    2013-01-01

    The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides. PMID:24151583

  15. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana

    PubMed Central

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  16. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway

    PubMed Central

    Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1. PMID:26751786

  17. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-03-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  18. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed Central

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-01-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  19. The Brassicaceae-specific EWR1 gene provides resistance to vascular wilt pathogens.

    PubMed

    Yadeta, Koste A; Valkenburg, Dirk-Jan; Hanemian, Mathieu; Marco, Yves; Thomma, Bart P H J

    2014-01-01

    Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well. PMID:24505441

  20. How reticulated are species?

    PubMed

    Mallet, James; Besansky, Nora; Hahn, Matthew W

    2016-02-01

    Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree-like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control. PMID:26709836

  1. Beyond Single Species Interpretation.

    ERIC Educational Resources Information Center

    Richie, Deborah

    1995-01-01

    Species diversity, learning about wildlife in its natural habitats and conservation goals are integral to Watchable Wildlife programs. Examines the role of wildlife observation in spreading the message of biodiversity importance. Twenty-three references cited. (LZ)

  2. How reticulated are species?

    PubMed Central

    Besansky, Nora; Hahn, Matthew W.

    2015-01-01

    Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree‐like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control. PMID:26709836

  3. USGS invasive species solutions

    USGS Publications Warehouse

    Simpson, Annie

    2011-01-01

    Land managers must meet the invasive species challenge every day, starting with identification of problem species, then the collection of best practices for their control, and finally the implementation of a plan to remove the problem. At each step of the process, the availability of reliable information is essential to success. The U.S. Geological Survey (USGS) has developed a suite of resources for early detection and rapid response, along with data management and sharing.

  4. Species: beasts of burden.

    PubMed

    Rosenberger, Alfred L

    2014-01-01

    Ernst Mayr (1904-2005) was the twentieth century's most influential writer to wrestle with the species problem. The following draws heavily on his work, albeit without presumptuously claiming to mirror his thinking or present any original ideas. As a personal meditation, I am thinking mostly of platyrrhines. Following Mayr, I adhere to what is commonly called the Biological Species Concept (BSC) as a way of thinking about a species in the real-world biosphere as a taxon. I also hold to the idea that the Linnaean category called species has the same function as other categories: a linguistic tool for organizing and retrieving information about biodiversity while embodying evolutionary hypotheses. In other words, alpha taxonomy, the area of systematics that involves identifying, naming, and classifying species, is not purely an exercise in either biology or inventory because it involves communication as well. The burdensome work of the species category stems partly from tension created by the several purposes associated with the concept: the objective observation and examination of a fundamental biological phenomenon, the collection and interpretation of data in a selective context of relevance, and the intention to deploy scientific decisions as a form of communication within a dynamic but highly structured language system. PMID:24591139

  5. Species integrity in trees.

    PubMed

    Ortiz-Barrientos, Daniel; Baack, Eric J

    2014-09-01

    From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space. PMID:25155715

  6. Theoretical ecology without species

    NASA Astrophysics Data System (ADS)

    Tikhonov, Mikhail

    The sequencing-driven revolution in microbial ecology demonstrated that discrete ``species'' are an inadequate description of the vast majority of life on our planet. Developing a novel theoretical language that, unlike classical ecology, would not require postulating the existence of species, is a challenge of tremendous medical and environmental significance, and an exciting direction for theoretical physics. Here, it is proposed that community dynamics can be described in a naturally hierarchical way in terms of population fluctuation eigenmodes. The approach is applied to a simple model of division of labor in a multi-species community. In one regime, effective species with a core and accessory genome are shown to naturally appear as emergent concepts. However, the same model allows a transition into a regime where the species formalism becomes inadequate, but the eigenmode description remains well-defined. Treating a community as a black box that expresses enzymes in response to resources reveals mathematically exact parallels between a community and a single coherent organism with its own fitness function. This coherence is a generic consequence of division of labor, requires no cooperative interactions, and can be expected to be widespread in microbial ecosystems. Harvard Center of Mathematical Sciences and Applications;John A. Paulson School of Engineering and Applied Sciences.

  7. Insecticidal Activity of Entomopathogenic Fungi (Hypocreales) for Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae): Development of Bioassay Techniques, Effect of Fungal Species and Stage of the Psyllid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato psyllid, Bactericera cockerelli (Šulc), is a pest of potato, tomato, and some other solanaceous vegetables and has also been incriminated in the transmission of a bacterial pathogen, Candidatus Liberibacter solanacearum, resulting in a serious disease known as “zebra chip”. Although there...

  8. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  9. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  10. Genomic definition of species

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  11. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  12. Lignans from Arnica species.

    PubMed

    Schmidt, Thomas J; Stausberg, Sabine; Raison, Jeanette Von; Berner, Matthias; Willuhn, Günter

    2006-05-10

    From four Arnica species (A. angustifolia Vahl ssp. attenuata (Greene) Maguire, A. lonchophylla Greene ssp. lonchophylla Maguire (flowerheads), A. chamissonis Less. ssp. foliosa (Nutt.) Maguire, A. montana L. (roots and rhizomes)) a total of twelve lignans of the furofuran-, dibenzylbutyrolactone- and dibenzylbutyrolactol-type were isolated. No report on lignans as constituents of Arnica species exists so far. Besides the known pinoresinol, epipinoresinol, phillygenin, matairesinol, nortrachelogenin and nortracheloside, six dibenzylbutyrolactol derivatives with different stereochemistry and substitution at C-9 were isolated and their structures elucidated by NMR spectroscopic and mass spectral analysis. PMID:16644542

  13. Nocturnality and species survival.

    PubMed Central

    Daily, G C; Ehrlich, P R

    1996-01-01

    Surveys of butterfly and moth diversity in tropical forest fragments suggest that nocturnality confers a dispersal, and possibly a survival, advantage. The butterfly faunas of smaller fragments were depauperate; in contrast, the species richness of nocturnal moths was similar in all fragments and even in pasture. The lack of correlation between butterfly and moth species richness among fragments (r2 = 0.005) is best explained by movements of moths at night when ambient conditions in forest and pasture are most similar; butterflies face substantial daytime temperature, humidity, and solar radiation barriers. This interpretation is supported by information on birds, beetles, and bats. PMID:8876201

  14. Endangered Species. Issue Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, three lesson plans and student data sheets, and a poster. The overview presents the history, causes, and present state of species endangerment and a review of legislation by Congress designed to protect threatened or…

  15. Man as a Species.

    ERIC Educational Resources Information Center

    Solem, Alan; And Others

    Written in 1964, the document represents experimental material of the Anthropology Curriculum Study Project. The objectives of the project were to discuss the evolution of man as distinguished from the evolution of other species and as related to culture, and to emphasize human diversity. Three brief essays are presented. The first, "The Species…

  16. Endangered Species: Wild & Rare.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1987-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Endangered Species: Wild and Rare." Contents are organized into the following…

  17. INTRODUCED TERRESTRIAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP hexagons. The data are species counts for each spatial unit.

  18. Endangered Species. Teacher's Guide.

    ERIC Educational Resources Information Center

    Brown, Mark; And Others

    This unit is intended to examine the causes of the endangerment of Florida's plant and animal species with a detailed look at varied ecological systems. Individual lessons are designed to be used either by individual students progressing at their own rate or by small groups. Units may be modified for use by large groups. (Author/RE)

  19. Estimating species richness: The importance of heterogeneity in species detectability

    USGS Publications Warehouse

    Boulinier, T.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Pollock, K.H.

    1998-01-01

    Estimating species richness (i.e. the actual number of species present in a given area) is a basic objective of many field studies carried out in community ecology and is also of crucial concern when dealing with the conservation and management of biodiversity. In most studies, the total number of species recorded in an area at a given time is taken as a measure of species richness. Here we use a capture-recapture approach to species richness estimation with North American Breeding Bird Survey (BBS) data in order to estimate species detectability and thus gain insight about its importance. We carried out analyses on all survey routes of four states, Arizona, Maryland, North Dakota, and Wisconsin, in two years, 1970 and 1990. These states were chosen to provide contrasting habitats, bird species composition and survey quality. We investigated the effect of state, year and observer ability on the proportions of different models selected, and on estimates of detectability and species richness. Our results indicate that model Mh, which assumes heterogeneous detection probability among species, is frequently appropriate for estimating species richness from BBS data. Species detectability varied among states and was higher for the more skilled observers. These results emphasize the need to take into account potential heterogeneities in detectability among species in studies of factors affecting species richness.

  20. Estimating Effects of Species Interactions on Populations of Endangered Species.

    PubMed

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management. PMID:27028074

  1. Tracking and identification of antibacterial components in the essential oil of Tanacetum vulgare L. by the combination of high-performance thin-layer chromatography with direct bioautography and mass spectrometry.

    PubMed

    Móricz, Ágnes M; Häbe, Tim T; Böszörményi, Andrea; Ott, Péter G; Morlock, Gertrud E

    2015-11-27

    Two tansy (Tanacetum vulgare L.) essential oils were obtained by steam distillation of the capitula with subsequent liquid-liquid extraction (oil 1) or with use of an auxiliary phase for the trapping of the steam components (oil 2). These oils were investigated against Bacillus subtilis F1276, B. subtilis spizizenii (DSM 618), Xanthomonas euvesicatoria, Pseudomonas syringae pv. maculicola, Ralstonia solanacearum strain GMI1000 and Aliivibrio fischeri, using the coupling of high-performance thin-layer chromatography to direct bioautography (HPTLC-DB). Using this method with the potato and tomato pathogen R. solanacearum is shown for the first time. Due to the advanced extraction process, oil 2 was richer in components and provided more inhibition zones. The main bioactive components were identified by scanning HPTLC-Direct Analysis in Real Time mass spectrometry (HPTLC-DART-MS) and solid-phase microextraction gas chromatography electron impact MS (SPME-GC-EI-MS) as cis- and trans-chrysanthenol as well as trans-chrysanthenyl acetate. cis-Chrysanthenol exhibited antibacterial effects against all tested bacteria, whereas trans-chrysanthenol inhibited B. subtilis, R. solanacearum and A. fischeri. trans-Chrysanthenyl acetate was an inhibitor for X. euvesicatoria, R. solanacearum and A. fischeri. Although HPTLC-DART-MS resulted in a comparable fragmentation, the ionization characteristics and the recorded mass spectra clearly showed that DART is a softer ionization technique than EI. It is also more affected by ambient conditions and thus prone to additional oxidation products. PMID:26499972

  2. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    PubMed

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety. PMID:27155428

  3. Genomics of Bacillus Species

    NASA Astrophysics Data System (ADS)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  4. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  5. Aeromonas species in foods.

    PubMed

    Isonhood, Jamie H; Drake, Maryanne

    2002-03-01

    Aeromonas species have been recognized as potential or emerging foodborne pathogens for more than 20 years. Aeromonads are estuarine bacteria and are ubiquitous in fresh water, fish and shellfish, meats, and fresh vegetables. Actual sourced foodborne outbreaks are few, but epidemiological evidence suggests that the bacterium can cause self-limiting diarrhea, with children being the most susceptible population. Most aeromonads are psychrotrophic and can grow in foods during cold storage. Aeromonads are not resistant to food processing regimes and are readily killed by heat treatment. A host of virulence factors are present, but the exact role of each in human disease has not been fully elucidated. PMID:11899061

  6. Flavonoids in Sophora Species

    NASA Astrophysics Data System (ADS)

    Shirataki, Yoshiaki; Motohashi, Noboru

    Sophora species of Leguminosae are abundantly present in the natural kingdom. Today, among Sophora plants, the flavonoids of the plant phenols occupy a remarkable position. For a very long time flavonoids have been used as natural pigments and dyes. Some of the colorful anthocyanins of the glucosides are used for color and flavor in foodstuffs. Therefore, these flavonoids are beneficial to daily human life. Herein we concentrate on flavonoids in Sophora plants, and the relationship between their chemical structures and nutraceutical effect. For this purpose, soy-based infant formulas, osteoporosis, antitumor activity, antimicrobial activity, anti-HIV activity, radical generation and O2 - scavenging activity, and enzyme inhibitory activity have been described.

