Science.gov

Sample records for raman spectra cyclohexanone

  1. Cyclohexanone

    Integrated Risk Information System (IRIS)

    Cyclohexanone ; CASRN 108 - 94 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Study on Raman spectra of synthetic celluloses

    NASA Astrophysics Data System (ADS)

    Tong, Na; Zhu, Changjun; Zhang, Yixin

    2015-02-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of aliphatic polyamide fiber and polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The results show that Raman peaks beyond 1200 cm-1 appear for aliphatic polyamide fiber processed by sodium hydroxide, while the Raman peaks beyond 1000 cm-1 disappear for aliphatic polyamide fiber processed by sulfuric acid. Raman peaks beyond 1750 cm-1 decrease for polyethylene terephthalate processed by sodium hydroxide, while Raman peaks beyond 1000 cm-1 disappear, except weak peaks around 3000 cm-1 , for polyethylene terephthalate processed by sulfuric acid. The variations of the Raman spectra are primarily related to the changes of chemical bonds and molecular structures.

  3. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  4. [Characteristics of Raman Spectra of Polyethylene Terephthalate].

    PubMed

    Tong, Na; Zhu, Chang-jun; Song, Li-xun; Zhang, Chong-hui; Zhang, Guo-qing; Zhang, Yi-xin

    2016-01-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1 750 cm(-1), while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1 750 cm(-1) and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated. The research results obtained by Atomic Force Microscopy show that the variations of the Raman spectra of PET fibers are closely related to. the chemical bonds and molecular structures of PET fibers. The surface of the PET treated with sodium hydroxide is rougher than that untreated, the surface roughness of the PET treated with sulfuric acid is reduced as compared to that untreated, while the surface roughness of the PET treated with copper sulphate is increased. The results obtained by Raman spectroscopy are consistent with those by Atomic Force Microscopy, indicating that the combination of Raman spectroscopy and Atomic Force Microscopy is expected to be a promising characterization technology for polymer characteristics. PMID:27228752

  5. Raman phonon spectra of pentacene polymorphs

    NASA Astrophysics Data System (ADS)

    Brillante, A.; Della Valle, R. G.; Farina, L.; Girlando, A.; Masino, M.; Venuti, E.

    2002-05-01

    We report for the first time lattice phonon Raman spectra of pentacene measured by means of a Raman microprobe technique. We experimentally prove the existence of two polymorphs, as expected from recent structural studies. A comparison with Quasi Harmonic Lattice Dynamics calculations, previously performed starting from the available X-ray data, help us in identifying the phase to which each crystal belongs.

  6. Raman spectra of carotenoids in natural products.

    PubMed

    Withnall, Robert; Chowdhry, Babur Z; Silver, Jack; Edwards, Howell G M; de Oliveira, Luiz F C

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form. PMID:12909134

  7. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  8. [Infrared and Raman spectra study on Tianhuang].

    PubMed

    Liu, Yun-gui; Chen, Tao

    2012-08-01

    The Tianhuang stones, from Shoushan in China, were studied by using X-ray powder diffractometry (XRD), infrared (IR) spectroscopy and Raman spectroscopy to obtain the spectra characterization. Wave numbers 3621, 3629 and 3631 cm(-1) in the IR spectra and 3626, 3627 and 3632 cm(-1) in the Raman spectra are the characteristic peaks of dickitic Tianhuang, nacritic Tianhuang and illitic Tianhuang, respectively. Raman spectra assigned to OH are in good agreement with the IR results at 3550 -3750 cm(-1). Dickitic Tianhuang includes ordered dickite and disordered dickite. Compared with ordered dickite, the band assigned to OH3 of disordered dickite shifts to low-frequency by 8 cm(-1) and the relative intensity becomes stronger. The disorder structure may relate to the high level of Fe. The IR absorption spectra of nacritic Tianhuang superimposes strong peaks of dickite, indicating that IR absorption bands of dickite are stronger than that of nacrite at 3550-3750 cm(-1). The main mineral composition of illitic Tianhuang is 2M(1), while illite Tianhuang contains a small amount of 1M. All these characters provide a theoretical basis for the scientific identification of Tianhuang. PMID:23156769

  9. Raman spectra of deuteriated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  10. Raman spectra of shocked minerals. I - Olivine

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Celucci, T. A.

    1988-01-01

    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition.

  11. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  12. Vibrational infrared and raman spectra of dicyanoacetylene

    NASA Astrophysics Data System (ADS)

    Khanna, R. K.; Perera-Jarmer, M. A.; Ospina, M. J.

    The raman and infrared spectra for solid C 4N 2 are reported. New assignments are given for ˜gn 1 (2333 cm -1), ˜gn 2 (2267) and ˜gn 3 (640 cm -1). These assignments are supported by a normal coordinate Analysis using eight force constants. Extinction coefficients for the infrared active fundamentals are also reported. Our results suggest C 4N 2 to be a likely candidate to explain the 478 cm -1 band in the Titan's emission recorded by the Voyager mission.

  13. Raman spectra of hydroxide-halide melts

    NASA Astrophysics Data System (ADS)

    Zakiriyanova, I. D.; Khokhlov, V. A.

    2012-08-01

    The Raman spectra of molten binary mixtures based on sodium hydroxide and containing (mol %) 35 NaCl, 30 NaBr, and 30 NaI have been recorded at various temperatures. An increase in the vibrational frequency and the force constant of the O-H bond is detected under isothermal conditions upon a variation of the anionic composition of a melt in the series I → Br → Cl. Based on the experimental data, the viscosity of the hydroxide-halide melts is estimated.

  14. Raman spectra of selected transuranium trihalides in the solid state

    SciTech Connect

    Wilmarth, W.R.; Begun, G.M.; Haire, R.G.; Peterson, J.R.

    1988-10-15

    Raman spectral data have been obtained from a number of transuranium trihalides in the solid state. The Raman spectra of these actinide compounds are reported and compared to the published Raman spectra of isostructural compounds. Tentative symmetry assignments have been made for the observed Raman-active lattice vibrations based on nuclear site symmetry analysis of their respective crystal structures and comparisons to the symmetry assignments made for isostructural lanthanide compounds. The Raman spectral data obtained in this study represent a partial data base for the use of Raman spectroscopy for identifying the crystal structures exhibited by these and isostructural compounds.

  15. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  16. Fourier transform Raman and IR spectra of snake skin

    NASA Astrophysics Data System (ADS)

    Barry, B. W.; Williams, A. C.; Edwards, H. G. M.

    1993-06-01

    The Fourier transform (FT) Raman and IR spectra of the shed dorsal skin of the snake Elaphe obsoleta (American black rat snake) are reported. Vibrational spectroscopic assignments are proposed for the first time. Although good quality Raman spectra were obtained from the hinge regions using an FT Raman microscope, the dorsal scale regions fluoresced even with 1064 nm IR excitation. This was ascribed to pigmentation markings on the scales.

  17. Raman spectra of rings in silicate material

    SciTech Connect

    Tallant, D.R.; Bunker, B.C.; Brinker, C.J.; Balfe, C.A.

    1986-01-01

    Raman spectroscopic studies on gel-derived silicates have confirmed that narrow bands near 607 cm-1 and 492 cm-1, first observed in the Raman spectrum of fused silica, are associated with three- and four-fold siloxane rings. Using these results, we have identified three- and four-fold siloxane rings in other high-surface-area silica materials, including leached glasses and Cab-O-Sil. This Raman spectroscopic evidence not only shows that small siloxane rings are a common characteristic of a number of silica materials but also suggests that they form preferentially at silica surfaces. This paper reviews the Raman spectroscopic evidence that led to the identification of the vibrational frequencies of the small siloxane rings and presents the results of Raman experiments on high-surface-area silica materials in which the concentration of small siloxane rings is enhanced compared to fused silica.

  18. Raman intensity and spectra predictions for cylindrical viruses

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.; Tsen, Kong-Thon

    2007-07-01

    A theoretical framework for predicting low frequency Raman vibrational spectra of viral capsids is presented and applied to the M13 bacteriophage. The method uses a continuum elastic theory for the vibrational modes and a bond-charge polarizability model of an amorphous material to roughly predict the Raman intensities. Comparison is made to experimental results for the M13 bacteriophage virus.

  19. A flow cytometer for the measurement of Raman spectra.

    PubMed

    Watson, Dakota A; Brown, Leif O; Gaskill, Daniel F; Naivar, Mark; Graves, Steven W; Doorn, Stephen K; Nolan, John P

    2008-02-01

    Multiparameter measurements in flow cytometry are limited by the broad emission spectra of fluorescent labels. By contrast, Raman spectra are notable for their narrow spectral features. To increase the multiparameter analysis capabilities of flow cytometry, we investigated the possibility of measuring Raman signals in a flow cytometry-based system. We constructed a Raman Spectral Flow Cytometer, substituting a spectrograph and CCD detector for the traditional mirrors, optical filters, and photomultiplier tubes. Excitation at 633 nm was provided by a HeNe laser, and forward-angle light scatter is used to trigger acquisition of complete spectra from individual particles. Microspheres were labeled with nanoparticle surface enhanced Raman scattering (SERS) tags and measured using the RSFC. Fluorescence and Raman spectra from labeled microspheres were acquired using the Raman Spectral Flow Cytometer. SERS spectral intensities were dependent on integration time, laser power, and detector pixel binning. Spectra from particles labeled with one each of four different SERS tags could be distinguished by either a virtual bandpass approach using commercial flow cytometry data analysis software or by principal component analysis. Raman flow cytometry opens up new possibilities for highly multiparameter and multiplexed measurements of cells and other particles using a simple optical design and a single detector and light source. PMID:18189283

  20. Pulsed remote Raman system for daytime measurements of mineral spectra.

    PubMed

    Misra, Anupam K; Sharma, Shiv K; Chio, Chi Hong; Lucey, Paul G; Lienert, Barry

    2005-08-01

    A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds. In oblique geometry, measured sampling depth is more than 30m, during which the system maintains very high performance without any adjustments. Much longer sampling depth (0.1-120m) has been observed when the system is configured in the coaxial geometry. Clear advantages of using a gated detection mode over the continuous (CW) mode of operation in reducing the background signal and eliminating long-lived fluorescence signals from the Raman spectra are presented. The performance of the pulsed Raman system is demonstrated by measuring spectra of Raman standards including benzene (C(6)H(6)) and naphthalene (C(10)H(8)), a low Raman cross section silicate mineral muscovite (KAl(2)(Si(3)Al)O(10)(OH)(2)), and a medium Raman cross section mineral calcite (CaCO(3)). PMID:16029850

  1. Cancer detection based on Raman spectra super-paramagnetic clustering

    NASA Astrophysics Data System (ADS)

    González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual

    2016-08-01

    The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.

  2. [Raman spectra calculation and analysis of plasticizer dioctyl phthalate].

    PubMed

    Liu, Yu; Wang, Hu; Wang, Yan; Guo, Mo-ran; Shi, Jing; Feng, Shi-qi; Song, Wei; Zhai Rui-zhi; Cai, Hong-xing

    2015-01-01

    In recent years, with frequent domestic food safety incidents related to the plasticizing agent, the detection of plasticizers in food research becomes increasingly urgent. DEHP is one of the plasticizer. In the present paper, theoretical Raman spectrum and experimental Raman spectrum of DEHP were given. DEHP molecular structure was optimized by DFT(B3LYP) method. DEHP molecular Raman spectra and infrared spectra were calculated with. HF theory and DFT theory based on 3-2G level. The analytical reagent level DEHP Raman spectra was measured, and was compared with theoretical spectra, and good agreements were obtained between the theoretical and experimental results. Because of different calculation methods, we can see that both the wave number and relative intensity of peaks have small differences. DEHP structure parameters were also given in the paper including bond lengths and bond angles etc. Vibrational modes were assigned to all bands between 400 and 3 500 cm-1. Raman spectroscopy study of the commonly used plasticizer dioctyl phthalate was reported in this paper for the first time. This effort will contribute to the research and application of Raman spectroscopy in the field of food testing. PMID:25993833

  3. Analytic calculations of anharmonic infrared and Raman vibrational spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth

    2016-02-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  4. Raman spectra of silicon carbide small particles and nanowires

    NASA Astrophysics Data System (ADS)

    Wieligor, Monika; Wang, Yuejian; Zerda, T. W.

    2005-04-01

    Two manufacturing protocols of silicon carbide (SiC) nanowires are discussed. The Raman spectra of produced SiC nanowires are compared with spectra of SiC powders of various grain sizes. The temperature and pressure dependence of the Raman spectra for powders is similar to that of bulk crystals, but is different for nanowires. Frequency shifts, band broadenings and the presence of shoulders are discussed in terms of crystal size, character of defects and their population. The concentration of defects in synthesized nanowires depends on the sintering method. Raman intensity enhancement of the LO phonon was observed when the wavelength of the excitation laser was changed from 780 to 514 nm.

  5. Raman spectra and molecular dynamics of alkoxycyanobiphenyles

    NASA Astrophysics Data System (ADS)

    Babkov, Lev M.; Gabrusenoks, E.; Krasnoholovets, V.; Puchkovskaya, G. A.; Khakimov, I. N.

    2000-02-01

    The IR and Raman spectral-structural-phase correlations in a series of the 4-cyano-4'-n-alkoxybiphenyles are studied. The analysis of Q(C equalsV N) band behavior in the solid crystal (SC), liquid crystal (LC), isotropic liquid (IL) and hexane solution is carried out. The changes of the spectral parameters of several vibrational bands at phase transitions were interpreted as being caused by conformational changes of the nOCB molecules. The mechanism of intradimer energy transfer explaining the Q(C equalsV N) band breadth in the LC and IL phases is investigated in detail.

  6. Defect-induced hyper-Raman spectra in cubic zirconia

    SciTech Connect

    Shin, S.; Ishigame, M.

    1986-12-15

    Hyper-Raman scattering of cubic zirconia and CaF/sub 2/ is measured at room temperature. For a CaF/sub 2/ crystal, the frequencies of the TO and LO modes with T/sub 1//sub u/ symmetry are determined to be 260 and 480 cm/sup -1/, which are in good accord with the results of infrared measurements. In a fluorite-type cubic zirconia, the defect-induced hyper-Raman spectra due to the oxygen vacancies are observed. The structures of the hyper-Raman spectra are reasonably explained by the frequency distribution of hyper-Raman-active modes in the whole Brillouin zone, which is estimated from the imaginary part of the simple projections of the phonon displacement-displacement Green's functions onto a defect space consisting of an O/sub 6/ molecule. From the analysis of the mode vectors for the O/sub 6/ molecule, the attempt frequency of oxygen ions is found to correspond to the 690-cm/sup -1/ band in the observed hyper-Raman spectra with T/sub 1//sub u/ symmetry.

  7. Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions.

    PubMed

    Macernis, Mindaugas; Galzerano, Denise; Sulskus, Juozas; Kish, Elizabeth; Kim, Young-Hun; Koo, Sangho; Valkunas, Leonas; Robert, Bruno

    2015-01-01

    We report here the resonance Raman spectra and the quantum chemical calculations of the Raman spectra for β-carotene and 13,13'-diphenyl-β-carotene. The first aim of this approach was to test the robustness of the method used for modeling β-carotene, and assess whether it could accurately predict the vibrational properties of derivatives in which conjugated substituents had been introduced. DFT calculations, using the B3LYP functional in combination with the 6-311G(d,p) basis set, were able to accurately predict the influence of two phenyl substituents connected to the β-carotene molecule, although these deeply perturb the vibrational modes. This experimentally validated modeling technique leads to a fine understanding of the origin of the carotenoid resonance Raman bands, which are widely used for assessing the properties of these molecules, and in particular in complex media, such as binding sites provided by biological macromolecules. PMID:25476500

  8. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  9. Raman spectra of ZrS3-xSex

    NASA Astrophysics Data System (ADS)

    Provencher, R.; Jandl, S.; Carlone, C.

    1982-12-01

    Raman spectra of the one-dimensional ZrS3-ZrSe3 solid solutions are reported. A mixed one-mode and two-mode phonon behavior is observed. The study of the phonon width indicates a higher sensitivity to disorder in the case of the one-mode phonons compared to the case of the two-mode phonons.

  10. Low-Cost Elimination of Plasma Lines in Raman Spectra.

    ERIC Educational Resources Information Center

    Behlow, Herbert W., Jr.; Petersen, John D.

    1985-01-01

    Describes a low-cost ($120) device which eliminates plasma lines in Raman spectra. The device consists of two prisms and two mirrors which are held in a symmetrical relationship to one another so that a particular position will allow only one wavelength to pass through on a given axis. (JN)

  11. Complete symmetry analysis of the Raman spectra in cuprates

    NASA Astrophysics Data System (ADS)

    Venturini, F.; Zhang, Q.-M.; Hackl, R.; Erb, A.; Berger, H.; Revaz, B.; Nagao, Y.; Ando, Y.

    2002-03-01

    We describe results of Raman scattering measurements on differently doped cuprate single crystals. We performed a complete polarization analysis, using circular in addition to the commonly used linear polarizations. This allowed us to determine all symmetry components of the Raman signal being characteristic for tetragonal systems, including A_2g excitations which indicate the presence of a time-reversal broken symmetry in these systems. The A_2g signal has an intensity comparable to that of the other symmetries, but exhibits a distinctly different frequency dependence. In particular, there is a gap at low energies which decreases with increasing doping. The Raman relaxation rates and mass renormalization factor extracted from the pure B_1g and B_2g spectra are consistent with IR-results, and the unphysical drop of 1+λ(ω) below unity for high frequencies disappears teopel. 99 opel M. Opel et al., Phys. Rev. B 61, 9752 (2000). thebibliography

  12. Raman spectra and optical coherent tomography images of skin

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Delgado-Atencio, J. A.; Vazquez-Villa, A.

    2011-03-01

    The optical coherence tomography images are useful to see the internal profile and the structure of material samples. In this work, OCT images were recorded in 10 volunteers with different skin tone which were related to Raman spectra. The areas where we obtained OCT images and Raman spectra were a) index finger nail, b) between index finger and middle finger, c) middle finger tip, d) half of middle finger, e) the thumb finger tip and f) between index finger and thumb, areas measured were for the purpose of finding extracellular fluids with contain triglycerides, cholesterol and glucose that are reported in the literature. The excitation wavelength used for this work was 785 nm, a spectrometer of 6 cm-1 resolution. The spectral region used ranges from 300 to 1800 cm-1. We use an OCT with 930 nm of Central Wavelength, 1.6 mm of Image Depth, 6 mm of image width and 6.2 μm of axial resolution.

  13. Raman spectra of zirconium oxychloride crystalline hydrate and solutions

    SciTech Connect

    Kozhevnikova, G.V.; Myund, L.A.; Burkov, K.A.

    1988-08-01

    Raman spectra of zirconium oxychloride crystalline hydrate and its deuteroanalogs in the 50-4000 cm/sup -1/ region have been obtained and examined. They have been compared with the spectra of solutions. In the region of nu/sub Zr-O/ vibrations the Raman spectrum of the solution has been resolved into its components with the aid of a computer. Spectral properties of the nu/sub Zr-OH/ and nu/sub Zr-O(H)/sub 2/) bands of the (Zr/sub 4/(OH)/sub 8/(H/sub 2/O)/sub 16/)/sup 8 +/ complexes in the crystalline hydrate and in solution have been obtained.

  14. Processing Raman Spectra of High-Pressure Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.

  15. Raman spectra of solid benzene under high pressure

    NASA Technical Reports Server (NTRS)

    Thiery, M.-M.; Kobashi, K.; Spain, I. L.

    1985-01-01

    Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.

  16. Resonant Raman scattering background in XRF spectra of binary samples

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Leani, Juan José

    2015-02-01

    In x-ray fluorescence analysis, spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. In this work we present theoretical calculations of the resonant Raman scattering contributions to the background of x-ray fluorescence spectra of binary samples of current technological or biological interest. On one hand, a binary alloy of Fe with traces of Mn (Mn: 0.01%, Fe: 99.99%) was studied because of its importance in the stainless steels industries. On the second hand a pure sample of Ti with V traces (Ti: 99%, V: 1%) was analyzed due to the current relevance in medical applications. In order to perform the calculations the Shiraiwa and Fujino's model was used to calculate characteristic intensities and scattering interactions. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions and the incident and take-off beams. For the binary sample studied in this work and the considered experimental conditions, the calculations show that the resonant Raman scattering background is significant under the fluorescent peak, affects the symmetry of the peaks and, depending on the concentrations, overcomes the enhancements contributions (secondary fluorescence).

  17. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  18. An auto-adaptive background subtraction method for Raman spectra.

    PubMed

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-15

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy. PMID:26950502

  19. An auto-adaptive background subtraction method for Raman spectra

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-01

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy.

  20. Adapting Raman spectra from laboratory spectrometers to portable detection libraries.

    PubMed

    Weatherall, James C; Barber, Jeffrey; Brauer, Carolyn S; Johnson, Timothy J; Su, Yin-Fong; Ball, Christopher D; Smith, Barry T; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a format suitable for importing as a user library on a 1064 nm DeltaNu first generation, field-deployable spectrometer prototype. The two laboratory systems used are a 1064 nm Bruker Fourier transform (FT)-Raman spectrometer and a 785 nm Kaiser dispersive spectrometer. The steps taken to adapt for device-dependent spectral resolution, wavenumber shifts between instruments, and relative intensity response are described. Effects due to the differing excitation laser wavelengths were found to be minimal, indicating--at least for the near-infrared (NIR)--that data can be ported between different systems, so long as certain measures are taken with regard to the reference and field spectra. PMID:23622433

  1. Complete analytic anharmonic hyper-Raman scattering spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Ruud, Kenneth

    2016-08-10

    We present the first computational treatment of the complete second-order vibrational perturbation theory applied to hyper-Raman scattering spectroscopy. The required molecular properties are calculated in a fully analytic manner using a recently developed program [Ringholm, Jonsson and Ruud, J. Comp. Chem., 2014, 35, 622] that utilizes recursive routines. For some of the properties, these calculations are the first analytic calculations of their kind at their respective levels of theory. We apply this approach to the calculation of the hyper-Raman spectra of methane, ethane and ethylene and compare these to available experimental data. We show that the anharmonic corrections have a larger effect on the vibrational frequencies than on the spectral intensities, but that the inclusion of combination and overtone bands in the anharmonic treatment can improve the agreement with the experimental data, although the quality of available experimental data limits a detailed comparison. PMID:27459194

  2. Infrared, Polarized Raman, and SERS Spectra of Borax

    NASA Astrophysics Data System (ADS)

    Devi, S. Arya; Philip, Daizy; Aruldhas, G.

    1994-11-01

    Infrared and polarized Raman spectra of Na2B4O7 · 10H2O are recorded and analyzed. The vibrational assignments are made on the basis of vibrations due to BO4 and BO3 groups, water molecules, and (B)OH bonds. Three types of water molecules exist in the crystal, and the BO4 groups are considerably distorted. Band assignments are confirmed by deuterium substitution. A SERS spectrum recorded in a silver colloid shows three enhanced bands at 800, 480, and 464 cm-1.

  3. Temperature dependence of resonance Raman spectra of carotenoids

    NASA Astrophysics Data System (ADS)

    Andreeva, A.; Apostolova, I.; Velitchkova, M.

    2011-04-01

    To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability ( n = 1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν1 band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the C dbnd C stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the C dbnd C stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν1 band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.

  4. [IR and Raman spectra studies of Rotundine based on DFT].

    PubMed

    Li, Jun-Ping; Zhou, Guang-Ming; Zhang, Li-Jun; Cheng, Hong-Mei; Qin, Hong-Ying

    2014-11-01

    Infrared spectroscopy (IR), the normal Raman spectroscopy (NRS) and the surface enhanced Raman spectroscopy (SERS) in new Ag/Cu nanomaterial of Rotundine were studied in the present paper. The IR and the NRS of Rotundine were calculated by the density functional theory (DFT) using B3LYP/6-311+G(d, p), then the spectral intensity graph of Rotundine were given. The vibrational peaks were assigned comprehensively by the visualization software of Gauss view 5. 0. Rotundine has obvious infrared and Raman vibrational peak in the wave number range of 3 300-2500 and 1 800-600 cm(-1). SnCl2 and PVP was used as capping agent for the silver nanoparticles in SERS of Rotundine. Finally, by using the method of cyclic immersion well dispersed silver nanoparticles was obtained and achieved good enhancement effect. This molecule acquired strong selective enhancement vibration peak, In the wave number ranges of 1 500-1 400 and 1 000-700 cm(-1) the enhancement effect is most obvious. After analyzed, the methylene of this molecule is adsorbed on the silver nanoparticles surface and the angle between the benzene ring and the silver substrate is close to 90 degrees. The theoretically calculated spectra of Rotundine are consistent with the obtained experimental spectra. There are some differences may be due to the interaction forces between molecules and so on. The visualization software displayed the structure characteristics and molecular group vibration of this molecular visually and provided important basis for assigning the vibrational peaks. Rotundine is an important traditional Chinese medicine agent contained in many kinds of sedative drugs. The study provides a strong basis for the rapid, feature and trace identification of Rotundine and also supplies important reference for the biological role of central inhibition of analgesic drugs. PMID:25752044

  5. Polarized Raman spectra and intensities of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Himmler, Hans J.; Eysel, Hans H.

    1989-01-01

    Raman spectra of aliphatic α- L-amino acids, glycine, alanine, and valine were re-investigated both in aqueous solution and deuterium oxide solution. The spectra were taken of the zwitterionic and of the completely deprotonated form of the amino acids. Spectra of leucine and isoleucine were studied in water at the isoelectric point. Spectra were recorded both with parallel and perpendicular polarization and the isotropic and anisotropic scattering components were isolated. The integrated intensities of CH stretch, CC stretch and carboxylate bend vibrations are discussed. Linear relations between the number of CC and CH bonds and the total scattered intensity in the appropriate spectral regions are observed. The sum over the carboxylate modes shows characteristic intensities for the first three members of the aliphatic amino acids. An increase of isotropic scattering of ϱ co 2 near 510 cm -1 with increasing chain length of the amino acid (or with increasing concentration) is interpreted as the result of micelle formation.

  6. Surface Raman spectra of a biased and buried ultrathin copper phthalocyanine layer

    SciTech Connect

    Hipps, K.W.; Dowdy, J.; Hoagland, J.J. )

    1991-01-01

    Raman spectra of Al-AlO{sub x}-CuPc (1 nm)-M devices, where M = Ag or Pb, are reported. The first Raman spectrum of a material buried in a working (biased) tunnel diode without Ag surface enhancement or substrate roughening is reported. Comparison of the Raman spectra resulting from biased devices with inelastic electron tunneling spectra proves that the anomalous features of the CuPc tunneling spectrum are not due to electrochemical changes inside the device.

  7. Multidimensional least-squares resolution of Raman spectra from intermediates in sensitized photochemical reactions

    SciTech Connect

    Fister, J.C. III; Harris, J.M.

    1995-12-01

    Transient resonance Raman spectroscopy is used to elicit reaction kinetics and intermediate spectra from sensitized photochemical reactions. Nonlinear least-squares analysis of Raman spectra of a triplet-state photosensitizer (benzophenone), acquired as a function of laser intensity and/or quencher concentration allow the Raman spectra of the sensitizer excited state and intermediate photoproducts to be resolved from the spectra of the ground state and solvent. In cases where physical models describing the system kinetics cannot be found, factor analysis techniques are used to obtain the intermediate spectra. Raman spectra of triplet state benzophenone and acetophenone, obtained as a function of laser excitation kinetics, and the Raman spectra of intermediates formed by energy transfer (triplet-state biacetyl) and hydrogen abstraction (benzhydrol radical) are discussed.

  8. [Correction Multiplicative Effects in Raman Spectra through Vector Angle Transformation].

    PubMed

    Yao, Zhi-xiang; Sun, Zeng-qiang; Su, Hui; Yuan, Hong-fu

    2016-02-01

    The linear relationship between the Raman spectral intensity and the analyte amount is frequently disrupted for a variety of complex reasons, which include these variations in laser source, focusing effect, sample scattering and refracting, so that causes poor quantitative results. As a whole, these disturbing effects can be divided to be additive and multiplicative, and the multiplicative effects are generally more difficult to be eliminated. A spectrum is a series data, also can be treated as a vector. In principle, unstable motions in spectrum intensity/amplitude corresponding to the module shifts for a vector, doesn't impact the vector direction which is the essence of the vector, so it is reasonable to rewrite the data form on module to on space angle for the same measurement. This thesis employed a data transformation to eliminate the multiplicative effects within spectra, i. e. , the spectrum signal on its amplitude has been transformed to be on the vector angles. The first step of the transformation is the selection of a stand vector which is near to the analyte and almost orthogonal to the background within the sample space; and the next step is to define a moving window, then to find out the angle between the sample vector (i. e. the transformed spectrum) and the stand vector within the window; while the window is moved along the spectrum data series, the transformation for vector angle (VA) series has been finished. The thesis has proved that an approximate linear quantitative relationship has been remained in the VA series. Multivariate calibration need full rank matrix which is combined by spectrum from variety samples, and variety VA series also can combine a full rank VA matrix, so the approximate linear VA matrix still perfectly meeting the demand for multivariate calibration. A mixed system consisted by methanol-ethanol-isopropanol has been employed to verify the eliminations to the multiplicative effects. These measuring values of the system are

  9. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  10. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained. PMID:23285870

  11. Raman and infrared spectra of some tetrahalide crystals

    NASA Astrophysics Data System (ADS)

    Anderson, Anthony; Torrie, Bruce

    1986-03-01

    Recent Raman and infrared spectra of a number of tetrahalide crystals are reported. While some examples of isotopic and crystal field splittings of the internal molecular modes are included, the emphasis is on the external lattice vibrations which are important for investigations of intermolecular forces and lattice dynamics calculations. Because of the weak signals from these non-polar near-spherical molecules and other experimental difficulties, these modes have not been investigated in detail in earlier work. Examples to be discussed include CCl 4, CBr 4 and CF 4, all of which exhibit solid state phase transitions; the tetrachlorides of Ge, Ti, Si and Sn, all of which are thought to have similar crystal structures; and SnBr 4, the structure of which is accurately known and is used as a basis for lattice dynamics calculations.

  12. [Raman and infrared spectra of non-stoichiometry uranium oxides].

    PubMed

    Lü, Jun-Bo; Li, Gan; Guo, Shu-Lan

    2014-02-01

    Both of Raman and infrared spectra of seven non-stoichiometry and threestoichiometry uranium oxides, including UO2, U3O7 and UO(2+x) (0spectra of UO(2+x) in the stoichiometry range, U3O7 to U3O8, were first obtained and reported. Three typical peaks were observed at 445, 578 and 1150 cm(-1) in the Raman spectrum of uranium dioxide. The intensities of the peaks at 578 and 1151 cm(-1) decrease quickly with increasing x value of UO(2+x), and while x=0.19, the two peaks disappear. Such peaks can therefore be considered as a fin-gerprint of the quasi-perfect UO2 fluorite structure. The peak at 445 cm(-1) tends to weaken, broaden and shift to higher wavenumber in more oxidised samples. When x=0.32, this peak is shifted to the 459 cm(-1) and a weak peak at about 630 cm(-1) appears. The two new peaks are typical of the tetragonal U3O7. While x> or =0.39, the peak at 459 cm(-1) further splits into separate components. Two peaks at 235 and 754 cm(-1) appear for UO(2.39) and are visible with increased intensity as the oxygen-uranium ratio is increased. And the Raman spectra of UO(2+x) are gradually close to U3O8 in the alpha-phase, which has an orthorhombic unit cell. But several strongest features of the alpha-U3O8 specturm at 333, 397, 483 and 805 cm(-1) are still not outstanding even in UO(2.60). The main feature of the UO2 infrared spectrum shows a very broad and strong adsorption band at 400-570 cm(-1) and another feature is a weak adsorption peak at about 700 cm(-1). The 400-570 cm(-1) band undergoes a progressive splitting into two new peaks at approximately 421 and approximately 515 cm(-1) through increasing incorporation of oxygen into UO2. The weak peak at about 700 cm(-1) disappears and a new weak peak appears at about 645 cm(-1). The three new peaks are the infrared absorption features of U3O7. An absorption peak at 744 cm(-1) which is the strongest feature of alpha-U3O8 infrared spectrum appears for UO(2.39) and is

  13. Automated decomposition algorithm for Raman spectra based on a Voigt line profile model.

    PubMed

    Chen, Yunliang; Dai, Liankui

    2016-05-20

    Raman spectra measured by spectrometers usually suffer from band overlap and random noise. In this paper, an automated decomposition algorithm based on a Voigt line profile model for Raman spectra is proposed to solve this problem. To decompose a measured Raman spectrum, a Voigt line profile model is introduced to parameterize the measured spectrum, and a Gaussian function is used as the instrumental broadening function. Hence, the issue of spectral decomposition is transformed into a multiparameter optimization problem of the Voigt line profile model parameters. The algorithm can eliminate instrumental broadening, obtain a recovered Raman spectrum, resolve overlapping bands, and suppress random noise simultaneously. Moreover, the recovered spectrum can be decomposed to a group of Lorentzian functions. Experimental results on simulated Raman spectra show that the performance of this algorithm is much better than a commonly used blind deconvolution method. The algorithm has also been tested on the industrial Raman spectra of ortho-xylene and proved to be effective. PMID:27411136

  14. Resonance Raman spectra of. cap alpha. -copper phthalocyanine

    SciTech Connect

    Bovill, A.J.; McConnell, A.A.; Nimmo, J.A.; Smith, W.E.

    1986-02-13

    Raman spectra of ..cap alpha..-copper phthalocyanine (..cap alpha..-CuPc) were recorded at room temperature and at 10 K with excitation wavelengths between 457 and 714 nm. Resonance enhancement was greatest for modes for which the largest displacements were on either the inner five-membered ring of the isoindole groups or the inner macrocycle and consequently assignment of the bands to modes of the entire molecule was possible by comparison with nickel octaethylporphyrin. Four out of five bands resonant in the Q band region and preresonant near the B band absorption region are totally symmetric modes. B band preresonance occurs more strongly with high-frequency modes. At low temperatures, multimode interactions are reduced and profiles were obtained which can be compared with solution profiles of porphyrins. Both Q/sub x/ and Q/sub y/ 0-0 scattering can be identified and a helper mode is evident. A term enhancement predominates, with B/sub 1g/ and B/sub 2g/ modes enhanced because of a Jahn-Teller distortion of the excited state. The resonance studies, together with electronic absorption spectra and published theoretical studies, confirm that the Q band in ..cap alpha..-CuPc is largely due to an allowed ..pi..-..pi..* transition associated mainly with the macrocycle and inner five-membered rings of the isoindole groups. 25 references, 5 figures, 2 tables.

  15. Microwave, infrared and Raman spectra and structure of 2-nitropropane

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Smoother Smith, J. A.; Li, Y. S.; Wasacz, F. M.

    1983-05-01

    The microwave spectrum of 2-nitropropane, C 3H 7NO 2, has been investigated from 12.5 to 40.0 GHz. Only α-type transitions were observed and R-branch assignments are made for the ground vibrational state. The effective rotational constants are found to have the following values: A = 5132 ± 12, B = 2895.70 ± 0.14, and C = 2706.51 ± 0.12 MHz. It is shown that these rotational constants are only consistent for the conformer where one NO bond eclipses the CH bond. From a diagnostic least-squares adjustment to fit these three rotational constants along with reasonably assumed structural parameters for the isopropyl moiety, excluding the CC distance, the following parameters are obtained: r( C C) = 1.533 ± 0.006 Å, r( C N) = 1.508 ± 0.018 Å, r( N O) = 1.218 ± 0.015 Å, ∩ CNO = 116.8 ± 1.5°, and ∩ CCN = 108.9 ± 1.7° . From a temperature study of the microwave spectrum, it appears that the NO 2 group is nearly freely rotating. The IR (3500-80 cm -1) and Raman (3500-10 cm -1) spectra have been recorded for both the gaseous and solid phases of 2-nitropropane. The Raman spectrum of the liquid has also been recorded and qualitative depolarization values obtained. All of the normal modes are assigned based on band contours, depolarization values, and group frequencies. The vibrational data are also consistent with a nearly freely rotating NO 2 group. These results are compared to the similar quantities for several related molecules.