  7. Save Our Species: Protecting Endangered Species from Pesticides.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This full-size poster profiles 11 wildlife species that are endangered. Color illustrations of animals and plants are accompanied by narrative describing their habitats and reasons for endangerment. The reverse side of the poster contains information on the Endangered Species Act, why protecting endangered and threatened species is important, how…

  8. California Endangered Species Resource Guide.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Los Angeles.

    This document was developed in response to California Senate Bill No. 885, "The Endangered Species Education Project," that called for a statewide program in which schools adopt a local endangered species, research past and current efforts to preserve the species' habitat, develop and implement an action plan to educate the community about the…

  9. Invasive species and climate change

    USGS Publications Warehouse

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  10. 75 FR 78974 - Endangered Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... National Oceanic and Atmospheric Administration RIN 0648-XA087 Endangered Species AGENCY: National Marine... under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq.) and... Features box on the Applications and Permits for Protected Species (APPS) home page,...

  11. 75 FR 78974 - Endangered Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... National Oceanic and Atmospheric Administration RIN 0648-XA086 Endangered Species AGENCY: National Marine.... 10022-01 is requested under the authority of the Endangered Species Act of 1973, as amended (16 U.S.C... threatened species (50 CFR 222-226). Permit 10022-01, issued on May 12, 2010 (75 FR 26715) authorizes...

  12. Synthesis and antibacterial activity of pyridinium-tailored aromatic amphiphiles.

    PubMed

    Wang, Peiyi; Gao, Manni; Zhou, Lei; Wu, Zhibing; Hu, Deyu; Hu, Jun; Yang, Song

    2016-02-15

    In this Letter, the antibacterial activities of pyridinium-tailored aromatic amphiphiles were evaluated by turbidimeter tests in vitro. The bioassays revealed that most of the target compounds exhibit appreciable inhibition activities against the plant pathogenic bacteria Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri. The half-maximal effective concentrations (EC50) of 2-NP-10, 9-AP-10, and 9-AP-7 against these three bacteria were relatively high, which may be ascribed to the favourable hydrophobicity/hydrophilicity balance in these compounds. Our results suggest that pyridinium-tailored aromatic amphiphiles are promising bactericide candidates against plant bacterial diseases. PMID:26832217

  13. Introduced species as evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  14. The Species Delimitation Uncertainty Principle

    PubMed Central

    Adams, Byron J.

    2001-01-01

    If, as Einstein said, "it is the theory which decides what we can observe," then "the species problem" could be solved by simply improving our theoretical definition of what a species is. However, because delimiting species entails predicting the historical fate of evolutionary lineages, species appear to behave according to the Heisenberg Uncertainty Principle, which states that the most philosophically satisfying definitions of species are the least operational, and as species concepts are modified to become more operational they tend to lose their philosophical integrity. Can species be delimited operationally without losing their philosophical rigor? To mitigate the contingent properties of species that tend to make them difficult for us to delimit, I advocate a set of operations that takes into account the prospective nature of delimiting species. Given the fundamental role of species in studies of evolution and biodiversity, I also suggest that species delimitation proceed within the context of explicit hypothesis testing, like other scientific endeavors. The real challenge is not so much the inherent fallibility of predicting the future but rather adequately sampling and interpreting the evidence available to us in the present. PMID:19265874

  15. To Be or Not To Be a Poly(3-Hydroxybutyrate) (PHB) Depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, Highly Active PHB Depolymerases with No Detectable Role in Mobilization of Accumulated PHB

    PubMed Central

    Sznajder, Anna

    2014-01-01

    The putative physiological functions of two related intracellular poly(3-hydroxybutyrate) (PHB) depolymerases, PhaZd1 and PhaZd2, of Ralstonia eutropha H16 were investigated. Purified PhaZd1 and PhaZd2 were active with native PHB granules in vitro. Partial removal of the proteinaceous surface layer of native PHB granules by trypsin treatment or the use of PHB granules isolated from ΔphaP1 or ΔphaP1-phaP5 mutant strains resulted in increased specific PHB depolymerase activity, especially for PhaZd2. Constitutive expression of PhaZd1 or PhaZd2 reduced or even prevented the accumulation of PHB under PHB-permissive conditions in vivo. Expression of translational fusions of enhanced yellow fluorescent protein (EYFP) with PhaZd1 and PhaZd2 in which the active-site serines (S190 and Ser193) were replaced with alanine resulted in the colocalization of only PhaZd1 fusions with PHB granules. C-terminal fusions of inactive PhaZd2(S193A) with EYFP revealed the presence of spindle-like structures, and no colocalization with PHB granules was observed. Chromosomal deletion of phaZd1, phaZd2, or both depolymerase genes had no significant effect on PHB accumulation and mobilization during growth in nutrient broth (NB) or NB-gluconate medium. Moreover, neither proteome analysis of purified native PHB granules nor lacZ fusion studies gave any indication that PhaZd1 or PhaZd2 was detectably present in the PHB granule fraction or expressed at all during growth on NB-gluconate medium. In conclusion, PhaZd1 and PhaZd2 are two PHB depolymerases with a high capacity to degrade PHB when artificially expressed but are apparently not involved in PHB mobilization in the wild type. The true in vivo functions of PhaZd1 and PhaZd2 remain obscure. PMID:24907326

  16. Eighteen new oleaginous yeast species.

    PubMed

    Garay, Luis A; Sitepu, Irnayuli R; Cajka, Tomas; Chandra, Idelia; Shi, Sandy; Lin, Ting; German, J Bruce; Fiehn, Oliver; Boundy-Mills, Kyria L

    2016-07-01

    Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes. PMID:27072563

  17. Seed dormancy in alpine species

    PubMed Central

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field. PMID:24415831

  18. Management of marine species

    NASA Astrophysics Data System (ADS)

    Korringa, P.

    1980-03-01

    Marine fish and shellfish constitute important natural resources. Provided they are wisely exploited, they are not liable to exhaustion but continue to renew themselves. Wise exploitation requires sound management, and for such management one should be well informed about the factors governing the fluctuations in the stocks and about the costs of exploitation. A century of scientific fisheries research provided a wealth of information on reproduction, migration and growth of commercially important species of fish and shellfish and about the losses the stocks suffer through natural causes such as predation, diseases and parasites, and through the fishery itself. Such information is available for areas which are intensively fished. In fertile waters, the approximate growth increase of fish stocks is some 15 % by weight year-1. If one were to harvest this 15 % only, to be considered as interest on this natural capital, and to leave the capital itself untouched, one could go on fishing for ever. There would be no overfishing or stock depletion. For sound management we need not only ecological data but also information on economic fishery aspects, e. g. on size and power of the fleet, type of fish-finding apparatus installed, costs of netting and wages, fuel required per fishing trip, and on the capital invested. Further we need statistical information on the landings and on the proceeds. Such information is available in countries which participate intensively in fishing. Therefore, one would assume that governments which are well informed by their fishery biologists about fluctuations in stocks of fish and shellfish and by their economists on various aspects of the exploitation would apply sound management to ensure that fishing may continue for many years to come without depletion. A number of examples related to the North East Atlantic area, where intensive fishing is carried out and from where a wealth of scientific information is available, makes clear that cases

  19. First report of 'Candidatus Liberibacter solanacearum' on carrot in Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In March of 2014, carrot plants (Daucus carota L. var. Mascot) exhibiting symptoms of yellowing, purpling, and curling of leaves, proliferation of shoots, formation of hairy secondary roots, general stunting and plant decline were observed in commercial fields in the Gharb region of Morocco. The sym...

  20. [Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum

    SciTech Connect

    Not Available

    1992-12-31

    Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG`s) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.

  1. [Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum

    SciTech Connect

    Not Available

    1992-01-01

    Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG's) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.

  2. First report of "Candidatus Liberibacter solanacearum" infecting eggplant in Honduras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In May of 2012, eggplant (Solanum melongena) plants in an experimental research plot located at Zamorano in the Department of Francisco Morazán, Honduras, were observed with symptoms that included leaf chlorosis and cupping, overall stunting, and production of small and malformed fruits. The researc...

  3. Interactions of potato psyllids, plant virus, and Candidatus Liberibacter solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interactions between multiple pathogens or pests attacking the same host plant are poorly understood. However, previous work observed shifts in host physiology in response to one pathogen or pest often may affect success of another. This study aimed to examine how a viral pathogen, Tobacco mosaic vi...

  4. First Report of 'Candidatus Liberibacter solanacearum' in Carrots in Europe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carrot (Daucus carota) plants exhibiting symptoms that resembled those of carrot psyllid (Trioza apicalis) damage were observed in commercial fields in southern Finland in August 2008. Carrot psyllid is a serious pest of carrots in northern and central Europe, where it can cause up to 100% yield los...

  5. First report of 'Candidatus Liberibacter solanacearum' on tomato in Honduras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In April of 2012, tomato plants grown in several departments of Honduras, were observed with symptoms resembling those of “Candidatus Liberibacter solanacearum” (Lso) infection. The symptoms include overall chlorosis, severe stunting, leaf cupping, excessive branching of axillary shoots, and leaf pu...

  6. Multi-species integrative biclustering

    PubMed Central

    2010-01-01

    We describe an algorithm, multi-species cMonkey, for the simultaneous biclustering of heterogeneous multiple-species data collections and apply the algorithm to a group of bacteria containing Bacillus subtilis, Bacillus anthracis, and Listeria monocytogenes. The algorithm reveals evolutionary insights into the surprisingly high degree of conservation of regulatory modules across these three species and allows data and insights from well-studied organisms to complement the analysis of related but less well studied organisms. PMID:20920250

  7. Species complexes in the Simuliidae*

    PubMed Central

    1978-01-01

    The recent discovery that Simulium damnosum in Africa is not a single species but a complex of sibling species has important implications for the epidemiology and control of onchocerciasis. This paper sets out the current situation with regard to classification within the S. damnosum complex and the smaller S. neavei group. The nomenclature of the S. damnosum complex and current morphological and enzyme electrophoretic methods of differentiating among sibling species are discussed. Finally, recommendations are made on priorities for future research. PMID:307447

  8. The Politics of Endangered Species.

    ERIC Educational Resources Information Center

    Lipscomb, Fran

    1982-01-01

    Presents background information and teaching suggestions about endangered species for social studies teachers. Discusses political processes, economics, current events, and ethics. Lists resource information. (DC)

  9. Previously unknown species of Aspergillus.

    PubMed

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. PMID:27263029

  10. Ring species as demonstrations of the continuum of species formation.

    PubMed

    Pereira, Ricardo J; Wake, David B

    2015-11-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier, derived taxa within the ring display interactions typical of populations, such as genetic and morphological intergradation, while overlapping taxa at the terminus of the ring behave largely as sympatric, reproductively isolated species. Are ring species extremely rare or are they just difficult to detect? What conditions favour their formation? Modelling studies have attempted to address these knowledge gaps by estimating the biological parameters that result in stable ring species (Martins et al. 2013), and determining the necessary topographic parameters of the barriers encircled (Monahan et al. 2012). However, any generalization is undermined by a major limitation: only a handful of ring species are known to exist in nature. In addition, many of them have been broken into multiple species presumed to be evolving independently, usually obscuring the evolutionary dynamics that generate diversity. A paper in this issue of Molecular Ecology by Fuchs et al. (2015), focused on the entire genealogy of a bulbul (Alophoixus) species complex, offers key insights into the evolutionary processes underlying diversification of this Indo-Malayan bird. Their findings fulfil most of the criteria that can be expected for ring species (Fig. ): an ancestor has colonized the mainland from Sundaland, expanded along the forested habitat wrapping around Thailand's lowlands, adjacent taxa intergrade around the ring distribution, and terminal taxa overlap at the ring closure. Although it remains unclear whether ring divergence has resulted in restrictive gene flow relative to that observed around the ring, their results suggest that circular overlaps might be more common in nature than

  11. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code...

  12. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code...

  13. Common Pyraloidea species of Dominica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-six adult crambid moths of the superfamily Pyraloidea from Dominica are illustrated and identified. These images are a tool for the identification of large, common species in the Caribbean. The Caribbean is a common entry and pathway of invasive species to southeastern United States....

  14. Teaching an Endangered Species Unit.

    ERIC Educational Resources Information Center

    Quilty, Joan; And Others

    1986-01-01

    Describes how a student speech activity can serve as a culminating exercise in a unit on endangered species. Offers suggestions and guidelines for researching, formatting, and delivering the speech. A table is also included explaining the causes and prevention of species endangerment. (ML)

  15. Antifungal compounds from Piper species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Piper is a big genus of the plant family Piperaceae, with more than 700 species widely distributed in the tropical and subtropical regions of the world. Some species are used in folk medicine as analgesics, antiseptics, insecticides, and antimicrobials or for the treatment of toothache, haemorrhoid...

  16. Chironomids' Relationship with Aeromonas Species.

    PubMed

    Laviad, Sivan; Halpern, Malka

    2016-01-01

    Chironomids (Diptera: Chironomidae), also known as non-biting midges, are one of the most abundant groups of insects in aquatic habitats. They undergo a complete metamorphosis of four life stages of which three are aquatic (egg, larva, and pupa), and the adult emerges into the air. Chironomids serve as a natural reservoir of Aeromonas and Vibrio cholerae species. Here, we review existing knowledge about the mutual relations between Aeromonas species and chironomids. Using 454-pyrosequencing of the 16S rRNA gene, we found that the prevalence of Aeromonas species in the insects' egg masses and larvae was 1.6 and 3.3% of the insects' endogenous microbiota, respectively. Aeromonas abundance per egg mass remained stable during a 6-month period of bacterial monitoring. Different Aeromonas species were isolated and some demonstrated the ability to degrade the insect's egg masses and to prevent eggs hatching. Chitinase was identified as the enzyme responsible for the egg mass degradation. Different Aeromonas species isolated from chironomids demonstrated the potential to protect their host from toxic metals. Aeromonas is a causative agent of fish infections. Fish are frequently recorded as feeding on chironomids. Thus, fish might be infected with Aeromonas species via chironomid consumption. Aeromonas strains are also responsible for causing gastroenteritis and wound infections in humans. Different virulence genes were identified in Aeromonas species isolated from chironomids. Chironomids may infest drinking water reservoirs, hence be the source of pathogenic Aeromonas strains in drinking water. Chironomids and Aeromonas species have a complicated mutual relationship. PMID:27242751

  17. 76 FR 1405 - Endangered Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... National Oceanic and Atmospheric Administration RIN 0648-XA128 Endangered Species AGENCY: National Marine... issued under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq... was published in the Federal Register (75 FR 16482) that a request for a scientific research permit...

  18. 76 FR 74778 - Endangered Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... National Oceanic and Atmospheric Administration RIN 0648-XA850 Endangered Species AGENCY: National Marine... has been issued under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C..., notice was published in the Federal Register (76 FR 33703) that a request for a scientific...

  19. 76 FR 2348 - Endangered Species

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XA140 Endangered Species AGENCY: National Marine... Fort Fisher. The requested permit has been issued under the authority of the Endangered Species Act of... INFORMATION: On October 5, 2010, notice was published in the Federal Register (75 FR 61424) that a request...

  20. Managing the invasive species risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Florida, California and Hawaii are on the front lines when it comes to the war with invasive species. One study documented the Florida invasion at more than one new arthropod species becoming established in the state each month with California estimated to be one every other month. This does not mea...

  1. Conservation of tropical plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is designed to provide a review of the methods and current status of conservation of many tropical plant species. Future perspectives of conservation of tropical species will also be discussed. The section on methods covers the range of conservation techniques, in situ, seed banking, in vi...

  2. Managing the invasive species risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Florida, California and Hawaii are on the front lines when it comes to the war with invasive species. One study documented the Florida invasion at more than one new arthropod species becoming established in the state each month with California estimated to be one every other month. This does not me...

  3. A NEW SPECIES OF MEMNONIELLA

    EPA Science Inventory

    A new species, Stachybotrys longistipitata sp. nov is described and illustrated. This fungus was originally isolated from forest soil in Japan and deposited as Memnoniella subsimplex.

    Introduction

    Four species have been described in the mitosporic genus Memnoniella ...

  4. Humans as a Hyperkeystone Species.

    PubMed

    Worm, Boris; Paine, Robert T

    2016-08-01

    Ecologists have identified numerous keystone species, defined as organisms that have outsized ecological impacts relative to their biomass. Here we identify human beings as a higher-order or 'hyperkeystone' species that drives complex interaction chains by affecting other keystone actors across different habitats. Strong indirect effects and a global reach further characterize these interactions and amplify the impacts of human activities on diverse ecosystems, from oceans to forests. We require better understanding of hyperkeystone interaction chains most urgently, especially for marine species and terrestrial large carnivores, which experience relatively higher exploitation rates than other species. This requires innovative approaches that integrate the study of human behavior with food-web theory, and which might provide surprising new insights into the complex ecology of our own species. PMID:27312777

  5. Reproductive interference between animal species.

    PubMed

    Gröning, Julia; Hochkirch, Axel

    2008-09-01

    Although sexual interactions between species (reproductive interference) have been reported from a wide range of animal taxa, their potential for determining species coexistence is often disregarded. Here, we review evidence from laboratory and field studies illustrating that heterospecific sexual interactions are frequently associated with fitness loss and can have severe ecological and evolutionary consequences. We define reproductive interference as any kind of interspecific interaction during the process of mate acquisition that adversely affects the fitness of at least one of the species involved and that is caused by incomplete species recognition. We distinguish seven types of reproductive interference: signal jamming, heterospecific rivalry, misdirected courtship, heterospecific mating attempts, erroneous female choice, heterospecific mating, and hybridization. We then discuss the sex-specific costs of these types and highlight two typical features of reproductive interference: density-dependence and asymmetry. Similar to competition, reproductive interference can lead to displacement of one species (sexual exclusion), spatial, temporal, or habitat segregation, changes in life history parameters, and reproductive character displacement. In many cases, patterns of coexistence might be shaped by reproductive interference rather than by resource competition, as the presence of a few heterospecifics might substantially decrease reproductive success. Therefore, interspecific sexual interactions should receive more attention in ecological research. Reproductive interference has mainly been discussed in the context of invasive species or hybrid zones, whereas its influence on naturally-occurring sympatric species pairs has rarely been addressed. To improve our knowledge of the ecological significance of reproductive interference, findings from laboratory experiments should be validated in the field. Future studies should also focus on ecological mechanisms, such

  6. The Trichoderma koningii aggregate species

    PubMed Central

    Samuels, Gary J.; Dodd, Sarah L.; Lu, Bing-Sheng; Petrini, Orlando; Schroers, Hans-Josef; Druzhinina, Irina S.

    2006-01-01

    The morphological concept of Trichoderma koningii is found to include several species that differ from each other in details of phenotype (including conidium morphology, growth rate) and biogeography. Phylogenetic analysis utilizing partial sequences of the translation-elongation factor 1 alpha (tef1), as well as fragments of actin and calmodulin genes, indicate that phenotypic characters typical of T. koningii evolved independently in three well-separated main lineages. Combined molecular and phenotype data lead to the development of a taxonomy with the recognition of twelve taxonomic species and one variety within the three lineages. These lineages include: (1) T. koningii and T. ovalisporum and the new species T. caribbaeum var. caribbaeum, T. caribbaeum var. aequatoriale, T. dorotheae, T. dingleyae, T. intricatum, T. koningiopsis, T. petersenii and T. taiwanense; (2) the new species T. rogersonii and T. austrokoningii, and (3) the new anamorph T. stilbohypoxyli. Trichoderma koningii s. str. is an uncommon species restricted to Europe and eastern North America; T. caribbaeum var. aequatoriale, T. koningiopsis, and T. ovalisporum were isolated as endophytes of trunks of Theobroma species in tropical America, and T. ovalisporum from the woody liana Banisteropsis caapi in Ecuador; T. koningiopsis is common in tropical America but was isolated also from natural substrata in East Africa, Europe and Canada, and from ascospores in eastern North America, and as an endophyte in Theobroma species; T. stilbohypoxyli, originally described as a parasite of Stilbohypoxylon species in Puerto Rico, is found to be more common in the tropics, besides an endophytic isolate from Fagus in U.K. The additional new species are known almost exclusively from their teleomorphs. Isolates of T. ovalisporum and T. koningiopsis may have biological control potential. A morphophenetic key and a set of tools for molecular species identification were developed. PMID:18490990

  7. Interference competition and species coexistence.

    PubMed Central

    Amarasekare, Priyanga

    2002-01-01

    Interference competition is ubiquitous in nature. Yet its effects on resource exploitation remain largely unexplored for species that compete for dynamic resources. Here, I present a model of exploitative and interference competition with explicit resource dynamics. The model incorporates both biotic and abiotic resources. It considers interference competition both in the classical sense (i.e. each species suffers a net reduction in per capita growth rate via interference from, and interference on, the other species) and in the broad sense (i.e. each species suffers a net reduction in per capita growth rate via interference from, but can experience an increase in growth rate via interference on, the other species). Coexistence cannot occur under classical interference competition even when the species inferior at resource exploitation is superior at interference. Such a trade-off can, however, change the mechanism of competitive exclusion from dominance by the superior resource exploiter to a priority effect. Now the inferior resource exploiter can exclude the superior resource exploiter provided it has a higher initial abundance. By contrast, when interference is beneficial to the interacting species, coexistence is possible via a trade-off between exploitation and interference. These results hold regardless of whether the resource is biotic or abiotic, indicating that the outcome of exploitative and interference competition does not depend on the exact nature of resource dynamics. The model makes two key predictions. First, species that engage in costly interference mechanisms (e.g. territoriality, overgrowth or undercutting, allelopathy and other forms of chemical competition) should not be able to coexist unless they also engage in beneficial interference mechanisms (e.g. predation or parasitism). Second, exotic invasive species that displace native biota should be superior resource exploiters that have strong interference effects on native species with little

  8. RipAY, a Plant Pathogen Effector Protein, Exhibits Robust γ-Glutamyl Cyclotransferase Activity When Stimulated by Eukaryotic Thioredoxins.