  16. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  17. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  18. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications

    NASA Astrophysics Data System (ADS)

    Magnotti, G.; KC, U.; Varghese, P. L.; Barlow, R. S.

    2015-09-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  19. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  20. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    PubMed

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS. PMID:22946645

  1. Real-Time Analysis of Raman Spectra for Temperature Field Characterization in Aircraft Exhaust Noise Studies

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Nelson, D. D.; Annen, K.; Locke, R. J.; Wernet, M.

    2009-06-01

    Raman scattering has long been used as a non-intrusive diagnostic of temperatures in combustion exhaust flows, using a variety of spectral analysis techniques. As part of their ongoing program of experiments to support development of computer codes that calculate exhaust flow fields and predict jet noise, NASA Glenn Research Center is developing a laser Raman diagnostic system that will measure mean temperatures and temperature fluctuations in hot and cold jet flows. We describe a software package, ART (Analysis for Raman Temperatures), that analyzes Raman spectra of air for temperature and density using vibrational or resolved or unresolved rotational bands, presenting results in a variety of real-time displays. Each analysis technique presents its own challenges in obtaining the most precise and accurate values, and we will comment on these issues by exhibiting example spectra of each type. The ART program is closely related to another Aerodyne software package (TDLWintel) which automates the acquisition and analysis of tunable laser absorption spectra.

  2. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    SciTech Connect

    Ringholm, Magnus; Ruud, Kenneth; Bast, Radovan; Oggioni, Luca; Ekström, Ulf

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  3. Fluorescence rejection in Raman spectra of Syncrude Sweet Blend distillation fractions.

    PubMed

    Michaelian, Kirk H; Yuan, Hongqi; Hall, Robert H; Bulmer, J Tim

    2005-11-01

    Four techniques for the reduction or elimination of fluorescence from Raman spectra of Syncrude process samples were examined in this study. These methods are based on the retrieval of Raman bands from differential, or derivative spectra. Differential data were generated by subtracting similar spectra of a given sample obtained in three ways: (a) shifted detection utilizing an array detector and two successive spectrometer settings; (b) shifted excitation (dispersive Raman) where the two spectra are recorded using neighbouring laser lines and ordinary photon counting; (c) shifted excitation (FT-Raman) in which the laser frequency is changed in software before acquisition of the second spectrum. In addition to these differential techniques, derivative spectra were acquired directly with a dispersive Raman system by modulating the wavelength during scanning. These fluorescence rejection methods were applied to two groups of Syncrude Sweet Blend distillation fractions. For light gas oils (boiling range, 195-343 degrees C) the ratio of monocyclic and bicyclic aromatic species was determined and bands due to aliphatic CH(n) groups were characterized. Heavy gas oils (343-524 degrees C) yielded bands that allowed quantitation of monocyclic, bicyclic and total aromatic groups. Bands due to aliphatics were also identified for the heavy gas oils. These results constitute a significant advance compared to the information obtainable using conventional dispersive and FT-Raman spectroscopy for the analysis of hydrocarbon distillation fractions. PMID:16257762

  4. Hydrogen bonding effects on infrared and Raman spectra of drug molecules

    NASA Astrophysics Data System (ADS)

    Bondesson, Laban; Mikkelsen, Kurt V.; Luo, Yi; Garberg, Per; Ågren, Hans

    2007-02-01

    Infrared and Raman spectra of three drug molecules, aspirin, caffeine and ibuprofen, in gas phase and in aqueous solution have been simulated using hybrid density functional theory. The long range solvent effect is modelled by the polarizable continuum model, while the short range hydrogen bonding effects are taken care of by the super-molecular approach with explicit inclusion of water molecules. The calculated spectra are found to compare well with available experimental results. The agreement obtained make grounds for proposing theoretical modeling as a tool for characterizing changes in the bonding environments of drug molecules in terms of particular variations in their IR and Raman spectra.

  5. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    SciTech Connect

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  6. Raman spectra of Martian glass analogues: a tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena O.; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-04-01

    We present a study on the systematic changes of Raman spectra of a series of glasses as a function of their chemistry. These glass compositions are considered as analogues for rock materials identified on Mars. We performed a diffusion experiment between an iron-rich basaltic and a rhyolitic melt under reducing conditions to produce a wide range of intermediate chemical compositions. We then systematically acquired Raman spectra of the intermediate composition glasses across the diffusion interface and correlate them with the corresponding chemical compositions derived by electron microprobe analysis. Using a linear mixing model for the spectral evolution as a function of chemistry, we fitted a Raman parameter to each spectrum to estimate the chemical composition of each glass. The Raman model was verified using external natural and synthetic samples. This study: 1) expands the Raman database of silicate glasses including alkali and iron-rich compositions as expected to be found on Mars; and 2) contributes to develop Raman spectroscopy as a quantitative tool in geological and planetary science to estimate the chemistry of glasses on a microscopic level. Moreover, as Raman spectrometers have been developed for two forthcoming Mars missions [ExoMars program (2016-2018) and Mars 2020], with the benefit of this calibration, Raman spectroscopy will allow rapid, in-situ and remotely controlled identification and investigation of silicate glasses on future extraterrestrial rover missions.

  7. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    NASA Astrophysics Data System (ADS)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  8. Raman spectra of haloselenate(IV) ions—the SeO 2Br - anion

    NASA Astrophysics Data System (ADS)

    Milne, John; Lahaie, Pierre

    Compounds of the bromoselenite ion, MSeO 2Br(M + = φ 4Sb +, n-Bu 4N +) have been prepared and their Raman spectra studied. The spectra are consistent with C s symmetry. A normal coordinate analysis of the spectra of SeO 2F -, SeO 2Cl - and SeO 2Br - has been done and force constants determined. The SeX bonds are shown to be remarkably weak.

  9. Assignment of the Raman spectra of some deuterated-BEDT-TTF superconductors.

    SciTech Connect

    Eldridge, J. E.; Wang, H. H.; Kini, A. M.; Schlueter, J. A.; Materials Science Division; Univ. of British Columbia

    2002-08-01

    We present the room-temperature Raman spectra of both the protonated and deuterated forms of kappa-(BEDT-TTF)2Cu[N(CN)2]Br, kappa-(BEDT-TTF)2Cu(NCS)2 and beta-(BEDT-TTF)2I3. Along with data for the neutral BEDT-TTF molecule these spectra are used to assign the many features in the spectra of the deuterated compounds.

  10. Acquisition of Raman spectra of amino acids using portable instruments: Outdoor measurements and comparison

    NASA Astrophysics Data System (ADS)

    Culka, A.; Jehlička, J.; Edwards, H. G. M.

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation.

  11. Effect of gate-induced doping on the Raman spectra of disordered graphene

    NASA Astrophysics Data System (ADS)

    Childres, Isaac; Jauregui, Luis; Chen, Yong; Purdue Univeristy, Yong P. Chen Group Team

    2013-03-01

    We report a Raman spectroscopy study of graphene field-effect transistors (GFET) after exposure to electron-beam irradiation, used to introduce a controlled amount of defects in graphene. Raman spectra are taken over a range of temperatures (4-300 K), back gate voltages and electron-beam exposures. We observe that the intensity ratio between Raman ``D'' and ``G'' peaks,ID /IG , commonly used to determine the amount of disorder in graphene, not only changes with the irradiation dosage, but also with gate-induced doping. At low temperature (4 K), we observe a peak in the plot of ID /IG versus back gate voltage at the Dirac point of the GFET. As the temperature increases, the back gate voltage at which this peak occurs decreases relative to the Dirac point. Our findings may be valuable for understanding the Raman spectra and electron-phonon physics in doped and disordered graphene.

  12. Acquisition of Raman spectra of amino acids using portable instruments: outdoor measurements and comparison.

    PubMed

    Culka, A; Jehlička, J; Edwards, H G M

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation. PMID:20863748

  13. Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries

    SciTech Connect

    Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.; Johnson, Timothy J.; Su, Yin-Fong; Ball, Christopher D.; Smith, Barry; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

  14. Pre-resonance Raman spectra of some simple gases. [sulfur oxides, hydrogen sulfide, and nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Low, P. W.

    1974-01-01

    The pre-resonance Raman spectra of SO2, N2O, and H2S were investigated using the 4880 A, 4727 A, and 4579 A lines of the argon ion laser. Although these molecules have electronic absorption bands in the near ultraviolet, none exhibit any pre-resonance enhancement within our experimental error of + or - 10%. Possible explanations taking into account the current theories for resonance Raman are discussed.

  15. Fourier-transform Raman spectra of ivory III: identification of mammalian specimens

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Farwell, D. W.; Holder, J. M.; Lawson, E. E.

    1997-11-01

    The FT-Raman spectra of six mammalian ivories, other than elephant and mammoth, are presented and spectral differences formulated into a protocol for the identification of animal species from the ivory samples. In this study, sperm whale, walrus, wart hog, narwhal, hippopotamus and domestic pig are considered. The results, which are obtained non-destructively from a variety of specimens, suggest that FT-Raman spectroscopy provides a potentially useful method for the identification of mammalian ivory.

  16. Effects of pathology dyes on Raman bone spectra

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Esmonde-White, Francis W. L.; Morris, Michael D.; Roessler, Blake J.

    2013-05-01

    We report an overlooked source of artifacts for clinical specimens, where unexpected and normally negligible contaminants can skew the interpretation of results. During an ongoing study of bone fragments from diabetic osteomyelitis, strong Raman signatures were found, which did not correspond with normal bone mineral or matrix. In a bone biopsy from the calcaneus of a patient affected by diabetic osteomyelitis, Raman microspectroscopic analysis revealed regions with both abnormal mineral and degraded collagen in addition to normal bone. Additional bands indicated a pathological material. Stenotrophomonas maltophilia was identified in the wound culture by independent microbiologic examination. We initially assigned the unusual bands to xanthomonadin, a bacterial pigment from S. maltophilia. However, the same bands were also found more than a year later on a second specimen that had been noticeably contaminated with pathology marking dye. Drop deposition/Raman spectroscopy of commonly used pathology dyes revealed that a blue tissue-marking dye was responsible for the unusual bands in both specimens, even in the first specimen where there was no visible evidence of contamination.

  17. Simulation of the resonance Raman spectra for 5-halogenated (F, Cl, and Br) uracils.

    PubMed

    Sun, Shuai; Brown, Alex

    2015-04-30

    The resonance Raman spectra of the 5-halogenated (F, Cl, and Br) uracils are simulated via the Herzberg-Teller (HT) short-time dynamics formalism. The gradient of the S1 excited state is computed at the CAMB3LYP/aug-cc-pVTZ level of theory in the conductor-like polarizable continuum model for water (C-PCM, H2O), based on the equilibrium geometry determined using PBE0/aug-cc-pVTZ in H2O (C-PCM). The simulated resonance Raman spectra show good agreement with the experimental spectra in terms of both peak positions and intensities. The differences between the resonance Raman spectra of the three 5-halogenated uracils, caused by the effect of halogen substitution, are examined in terms of ground-state normal-mode eigenvectors and excited-state Cartesian gradients, according to the HT formalism. The differences in the normal-mode eigenvectors and excited-state Cartesian gradients between 5-fluorouracil and 5-chlorouracil are used to interpret the dissimilarity between their resonance Raman spectra. Meanwhile, the similarity between the spectra of 5-chlorouracil and 5-bromouracil is explained by the correspondence between their normal modes and excited-state gradients. PMID:25856119

  18. Theoretical confirmation of the experimental Raman spectra of the lower-order diamondoid molecule: cyclohexamantane (C 26H 30)

    NASA Astrophysics Data System (ADS)

    Richardson, Steven L.; Baruah, Tunna; Mehl, Michael J.; Pederson, Mark R.

    2005-02-01

    The lower-order diamondoid hydrocarbon molecule, cyclohexamantane (C 26H 30), has been recently isolated from distilled Gulf Coast petroleum. While the structure of C 26H 30 has been confirmed through X-ray diffraction, mass spectroscopy, and 1H/ 13C NMR spectroscopy, its vibrational Raman spectra has only been identified through an indirect comparison with the experimental Raman spectra for adamantane and diamond. We used density-functional theory (DFT) to calculate a Raman spectra whose frequencies and relative intensities are in excellent agreement with the experimental Raman spectra for C 26H 30, thus providing direct vibrational proof of its existence.

  19. Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping

    NASA Astrophysics Data System (ADS)

    Childres, Isaac; Jauregui, Luis A.; Chen, Yong P.

    2014-12-01

    We report a Raman spectroscopy study of graphene field-effect transistors with a controlled amount of defects introduced in graphene by exposure to electron-beam irradiation. Raman spectra are taken at T = 8 K over a range of back gate voltages (Vg) for various irradiation dosages (Re). We study effects in the Raman spectra due to Vg-induced doping and artificially created disorder at various Re. With moderate disorder (irradiation), the Raman G peak with respect to the graphene carrier density (nFE) exhibits a minimum in peak frequency and a maximum in peak width near the charge-neutral point (CNP). These trends are similar to those seen in previous works on pristine graphene and have been attributed to a reduction of electron-phonon coupling strength (D) and removal of the Kohn anomaly as the Fermi level moves away from the CNP. We also observe a maximum in I2D/IG and weak maximum in ID/IG near the CNP. All the observed dependences of Raman parameters on nFE weaken at stronger disorder (higher Re), implying that disorder causes a reduction of D as well. Our findings are valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene.

  20. Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping

    SciTech Connect

    Childres, Isaac; Jauregui, Luis A.; Chen, Yong P.

    2014-12-21

    We report a Raman spectroscopy study of graphene field-effect transistors with a controlled amount of defects introduced in graphene by exposure to electron-beam irradiation. Raman spectra are taken at T = 8 K over a range of back gate voltages (V{sub g}) for various irradiation dosages (R{sub e}). We study effects in the Raman spectra due to V{sub g}-induced doping and artificially created disorder at various R{sub e}. With moderate disorder (irradiation), the Raman G peak with respect to the graphene carrier density (n{sub FE}) exhibits a minimum in peak frequency and a maximum in peak width near the charge-neutral point (CNP). These trends are similar to those seen in previous works on pristine graphene and have been attributed to a reduction of electron-phonon coupling strength (D) and removal of the Kohn anomaly as the Fermi level moves away from the CNP. We also observe a maximum in I{sub 2D}/I{sub G} and weak maximum in I{sub D}/I{sub G} near the CNP. All the observed dependences of Raman parameters on n{sub FE} weaken at stronger disorder (higher R{sub e}), implying that disorder causes a reduction of D as well. Our findings are valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene.

  1. Theoretical study of the resonance Raman spectra for meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-hui; Wei, Wen-mei; Zhu, Li-li; Shi, Qiang

    2014-12-01

    Applying time-dependent density functional theory (TDDFT), we study the resonance Raman spectra for the Q and B bands of the meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin (H2TBPP) molecule including both Raman A term (Franck-Condon term) and Raman B term (Herzberg-Teller term) contributions. It is found that Raman B term can be one order of magnitude larger than Raman A term and dominates resonance Raman for the Q band resonance. In comparison with the recent experimental Raman spectra of H2TBPP with incident light frequency 532 nm, we predict the absence of 1580 cm-1 band in the resonance Raman spectra which agrees well with the experimental results, whereas the previous theoretical calculation using non-resonance strategy failed to do so.

  2. Experimental and theoretical investigation of pressure-dependent Raman spectra of triaminotrinitrobenzene (TATB) at high pressures

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron; Grant, Christian; Zaug, Joseph; Crowhurst, Jonathan; Oleynik, Ivan

    2015-06-01

    The experimental pressure dependent Raman spectra of triamino-trinitrobenzene (TATB) are determined up to 27 GPa, and compared with those obtained using density functional theory (DFT). The density functional perturbation theory calculations include the Grimme empirical van der Waals correction, as well as corrections for both thermal and zero-point energy contributions to pressure. DFT calculations of the crystal structure of TATB at ambient conditions, the equation of state, and Raman spectra up to 25 GPa are in good agreement with experiment. Pressure-dependence of specific vibrational modes is discussed in detail. Further, the comparison of experimental and calculated Raman spectra of TATB offers evidence that no first-order polymorphic phase transition occurs at least up to 25 GPa.

  3. Optical and dielectric properties of lithium iodate based on the IR reflection and Raman scattering spectra

    SciTech Connect

    Avdienko, K.I.; Puchkovskaya, G.A.; Semenov, A.E.; Tokmakova, G.N.; Frolkov, Yu.A.

    1987-11-01

    The authors investigate the reflection and Raman scattering spectra of the alpha-lithium iodate monocrystal and also determine the real and imaginary parts of the dielectric constant, the refractive index, the absorption coefficient, the nonlinear optical behavior, the oscillator strengths, and the damping constants based on the Kramers-Kroenig relations. The effect of the method used to work the surface and the polydispersity of the sample on the form of the spectral bands is also investigated. The Raman spectra of lithium iodate polycrystals were studied for comparative purposes. The contribution of longitudinal and transverse as well as anisotropic phonons and their vibrations in the lattice to the Raman spectra is also assessed.

  4. Parallel acquisition of Raman spectra from a 2D multifocal array using a modulated multifocal detection scheme

    NASA Astrophysics Data System (ADS)

    Kong, Lingbo; Chan, James W.

    2015-03-01

    A major limitation of spontaneous Raman scattering is its intrinsically weak signals, which makes Raman analysis or imaging of biological specimens slow and impractical for many applications. To address this, we report the development of a novel modulated multifocal detection scheme for simultaneous acquisition of full Raman spectra from a 2-D m × n multifocal array. A spatial light modulator (SLM), or a pair of galvo-mirrors, is used to generate m × n laser foci. Raman signals generated within each focus are projected simultaneously into a spectrometer and detected by a CCD camera. The system can resolve the Raman spectra with no crosstalk along the vertical pixels of the CCD camera, e.g., along the entrance slit of the spectrometer. However, there is significant overlap of the spectra in the horizontal pixel direction, e.g., along the dispersion direction. By modulating the excitation multifocal array (illumination modulation) or the emitted Raman signal array (detection modulation), the superimposed Raman spectra of different multifocal patterns are collected. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra using a postacquisition data processing algorithm. This development leads to a significant improvement in the speed of acquiring Raman spectra. We discuss the application of this detection scheme for parallel analysis of individual cells with multifocus laser tweezers Raman spectroscopy (M-LTRS) and for rapid confocal hyperspectral Raman imaging.

  5. Quantum-mechanical analysis of the intensity distribution in spectra of resonant Raman scattering spectra of aqueous solutions of tyrosine

    NASA Astrophysics Data System (ADS)

    Burova, T. G.; Shcherbakov, R. S.

    2016-05-01

    Quantum-mechanical calculations of the intensity distribution in the resonant Raman scattering spectra of aqueous solutions of tyrosine excited by laser radiation with wavelengths of 244, 229, 218, 200, and 193 nm, as well as in the nonresonant Raman scattering spectrum excited at a wavelength of 488 nm, are performed. Satisfactory agreement is achieved between the calculation results and the experimental data. It is shown that the changes in the intensity distribution observed in the spectra with a change in the excitation wavelength from 244 to 193 nm correlate with the determined changes in the contribution made by excited electronic states into the scattering tensor components. It is noted that it is necessary to take into account the Herzberg-Teller effect and that the number of excited electronic states taken into account considerably affects the calculated relative intensities of lines. The possibility of existence of several tyrosine conformers in aqueous solution at room temperature is shown.

  6. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

  7. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT.

    PubMed

    Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Kovalenko, V I

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614cm(-1) in the experimental IR spectrum and by bands at 3327, 3241cm(-1) in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular NH⋯S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer. PMID:27179692

  8. [Raman spectra characteristics of alunite in the Zijinshan gold-copper deposit].

    PubMed

    Wang, Cui-Zhi; Xiong, Xin

    2014-02-01

    The Zijinshan gold-copper deposit is the first one of high sulfidation epithermal hydrothermal deposits. The gold bodies up, and the copper bodies down. The gold bodies mainly occur above the ground water table associated with strong silicification, and the copper bodies mainly occur below the ground water table associated with alunitization. The alunite of the Zijinshan gold-copper deposit has four types of occurrence status, that is the altered rock type, the intergrowth-with-Cu-sulphide type, the vein type and the powder type. Different types of the alunite are of different Raman spectra characteristics and fluorescence scattering background. Laser Raman spectra of inclusions in the alunite show that: (1) The characteristics of the Laser Raman spectra of the alunite are of characteristic spectral bands of alunite, just fluorescent scattering weaken gradually from the altered rock type, the intergrowth-with-Cu-sulphide type to the vein type; the alunite in the Powder type has different bands of the Laser Raman spectra relative to the former three types, the intensity of each band is weaker, and it's fluorescent scattering intensity is strongger. (2) The bands in 100-700 cm(-1) of the Laser Raman spectra can be used as "fingerprint" bands indicating the condition of the cation replacement in the molecular structure of alunite. The intensities at 161 and 234 peak change obviously in the bands of the alunite in the altered rock type, which indicating a wide replacement between K and Na; the intensities at 381 and 484 peak in the bands of the alunite in the intergrowth-with-Cu-sulphide type change significantly, indicating Al can be replaced with Cu, Ga, etc.; the larger and stable intensities of the alunite in the vein type in the bands at the peaks about 161, 234, 484, 508, etc. indicate that there are less chances with the replacement between K and Na, Al and Si; fluorescence scatorescent scattering is very strong and the intensity of each band is weaker in the

  9. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Singh, J.P.; Yueh, F.Y.; Kao, W.; Cook, R.L. )

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl ([chi][sub nr][sup HCl]), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  10. Investigation of the spectra of luminescence and Raman scattering in water and chlorophyll "a" excited by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Biryukova, Yu. S.; Ilyin, A. A.; Golik, S. S.; Mayor, A. Y.

    2015-11-01

    The Raman spectra of femtosecond laser pulses in distilled and tap water, and luminescence spectra of aqueous solutions containing dissolved organic matter, chlorophyll "a" and biological objects excited by ultra-short laser pulses was investigated.

  11. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  12. Comparative study of resonance Raman and surface-enhanced resonance Raman chlorophyll a spectra using soret and red excitation

    SciTech Connect

    Thomas, L.L.; Kim, Jaeho; Cotton, T.M. )

    1990-12-05

    Surface-enhanced resonance Raman scattering (SERRS) spectra are reported for chlorophyll a adsorbed on a silver electrode at 298 and 77 K with 406.7-, 457.9-, 514.5-, and 647.1-nm excitation. Submerging the electrode in degassed water at 298 K was found to improve the spectral quality by minimizing sample heating and photooxidation. Spectral intensities and peak resolutions were greater at all excitation wavelengths at liquid nitrogen temperature. Most significantly, roughened silver at the low temperature quenched the fluorescence accompanying red excitation and minimized sample photooxidation, resulting in richly detailed SERRS spectra of chlorophyll a. The close correspondence between chlorophyll a resonance Raman (RR) and SERRS spectra suggests that an electromagnetic mechanism is the major source of the surface enhancement, rather than a chemical mechanism (e.g. a charge-transfer complex between chlorophyll a and the metal). The spectral similarities, together with the presence of the MgN{sub 4} vibration band in the SERRS spectra, also provide evidence that structural alterations (e.g. cleavage of ring V or loss of Mg) do not occur in chlorophyll a after adsorption at the electrode surface. A distinctive SERRS spectrum was obtained for each excitation wavelength. Selective excitation within the various electronic transitions can thus be utilized to verify assignments of the vibrational modes of chlorophyll a and to monitor its interactions and photochemical behavior in biomimetic systems.

  13. Broadband coherent Raman spectroscopy running at 24,000 spectra per second.

    PubMed

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique's strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm(-1)) with spectral resolution of 10 cm(-1) at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  14. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-02-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm-1) with spectral resolution of 10 cm-1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging.

  15. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    PubMed Central

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s – more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200–1500 cm−1) with spectral resolution of 10 cm−1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  16. Organic Process Technology Valuation: Cyclohexanone Oxime Syntheses

    ERIC Educational Resources Information Center

    Cannon, Kevin C.; Breen, Maureen P.

    2010-01-01

    Three contemporary processes for cyclohexanone oxime synthesis are evaluated in a case study. The case study introduces organic chemistry students to basic cost accounting to determine the most economical technology. Technical and financial aspects of these processes are evaluated with problem-based exercises that may be completed by students…

  17. Raman spectra of adsorbed layers on space shuttle and AOTV thermal protection system surface

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1987-01-01

    Surfaces of interest to space vehicle heat shield design were struck by a 2 W argon ion laser line while subjected to supersonic arc jet flow conditions. Emission spectra were taken at 90 deg to the angle of laser incidence on the test object. Results showed possible weak Raman shifts which could not be directly tied to any particular parameter such as surface temperature or gas composition. The investigation must be considered exploratory in terms of findings. Many undesirable effects were found and corrected as the project progressed. For instance, initial spectra settings led to ghosts which were eliminated by closing the intermediate of filter slit of the Spex from 8 to 3 mm. Further, under certain conditions, plasma lines from the laser were observed. Several materials were also investigated at room temperature for Raman shifts. Results showed Raman shifts for RCC and TEOS coated materials. The HRSI materials showed only weak Raman shifts, however, substantial efforts were made in studying these materials. Baseline materials showed the technique to be sound. The original goal was to find a Raman shift for the High-temperature Reusable Surface Insulation (HRSI) Reaction Cured borosilicate Glass (RCG) coated material and tie the amplitude of this peak to Arc jet conditions. Weak Raman shifts may be present, however, time limitations prevented confirmation.

  18. High pressure Raman spectra of monoglycine nitrate single crystal.

    PubMed

    Carvalho, J O; Moura, G M; Dos Santos, A O; Lima, R J C; Freire, P T C; Façanha Filho, P F

    2016-05-15

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm(-1) point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal. PMID:26967511

  19. High pressure Raman spectra of monoglycine nitrate single crystal

    NASA Astrophysics Data System (ADS)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.

    2016-05-01

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  20. Raman spectra of the different phases in the CaSO4-H2O system.

    PubMed

    Prieto-Taboada, Nagore; Gómez-Laserna, Olivia; Martínez-Arkarazo, Irantzu; Olazabal, María Ángeles; Madariaga, Juan Manuel

    2014-10-21

    Although it is known that the CaSO4/H2O system is formed by at least five different phases, this fact is not correctly documented in Raman spectroscopy studies. The main problem detected in the literature was the incorrect definition of the anhydrite, which produced the assignation of different spectra for a single compound. In this sense, two different spectra were clearly identified from the bibliography, which showed different main Raman bands at 1017 or 1025 cm(-1), although anhydrite could be present even as three different polymorphous species with different structures. A better understanding of the whole system obtained from a review of the literature allowed new conclusions to be established. Thanks to that revision and the development of different thermodynamical experiments by Raman spectroscopy, the Raman spectra of each phase were successfully identified for the first time. In this way, the main Raman bands of gypsum, bassanite, anhydrite III, anhydrite II and anhydrite I were identified at 1008, 1015, 1025, 1017 and 1017 cm(-1), respectively. To conclude this work, the contradictions found in literature were critically summarized. PMID:25226433

  1. Sialylation sensitive bands in the Raman spectra of oligosaccharides and glycoproteins

    NASA Astrophysics Data System (ADS)

    Oleinikov, V.; Kryukov, E.; Kovner, M.; Ermishov, M.; Tuzikov, A.; Shiyan, S.; Bovin, N.; Nabiev, I.

    1999-05-01

    N-Acetylneuraminic (sialic) acid which plays a key role in process of cell recognition and interaction was studied by Raman spectroscopy. It was revealed that the strong band at 873 cm -1 arising from the glycerol fragment vibrations can be used as a Raman marker of sialic acid. In the Raman spectra of oligosaccharides and glycoproteins this band is observed at 880 cm -1. The strong dependence of the 880 cm -1 band intensity on the sialic acid ( Sia) content in α 1-acid glycoprotein was shown. The data demonstrate the possibility to use Raman spectroscopy approach as a simple and non-destructive assay for the rapid registration and quantification of Sia in the glycoproteins and on the membranes of the living cells.

  2. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    SciTech Connect

    Aleksa, V. Ozerenskis, D.; Pucetaite, M.; Sablinskas, V.; Cotter, C.; Guirgis, G. A.

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  3. Coherent anti-Stokes Raman spectroscopy - Spectra of water vapor in flames

    NASA Technical Reports Server (NTRS)

    Hall, R. J.; Shirley, J. A.; Eckbreth, A. C.

    1979-01-01

    The results of experimental measurements of the coherent anti-Stokes Raman spectra of water vapor in flames are reported. A pulsed, frequency-doubled neodymium laser was used to supply the pump beam and to pump a dye laser to provide a broadband Stokes beam at 6600 A. Spectra were obtained in the postflame region of a premixed methane-air flame in the Raman frequency shift region of the symmetric stretch mode (3651.7 kaysers) at an approximate temperature of 1675 K. A theoretical calculation of the coherent anti-Stokes Raman spectrum of water vapor at this temperature was made, taking into account only isotropic Q-branch transitions, and using the energy level data of Floud et al. (1976). The theoretical prediction is shown essentially to reproduce all qualitative features of the experimental spectrum, and to exhibit a strong temperature dependence.

  4. Effect of disordering in rare earth titanates on their Raman spectra

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1986-09-01

    The authors study the rare earth titanates obtained by quenching from the melt using Raman spectroscopy. Secimens with the general formula Ln/sub 2/Ti/sub 2/O/sub 7/ and Ln/sub 2/TiO/sub 5/ (Ln = La to Lu, Y) were prepared by melting the initial oxides on a Uran beam-heating unit, followed by quenching on a cooled substrate. The Raman spectra were excited by an argon laser and recorded by means of a double monochromator in the photon counting regime. With an increase in the rate of quenching the structure was altered for certain specimens, this being established from the x-ray diffraction patterns and the Raman spectra.

  5. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  6. Effect of pressure on the Raman spectra of solids. 2. Pyridine

    SciTech Connect

    Heyns, A.M.; Venter, M.W.

    1985-10-10

    Two modifications of pyridine have been identified when the liquid is solidified at 10 kbar in a diamond anvil cell at 300 K. The effect of pressure on the Raman spectra of these modifications is reported. The one modification is crystalline and characterized by narrow and well-defined lattice modes and undergoes a phase transition at 20 kbar, while the other has fewer and much broader lattice vibrations. The Raman spectra of none of these modifications are in agreement with the space group reported for solid pyridine obtained by cooling that liquid at atmospheric pressures. The pressure dependence of the Raman bands of the crystalline phase indicates that it possibly corresponds to the monoclinic phase II in planar, aromatic molecules such as benzene, while the other modification possibly resembles that glassy phase observed in infrared experiments. The internal modes of solid pyridine in all the phases closely resemble those of the liquid. 31 references, 2 figures, 3 tables.

  7. Resonance Raman spectra of some radiolytically prepared halogen derivatives of para-benzosemiquinone radical anion

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1982-03-01

    The resonance Raman spectra have been obtained on radiolytically and chemically prepared halogen derivatives (chloro-, bromo-, 2.5 dichloro-, tetra chloro-, and tetra bromo-) of p-benzosemiquinone radical anion. Excitation is in the moderately intense absorption band at 430--460 nm. All Raman spectra show a strongly resonance enhanced and polarized line corresponding to a vibrational frequency of 1590--1620 cm/sup -1/ which is assigned to the Wilson phenyl mode 8a (CC stretch). A number of weaker lines are also observed and their assignment discussed. The electronic transitions in resonance are identified as /sup 2/B/sub 3g/--/sup 2/B/sub 1u/ (in D/sub 2h/ point group) in view of the resonance Raman band intensities. This supports the assignment by Harada based on ASMO CI calculations which has recently been in dispute.

  8. Theoretical Confirmation of the Experimental Raman Spectra of the Diamondoid Molecule: Cyclohexamantane (C26H30)

    NASA Astrophysics Data System (ADS)

    Richardson, Steven L.; Baruah, Tunna

    2005-03-01

    Diamondoids (C4n+6H4n+12) are rigid, cage-like hydrocarbon molecules which are superimposable upon the diamond crystal structure. For n=1, we have the simplest diamondoid, adamantane C10H16. While most of the diamondoids for n<=3 have been synthesized in the lab, routes for preparing larger diamondoids for n>4 have not yet been realized. The diamondoid, cyclohexamantane (C26H30), has recently been isolated from distilled Gulf Coast petroleum.[1] While its structure has been confirmed through x-ray diffraction, mass spectroscopy, and ^1H/^13C NMR spectroscopy, its vibrational Raman spectra has only been identified through an indirect comparison with the experimental Raman spectra for adamantane and diamond. We have used density-functional theory (DFT) to calculate a Raman spectra which is in excellent agreement with the experimental Raman spectra for C26H30, thus providing direct vibrational proof of its existence.[2] ^1J. E. P. Dahl et al., Angew. Chem. Int. Ed. 42, 2040 (2003). ^2S. L. Richardson, T. Baruah, M. J. Mehl, and M. R. Pederson, accepted for publication in Chem. Phys. Lett.

  9. Simulations of Two-dimensional Infrared and Stimulated Resonance Raman Spectra of Photoactive Yellow Protein

    PubMed Central

    Preketes, Nicholas K; Biggs, Jason D; Ren, Hao; Andricioaei, Ioan; Mukamel, Shaul

    2012-01-01

    We present simulations of one and two-dimensional infrared (2DIR) and stimulated resonance Raman (SRR) spectra of the dark state (pG) and early red-shifted intermediate (pR) of photoactive yellow protein (PYP). Shifts in the amide I and Glu46 COOH stretching bands distinguish between pG and pR in the IR absorption and 2DIR spectra. The one-dimensional SRR spectra are similar to the spontaneous RR spectra. The two-dimensional SRR spectra show large changes in cross peaks involving the C=O stretch of the two species and are more sensitive to the chromophore structure than 2DIR spectra. PMID:24244064

  10. Temperature effects in low-frequency Raman spectra of corticosteroid hormones

    NASA Astrophysics Data System (ADS)

    Minaeva, V. A.; Minaev, B. F.; Baryshnikov, G. V.; Surovtsev, N. V.; Cherkasova, O. P.; Tkachenko, L. I.; Karaush, N. N.; Stromylo, E. V.

    2015-02-01

    Experimental Raman spectra of the corticosteroid hormones corticosterone and desoxycorticosterone are recorded at different temperatures (in the range of 30-310 K) in the region of low-frequency (15-120 cm-1) vibrations using a solid-state laser at 532.1 nm. The intramolecular vibrations of both hormones are interpreted on the basis of Raman spectra calculated by the B3LYP/6-31G(d) density functional theory method. The intermolecular bonds in tetramers of hormones are studied with the help of the topological theory of Bader using data of X-ray structural analysis for crystalline samples of hormones. The total energy of intermolecular interactions in the tetramer of desoxycorticosterone (-49.1 kJ/mol) is higher than in the tetramer of corticosterone (-36.9 kJ/mol). A strong intramolecular hydrogen bond O21-H⋯O=C20 with an energy of -42.4 kJ/mol was revealed in the corticosterone molecule, which is absent in the desoxycorticosterone molecule. This fact makes the Raman spectra of both hormones somewhat different. It is shown that the low-frequency lines in the Raman spectra are associated with skeletal vibrations of molecules and bending vibrations of the substituent at the C17 atom. The calculated Raman spectrum of the desoxycorticosterone dimer allows one to explain the splitting and shift of some lines and to interpret new strong lines observed in the spectra at low temperatures, which are caused by the intermolecular interaction and mixing of normal vibrations in a crystal cell. On the whole the calculated frequencies are in a good agreement with the experimental results.