    PubMed

    Fujiwara, Shoko; Kawazoe, Tomoki; Ohnishi, Kouhei; Kitagawa, Takao; Popa, Crina; Valls, Marc; Genin, Stéphane; Nakamura, Kazuyuki; Kuramitsu, Yasuhiro; Tanaka, Naotaka; Tabuchi, Mitsuaki

    2016-03-25

    The plant pathogenic bacterium Ralstonia solanacearum injects more than 70 effector proteins (virulence factors) into the host plant cells via the needle-like structure of a type III secretion system. The type III secretion system effector proteins manipulate host regulatory networks to suppress defense responses with diverse molecular activities. Uncovering the molecular function of these effectors is essential for a mechanistic understanding of R. solanacearum pathogenicity. However, few of the effectors from R. solanacearum have been functionally characterized, and their plant targets remain largely unknown. Here, we show that the ChaC domain-containing effector RipAY/RSp1022 from R. solanacearum exhibits γ-glutamyl cyclotransferase (GGCT) activity to degrade the major intracellular redox buffer, glutathione. Heterologous expression of RipAY, but not other ChaC family proteins conserved in various organisms, caused growth inhibition of yeast Saccharomyces cerevisiae, and the intracellular glutathione level was decreased to ∼30% of the normal level following expression of RipAY in yeast. Although active site mutants of GGCT activity were non-toxic, the addition of glutathione did not reverse the toxicity, suggesting that the toxicity might be a consequence of activity against other γ-glutamyl compounds. Intriguingly, RipAY protein purified from a bacterial expression system did not exhibit any GGCT activity, whereas it exhibited robust GGCT activity upon its interaction with eukaryotic thioredoxins, which are important for intracellular redox homeostasis during bacterial infection in plants. Our results suggest that RipAY has evolved to sense the host intracellular redox environment, which triggers its enzymatic activity to create a favorable environment for R. solanacearum infection. PMID:26823466

  9. Species delimitation and global biosecurity.

    PubMed

    Boykin, Laura M; Armstrong, Karen F; Kubatko, Laura; De Barro, Paul

    2012-01-01

    Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, "tip to root", for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg's reciprocal monophyly, (P(AB)),1 (2) Rodrigo's (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits might

  10. Species Delimitation and Global Biosecurity

    PubMed Central

    Boykin, Laura M.; Armstrong, Karen F.; Kubatko, Laura; De Barro, Paul

    2012-01-01

    Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, “tip to root”, for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg’s reciprocal monophyly, (P(AB)),1 (2) Rodrigo’s (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits

  11. Revision of the Palearctic Chaetocnema species (Coleoptera: Chrysomelidae: Galerucinae: Alticini)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Palearctic Chaetocnema species are revised. Seven species are described as new: Chaetocnema belka new species; Chaetocnema bergeali new species; Chaetocnema eastafghanica new species; Chaetocnema franzi new species; Chaetocnema igori new species; Chaetocnema lubischevi new species; Chaetocnema t...

  12. Species-barrier-independent prion replication in apparently resistant species

    NASA Astrophysics Data System (ADS)

    Hill, Andrew F.; Joiner, Susan; Linehan, Jackie; Desbruslais, Melanie; Lantos, Peter L.; Collinge, John

    2000-08-01

    Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.

  13. Species Recognition and Cryptic Species in the Tuber indicum Complex

    PubMed Central

    Chen, Juan; Guo, Shun-Xing; Liu, Pei-Gui

    2011-01-01

    Morphological delimitation of Asian black truffles, including Tuber himalayense, T. indicum, T. sinense, T. pseudohimalayense, T. formosanum and T. pseudoexcavatum, has remained problematic and even phylogenetic analyses have been controversial. In this study, we combined five years of field investigation in China with morphological study and DNA sequences analyses (ITS, LSU and β-tubulin) of 131 Tuber specimens to show that T. pseudohimalayense and T. pseudoexcavatum are the same species. T. formosanum is a separate species based on its host plants and geographic distribution, combined with minor morphological difference from T. indicum. T. sinense should be treated as a synonym of T. indicum. Our results demonstrate that the present T. indicum, a single described morphological species, should include at least two separate phylogenetic species. These findings are of high importance for truffle taxonomy and reveal and preserve the richness of truffle diversity. PMID:21297969

  14. Are most species small? Not within species-level phylogenies.

    PubMed Central

    Orme, C David L; Isaac, Nick J B; Purvis, Andy

    2002-01-01

    The robust macro-ecological observation that there are more small-bodied species implies that small-bodied organisms have experienced elevated net rates of diversification. We investigate the role of body size in creating non-random differences in rates of cladogenesis using a set of 38 species-level phylogenies drawn from a range of animal groups. We use independent contrasts to explore the relationship between body size and species richness within individual phylogenies and across related sets of phylogenies. We also carry out a meta-analysis looking for associations between body size and species richness across the taxa. We find little evidence for increased cladogenesis among small-bodied organisms within taxa, and no evidence for any consistent differences between taxa. We explore possible explanations for the inconsistency of our findings with macro-ecological patterns. PMID:12065045

  15. Species interactions and plant polyploidy.

    PubMed

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. PMID:27370313

  16. Species-Area Relationships Are Controlled by Species Traits

    PubMed Central

    Franzén, Markus; Schweiger, Oliver; Betzholtz, Per-Eric

    2012-01-01

    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope  = 0.82), narrow dietary niche (slope  = 0.59), low abundance (slope  = 0.52), and low reproductive potential (slope  = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions. PMID:22629384

  17. Evolution of mutualism between species

    SciTech Connect

    Post, W.M.; Travis, C.C.; DeAngelis, D.L.

    1980-01-01

    Recent theoretical work on mutualism, the interaction between species populations that is mutually beneficial, is reviewed. Several ecological facts that should be addressed in the construction of dynamic models for mutualism are examined. Basic terminology is clarified. (PSB)

  18. Species Typing in Dermal Leishmaniasis

    PubMed Central

    Dujardin, Jean-Claude

    2015-01-01

    SUMMARY Leishmania is an infectious protozoan parasite related to African and American trypanosomes. All Leishmania species that are pathogenic to humans can cause dermal disease. When one is confronted with cutaneous leishmaniasis, identification of the causative species is relevant in both clinical and epidemiological studies, case management, and control. This review gives an overview of the currently existing and most used assays for species discrimination, with a critical appraisal of the limitations of each technique. The consensus taxonomy for the genus is outlined, including debatable species designations. Finally, a numerical literature analysis is presented that describes which methods are most used in various countries and regions in the world, and for which purposes. PMID:25672782

  19. Written Research: An Endangered Species?

    ERIC Educational Resources Information Center

    Hill, Bonnie Campbell

    1989-01-01

    Describes how an integrated unit on endangered species brings research alive for second through sixth graders. Presents lessons involving pre-writing, modeling, guided practice, independent practice, revision, and publication of student papers. (KEH)

  20. Western Shield Threatened Species Program.

    ERIC Educational Resources Information Center

    Moore, Elizabeth

    2001-01-01

    Outlines strategies used to involve the teaching community in a program of native wildlife recovery. Through involvement, teachers and students learn how to contribute to protecting threatened species and maintaining biodiversity. (DDR)

  1. Tuberculosis in domestic animal species.

    PubMed

    Pesciaroli, M; Alvarez, J; Boniotti, M B; Cagiola, M; Di Marco, V; Marianelli, C; Pacciarini, M; Pasquali, P

    2014-10-01

    M. bovis and M. caprae, members of the Mycobacterium tuberculosis complex (MTC), are the major causative agents of tuberculosis in domestic animals. Notably, M. bovis exhibits a wide host range; the infection has been reported in many domesticated animals and free or captive wildlife. Despite most of them acting as spill-over hosts in particular epidemiological scenarios, some domesticated species as pigs, camelids and goats may display high rates of infection and possibly play a role in the inter-species transmission of the disease. The aim of this review is to make an updated overview of the susceptibility and the role in the transmission of the disease of the most common domesticated animals species such as small ruminants, pigs, horses, camelids, dogs and cats. An overview of the diagnostic approaches to detect the infection in each of the species included in the review is also presented. PMID:25151859

  2. The Candida Pathogenic Species Complex

    PubMed Central

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  3. Species doubling and effective Lagrangians

    SciTech Connect

    Creutz, M.; Tytgat, M.

    1996-09-01

    Coupling gauge fields to the chiral currents from an effective Lagrangian for pseudoscalar mesons naturally gives rise to a species doubling phenomenon similar to that seen with fermionic fields in lattice gauge theory. 17 refs.

  4. Earth Day: All Species Projects.

    ERIC Educational Resources Information Center

    Kraft, Marty

    1994-01-01

    Describes the All Species Project, an interdisciplinary program that attempts to build a sense of community and understanding of the natural world by integrating ideas from art, science, anthropology, counseling, theater, and any other area deemed applicable. (MDH)

  5. Some species tolerate ocean acidification

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-12-01

    Increasing carbon dioxide levels lead to rising ocean acidity, which can harm corals and many other species of ocean life. Acidification causes calcium carbonate, which corals usually need to build skeletons, to dissolve. “Every day, ocean acidification is taking up the weight of 6 million midsize cars' worth of carbon, said Nina Keul, a graduate student at the Alfred Wegener Institute for Polar and Marine Research in Germany during a 7 December press conference at the AGU Fall Meeting. Somewhat surprising, though, is that some species are more tolerant of acidic conditions than scientists had expected. For instance, Keul exposed a species of foraminifera, Ammonia tepida, to seawater with varying acidity and varying carbonate ion concentrations. Previous studies had found that foraminifera growth declined with decreasing carbonate levels, but Keul's foraminifera continued to grow in the acidic conditions. She said that the mechanism that allows this species to tolerate the low carbonate conditions is as yet unknown.

  6. [Phylogenetic analysis of Pleurotus species].

    PubMed

    Shnyreva, A A; Shnyreva, A V

    2015-02-01

    We performed phylogenetic analysis for ten Pleurotus species, based on internal transcribed spacer (ITS) sequences of rDNA. A phylogenetic tree was constructed on the basis of 31 oyster fungi strains of different origin and 10 reference sequences from GenBank. Our analysis demonstrates that the tested Pleurotus species are of monophyletic origin. We evaluated the evolutionary distances between these species. Classic genetic analysis of sexual compatibility based on monocaryon (mon)-mon crosses showed no reproductive barriers within the P. cornucopiae-P. euosmus species complex. Thus, despite the divergence (subclustering) between commercial strains and natural isolates of P. ostreatus revealed by phylogenetic analysis, there is no reproductive isolation between these groups. A common allele of the matB locus was identified for the commercial strains Sommer and L/4, supporting the common origin of these strains. PMID:25966583

  7. Chironomids’ Relationship with Aeromonas Species

    PubMed Central

    Laviad, Sivan; Halpern, Malka

    2016-01-01

    Chironomids (Diptera: Chironomidae), also known as non-biting midges, are one of the most abundant groups of insects in aquatic habitats. They undergo a complete metamorphosis of four life stages of which three are aquatic (egg, larva, and pupa), and the adult emerges into the air. Chironomids serve as a natural reservoir of Aeromonas and Vibrio cholerae species. Here, we review existing knowledge about the mutual relations between Aeromonas species and chironomids. Using 454-pyrosequencing of the 16S rRNA gene, we found that the prevalence of Aeromonas species in the insects’ egg masses and larvae was 1.6 and 3.3% of the insects’ endogenous microbiota, respectively. Aeromonas abundance per egg mass remained stable during a 6-month period of bacterial monitoring. Different Aeromonas species were isolated and some demonstrated the ability to degrade the insect’s egg masses and to prevent eggs hatching. Chitinase was identified as the enzyme responsible for the egg mass degradation. Different Aeromonas species isolated from chironomids demonstrated the potential to protect their host from toxic metals. Aeromonas is a causative agent of fish infections. Fish are frequently recorded as feeding on chironomids. Thus, fish might be infected with Aeromonas species via chironomid consumption. Aeromonas strains are also responsible for causing gastroenteritis and wound infections in humans. Different virulence genes were identified in Aeromonas species isolated from chironomids. Chironomids may infest drinking water reservoirs, hence be the source of pathogenic Aeromonas strains in drinking water. Chironomids and Aeromonas species have a complicated mutual relationship. PMID:27242751

  8. Collective behaviour across animal species

    NASA Astrophysics Data System (ADS)

    Delellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M.; Porfiri, Maurizio

    2014-01-01

    We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.

  9. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  10. Thromboelastography in Selected Avian Species.

    PubMed

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders. PMID:26771317

  11. Exploitation of Host Polyubiquitination Machinery through Molecular Mimicry by Eukaryotic-Like Bacterial F-Box Effectors

    PubMed Central

    Price, Christopher T. D.; Kwaik, Yousef Abu

    2010-01-01

    Microbial pathogens have evolved exquisite mechanisms to interfere and intercept host biological processes, often through molecular mimicry of specific host proteins. Ubiquitination is a highly conserved eukaryotic post-translational modification essential in determining protein fate, and is often hijacked by pathogenic bacteria. The conserved SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase complex plays a key role in ubiquitination of proteins in eukaryotic cells. The F-box protein component of the SCF complex provides specificity to ubiquitination by binding to specific cellular proteins, targeting them to be ubiquitinated by the SCF complex. The bacterial pathogens. Legionella pneumophila, Agrobacterium tumefaciens, and Ralstonia solanacearum utilize type III or IV translocation systems to inject into the host cell eukaryotic-like F-box effectors that interact with the host SKP1 component of the SCF complex to trigger ubiquitination of specific host cells targets, which is essential to promote proliferation of these pathogens. Our bioinformatic analyses have identified at least 74 genes encoding putative F-box proteins belonging to 22 other bacterial species, including human pathogens, plant pathogens, and amebal endosymbionts. Therefore, subversion of the host ubiquitination machinery by bacterial F-box proteins may be a widespread strategy amongst pathogenic bacteria. The findings that bacterial F-box proteins harbor Ankyrin repeats as protein–protein interaction domains, which are present in F-box proteins of primitive but not higher eukaryotes, suggest acquisition of many bacterial F-box proteins from primitive eukaryotic hosts rather than the mammalian host. PMID:21687758

  12. Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants

    PubMed Central

    Hueck, Christoph J.

    1998-01-01

    , and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp. PMID:9618447

  13. Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...

  14. The Colletotrichum gloeosporioides species complex

    PubMed Central

    Weir, B.S.; Johnston, P.R.; Damm, U.

    2012-01-01

    The limit of the Colletotrichum gloeosporioides species complex is defined genetically, based on a strongly supported clade within the Colletotrichum ITS gene tree. All taxa accepted within this clade are morphologically more or less typical of the broadly defined C. gloeosporioides, as it has been applied in the literature for the past 50 years. We accept 22 species plus one subspecies within the C. gloeosporioides complex. These include C. asianum, C. cordylinicola, C. fructicola, C. gloeosporioides, C. horii, C. kahawae subsp. kahawae, C. musae, C. nupharicola, C. psidii, C. siamense, C. theobromicola, C. tropicale, and C. xanthorrhoeae, along with the taxa described here as new, C. aenigma, C. aeschynomenes, C. alatae, C. alienum, C. aotearoa, C. clidemiae, C. kahawae subsp. ciggaro, C. salsolae, and C. ti, plus the nom. nov. C. queenslandicum (for C. gloeosporioides var. minus). All of the taxa are defined genetically on the basis of multi-gene phylogenies. Brief morphological descriptions are provided for species where no modern description is available. Many of the species are unable to be reliably distinguished using ITS, the official barcoding gene for fungi. Particularly problematic are a set of species genetically close to C. musae and another set of species genetically close to C. kahawae, referred to here as the Musae clade and the Kahawae clade, respectively. Each clade contains several species that are phylogenetically well supported in multi-gene analyses, but within the clades branch lengths are short because of the small number of phylogenetically informative characters, and in a few cases individual gene trees are incongruent. Some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase, can be used to reliably distinguish most taxa and will need to be developed as secondary barcodes for species level identification, which is important because many of these fungi are of biosecurity

  15. Early detection of plant disease using close range sensing system for input into digital earth environment

    NASA Astrophysics Data System (ADS)

    Chew, W. C.; Hashim, M.; Lau, A. M. S.; Battay, A. E.; Kang, C. S.

    2014-02-01

    A case study on pre-symptom stage of plant disease infection using ground based hyperspectral remote sensing was conducted. The objectives of the study are: (1) to validate the existence of pre-symptom stage of Ralstonia Solanacearum infection in Solanum Melongena L. (eggplant), and (2) to determine the induced electromagnetic spectral response for infected eggplant. From the experiment, the pre-symptom duration of Ralstonia Solanacearum infection in the case of eggplant was estimated (with the artificial photosynthetic stress conditions were adopted in the experiment to induce measurable changes in daily hyperspectral measurement of disease infected eggplant samples during the pre-symptom stage) as four days which is the critical period for practicing effective treatments. Vegetation indices namely, (1) Chlorophyll Absorption Integral (CAI), (2) Photochemical Radiation Index (PRI), and (3) Normalized Difference Vegetation Index (NDVI) have successfully shown noticeable progress of index value from the infected sample plant (with 100% light stress condition) throughout the study. Yet, other infected sample plants with moderate light stress conditions (50% or 75%) did not result any similar progress of index value from the daily leaf scale hyperspectral measurements. Apparently, extreme light stress can induce significant changes at visible portion in hyperspectral measurements for a disease infected eggplant during the pre-symptom stage.

  16. 50 CFR 600.509 - Prohibited species.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Prohibited species. 600.509 Section 600... species. (a) The owner or operator of each FFV must minimize its catch or receipt of prohibited species... its catch of fish received as soon as possible and return all prohibited species and species parts...

  17. 50 CFR 600.509 - Prohibited species.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prohibited species. 600.509 Section 600... species. (a) The owner or operator of each FFV must minimize its catch or receipt of prohibited species... its catch of fish received as soon as possible and return all prohibited species and species parts...

  18. 50 CFR 600.509 - Prohibited species.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Prohibited species. 600.509 Section 600... species. (a) The owner or operator of each FFV must minimize its catch or receipt of prohibited species... its catch of fish received as soon as possible and return all prohibited species and species parts...

  19. 50 CFR 600.509 - Prohibited species.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Prohibited species. 600.509 Section 600... species. (a) The owner or operator of each FFV must minimize its catch or receipt of prohibited species... its catch of fish received as soon as possible and return all prohibited species and species parts...

  20. 50 CFR 600.509 - Prohibited species.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Prohibited species. 600.509 Section 600... species. (a) The owner or operator of each FFV must minimize its catch or receipt of prohibited species... its catch of fish received as soon as possible and return all prohibited species and species parts...

  1. Xiphinema krugi, Species Complex or Complex of Cryptic Species?

    PubMed Central

    Oliveira, Claudio M. G.; Ferraz, Luiz C. C. B.; Neilson, Roy

    2006-01-01

    Fourteen morphologically putative populations of X. krugi were clearly separated into four different profiles by RFLP analysis (Alu I and Hinf I), sequencing of the ITS-1 region, and subsequent Maximum Likelihood phylogenetic analyses. These four profiles were further supported by a principal component analysis of morphometric characters that yielded four taxonomic clusters matching those produced by the molecular data. Sequence homology was greater amongst populations that represented the same RFLP profile than between profiles and similar both between representative populations of the RFLP profiles and putative closely related Xiphinema species. This study suggests that X. krugi is a potential species complex comprised of at least four distinct genotypes. PMID:19259458

  2. Genome Size and Species Diversification

    PubMed Central

    2010-01-01

    Theoretically, there are reasons to believe that large genome size should favour speciation. Several major factors contributing to genome size, such as duplications and transposable element activity have been proposed to facilitate the formation of new species. However, it is also possible that small genome size promotes speciation. For example, selection for genome reduction may be resolved in different ways in incipient species, leading to incompatibilities. Mutations and chromosomal rearrangements may also be more stably inherited in smaller genomes. Here I review the following lines of empirical evidence bearing on this question: (i) Correlations between genome size and species richness of taxa are often negative. (ii) Fossil evidence in lungfish shows that the accumulation of DNA in the genomes of this group coincided with a reduction in species diversity. (iii) Estimates of speciation interval in mammals correlate positively with genome size. (iv) Genome reductions are inferred at the base of particular species radiations and genome expansions at the base of others. (v) Insect clades that have been increasing in diversity up to the present have smaller genomes than clades that have remained stable or have decreased in diversity. The general pattern emerging from these observations is that higher diversification rates are generally found in small-genome taxa. Since diversification rates are the net effect of speciation and extinction, large genomes may thus either constrain speciation rate, increase extinction rate, or both. I argue that some of the cited examples are unlikely to be explained by extinction alone. PMID:22140283

  3. EF-Tu from the enacyloxin producing Frateuria W-315 strain: Structure/activity relationship and antibiotic resistance.

    PubMed

    Créchet, Jean-Bernard; Malosse, Christian; Hountondji, Codjo

    2016-08-01

    In this report, we have demonstrated that the poly(U)-dependent poly(Phe) synthesis activity of elongator factor Tu (EF-Tu) from the enacyloxin producing strain Frateuria sp. W-315 is inhibited by the antibiotic similarly to that of Escherichia coli EF-Tu. The inhibitory effect of enacyloxin observed in a purified system was the same as that obtained with an S30 extract from E. coli or Frateuria sp. W-315, respectively, suggesting that antibiotic resistance of enacyloxin producing Frateuria sp. W-315 is not due neither to EF-Tu nor to other components of the translation machinery but to a still unknown mechanism. The EF-Tu gene, as PCR amplified from Frateuria W-315 genomic DNA and sequenced represented an ORF of 1191 nucleotides corresponding to 396 amino acids. This protein is larger than the product of tufA from E. coli by only two amino acid residues. Alignment of the amino acid sequence of EF-Tu from E. coli with those of Frateuria and Ralstonia solanacearum indicates on average 80% identical amino acid residues and 9.7% conservative replacements between EF-Tu Frateuria and EF-Tu E. coli, on one hand, and 97% identity and 1.7% conservative replacement between EF-Tu Frateuria and EF-Tu Ralstonia solanacearum, on the other hand. These strong primary structure similarities between EF-Tu from different origins are consistent with the fact that this factor is essential for the translation process in all kingdoms of life. Comparison of the effects of antibiotics on EF-Tu Frateuria and EF-Tu E. coli revealed that enacyloxin, kirromycin and pulvomycin exert a stronger stimulation of the GDP dissociation rate on EF-Tu Frateuria, while the effects of the antibiotics on the GDP association rate were comparable for the two EF-Tu species. Different mutants of EF-Tu E. coli were constructed with the help of site directed mutagenesis by changing one or several residues of EF-Tu E. coli by the corresponding residues of EF-Tu Frateuria. The single A45K substitution did

  4. Tripartite genome of all species.

    PubMed

    Long, MengPing; Hu, TaoBo

    2016-01-01

    Neutral theory has dominated the molecular evolution field for more than half a century, but it has been severely challenged by the recently emerged Maximum Genetic Diversity (MGD) theory. However, based on our recent work of tripartite human genome architecture, we found that MGD theory may have overlooked the regulatory but variable genomic regions that increase with species complexity. Here we propose a new molecular evolution theory named Increasing Functional Variation (IFV) hypothesis. According to the IFV hypothesis, the genome of all species is divided into three regions that are 'functional and invariable', 'functional and variable' and 'non-functional and variable'. While the 'non-functional and variable' region decreases as species become more complex, the other two regions increase. PMID:27366319

  5. Tripartite genome of all species

    PubMed Central

    2016-01-01

    Neutral theory has dominated the molecular evolution field for more than half a century, but it has been severely challenged by the recently emerged Maximum Genetic Diversity (MGD) theory. However, based on our recent work of tripartite human genome architecture, we found that MGD theory may have overlooked the regulatory but variable genomic regions that increase with species complexity. Here we propose a new molecular evolution theory named Increasing Functional Variation (IFV) hypothesis. According to the IFV hypothesis, the genome of all species is divided into three regions that are ‘functional and invariable’, ‘functional and variable’ and ‘non-functional and variable’. While the ‘non-functional and variable’ region decreases as species become more complex, the other two regions increase. PMID:27366319

  6. Species interaction mechanisms maintain grassland plant species diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

  7. Evolution: a new cat species emerges.

    PubMed

    O'Brien, Stephen J; Koepfli, Klaus-Peter

    2013-12-16

    The complex ongoing process of species development is highlighted by the description of a new felid species, Leopardus guttulus, from Brazil. Broad molecular genetic assessments affirm reproductive isolation and separation in nature, the hallmark of species recognition. PMID:24355788

  8. Detection of toxic monofluoroacetate in Palicourea species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous plant species worldwide including some Palicourea (Rubiaceae), Tanaecium (Bignoniaceae), and Amorimia (Malpighiaceae) species in Brazil cause sudden death and are known to contain monofluoroacetate (MFA). Two species of Palicourea, P. aenofusca and P. marcgravii, cause sudden death and are...