  11. Radiation damage to Kokchetav UHPM diamonds in zircon: Variations in Raman, photoluminescence, and cathodoluminescence spectra

    NASA Astrophysics Data System (ADS)

    Shimizu, Rentaro; Ogasawara, Yoshihide

    2014-10-01

    We conducted detailed in-situ Raman, photoluminescence (PL) and cathodoluminescence (CL) studies on microdiamonds in a tourmaline-rich quartzofeldspathic rock from the Kokchetav Massif, Kazakhstan. The microdiamonds occur as inclusions in the cores of K-tourmaline and in zoned zircons with varying U contents. The results of 2D Raman mapping of zircon showed that the U-rich parts were more metamictized than the U-poor parts. All the diamonds showed a strong Raman band at approximately 1332 cm- 1, however, the features of the Raman bands were distinctly different depending on the host minerals. On the one hand, diamonds in tourmaline had a sharp Raman band that is similar to that of kimberlite diamonds [full width at half maximum (FWHM): 2-3 cm- 1]. On the other hand, diamonds in zircon had a broad and downshifted band compared to those in tourmaline. In particular, diamonds in U-rich cores of zircons (up to 0.15 wt.% UO2) showed broader and more downshifted Raman bands (FWHMs and peak positions varied up to 9.3 cm- 1 and 1328 cm- 1, respectively), with additional small bands at approximately 1490 cm- 1 and 1630 cm- 1. A negative correlation was observed between the peak position and the FWHM of the principal Raman band of microdiamonds. Furthermore, the PL and CL spectra showed systematic variations. Diamonds in zircons with low to moderate U-concentrations had very strong PL and CL compared to diamonds in U-rich zircons and in tourmalines. Several characteristic peaks appeared in the PL and CL spectra, indicating the presence of irradiation and/or nitrogen-related point defects in the diamonds. PL and CL of microdiamonds in high-U zircon were weak, but still showed irradiation-related peaks. The relationship between the occurrence of microdiamonds (i.e., corresponding to the estimated total α-dose since crystallization) and the Raman, PL, and CL spectral characteristics of microdiamonds strongly suggests that radiation damage predominantly caused by

  12. Breit-Wigner-Fano line shapes in Raman spectra of graphene

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2014-12-01

    Excitation of electron-hole pairs in the vicinity of the Dirac cone by the Coulomb interaction gives rise to an asymmetric Breit-Wigner-Fano line shape in the phonon Raman spectra in graphene. This asymmetric line shape appears due to the interference effect between the phonon spectra and the electron-hole pair excitation spectra. The calculated Breit-Wigner-Fano asymmetric factor 1 /qBWF as a function of the Fermi energy shows a V-shaped curve with a minimum value at the charge neutrality point and gives good agreement with the experimental results.

  13. Studies of the Raman spectra of cyclic and acyclic molecules: Combination and prediction spectrum methods

    NASA Astrophysics Data System (ADS)

    Kim, Taejin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-01

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid. The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  14. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    SciTech Connect

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  15. Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.

    2008-02-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.

  16. The research of Raman spectra measurement system based on tiled-grating monochromator

    NASA Astrophysics Data System (ADS)

    Liu, Li-na; Zhang, Yin-chao; Chen, Si-ying; Chen, He; Guo, Pan; Wang, Yuan

    2013-09-01

    A set of Raman spectrum measurement system, essentially a Raman spectrometer, has been independently designed and accomplished by our research group. This system adopts tiled-grating structure, namely two 50mm × 50mm holographic gratings are tiled to form a big spectral grating. It not only improves the resolution but also reduces the cost. This article outlines the Raman spectroscopy system's composition structure and performance parameters. Then corresponding resolutions of the instrument under different criterions are deduced through experiments and data fitting. The result shows that the system's minimum resolution is up to 0.02nm, equivalent to 0.5cm-1 wavenumber under Rayleigh criterion; and it will be up to 0.007nm, equivalent to 0.19cm-1 wavenumber under Sparrow criterion. Then Raman spectra of CCl4 and alcohol have been obtained by the spectrometer, which agreed with the standard spectrum respectively very well. Finally, we measured the spectra of the alcohol solutions with different concentrations and extracted the intensity of characteristic peaks from smoothed spectra. Linear fitting between intensity of characteristic peaks and alcohol solution concentrations has been made. And the linear correlation coefficient is 0.96.

  17. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Lv, Chao-Jia; Zhuang, Chun-Qiang; Yi, Li; Liu, Hong; Du, Jian-Guo

    2015-12-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dνi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).

  18. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  19. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  20. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  1. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam.

    PubMed

    Ling, Lin; Li, Yong-qing

    2013-02-15

    We demonstrate a method for optical trapping and Raman spectroscopy of micron-sized, airborne absorbing particles using a single focused laser beam. A single Gaussian beam at 532 nm is used to trap and precisely manipulate absorbing airborne particles. The fluctuation of the position of the trapped particles is substantially reduced by controlling the power of the laser beam with a position-sensitive detector and a locking circuit. Raman spectra of the position-stabilized particles or clusters are then measured with an objective and CCD spectrograph. PMID:23455087

  2. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  3. Raman spectra of nitrogen-containing biomarkers obtained using a handheld instrument at winter mountain conditions

    NASA Astrophysics Data System (ADS)

    Culka, Adam; Jehlička, Jan; Čapoun, Tomáå.¡

    2010-05-01

    In this study a performance and feasibility of commercially available handheld Raman spectrometer was tested as an approximation to the Raman spectrometers that are to be used on the future robotic planetary surface exploration missions focused mainly on the search of the traces of life. The conditions on the Alpine test site (low temperature, snowstorm and increased radiation from Sun) were far from the common laboratory conditions and can be considered to be relatively extreme. Well-resolved Raman spectra of examples of mainly nitrogen-containing compounds were acquired using a portable Raman instrument (Ahura First Defender XL) outdoors at a low ambient temperature of -15°C and at an altitude of 2860 metres in the Austrian Alps. The rugged handheld Raman spectrometer tested here is equipped with a 785 nm diode laser and fixed frontal probe. Primary purpose of this type of instruments is to serve as tools for drug and explosives detection. Solid form of formamide, urea, 3-methylpyridine, aniline, 1-(2-aminoethyl)piperazine, indoline as well as two nitrogen-free compounds indene and benzofuran were detected unambiguously under these complex field conditions. Studied compounds were chosen as representatives of aliphatic and aromatic heteroatomic molecules that can potentially be found in the frame of Titan tholins. The main Raman features (strong, medium and partially weak bands) were observed at the correct wavenumber positions (with a spectral resolution 7 - 10 cm-1) in the wavenumber range 200 - 1600 cm-1. The results obtained demonstrate the possibility to apply a miniaturised Raman spectrometer as a key instrument for investigating the presence of nitrogen-containing organic compounds and biomolecules outdoors under low temperature conditions. Within the payload designed by ESA and NASA for future missions, focussing not only on Mars but also on the outer solar system worlds like Titan and Europa, Raman spectroscopy represents an important instrument for the

  4. Structure and Raman spectra in cryolitic melts: simulations with an ab initio interaction potential.

    PubMed

    Cikit, Serpil; Akdeniz, Zehra; Madden, Paul A

    2014-01-30

    The Raman spectra of cryolitic melts have been calculated from molecular dynamics computer simulations using a polarizable ionic potential obtained by force-fitting to ab initio electronic structure calculations. Simulations which made use of this ab initio derived polarizable interaction potential reproduced the structure and dynamical properties of crystalline cryolite, Na3AlF6, rather well. The transferability of the potential model from solid state to the molten state is tested by comparing results for the Raman spectra of melts of various compositions with those previously obtained with empirically developed potentials and with experimental data. The shapes of the spectra and their evolution with composition in the mixtures conform quite well to those seen experimentally, and we discuss the relationship between the bands seen in the spectra and the vibrational modes of the AlFn((3–n)) coordination complexes which are found in the NaF/AlF3 mixtures. The simulations thus enable a link between the structure of the melt as derived through Raman spectroscopy and through diffraction experiments. We report results for quantities which relate to the degree of cross-linking between these coordination complexes and the diffusive properties of ions. PMID:24432905

  5. Polarized Raman spectra of thin films. II. Apparent anomaly of polarization with uniaxially oriented samples

    NASA Astrophysics Data System (ADS)

    Harrand, Monique

    1986-09-01

    With uniaxially oriented thin films it happens that the two polarized Raman spectra given by the E∥ excitation are not alike as could be expected. It is shown that because the exciting beam is slanted inside the film, two components of the electric field are to be considered which give the two ``complex'' polarized Raman spectra: I∥X=(α2XX cos2 r +α2XZ sin2 r)E20 and I∥Y=(α2YX cos2 r +α2YZ sin2 r)E20. With uniaxially oriented samples the intensities can be added, as shown in part I. The values of α2XZ=α2YZ, obtained from the spectra are small in agreement with the calculated values. As these terms decrease when the tilting angle θ of the chains decreases in the case of properly oriented samples, the second terms of I∥X and I∥Y are negligible compared with the first ones, even if cos2 r is small (when the exciting beam is nearly perpendicular to the scattered beam). Therefore, contrary to expectations, the observed spectra are more similar to the (XX) and (XY) spectra than to the (ZX) and (ZY) spectra. The discussion has been carried out with respect to the ν(CH2) vibrations of the acyl chains in phospholipid films and completed with the comparison of the ν(C-C) relative intensities.

  6. Raman spectra of crystalline 4Zn, 2Zn, and Na insulin

    NASA Astrophysics Data System (ADS)

    Tensmeyer, Lowell G.; Shields, J. E.

    1990-11-01

    Normal Raman spectra were obtained for three crystalline forms of human insulin: 4Zn, 2Zn, and Zn-free or Na, from 1800-200 cm1. The extraction of a large number of component bands from the heavily overlapped Raman bands was accomplished by Fourier Self Deconvolution and bandfitting. Bands considered to be indicative of protein conformation, including Amide I, Amide III, tyrosine, 5-5, and C-S bands, and some which are relatively insensitive to protein structure, such as phenylalanine and histidine, are compared. The published x-ray structures of 4Zn and 2Zn insulins are used to help interpret the corresponding parameters of the extracted Raman bands, and to suggest structures in the as yet unpublished Na/human insulin crystals.

  7. [Comparison and analysis of laser Raman spectra of common drinking water].

    PubMed

    Yang, Chang-hu; Yuan, Jian-hui; Zeng, Xiao-ying

    2007-10-01

    In order to detect the drinking water quality in our country at the present time effectively, several brand brands of drinking water on the market and the distilled water that laboratory offered were measured and calculad were measured and calculated. The laser Raman spectra of samples were measured, while the sample's degree of degeneracy polarization at the symmetric stretching peak was calculated from the measurements. Results indicate that the relative intensity of the Raman spectrum and the degree of degeneracy polarization follow the same rule. Through comparison and analysis of the results of measurement and calculation, it is concluded that we can judge the relative content of mineral substance of drinking water by comparing the strengths of laser Raman spectrum characteristic peak and the magnitudes of the sample's degree of degeneracy polarization at the same characteristic peak. This conclusion will provide us a new and effective path to assaying the quality of drinking water. PMID:18306794

  8. Raman spectra of MOCVD-grown ferroelectric PbTiO{sub 3} thin films

    SciTech Connect

    Feng, Z.C.; Kwak, B.S. |; Erbil, A.; Boatner, L.A.

    1993-12-31

    Lead titanate (PbTiO{sub 3}) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO{sub 3}. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO{sub 3} perovskite-oxide crystals and indicative of high crystalline quality. The temperature behavior of the Raman modes, including the so-called ``soft-mode,`` was studied. A ``difference-Raman`` technique was used to distinguish the contributions of the PbTiO{sub 3} film and the KTaO{sub 3} single-crystal substrate.

  9. The use of near infrared Fourier Transform techniques in the study of surface enhanced Raman spectra

    NASA Astrophysics Data System (ADS)

    Fleischmann, M.; Sockalingum, D.; Musiani, M. M.

    Near infrared Fourier Transform Raman spectroscopy has been used to study the SERS of a number of electrode-solution interfaces. These measurements are illustrated by the following examples: the adsorption of pyridine on Ag, Cu and An surfaces; the adsorption of ferri- and ferrocyanide ions on An electrodes in two different support electrolytes; the behaviour of the corrosion inhibitors benzotriazole and 2-aminopyrimidine at Cu surfaces. Measurements of the DSERS spectra of pyridine at Ag electrodes and of normal Raman spectra of pyridine at Pt electrodes are also reported. The results are also compared with data taken by conventional methods in the visible region and the advantages of this newly developed technique are assessed.

  10. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes. [Electronic structure

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-01-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm the authors previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 18 references, 8 figures.

  11. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-09-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm our previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 8 figures.

  12. Raman spectra of probably shock-metamorphosed zircon in structures of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana; Nerovich, Luidmila; Lialina, Luidmila; Il'chenko, Vadim; Bocharov, Vladimir; Kunakkuzin, Evgeny

    2016-04-01

    Zircon crystals were studied by means of Raman spectroscopy from certain structures of the Kola Peninsula, for which impact events are expected according to geological and geochemical data: circular structure in Javrozersky area of the Tanaelv belt and granophyres of Jarva-Varaka layered massif of the Monchegorsky ore district. Zircons from anorthosites of the Javrozersky area showed some features of impact zircons: wavy extinction, blurred "aurora-like" CL image and a presence of additional bands in the Raman spectrum, which may indicate the presence of ZrSiO4 with the scheelite-type structure (reidite) surrounded by zircon material. Zircon crystals of Yavra-Varaka granophyres showed variation of Raman spectra from the core part of crystals with typical zircon Raman pattern to complete absence of spectral bands in the marginal parts and rims. There was also a transition zone between cores and marginal parts of crystals, where the Raman spectrum is "blurred". Such pattern may be associated with the transformation of crystalline zircon to diaplectic glass under the influence of shock metamorphism, since the Jarva-Varaka massif according to geological and geochemical data is compared with the Sudbury structure, for which impact origin is assumed. The work is supported by RSF grant N 16-17-10051.

  13. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    SciTech Connect

    Farrow, R.L.; Rahn, L.A.

    1985-06-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile.

  14. A note on the Raman spectra of water-bearing albite glasses

    NASA Technical Reports Server (NTRS)

    Mcmillan, P. F.; Jakobsson, S.; Holloway, J. R.; Silver, L. A.

    1983-01-01

    The Raman spectra of albite glasses with 4.5 and 6.6 weight percent water have been obtained, and are compared with that of a dry sample. The hydrous glasses show bands near 3600/cm due to O-H stretching, and a previously unreported weak band near 1600/cm due to bending of molecular H2O. Other weak spectral features are discussed, and the effect of dissolved water on the aluminosilicate framework vibrations is considered.

  15. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  16. Anharmonic infrared and Raman spectra in Car-Parrinello molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Cavazzoni, Carlo; Cardini, Gianni; Erbacci, Giovanni; Parrinello, Michele; Schettino, Vincenzo

    2008-06-01

    The infrared and Raman spectra of naphthalene crystal with inclusion of anharmonic effects have been calculated by adopting the generalized variational density functional perturbation theory in the framework of Car-Parrinello molecular dynamics simulations. The computational approach has been generalized for cells of arbitrary shape. The intermolecular interactions have been analyzed with and without the van der Waals corrections, showing the importance of such interactions in the naphthalene crystal to reproduce the structural, dynamical, and spectroscopic properties.

  17. Spectral Signatures for the Classification of Microbial Species using Raman Spectra

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Bailey, Vanessa L.; Fansler, Sarah J.; Wilkins, Michael J.; Hess, Nancy J.

    2012-06-14

    In general, classification-based methods based on Confocal Raman microscopy are focused on targeted studies under which the spectral libraries are collected under controlled instrument parameters, which facilitate analyses via standard multivariate data analysis methods and cross-validation. We develop and compare approaches to combine spectra collected at different times and varying levels of spectral resolution into a single spectral library. We demonstrate these approaches on a relevant test case; the identification of microbial species from a natural environment.

  18. Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Koszykowski, M.L.; Farrow, R.L.; Palmer, R.E.

    1985-10-01

    High-resolution coherent anti-Stokes Raman spectroscopy spectra of the N/sub 2/ Q branch at 294 K have been obtained at 1, 5, and 10 atm. Even at 1-atm pressure, disagreements with spectra calculated using the isolated line approximation were observed, indicating the importance of collisional narrowing effects in describing these spectra. A method of using the full G-matrix approach for the calculation of these spectra that is both exact and computationally efficient (requiring only one matrix diagonalization and inversion per spectrum) is discussed. Excellent agreement with experimental data is obtained using this method and a simple exponential gap model for the off-diagonal G-matrix elements.

  19. Factor analysis for isolation of the Raman spectra of aqueous sulfuric acid components

    SciTech Connect

    Malinowski, E.R.; Cox, R.A.; Haldna, U.L.

    1984-04-01

    The Raman spectra of 16 sulfuric acid/water mixtures over the entire mole fraction range were studied by various factor analysis techniques. Abstract factor analysis showed that three factors account for 98.69% of the variation in the data with a real error of 13%. Key-set factor analysis, was used to identify three spectral wavenumbers unique to each component. Spectral-isolation factor analysis, based on the key wavenumbers, revealed the spectra of each unknown component. Target factor analysis, based on the isolated spectra, yielded the relative amounts of the three spectral components. The concentration profiles obtained from the factor loadings, as well as the isolated spectra, were used to identify the chemical species.

  20. Time-dependent density functional methods for Raman spectra in open-shell systems.

    PubMed

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra. PMID:24380604

  1. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    SciTech Connect

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-03-31

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  2. [Study on the infrared spectra and raman spectra of steel rusty layer with atmospheric corrosion].

    PubMed

    Yang, Xiao-mei

    2006-12-01

    In the present study two methods, infrared and Raman spectral analyses, were used to measure the rusty layer of samples with atmospheric corrosion from Qingdao. The main component rust phase of the rusty layer was observed, showing that the relative content of the rust phase varies with the change in corrosion time. The main component rust phases of the rusty layer were found to be alpha-Fe2O3 , gamma-FeOOH, alpha-FeOOH, delta-FeOOH and Fe3O4, with the relative content of each rust phase of A3 (1) rusty layer sample exhibiting the following relation: gamma-FeOOH> alpha-FeOOH>delta-FeOOH, and the relative contents of other rusty layer samples were found to follow the relation: gamma-FeOOH> delta-FeOOH>alpha-FeOOH. PMID:17361722

  3. Ultraviolet Raman spectroscopy of catalysts: Adsorption and coke formation in zeolites and vibrational spectra of supported metal oxides

    NASA Astrophysics Data System (ADS)

    Chua, Yek Tann

    2001-10-01

    The primary goal of this dissertation is to study the physicochemical and catalytic properties of zeolites and supported metal oxide catalysts using UV Raman spectroscopy. In order to reduce the thermal degradation and possible photodecomposition of adsorbates by UV radiation, we have developed a novel fluidized bed method for measuring the UV Raman spectra of catalysts and adsorbates. The UV Raman spectra of various organic compounds adsorbed in zeolites H-USY and H-ZSM-5 are recorded. When measurements are performed on stationary and spinning samples, the Raman spectra show the presence of coke, a typical end product of heat and photochemistry. In contrast, the Raman peaks of the unreacted adsorbates dominate the spectra measured using the fluidized bed method. These results indicate that the fluidized bed technique is a good method for measuring UV Raman spectra of catalysts and adsorbates. The formation of coke in the methanol-to-gasoline conversion over zeolite H-ZSM-5 causes deactivation of the catalyst. To gain insight into the formation of coke, we have studied this reaction using UV Raman spectroscopy. The Raman spectral changes suggest coke is produced from conjugated olefins via cyclopentadiene intermediates. Aromatic compounds in gasoline may also be produced from cyclopentadienes. The adsorbate-induced structural changes of zeolites may alter the molecular sieving characteristics of these materials which ultimately affect their performance as catalysts and adsorbents. We have quantified the adsorbate-induced structural changes of zeolite H-RHO using UV Raman spectroscopy. The Raman spectra of the zeolite after the adsorption of water, methanol or acetonitrile are consistent with an increase in the average T-O-T angle of the zeolite of 5-8°. The adsorption of ammonia, on the other hand, decreases the average T-O-T angle by 5°. Because of certain advantages of UV Raman spectroscopy over visible Raman spectroscopy, recently there is a strong interest in

  4. Characterisation of Raman spectra of high purity olivine as a function of temperature and shock history.

    NASA Astrophysics Data System (ADS)

    Hibbert, R.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-04-01

    ExoMars' Raman Laser Spectrometer (RLS, [1], [2]) will be the first Raman spectrometer deployed on another planetary body. It is probable the rover will land on the ancient terrain (TBD) within transverse distance to several impact craters where the rocks are estimated to be >3 billion years old. These ancient terrains have been subjected to impacts, and work at Kent has shown such impacts result in modification of minerals and organics [3, 4] and can induce a loss of volatiles [5, 6, 7]. This highlights some problematic scenarios for the interpretation of Raman spectra collected by ExoMars: i) The spectra of impact generated minerals may be misinterpreted since their signatures have not been systematically characterised; ii) The materials produced by the degradation of organic (biologically significant) compounds during impact are unknown, and consequently may be overlooked as evidence for life; iii) Shocked hydrated minerals may be erroneously identified as anhydrous, since it is currently unknown whether there is a spectral difference between volatile rich minerals that have been shocked and their anhydrous counterparts. Our primary goal is therefore to study impact modification. Using the Light Gas Gun at Kent [8], we have shocked minerals under Martian conditions and compared their Raman spectra from before and after impact. Thus far, we have conducted experiments by a firing a buckshot of ~50 μm molybdenum spheres onto gem quality olivine (peridots, which have a very clean and consistent composition) and analysing the impact craters on the surface of the sample using Raman spectroscopy. Raman spectroscopy is generally regarded as a nondestructive technique, however, concentrated laser power can generate localised heating leading to devolatisation, crystalline changes, and even melting of the sample. This can lead to misinterpretation of spectral data (such as incorrect mineralogical composition). Therefore, we have also set out to study and quantify any

  5. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach.

    PubMed

    Sahu, Nityananda; Gadre, Shridhar R

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm(-1) is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems. PMID:27004868

  6. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Gadre, Shridhar R.

    2016-03-01

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm-1 is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  7. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.

    PubMed

    Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong

    2014-02-01

    Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure. PMID:24822414

  8. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-01-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed.

  9. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    PubMed

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  10. Effect of ligand radicals on vibrational IR, Raman and vibronic spectra of europium beta-diketonates.

    PubMed

    Tsaryuk, V; Zolin, V; Legendziewicz, J; Szostak, R; Sokolnicki, J

    2005-01-01

    Vibrational IR, Raman spectra and vibronic sidebands of Eu(3+) electronic transitions of europium tris-beta-diketonates Eu(beta)(3).Ph (beta-dipyvaloylmethane (DPM), acetylacetone (AA), benzoylacetone (BA), thenoyltrifluoroacetone (TTFA) and other beta-diketones; Ph-methyl-, phenyl-, and nitro-derivatives of 1,10-phenanthroline (Phen)) as well as Eu(beta)(3).Bpy and Eu(beta)(3).D-Bpy (Bpy- and D-Bpy-H- and D-2,2'-bipyridine) were studied. Effect of ligand radical properties on spectra and manifestation of the reciprocal influence of non-equivalent ligands in spectra are discussed. Dependence of the spectra on electronic density distribution in both ligands as well as on the strength of M-O and M-N bonds at the variation of radicals of one of the ligands, beta or Ph, was examined. Shape of vibronic sidebands was analysed. Behaviour of bands in the middle and far regions of IR spectra of the series Eu(beta)(3).Phen and Eu(TTFA)(3).Ph was investigated. Increase of the polarising influence of Eu(3+) ions on Phen and Bpy molecules and strengthening the Eu-N bonds in TTFA compounds in comparison with DPM compounds were disclosed from the Raman spectra of Eu(beta)(3).Phen and Eu(beta)(3).Bpy, that is in accordance with properties of beta-diketone radicals. Conclusion about weaker Eu-N bonds in europium beta-diketonates with heterocyclic diimines in comparison with corresponding nitrates was derived from the spectra. Spectral data concerning the relative strength of Eu-ligand bonds are in agreement with available X-ray data. PMID:15556438

  11. Effect of ligand radicals on vibrational IR, Raman and vibronic spectra of europium β-diketonates

    NASA Astrophysics Data System (ADS)

    Tsaryuk, V.; Zolin, V.; Legendziewicz, J.; Szostak, R.; Sokolnicki, J.

    2005-01-01

    Vibrational IR, Raman spectra and vibronic sidebands of Eu 3+ electronic transitions of europium tris-β-diketonates Eu(β) 3·Ph (β-dipyvaloylmethane (DPM), acetylacetone (AA), benzoylacetone (BA), thenoyltrifluoroacetone (TTFA) and other β-diketones; Ph-methyl-, phenyl-, and nitro-derivatives of 1,10-phenanthroline (Phen)) as well as Eu(β) 3·Bpy and Eu(β) 3·D-Bpy (Bpy- and D-Bpy-H- and D-2,2'-bipyridine) were studied. Effect of ligand radical properties on spectra and manifestation of the reciprocal influence of non-equivalent ligands in spectra are discussed. Dependence of the spectra on electronic density distribution in both ligands as well as on the strength of MO and MN bonds at the variation of radicals of one of the ligands, β or Ph, was examined. Shape of vibronic sidebands was analysed. Behaviour of bands in the middle and far regions of IR spectra of the series Eu(β) 3·Phen and Eu(TTFA) 3·Ph was investigated. Increase of the polarising influence of Eu 3+ ions on Phen and Bpy molecules and strengthening the EuN bonds in TTFA compounds in comparison with DPM compounds were disclosed from the Raman spectra of Eu(β) 3·Phen and Eu(β) 3·Bpy, that is in accordance with properties of β-diketone radicals. Conclusion about weaker EuN bonds in europium β-diketonates with heterocyclic diimines in comparison with corresponding nitrates was derived from the spectra. Spectral data concerning the relative strength of Euligand bonds are in agreement with available X-ray data.

  12. Fermi energy dependence of first- and second-order Raman spectra in graphene: Kohn anomaly and quantum interference effect

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Intensities of the first- and the second-order Raman spectra are calculated as a function of the Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the first-order Raman spectra originates from the phonon renormalization by the interband electron-hole excitation, whereas in the second-order Raman spectra, a competition between the interband and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first- and the second-order Raman spectra, indicating the presence of the quantum interference effect. The electron-phonon matrix element plays an important role in the intensity increase (decrease) of the combination (overtone) phonon modes as a function of the Fermi energy.

  13. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  14. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  15. Subpicosecond resonance Raman spectra of the early intermediates in the photocycle of bacteriorhodopsin

    PubMed Central

    van den Berg, R.; Du-Jeon-Jang; Bitting, Herbert C.; El-Sayed, M. A.

    1990-01-01

    The resonance Raman spectra are presented for the species formed during the photocycle of bacteriorhodopsin (bR) on a timescale of 800-900 fs. In the ethylenic stretch region two intermediates were found with frequencies of 1,510 and 1,518 cm-1, corresponding to species with optical absorption maxima at 660 and 625 nm, respectively. This leads to the assignment of the 1,518 cm-1 band to the J625 intermediate. In the fingerprint region, the appearance of a vibration at 1,195 cm-1 strongly suggests that the isomerization indeed has taken place in a time less than the pulsewidth of our laser. This supports the previous proposals made on the basis of the optical spectra. The spectra are compared with those observed in tens of picoseconds up to nanoseconds. PMID:19431759

  16. Evidence of Polaron Excitations in Low Temperature Raman Spectra of Oxalic Acid Dihydrate.

    PubMed

    Mohaček-Grošev, Vlasta; Grdadolnik, Jože; Hadži, Dušan

    2016-05-12

    Low temperature Raman spectra of oxalic acid dihydrate (8-300 K) for both the polycrystalline and single crystal phase show strong variation with temperature in the interval from 1200 to 2000 cm(-1). Previous low temperature diffraction studies all confirmed the stability of the crystal P21/n phase with no indications of any phase transition, reporting the existence of a strong hydrogen bond between the oxalic acid and a water molecule. A new group of Raman bands in the 1200-1300 cm(-1) interval below 90 K is observed, caused by possible loss of the center of inversion. This in turn could originate either due to disorder in hydroxyl proton positions or due to proton transfer from carboxylic group to water molecule. The hypothesis of proton transfer is further supported by the emergence of new bands centered at 1600 and 1813 cm(-1), which can be explained with vibrations of H3O(+) ions. The broad band at 1600 cm(-1) looses intensity, while the band at 1813 cm(-1) gains intensity on cooling. The agreement between quantum calculations of vibrational spectra and experimentally observed Raman bands of hydronium ions in oxalic acid sesquihydrate crystal corroborates this hypothesis. PMID:27093217

  17. Application of the adaptive subspace detector to Raman spectra for biological threat detection

    NASA Astrophysics Data System (ADS)

    Russell, Thomas A.; Borchardt, Steven; Anderson, Richard; Treado, Patrick; Neiss, Jason

    2006-10-01

    Effective application of point detectors in the field to monitor the air for biological attack imposes a challenging set of requirements on threat detection algorithms. Raman spectra exhibit features that discriminate between threats and non-threats, and such spectra can be collected quickly, offering a potential solution given the appropriate algorithm. The algorithm must attempt to match to known threat signatures, while suppressing the background clutter in order to produce acceptable Receiver Operating Characteristic (ROC) curves. The radar space-time adaptive processing (STAP) community offers a set of tools appropriate to this problem, and these have recently crossed over into hyperspectral imaging (HSI) applications. The Adaptive Subspace Detector (ASD) is the Generalized Likelihood Ratio Test (GLRT) detector for structured backgrounds (which we expect for Raman background spectra) and mixed pixels, and supports the necessary adaptation to varying background environments. The structured background model reduces the training required for that adaptation, and the number of statistical assumptions required. We applied the ASD to large Raman spectral databases collected by ChemImage, developed spectral libraries of threat signatures and several backgrounds, and tested the algorithm against individual and mixture spectra, including in blind tests. The algorithm was successful in detecting threats, however, in order to maintain the desired false alarm rate, it was necessary to shift the decision threshold so as to give up some detection sensitivity. This was due to excess spread of the detector histograms, apparently related to variability in the signatures not captured by the subspaces, and evidenced by non-Gaussian residuals. We present here performance modeling, test data, algorithm and sensor performance results, and model validation conclusions.

  18. Microwave spectra and conformational studies of ethylamine from temperature dependent Raman spectra of xenon solutions and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Darkhalil, Ikhlas D.; Nagels, Nick; Herrebout, Wouter A.; van der Veken, Benjamin J.; Gurusinghe, Ranil M.; Tubergen, Michael J.; Durig, James R.

    2014-06-01

    FT-microwave spectroscopy was carried out where the trans conformer was identified to be the most stable conformer. Variable temperature (-60 to -100 °C) studies of the Raman spectra (4000-50 cm-1) of ethylamine, CH3CH2NH2 dissolved in liquefied xenon have been carried out. From these data both conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 62 ± 6 cm-1 (0.746 ± 0.072 kJ mol-1) with the trans conformer the more stable form. The percentage of the gauche conformer is estimated to be 60% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations with the Møller-Plesset perturbation method to the second order (MP2(full)) and the fourth order (MP4(SDTQ)) as well as with density functional theory by the B3LYP method by utilizing a variety of basis sets. Vibrational assignments have been made for the observed bands which have been predicted by MP2(full)/6-31G(d) ab initio calculations which includes harmonic force fields, frequencies, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some similar molecule.

  19. Raman spectra of biomarkers of relevance to analytical astrobiological exploration: hopanoids, sterols and steranes.

    PubMed

    Edwards, H G M; Herschy, B; Page, K; Munshi, T; Scowen, I J

    2011-01-01

    The aim of this work is to investigate the viability and potential of three groups of organic compounds as biomarkers in a future robotic analytical exploration of Mars. The three compounds have been identified as suitable candidates for potential biomarkers for extant or extinct life from the terrestrial fossil record. The three groups of compound were all similar in structure, being either tetra- or penta-cyclic compounds. The limits of detection for a sample were also tested to estimate what concentrations it would still be amenable to Raman spectroscopic investigation. This was investigated using both solid mixtures and liquid solutions. The spectra of these compounds are characterised so that they can be added to the Raman database for future Mars missions. This involved identifying functional group characteristics, assigning peaks for each individual sample and characteristic features which would categorise the samples. PMID:21050806

  20. Anharmonic interactions and temperature effects in Raman spectra of Si nanostructures

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Yukhymchuk, V. O.; Ponomaryov, S. S.; Koroteev, V. V.; Dzhagan, V. M.; Romanyuk, Yu. A.; Baran, J.

    2014-10-01

    An additional Raman phonon band observed for Si crystallites at high excitation power is studied theoretically. Laser-induced heating is supposed to induce stress in crystallites, leading to splitting of degenerated F2g, Eg phonon states into А‧ and А‧‧ ones. The enhancement of anharmonicity effects expected at high temperature may lead to strong coupling between А‧ (А‧‧) fundamental modes with combination tones arising at splitting F2g, Eg states. As a result, the Fermi resonance interaction between the optical modes from Г-point and sum of acoustic modes from L-point can explain the temperature behavior of experimentally observed additional optical phonon band in Raman spectra of Si nanocrystallites.

  1. IR absorption and Raman spectra of single crystals of stable germanium isotopes

    NASA Astrophysics Data System (ADS)

    Gavva, V. A.; Kotereva, T. V.; Lipskiy, V. A.; Nezhdanov, A. V.

    2016-02-01

    The Raman and IR absorption spectra of single crystals of germanium isotopes 72Ge, 73Ge, 74Ge, and 76Ge in the region of phonon absorption and interband electronic transitions are studied at room temperature. The dependence of the Raman peak position on the atomic mass has the form ν ~ M -1/2. The shifts of the phonon absorption peaks of individual isotopes with respect to germanium of natural isotopic composition natGe are determined. With increasing average atomic mass of germanium, these peaks shift to longer wavelengths. In the region of interband electronic transitions, the intrinsic absorption edge of 76Ge is observed to shift by 1 meV to higher energies with respect to Ge of natural isotopic composition. For isotopes with atomic masses close to that of natural germanium (72Ge,73Ge, 74Ge), we found no significant difference in the band gap width at room temperature.

  2. Raman and FTIR spectra of modified iron phosphate glasses containing arsenic

    NASA Astrophysics Data System (ADS)

    Shi, Meiqing; Liang, Yanjie; Chai, Liyuan; Min, Xiaobo; Zhao, Zongwen; Yang, Shu

    2015-02-01

    The structural properties of 20CaO-8B2O3-24Fe2O3-48P2O5 + xAs2O3 (x = 0, 1, 5, 10, 15 mol%) glasses have been investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), Raman and Fourier transform infrared spectrum (FTIR), differential thermal analysis (DTA). The XRD and TEM analysis indicates great solubility of arsenic in the modified iron phosphate melts. The Raman and FTIR spectra show that with increasing As2O3 content in glass compositions, the phosphate chains get less depolymerised, resulting in conversion of Q1 to Q2. As takes part network-forming positions and results in the PO2 units interacting with As2O3 and forming P-O-As linkages/bridges. The higher (Tr-Tg) suggests the thermal stability is improved with the addition of As2O3.