  9. The Colletotrichum boninense species complex

    PubMed Central

    Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Johnston, P.R.; Weir, B.S.; Tan, Y.P.; Shivas, R.G.; Crous, P.W.

    2012-01-01

    Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. Taxonomic novelties: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon

  10. Genomics of Pathogenic Vibrio Species

    NASA Astrophysics Data System (ADS)

    Dziejman, Michelle; Yildiz, Fitnat H.

    Members of the heterotrophic bacterial family Vibrionaceae are native inhabitants of aquatic environments worldwide, constituting a diverse and abundant component of marine microbial organisms. Over 60 species of the genus Vibrio have been identified (Thompson et al., 2004) and their phenotypic heterogeneity is well documented. The ecology of the genus remains less well understood, however, despite reports that vibrios are the dominant microorganisms inhabiting the superficial water layer and colonizing the chitinous exoskeleton of zooplankton (e.g., copepods, Thompson et al., 2004). Although some species were originally isolated from seawater as free living organisms, most were isolated in association with marine life such as bivalves, fish, eels, or shrimp.

  11. The Colletotrichum acutatum species complex

    PubMed Central

    Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Crous, P.W.

    2012-01-01

    Colletotrichum acutatum is known as an important anthracnose pathogen of a wide range of host plants worldwide. Numerous studies have reported subgroups within the C. acutatum species complex. Multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3) of 331 strains previously identified as C. acutatum and other related taxa, including strains from numerous hosts with wide geographic distributions, confirmed the molecular groups previously recognised and identified a series of novel taxa. Thirty-one species are accepted, of which 21 have not previously been recognised. Colletotrichum orchidophilum clusters basal to the C. acutatum species complex. There is a high phenotypic diversity within this complex, and some of the species appear to have preferences to specific hosts or geographical regions. Others appear to be plurivorous and are present in multiple regions. In this study, only C. salicis and C. rhombiforme formed sexual morphs in culture, although sexual morphs have been described from other taxa (especially as laboratory crosses), and there is evidence of hybridisation between different species. One species with similar morphology to C. acutatum but not belonging to this species complex was also described here as new, namely C. pseudoacutatum. Taxonomic novelties: New combinations - Colletotrichum limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. lupini (Bondar) Damm, P.F. Cannon & Crous, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. New species - C. acerbum Damm, P.F. Cannon & Crous, C. australe Damm, P.F. Cannon & Crous, C. brisbanense Damm, P.F. Cannon & Crous, C. cosmi Damm, P.F. Cannon & Crous, C. costaricense Damm, P.F. Cannon & Crous, C. cuscutae Damm, P.F. Cannon & Crous, C. guajavae Damm, P.F. Cannon & Crous, C. indonesiense Damm, P.F. Cannon & Crous, C. johnstonii Damm, P.F. Cannon & Crous, C. kinghornii Damm, P.F. Cannon & Crous, C. laticiphilum Damm, P.F. Cannon & Crous, C. melonis Damm, P.F. Cannon & Crous, C

  12. Collective behaviour across animal species

    PubMed Central

    DeLellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M.; Porfiri, Maurizio

    2014-01-01

    We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment. PMID:24430561

  13. Would species richness estimators change the observed species area relationship?

    NASA Astrophysics Data System (ADS)

    Borges, Paulo A. V.; Hortal, Joaquín; Gabriel, Rosalina; Homem, Nídia

    2009-01-01

    We evaluate whether the description of the species area relationship (SAR) can be improved by using richness estimates instead of observed richness values. To do this, we use three independent datasets gathered with standardized survey methods from the native laurisilva forest of the Azorean archipelago, encompassing different distributional extent and biological groups: soil epigean arthropods at eight forest fragments in Terceira Island, canopy arthropods inhabiting Juniperus brevifolia at 16 forest fragments of six different islands, and bryophytes of seven forest fragments from Terceira and Pico islands. Species richness values were estimated for each forest fragment using seven non-parametric estimators (ACE, ICE, Chao1, Chao2, Jackknife1, Jackknife2 and Bootstrap; five in the case of bryophytes). These estimates were fitted to classical log-log species-area curves and the intercept, slope and goodness of fit of these curves were compared with those obtained from the observed species richness values to determine if significant differences appear in these parameters. We hypothesized that the intercepts would be higher in the estimated data sets compared with the observed data, as estimated richness values are typically higher than observed values. We found partial support for the hypothesis - intercepts of the SAR obtained from estimated richness values were significantly higher in the case of epigean arthropods and bryophyte datasets. In contrast, the slope and goodness of fit obtained with estimated values were not significantly different from those obtained from observed species richness in all groups, although a few small differences appeared. We conclude that, although little is gained using these estimators if data come from standardized surveys, their estimations could be used to analyze macroecological relationships with non-standardized observed data, provided that survey incompleteness and/or unevenness are also taken into account.

  14. Antifungal Compounds from Piper Species

    PubMed Central

    Xu, Wen-Hui; Li, Xing-Cong

    2013-01-01

    This review documents chemical structures and antifungal activities of 68 compounds isolated from 22 Piper species of the plant family Piperaceae. These compounds include amides, flavonoids, prenylated benzoic acid derivatives, lignans, phenylpropanoids, butenolides, and cyclopentendiones. Some of them may serve as leads for potential pharmaceutical or agricultural fungicide development. PMID:24307889

  15. Quaternary alkaloids of tinospora species.

    PubMed

    Bisset, N G; Nwaiwu, J

    1983-08-01

    The occurrence of quaternary alkaloids in TINOSPORA (and PARABAENA) species (Menispermaceae) has been studied. The main components were generally the protoberberine bases berberine and palmatine, with jatrorrhizine an occasional minor constituent, and the aporphine base magnoflorine. Choline was also often present. Only magnoflorine was detected in the PARABAENA material examined. PMID:17404996

  16. Taxonomy, Identification and Principal Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although root-knot nematodes (Meloidogyne species) can reduce crop yield worldwide, methods for their identification are often difficult to implement. This review summarizes the diagnostic morphological and molecular features for distinguishing the twelve major previously described root-knot nemato...

  17. Antifungal susceptibilities of Paecilomyces species.

    PubMed

    Aguilar, C; Pujol, I; Sala, J; Guarro, J

    1998-07-01

    The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine for 52 isolates of Paecilomyces species were evaluated by the broth microdilution method, largely based on the recommendations of the National Committee for Clinical Laboratory Standards (document M27-A). The fungal isolates tested included 16 P. variotii, 11 P. lilacinus, 9 P. marquandii, 6 P. fumosoroseus, 4 P. javanicus, and 2 P. viridis isolates and 1 isolate of each of the following species: P. carneus, P. farinosus, P. fulvus, and P. niveus. The MFCs and the MICs at which 90% of isolates were inhibited (MIC90s) for the six antifungal agents were remarkably high; the MIC50s indicated that amphotericin B, miconazole, itraconazole, and ketoconazole had good activities, while fluconazole and flucytosine demonstrated poor efficacy. The ranges of the MICs were generally wider and lower than those of the MFCs. There were significant susceptibility differences among the species. All species with the exception of P. variotii were highly resistant to fluconazole and flucytosine; P. variotii was susceptible to flucytosine. Amphotericin B and the rest of the azoles showed good activity against P. variotii, while all the antifungal agents assayed showed low efficacy against P. lilacinus. PMID:9660991

  18. Antifungal Susceptibilities of Paecilomyces Species

    PubMed Central

    Aguilar, C.; Pujol, I.; Sala, J.; Guarro, J.

    1998-01-01

    The MICs and minimum fungicidal concentrations (MFCs) of amphotericin B, miconazole, itraconazole, ketoconazole, fluconazole, and flucytosine for 52 isolates of Paecilomyces species were evaluated by the broth microdilution method, largely based on the recommendations of the National Committee for Clinical Laboratory Standards (document M27-A). The fungal isolates tested included 16 P. variotii, 11 P. lilacinus, 9 P. marquandii, 6 P. fumosoroseus, 4 P. javanicus, and 2 P. viridis isolates and 1 isolate of each of the following species: P. carneus, P. farinosus, P. fulvus, and P. niveus. The MFCs and the MICs at which 90% of isolates were inhibited (MIC90s) for the six antifungal agents were remarkably high; the MIC50s indicated that amphotericin B, miconazole, itraconazole, and ketoconazole had good activities, while fluconazole and flucytosine demonstrated poor efficacy. The ranges of the MICs were generally wider and lower than those of the MFCs. There were significant susceptibility differences among the species. All species with the exception of P. variotii were highly resistant to fluconazole and flucytosine; P. variotii was susceptible to flucytosine. Amphotericin B and the rest of the azoles showed good activity against P. variotii, while all the antifungal agents assayed showed low efficacy against P. lilacinus. PMID:9660991

  19. Chromosome synteny in cucumis species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber, Cucumis sativus L. (2n = 2x = 14) and melon, C. melo L. (2n = 2x = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Two inter-fertile botanical varieties with 14 chromosomes, the cultivated C. sativus var. sativus L. and the wild C. sativus var. hardwick...

  20. Endangered Species: An Educator's Handbook.

    ERIC Educational Resources Information Center

    Smith, Jean, M., Comp.

    Presented are two articles, an annotated bibliography, and other information useful in teaching about endangered species, especially those found in Florida. The articles provide an ethical rationale, teaching suggestions, and a discussion of the value of wildlife. Descriptions of over 100 pertinent books, periodicals, movies, and filmstrips are in…

  1. Endangered Species and Human Survival.

    ERIC Educational Resources Information Center

    Regenstein, Lewis

    1984-01-01

    In wiping out the natural heritage over which we were given dominion and stewardship responsibilities, we are sowing the seeds of our own destruction. With the advent of the Reagan administration, the government's endangered species program has all but ceased to function. (RM)

  2. NATIVE TERRESTRIAL ANIMAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all native mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit.

  3. Human Infections with Sarcocystis Species

    PubMed Central

    Esposito, Douglas H.; Dubey, Jitender P.

    2015-01-01

    SUMMARY Recurrent outbreaks of muscular sarcocystosis among tourists visiting islands in Malaysia have focused international attention on sarcocystosis, a disease once considered rare in humans. Sarcocystis species require two hosts, definitive and intermediate, to complete their life cycle. Humans can serve as definitive hosts, with intestinal sarcocystosis for two species acquired from eating undercooked meat: Sarcocystis hominis, from beef, and Sarcocystis suihominis, from pork. Symptoms such as nausea, stomachache, and diarrhea vary widely depending on the number of cysts ingested but appear more severe with pork than with beef. Humans serve as intermediate hosts for Sarcocystis nesbitti, a species with a reptilian definitive host, and possibly other unidentified species, acquired by ingesting sporocysts from feces-contaminated food or water and the environment; infections have an early phase of development in vascular endothelium, with illness that is difficult to diagnose; clinical signs include fever, headache, and myalgia. Subsequent development of intramuscular cysts is characterized by myositis. Presumptive diagnosis based on travel history to tropical regions, elevated serum enzyme levels, and eosinophilia is confirmed by finding sarcocysts in muscle biopsy specimens. There is no vaccine or confirmed effective antiparasitic drug for muscular sarcocystosis, but anti-inflammatory drugs may reduce symptoms. Prevention strategies are also discussed. PMID:25715644

  4. Influenza vaccines for avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  5. Man...An Endangered Species?

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC.