  3. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

    NASA Astrophysics Data System (ADS)

    Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.

    2012-04-01

    The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.

  4. Phase Transition in all-trans-β-Carotene Crystal: Temperature-Dependent Raman Spectra.

    PubMed

    da Silva, Kleber J R; Paschoal, Waldomiro; Belo, Ezequiel A; Moreira, Sanclayton G C

    2015-09-24

    In this study, we studied the stability of an all-trans-β-carotene single crystal using Raman spectroscopy with line excitation at 632.8 nm, in the temperature range 20–300 K. The Raman spectra exhibit clear modifications in the spectral range of the lattice and internal vibrational modes. The temperature dependence of the most intense vibrational modes ν1 (1511 cm(–1)) and ν2 (1156 cm(–1)) that are related to the C═C and C—C stretching vibrations of the polyene chain, respectively, shows an upward shift on the Raman modes. This behavior is similar to that stated in the theoretical work of Wei-Long Liu et al. We conclude that the all-trans-β-carotene crystal undergoes a temperature-induced phase transition at approximately 219 K. This transition is interpreted as a rotation experienced by β-ring groups at each end of the all-trans-β-carotene molecule around the dihedral angle. At low temperatures, the new molecular configuration affects the sliding plane of the space group C2h(5)(P2(1)/n), and the phase transition leads to an unchanged monoclinic structure; however, the original space group is possibly lowered to the space group C2. In the temperature range 200–220 K, the spectral ratio (S) of the integrated intensities of the spectral modes around the symmetric and asymmetric stretching wavenumbers of the methyl group (CH3) changes as a function of temperature in agreement with the phase transition. Furthermore, according to phase transition undergone by the all-trans-β-carotene, the thermal results obtained by differential scanning calorimetry show an exothermic process that occurs near the transition temperature assigned by the Raman spectra. PMID:26335691

  5. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  6. Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Ghodbane, S.; Deneuville, A.; Tromson, D.; Bergonzo, P.; Bustarret, E.; Ballutaud, D.

    2006-08-01

    About 20 m thick films were deposited in the same run by MPCVD at 900 °C on Si substrates and then hydrogenated in situ during 30 min with a hydrogen plasma at the same temperature. Their surfaces were kept as prepared or more or less strongly oxidized by annealing at 600 °C under ambient atmosphere or by sulphochromic acid or aqua regia treatments. Raman spectra were excited at 325 and 632.8 nm. Spectra of the as-prepared sample exhibit structures around 2835 and 2895 cm-1 from monohydride carbon-hydrogen ascribed to the atomically flat (111) and (100) areas, respectively, on the facets of the sample surface crystallites. The decrease of these structures in the normalized spectra after the various oxidation treatments confirms these assignments. The decrease is smaller for the aqua regia treatment than for the two other treatments which give similar effects. Other Raman signals from sp2 C around 1589 cm-1 and CHx bonds around 2930, 2952, 3025 and 3050 cm-1 originate from species at the surface and within the films. Their variation with the oxidizing treatments indicates a significant contribution from the surface species.

  7. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Lin, Miao-Ling; Tan, Qing-Hai; Qiao, Xiao-Fen; Zhang, Jun; Tan, Ping-Heng

    2016-06-01

    Defects strongly modify optical properties in pristine and nanostructured two-dimensional (2D) materials. The ion implantation technique can be used to gradually introduce defects in semiconductor to obtain nanocrystallites (NCs) with different domain sizes. Here, we present a detailed study on the Raman and photoluminescence spectra of 2D NCs of monolayer WS2 (1L WS2) and 1L WSe2 prepared by ion implantation. With increasing ion dosages, both {{{E}}}\\prime and {{{A}}}1\\prime modes of 1L WS2 exhibit a downshift in frequency and an asymmetrical broadening toward lower frequency, while the {{{A}}}1\\prime mode in 1L WSe2 NCs exhibits an opposite behavior, showing asymmetrical broadening and peak shift toward higher frequency. This behavior is well understood by phonon quantum confinement of the out-of-plane optical branch whose frequency displays a minimum at Γ in pristine 1L WSe2. After the ion implantation, phonons from the Brillouin zone boundary are revealed in the Raman spectra, and the corresponding assignments are identified by resonant Raman spectra at low temperature. The defects can act as trapping centers of free carriers, which result in a sharp decrease of photoluminescence (PL) emission from A exciton with increasing ion dosage. The PL peak from A-exciton in both 1L WS2 and 1L WSe2 NCs blueshifts with increasing the ion dosage due to the quantum confinement effect of smaller NC size. The ion-implantation results in a new emission peak of defect-bound neutral excitons below the A-exciton peak in both 1L WS2 and 1L WSe2 NCs. Its relative intensity to the A exciton increases with increasing the ion dosage and finally vanishes along with the A exciton. These results offer a route toward tailoring the optical properties of 2D materials by controlling the size of 2D NCs.

  8. Feature-based recognition of surface-enhanced Raman spectra for biological targets.

    PubMed

    Pavillon, Nicolas; Bando, Kazuki; Fujita, Katsumasa; Smith, Nicholas I

    2013-08-01

    We propose and compare multiple approaches to automatically process data measured through surface-enhanced Raman scattering (SERS), in the context of intracellular molecule probing. It relies on locally detecting the most relevant spectra to retrieve all data independently through indexing, thus avoiding any pre-filtering which occurs with standard processing methods. We first assess our approach on simulated data of the spectrum of Rhodamine 6G, and then validate high-performing methods on experimental measurements of this compound. The optimized method is then utilized to extract and classify the complex SERS response behavior of gold nanoparticles taken in live cells. PMID:23192987

  9. [First-principles study of vibrational Raman spectra of amorphous carbon].

    PubMed

    Niu, Li; Zhu, Jia-qi; Gao, Wei; Du, Shan-yi

    2009-09-01

    The vibrational density of states and nonresonant reduced Raman spectra of amorphous carbon at densities of 2.6, 2.9 and 3.2 g x cm(-3) were calculated by the use of a first-principles plane-wave pesudopotential method. Three structural models were generated by liquid-quench method using Car-Parinello molecular dynamics, their vibrational frequencies and eigenmodes were determined using the linear response approach, and Raman coupling tensors were calculated using the finite electric field method. The calculated results show that the sp3 fraction increases from 50% to 84.4%, the sp2 configuration changes from mainly rings to short chains, the position of the G peak moves to higher frequencies, the intensity ratio of D and G peaks decreases, the position of the T peak moves to lower frequencies and the intensity ratio of T and G peaks increases as density increases from 2.6 to 3.2 g x cm(-3). The authors' calculated Raman spectra show an overall good agreement with experimental spectra. The analysis in terms of atomic vibrations confirms that the G and D peaks both come from sp2 C contribution, G peak is due to the stretching vibration of any pair of sp2 atoms and the T peak is due to the C-C sp3 vibration. The authors' analysis also confirms that the dispersion of G and T peaks is due to bond-length changes. The bond length of chains (olefins) is shorter than that of rings, so their vibrational frequency is higher and the G-peak position moves to higher frequencies with increasing the sp3 fraction. The number of sp3-sp2 type bonds decreases as the sp3 fraction increases. These bonds are shorter than pure sp3-sp3 bonds, hence the T-peak position moves to lower frequencies. The research results provide a theoretic basis for analyzing experimental Raman spectra of amorphous carbon. PMID:19950647

  10. Solvent effect on Raman spectra of conformational key bands of chloroacetone and bromoacetone

    NASA Astrophysics Data System (ADS)

    Shiratori, Yosuke; Kato, Minoru; Taniguchi, Yoshihiro

    1999-11-01

    Raman spectra were measured for chloroacetone and bromoacetone in various solvents at 20°C. The authors recorded the C-X (X:Cl and Br) stretching modes for both chloroacetone and bromoacetone and the CO stretching mode for bromoacetone. In each spectrum for aqueous solutions, an additional band appeared on the lower frequency side of the band of the syn conformer. These bands are assigned to the syn conformer which forms a hydrogen bond between each halogen atom of haloacetones and water molecule. From solvent effects on peak frequencies, half band widths and band profiles, the authors discussed local hydration structures of haloacetones.

  11. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. PMID:25368345

  12. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-01

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules. PMID:26760444

  13. Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo

    Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.

  14. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids

    NASA Astrophysics Data System (ADS)

    Koczoń, P.; Dobrowolski, J. Cz.; Lewandowski, W.; Mazurek, A. P.

    2003-07-01

    The experimental and theoretical (B3PW91/6-311++G**) vibrational (IR and Raman) spectra of picolinic, nicotinic and isonicotinic acids (pyridine-2-, -3-, and -4-carboxylic acid, respectively) were studied. Three stable calculated structures were found for picolinic acid: the structure with intramolecular hydrogen COOH⋯N bond, and the two without hydrogen bond. For the nicotinic acid two stable theoretical structures differ in orientation of the COOH group with respect to the nitrogen atom, whereas for the isonicotinic acid only one form was stable. The theoretical vibrational spectra of the three acids were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. Next, selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, the wavenumbers and intensities for the three isomeric acids were compared and discussed in terms of location of the carboxylic group.

  15. FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Proniewicz, L. M.

    1999-11-01

    We present vibrational spectra of three stable, well-reproducible, polymorphic forms of cimetidine ( cim), a drug which is a powerful histamine H 2-receptor antagonist used in the treatment of peptic ulcer and the Zollinger-Ellison syndrome. Assignments of Raman and IR bands are made using semiempirical methods: MNDO, AM1 and PM3. We also describe the synthesis of Me( cim) 2(ClO 4) 2, where Me=Cu(II), Cd(II), Co(II) and Ni(II), and present their vibrational data. We show that the obtained complexes are isostructural, however a metal ion that occupies a center of octahedral unit introduces some distortions that can be seen in the spectra. We also make tentative assignment of metal-ligand stretching modes observed in low frequency range.

  16. Raman spectra of gases. XVI - Torsional transitions in ethanol and ethanethiol

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A.

    1975-01-01

    The Raman spectra of gaseous ethanol and ethanethiol have been investigated. Thiol torsional fundamentals for the gauche conformer of EtSH and EtSD have been observed and the asymmetric potential function for this vibration has been calculated. Methyl torsional transitions and overtones have also been observed for both of these molecules. Barriers to internal rotation for the methyl top are calculated to be 3.77 and 3.84 kcal/mol for the EtSH and EtSD compounds, respectively. Hydroxyl torsional fundamentals were observed at 207 and 170 per cm in the EtOH and EtOD spectra, respectively. Overtones of the methyl torsion in both molecules yield a barrier to internal rotation of 3.62 kcal/mol for the gauche conformer.

  17. The infrared and Raman spectra of methacrylonitrile adducts with copper(I) halides

    NASA Astrophysics Data System (ADS)

    Zarembowitch, J.; Maleki, R.

    The i.r. and Raman spectra of polycrystalline MAN. CuX adducts (MAN = methacrylonitrile, X = Cl and Br) are reported and compared with those of the free nitrile. A detailed vibrational assignment is proposed. The frequency shifts observed upon coordination for the stretching modes νCN, νCCN and νCH are discussed. Copper(I) is shown to be bound to the nitrogen atom of the CN group. Evidence is given for the existence of a significant π back-bonding from the metal to the ligand. The low-frequency spectra are assigned by taking into account the crystalline structures of the compounds.

  18. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells

    NASA Astrophysics Data System (ADS)

    Notingher, Ioan; Jell, Gavin; Notingher, Petronela L.; Bisson, Isabelle; Tsigkou, Olga; Polak, Julia M.; Stevens, Molly M.; Hench, Larry L.

    2005-06-01

    Understanding the biochemical and biophysical properties of live cells is fundamental for unravelling the secrets of many diseases and developing new therapies. Raman micro-spectroscopy is a powerful non-invasive technique that allows in vitro studies of individual living cells or groups of cells without the use of any labels or contrast enhancing chemicals. We describe the use of various multivariate statistical methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Classical Least Square (CLS) fitting, to extract biochemical information related to various cellular events. Such methods are required because of the high complexity of the Raman spectra obtained from living cells. PCA and LDA are used to discriminate between healthy and tumor cells. A leave-one-out cross-validation method indicated high prediction accuracy (95%) in identification of tumorogenic bone cells. The CLS fitting method using commercially available biopolymers makes it possible to monitor biochemical changes during the differentiation of embryonic stem cells and foetal bone cells. The results suggest that in both cases differentiated cells are characterised by lower concentrations of RNA compared to undifferentiated cells. These studies suggest that Raman micro-spectroscopy could become an invaluable tool for in vitro cellular biochemistry studies.

  19. Raman spectra and conformations of dibenzo- and dicyclohexano-18-crown-6

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo; Arai, Takaki; Harada, Issei

    1990-06-01

    Conformations of dibenzo-18-crown-6 (DBC), dicyclohexano-18-crown-6 (DCC) and their alkali cation complexes in the solid state and in solution have been investigated by Raman spectroscopy. The Raman spectra were analysed by using the relationships between Raman frequencies and conformations previously found for unsubstituted crown ethers. DBC takes a conformation, ( tCttGttG't) 2, with gauche ( G) or gauche' ( G') 2CH 2 bonds, trans ( t) CO bonds and cis ( C) OCCO linkages at the benzene rings, when it complexes with a cation in the solid state and in solution. Uncomplexed DBC adopts another conformation in the solid state, which contains both the trans and gauche conformations about the CH 2CH 2 and CO bonds. In solution, uncomplexed DBC exists as a mixture of conformers including the two conformers described above. Vibrational couplings between the oxyethylene and cyclohexane rings are strong in DCC and its strength depends on the crown conformation. The cation-bound crown rings of DCC isomers A and B in solution predominantly take the same conformation, ( tG'ttGt) 3, found for the crystalline isomer B-NaBr complex. A metastable conformer containing trans CH 2CH 2 bonding is found for the Na + complexes of both isomers in solution. Uncomplexed DCC adopts different crown ring conformations in isomers A and B in the solid state and diverse conformational states in solution.

  20. Geometry and Raman spectra of P.R. 255 and its furo-furanone analogue

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav, Jr.; Frumarová, Božena; Vyňuchal, Jan; Hrdina, Radim

    2009-05-01

    Fourier transform Raman spectra of two π-isoelectronic compounds 3,6-diphenyl-2,5-dihydro-pyrrolo-[3,4-c]pyrrole-1,4-dione (BPPB, C.I. Pigment Red 255) and 3,6-diphenyl-2,5-dihydro-furo-[3,4-c]furanone (BFFB) with the same 1,4-diphenyl-buta-1,3-diene (DPB) backbone were first time measured in polycrystalline phase. The ground state geometry and vibrational frequencies together with Raman intensities were computed by density functional theory (DFT: B3LYP/6-311G++(d,p)). All intensive observed Raman frequencies were identified as totally symmetric. The difference of carbon-carbon bond lengths of BPPB and BFFB compared to DPB, relating very well with the shifts of C dbnd C and C-C stretching modes frequencies, was explained by aromatization of central butadiene unit bounded in diketo-pyrrolo-pyrrole and furo-furanone heterocycles. A strong coupling of modes was observed for BFFB enhancing selectively the intensity of one peak 1593 cm -1 in C dbnd C stretching region and one peak 1372 cm -1 in C-C stretching region. C dbnd O stretching and N-H bending modes of BPPB are significantly affected by intermolecular hydrogen bonding.

  1. Pressure-dependent Raman spectra of β-Ca3(PO4)2 whitlockite

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Wu, Xiang; Xue, Weihong

    2015-04-01

    The pressure dependence of Raman spectra for whitlockite β-Ca3(PO4)2 was investigated up to 18.0 GPa using a diamond-anvil cell at room temperature. The Raman frequencies of all observed bands for β-Ca3(PO4)2 continuously increase with increasing pressure. The quantitative analysis of pressure dependence of Raman bands for the sample shows that the ν 3 asymmetric and ν 1 symmetric stretching vibrations are with the larger pressure coefficients (from 3.44 to 4.59 cm-1 GPa-1) and that the ν 4 bending and ν 2 deforming vibrations are with the smaller pressure coefficients (from 1.46 to 3.12 cm-1 GPa-1). Combined with previous result, the isothermal mode Grüneisen parameters of β-Ca3(PO4)2 were calculated. The splitting of the PO4 symmetric stretching ν 1 vibrations changes during compression and disappears around 15.4 GPa, which may be attributed to the evolution of PO4 tetrahedra under high pressure.

  2. Real-space pseudopotential study of vibrational properties and Raman spectra in Si-Ge core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Bobbitt, N. Scott; Chelikowsky, James R.

    2016-03-01

    We examine the vibrational properties and Raman spectra of Si-Ge core-shell nanostructures using real-space pseudopotentials constructed within density functional theory. Our method uses no empirical parameters, unlike many popular methods for predicting Raman spectra for nanocrystals. We find the dominant features of the Raman spectrum for the Si-Ge core-shell structure to be a superposition of the Raman spectra of the Ge and Si nanocrystals with optical peaks around 300 and 500 cm-1, respectively. We also find a Si-Ge "interface" peak at 400 cm-1. The Ge shell causes the Si core to expand from the equilibrium structure. This strain induces significant redshift in the Si contribution to the vibrational and Raman spectra, while the Ge shell is largely unstrained and does not exhibit this shift. We find that the ratio of peak heights is strongly related to the relative size of the core and shell regions. This finding suggests that Raman spectroscopy may be used to characterize the size of the core and shell in these structures.

  3. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation.

    PubMed

    Lemler, P; Premasiri, W R; DelMonaco, A; Ziegler, L D

    2014-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The Raman spectra of dried whole human blood excited at 785 nm are shown to be exclusively due to oxyhemoglobin or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of the incident 785-nm-laser power, and features attributable to heme aggregates are observed for fluences on the order of 10(4) W/cm(2) and signal collection times of 20 s. In particular, the formation of this local-heating-induced heme aggregate product is indicated by a redshifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1,248 cm(-1), the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence band. This denaturation product is also observed in the low-power-excitation Raman spectrum of older ambient-air-exposed bloodstains (2 weeks or more). The Raman spectrum of methemoglobin whole blood excited at 785 nm is reported, and increasing amounts of this natural denaturation product can also be identified in Raman spectra of dried whole blood particularly when the blood has been stored prior to drying. These results indicate that to use 785-nm-excitation Raman spectra as an identification method for forensic applications to maximum effect, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785-nm-excitation Raman spectra to be a sensitive indicator of the age of dried bloodstains at crime scenes. PMID:24162820

  4. Photoreductive titration of the resonance Raman spectra of cytochrome oxidase in whole mitochondria.

    PubMed

    Adar, F; Erecińska, M

    1979-05-01

    A photoreductive titration of the resonance Raman (RR) spectra of cytochrome c oxidase in whole mitochondria was recorded by exploiting the preferential enhancement of the Raman signals of reduced cytochrome oxidase excited at 441.6 nm. When the sample was cooled to about--10 degrees C, it was possible to slow down the photoreductive effect of the laser and to record RR spectra at various states of reduction. Compared to the earliest recorded scan (most oxidized), the dithionite-reduced sample shows the appearance of new bands at 216, 363, 560, and 1665 cm-1. At intermediate stages of photoreduction, the 216- and 560-cm-1 bands appear before the 363- and 1665-cm-1 bands; photoreduction induces full intensity in the former bands, whereas the latter bands are photoreduced to 50% of the dithionite-reduced intensity. The relative intensities of a doublet at 1609--1623 cm-1 are affected by reduction: the band at 1609 cm-1 is weaker in the earlier scans; in later scans this band has grown to equal intensity with the 1623-cm-1 band. We conclude that this reductive titration of the RR spectrum of cytochrome c oxidase reflects three states in its reduction. The behavior of the doublet at 1609--1623 cm-1 suggests that the two hemes are nonequivalent but interacting. The band at 216 cm-1 may be indicative of an iron-copper interaction that is affected by the presence of external ligands. PMID:219887

  5. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  6. Lidar-measured atmospheric N₂ vibrational-rotational Raman spectra and consequent temperature retrieval.

    PubMed

    Liu, Fuchao; Yi, Fan

    2014-11-17

    We have built a spectrally resolved Raman lidar to measure atmospheric N₂ Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde. PMID:25402026

  7. Surface enhanced Raman spectra from the films formed on nickel in the passive and transpassive regions

    SciTech Connect

    Oblonsky, L.J.; Devine, T.M.

    1995-11-01

    Surface enhanced Raman (SER) spectra were obtained from nickel electrodes immersed in borate buffer solution (pH 8.4) at +100, +600, and +900 mV(SCE) using electrodeposited gold particles to produce the surface enhancement effect. Comparison with earlier experiments performed using silver particles to obtain SERS indicates that the spectra of the nickel passive films are identical regardless of whether silver or gold is used. At +100 mV, the nickel passive film consists of amorphous Ni(OH){sub 2}; NiO is not observed. At +600 mV, amorphous Ni(OH){sub 2} persists, and Au-O forms on the gold particles. The SER spectrum of the transpassive film formed on nickel at +900 mV consists of peaks located at 480 and 560 cm{sup {minus}1}, and it is speculated that the species responsible for the Raman scattering resembles NiOOH. Upon returning the potential to +100 mV from +900 mV, Ni(OH){sub 2} reforms, accompanied by NiO. This is the first example of the use of gold particles to explore the passive film of nickel and the first time the SER spectrum of the transpassive film on nickel has been measured.

  8. Vibrational features of confined water in nanoporous TiO2 by Raman spectra

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Qiang, Wang; Gang, Sun; Chen-Xi, Li; Lin, Hu

    2016-02-01

    Raman spectra of confined water adsorbed in nanoporous TiO2 are obtained in experiment. TiO2 samples with different pore diameters under different humidity conditions are investigated. The results indicate that the symmetric vibrational mode of water molecule is destroyed when relative humidity decreases. This indicates that the interaction between water molecules and surface of TiO2 becomes stronger when the distance between water molecules and surface turns smaller, and the interaction plays a major role in depressing the symmetric vibrational peak. The spectra of confined water in TiO2 and Vycor are compared. When filling fractions are the same, their spectra show distinctions no matter whether they are in partial filling condition or in full filling condition. The spectra of HDO confined in TiO2 with different filling fractions are compared with each other. There is no clear distinction among their vibrational peaks, and the peaks mainly relate to asymmetric vibration. Therefore, the interaction between water molecules and the wall of pore decouples the symmetric vibrational mode only, and the influences on asymmetric vibrational mode show little differences among different filling fractions. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304049 and 11264006), the Guizhou Provincial Science and Technology Foundation, China (Grant No. J[2010]2132), and the Doctor Funds of Guizhou University, China (Grant No. [2012] 020).

  9. Resonant Raman and FTIR spectra of carbon doped GaN

    NASA Astrophysics Data System (ADS)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  10. Raman spectra calculations for Si-Ge core-shell nanocrystals using ab initio real-space methods

    NASA Astrophysics Data System (ADS)

    Bobbitt, N. Scott; Chelikowsky, James R.

    We use a real-space pseudopotential method within density functional theory to calculate Raman spectra for Si-Ge core-shell nanocrystals. We examine the lattice strain induced by the interface of the core and the shell. We calculate how this strain affects the vibrational modes and Raman spectra. We also find that the relative size of the Si and Ge peaks in the Raman spectrum is proportional to the size of the Si core and Ge shell regions, which suggests that Raman spectroscopy can be used to experimentally determine the relative size of the core and the outer shell in these nanocrystals. This work is supported by the DOE under Grant Number DE-FG02-06ER46286. Computations were performed on machines at TACC and NERSC.

  11. Multivariate statistical analysis of Raman spectra to distinguish normal, tumor, lymph nodes and mastitis in mouse mammary tissues

    NASA Astrophysics Data System (ADS)

    Dai, H.; Thakur, J. S.; Serhatkulu, G. K.; Pandya, A. K.; Auner, G. W.; Naik, R.; Freeman, D. C.; Naik, V. M.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra ( > 680) of normal mammary gland, malignant mammary gland tumors, and lymph node tissues from mice injected with 4T1 tumor cells have been recorded using 785 nm excitation laser. The state of the tissues was confirmed by standard pathological tests. The multivariate statistical analysis methods (principle component analysis and discriminant functional analysis) have been used to categorize the Raman spectra. The statistical algorithms based on the Raman spectral peak heights, clearly separated tissues into six distinct classes, including mastitis, which is clearly separated from normal and tumor. This study suggests that the Raman spectroscopy can possibly perform a real-time analysis of the human mammary tissues for the detection of cancer.

  12. Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces

    NASA Astrophysics Data System (ADS)

    Dey, S.; Banik, M.; Hulkko, E.; Rodriguez, K.; Apkarian, V. A.; Galperin, M.; Nitzan, A.

    2016-01-01

    Surface-enhanced Raman scattering (SERS) from bipyridyl ethylene adsorbed on gold dumbbells shows Fano-like spectra at high incident light intensity. This is accompanied by an increased electronic temperature, while no vibrational anti-Stokes scattering is observed. Theory indicates that interference between vibrational and electronic Raman scattering can yield such asymmetric scattering lineshapes. The best fit to observations is however obtained by disregarding this coupling and accounting for the detailed lineshape of the continuous electronic component of the SERS.

  13. NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation

    PubMed Central

    Lemler, P.; Premasiri, W. R.; DelMonaco, A.; Ziegler, L. D.

    2013-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The 785 nm excited Raman spectra of dried whole human blood are shown to be exclusively due to oxyhemoglobin (oxyHb) or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of incident 785 nm laser power and features attributable to heme aggregates are observed for fluences on the order of 104 W/cm2 and 20 sec signal collection times. In particular, the formation of this local heating induced heme aggregate product is indicated by a red-shifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1248 cm−1, the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence. This denaturation product is also observed in the low power excited Raman spectrum of older ambient air exposed bloodstains (≥ two weeks). The 785 nm excited Raman spectrum of methemoglobin whole blood is reported and increasing amounts of this natural denaturation product can also be identified in dried whole blood Raman spectra particularly when the blood has been stored prior to drying. These results indicate that to use 785 nm excited Raman spectra as an identification methodology for forensic applications to maximum effectiveness, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785 nm excited Raman to be a sensitive indicator of dried bloodstain age at crime scenes. PMID:24162820

  14. Computer-generated predictions of the structure and of the IR and Raman spectra of VX. Final report, May-August 1992

    SciTech Connect

    Hameka, H.F.; Jensen, J.O.

    1993-05-01

    This report presents the computed optimized geometry and vibrational IR and Raman frequencies of the V-agent VX. The computations are performed with the Gaussian 90 Program Package using 6-31G* basis sets. We assign the vibrational frequencies and correct each frequency by multiplying it with a previously derived 6-31G* correction factor. The result is a computer-generated prediction of the IR and Raman spectra of VX. This study was intended as a blind test of the utility of IR spectral prediction. Therefore, we intentionally did not look at experimental data on the IR and Raman spectra of VX.... IR Spectra, VX, Raman spectra, Computer predictions.

  15. Predicting Raman Spectra of Aqueous Silica and Alumina Species in Solution From First Principles

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Schauble, E. A.; Manning, C. E.

    2006-12-01

    Dissolved silica and alumina play an important role in lithospheric fluid chemistry. Silica concentrations in aqueous fluids vary over the range of crustal temperatures and pressures enough to allow for significant mass transport of silica via fluid-rock interaction. The polymerization of silica, and the possible incorporation of alumina into the polymer structure, could afford crystal-like or melt-like sites to otherwise insoluble elements such as titanium, leading to enhanced mobility. Raman spectroscopy in a hydrothermal diamond anvil cell (HDAC) has been used to study silica polymerization at elevated pressure and temperature [Ref. 1, 2], but Raman spectra of expected solutes are not fully understood. We calculated Raman spectra of H4SiO4 monomers, H6Si2O7 dimers, and H6SiAlO_7^- dimers, from first principles using hybrid density functional theory (B3LYP). These spectra take into account the variation in bridging angle (Si-O-Si and Si-O-Al angles) that the dimers will have at a given temperature by calculating a potential energy surface of the dimer as the bridging angle varies, and using a Boltzmann distribution at that temperature to determine relative populations at each geometry. Solution effects can be incorporated by using a polarizable continuum model (PCM), and a potential energy surface has been constructed for the silica dimer using a PCM. The bridging angle variation explains the broadness of the 630 cm^-^1 silica dimer peak observed in HDAC experiments [Ref. 1, 2] at high temperatures. The silica-alumina dimer bridging angle is shown to be stiffer than the silica dimer bridging angle, which results in a much narrower main peak. The synthetic spectrum obtained for the silica-alumina dimer suggests that there may be a higher ratio of complexed alumina to free alumina in solution at highly basic pH than previously estimated [Ref. 3]. References: 1. Zotov, N. and H. Keppler, Chemical Geology, 2002. 184: p. 71-82. 2. Zotov, N. and H. Keppler, American

  16. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    NASA Astrophysics Data System (ADS)

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas Des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-02-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.

  17. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    PubMed Central

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-01-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method. PMID:26833130

  18. Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation.

    PubMed

    Ricci, Marilena; Platania, Elena; Lofrumento, Cristiana; Castellucci, Emilio M; Becucci, Maurizio

    2016-07-14

    The properties of o-Safranin (SO) dye in the first electronic excited state were studied with combined experimental and theoretical methods. The electronic absorption spectra of SO molecules are measured in water solution and in the presence of silver nanoparticles. The normal Raman (NRS) and resonance Raman (RR) spectra of solid SO and the surface enhanced Raman (SERS) and surface enhanced resonance Raman (SE[R]RS) spectra of SO adsorbed on silver nanoparticles are measured at different excitation energies. The enhancement factors for selected vibrational bands of the RR, SERS, and SE[R]RS spectra of SO have been obtained with respect to the NRS spectra of the solid after a careful evaluation of the experimental conditions. The data furnished useful information on the excited electronic states and the interactions of SO with silver nanoparticles. The experimental results are discussed on the basis of DFT and TD-DFT calculations (B3LYP/6-311+G(d,p)) on the isolated SO molecule. PMID:27139691

  19. Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Montagnac, G.; Rouzaud, J.-N.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-09-01

    Geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due to weak lithostatic pressure and confinement. These results suggest that the use of low temperature carbon thermometers should be restricted to a given geological context. At the same time, the sensitivity of Raman spectra to precursors and certain metamorphic conditions could be used to obtain information other than temperature. The analysis also provides evidence of the accretion of relatively homogeneous PCM precursors among ordinary CO and CV carbonaceous chondrite parent bodies, given that the 514 nm Raman spectra of PCM efficiently trace the

  20. The 2ν3 Raman overtone of sulfur hexafluoride: Absolute spectra, pressure effects, and polarizability properties

    NASA Astrophysics Data System (ADS)

    Chrysos, M.; Rachet, F.; Kremer, D.

    2014-03-01

    Of the six normal vibrations of SF6, ν3 has a key role in the mechanisms of radiative forcing. This vibration, though inactive in Raman, shows up through the transition 2ν3 allowing for a complementary view on the asymmetric stretch of the molecule. Here, we look back into this topic, which has already caught some interest in the past but with some points been left out. We make a systematic incoherent-light-scattering analysis of the overtone with the use of different gas pressures and polarization orientations for the incident beam. Absolute-scale isotropic and anisotropic spectra are reported along with natural and pressure-induced widths and shifts, and other spectral features such as the peaks corresponding to the (experimentally indistinguishable) interfering channels Eg and F2g hitherto seen solely as two-photon IR-absorption features. We make the first-ever prediction of the SF6 polarizability second derivative with respect to the ν3-mode coordinate and we develop a heuristic argument to explain why the superposition of the three degenerate stretching motions that are related to the ν3 mode cannot but generate a polarized Raman band.

  1. Use of a Fabry Perot Interferometer to Isolate Pure Rotational Raman Spectra of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey

    1999-07-01

    We propose to use a Fabry Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI s free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI s free spectral range f 4 B N 2 and the wavelength of the exciting radiation such that (1 exc ) 4 B N 2 ( k 1 2 ), where B N 2 is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

  2. Comparison of the Raman low frequency spectra of NBT and KLT

    NASA Astrophysics Data System (ADS)

    Jackson, Daniel; Pattnaik, Radha; Luo, Haosu; Viehland, Dwight; Toulouse, Jean

    2011-03-01

    We present the results of a detailed comparative study of the low frequency central peak in sodium bismuth titanate (Na 0.5 Bi 0.5 Ti O3 or NBT) and potassium lithium tantalate (K1 - x Li x Ta O3 or KLT) from 90 degree angle Raman scattering with a resolution of 1 cm-1 . The Raman spectra of NBT were obtained over a wide temperature range from 78 to 950 K, spanning the two transitions, from cubic to tetragonal at ~ 820 K and tetragonal to rhombohedral in the range 480-600 K. In an effort to better understand the nature of these phase transitions in NBT, we performed a detailed analysis of the central peak and soft mode combined, using different models. In particular, we compare the model in which these two features are uncoupled with the model in which they are coupled with a strength parameter, δ2 . These models are also discussed in the more general context of A-site substituted A BO3 perovskites. The effects of an external electric field and mechanical pressure on the transitions will also be discussed. The US work is funded by a NSF-MWN grant DMR-0806592.

  3. Solvent effects on the resonance Raman and electronic absorption spectra of bacteriochlorophyll a cation radical

    SciTech Connect

    Misono, Yasuhito; Itoh, Koichi; Limanatara, Leenawaty; Koyama, Yasushi

    1996-02-08

    Resonance Raman and electronic absorption spectra of bacteriocholrophyll a cation radical (BChl a{sup .+}) were recorded in 14 different kinds of solvents. The frequency of the ring-breathing Raman band of BChl a{sup .+} was in the region of 1596-1599 cm{sup -1} in solvents forming the pentacoordinated state in neutral bacteriochlorophyll a (BChl a), while it was in the region of 1584-1588 cm{sup -1} in solvents forming the hexacoordinated state. BChl a{sup .+} exhibited a key absorption band in the regions 546-554 and 557-563 nm in the above penta- and hexa-coordinating solvents. Therefore, it has been concluded that the penta- and hexa-coordinated states are retained even after conversion of BChl a into BChl a{sup .+} (one-electron oxidization). Application of this rule to the case of 2-propanol solution showed transformation from the penta- to the hexa-coordinated state upon one-electron oxidation in this particular solution. The coordination states of BChl a{sup .+} could be correlated with the donor number(DN) and the Taft parameters, {Beta} and {pi}{sup *}, of the solvent: The hexacoordinated state was formed in solvents with DN >= 18 or {Beta} > 0.5 showing higher electron donating power, while the pentacoordinated state was formed in solvents with {pi}{sup *} > 0.65 showing higher dielectric stabilization. 27 refs., 8 figs., 3 tabs.

  4. Wavelet data processing of micro-Raman spectra of biological samples

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  5. Laser heating effect on Raman spectra of styrene-butadiene rubber/multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Yan, Xinlei; Kitahama, Yasutaka; Sato, Harumi; Suzuki, Toshiaki; Han, Xiaoxia; Itoh, Tamitake; Bokobza, Liliane; Ozaki, Yukihiro

    2012-01-01

    The laser heating effect on MWCNTs in styrene-butadiene rubber/multiwalled carbon nanotube (SBR/MWCNT) composites were studied by Raman spectra. The intensity ratio of the D band to G band (ID/IG) of SBR/MWCNT composites largely decreased with temperature. This indicates the self-rearranging behavior of MWCNTs in the SBR/MWCNTs system during temperature increase. In addition, the temperature-dependent downward shift of the G band of SBR/MWCNT composites was smaller than that of MWCNTs samples. The self-rearrangement of MWCNTs in SBR/MWCNT composites and a mechanical compression were explained as two possible reasons for the different behavior of the G band shift.

  6. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    SciTech Connect

    Xia Minggang; Su Zhidan; Zhang Shengli

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  7. FT-Raman and FTIR spectra, DFT investigation of the structure and vibrational assignment of mefenacet

    NASA Astrophysics Data System (ADS)

    Clemy Monicka, J.; James, C.

    2015-09-01

    FTIR and Raman spectral techniques were employed for the vibrational characterization of the herbicide mefenacet. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory calculations. A detailed assignment of the vibrational spectra was made with the aid of theoretically predicted vibrational frequencies. Natural bond orbital analysis on mefenacet was carried out to reveal the nature of different interactions responsible for electron delocalization and the charge transfer between the orbitals (n → π∗, n → σ∗, π → π∗). Structural changes in the molecule due to the substitution of highly electronegative oxygen atom, conjugation and resonance effect were analyzed.

  8. Infrared and Raman spectra, conformational analysis, ab initio calculations and vibrational assignment of 2-chloroethylsilyl chloride

    NASA Astrophysics Data System (ADS)

    Pan, Chunhua; Guirgis, Gamil A.; Durig, James R.

    2005-05-01

    The infrared (3100-40 cm -1) spectra of gaseous and solid and Raman (3200-20 cm -1) spectra of liquid 2-chloroethylsilyl chloride, ClCH 2CH 2SiH 2Cl, have been recorded. There are five possible stable conformers, Gg, Tg, Gt, Tt and Gg' for this molecule where the capital letter G ( gauche) or T ( trans) refer to rotation around the C-C bond and the lower case letters to rotation around the Si-C bond. Most ab initio calculations at the MP2(full) level predicted the order of the stability as Tg>Gg>Gt>Tt>Gg' whereas all density function theory calculations with the B3LYP method predicted the stability as Tg>Tt>Gg>Gt>Gg'. The four more stable conformers have been identified in the fluid phases with the Tg rotamer the only form remaining in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of the samples dissolved in liquid krypton have been recorded and the enthalpy differences determined to be: 50±20 (0.59±0.24 kJ/mol), 172±17 (2.06±0.20 kJ/mol) and 290±40 cm -1 (3.45±0.48 kJ/mol) for the Tg/Gg, Tg/Gt and Tg/Tt conformer pairs with the Tg conformer the most stable form. It is estimated that there is 42±2% of the Tg form, 33±1% of the Gg form, 20±2% of the Gt form, and 5±1% of the Tt form present at ambient temperature. A relatively complete vibrational assignment is proposed for the Tg conformer and many of the fundamentals have been identified for the other three (Gg, Gt and Tt) conformers based on the ab initio MP2(full)/6-31G(d) predicted frequencies, the relative infrared and Raman spectral intensities, and infrared band contours which are supported by normal coordinate calculations. Since the predicted energies between Tg and Gg' conformers from all calculations are very large, it is not surprising that no evidence in either the infrared or Raman spectra could be found for the Gg' conformer. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities

  9. Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Sete, Eyob A.; Liu, W. M.

    2015-12-01

    We study the classically driven two-level system with its center-of-mass motion vibrating in a harmonic trap and coupled to the photons in a two-mode cavity. The first mode is resonant to the driving field and an electronic transition. The second mode is off-resonant, forming a vibrational-assisted Raman transition. Using an exact numerical method, we investigate the quantum dynamics of the light emitted by the atom and the cavity modes. We analyze and compare the corresponding atomic and intracavity photon spectra for a range of the driving laser field and the cavity coupling strengths. The results provide better understanding of the effects of the laser field and atom-cavity coupling strengths on quantum interference effects and photon blockade, particularly the Mollow's triplet and the Autler-Townes splitting in the good and bad cavity limits.

  10. Predicted infrared and Raman spectra for neutral Ti{sub 8}C{sub 12} isomers

    SciTech Connect

    Baruah, Tunna; Pederson, Mark R.; Lyn, M.L.; Castleman, A.W. Jr.

    2002-11-01

    Using a density-functional based algorithm, the full infrared and Raman spectra are calculated for the neutral Ti{sub 8}C{sub 12} cluster assuming geometries of T{sub h}, T{sub d}, D{sub 2d}, and C{sub 3v} symmetry. The T{sub h} pentagonal dodecahedron is found to be dynamically unstable. The calculated properties of the relaxed structure having C{sub 3v} symmetry are found to be in excellent agreement with experimental gas-phase infrared results, ionization potential and electron affinity measurements. Consequently, the results presented may be used as a reference for further experimental characterization using vibrational spectroscopy.

  11. Raman spectra of aligned carbon micro-coils and their impedance characteristics under loads

    SciTech Connect

    Tao, Wang; Yabo, Zhu Heliang, Fan; Zhicheng, Ju; Lei, Chen; Zhengyuan, Wang

    2014-02-21

    Scanning and transmission electron microscopy were used to characterize the morphology of the carbon microcoils (CMCs). The Raman spectra showed that CMCs had local regular structure as I{sub D}/I{sub G} = 0.841. Then, aligned CMCs/silicone–rubber composites (5 × 5 × 1 mm{sup 3}) were fabricated by coating of silicone rubber on the CMCs. Their alternating current impedance characteristics were measured as a function of applied load and the pressure sensitivity was discussed. The results showed that the impedance decreased as the increasing applied load, and the sample with less CMCs owned high pressure sensitivity, which indicated a novel composite film could act as an alternative of tactile sensor.

  12. 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra.

    PubMed

    Rastogi, V K; Alcolea Palafox, M; Tanwar, R P; Mittal, Lalit

    2002-07-01

    Geometry, vibrational wavenumbers and several thermodynamic parameters were calculated using ab initio quantum chemical methods for the 3,5-difluorobenzonitrile molecule. The results were compared with the experimental values. With the help of three specific scaling procedures, the observed vibrational wavenumbers in FTIR and Raman spectra were analysed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range and the error obtained was in general very low. Using PEDs the contributions were determined for the different modes to each wavenumber. From the PED, it is apparent that the frequency corresponding to C[triple bond]N stretching contains 87% contribution from the C[triple bond]N stretching force constant and it mixes with the C-CN stretching mode 13 to the extent of 12%. Other general conclusions were also deduced. PMID:12164497

  13. Solvent effects on the resonance Raman spectra of bacteriochlorophyll a cation radical

    NASA Astrophysics Data System (ADS)

    Misono, Yasuhito; Nishizawa, Ei-ichi; Limantara, Leenawaty; Koyama, Yasushi; Itoh, Koichi

    1995-04-01

    Resonance Raman (RR) spectra were measured for the cation radical of bacteriochlorophyll a in acetone, methanol, dichloromethane and mixed solvents of acetone and methanol. The ring-breathing (C a-C m stretching) frequency of the radical (abbreviated as vr+) was observed at 1601 cm -1 in acetone (forming a penta-coordinated monomer), at 1587 cm -1 in a methanol (forming a hexa-coordinated monomer) and at 1600 cm -1 in dichloromethane (forming a penta-coordinated aggregate). The RR spectrum of the radical in dichloromethane is almost identical to the transient RR spectrum ascribed to 'the aggregated T 1 species of Bchl a' formed in the particular solvent by Nishizawa, Limantara, Nanjou, Nagae, Kakuno and Koyama, indicating that their interpretation needs to be revised.

  14. Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation†

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien

    2015-01-01

    Computation of full infrared (IR) and Raman spectra (including absolute intensities and transition energies) for medium- and large-sized molecular systems beyond the harmonic approximation is one of the most interesting challenges of contemporary computational chemistry. Contrary to common beliefs, low-order perturbation theory is able to deliver results of high accuracy (actually often better than those issuing from current direct dynamics approaches) provided that anharmonic resonances are properly managed. This perspective sketches the recent developments in our research group toward the development a robust and user-friendly virtual spectrometer rooted into the second-order vibrational perturbation theory (VPT2) and usable also by non-specialists essentially as a black-box procedure. Several examples are explicitly worked out in order to illustrate the features of our computational tool together with the most important ongoing developments. PMID:24346191

  15. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  16. Raman Spectra of Liquid Water from Ab Initio Molecular Dynamics: Vibrational Signatures of Charge Fluctuations in the Hydrogen Bond Network.

    PubMed

    Wan, Quan; Spanu, Leonardo; Galli, Giulia A; Gygi, François

    2013-09-10

    We report the first ab initio simulations of the Raman spectra of liquid water, obtained by combining first principles molecular dynamics and density functional perturbation theory. Our computed spectra are in good agreement with experiments, especially in the low frequency region. We also describe a systematic strategy to analyze the Raman intensities, which is of general applicability to molecular solids and liquids, and it is based on maximally localized Wannier functions and effective molecular polarizabilities. Our analysis revealed the presence of intermolecular charge fluctuations accompanying the hydrogen bond (HB) stretching modes at 270 cm(-1), in spite of the absence of any Raman activity in the isotropic spectrum. We also found that charge fluctuations partly contribute to the 200 cm(-1) peak in the anisotropic spectrum, thus providing insight into the controversial origin of such peak. Our results highlighted the importance of taking into account electronic effects in interpreting the Raman spectra of liquid water and the key role of charge fluctuations within the HB network; they also pointed at the inaccuracies of models using constant molecular polarizabilities to describe the Raman response of liquid water. PMID:26592405

  17. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational

  18. Coherent anti-Stokes Raman spectra of oxygen atoms in flames.

    PubMed

    Teets, R E; Bechtel, J H

    1981-10-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to detect oxygen atoms (electronic Raman scattering) and oxygen molecules (rotational Raman scattering) in both hydrogen-oxygen and methane-oxygen flames. The high spectral resolution of CARS is useful for distinguishing the oxygen-atom signals from larger nearby rotational Raman signals. Saturation of the molecular CARS signal that is due to stimulated Raman scattering was observed. This effect limits the sensitivity of the CARS method. PMID:19710736

  19. Analysis of photoluminescence background of Raman spectra of carbon nanotips grown by plasma-enhanced chemical vapor deposition

    SciTech Connect

    Wang, B. B.; Ostrikov, K.; Tsakadze, Z. L.; Xu, S.

    2009-07-01

    Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm{sup -1} besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.

  20. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  1. Surface-Enhanced Raman Spectra of Tetra(4-Sulfonatophenyl)Porphyrin on the Surface of Plasmonic Silver Films

    NASA Astrophysics Data System (ADS)

    Gogoleva, S. D.; Lavysh, A. V.; Motevich, I. G.; Askirka, V. F.; Strekal, N. D.; Sheinin, V. B.; Koifman, O. I.; Zenkevich, E. I.; Maskevich, S. A.

    2016-05-01

    Absorption and Raman spectra of the tetra(4-sulfonatophenyl)porphyrin (TSPP) zwitterion in aqueous solutions under conditions at which porphyrin nanotubes (PNT) form (pH 1) are presented. TSPP was immobilized on the surface of plasmonic silver films (PSF) via quick transfer of a suspension of the molecules into a solution at pH 5 and onto the film surface in order to avoid degrading the film. Images of PNT and spheroidal TSPP aggregates on the PSF surface were visualized using confocal microscopy. Spatially resolved surface-enhanced Raman spectra (SERS) of these objects were recorded. Differences in SERS of PNT and TSPP globular aggregates are discussed based on quantum-chemical calculations of TSPP vibrational spectra. Vibrational bands sensitive to the tube-spherulite transition are found.

  2. Size effects in near-ultraviolet Raman spectra of few-nanometer-thick silicon-on-insulator nanofilms

    NASA Astrophysics Data System (ADS)

    Poborchii, Vladimir; Morita, Yukinori; Tada, Tetsuya; Geshev, Pavel I.; Utegulov, Zhandos N.; Volkov, Alexey

    2016-04-01

    We have fabricated Si-on-insulator (SOI) layers with a thickness h1 of a few nanometers and examined them by Raman spectroscopy with 363.8 nm excitation. We have found that phonon and electron confinement play important roles in SOI with h1 < 10 nm. We have confirmed that the first-order longitudinal optical phonon Raman band displays size-induced major homogeneous broadening due to phonon lifetime reduction as well as minor inhomogeneous broadening due to wave vector relaxation (WVR), both kinds of broadening being independent of temperature. Due to WVR, transverse acoustic (TA) phonons become Raman-active and give rise to a broad band in the range of 100-200 cm-1. Another broad band appeared at 200-400 cm-1 in the spectrum of SOI is attributed to the superposition of 1st order Raman scattering on longitudinal acoustic phonons and 2nd order scattering on TA phonons. Suppression of resonance-assisted 2-nd order Raman bands in SOI spectra is explained by the electron-confinement-induced direct band gap enlargement compared to bulk Si, which is confirmed by SOI reflection spectra.

  3. Microwave, infrared, and Raman spectra, structure, vibrational assignment, and normal coordinate analysis of disilanyl cyanide

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Brletic, P. A.; Church, J. S.; Li, Y. S.

    1982-03-01

    The microwave spectra of SiH3SiH2 12C14N and SiH3SiH2 12C15N have been recorded from 18.0 to 26.5 GHz. Only a-type transitions were observed and R-branch assignments have been made for the ground vibrational state. The rotational constants were found to have the following values: for SiH3SiH2 12C14N, A = 8996.72±5.91, B = 2203.95±0.05, and C = 1844.03±0.05 MHz; for SiH3SiH2 12C15N, A = 8896.08±5.70, B = 2145.15±0.04, and C = 1798.63±0.03 MHz. From a diagnostic least-squares adjustment to fit the six rotational constants, the following structural parameters were obtained: r(Si-Si) = 2.332±0.014 Å; r(Si-C) = 1.841±0.015 Å; r(C≡N) = 1.156±0.010 Å; and ∢SiSiC = 107.4±0.1°. These parameters are compared to the corresponding ones in some other silanes and cyanide molecules. The infrared (2500 to 80 cm-1) and the Raman (2500 to 10 cm-1) spectra of the solid phase have been recorded for disilanyl cyanide-d0 and -d5. Additionally, the infrared spectrum of the gaseous phase and the Raman spectrum of the liquid phase were recorded and qualitative depolarization values were obtained. All of the normal modes have been assigned based upon band contours, depolarization ratios, and group frequencies but the assignment of the SiH3 torsional mode must be considered tentative. A normal coordinate calculation has been carried out by utilizing a modified valence force field to calculate the frequencies and the potential energy distribution. These results are compared to similar quantities in some corresponding molecules.

  4. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of cis- and trans-1,2-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    A study of the vibrational spectra of cis- and trans-1,2-dichloroethylene provides an excellent way for undergraduates to gain experience with the application of group theory in the physical chemistry laboratory. Although the group vibrations are similar for these two molecules, the selection rules for infrared (IR) and Raman spectra differ significantly. Most of the transitions for the fundamentals of the cis isomer of C2v symmetry are both IR and Raman active. Mutual exclusion for the vibrational transitions applies to the centrosymmetric trans isomer of C2h symmetry. Thus, half the transitions for the trans isomer are IR active and half are Raman active. The two isomers are volatile enough that gas-phase IR spectra can be recorded at room temperature. Band shapes in gas-phase IR spectra provide additional evidence for assignments of fundamentals. The two isomers are small enough that good quality quantum chemical calculations of harmonic frequencies can be done by students with commercial software.

  5. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  6. Structure and Raman spectra of pyridyl substituted diketo-pyrrolo-pyrrole isomers and polymorphs

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav, Jr.; Vyňuchal, Jan; Horáčková, Pavlína; Frumarová, Božena; Žák, Zdirad; Kučerík, Jiří; Salyk, Ota

    2010-11-01

    A complete series of symmetrical and unsymmetrical isomeric pairs of 4- and 2-pyridyl substituted diketo-pyrrolo-pyrroles was synthesized. Both polymorphs of 3,6-bis-(4'-pyridyl)-2,5-dihydro-pyrrolo[3,4- c]pyrrole-1,4-dione were prepared. Asymmetrical 3-phenyl-6-pyridine-2'-yl-2,5-dihydro-pyrrolo[3,4- c]pyrrole-1,4-dione was synthesized for the first time and X-ray structure of its monocrystal was determined. Density functional theory calculations of the ground state geometry were compared with experimental X-ray diffraction data. Theoretical Raman spectra enabled to assign the main peaks of the experimental ones for all four pyridyl DPP derivatives. Crucial spectral features, which reflect the molecular and crystal (H-bond invoked) asymmetry are C dbnd O (pyrrolinone) stretching, N sbnd H (pyrrolinone) bending and trigonal (hetero)aryl bending. Sublimation temperatures of 2-pyridyl derivatives are significantly lower than for 4-pyridyl derivatives, in which stronger in-plane NH(pyrrolinone) sbnd CO(pyrrolinone) intermolecular H-bonding dominates.

  7. Time-resolved resonance raman spectra of polypyridyl complexes of ruthenium(II)

    SciTech Connect

    Kumar, C.V.; Barton, J.K.; Turro, N.J.; Gould, I.R.

    1987-05-06

    Time-resolved resonance Raman (TR/sup 3/) spectroscopy has recently evolved as a powerful tool for the investigation of the dynamics and structures of a variety of reactive intermediates, electronic excited states, biological systems, and enzyme-substrate complexes. In this communication, the authors report the TR/sup 3/ spectra of three ruthenium complexes of special importance because of three ruthenium complexes of special importance because of their binding ability to nucleic acids, because of their success as chiral probes that recognize the conformations and helicity of nucleic acids, and because of their potential to serve as models for the interaction of metal ions with nucleic acids. They report here the results of TR/sup 3/ and transient absorption experiments which demonstrate that the excited states of three Ru(II) complexes, tris(2,2'-bipyridyl)ruthenium(II) dichloride (I), tris(1,20-phenanthroline)-ruthenium(II) dichloride (II), and tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (III), are indeed localized on the ligand.

  8. Laser power influence on Raman spectra of ZnO(Co) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hadžić, B.; Romčević, N.; Sibera, D.; Narkiewicz, U.; Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Romčević, M.

    2016-04-01

    Influence of laser power on nanocrystalline samples of ZnO(Co) prepared by commonly used wet chemistry method followed by calcination was investigated. Previous confirmation of the existence of ZnO and Co3O4 phases was based on the X-ray diffraction measurements. Here we report the experimental spectra of non-resonant Raman scattering in the range between 100 cm-1 and 1600 cm-1, for a series of samples irradiated with four different laser power densities. The laser power density has different influence on relative intensity of peaks that belong to ZnO phase than on those corresponding to Co3O4 phase. Both peak types show characteristic broadening and red shift toward lower frequencies. The laser power densities used in our study did not cause thermal destruction in any of the investigated samples. Laser-induced local heating effects in samples caused formation of cobalt dimers on the surface of Co3O4.

  9. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGESBeta

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  10. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra. PMID:27208967

  11. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    NASA Astrophysics Data System (ADS)

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-01

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  12. FT-Raman spectra of cis-bis(thiourea)tellurium(II) halides (Cl -, Br -, I -) and thiocyanate

    NASA Astrophysics Data System (ADS)

    Alía, J. M.; Edwards, H. G. M.; García-Navarro, F. J.

    1999-09-01

    The FT-Raman spectra of some cis-bis(thiourea)tellurium(II) coordination compounds [Te(tu) 2Cl 2, Te(tu) 2Br 2, Te(tu) 2I 2 and Te(tu) 2(SCN) 2] are reported. The observed spectral modifications affect all the Raman active modes of thiourea and can be interpreted as the result of a strong coordination between the Te(II) ion and the sulphur atom of thiourea that weakens the CS bond and subsequently strengthens the C-N bonds. The Raman bands assigned to (TeS) stretching are located at 266+253 cm -1 (thiocyanate), 276+262 cm -1 (chloride), 258+250 cm -1 (bromide) and 232 cm -1 (iodide). The corresponding wave numbers for (TeX) stretching are: 162 cm -1 for (TeCl) and (TeSCN), 150 cm -1 for (TeBr) and 139 cm -1 for (TeI).

  13. Revised vibrational band assignments for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile based on ab initio, DFT and normal coordinate calculations

    NASA Astrophysics Data System (ADS)

    Hiremath, C. S.; Kalkoti, G. B.; Aralakkanavar, M. K.

    2009-09-01

    In the present study, a systematic vibrational spectroscopic investigation for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile (TFB), aided by electronic structure calculations has been carried out. The electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) - have been performed with 6-31G* basis set. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. The results of the calculations have been used to simulate IR and Raman spectra for TFB that showed excellent agreement with the observed spectra. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed. A complete assignment of the observed spectra has been proposed.

  14. [Density functional theory study of surface-enhanced raman spectra and excited state of 1,4-benzenedithiol].

    PubMed

    Shao, Yang-Fan; Li, Chong-Yang; Feng, Yuan-Ming; Lin, Wang

    2014-02-01

    Raman scattering spectra and optimized geometries of the 1,4-benzenedithiol molecule and complexes have been calculated using density functional theory (DFT) with B3LYP functional at the level of 6-311G+(d) basis set for C, H, S atoms and LanL2DZ for Ag, Au atoms, respectively. The optimized 1,4-benzenedithiol molecule was non-planar structure and the angle between benzene ring plane and S-H is 20.20. By means of the simulation of molecule adsorbed on gold and silver cluster, we concluded that gold clusters are nearly parallel to the benzenedithiol molecule and silver clusters are almost perpendicular to the molecular surface. The authors studied the interaction between Raman intensity and molecular properties, such as static polarizablity and charge distribution. The Raman intensity of 1,4-BDT-Au2, 1,4-BDT-Ag2 and Ag2-1,4-BDT-Au2 were in good agreement with static polarizability. The excited states of Ag2-1,4-BDT-Au2 complex were calculated using time-dependent density functional theory (TDDFT). And the simulated absorption spectra and several allowed singlet excited states were analyzed to investigate the surface-enhanced Raman chemical enhancement mechanism. PMID:24822413

  15. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra.

    PubMed

    Ando, Masahiro; Hamaguchi, Hiro-o

    2014-01-01

    Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell. PMID:24108582

  16. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra

    NASA Astrophysics Data System (ADS)

    Ando, Masahiro; Hamaguchi, Hiro-o.

    2014-01-01

    Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.

  17. Infrared and Raman spectra, r0 structural parameters, conformational stability, and vibrational assignment of 2-cyanoethylamine

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Darkhalil, Ikhlas D.; Klaassen, Joshua J.

    2012-09-01

    The infrared spectra (4000-200 cm-1) of the gas and solid and the Raman spectrum (4000-40 cm-1) of the liquid have been recorded. Vibrational fundamentals have been identified for four of the possible five stable conformers and complete vibrational assignments have been made for the Gg and Gt forms where the Capital G is for Gauche for the orientation around the Csbnd C bond and the lower cases g and t for gauche and trans orientation for the amine. These forms are the two lowest energy conformers. Vibrational assignments have been supported by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, and depolarization ratios. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. The enthalpy differences between the Gg and Gt conformers was determined to be 75 cm-1 and for the Gg to Tg form 333 cm-1. The r0 structural parameters have been obtained for the two most stable conformers from predicted parameters from ab initio MP2(full)/6-311+G(d,p) calculations adjusted to fit the previously reported microwave rotational constants. The determined heavy atom structural values for the Gg [Gt] conformer are: the distances (Å) N1sbnd C2 = 1.461(3) [1.453(3)], C2sbnd C3 = 1.535(3) [1.545(3)], C3sbnd C4 = 1.466(3) [1.463(3)], C4tbnd N5 = 1.161(3) [1.161(3)] and angles (°) ∠N1C2C3 = 109.5(5) [116.0(5)], ∠C2C3C4 = 111.1(5) [111.1(5)], ∠C3C4N5 = 177.4(5) [177.0(5)]. These parameters are compared to those estimated from the microwave study. The results are discussed and compared to the corresponding properties of some similar molecules.

  18. DFT study of structure, IR and Raman spectra of the fluorescent "Janus" dendron built from cyclotriphosphazene core

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-11-01

    The FTIR and FT-Raman spectra of the zero generation dendron, possessing five fluorescent dansyl terminal groups, cyclotriphosphazene core, and one carbamate function G0v were studied. The structural optimization and normal mode analysis were performed for G0v dendron on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G0v dendron were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The frequency of ν(N-H) band in the IR spectrum reveal the presence of H-bonds in the G0v dendron.

  19. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    NASA Astrophysics Data System (ADS)

    Butenko, A.; Zion, E.; Kaganovskii, Yu.; Wolfson, L.; Richter, V.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-07-01

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C+ and Xe+ ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the "activated" area around structural defects.

  20. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  1. Raman Scattering Spectra of the Folded Acoustic Phonon in AlxGa1-xAs/GaAs Superlattices for Various Al Mole Fractions

    NASA Astrophysics Data System (ADS)

    Fukasawa, Ryoichi; Okubo, Yusei; Abe, Osamu; Ohta, Kimihiro

    1992-03-01

    We report the Raman scattering spectra of the folded longitudinal acoustic phonon of AlxGa1-xAs/GaAs superlattices for various aluminium (Al) mole fractions. The effect of Al mole fraction increases on the Raman intensities and the frequencies was studied.

  2. Spectra and structure of organophosphorus compounds. XII - Infrared and Raman spectra of /CH3/2PH and /CD3/2PH

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Saunders, J. E.

    1975-01-01

    The vibrational spectra of (CH3)2PH and (CD3)2PH have been studied and assignments made. In the infrared, the region between 4000 and 33 wavelength/cm was recorded for the gaseous and solid states, while Raman spectra from 3500 to 10 wavelength/cm in the gaseous, liquid and solid states were observed. There is some evidence of weak hydrogen bonding, based on the behavior of the phosphorus-hydrogen stretching and bending modes. There also appears to be considerable interaction between the methyl rocking and phosphorus-carbon stretching modes. The a double prime and a prime torsional modes appear to be accidentally degenerate at 182 and 142 wavelength/cm for the 'light' and 'heavy' compounds, respectively. This gives barriers of 2.14 and 2.30 kcal/mole, respectively.

  3. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    PubMed Central

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K.

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence. PMID:22319277

  4. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    PubMed

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. PMID:22981122

  5. Spectra of Surface-Enhanced Raman Scattering of 1-Propanethiol and 3-Mercaptopropionic Acid Chemisorbed on Thin Silver Films

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; German, A. E.; Gachko, G. A.; Maskevich, S. A.

    2000-12-01

    The influence of chemisorption and intermolecular Van der Waals interactions on the formation of surface-enhanced Raman spectra of 1-propanethiol and 3-mercaptopropionic acid coated as self-organized monolayers on vacuum-deposited thin silver films and thin silver films annealed at high temperatures is studied. Optical properties of films of both types are found to be strongly affected by the chemical modification, which is associated with peculiarities of the monolayer formation. It is shown that the reorganization of the substrate surface can be associated with intense repulsion between alkane chains of thiol when the distance between them decreases in comparison with the distance typical of crystalline paraffins. Conclusions on the presence and the nature of packing defects of short-chain thiols on the substrate surface are made on the basis of the analysis of Raman and surface-enhanced Raman spectra. It is shown that the interaction between the first (propanethiol) and the second (pyruvate) monolayers near the silver surface in the water phase results in the reorganization of the first monolayer, in which conformers of propanethiol in the gauche-conformation with respect to the C(1)-C(2) bond prevail.

  6. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek A.; Shaltout, I.; Al Yahyaei, K. M.

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO 2 + 5%Fe 2O 3 + 10%TMO], where transition metal oxides (TMO) are TiO 2, V 2O 5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm -1) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO 44- triagonal bipyramid ( C2v) and Te 2O 76- bridged tetrahedra ( Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO 3+1 binds to TeO 3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  7. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.

    PubMed

    Christesen, Steven D; Pendell Jones, Jay; Lochner, Joseph M; Hyre, Aaron M

    2008-10-01

    Ultraviolet (UV) Raman spectroscopy is being applied to the detection of chemical agent contamination of natural and man-made surfaces. In support of these efforts, we have measured the UV Raman signatures of the G-series nerve agents GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), and the agent simulant diisopropyl methylphosphonate (DIMP) at 248 nm and 262 nm, as well as taking their UV Raman and UV absorption cross-sections. Of these chemicals, only GA exhibits any significant pre-resonance enhancement. We also show that reduction of the excitation wavelength from 262 nm to 248 nm effectively shifts the Raman spectrum away from a substantial sample fluorescence background, implying a significant improvement in detection capability. PMID:18926015

  8. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    NASA Astrophysics Data System (ADS)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  9. Spectra and structure of small ring compounds. LI. Infrared and Raman spectra, vibrational assignment and ab initio calculations of 1,1-dicyanocyclobutane

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Zhao, Wenyun; Little, T. S.; Dakkouri, M.

    1988-12-01

    The infrared (3500 to 50 cm -1) and Raman (3500 to 20 cm -1) spectra of solid 1,1-dicyanocyclobutane have been recorded. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. The spectral features observed at room temperature for the solid phase (m.p. 37 °C) are very similar to those obtained for the neat liquid at ≈ 60 °C but the spectral features observed at -120 °C were clearly those of an annealed solid. These spectra have been interpreted on the basis of C s molecular symmetry for 1,1-dicyanocyclobutane where the ring is puckered and the two cyano groups are "quasi-linear". The vibrational assignment is based on depolarization values, group frequencies, and in some cases the relative intensities of the observed bands. The potential function governing the ring puckering motion has been determined from optimized geometries obtained by ab initio Hartree-Fock gradient calculations at both the 3-21G and 4-31G basis set levels. The assignments of the fundamental vibrational frequencies are compared to those obtained from a force field obtained by ab initio calculations employing the 3-21G basis set. These results are discussed and compared to those obtained for some similar molecules.

  10. FT-Raman and SERS spectra of rivanol in silver sol.

    PubMed

    Iliescu, T; Cinta, S; Kiefer, W

    2000-10-01

    FT-Raman of solid rivanol (2-ethoxy-6,9-diaminoacridinium lactate C(15)H(16)N(3)O-C(3)H(5)O(3) . H(2)O) and surface-enhanced Raman scattering (SERS) on silver surface of rivanol solution at pH 5.5 have been obtained and compared. The assignment of vibrational modes has been made for the monocation specie of rivanol. SERS spectrum shows a physisorption of rivanol on the silver surface. PMID:18968095

  11. The pressure, temperature and excitation frequency dependent Raman spectra; and infrared spectra of CuBrSe 3 and CuISe 3

    NASA Astrophysics Data System (ADS)

    Sarfati, Jonathan D.; Burns, Gary R.

    1994-11-01

    Raman and Infrared Spectra of CuBrSe 3 and CuISe 3 have been measured. The fundamentals were assigned by analogy to other adducts of Cu(I) halides and to the Se 6 ring molecule. CuBrSe 3 has two strong Raman bands at 247 and 272 cm -1.; CuISe 3 has two strong bands at 243 and 264 cm -1. The strongest IR bands of CuBrSe 3 and CuISe 3 are at 78 and 74 cm -1 respectively. The wavenumbers of the CuX (X = Br or I) stretching modes agree well with the empirical correlation found between overlineν(CuX) and the CuX bond lengths in adducts of phosphine and amine bases, and are shown to be relatively independent of the nature of the coordinating ligands. The pressure dependences from 0 to 20 kbar and temperature dependences from 10-425 K of the Raman-active phonons were measured. In contrast to allotropes of Se, there was no anomalous behaviour of the A 1-type stretching modes of the Se 6 ring. This shows that the interference of intramolecular Se bonds by intermolecular Se bonds is much reduced by the rings' separation by the (CuBr) x chains or Cu 2I 2 rhombs. The coefficients (∂ overlineν/∂p) T of the external modes are smaller relative to the internal modes than those of rhombohedral Se. The relative intensity of all the Raman bands increased monotonically with decreasing exciting frequency for the range of excitation lines used in this study.

  12. Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4-TiO2 (A = Ca, Sr).

    PubMed

    Guo, Jing; Zhou, Di; Wang, Lu; Wang, Hong; Shao, Tao; Qi, Ze M; Yao, Xi

    2013-02-01

    In this work, temperature stable microwave dielectric materials (1 - x)AMoO(4)-xTiO(2) (A = Ca, Sr) were prepared by a solid state reaction method. The phase composition, sintering behaviors, microstructures, microwave dielectric properties, effective permittivity and vibrational phonon modes were investigated. The X-ray diffraction pattern and scanning electron microscope analysis indicated that the AMoO(4) (A = Ca, Sr) phase could coexist with the TiO(2) phase. The effective dielectric constants of the AMoO(4)-TiO(2) composites were calculated by the finite element method (FEM), compared with the measured values and the numerical results obtained by the classical mixing rules. The correlation between the dielectric properties and the crystal structures were studied using IR and Raman spectroscopy. The infrared spectra were analyzed using the classical harmonic oscillator model, and revealed that the external vibration modes of AMoO(4) (A = Ca, Sr) had the most significant influence on the dielectric constant. The Raman spectra showed that there were strong interactions in the [MoO(4)] tetrahedron due to the sharp and intense Raman modes. Finally, the low-firing (900 °C) microwave dielectric ceramics were obtained with 3 wt% H(3)BO(3)-CuO addition (BCu), and they possess good microwave dielectric properties with ε(r) = 10.6-13, high Q×f values (40 700-72 050 GHz), and near-zero temperature coefficients of resonant frequency (TCF or τ(f) values). These results also show that (1 - x)AMoO(4)-xTiO(2)-BCu (A = Ca, Sr) ceramics are good candidates for microwave electronic device applications. PMID:23124534

  13. Low temperature Raman spectra of rhombohedral La0.925Na0.075MnO3

    NASA Astrophysics Data System (ADS)

    Dodiya, Neha; Yogi, A.; Varshney, Dinesh

    2013-02-01

    We report the X-ray powder diffraction and low temperature Raman results of polycrystalline La0.925Na0.075MnO3 prepared from solid-state reaction route. The X-ray diffraction patterns confirmed the formation of single-phase and perovskite La0.925Na0.075MnO3 crystallizes in rhombohedral R-3c structure. The monovalent-doped manganite shows a drastic change in Raman spectra and frequency shift between 300 K and 100 K, which is attributed to magnetic ordering experience at low temperature. We observed the splitting of the rotational modes at 100 K that probably caused by the large orthorhombic distortion found in doped rhombohedral manganites.

  14. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  15. Two Stereoisomers of Spheroidene in the Rhodobacter sphaeroides R26 Reaction Center: A DFT Analysis of Resonance Raman Spectra

    PubMed Central

    Wirtz, A. C.; van Hemert, M. C.; Lugtenburg, J.; Frank, H. A.; Groenen, E. J. J.

    2007-01-01

    From a theoretical analysis of the resonance Raman spectra of 19 isotopomers of spheroidene reconstituted into the reaction center (RC) of Rhodobacter sphaeroides R26, we conclude that the carotenoid in the RC occurs in two configurations. The normal mode underlying the resonance Raman transition at 1239 cm−1, characteristic for spheroidene in the RC, has been identified and found to uniquely refer to the cis nature of the 15,15′ carbon-carbon double bond. Detailed analysis of the isotope-induced shifts of transitions in the 1500–1550 cm−1 region proves that, besides the 15,15′-cis configuration, spheroidene in the RC adopts another cis-configuration, most likely the 13,14-cis configuration. PMID:17617552

  16. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2015-01-01

    In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

  17. Interpretation of FTIR spectra of polymers and Raman spectra of car paints by means of likelihood ratio approach supported by wavelet transform for reducing data dimensionality.