    The general theme of this 1968 yearbook is that man is a threatened species, facing overpopulation and unbridled technology - both self induced. The presentation is broad, relating to many aspects of conservation and natural resources in the United States in a descriptive, non-technical style. The yearbook is divided into major topics: Land…

  6. Human infections with Sarcocystis species.

    PubMed

    Fayer, Ronald; Esposito, Douglas H; Dubey, Jitender P

    2015-04-01

    Recurrent outbreaks of muscular sarcocystosis among tourists visiting islands in Malaysia have focused international attention on sarcocystosis, a disease once considered rare in humans. Sarcocystis species require two hosts, definitive and intermediate, to complete their life cycle. Humans can serve as definitive hosts, with intestinal sarcocystosis for two species acquired from eating undercooked meat: Sarcocystis hominis, from beef, and Sarcocystis suihominis, from pork. Symptoms such as nausea, stomachache, and diarrhea vary widely depending on the number of cysts ingested but appear more severe with pork than with beef. Humans serve as intermediate hosts for Sarcocystis nesbitti, a species with a reptilian definitive host, and possibly other unidentified species, acquired by ingesting sporocysts from feces-contaminated food or water and the environment; infections have an early phase of development in vascular endothelium, with illness that is difficult to diagnose; clinical signs include fever, headache, and myalgia. Subsequent development of intramuscular cysts is characterized by myositis. Presumptive diagnosis based on travel history to tropical regions, elevated serum enzyme levels, and eosinophilia is confirmed by finding sarcocysts in muscle biopsy specimens. There is no vaccine or confirmed effective antiparasitic drug for muscular sarcocystosis, but anti-inflammatory drugs may reduce symptoms. Prevention strategies are also discussed. PMID:25715644

  7. A dual resistance gene system prevents infection by three distinct pathogens.

    PubMed

    Narusaka, Mari; Kubo, Yasuyuki; Shiraishi, Tomonori; Iwabuchi, Masaki; Narusaka, Yoshihiro

    2009-10-01

    Colletotrichum higginsianum causes typical anthracnose lesions on the leaves, petioles, and stems of cruciferous plants. Inoculation of Arabidopsis thaliana ecotype Columbia leaves with C. higginsianum results in fungal growth and disease symptoms reminiscent of those induced in other cruciferous plants. We performed map-based cloning and natural variation analysis of 19 A. thaliana ecotypes to identify a dominant resistance locus against C. higginsianum. We found that the A. thaliana RCH2 (for recognition of C. higginsianum) locus encodes two NB-LRR proteins, both of which are required for resistance to C. higginsianum in the A. thaliana ecotype Ws-0. Both proteins are well-characterized R proteins involved in resistance against bacterial pathogens; RRS1 (resistance to Ralstonia solanacearum 1) confers resistance to strain Rs1000 of R. solanacearum and RPS4 to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 (Pst-avrRps4). Furthermore, we found that both RRS1-Ws and RPS4-Ws genes are required for resistance to Pst-avrRps4 and to Rs1002 R. solanacearum. We therefore demonstrate that a pair of neighboring genes, RRS1-Ws and RPS4-Ws, function cooperatively as a dual R-gene system against at least three distinct pathogens. PMID:19826224

  8. Optimal Conservation of Migratory Species

    PubMed Central

    Martin, Tara G.; Chadès, Iadine; Arcese, Peter; Marra, Peter P.; Possingham, Hugh P.; Norris, D. Ryan

    2007-01-01

    Background Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges. Migratory species are influenced by multiple events across land and sea–regions that are often separated by thousands of kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity) bringing into question the utility and efficiency of current conservation efforts. Methodology/Principal Findings Here, we report the first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers. We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas including information on migratory connectivity results in the protection of the species across its entire range. Conclusions/Significance We demonstrate that conservation strategies for migratory animals depend critically upon two factors: knowledge of migratory

  9. Calonectria species and their Cylindrocladium anamorphs: species with clavate vesicles

    PubMed Central

    Crous, Pedro W.; Groenewald, Johannes Z.; Risède, Jean-Michel; Simoneau, Philippe; Hyde, Kevin D.

    2006-01-01

    The present study compares all known species of Cylindrocladium that have clavate vesicles. Several isolates were obtained from baited soils collected in various parts of the world, while others were associated with leaf litter or symptomatic plant hosts. Isolates were compared based on morphology, as well as DNA sequence data from their β-tubulin and histone gene H3 regions. Cylindrocladium australiense and Cy. ecuadoriae, are described as new species, a decision based on morphology and molecular data. A group of isolates associated with toppling disease of banana in the West Indies is identified as Cy. flexuosum. An epitype is designated for Cy. ilicicola, and a new name, Curvicladiella, proposed to replace the anamorphic genus Curvicladium, which is a homonym. PMID:18490981

  10. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  11. Protein secretion in Bacillus species.

    PubMed Central

    Simonen, M; Palva, I

    1993-01-01

    Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them. PMID:8464403

  12. Fifteen new species of Penicillium.

    PubMed

    Visagie, C M; Renaud, J B; Burgess, K M N; Malloch, D W; Clark, D; Ketch, L; Urb, M; Louis-Seize, G; Assabgui, R; Sumarah, M W; Seifert, K A

    2016-06-01

    We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others. PMID:27616792

  13. Searching for species in haloarchaea

    PubMed Central

    Papke, R. Thane; Zhaxybayeva, Olga; Feil, Edward J.; Sommerfeld, Katrin; Muise, Denise; Doolittle, W. Ford

    2007-01-01

    Prokaryotic (bacterial and archaeal) species definitions and the biological concepts that underpin them entail clustering (cohesion) among individuals, in terms of genome content and gene sequence similarity. Homologous recombination can maintain gene sequence similarity within, while permitting divergence between, clusters and is thus the basis for recent efforts to apply the Biological Species Concept in prokaryote systematics and ecology. In this study, we examine isolates of the haloarchaeal genus Halorubrum from two adjacent ponds of different salinities at a Spanish saltern and a natural saline lake in Algeria by using multilocus sequence analysis. We show that, although clusters can be defined by concatenation of multiple marker sequences, barriers to exchange between them are leaky. We suggest that no nonarbitrary way to circumscribe “species” is likely to emerge for this group, or by extension, to apply generally across prokaryotes. Arbitrary criteria might have limited practical use, but still must be agreed upon by the community. PMID:17715057

  14. Ranking species in mutualistic networks.

    PubMed

    Domínguez-García, Virginia; Muñoz, Miguel A

    2015-01-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic "nested" structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm--similar in spirit to Google's PageRank but with a built-in non-linearity--here we propose a method which--by exploiting their nested architecture--allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made. PMID:25640575

  15. The Hirudo medicinalis species complex

    NASA Astrophysics Data System (ADS)

    Kutschera, U.

    2012-05-01

    Recently, Hildebrandt and Lemke (Naturwissenschaften 98:995-1008, 2011) argued that the taxonomic status of the three European medicinal leeches, Hirudo medicinalis Linnaeus 1758, Hirudo verbana Carena 1820, and Hirudo orientalis Utevsky and Trontelj (Parasitol Res 98:61-66, 2005) is "questionable" since "all three species interbreed in the laboratory". This statement is in conflict with data published by Elliott and Kutschera (Freshwater Reviews 4:21-41, 2011), indicating that these leeches, which are reciprocally copulating hermaphrodites, represent reproductively isolated biospecies. Here, I summarize evidence indicating that these three European taxa, plus the North African "dragon leech" ( Hirudo troctina Johnson 1816), must be interpreted as a complex of closely related species, and that the economically most important taxon H. verbana is polymorphic.

  16. Ranking species in mutualistic networks

    NASA Astrophysics Data System (ADS)

    Domínguez-García, Virginia; Muñoz, Miguel A.

    2015-02-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.

  17. Ranking species in mutualistic networks

    PubMed Central

    Domínguez-García, Virginia; Muñoz, Miguel A.

    2015-01-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic “nested” structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm –similar in spirit to Google's PageRank but with a built-in non-linearity– here we propose a method which –by exploiting their nested architecture– allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made. PMID:25640575

  18. Allopatric origins of microbial species

    PubMed Central

    Whitaker, Rachel J

    2006-01-01

    Although allopatric divergence is a well-accepted mechanism of speciation for eukaryotic macro-organisms, the importance of geographical barriers to divergence in microbial populations is a subject of great debate. Do geographically separated populations of micro-organisms diverge independently, or does their structure fit the often quoted Bass-Becking description ‘everything is everywhere; the environment selects’? Aided by high-resolution genetic and genomic tools, the search for ‘microbial marsupials’ has revealed that in fact both are true; some species of micro-organisms demonstrate allopatric divergence, while others do not. This discovery opens the door for comparative analyses, where questions about the differences in evolutionary and ecological mechanisms that drive divergence and speciation in different microbial species can begin to be explored. Investigating these differences in evolutionary mechanisms will greatly enhance interest in, and understanding of, the dynamic processes that create and maintain the vast diversity of the microbial world. PMID:17062415

  19. Influenza vaccines for avian species.

    PubMed

    Kapczynski, Darrell R; Swayne, David E

    2009-01-01

    Beginning in Southeast Asia in 2003, a multinational epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity and mortality in many bird species, was responsible for considerable economic losses via trade restrictions, and crossed species barriers (including its recovery from human cases). To date, these H5N1 HPAI viruses have been isolated in European, Middle Eastern, and African countries, and are considered endemic in many areas where regulatory control and different production sectors face substantial hurdles in controlling the spread of this disease. While control of avian influenza (AI) virus infections in wild bird populations may not be feasible at this point, control and eradiation of AI from commercial, semicommercial, zoo, pet, and village/backyard birds will be critical to preventing events that could lead to the emergence of epizootic influenza virus. Efficacious vaccines can help reduce disease, viral shedding, and transmission to susceptible cohorts. However, only when vaccines are used in a comprehensive program including biosecurity, education, culling, diagnostics and surveillance can control and eradication be considered achievable goals. In humans, protection against influenza is provided by vaccines that are chosen based on molecular, epidemiologic, and antigenic data. In poultry and other birds, AI vaccines are produced against a specific hemagglutinin subtype of AI, and use is decided by government and state agricultural authorities based on risk and economic considerations, including the potential for trade restrictions. In the current H5N1 HPAI epizootic, vaccines have been used in a variety of avian species as a part of an overall control program to aid in disease management and control. PMID:19768403

  20. Molecular Phylogenetic Analysis of the Amiota taurusata Species Group within the Chinese Species, with Descriptions of Two New Species

    PubMed Central

    Shao, Zhen-fang; Li, Tong; Jiang, Jian-jun; Lu, Jin-ming; Chen, Hong-wei

    2014-01-01

    The relationships among six species of the Amiota taurusata Takada, Beppu, & Toda (Diptera: Drosophilidae) species group were investigated based on DNA sequence data of the mitochondrial NADH dehydrogenase subunit 2 (ND2) gene, using three species of the genus Amiota as outgroups. A mitochondrial gene, cytochrome c oxidase I (COI), can be used to discriminate between species of the taurusata group. Two new species are described from South China: A. protuberantis Shao et Chen, sp. nov. and A. shennongi Shao et Chen, sp. nov. A key to all the species of the taurusata group based on morphological characters is provided. PMID:25373180

  1. A New Species from Athous (Orthathous) acutangulus Species Group from Turkey

    PubMed Central

    Kabalak, Mahmut; Sert, Osman

    2012-01-01

    A new Elateridae species, Athous (Orthathous) cagatayae n. sp., is presented from Ankara, Turkey. The morphology of the new species is described. Photographs of imago and aedeagus, aedeagi drawings of the new species, and identification key are given. The new species is discussed with species of acutangulus group, with a differential diagnosis. PMID:23448209

  2. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  3. Natural Constraints to Species Diversification

    PubMed Central

    Lewitus, Eric; Morlon, Hélène

    2016-01-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  4. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  5. Clinical hematology of rodent species.