    PubMed

    Martyna, Agnieszka; Michalska, Aleksandra; Zadora, Grzegorz

    2015-05-01

    The problem of interpretation of common provenance of the samples within the infrared spectra database of polypropylene samples from car body parts and plastic containers as well as Raman spectra databases of blue solid and metallic automotive paints was under investigation. The research involved statistical tools such as likelihood ratio (LR) approach for expressing the evidential value of observed similarities and differences in the recorded spectra. Since the LR models can be easily proposed for databases described by a few variables, research focused on the problem of spectra dimensionality reduction characterised by more than a thousand variables. The objective of the studies was to combine the chemometric tools easily dealing with multidimensionality with an LR approach. The final variables used for LR models' construction were derived from the discrete wavelet transform (DWT) as a data dimensionality reduction technique supported by methods for variance analysis and corresponded with chemical information, i.e. typical absorption bands for polypropylene and peaks associated with pigments present in the car paints. Univariate and multivariate LR models were proposed, aiming at obtaining more information about the chemical structure of the samples. Their performance was controlled by estimating the levels of false positive and false negative answers and using the empirical cross entropy approach. The results for most of the LR models were satisfactory and enabled solving the stated comparison problems. The results prove that the variables generated from DWT preserve signal characteristic, being a sparse representation of the original signal by keeping its shape and relevant chemical information. PMID:25757825

  18. Stimulated resonance Raman scattering from organic dyes in a multiple-scattering medium as a potential method for determining their vibrational spectra

    SciTech Connect

    Yashchuk, V P; Tikhonov, E A; Bukatar', A O; Prigodiuk, O A; Smalyuk, A P

    2011-10-31

    A method is described for deriving Raman spectra of organic dyes from their random lasing spectra. The method was tested using Rhodamine 6G. The Raman spectrum obtained for this dye agrees well with the spectra measured by standard techniques but is more structured, which allows unresolved features to be detected. The spectrum provides more detailed information owing to the interference between the Raman scattered light and amplified spontaneous emission of the dye molecules within a photon mean free path. One advantage of the method is that the luminescence of the dye helps to observe Raman lines, which allows one to work in the Stokes region and facilitates the measurement procedure. (nonlinear optical phenomena)

  19. Computational Kinetic Study for the Unimolecular Decomposition Pathways of Cyclohexanone.

    PubMed

    Zaras, Aristotelis M; Dagaut, Philippe; Serinyel, Zeynep

    2015-07-16

    There has been evidence lately that several endophytic fungi can convert lignocellulosic biomass into ketones among other oxygenated compounds. Such compounds could prove useful as biofuels for internal combustion engines. Therefore, their combustion properties are of high interest. Cyclohexanone was identified as an interesting second-generation biofuel ( Boot , M. ; et al. Cyclic Oxygenates: A New Class of Second-Generation Biofuels for Diesel Engines? Energy Fuels 2009 , 23 , 1808 - 1817 ; Klein-Douwel , R. J. H. ; et al. Soot and Chemiluminescence in Diesel Combustion of Bio-Derived, Oxygenated and Reference Fuels . Proc. Combust. Inst. 2009 , 32 , 2817 - 2825 ). However, until recently ( Serinyel , Z. ; et al. Kinetics of Oxidation of Cyclohexanone in a Jet- Stirred Reactor: Experimental and Modeling . Proc. Combust. Inst. 2014 ; DOI: 10.1016/j.proci.2014.06.150 ), no previous studies on the kinetics of oxidation of that fuel could be found in the literature. In this work, we present the first theoretical kinetic study of the unimolecular decomposition pathways of cyclohexanone, a cyclic ketone that could demonstrate important fuel potential. Using the quantum composite G3B3 method, we identified six different decomposition pathways for cyclohexanone and computed the corresponding rate constants. The rate constants were calculated using the G3B3 method coupled with Rice-Ramsperger-Kassel-Marcus theory in the temperature range of 800-2000 K. Our calculations show that the kinetically more favorable channel for thermal decomposition is pathway 2 that produces 1,3-butadien-2-ol, which in turn can isomerize easily to methyl vinyl ketone through a small barrier. The results presented here can be used in a future kinetic combustion mechanism. PMID:25354027

  20. FT IR, FT-Raman spectra and chemical computations of herbicide 2-phenoxy propionic acid - A DFT approach

    NASA Astrophysics Data System (ADS)

    Joselin Beaula, T.; James, C.

    2014-03-01

    FT IR and FT Raman spectra of herbicidal molecule 2-phenoxy propionic acid have been recorded and analyzed with the aid of normal coordinate analysis and DFT methods. Stability of the molecule arising from hyperconjugative interactions has been probed using NBO analysis. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. HOMO-LUMO, Mulliken population analysis and atomic charges, thermodynamic calculation and aromaticity were also calculated. From the PES scan the most stable geometry has been determined. ESP has been mapped over the electron density to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecule.

  1. Infrared and polarized Raman spectra of LiNa 3(MoO 4) 2·6H 2O

    NASA Astrophysics Data System (ADS)

    Isaac, Mary; Nayar, V. U.; Makitova, D. D.; Tkachev, V. V.; Atovmjan, L. O.

    1997-05-01

    The analysis of the infrared and polarized Raman spectra of LiNa 3(MoO 4) 2·6H 2O is reported. The splitting of the nondegenerate symmetric stretching mode in all orientations confirms the presence of two crystallographically independent MoO 42- anions in the crystal. The linear distortion in MoO 4 tetrahedra is found to be greater than the angular distortion. Bands in the stretching region of water indicate the presence of crystallographically different water molecules and hydrogen bonds of varying strengths. The assignments of H 2O bands are confirmed by observing the corresponding bands in the deuterated compounds.

  2. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    SciTech Connect

    Martins Ferreira, E. H.; Stavale, F.; Moutinho, Marcus V. O.; Lucchese, M. M.; Capaz, Rodrigo B.; Achete, C. A.; Jorio, A.

    2010-09-15

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A{sub D}/A{sub G}, A{sub D}{sup '}/A{sub G}, and A{sub G}{sup '}/A{sub G} is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  3. Far-infrared reflectivity and Raman spectra of Ba5Nb4O15

    NASA Astrophysics Data System (ADS)

    Massa, Néstor E.; Pagola, Silvina; Carbonio, Raúl

    1996-04-01

    We report low-temperature, far-infrared reflectivity, and Raman-scattering measurements for layered Ba5Nb4O15. We find that this material is characterized by a strong anharmonic lattice where the symmetric stretching vibration of the empty octahedra, a singular feature of this layer compound, splits into two narrow Raman-active bands. We assign them to the same phonon in a slightly different environment, and suggest a small local departure of the reported centrosymmetric D33d-P3m1 space group. We think that the infrared and mainly the Raman band profiles indicate that the lattice of Ba5Nb4O15 is close to collapsing into a lower symmetry structure.

  4. Stress effect on Raman spectra of Ce-doped BaTiO3 films

    NASA Astrophysics Data System (ADS)

    Chen, M. S.; Shen, Z. X.; Tang, S. H.; Shi, W. S.; Cui, D. F.; Chen, Z. H.

    2000-08-01

    Ce-doped BaTiO3 (BTO:Ce) thin films prepared on MgO (100) substrates by pulsed laser deposition (PLD) at oxygen pressure of 1.2×10-3 and 17 Pa have been studied by micro-Raman spectroscopy, x-ray diffraction (XRD) and atomic force microscopy (AFM). The film deposited at lower oxygen pressure has a larger lattice parameter in the direction normal to the substrate surface, and the film has smaller grains and a smoother surface. The polarized Raman peaks of both as-deposited films show blue shifts and linewidth broadening in comparison to those of the BaTiO3 single crystal. The blue shifts are attributed to tensile stresses in the films. Our results indicate that the grain size increases and the tensile stress relaxes with annealing. We have shown that quantum confinement and oxygen vacancies are not the dominant factors for the observed Raman spectral changes.

  5. Temperature effects in the Raman spectra of bundled single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meletov, K. P.; Krestinin, A. V.; Arvanitidis, J.; Christofilos, D.; Kourouklis, G. A.

    2009-08-01

    Bundled single-walled carbon nanotubes (SWCNTs) were studied as a function of temperature by means of Raman spectroscopy. The Raman modes exhibit negative temperature shift, reversible for the G band and partially irreversible for the radial breathing modes (RBMs). The softening of the latter is larger for larger diameter tubes, resulting in a better separation of the RBMs after high temperature treatment (HTT). The RBM residual softening vs. treatment temperature demonstrates threshold-like behavior. The temperature-induced changes may be associated with an irreversible weakening of the tube-tube (intertube) interaction possibly due to adsorbent removal or destruction of random intertube C-C bonds.

  6. Fourier transform infrared and Raman spectra, and AB initio calculations for cadmium(II)-cysteinate glycinate complex [Cd(Cys)(Gly)].

    PubMed

    Ramos, Joanna Maria; Faget O, Grisset; Felcman, Judith; Téllez S, Claudio A

    2008-12-15

    The cysteinate glycinate cadmium(II) complex was synthesized and structural analysis was carried out using the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. The most probable structure for the complex at a minimum of energy was calculated by the density functional theory (DFT):B3LYP/3-21G quantum mechanical method. The infrared and Raman spectra were analyzed and bands assigned through the DFT procedures, the stabilization energy being equal to: E(RB+HF-LYP)= -6442.67784a.u. Features of the infrared and Raman spectra confirm theoretical structural prediction with respect to the metal-ligand bonds: Cd-O, Cd-S and Cd-N. Full assignment of the vibrational spectra was also supported by a carefully analysis of the distorted geometries generated by the normal modes. PMID:18534901

  7. Far-Infrared and Raman Spectra and The Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2001-10-01

    The nu19 (A2) ring-twisting vibration of 1,3-cyclohexadiene has been analyzed from the vapor-phase Raman and infrared spectra. The Raman spectrum shows nine ring-twisting transitions in the 116 - 199 cm-1 region. The far-infrared spectrum confirms five of these transitions, despite the fact that the vibration is infrared forbidden in the C2v (planar) approximation. Other Raman and infrared combination bands verify the assignments and provide information on the vibrational coupling. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function, which has a barrier to planarity of 1132 cm-1 and energy minima corresponding to twisting angles of 9.1º and 30.1º. Ab initio calculations were also carried out using Moller-Plesset perturbation theory (MP2) with a large number of different basis sets. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range and calculated vibrational frequencies in excellent agreement with the experimental values.

  8. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials.

    PubMed

    Rebelo, Susana L H; Guedes, Alexandra; Szefczyk, Monika E; Pereira, André M; Araújo, João P; Freire, Cristina

    2016-05-14

    Raman spectroscopy is highly sensitive to the morphology and electronic structures of graphitic materials, but a convenient interpretation model has been lacking for multiwalled carbon nanotubes (MWCNTs), in particular for the discrimination of spectral changes induced by covalent functionalization. The present work describes a systematic investigation of the Raman analysis of covalently functionalized MWCNTs by diazonium chemistry and oxidation methodologies, with typically different mechanisms and reaction sites. A multi-peak deconvolution system and spectral band assignment were proposed based on the chemical and structural modifications identified by X-ray photoelectron spectroscopy, thermogravimetry, X-ray diffraction, specific surface areas and the comparative analysis of the first and second order regions of the Raman spectra. Diazonium functionalization takes place mainly in the π-system of the external sidewall, while oxidation occurs on defects and leads to structure burning. This allowed us to distinguish between spectral features related to aromaticity disruptions within the sidewalls and spectral features related to changes within the inner tubes. The model was validated extending the studies to the functionalization of MWCNTs by the Bingel reaction. PMID:27104221

  9. FT-IR and FT-Raman spectra of 2-hydroxyethyl methacrylate - A conformational and vibrational analysis

    NASA Astrophysics Data System (ADS)

    Belaidi, O.; Adjim, M.; Bouchaour, T.; Maschke, U.

    2015-09-01

    A conformational search of the flexible 2-hedroxyethyl methacrylate molecule by semi-empirical AM1 and B3LYP formalisms leads to six stable conformations. Four of them are in the s-trans conformation. The optimized geometries at DFT using 6-311+G∗∗ basis set are in good agreement with experimental electron diffraction data of the methyl methacrylate molecule, thereby the s-trans is the most stable form. The harmonic frequencies at the fully optimized geometries of all conformers have been performed at the DFT//B3LYP/6-311+G∗∗ level of theory. Infrared and Raman intensities and potential energy distributions of the scaled harmonic frequencies are used for the assignment of the observed IR and Raman bands. We noticed a good agreement between the experimental and the computed spectra. The strong band at 1081 cm-1, in the infrared spectrum, maybe used as a characteristic band of the s-trans conformation. Henceforth, the less stable structure contribute alone for reproducing the Raman bands located at 276 (sh) and 3020 (vw) cm-1.

  10. FT-IR and FT-Raman spectra of 2-hydroxyethyl methacrylate--A conformational and vibrational analysis.

    PubMed

    Belaidi, O; Adjim, M; Bouchaour, T; Maschke, U

    2015-09-01

    A conformational search of the flexible 2-hedroxyethyl methacrylate molecule by semi-empirical AM1 and B3LYP formalisms leads to six stable conformations. Four of them are in the s-trans conformation. The optimized geometries at DFT using 6-311+G(∗∗) basis set are in good agreement with experimental electron diffraction data of the methyl methacrylate molecule, thereby the s-trans is the most stable form. The harmonic frequencies at the fully optimized geometries of all conformers have been performed at the DFT//B3LYP/6-311+G(∗∗) level of theory. Infrared and Raman intensities and potential energy distributions of the scaled harmonic frequencies are used for the assignment of the observed IR and Raman bands. We noticed a good agreement between the experimental and the computed spectra. The strong band at 1081 cm(-1), in the infrared spectrum, maybe used as a characteristic band of the s-trans conformation. Henceforth, the less stable structure contribute alone for reproducing the Raman bands located at 276 (sh) and 3020 (vw) cm(-1). PMID:25919328

  11. FT-IR and Raman spectra and vibrational investigation of bis (4-acetylanilinium) hexachlorostannate using DFT (B3LYP) calculation

    NASA Astrophysics Data System (ADS)

    Tarchouna, S.; Chaabane, I.; Rahaiem, A. Ben

    2016-09-01

    4-acetylanilinium was used as a ligand for the synthesis of the organic/inorganic compound bis (4-acetylanilinium) hexachlorostannate. Vibrational study in the solid state was performed by FT-Raman of the free 4-acetylanilinium ligand C8H9ON+ and by FT-IR and FT-Raman spectroscopies of the [C8H10NO]2 SnCl6 compound. The comparative analysis of the Raman spectra of the title compound with that of the free ligand was discussed. The structure of the [C8H10NO]2SnCl6 was optimized by density functional theory (DFT) using B3LYP method and shows that the calculated values obtained by B3LYP/LanL2DZ basis are in a better agreement with the experimental data reported by Song et al. (2011) [1] than those obtained by B3LYP/LanL2MB basis. The vibrational frequencies are calculated using density functional theory (DFT) with the B3LYP/LanL2DZ basis, and scaled by various factors. Root mean square (RMS) value was calculated and the small difference between experimental and calculated modes has been interpreted by intermolecular interactions in the crystal.

  12. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    PubMed

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-01

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. PMID:24692405

  13. Surface vibrational spectroscopy. A comparison of the EELS spectra of organic adsorbates at Pt(111) with IR and Raman spectra of the unadsorbed organics

    NASA Astrophysics Data System (ADS)

    Kahn, Bruce E.; Chaffins, Scott A.; Gui, John Y.; Lu, Frank; Stern, Donald A.; Hubbard, Arthur T.

    1990-02-01

    In this study EELS spectra obtained for the adsorbed species formed from aqueous electrolytes at Pt(111) electrode surfaces are compared with the IR and Raman spectra of the unadsorbed compounds in order to reveal the changes in vibrational spectra resulting from chemisorption of various important functional groups, and to explore the differences in vibrational absorptivities between EELS spectra of adsorbed species and IR and Raman spectra of the corresponding unadsorbed compounds. Of particular interest are the variations in EELS vibrational frequency, bandwidth and absorptivity due to bonding with the surface, intermolecular interactions of adsorbed molecules and changes in adsorbate molecular orientation. The influence of surface bonding on the EELS spectrum of a functional group was explored through studies of phenol (PL), phenol- d6 (PLD6), benzyl alcohol (BZOH), catechol (CT), benzoic acid (BA), 2-picolinic acid (PA), 2,6-pyridine dicarboxylic acid (26PDCA), and propenoic acid (PPEA). The aromatic ring of adsorbed PL, PLD6, BZA, CT, BA, PA and 26PDCA is oriented parallel to the Pt(111) surface. The resulting strong interactions affect the frequencies and relative intensities of the EELS bands: weak CH stretching modes; a large CC stretching band (1600-1650 cm -1), and weak CH bending (700-800 cm -1). The carboxylic acid moieties of BA and PA interact strongly with the Pt surface, while those of 26PDCA do so only when adsorbed at relatively positive electrode potentials. OH stretching and bending are absent from the EELS spectra of adsorbed PL, BZOH and CT, perhaps due to dissociation of the hydroxyl hydrogen during adsorption of the molecule. Adsorption of alkenes at Pt(111) from solution preserves the characteristic CC stretching band near 1650 cm -1; examples are: PPEA; 1-hexene (HXE); propenol (PPEOH); 4-pentenol (PTEOH); and cis-2-butene-1,4-diol (CBED); adsorption of ethene, propene and butene from vacuum at room temperature has been reported to

  14. IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil.

    PubMed

    Singh, J S

    2014-09-15

    Infrared (IR) and Raman spectra of uracil and 5-aminouracil have been recorded and analyzed between the region 200-4000 cm(-1). The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-aminouracil by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, the most of B3LYP/6-311++G** vibrational frequencies are in the excellent agreement with available experimental assignments and helped in the reassignments of some fundamental vibrational modes. On the basis of calculated results, the assignments of some missing frequencies in the experimental study are proposed. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) are given by 25a'+11a″, of which 30 modes (21a'+9a″) correspond to the uracil moiety and 6 modes (4a'+2a″) to the NH2 group. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of amino group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the NH2 group in place of the hydrogen atom. All other bands have also been assigned different fundamentals/overtones/combinations. PMID:24793482

  15. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-05-01

    Kuebler et al. () identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. ). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. () but of twice the magnitude.

  16. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-07-01

    Kuebler et al. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. (2013) but of twice the magnitude.

  17. Line broadening, line shifting, and line coupling effects on N sub 2 --H sub 2 O stimulated Raman spectra

    SciTech Connect

    Bonamy, J.; Robert, D. ); Hartmann, J.M. ); Gonze, M.L.; Saint-Loup, R.; Berger, H. )

    1989-11-15

    In order to understand the influence of H{sub 2}O on the stimulated Raman {ital Q}-branch spectra of nitrogen in combusting media, an exhaustive theoretical and experimental study has been carried out. Starting from a semiclassical model, particularly convenient at high temperature, the {ital Q}-line broadening and shifting coefficients have been calculated over a wide temperature range and for a large number of lines. Stimulated Raman Spectra (SRS) measurements have allowed us to test these calculated line broadening coefficients and thus establish the high accuracy of semiclassical values. The theoretical broadening coefficients have been inverted to deduce state-to-state rotational relaxation rates by using two types of fitting laws. A partial test of the resulting {ital Q}-branch profiles has been realized at moderate pressures leading to a discrimination between these two laws. Furthermore, the effect of rotational energy transfers on collisionally narrowed profiles at higher densities has been simulated and compared with the pure N{sub 2} case.

  18. Effects of central metal on electronic structure, magnetic properties, infrared and Raman spectra of double-decker phthalocyanine

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-09-01

    The effects of the central metal in double-decker metal phthalocyanine on the electronic structure, magnetic properties, and infrared and Raman spectra of the complex were investigated. Electron density distributions were delocalized on the phthalocyanine rings. The narrow energy gap and infrared peaks observed in the ultra-violet-visible-near infrared spectra of the systems were attributed to phthalocyanine ring-ring interactions the between overlapping π-orbitals on each ring. The chemical shift behavior of the phthalocyanine rings was separated by the deformation of their structure owing to nuclear magnetic interaction of the nuclear quadrupole interaction as determined by the electronic field gradient and asymmetric parameters. The magnetic parameters of principle g-tensors were dependent on the perturbation of the crystal field by the hybridization of the d-spin in the central metal conjugated with nitrogen ligands. In the case of the vanadyl system, the IR vibration modes were shifted by the soft vibration mode for resolving the symmetrical structure. Inactive Raman vibration modes arose from no-polarization on the phthalocyanine rings. Double-decker metal phthalocyanines have great advantages for the control of the magnetic mechanism for quantum spin entanglement in the relaxation process.

  19. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine: DFT study

    NASA Astrophysics Data System (ADS)

    Mahalakshmi, G.; Balachandran, V.

    2014-10-01

    The FT-IR and FT-Raman spectra of 4-Aminomethylpiperidine have been recorded using Perkin Elmer Spectrophotometer and Nexus 670 spectrophotometer. The equilibrium geometrical parameters, various bonding features, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated using Hartree-Fock and density functional method (B3LYP) with 6-311+G(d,p) basis set. Detailed interpretations of the vibrational spectra have been carried out with the aid of the normal coordinate analysis. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of intra molecular hydrogen bonds, electron delocalization and steric effects. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of 4-Aminomethylpiperidine (4AMP) were calculated. The theoretical UV-Visible spectrum of the compound was computed in the region 200-400 nm by time-dependent TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The dipole moment (μ) and polarizability (α), anisotropy polarizability (Δα) and hyperpolarizability (β) of the molecule have been reported.

  20. Spectroscopic and structural studies on lactose species in aqueous solution combining the HATR and Raman spectra with SCRF calculations.

    PubMed

    Márquez, María Jimena; Brizuela, Alicia Beatriz; Davies, Lilian; Brandán, Silvia Antonia

    2015-04-30

    In this work, the α and β isomers, the α-lactose monohydrate and dihydrate and the dimeric species of lactose were studied from the spectroscopic point of view in gas and aqueous solution phases combining the infrared, Horizontal Attenuated Total Reflectance (HATR) and Raman spectra with the density functional theory (DFT) calculations. Aqueous saturated solutions of α-lactose monohydrate and solutions at different molar concentrations of α-lactose monohydrate in water were completely characterized by infrared, HATR and Raman spectroscopies. For all the species in solution, the solvent effects were studied using the solvation polarizable continuum (PCM) and solvation (SM) models and, then, their corresponding solvation energies were predicted. The vibrational spectra of those species in aqueous solution were completely assigned by employing the Scaled Quantum Mechanics Force Field (SQMFF) methodology and the self-consistent reaction field (SCRF) calculations. The stabilities of all those species were studied by using the natural bond orbital (NBO), and atoms in molecules (AIM) calculations. PMID:25704196

  1. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations.

    PubMed

    Zhao, Haiming; Lin, Yung-Chang; Yeh, Chao-Hui; Tian, He; Chen, Yu-Chen; Xie, Dan; Yang, Yi; Suenaga, Kazu; Ren, Tian-Ling; Chiu, Po-Wen

    2014-10-28

    Understanding the growth mechanism of graphene layers in chemical vapor deposition (CVD) and their corresponding Raman properties is technologically relevant and of importance for the application of graphene in electronic and optoelectronic devices. Here, we report CVD growth of single-crystal trilayer graphene (TLG) grains on Cu and show that lattice defects at the center of each grain persist throughout the growth, indicating that the adlayers share the same nucleation site with the upper layers and these central defects could also act as a carbon pathway for the growth of a new layer. Statistics shows that ABA, 30-30, 30-AB, and AB-30 make up the major stacking orientations in the CVD-grown TLG, with distinctive Raman 2D characteristics. Surprisingly, a high level of lattice defects results whenever a layer with a twist angle of θ = 30° is found in the multiple stacks of graphene layers. PMID:25295851

  2. Experimental and density functional theory study of Raman and SERS spectra of 5-amino-2-mercaptobenzimidazole

    NASA Astrophysics Data System (ADS)

    Chen, Yufeng; Yang, Jin; Li, Zonglong; Li, Ran; Ruan, Weidong; Zhuang, Zhiping; Zhao, Bing

    2016-01-01

    Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulations were employed to study 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules. Ag colloids were used as SERS substrates which were prepared by using hydroxylamine hydrochloride as reducing agent. Raman vibration modes and SERS characteristic peaks of 5-A-2MBI were assigned with the aid of DFT calculations. The molecular electrostatic potential (MEP) of 5-A-2MBI was used to discuss the possible adsorption behavior of 5-A-2MBI on Ag colloids. The spectral analysis showed that 5-A-2MBI molecules were slightly titled via the sulfur atoms adhering to the surfaces of Ag substrates. The obtained SERS spectral intensity decreased when lowering the 5-A-2MBI concentrations. A final detection limit on the concentration of 5 × 10- 7 mol · L- 1 was gained. SERS proved to be a simple, fast and reliable method for the detection and characterization of 5-A-2MBI molecules.

  3. Raman and infrared spectra, normal coordinate analysis and ab initio calculations of 4-Amino-2-chloropyrimidine-5-carbonitrile

    NASA Astrophysics Data System (ADS)

    Abuelela, Ahmed M.; Mohamed, Tarek A.; Wilson, Lee D.; Zoghaib, Wajdi M.

    2016-07-01

    The present work reports an experimental and theoretical study of molecular structure of 4-Amino-2-chloropyrimidine-5-carbonitrile (ACPC) in solid phase. Raman and infrared (IR) spectra of ACPC have been recorded in the region of 3600-100 cm-1 and 4000-200 cm-1, respectively. Calculations with the methods of B3LYP and Møller-Plesset second perturbation (MP2) were carried out for structural and vibrational predictions. The computational approaches were tested and adapted by comparing the predicted spectra to results obtained experimentally. In order to assign the calculated frequencies for the recorded ones, a normal coordinate analysis has been performed for vibrations with respect to the nuclei displacements for all the fundamental frequencies. By computing and analyzing, in detail, the infrared and Raman spectra of ACPC, the changes in the vibrational features were probed by identifying two tautomers of ACPC; (i) amino ACPC which could exist in two conformational structures, and (ii) imino ACPC which could exist in four conformational structures. Both computational and spectral results were in favor of the amino tautomer with no evidence for the existence of interconversion between amino and imino forms. Moreover, only one of the amino ACPC conformers was found to be the most stable one where the hybridization of amino group was found to be sp3. The theoretical predictions agree well with the available experimental data, accounting for the interconversion process in the amino/imino functional groups. We demonstrate that vibrational spectroscopy constitutes a powerful tool for studying molecular structure due to its high sensitivity to changes in molecular geometry.

  4. Synthesis, Fourier transform infrared and Raman spectra, assignments and analysis of N-(phenyl)- and N-(chloro substituted phenyl)-2,2-dichloroacetamides.

    PubMed

    Arjunan, V; Mohan, S; Subramanian, S; Thimme Gowda, B

    2004-04-01

    N-(phenyl)-2,2-dichloroacetamide (NPA) and N-(chloro substituted phenyl)-2,2-dichloroacetamides of the configuration XyC6H(5-y)-NHCO-CHCl2 (where, X = Cl and y = 1, 2 and 3) were synthesised and the Fourier transform infrared (FTIR) and Fourier transform Raman (FT-Raman) spectra of the compounds were recorded and analysed. The FTIR spectra of all the compounds were recorded in a Bruker IFS 66V spectrometer in the range of 4000-400 cm(-1) and the FT-Raman spectra were also recorded in the same instrument in the region 3500-100 cm(-1). The variation of an amide bond (-NHCO-) parameters with the substitution of the chlorine atom in the phenyl group and the mixing of different normal modes are discussed with the help of potential energy distribution (PED) calculated through normal co-ordinate analysis. PMID:15084334

  5. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS.

    PubMed

    Premasiri, W Ranjith; Lee, Jean C; Sauer-Budge, Alexis; Théberge, Roger; Costello, Catherine E; Ziegler, Lawrence D

    2016-07-01

    The dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components. The absence or presence of different degradation/salvage enzymes in the known purine metabolism pathways of these organisms plays a central role in determining the bacterial specificity of these purine-base SERS signatures. These results provide the biochemical basis for the development of SERS as a rapid bacterial diagnostic and illustrate how SERS can be applied more generally for metabolic profiling as a probe of cellular activity. Graphical Abstract Bacterial typing by metabolites released under stress. PMID:27100230

  6. Raman Spectra Study and the Corresponding Strain Dependence of Graphyne and Graphdiyne

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqing; College of Chemistry; Molecular Engineering Team

    Graphynes, composed ofsp-sp2 carbon atoms, have attracted increasing interest of research due to particular optical, electrical and mechanical properties they might have. According to recent theoretical studies prediction, the systhesis of graphyne and graphdiyne are difficult but offer more possible compared to other graphynes, and they have been tried to form and got initial achievement1. For new materials, their widespread application is impossible without a convinient, fast, non-destructive characterization tool. Raman spectroscopy has performed remarkable ability for studing the properties of sp2 and sp3 carbon materials, such as diamond, graphite, carbon fibers and nanotubes. Naturally, we may expect it is also work in sp-sp2 carbon materials2. In our work, the Raman features of graphyne and graphdiyne are studied systematically and their variations versus mechanical strain are also investigated by group theory and first-principles calculations. 1. Guoxing Li, et al. Chem. Commun. 2010, 46: 3256 2. Jinying Wang*, Shuqing Zhang*, et al. Phys. Chem. Chem. Phys.2014, 16 (23): 11303

  7. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  8. Loss and gain signals in broadband stimulated-Raman spectra: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Harbola, Upendra; Umapathy, Siva; Mukamel, Shaul

    2013-07-01

    Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features [Mallick , J. Raman Spectrosc.JRSPAF0377-048610.1002/jrs.2996 42, 1883 (2011); Dang , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.043001 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, χ(3). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. χ(3) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the χ(3) regime.

  9. [Research on the experiment of hydrogen isotope fractionation using diamond anvil cell and Raman spectra].

    PubMed

    Wang, Shi-xia; Zheng, Hai-fei

    2011-03-01

    Hydrothermal diamond-anvil cell and Raman spectroscopy were used to measure the hydrogen isotope fractionation factor between gypsum and liquid water. Hydrogen isotopes of deuterium (D) and hydrogen (H) show the largest relative mass difference in all stable isotope systems. The exchange reaction between D and H would easily take place and the extent of exchange would be larger than others under same condition. So we selected the hydrogen isotopes for the investigation. The concept of fractionation factor is the quotient of ratios of heavy and light isotopes in different minerals, and can be expressed as alpha(A-B) = R(A)/R(B). There is a linear relationship between ratio of Raman peak intensities and ratio of corresponding amount of substances. So the fractionation factor between gypsum and heavy water can be expressed as [formula: see text] The experimental study for the isotope fractionation is based on the dissolution and recrystallization of minerals in aqueous solutions. The process can reach the total isotope fractionation equilibrium and get isotope fractionation factors with different temperatures. Compared with other methods, chemical synthesis one has following advantages: (1) short time for the experiment; (2) no problem about the equilibrium for isotope exchanges. It was proved that the new method would be more convenient and reliable for obtaining the isotopic fractionation factor compared with previous ways. PMID:21595220

  10. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine)

    NASA Astrophysics Data System (ADS)

    Singh, J. S.

    2015-02-01

    FT-IR (400-4000 cm-1) and Raman spectra (200-4000 cm-1) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a‧ + 13a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 9 modes (5a‧ + 4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3

  11. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine).

    PubMed

    Singh, J S

    2015-02-25

    FT-IR (400-4000 cm(-1)) and Raman spectra (200-4000 cm(-1)) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G(∗∗) vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a'+13a″, of which 30 modes (21a'+9a″) correspond to the uracil moiety and 9 modes (5a'+4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3 group are

  12. Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2.

    PubMed

    Kim, Kangwon; Lee, Jae-Ung; Nam, Dahyun; Cheong, Hyeonsik

    2016-08-23

    Raman spectra of few-layer MoSe2 were measured with eight excitation energies. New peaks that appear only near resonance with various exciton states are analyzed, and the modes are assigned. The resonance profiles of the Raman peaks reflect the joint density of states for optical transitions, but the symmetry of the exciton wave functions leads to selective enhancement of the A1g mode at the A exciton energy and the shear mode at the C exciton energy. We also find Davydov splitting of intralayer A1g, E1g, and A2u modes due to interlayer interaction for some excitation energies near resonances. Furthermore, by fitting the spectral positions of interlayer shear and breathing modes and Davydov splitting of intralayer modes to a linear chain model, we extract the strength of the interlayer interaction. We find that the second-nearest-neighbor interlayer interaction amounts to about 30% of the nearest-neighbor interaction for both in-plane and out-of-plane vibrations. PMID:27479147

  13. Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band.

    PubMed

    Sasaki, Kazuya; Varshney, Shailendra K; Wada, Keisuke; Saitoh, Kunimasa; Koshiba, Masanori

    2007-03-01

    This paper focuses on the optimization of pump spectra to achieve low Raman gain ripples over C-band in ultra-low loss photonic crystal fiber (PCF) and dispersion compensating PCFs (DCPCFs). Genetic algorithm (GA), a multivariate stochastic optimization algorithm, is applied to optimize the pump powers and the wavelengths for the aforesaid fiber designs. In addition, the GA integrated with full-vectorial finite element method with curvilinear edge/nodal elements is used to optimize the structural parameters of DCPCF. The optimized DCPCF provides broadband dispersion compensation over C-band with low negative dispersion coefficient of -530 ps/nm/km at 1550 nm, which is five times larger than the conventional dispersion compensating fibers with nearly equal effective mode area (21.7 mum(2)). A peak gain of 8.4 dB with +/-0.21 dB gain ripple is achieved for a 2.73 km long DCPCF module when three optimized pumps are used in the backward direction. The lowest gain ripple of +/-0.36 dB is attained for a 10 km long ultra-low loss PCF with three backward pumps. Sensitivity analysis has been performed and it is found that within the experimental fabrication tolerances of +/-2%, the absolute magnitude of dispersion may vary by +/-16%, while the Raman gain may change by +/-7%. Through tolerance study, it is examined that the ring core's hole-size is more sensitive to the structural deformations. PMID:19532502

  14. Synthetic organic pigments of the 20th and 21st century relevant to artist's paints: Raman spectra reference collection

    NASA Astrophysics Data System (ADS)

    Scherrer, Nadim C.; Stefan, Zumbuehl; Francoise, Delavy; Annette, Fritsch; Renate, Kuehnen

    2009-08-01

    Some 170 organic pigments relevant to artist's paints have been collected from historic collections and modern manufacturers. The number includes multiples of the same pigment from different sources and comprises 118 different color indices (C.I.). All of them have been analysed with FTIR spectroscopy and 125 pigments (93 different C.I. No.s) of particular relevance to artist's paints have been characterised with Raman spectroscopy so far. The pigment collection encompasses the following pigment classes and subgroups: monoazo pigments represented by acetoacetic arylide yellow (hansa yellow), β-naphthol, BON, naphthol AS and benzimidazolone; disazo pigments with disazo condensation, diarylide, bisacetoacetarylide, pyrazolone; azo-azomethin metal complex pigments; non-azo, polycyclic pigments such as phthalocyanines, diketopyrrolo-pyrroles (DPP), perylenes and perinones, quinacridones, isoindolinones, polycarbocyclic anthraquinones and dioxanines. The selection of references was based on availability (historic collections) and current use in 16 acrylic, alkyd and oil-based artist's paints, and it covers pigment colors PY yellow (27 C.I. No.s), PR red (38), PO orange (9), PB blue (8), PV violet (6), PG green (3) and PBr brown (2). Besides peak tables and spectra patterns, flow charts based on color, pigment class, group and individual color index are presented to help identification of unknowns and mixed paint samples. While Raman could isolate all different C.I. numbers, multiple references of the same C.I. from different sources could not be distinguished.

  15. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: Reference spectra and case studies

    NASA Astrophysics Data System (ADS)

    Ropret, Polonca; Centeno, Silvia A.; Bukovec, Peter

    2008-02-01

    The characterization of the binding media and pigments in modern and contemporary paintings is important for designing safe conservation treatments, as well as for determining suitable environmental conditions for display, storage and transport. Raman spectroscopy is a suitable technique for the in situ non-destructive identification of synthetic organic pigments in the presence of the complex binding media characteristic of synthetic resin paints or colour lithographic inks. The precise identification of a pigment by comparing its spectrum to that of a reference is necessary when conservation treatments with aqueous solutions or organic solvents are being considered for a work of art, since solubility properties can sometimes vary within the same pigment group. The Raman spectra of 21 yellow synthetic organic pigments, belonging to the monoazo, monoazo lakes, diarylide, disazo condensation, benzimidazolone, bisacetoacetarylide, azo-methine metal complex, isoindolinone and isoindoline groups are presented. Since modern artists frequently mixed paint developed for other applications, in addition to colorants developed as artists' paints, other synthetic organic pigments were included in the spectral database. Two monoazo pigments, Pigment Yellow 1 and Pigment Yellow 3, a benzimidazolone, Pigment Yellow 154 and a phthalocynanine, Pigment Green 7, were identified in sample cross-sections from four modern and contemporary paintings in the collection of The Museum of Modern Art in Ljubljana, Slovenia.

  16. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies.

    PubMed

    Ropret, Polonca; Centeno, Silvia A; Bukovec, Peter

    2008-02-01

    The characterization of the binding media and pigments in modern and contemporary paintings is important for designing safe conservation treatments, as well as for determining suitable environmental conditions for display, storage and transport. Raman spectroscopy is a suitable technique for the in situ non-destructive identification of synthetic organic pigments in the presence of the complex binding media characteristic of synthetic resin paints or colour lithographic inks. The precise identification of a pigment by comparing its spectrum to that of a reference is necessary when conservation treatments with aqueous solutions or organic solvents are being considered for a work of art, since solubility properties can sometimes vary within the same pigment group. The Raman spectra of 21 yellow synthetic organic pigments, belonging to the monoazo, monoazo lakes, diarylide, disazo condensation, benzimidazolone, bisacetoacetarylide, azo-methine metal complex, isoindolinone and isoindoline groups are presented. Since modern artists frequently mixed paint developed for other applications, in addition to colorants developed as artists' paints, other synthetic organic pigments were included in the spectral database. Two monoazo pigments, Pigment Yellow 1 and Pigment Yellow 3, a benzimidazolone, Pigment Yellow 154 and a phthalocynanine, Pigment Green 7, were identified in sample cross-sections from four modern and contemporary paintings in the collection of The Museum of Modern Art in Ljubljana, Slovenia. PMID:17590389

  17. The 2ν{sub 3} Raman overtone of sulfur hexafluoride: Absolute spectra, pressure effects, and polarizability properties

    SciTech Connect

    Chrysos, M. Rachet, F.; Kremer, D.

    2014-03-28

    Of the six normal vibrations of SF{sub 6}, ν{sub 3} has a key role in the mechanisms of radiative forcing. This vibration, though inactive in Raman, shows up through the transition 2ν{sub 3} allowing for a complementary view on the asymmetric stretch of the molecule. Here, we look back into this topic, which has already caught some interest in the past but with some points been left out. We make a systematic incoherent-light-scattering analysis of the overtone with the use of different gas pressures and polarization orientations for the incident beam. Absolute-scale isotropic and anisotropic spectra are reported along with natural and pressure-induced widths and shifts, and other spectral features such as the peaks corresponding to the (experimentally indistinguishable) interfering channels E{sub g} and F{sub 2g} hitherto seen solely as two-photon IR-absorption features. We make the first-ever prediction of the SF{sub 6} polarizability second derivative with respect to the ν{sub 3}-mode coordinate and we develop a heuristic argument to explain why the superposition of the three degenerate stretching motions that are related to the ν{sub 3} mode cannot but generate a polarized Raman band.

  18. Effects of Er doping on Raman spectra and on the structural properties of YbMnO{sub 3}

    SciTech Connect

    Sattibabu, Bhumireddi; Bhatnagar, Anil K.

    2015-06-24

    Polycrystalline samples of Yb{sub 1-x}Er{sub x}MnO{sub 3} (x= 0, 0.1 and 0.2) were prepared by a solid state reaction procedure. Detailed crystal structure studies were performed using X-ray diffraction data obtained at room temperature. The application of the Rietveld method confirmed the reported hexagonal P6{sub 3}cm phase. Crystallographic parameters for the pure compounds are in agreement with those found in the literature. Changes in the lattice parameters, unit-cell volume, and polyhedral distortions observed in the compounds are explained as a function of x. Raman spectra show that the phonon peaks of Yb{sub 1-x}Er{sub x}MnO{sub 3} slightly shift to lower frequencies with doping.

  19. Origin of additional broad peaks in Raman spectra from thin germanium-rich silicon–germanium films

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kazuma; Kosemura, Daisuke; Yokogawa, Ryo; Usuda, Koji; Ogura, Atsushi

    2016-07-01

    Additional broad peaks in Raman spectra from thin Ge-rich SiGe films were examined in detail. The broad peak on the low-wavenumber side of first-order optical phonon was also present for pure Ge, which indicates that the localized mode is not the reason for the broad peaks. Furthermore, other factors, e.g., strain, defect, phonon confinement effect, Fano effect, and fluorescence from oil, were excluded from the origin of the broad peaks. We assigned the broad peaks to surface optical phonon modes. The dependence of this surface mode on Ge concentration in Ge-rich SiGe was also investigated and the behavior was discussed.

  20. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    NASA Astrophysics Data System (ADS)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  1. Structure and Raman spectra of single crystal La 2(SO 4) 3 · 8H 2O

    NASA Astrophysics Data System (ADS)

    Vanderpool, Richard A.; Khan, Masood A.; Frech, Roger

    1991-05-01

    The room temperature polarized Raman spectra of single-crystal La 2(SO 4) 3 · 8H 2O have been measured in the range 5-4000 cm -1. The internal and external modes,based on a factor group analysis and comparison with Na 2SO 4 and La 2(SO 4) 3 · 9H 2O, have been assigned. A single-crystal X-ray diffraction study shows that La 2(SO 40 3 · 8H 2O crystallizes in the monoclinic space group Pn ( Z = 2) with cell dimensions a = 6.881(2) Å, b = 17.376(4) Å, c = 6.923(2) Å, and β = 92.34 (2)°. The structure was refined to a final R = 0.033 for 2333 observed reflections.

  2. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor.

    PubMed

    Porterfield, Jessica P; Nguyen, Thanh Lam; Baraban, Joshua H; Buckingham, Grant T; Troy, Tyler P; Kostko, Oleg; Ahmed, Musahid; Stanton, John F; Daily, John W; Ellison, G Barney

    2015-12-24

    The thermal decomposition of cyclohexanone (C6H10═O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10═O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2═CH2 and CH2═C(OH)-CH═CH2. Further isomerization of CH2═C(OH)-CH═CH2 to methyl vinyl ketone (CH3CO-CH═CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2═C(OH)-CH═CH2, and the ionization threshold of C6H9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be ΔfH298(cis-CH3CO-CH═CH2) = -26.1 ± 0.5 kcal mol(-1) and ΔfH298(s-cis-1-CH2═C(OH)-CH═CH2) = -13.7 ± 0.5 kcal mol(-1). The reaction enthalpy ΔrxnH298(C6H10═O → CH2═CH2 + s-cis-1-CH2═C(OH)-CH═CH2) is 53 ± 1 kcal mol(-1) and ΔrxnH298(C6H10═O → CH2═CH2 + cis-CH3CO-CH═CH2) is 41 ± 1 kcal mol(-1). At 1200 K, the products of cyclohexanone pyrolysis were found to be C6H9OH, CH2═C(OH)-CH═CH2, MVK, CH2CHCH2, CO, CH2═C═O, CH3, CH2═C═CH2, CH2═CH-CH═CH2, CH2═CHCH2CH3, CH2═CH2, and HC≡CH. PMID:26617252

  3. Theoretical anharmonic Raman and infrared spectra with vibrational assignments and NBO analysis for 1-methyl-4-nitropyrazole

    NASA Astrophysics Data System (ADS)

    Regiec, Andrzej; Mastalarz, Henryk; Wojciechowski, Piotr

    2014-03-01

    Both experimental and calculated spectral and electronic properties of 1-methyl-4-nitropyrazole have been demonstrated. Experimental values have been compared with theoretical computations and also new hybrid density functionals, APF (Austin-Petersson-Frisch) and APF(D), have been tested and compared to B3LYP hybrid functional. The theoretical wavenumbers of fully anharmonic infrared and Raman spectra with anharmonic intensities of 1-methyl-4-nitropyrazole are in very good agreement with the experimental observations. The detailed interpretation of the infrared and Raman spectra is reported based on potential energy distribution (PED). The ring N1N2 bond distance of 1-methyl-4-nitropyrazole, calculated with both APF/6-311++G(df,pd) and APF-D/6-311++G(df,pd) models, is much underestimated in comparison with X-ray experimental value. Overall results point that B3LYP functional with 6-311++G(df,pd) basis function better predicts the bond lengths and angles of titled compound than both APF and APF-D ones. As a key factor for biological activity of nitro compounds, the redox potential of 1-methyl-4-nitropyrazole in water solution was also measured and then was set against the calculated electronic properties. The analysis of the calculated components of HOMO and LUMO orbitals has shown that nitrogen and oxygen atoms of nitro group are the most probable site of acceptance of electron. Hence, nitro group should be the most sensitive fragment of 1-methyl-4-nitropyrazole molecule to the reduction process. Moreover, the stability of the 1-methyl-4-nitropyrazole arising from hyper conjugative interactions has been studied using natural bond orbital (NBO) analysis. Unambiguous assignment of values of proton chemical shifts to appropriate protons has been finally made thanks to two dimensional (2D) 1H-1H NMR spectroscopy.

  4. Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

    PubMed Central

    van de Giesen, Nick; Steele-Dunne, Susan C.; Jansen, Jop; Hoes, Olivier; Hausner, Mark B.; Tyler, Scott; Selker, John

    2012-01-01

    Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field. PMID:22778596

  5. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China

    PubMed Central

    Chen, Jun-Yuan; Schopf, J. William; Bottjer, David J.; Zhang, Chen-Yu; Kudryavtsev, Anatoliy B.; Tripathi, Abhishek B.; Wang, Xiu-Qiang; Yang, Yong-Hua; Gao, Xiang; Yang, Ying

    2007-01-01

    The Early Cambrian (≈540 million years old) Meishucun fossil assemblage of Ningqiang County (Shaanxi Province), China, contains the oldest complex skeletonized organisms known in the geological record. We here report the finding in this assemblage of an exquisitely preserved late-stage embryo of a ctenophore (“comb jelly”), its fine structure documented by confocal laser scanning microscopy and shown by Raman spectroscopy to be composed of carbonaceous kerogen permineralized in apatite. In its spheroidal morphology, the presence of eight comb rows and the absence of tentacles, this embryo resembles an adult ctenophore (Maotianoascus octonarius) known from the immediately younger Chengjiang fauna of Yunnan, China. The oldest ctenophore and the only embryonic comb jelly known from the fossil record, this exceptionally well preserved specimen provides important clues about the early evolution of the phylum Ctenophora and of metazoans in general. PMID:17404242

  6. The Raman spectra of some molecular complexes of 1-azabicyclo[2.2.2]octane and 1,4-diazabicyclo[2.2.2]octane

    NASA Astrophysics Data System (ADS)

    Santos, P. S.; Mello, M. T. S.

    1988-08-01

    The Raman spectra of the molecular complexes of 1-azabicyclo[2.2.2]octane with iodine, bromine, sulfur dioxide, carbon tetrabromide and of 1,4-diazabicyclo[2.2.2]octane with iodine, bromine, sulfur dioxide, carbon tetrabromide, iodoform and phenol have been obtained. The analysis of the spectra indicates that most of the amine vibrational modes undergo shifts upon complexation, whereas for the acceptor molecules such shifts are significant only for the stronger ones. The spectra also show an increase in the number of bands reflecting a lower symmetry in the complexes as compared with the free amines. The most outstanding features in the Raman spectra of this series of molecular complexes is the dramatic intensification of the bands assigned to modes involving mainly NC 3 deformation and CC stretching, both of totally symmetric species. A similar behavior was also noticed in the Raman spectra of hexamethylenetetramine molecular complexes, and in the SER spectra of this series of amines. From the present results it is suggested that the observed enhancements are due to the charge transfer interaction of the amines with systems of large polarizability.

  7. Experimental and theoretical study of the infrared, Raman, and electronic spectra of two isomers of C{sub 78} of C{sub 2v} Symmetry

    SciTech Connect

    Benz, M.; Kapps, M.M.; Michel, R.H.; Fanti, M.; Orlandi, G.; Zerbetto, F.; Fowler, P.W.; Fuchs, D.; Lehner, C.

    1996-08-01

    The two C{sub 2v} isomers of C{sub 78} that satisfy the isolated-pentagon rule have been separated and studied by infrared, Raman (1064 nm excitation), and electronic spectroscopies backed up by semiempirical quantum chemical calculations. The structures have, respectively, 21 and 22 inequivalent atoms. The interplay between experiment and theory affords insight into the electronic and vibrational properties of the two molecules. In particular, through the comparison of the Raman and electronic spectra with their simulations, it is shown that the Raman spectra of the two isomers are different in nature. The spectrum of the isomer with 22 inequivalent atoms displays some preresonant character, while the spectrum of the other isomer does not. It is concluded that the properties of higher fullerenes must be treated on an individual basis, even when they share the same number of atoms and symmetry. 28 refs., 6 figs., 6 tabs.

  8. Effect of substitution-type disorder in GaS 1- xSe x layer solid solutions on Raman scattering spectra

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Nagiyev, V. M.; Melnik, N. N.

    1984-07-01

    An experimental study has been carried out to investigate Raman scattering spectra of GaS 1- xSe x solid solutions in which a one-dimensional localization of interlayer mode due to a disorder in the layer stacking was observed.

  9. Resonance Raman spectra of the (2Fe-2S) clusters of the Rieske protein from thermus and phthalate dioxygenase from pseudomonas

    SciTech Connect

    Kuila, D.; Fee, J.A.; Schoonover, J.R.; Woodruff, W.H.

    1987-03-04

    In this paper a resonance Raman (RR) study of novel iron-sulfur-nitrogen clusters is described which provides evidence for an asymmetric distribution of Cys and N ligands on the cluster. The systems examined were Thermus Rieske protein (TRP) and phthalate dioxygenase (PDO) from Pseudomonas cepacia; the RR spectra of these proteins are compared to that of spinach ferredoxin (SFD).

  10. Retrieval Of Cloud Pressure And Chlorophyll Content Using Raman Scattering In GOME Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.

    2002-01-01

    Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.

  11. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.

    2010-02-01

    We describe a technique for calculating the low-frequency mechanical modes and frequencies of a large symmetric biological molecule where the eigenvectors of the Hessian matrix are determined with full atomic detail. The method, which follows order N methods used in electronic structure theory, determines the subset of lowest-frequency modes while using group theory to reduce the complexity of the problem. We apply the method to three icosahedral viruses of various T numbers and sizes; the human viruses polio and hepatitis B, and the cowpea chlorotic mottle virus, a plant virus. From the normal-mode eigenvectors, we use a bond polarizability model to predict a low-frequency Raman scattering profile for the viruses. The full atomic detail in the displacement patterns combined with an empirical potential-energy model allows a comparison of the fully atomic normal modes with elastic network models and normal-mode analysis with only dihedral degrees of freedom. We find that coarse-graining normal-mode analysis (particularly the elastic network model) can predict the displacement patterns for the first few (˜10) low-frequency modes that are global and cooperative.

  12. First-principles calculations of phonons and Raman spectra in monoclinic CsSnCl3

    NASA Astrophysics Data System (ADS)

    Huang, Ling-Yi; Lambrecht, Walter

    2015-03-01

    Halide perovskites have recently attracted attention for photovoltaic applications. While CsSnCl3 in the perovskite structure is less suitable for solar cells because of its higher band gap than the iodides, it is still of interest as the end member of mixed CsSn(I1-xClx)3 and addition of Cl has been found to increase solar cell efficiencies. The other reason this material is interesting is that at 390 K it undergoes a phase transition to a monoclinic structure with even larger band gap, which differs from the yellow phase occuring for CsSnI3. Understanding the various possible phase transitions and structures in the trihalides is important for the long-term stability of these materials in solar cells. Raman data exist on monoclinic CsSnCl3 material since the late 80s but have in the past not been compared with first-principles calculations of the phonons in this material. We present calculations of the phonons at the Γ-point using density functional perturbation theory using the abinit program. A symmetry analysis is presented and the calculated phonon modes are compared with experimental data and previous attempts to classify the modes as internal to the SnCl3 tetrahedra and lattice modes. Supported by DOE.

  13. Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information.

    PubMed

    Sánchez-López, E; Sánchez-Rodríguez, M I; Marinas, A; Marinas, J M; Urbano, F J; Caridad, J M; Moalem, M

    2016-08-15

    Authentication of extra virgin olive oil (EVOO) is an important topic for olive oil industry. The fraudulent practices in this sector are a major problem affecting both producers and consumers. This study analyzes the capability of FT-Raman combined with chemometric treatments of prediction of the fatty acid contents (quantitative information), using gas chromatography as the reference technique, and classification of diverse EVOOs as a function of the harvest year, olive variety, geographical origin and Andalusian PDO (qualitative information). The optimal number of PLS components that summarizes the spectral information was introduced progressively. For the estimation of the fatty acid composition, the lowest error (both in fitting and prediction) corresponded to MUFA, followed by SAFA and PUFA though such errors were close to zero in all cases. As regards the qualitative variables, discriminant analysis allowed a correct classification of 94.3%, 84.0%, 89.0% and 86.6% of samples for harvest year, olive variety, geographical origin and PDO, respectively. PMID:27260451

  14. FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of Trimesic acid.

    PubMed

    Mahalakshmi, G; Balachandran, V

    2014-04-24

    The FT-IR and FT-Raman spectra have been recorded of Trimesic acid (1,3,5-benzenetricarboxylic acid, H3BTC). The molecular structure, conformational stability, geometry optimization, vibrational frequencies have been investigated. The total energy calculations of H3BTC were tried for various possible conformers. The spectra were interpreted with the aid of normal coordinate analysis based on ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods and 6-31+G(d,p) basis set level and was scaled using scale factors yielding good agreement between observed and calculated frequencies. Vibrational assignments and Natural bonding orbital (NBO) calculations are performed on the stable monomer of H3BTC using the same level of theory. Intramolecular hydrogen bond exists via COOH group gives the evidence for the formation of dimer entities in the title molecule. UV-VIS spectral analyses of H3BTC have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and Chloroform) were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (ƒ) and excitation energies (E) for gas phase and solvent (DMSO and Chloroform) are also illustrated. The statistical thermodynamic functions were obtained for the range of temperature 100-1000 K. Reliable vibrational modes associated with H3BTC are made on the basis of total energy distribution (TED) results obtained from scaled quantum mechanical (SQM) method. PMID:24508892

  15. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    PubMed

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-01

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. PMID:25459622

  16. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film

    NASA Astrophysics Data System (ADS)

    Kang, Yipu; Si, Minzhen; Zhu, Yanqing; Miao, Lei; Xu, Gang

    2013-05-01

    The nano-silver film was prepared by electrolysis method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to detect the morphology of the nano-silver particles. The SERS spectra of the hemoglobin (rabbit and mouse) on nano-silver film were gained. It could be known from the SERS spectra that the nano-silver films could enhance the Raman signal of the hemoglobin efficiently, and the sodium citrate and PBS create no influence to the SERS spectra of the hemoglobin. Using this electrolysis technique to fabricate highly bio-active, stable, reusable, and low-cost SERS substrate will be useful in the development of hemoglobin detection.

  17. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: Solutions based on mathematic procedure and the density functional theory

    NASA Astrophysics Data System (ADS)

    Cielecka-Piontek, J.; Lewandowska, K.; Barszcz, B.; Paczkowska, M.

    2013-02-01

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in.

  18. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    PubMed

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. PMID:23218399

  19. Time-resolved coherent anti-Stokes Raman spectroscopy (CARS) and the measurement of vibrational spectra in shock-compressed molecular materials

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1990-01-01

    We present the use of coherent anti-Stokes Raman scattering (CARS) in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. 11 refs., 5 figs.

  20. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    SciTech Connect

    Ye, ChuanXiang; Zhao, Yi E-mail: liangwz@xmu.edu.cn; Liang, WanZhen E-mail: liangwz@xmu.edu.cn

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  1. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex.

    PubMed

    Téllez S, Claudio A; Costa, Anilton C; Mondragón, M A; Ferreira, Glaucio B; Versiane, O; Rangel, J L; Lima, G Müller; Martin, A A

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands. PMID:27344520

  2. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass

    NASA Astrophysics Data System (ADS)

    Bouchard, M.; Smith, D. C.

    2003-08-01

    Small catalogues of reference Raman spectra of interest for analysing geomaterials or biomaterials of relevance to art history or archaeology are gradually being published by different research groups. However, except for some older catalogues, they are all concerned primarily with pigments, whether inorganic or organic. Here we present for the first time a catalogue of Raman spectra of minerals that may be found in corroded metal artworks or artefacts. At the same time we include some inorganic pigments that may be found in or on stained glass. Most of the minerals analysed came from the Gallery of Mineralogy at the Muséum National d'Histoire Naturelle and most were verified by X-ray diffraction in order to augment the confidence in the mineral identity (which is not the case with many other catalogues). A number of problems encountered with mineral terminology are discussed. Comments are made on the spectra where appropriate.

  3. Infrared and Raman spectra of ethylene trithiocarbonate complexes of some Zn(II), Cd(II) and Hg(II) halides

    NASA Astrophysics Data System (ADS)

    Contreras, J. Guillermo; Gnecco, Juan A.

    Coordination compounds of ethylene trithiocarbonate (ETTC) with some Zn(II), Cd(II) and Hg(II) halides have been prepared, characterized and their infrared and Raman spectra recorded. The i.r. spectra in the range 4000-400 cm -1 suggest that the organic ligand is bonded to the metal ions through its exocyclic sulphur atom, whereas the far-i.r. and Raman spectra show that the complexes of the type HgX 2(ETTC) (X = Cl, Br or I) possess a trans dimeric halogen-bridged structure. The Cd(II) and Zn(II) species are of the type MX 2(ETTC) 2 and they possess a pseudotetrahedral structure of C2υ symmetry.

  4. Robust cyclohexanone selective chemiresistors based on single-walled carbon nanotubes.

    PubMed

    Frazier, Kelvin M; Swager, Timothy M

    2013-08-01

    Functionalized single-walled carbon nanotube (SWCNT)-based chemiresistors are reported for a highly robust and sensitive gas sensor to selectively detect cyclohexanone, a target analyte for explosive detection. The trifunctional selector has three important properties: it noncovalently functionalizes SWCNTs with cofacial π-π interactions, it binds to cyclohexanone via hydrogen bond (mechanistic studies were investigated), and it improves the overall robustness of SWCNT-based chemiresistors (e.g., humidity and heat). Our sensors produced reversible and reproducible responses in less than 30 s to 10 ppm of cyclohexanone and displayed an average theoretical limit of detection (LOD) of 5 ppm. PMID:23886453

  5. [Study on the Recognition of Liquor Age of Gujing Based on Raman Spectra and Support Vector Regression].

    PubMed

    Wang, Guo-xiang; Wang, Hai-yan; Wang, Hu; Zhang, Zheng-yong; Liu, Jun

    2016-03-01

    It is an important and difficult research point to recognize the age of Chinese liquor rapidly and exactly in the field of liquor analyzing, which is also of great significance to the healthy development of the liquor industry and protection of the legitimate rights and interests of consumers. Spectroscopy together with the pattern recognition technology is a preferred method of achieving rapid identification of wine quality, in which the Raman Spectroscopy is promising because of its little affection of water and little or free of sample pretreatment. So, in this paper, Raman spectra and support vector regression (SVR) are used to recognize different ages and different storing time of the liquor of the same age. The innovation of this paper is mainly reflected in the following three aspects. First, the application of Raman in the area of liquor analysis is rarely reported till now. Second, the concentration of studying the recognition of wine age, while most studies focus on studying specific components of liquor and studies together with the pattern recognition method focus more on the identification of brands or different types of base wine. The third one is the application of regression analysis framework, which cannot be only used to identify different years of liquor, but also can be used to analyze different storing time, which has theoretical and practical significance to the research and quality control of liquor. Three kinds of experiments are conducted in this paper. Firstly, SVR is used to recognize different ages of 5, 8, 16 and 26 years of the Gujing Liquor; secondly, SVR is also used to classify the storing time of the 8-years liquor; thirdly, certain group of train data is deleted form the train set and put into the test set to simulate the actual situation of liquor age recognition. Results show that the SVR model has good train and predict performance in these experiments, and it has better performance than other non-liner regression method such

  6. A structural and vibrational study on the first condensed borosulfate K5[B(SO4)4] by using the FTIR-Raman spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Höppe, Henning Alfred; Kazmierczak, Karolina; Romano, Elida; Brandán, Silvia Antonia

    2013-04-01

    The first borosulfate, K5[B(SO4)4] (recently synthesized by Henning A. Höppe, Karolina Kazmierczak, Michael Daub, Katharina Förg, Franziska Fuchs, Harald Hillebrecht, 2012) was characterized by infrared and Raman spectroscopies. Density functional theory (DFT) calculations were used to study the structure and vibrational properties of the compound. Employing the B3P86 and B3LYP levels of theory, the molecular structures of the compound were theoretically determined in gas phase and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for the borosulfate compound are consistent with the experimental IR and Raman spectra. These calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by sulfate groups of this compound as ligands with C3v and C2v symmetries. A complete assignment of all the observed bands in the IR and Raman spectra for K5[B(SO4)4] was performed. Here, the infrared and Raman spectra of K5[B(SO4)4] were interpreted, discussed and completely assigned. The nature of the Ksbnd O, Ksbnd S, Bsbnd O, and Ssbnd O bonds and the topological properties of the compound were investigated and analyzed by means of Natural Bond Order (NBO) and Bader's Atoms in Molecules theory (AIM), respectively.

  7. Effects of collective excitations on the G-band and RBM modes in the Raman spectra of metallic unfilled and filled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gayen, Saurabh; Behera, Surjyo; Bose, Shyamalendu

    2006-03-01

    The Raman spectra of a single-wall carbon nanotube (SWNT) consist of three types of modes; (i) the high frequency G-mode arising out of tangential oscillations of carbon atoms, (ii) D-mode due to the defects in the nanotube and (iii) the low frequency radial breathing mode (RBM) resulting out of radial oscillations of the carbon atoms. In this paper we theoretically investigate the effects of collective oscillations of electrons (plasmons) on the G and RBM modes in the Raman spectra of a filled and unfilled metallic SWNT. Inclusion of plasmon and the filling (rattler) atom produces four peaks in the Raman spectra in general. The positions and relative strengths of the Raman peaks [1] depend upon phonon frequencies of the nanotube and that of the filling atoms, the plasmon frequency, the strength of the electron-phonon interaction, strength of the interactions between the nanotube phonons and rattler phonon and radius of the nanotube [2]. Usually the intensity of the G-mode is higher than that of RBM. For heavier filling atoms the frequency of the rattler phonon is lower in value, which may broaden the peak to such an extent that it may disappear in the background spectrum altogether. 1.S.M. Bose et al., Physica B 351, 129 (2004) 2. S.M. Bose, S.Gayen and S. Behera, Phys. Rev. B 72, 153402 (2005).

  8. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination.

    PubMed Central

    Chen, Y C; Peoples, O P; Walsh, C T

    1988-01-01

    The gene coding for cyclohexanone monooxygenase from Acinetobacter sp. strain NCIB 9871 was isolated by immunological screening methods. We located and determined the nucleotide sequence of the gene. The structural gene is 1,626 nucleotides long and codes for a polypeptide of 542 amino acids; 389 nucleotides 5' and 108 nucleotides 3' of the coding region are also reported. The complete amino acid sequence of the enzyme was derived by translation of the nucleotide sequence. From a comparison of the amino acid sequence with consensus sequences of nucleotide-binding folds, we identified a potential flavin-binding site at the NH2 terminus of the enzyme (residues 6 to 18) and a potential nicotinamide-binding site extending from residue 176 to residue 208 of the protein. An overproduction system for the gene to facilitate genetic manipulations was also constructed by using the tac promoter vector pKK223-3 in Escherichia coli. Images PMID:3338974

  9. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space. PMID:25993832

  10. State-by-state investigation of destructive interference in resonance Raman spectra of neutral tyrosine and the tyrosinate anion with the simplified sum-over-states approach.

    PubMed

    Cabalo, Jerry B; Saikin, Semion K; Emmons, Erik D; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2014-10-16

    UV resonance Raman scattering is uniquely sensitive to the molecular electronic structure as well as intermolecular interactions. To better understand the relationship between electronic structure and resonance Raman cross section, we carried out combined experimental and theoretical studies of neutral tyrosine and the tyrosinate anion. We studied the Raman cross sections of four vibrational modes as a function of excitation wavelength, and we analyzed them in terms of the contributions of the individual electronic states as well as of the Albrecht A and B terms. Our model, which is based on time-dependent density functional theory (TDDFT), reproduced the experimental resonance Raman spectra and Raman excitation profiles for both studied molecules with good agreement. We found that for the studied modes, the contributions of Albrecht's B terms in the Raman cross sections were important across the frequency range spanning the L(a,b) and B(a,b) electronic excitations in tyrosine and the tyrosinate anion. Furthermore, we demonstrated that interference with high-energy states had a significant impact and could not be neglected even when in resonance with a lower-energy state. The symmetry of the vibrational modes served as an indicator of the dominance of the A or B mechanisms. Excitation profiles calculated with a damping constant estimated from line widths of the electronic absorption bands had the best consistency with experimental results. PMID:25233377

  11. Simulation of the EXAFS and Raman spectra of InxGa1-xN utilizing the equation of motion routine of FEFF8.

    NASA Astrophysics Data System (ADS)

    Katsikini, M.; Pinakidou, F.; Paloura, E. C.; Arvanitidis, J.; Ves, S.; Reinholz, U.; Papadomanolaki, E.; Iliopoulos, E.

    2016-05-01

    A combined analysis of EXAFS and Raman spectra is applied for the study of InxGa1-xN alloys with 0.3Raman spectra that resemble the vibrational density of states. On the other hand, theoretical simulation of the Raman spectra using the Equation of Motion routine of FEFF8 provides the vibrational component of the Debye-Waller factor (DWF). The static disorder component of the DWFs was obtained by fitting the Ga and In K-edge EXAFS spectra. The analysis revealed that the nearest neighbor distances of the 1st and 2nd shell deviate from the values predicted by the law of Vegard and the virtual crystal approximation. The static disorder in the first nearest neighboring shell (In-N and Ga-N) is null whereas in the cation-cation neighboring shells the static component is generally smaller than the vibrational.

  12. FT-IR, Laser-Raman spectra and computational analysis of 5-Methyl-3-phenylisoxazole-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.

    2015-03-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.

  13. The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine

    NASA Astrophysics Data System (ADS)

    Cinar, Z.; Karabacak, M.; Cinar, M.; Kurt, M.; Chinna babu, P.; Sundaraganesan, N.

    2013-12-01

    The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm-1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  14. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Huyen; Nguyen, Thi Minh Hien; Chen, Xiang-Bai; Yang, In-Sang; Park, Yeonju; Jung, Young Mee

    2014-07-01

    2D correlation analysis is performed on the temperature-dependent Raman spectra of HoMnO3 thin films. As the temperature of the HoMnO3 thin films decrease, the depletion of the spectral weight at 336, 656, and 1304 cm-1 occurs at higher temperatures than the increase of the intensity at 508, 766, and 945 cm-1 below ∼70 K, the Néel temperature. The power spectrum asserts that all the changes in the spectral weight are strongly correlated. Most of the temperature-induced spectral changes of HoMnO3 occur at lower temperature than 70 K, while there is slight depletion of the spectral weight at 336, 656, and 1304 cm-1 even at higher temperature than 70 K. PCA scores and loading vectors plots also support these 2D correlation results. Our 2D correlation analysis supports the existence of the short range spin correlations between Mn sites in HoMnO3 even above the Néel temperature.

  15. A novel europium (III) nitridoborate Eu3[B3N6]: Synthesis, crystal structure, magnetic properties, and Raman spectra

    NASA Astrophysics Data System (ADS)

    Aydemir, Umut; Kokal, Ilkin; Prots, Yurii; Förster, Tobias; Sichelschmidt, Jörg; Schappacher, Falko M.; Pöttgen, Rainer; Ormeci, Alim; Somer, Mehmet

    2016-07-01

    A novel europium (III) nitridoborate, Eu3[B3N6], was successfully synthesized by oxidation of Eu3II[BN2]2 with Br2 at 1073 K. The compound crystallizes in the trigonal space group R 3 barc (No:167) with a=11.9370(4) Å, c=6.8073(4) Å, and Z=6. The crystal structure of Eu3[B3N6] consists of isolated, planar cyclic [B3N6]9- units which are charge-balanced by Eu3+ cations. The oxidation state of Eu was investigated by Mössbauer spectroscopy, electron spin resonance (ESR) spectroscopy, and quantum chemical calculations. The 151Eu Mössbauer spectroscopic measurement at 77 K reveals that the main signal at δ=0.93(7) mm/s is originating from trivalent Europium. Eu3[B3N6] showed no ESR signal in accordance with a non-magnetic (J=0) 7F0 ground state of the 4f6 configuration. Quantum chemical calculations find six electrons in the 4f subshell (4f6) of Eu indicating an oxidation state of +3. We present for the first time the vibrational spectra of a compound with cyclic trimer [B3N6]9- moieties. The Raman spectrum of Eu3[B3N6] is in good agreement with the predicted number of modes for the spectroscopically relevant cyclic [B3N6]9- group with D3h symmetry.

  16. Mass spectrometric analysis of isotope effects in bioconversion of benzene to cyclohexanone

    NASA Astrophysics Data System (ADS)

    Nam, In-Hyun; Murugesan, Kumarasamy; Kim, Young-Mo; Yang, In-Hee; Chang, Yoon-Seok

    2006-06-01

    Pseudomonas veronii strain PH-03 has been shown to convert benzene to cyclohexanone through phenol. Mass spectrometry results revealed that unusual isotopic effects have been occurred in the transformation product, cyclohexanone. The isotopic composition was strongly depends on the compound specific hydrogen or oxygen source. The exchange of labile deuterium atoms has been investigated through electrospray ionization liquid chromatography mass spectrometry. The mass spectrometric analysis of biotransformation products enabled the proposal of a corresponding bioconversion pathway.