    PubMed

    Pilny, Anthony A

    2008-09-01

    Pet rodents, such as rats, guinea pigs, and chinchillas, differ from more traditional companion animal species in many aspects of their hematologic parameters. Animals within this order have much diversity in size, anatomy, methods of restraint, and blood collection technique. Appropriate sample collection is often the most challenging aspect of the diagnostic protocol, and inappropriate restraint may cause a stress response that interferes with blood test results. For many of these patients, sedation is required and can also affect results as well. In most cases, however, obtaining a standard database is necessary and very possible when providing medical care for this popular group of pets. PMID:18675732

  6. Primate taxonomy: species and conservation.

    PubMed

    Rylands, Anthony B; Mittermeier, Russell A

    2014-01-01

    Primatology as a discrete branch of science involving the study of primate behavior and ecology took off in the 1960s after discovery of the importance of primates as models for biomedical research and the realization that primates provide insights into the evolutionary history of humans. Osman Hill's unfortunately incomplete monograph series on the comparative anatomy and taxonomy of the primates(1) and the Napiers' 1967 A Handbook of Living Primates(2) recorded the world's view of primate diversity at this time. This taxonomy remained the baseline for nearly three decades, with the diversity of each genus being represented by some species, but extensively as subspecies. PMID:24591133

  7. Placentation in different mammalian species.

    PubMed

    Chavatte-Palmer, Pascale; Tarrade, Anne

    2016-06-01

    The placenta is a complex, transient organ associated with viviparity, which is located at the interface of the dam and fetus during pregnancy. It is formed after attachment, or implantation, of the blastocyst on the uterine lining and derives from complex cellular and molecular interactions between uterine and embryonic tissues. In mammals, there are many forms of placentation but this organ has the same function in all species: it is responsible for orchestrating materno-fetal exchanges, together with endocrine and immunological functions. PMID:27155775

  8. Bacillus species infections in neonates.

    PubMed

    Patrick, C C; Langston, C; Baker, C J

    1989-01-01

    A case of neonatal meningitis due to Bacillus cereus is presented. Postmortem histopathologic examination revealed an invasive disease involving the brain parenchyma, with a cellular composition consistent with an indolent process indicative of possible perinatally acquired infection. One other neonate from our institution with systemic disease due to a nonanthrax bacillus is described, and a review of the English-language literature since 1900 reveals four additional neonates infected with these unusual pathogens. Such Bacillus species infections are rare but should be suspected when gram-positive bacilli are noted on gram stain, especially in an immunocompromised host. PMID:2505353

  9. Renal biomarkers in domestic species.

    PubMed

    Hokamp, Jessica A; Nabity, Mary B

    2016-03-01

    Current conventional tests of kidney damage and function in blood (serum creatinine and urea nitrogen) and urine (urine protein creatinine ratio and urine specific gravity) are widely used for diagnosis and monitoring of kidney disease. However, they all have important limitations, and additional markers of glomerular filtration rate and glomerular and tubular damage are desirable, particularly for earlier detection of renal disease when therapy is most effective. Additionally, urinary markers of kidney damage and function may help localize damage to the affected portion of the kidney. In general, the presence of high- and intermediate-molecular weight proteins in the urine are indicative of glomerular damage, while low-molecular weight proteins and enzymes in the urine suggest tubular damage due to decreased reabsorption of proteins, direct tubular damage, or both. This review aims to discuss many of these new blood and urinary biomarkers in domestic veterinary species, focusing primarily on dogs and cats, how they may be used for diagnosis of renal disease, and their limitations. Additionally, a brief discussion of serum creatinine is presented, highlighting its limitations and important considerations for its improved interpretation in domestic species based on past literature and recent studies. PMID:26918420

  10. The eclipse of species ranges.

    PubMed

    Hemerik, Lia; Hengeveld, Rob; Lippe, Ernst

    2006-01-01

    This paper distinguishes four recognisably different geographical processes in principle causing species to die out. One of these processes, the one we dub "range eclipse", holds that one range expands at the expense of another one, thereby usurping it. Channell and Lomolino (2000a, Journal of Biogeography 27: 169-179; 2000b, Nature 403: 84-87; see also Lomolino and Channell, 1995, Journal of Mammalogy 76: 335-347) measured the course of this process in terms of the proportion of the total range remaining in its original centre, thereby essentially assuming a homogeneous distribution of animals over the range. However, part of their measure seems mistaken. By giving a general, analytical formulation of eclipsing ranges, we estimate the exact course of this process. Also, our formulation does not partition a range into two spatially equal parts, its core and its edge, but it assumes continuity. For applying this model to data on the time evolution of species, individual time series should be available for each of them. For practical purposes we give an alternative way of plotting and interpreting such time series. Our approach, being more sensitive than Channell and Lomolino's, gives a less optimistic indication of range eclipses than theirs once these have started. PMID:17318329

  11. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt.

    PubMed

    Chen, Da; Liu, Xin; Li, Chunyu; Tian, Wei; Shen, Qirong; Shen, Biao

    2014-05-01

    Bacterial strain S20 was isolated and identified as Bacillus amyloliquefaciens based on physiological and biochemical characteristics and a 16S rRNA gene sequence analysis. Strain S20 inhibits the growth of Fusarium oxysporum and Ralstonia solanacearum. Some genes associated with the synthesis of some lipopeptides were detected in strain S20 by PCR. Iturins A were identified as the main antagonistic substrates by analysis with electrospray ionization mass spectrometry/collision-induced dissociation (ESI-MS/CID). Four homologues of iturin A (C13-C16) were identified. Pot experiments showed that the application of strain S20 alone could control eggplant wilt with an efficacy of 25.3% during a 40 day experiment. If strain S20 was used with organic fertilizer, the control efficacy against eggplant wilt reached as high as 70.7%. The application of organic fertilizer alone promotes the growth of R. solanacearum, resulting in a higher wilt incidence than that observed in control plants. The application of strain S20 effectively inhibits R. solanacearum in the rhizosphere soil of eggplant. The combined use of strain S20 and organic fertilizer more effectively controlled R. solanacearum in soil than the use of strain S20 alone. The soil count of strain S20 decreased gradually during the course of the experiment after inoculation. Organic fertilizer was beneficial for the survival of the antagonistic bacterial strain S20; a higher level of these bacteria could be maintained. The application of organic fertilizer with strain S20 increased bacterial diversity in rhizosphere soil. PMID:24632400

  12. The Neotropical species of Atractodes (Hymenoptera, Ichneumonidae, Cryptinae), II: the A. pleuripunctatus species-group.

    PubMed

    Bordera, Santiago; Mazón, Marina; Sääksjärvi, Ilari E

    2016-01-01

    We describe three new species of parasitoid wasps of the genus Atractodes (Ichneumonidae: Cryptinae) from South America: A. colchaguensis sp. nov. from Chile, and A. pleuripunctatus sp. nov. and A. saragurensis sp. nov. from Ecuador. These species are all characterized by a densely and strongly punctate mesopleuron. The Atractodes pleuripunctatus species-group is defined to accommodate the new species. In addition, the second part of the key to species of the Neotropical Atractodes including this species-group is given. PMID:27615943

  13. Genome size differences in Hyalella cryptic species.

    PubMed

    Vergilino, Roland; Dionne, Kaven; Nozais, Christian; Dufresne, France; Belzile, Claude

    2012-02-01

    The Hyalella azteca (Saussure) complex includes numerous amphipod cryptic species in freshwater habitats in America as revealed by DNA barcoding surveys. Two ecomorphs (small and large) have evolved numerous times in this complex. Few phenotypic criteria have been found to differentiate between the numerous species of this complex. The present study aims to explore genome size differences between some species of the H. azteca complex co-occurring in a Canadian boreal lake using flow cytometry. Nuclear DNA content was estimated for 50 individuals belonging to six COI haplotypes corresponding to four provisional species of the H. azteca complex. Species from the large ecomorph had C-values significantly larger than species from the small ecomorph, whereas slight differences were found among species of the small ecomorph. These differences in genome sizes might be linked to ecological and physiological differences among species of the H. azteca complex. PMID:22263854

  14. New enchytraeid species (Enchytraeidae, Oligochaeta) from Korea.

    PubMed

    Dózsa-Farkas, Klára; Felföldi, Tamás; Hong, Yong

    2015-01-01

    We give descriptions of five new enchytraeid species (Enchytraeidae, Oligochaeta) from Korea: Henlea magnaampullacea sp. n., Fridericia sphaerica sp. n., F. cusanicaformis sp. n., F. granulocyta sp. n. and Mesenchytraeus calyx sp. n., with morphological and molecular (mitochondrial cytochrome c oxidase subunit I, nuclear histone 3 genes and nuclear ribosomal ITS region sequences) data. In total, 19 enchytraeid species belonging to seven genera have been found in the studied woodland and agronomical soil samples. Apart from the five new species, three further species are new for the Korean enchytraeid fauna, Enchytraeus christenseni, E. dichaetus, and Achaeta cf. brevivasa. Molecular taxonomical analyses show that the Korean species resembling H. ventriculosa is not identical with the European species, furthermore sequence analysis of individuals morphologically identified as F. seoraksani indicate the possibility of species-complexity and the presence of cryptic species. PMID:26623764

  15. Endangered species toxicity extrapolation using ICE models

    EPA Science Inventory

    The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...

  16. Species richness changes lag behind climate change.

    PubMed

    Menéndez, Rosa; Megías, Adela González; Hill, Jane K; Braschler, Brigitte; Willis, Stephen G; Collingham, Yvonne; Fox, Richard; Roy, David B; Thomas, Chris D

    2006-06-22

    Species-energy theory indicates that recent climate warming should have driven increases in species richness in cool and species-poor parts of the Northern Hemisphere. We confirm that the average species richness of British butterflies has increased since 1970-82, but much more slowly than predicted from changes of climate: on average, only one-third of the predicted increase has taken place. The resultant species assemblages are increasingly dominated by generalist species that were able to respond quickly. The time lag is confirmed by the successful introduction of many species to climatically suitable areas beyond their ranges. Our results imply that it may be decades or centuries before the species richness and composition of biological communities adjusts to the current climate. PMID:16777739

  17. LOUISIANA EXOTIC INVASIVE SPECIES SYMPOSIUM MX964256

    EPA Science Inventory

    The Louisiana Exotic Invasive Species Symposium will provide a multi-state collaboration among agency representatives, scientists, and the affected public to address the problem of exotic invasive species and to improve coastal environmental conditions in Louisiana.

  18. Tetrameranthus (Annonaceae) revisited including a new species

    PubMed Central

    Westra, Lubbert Y.T.; Maas, Paul J. M.

    2012-01-01

    Abstract The taxonomic revision of the infrequently collected genus Tetrameranthus by Westra (1985) is updated. A new species is described from French Guiana and Amapá, Brazil, increasing the number of species in this genus to seven. PMID:22645410

  19. NOAA Lists 20 Coral Species as Threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    Twenty coral species have been listed as threatened under the U.S. Endangered Species Act (ESA), the National Oceanic and Atmospheric Administration (NOAA) announced on 27 August. This is NOAA's largest ESA rule making. The coral species include 15 found in the Indo-Pacific region and 5 that are located in the Caribbean. They join two other Caribbean coral species that NOAA listed as threatened in 2006.

  20. SNP Arrays for Species Identification in Salmonids.

    PubMed

    Wenne, Roman; Drywa, Agata; Kent, Matthew; Sundsaasen, Kristil Kindem; Lien, Sigbjørn

    2016-01-01

    The use of SNP genotyping microarrays, developed in one species to analyze a closely related species for which genomic sequence information is scarce, enables the rapid development of a genomic resource (SNP information) without the need to develop new species-specific markers. Using large numbers of microarray SNPs offers the best chance to detect informative markers in nontarget species, markers that can very often be assayed using a lower throughput platform as is described in this paper. PMID:27460372