  17. A hitherto unrecognised band in the Raman spectra of silica rocks: influence of hydroxylated Si-O bonds (silanole) on the Raman moganite band in chalcedony and flint (SiO2)

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Bellot-Gurlet, Ludovic; Slodczyk, Aneta; Fröhlich, François

    2012-06-01

    Chalcedony is a spatial arrangement of hydroxylated nanometre-sized α-quartz (SiO2) crystallites that are often found in association with the silica mineral moganite (SiO2). A supplementary Raman band at 501 cm-1 in the chalcedony spectrum, attributed to moganite, has been used for the evaluation of the quartz/moganite ratio in silica rocks. Its frequency lies at 503 cm-1 in sedimentary chalcedony, representing a 2 cm-1 difference with its position in pure moganite. We present a study of the 503 cm-1 band's behaviour upon heat treatment, showing its gradual disappearance upon heating to temperatures above 300 °C. Infrared spectroscopic measurements of the silanole (SiOH) content in the samples as a function of annealing temperature show a good correlation between the disappearance of the 503 cm-1 Raman band and the decrease of structural hydroxyl. Thermogravimetric analyses reveal a significant weight loss that can be correlated with the decreasing of this Raman band. X-ray powder diffraction data suggest the moganite content in the samples to remain stable. We propose therefore the existence of a hitherto unknown Raman band at 503 cm-1 in chalcedony, assigned to `free' Si-O vibrations of non-bridging Si-OH that oscillate with a higher natural frequency than bridging Si-O-Si (at 464 cm-1). A similar phenomenon was recently observed in the infrared spectra of chalcedony. The position of this Si-OH-related band is nearly the same as the Raman moganite band and the two bands may interfere. The actually observed Raman band in silica rocks might therefore be a convolution of a silanole and a moganite vibration. These findings have broad implications for future Raman spectroscopic studies of moganite, for the assessment of the quartz/moganite ratio, using this band, must take into account the contribution from silanole that are present in chalcedony and moganite.

  18. Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bichara, Laura C.; Alvarez, Patricia E.; Fiori Bimbi, María V.; Vaca, Hugo; Gervasi, Claudio; Brandán, Silvia Antonia

    2016-05-01

    In this work, pectin isolated from citrus peel with a degree of esterification of 76% was characterized by Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectroscopies. Structural studies were carried out taking into account their partial degree of esterification and considering the polygalacturonic acid chain as formed by two different subunits, one with both COOH and COOsbnd CH3 groups (Ac) and the other one as constituted by two subunits with two COOsbnd CH3 groups (Es). Their structural properties, harmonic frequencies, force fields and force constants in gas and aqueous solution phases were calculated by using the hybrid B3LYP/6-31G∗ method. Then, their complete vibrational analyses were performed by using the IR and Raman spectra accomplished with the scaled quantum mechanical (SQM) methodology. Reactivities and behaviors in both media were predicted for Ac and Es by using natural bond orbital (NBO), atoms in molecules (AIM), and frontier orbitals calculations. We report for first time the complete assignments of those two different units of polygalacturonic acid chain which are the 132 normal vibration modes of Ac and the 141 normal vibration modes of Es, combining the normal internal coordinates with the SQM methodology. In addition, three subunits were also studied. Reasonable correlations between the experimental and theoretical spectra were obtained. Thus, this work would allow the quick identification of pectin by using infrared and Raman spectroscopies and also provides new insight into the interactions that exist between subunits of a large pectin chain.

  19. A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of cyano-bridged heteronuclear polymeric complex of triethylenetetramine

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Çetinkaya, Fulya; Arslan, Taner

    The cyano bridged complex of triethylenetetramine was characterized by FT-IR, Raman spectroscopy and X-ray single crystal diffraction analysis. The molecular geometry and vibrational frequencies of the complex in the ground state have been calculated by using B3LYP density functional method with LANL2DZ basis set. A good correlation was found via comparison of the experimental and theoretical vibrational frequencies of complex. The complex of the type [Zn(teta)Ni(μ-CN)2(CN)2]n has been studied in the 4000-250 cm-1 region and assignment of all the observed bands were made. The analysis of the FT-IR and Raman spectra indicates that there are some structure spectra correlations.

  20. Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm-1 mode

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; Zhu, Ke; Liu, Yulong; Zhang, Lin; Boydston-White, Susie; Cheng, Gangge; Pu, Yang; Bidyut, Das; Alfano, Robert R.

    2015-03-01

    RR spectra of brain normal tissue, gliomas in low grade I and II, and malignant glioma tumors in grade III and IV were measured using a confocal micro Raman spectrometer. This report focus on the relative contents of tryptophan (W) in various grades of brain glioma tumors by the intrinsic molecular resonance Raman (RR) spectroscopy method using the 1588cm-1 of tryptophan mode by 532 nm excitation. The RR spectra of key fingerprints of tryptophan, with a main vibrational mode at 1588cm-1 (W8b), were observed. It was found that tryptophan contribution was accumulated in grade I to IV gliomas and the mode of 1588cm-1 in grade III and IV malignant gliomas were enhanced by resonance.

  1. Near infrared excited micro-Raman spectra of 4:1 methanol-ethanol mixture and ruby fluorescence at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, X. B.; Shen, Z. X.; Tang, S. H.; Kuok, M. H.

    1999-06-01

    Near infrared (NIR) lasers, as a new excitation source for Raman spectroscopy, has shown its unique advantages and is being increasingly used for some special samples, such as those emitting strong fluorescence in the visible region. This article focuses on some issues related to high-pressure micro-Raman spectroscopy using NIR excitation source. The Raman spectra of 4:1 methanol-ethanol mixture (4:1 M-E) show a linear variation in both Raman shifts and linewidths under pressure up to 18 GPa. This result is useful in distinguishing Raman scattering of samples from that of the alcohol mixture, an extensively used pressure-transmitting medium. The R1 fluorescence in the red region induced by two-photon absorption of the NIR laser is strong enough to be used as pressure scale. The frequency and line width of the R1 lines are very sensitive to pressure change and the glass transition of the pressure medium. Our results manifest that it is reliable and convenient to use NIR induced two-photon excited fluorescence of ruby for both pressure calibration and distribution of pressure in the 4:1 M-E pressure transmitting medium.

  2. Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect

    NASA Astrophysics Data System (ADS)

    Zhou, Weiping; Hu, Anming; Bai, Shi; Ma, Ying; Su, Quanshuang

    2014-02-01

    We report here a simple and innovative method to prepare large-scale silver nanoparticle films based on the controlled coffee ring effect. It is demonstrated that the films can be used as surface-enhanced Raman scattering probes to detect low-concentration medicines. Silver nanoparticles with the average size about 70 nm were prepared by reduction of silver nitride. In our experiment, the coffee ring effect was controlled by tilting the substrates during the deposition of silver nanoparticle films. Silver nanoparticle films were spontaneously formed on the surface of silicon substrates at the temperatures about 50°C based on the solvent evaporation and the coffee ring effect. The microstructure of the films was investigated using the scanning electron microscope and atomic force microscope. The surface roughness of the films is found as small as 20 nm. Then, the films were exposed to aqueous solutions of medicine at different concentrations. A comparison with a Raman spectra measured with a conventional Raman spectrometer showed that the Raman signal can be detected in the solution with concentrations as low as 1 × 10-5 M, and the enhancement factor achieved by the silver nanoparticle film can at least reach to 1.08 × 104. Our experimental results indicate that this technique is promising in the production of large-scale silver nanoparticle films for the surface-enhanced Raman scattering. These may be utilized in biochemical and trace analytical applications.

  3. Raman Spectra, Structural Units and Durability of Nuclear Waste Glasses With Variations in Composition and Crystallization: Implications for Intermediate Order in the Glass Network

    SciTech Connect

    Raman, Swaminathan Venkat

    2002-11-01

    The Raman spectra of nuclear waste glasses are composed of large variations in half-width and intensity for the commonly observed bridging (Q0) and nonbridging (Q1 to Q4) bands in silicate structures. With increase in waste concentration in a boroaluminosilicate melt, the bands of quenched glasses are distinctly localized with half-width and intensity indicative of increase in atomic order. Since the nuclear waste glasses contain disparate components, and since the bands depart from the typical random network, a systematic study for the origin of these bands as a function of composition and crystallization was undertaken. From a comparative study of Raman spectra of boroaluminosilicate glasses containing Na2O-ZrO2, Na2O-MgO, MgO-Na2O-ZrO2, Na2O-CaO-ZrO2, Na2O-CaO, and Na2O-MgO-CaF2 component sets and orthosilicate crystals of zircon and forsterite, intermediate order is inferred. An edge-sharing polyhedral structural unit is proposed to account for narrow bandwidth and high intensity for Q2 antisymmetric modes, and decreased leaching of sodium with ZrO2 concentration in glass. The intense Q4 band in nuclear waste glass is similar to the intertetrahedral antisymmetric modes in forsterite. The Raman spectra of zircon contains intratetrahedral quartz-like peaks and intertetrahedral non-bridging silicate peaks. The quartz-like peaks nearly vanish in the background of forsterite spectrum. This difference between the Raman spectra of the two orthosilicate crystals presumably results from their biaxial and uniaxial effects on polarizability ellipsoids. The results also reveal formation of 604, 956 and 961 cm-1 defect bands with composition and crystallization.

  4. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, raman, and sum frequency generation vibrational spectra in methyl C-H stretching region

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sokolov, Vladimir V.; Morita, Akihiro

    2011-01-01

    Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm^{-1} results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm^{-1} is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ ^{(2)}, while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes.

  5. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region.

    PubMed

    Ishiyama, Tatsuya; Sokolov, Vladimir V; Morita, Akihiro

    2011-01-14

    Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm(-1) results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm(-1) is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes. PMID:21241123

  6. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment.

    PubMed

    Servid, Amy E; McKay, Alison L; Davis, Cherry A; Garton, Elizabeth M; Manole, Andreea; Dobbin, Paul S; Hough, Michael A; Andrew, Colin R

    2015-06-01

    Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c' are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process. Recent 5cNO crystal structures of Alcaligenes xylosoxidans cytochrome c' (AXCP) and Shewanella frigidimarina cytochrome c' (SFCP) show a basic residue (Arg124 and Lys126, respectively) near the proximal NO binding sites. Using resonance Raman (RR) spectroscopy, we show that structurally characterized 5cNO complexes of AXCP variants and SFCP exhibit a range of ν(NO) (1651-1671 cm(-1)) and ν(FeNO) (519-536 cm(-1)) vibrational frequencies, depending on the nature of the proximal heme pocket and the sample temperature. While the AXCP Arg124 residue appears to have little impact on 5cNO vibrations, the ν(NO) and ν(FeNO) frequencies of the R124K variant are consistent with (electrostatically) enhanced Fe(II) → (NO)π* backbonding. Notably, RR frequencies for SFCP and R124A AXCP are significantly displaced from the backbonding trendline, which in light of recent crystallographic data and density functional theory modeling may reflect changes in the Fe-N-O angle and/or extent of σ-donation from the NO(π*) to the Fe(II) (dz(2)) orbital. For R124A AXCP, correlation of vibrational and crystallographic data is complicated by distal and proximal 5cNO populations. Overall, this study highlights the complex structure-vibrational relationships of 5cNO proteins that allow RR spectra to distinguish 5cNO coordination in certain electrostatic and steric environments. PMID:25961377

  7. Transient resonance Raman spectra of benzophenone and its four isotopic analogues in the lowest excited triplet state

    SciTech Connect

    Tahara, T.; Hamaguchi, H.; Tasumi, M.

    1987-11-05

    Transient resonance Raman spectra of T/sub 1/ benzophenone (T/sub 1/BP) and its four isotopic analogues in carbon tetrachloride solutions were measured. Vibrational assignments of eight T/sub 1/ bands have been made on the basis of the observed isotopic frequency shifts. The assignments clarified the following three points concerning the structure of T/sub 1/ BP in solution. (1) The CO bond order in T/sub 1/ BP is much lower than that in the ground-state benzophenone (S/sub 0/ BP). The CO stretching frequency in T/sub 1/ is found to be 1222 cm/sup -1/, whereas the corresponding value in S/sub 0/ is 1665 cm/sup -1/. The former frequency indicates a single-bond-like character of the CO bonding in the T/sub 1/ state. (2) Vibrational frequencies of several ring modes show marked downshifts in going from S/sub 0/ to T/sub 1/. This suggests the delocalization of the ..pi..* electron into the ring part. (3) The assignment (1302 cm/sup -1/) of the symmetric C-phenyl stretch mode in the T/sub 1/ withdraws S/sub 0/ absorption spectrum is questioned. According to the present assignment, the frequency of this mode (approx. 1100 cm/sup -1/) is slightly lower than that in the ground state (1150 cm/sup -1/). The simple quantum chemical picture of T/sub 1/ BP, which predicted the increase of the C-phenyl bond order with the ..pi..* withdraws n excitation, should therefore be reconsidered.

  8. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm -1 and 50-4000 cm -1, respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement.

  9. From linear to cyclic oligoparaphenylenes: electronic and molecular changes traced in the vibrational Raman spectra and reformulation of the bond length alternation pattern.

    PubMed

    Peña-Alvarez, Miriam; Qiu, Lili; Taravillo, Mercedes; Baonza, Valentín G; Delgado, M Carmen Ruiz; Yamago, Shigeru; Jasti, Ramesh; Navarrete, Juan T López; Casado, Juan; Kertesz, Miklos

    2016-04-28

    Cyclic paraphenylenes, [n]CPPs, and linear paraphenylenes, [n]LPPs, formed by n benzenes, are investigated by Raman spectroscopy for n = 5 to 12 and density functional theory (DFT) for n = 4 to 20. The information on the experimental Raman frequencies and intensities, combined with DFT computations and reported X-ray diffraction structures, provides a consistent interpretation of the Raman spectra and allows establishing relevant structure-property trends. Structural and electronic effects such as benzene ring bending, inter-ring torsions, π-conjugation (aromaticity) and orbital energy gaps as a function of the linear elongation in [n]LPPs versus the macrocyclic curvature in [n]CPPs and of the molecular size (i.e., polymer limit) are systematically analyzed on the basis of the vibrational Raman properties. Changes in the BLA as an indicator of the degree of quinonoid character are analyzed and linked to the Effective Conjugation Coordinate (ECC) model. The BLA patterns involved in twisted and non-twisted conformations and in different species (bipolarons, quinonoid tautomers, and ECC active modes) are compared and their differences are discussed. This paper offers a unified interpretation of structural and electronic aspects in relation to the evolution from linear 1D π-systems to cyclic 2D structures. PMID:26649442

  10. Nature of the gap-like feature and subgap features in electronic Raman spectra of RNi_2B_2C (R = Y, Lu) single crystals

    NASA Astrophysics Data System (ADS)

    Yang, In-Sang; Klein, M. V.; Fisher, I.; Canfield, P. C.

    2000-03-01

    We previously found superconductivity-induced changes in the electronic Raman spectra of RNi_2B_2C (R = Y, Lu) in different scattering geometries.(http://xxx.lanl.gov/format/cond-mat/9910087) Finite intensity was observed for the first time in a conventional superconductor below the gap, and its strength is linear in the Raman shift ω. This behavior of the subgap feature is confirmed using several excitation wavelengths. Electron irradiation of the single crystals increases the Raman scattering response only above the 2Δ feature, suggesting that the subgap feature is a robust, intrinsic property of these systems. Our measurements establish that finite Raman scattering does exist below the 2Δ gap for borocarbide superconductors, which are thought to be conventional BCS-type superconductors. The 2Δ-peak intensity as a function of the magnetic field shows the nonlinear behavior predicted for both conventional and cuprate superconductors.(Blumberg et al.), Phys. Rev. Lett 78, 2461 (1997) Strong anisotropy in the intensity of the 2Δ peak as well as the finite scattering below the gap may have its origin related to the strong anisotropy of the Fermi surfaces of the borocarbides.

  11. Application of the Correlation Method to Vibrational Spectra of C60 and Other Fullerenes: Predicting the Number of IR- and Raman-Active Bands

    NASA Astrophysics Data System (ADS)

    Nakamoto, Kazuo; McKinney, Michael A.

    2000-06-01

    The C60 molecule (Buckyball/soccer ball) exhibits only 4 IR and 10 Raman bands although it possesses 174 (3 x 60 - 6) normal vibrations. This striking reduction in the number of observed bands is evidently due to the molecule's extremely high symmetry (Ih point group). First, the 120 symmetry elements of its truncated icosahedral structure are identified and the local (site) symmetry of the carbon atoms (Cc) is determined. Use of molecular models greatly facilitates the process in determining the local and molecular symmetries. Then the correlation method is used to derive a table that classifies the 174 normal vibrations into the respective symmetry species of the Ih point group. In this method, symmetry properties of atomic displacements in terms of the local point group (Cc) are correlated with those in terms of the molecular point group (Ih). After the normal vibrations are classified into respective symmetry species, the numbers of IR- and Raman-active vibrations can be determined by the symmetry selection rules for IR and Raman spectra. The vibrational spectra of C60 and C70 (rugby ball) are analyzed by the above procedure, and the results obtained for C28, C32, C50, and dodecahedrane are provided.

  12. Possibility of breakdown of overdamped and narrowing limits in low-frequency Raman spectra: Phenomenological band-shape analysis using the multiple-random-telegraph model

    NASA Astrophysics Data System (ADS)

    Amo, Yuko; Tominaga, Yasunori

    1999-08-01

    Depolarized low-frequency Raman spectra of liquid water and heavy water are investigated from 266 K to 356 K. The reduced Raman spectra below 250 cm-1 are reproduced by a superposition of one relaxation mode and two damped harmonic oscillator modes. The multiple-random-telegraph (MRT) model, which takes into account inertia and memory effects, is applied to analyze the relaxation component. Two damped harmonic oscillators around 50 cm-1 and 180 cm-1 are known as a bendinglike mode and a stretchinglike mode, respectively. It is found that the intensity of the bendinglike mode in water (heavy water) gradually decreases with increasing temperature, and finally vanishes above about 296 K (306 K). The relaxation time of the MRT model is interpreted as representing the averaged lifetime of the vibrating unit. At high temperature, the relaxation time becomes short, that is to say, the vibrating unit is quickly destroyed before the 50 cm-1 mode is oscillating sufficiently. In the present analysis, the strongly disrupted oscillation cannot be distinguished from the relaxation mode which includes the inertia and memory effects. It is found that the low-frequency Raman spectrum of liquid water at high temperature is a good example demonstrating an application of the MRT model.

  13. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  14. [Raman spectra of single human living erythrocyte with the effect of pH and serum albumin].

    PubMed

    Wu, Zheng-Jie; Wang, Cheng; Lin, Zheng-Chun; Jiao, Qing-Ze

    2014-05-01

    In the present work, a cell environment which mimicked the real body environment according to the concentration radio between serum albumin and hemoglobin was built, and the cell morphology, the membrane deformation capacity, and the structure of intracellular hemoglobin of single human living erythrocyte under the effect of pH and serum albumin were studied. It was found that at different suspension pH, the magnitude of variations in cell shape and membrane deformation capacity changes with the structural changes of the intracellular hemoglobin. At pH 4. 14, 4. 76 and 10. 18, the loss of helical structure for hemoglobin, exposing of the hydrophobic amino acid in the globin chains, and changing of the combination of heme and globin, would completely destroy the stability of hemoglobin's structure, which seriously changes RBC's morphology and membrane deformation capacity. While at pH 6. 51 and 7. 80, the Raman spectra of erythrocytes are found to have no such changes, indicating that the structure of intracellular hemoglobin was not varied, thus the cell morphology and membrane deformation capacity are quite close to the normal values. At pH 5. 49 and 8. 76, RBC's morphology and membrane deformation capacity have different degrees of variation, but the structure of intracellular hemoglobin has not changed, suggesting that the cell morphology and membrane deformation capacity may be reversible. The results suggest that in the suspension solution containing serum albumin, erythrocytes have better ability to regulate and control the variation of the extracellular pH. In summary, upon building an environment which contains the same concentration radio of serum albumin to hemoglobin in the blood, this work performed systematic studies on the effect of pH on human erythrocytes. It can not only help to solve the problems about the mechanism of the structural and functional changes of erythrocytes induced by environmental pH, but also elucidates the possible variation of

  15. Infrared, Raman, and visible spectroscopic studies of Zn and Cd matrix reactions with ozone. Spectra of metal ozonides and oxides in solid argon and nitrogen

    NASA Astrophysics Data System (ADS)

    Prochaska, Eleanor S.; Andrews, Lester

    1980-06-01

    Reactions of zinc and cadmium atoms with ozone during condensation with excess nitrogen or argon produced B+O3- ion-pairs having infrared, Raman, and optical spectra similar to the analogous alkali and alkaline earth metal species. Additional infrared and Raman evidence was found for a different B+O3- ion-pair geometry. Mercury arc photolysis reduced ozonide absorptions and produced new 810 cm-1 zinc isotopic triplets which showed the appropriate 18O shifts for ZnO, and a new 719 cm-1 band which showed the proper 18O displacement for CdO. This nitrogen matrix work provides good measures of the yet-to-be-observed gas-phase fundamentals of these high temperature oxides.

  16. Uptake, metabolism and elimination of cyclohexanone in humans.

    PubMed

    Mráz, J; Gálová, E; Nohová, H; Vítková, D

    1994-01-01

    The metabolism and toxicokinetics of cyclohexanone (CH-one), an important solvent and chemical intermediate, have been studied in volunteers during and after 8-h exposures to CH-one vapour at a concentration of 101, 207 and 406 mg.m-3. The pulmonary ventilation in these experiments was typically 11 l.min-1 and retention in the respiratory tract was 58%. After exposure to CH-one, 207 mg.m-3, the metabolic yields of cyclohexanol (CH-ol), 1,2- and 1,4-cyclohexanediol (CH-diol) as determined in urine by a gas chromatographic method involving hydrolysis of glucuronide conjugate were 1.0% +/- 0.3%, 39% +/- 5% and 18% +/- 2% (n = 8), respectively. Peak excretion of CH-ol was achieved at the end of the exposure period, after which it decayed rapidly. Elimination of 1,2- and 1,4-CH-diol reached maximum values a few hours following exposure, with subsequent elimination half-times of 16 +/- 2 and 18 +/- 4 h, respectively. Repeated exposure to CH-one vapour (around 200 mg.m-3) for five consecutive days (8 h/day) resulted in cumulative excretion of CH-diols. The permeation rate of CH-one liquid through the skin was 0.037-0.069 mg.cm-2.h-1 (n = 3), indicating that the contribution of percutaneous absorption to total CH-one occupational intake is of minor importance. CH-diols are recommended as biomarkers of exposure to CH-one. PMID:7814101

  17. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X=F, Cl, Br, I).

    PubMed

    Singh, J S

    2014-01-01

    Raman (200-4000 cm(-1)) and FT-IR (400-4000 cm(-1)) spectra of uracil and 5-halogenated uracils (5-X-uracils; X=F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm(-1). The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G(**) vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X=F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations. PMID:24036044

  18. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Singh, J. S.

    2014-01-01

    Raman (200-4000 cm-1) and FT-IR (400-4000 cm-1) spectra of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X = F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  19. Micro-IR reflectance spectra of the Paris carbonaceous chondrite coupled to ToF-SIMS and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Baklouti, D.; Brunetto, R.; Noun, M.; Della Negra, S.; Pautrat, M.; Jamme, F.; Sandt, C.; Dumas, P.; Nsouli, B.; Roumie, M.; Merouane, S.; d'Hendecourt, L.; Dartois, E.

    2012-09-01

    We present the first micro-IR (1.5-15 μm) reflectance spectra of the Paris meteorite (a CM carbonaceous chondrite) [1,2,3]. Spectra are acquired at the SMIS (Spectroscopy and Microscopy in the Infrared using Synchrotron) beamline of the synchrotron SOLEIL (France), using a NicPlan microscope, coupled to a FTIR spectrometer operating in confocal reflection. A 500 μm wide area of a fragment (shown in Figure 1) of this meteorite was mapped with an IR spot ~20 μm. The region includes matrix and chondrules, and is chosen for its mineralogical and chemical diversity (essentially silicates, sulfates, carbonates, sulfides, and organic compounds). The IR identification of different mineral and carbonaceous components is supported by Raman micro-spectroscopy, performed at SOLEIL using a DXR Raman spectrometer from Thermo Fisher with a 532 nm exciting laser radiation, and a power on sample less than 0.3 mW (similarly to what described by [4]). The IR and Raman analysis is complemented by an elemental and structural analysis by ToF-SIMS (time of flight secondary ion mass spectrometry coupled to imaging), using a bismuth beam (25 keV and 1.3 pA) at LAEC-CNRS (Lebanon). The mass spectrometry coupled to imaging mode allows the identification of components and their location. It provides the opportunity to map at the same time the mineral and the organic components. To avoid any problem of pollution and contamination during the sample manipulation we performed, before the experiments, a surface cleaning by bismuth beam sputtering. Results will be discussed in the framework of the laboratory analyses in support of future samplereturn mission to carbon-rich asteroids. Emphasis will be given on the advantages of coupling a typical remote sensing tool (IR spectroscopy) to high spatial resolution techniques (Raman and ToF-SIMS) that would be performed on possible collected asteroidal samples.

  20. DFT study of structure, IR and Raman spectra of the first generation dendron built from cyclotriphosphazene core with terminal carbamate and ester groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2012-06-01

    The FTIR and FT-Raman spectra of the first generation dendron built from the cyclotriphosphazene core, five arms sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)rbond2 with ten carbamate terminal groups and one ester function Gv1 have been recorded. The IR and Raman spectra of the zero generation dendron Gv0 and first generation dendrimer G1 with the same core and terminal groups were also examined. The structural optimization and normal mode analysis were performed for dendron Gv1 on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that Gv1 has a concave lens structure with planar sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)rbond2 fragments and slightly non-planar cyclotriphosphazene core. The carbamate groups attached to different arms show significant deviations from a symmetrical arrangement relative to the local planes of repeating units. The experimental IR spectrum of Gv1 dendron was interpreted by means of potential energy distributions. The strong band 1604 cm-1 shows marked changes of the optical density in dependence of the carbamate, ester or azomethyne substituents in the aromatic ring. The frequencies of ν(Nsbnd H) and ν(Cdbnd O) bands in the IR spectra reveal the presence of the different types of H-bonds in the studied dendrimers.

  1. Surface-enhanced Raman spectra study of metal complexes of N- D-glucosamine β-naphthaldehyde and glycine and their interaction with DNA

    NASA Astrophysics Data System (ADS)

    Shen, Jingkai; Ye, Yong; Hu, Jiming; Shen, Haoyu; Le, Zhifeng

    2001-03-01

    Copper(II), zinc(II), cobalt(II) and cobalt(III) complexes of N- D-glucosamine β-naphthaldehyde (C 17H 19O 6N, NG) and glycine were synthesized. The four novel metal complexes, Cu(II)C 19H 28O 11N 2(CuGNG), Zn(II)C 19H 24O 9N 2(ZnGNG), Co(II)C 19H 28O 11N 2(Co(II)GNG) and Co(III)C 21H 29O 12N 2(Co(III)GNG) were characterized by means of infrared (IR), electronic absorption spectroscopy and NMR etc. The surface-enhanced Raman spectra of the four complexes and their interaction with DNA were studied. By comparison of the surface-enhanced Raman spectra (SERS), the information of the four complexes' SER active sites and adsorption orientation were obtained. Combined with fluorescence spectra of Ethidium bromide (EthBr) DNA system, we concluded that none of the four complexes intercalate into DNA and that the presence of the glycine ligand lowered the anticancer activity of NG series complexes.

  2. Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study

    NASA Astrophysics Data System (ADS)

    Abrashev, M. V.; Todorov, N. D.; Geshev, J.

    2014-09-01

    Raman spectra of R2O3 (R—Sc, Er, Y, Ho, Gd, Eu, and Sm) powders with C-type bixbyite crystal structure are measured. With the help of these data and ones, previously published for other oxides from the same structural family, general dependencies of the frequencies of the Raman peaks on the cubic crystal unit cell parameter are constructed. Using these dependencies and knowing the symmetry of the peaks for one of the oxides, determined from previous single-crystal measurements, it is possible to find out the symmetry of the peaks from the spectra of all compounds. It was found that the frequency of the six lowest frequency peaks scales with the square root of the mass of the rare earth showing that mainly R ions take part in these vibrations. These results agree with performed here lattice dynamical calculations. The anomalous softening of the frequency of some peaks in the spectra of Eu2O3 is discussed.

  3. Raman spectra of R{sub 2}O{sub 3} (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study

    SciTech Connect

    Abrashev, M. V.; Todorov, N. D.; Geshev, J.

    2014-09-14

    Raman spectra of R{sub 2}O{sub 3} (R—Sc, Er, Y, Ho, Gd, Eu, and Sm) powders with C-type bixbyite crystal structure are measured. With the help of these data and ones, previously published for other oxides from the same structural family, general dependencies of the frequencies of the Raman peaks on the cubic crystal unit cell parameter are constructed. Using these dependencies and knowing the symmetry of the peaks for one of the oxides, determined from previous single-crystal measurements, it is possible to find out the symmetry of the peaks from the spectra of all compounds. It was found that the frequency of the six lowest frequency peaks scales with the square root of the mass of the rare earth showing that mainly R ions take part in these vibrations. These results agree with performed here lattice dynamical calculations. The anomalous softening of the frequency of some peaks in the spectra of Eu{sub 2}O{sub 3} is discussed.

  4. Fourier-transform infrared and Raman spectra, and ab initio calculations for cadmium-n-di-iso-propylphosphorylguanidine-di-chloride (CdDPGCl2) complex.

    PubMed

    Téllez, Claudio A; Hollauer, Eduardo; Felcman, Judith; Lopes, Damiana C N; Cattapan, Renata A

    2002-07-01

    Cadmium-n-di-isopropylphosphorylguanidine-di-chloride (CdDPGCl2) was synthesized in the solid phase and characterized previously. The Fourier transform infrared and Raman spectra of (CdDPGCl2) in the solid state were recorded and analyzed. Emphasis was placed on the vibrational assignment of the [(O2P=O-[CdCl2]-HN=C) fragment of the complete molecular structure. With the aim of assisting the vibrational assignment of the experimental spectra, a comparison with the spectra of N-di-isopropylphosphorylguanidine ligand was carried out and ab initio calculations have been performed with several effective core potentials and valence basis sets (Hay-Wadt (HW) and Stevens-Basch-Krauss (SBK)). Due to our limited computational resources, hydrogen atoms replaced the isopropyl groups. The calculated geometrical parameters showed excellent agreement with the experimental, as well as the RHF/MP2 calculated infrared wave numbers, when compared to the IR/Raman experimental wave numbers. PMID:12164485

  5. Raman spectra of polycrystalline orthorhombic YF/sub 3/, SmF/sub 3/, HoF/sub 3/, YbF/sub 3/, and single crystal TbF/sub 3/

    SciTech Connect

    Wilmarth, W.R.; Begun, G.M.; Nave, S.E.; Peterson, J.R.

    1988-07-15

    The Raman spectra of the orthorhombic form of polycrystalline YF/sub 3/, SmF/sub 3/, TbF/sub 3/, HoF/sub 3/, and YbF/sub 3/ have been recorded. Room-temperature, polarized Raman spectra of a single crystal of orthorhombic TbF/sub 3/ have also been obtained. Based on these polarized Raman spectra, symmetry assignments have been made for 23 of the expected 24 Raman active phonon vibrations in TbF/sub 3/. By analogy to the results from single crystal TbF/sub 3/, tentative symmetry assignments of the observed phonon vibrations were also made for the other compounds included in this work.

  6. Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect

    PubMed Central

    2014-01-01

    We report here a simple and innovative method to prepare large-scale silver nanoparticle films based on the controlled coffee ring effect. It is demonstrated that the films can be used as surface-enhanced Raman scattering probes to detect low-concentration medicines. Silver nanoparticles with the average size about 70 nm were prepared by reduction of silver nitride. In our experiment, the coffee ring effect was controlled by tilting the substrates during the deposition of silver nanoparticle films. Silver nanoparticle films were spontaneously formed on the surface of silicon substrates at the temperatures about 50°C based on the solvent evaporation and the coffee ring effect. The microstructure of the films was investigated using the scanning electron microscope and atomic force microscope. The surface roughness of the films is found as small as 20 nm. Then, the films were exposed to aqueous solutions of medicine at different concentrations. A comparison with a Raman spectra measured with a conventional Raman spectrometer showed that the Raman signal can be detected in the solution with concentrations as low as 1 × 10−5 M, and the enhancement factor achieved by the silver nanoparticle film can at least reach to 1.08 × 104. Our experimental results indicate that this technique is promising in the production of large-scale silver nanoparticle films for the surface-enhanced Raman scattering. These may be utilized in biochemical and trace analytical applications. PMID:24548639

  7. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (<2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  8. Raman spectra and structural properties of hexagonal Yb1-xDyxMnO3 (x = 0, 0.05 and 0.1)

    NASA Astrophysics Data System (ADS)

    Sattibabu, Bhumireddi; Bhatnagar, Anil K.; Das, D.

    2016-05-01

    Single phase Yb1-xDyxMnO3 (x= 0, 0.05 and 0.1) samples are prepared by a solid state reaction method. X-ray powder diffraction shows that all samples crystallize in the hexagonal phase with P63cm space group. The structural analysis shows there is increase in lattice parameter c and cell volume of the hexagonal unit cell with Dy substitution and the average bond length between Mn-O increases. Raman spectra show that the phonon peaks of Yb1-xDyxMnO3 slightly shift to lower frequencies with doping.

  9. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    SciTech Connect

    Zhou, L.; Callcott, T.A.; Jia, J.J.

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  10. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements

    NASA Astrophysics Data System (ADS)

    Lu, Wanglin; Ma, Xiaomeng; Fei, Zhen; Zhou, Jianguang; Zhang, Zhiyong; Jin, Chuanhong; Zhang, Ze

    2015-07-01

    In this study, we correlated the angular dependence of the Raman response of black phosphorus to its crystallographic orientation by using transmission electron microscopy and Raman spectroscopy. It was found that the intensity of the Ag 2 mode reached a maximum when the polarization direction of the incident light was parallel to the zigzag crystallographic orientation. Notably, it was further confirmed that the zigzag crystallographic direction exhibited superior conductance and carrier mobility. Because of the lattice extension along the armchair direction, an intensification of the anisotropic Raman response was observed. This work provides direct evidence of the correlation between anisotropic properties and crystallographic direction and represents a turning point in the discussion of the angular-dependent electronic properties of black phosphorus.

  11. Analysis of torsional spectra of molecules with two internal C/3v/ rotors. III - Far-infrared and gas phase Raman spectra of dimethylamine-d0, -d3, and -d6

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Griffin, M. G.; Groner, P.

    1977-01-01

    The Raman spectra of gaseous dimethylamine-d0, -d3, and -d6 have been recorded between 0 and 4000/cm. The far-infrared spectra have been recorded between 300 and 100/cm. Considerable torsional data are reported and used to characterize the torsional potential function based on a semi-rigid model. The average effective V3 for the dimethylamines was found to be 1052 plus or minus 12/cm. The cos-cos coupling term was approximately 15% of the effective V3, whereas the sine-sine coupling term was of an order of magnitude smaller for (CH3)2NH and (CD3)2NH. However, for the mixed isotope the sine-sine term was found to be negligible and the cos-cos about one-half the value obtained for the other two isotopes.

  12. Electronic and resonance Raman spectra of [Au2(CS3)2]2-. Spectroscopic properties of a "short" Au(I)-Au(I) bond.

    PubMed

    Cheng, E C; Leung, K H; Miskowski, V M; Yam, V W; Phillips, D L

    The anion [Au2(CS3)2]2- has an unusually short Au-Au distance (2.80 A) for a binuclear Au(I) complex. We report detailed Raman studies of the nBu4N+ salt of this complex, including FT-Raman of the solid and UV/vis resonance Raman of dimethyl sulfoxide solutions. All five totally symmetric vibrations of the anion have been located and assigned. A band at delta nu = 125 cm-1 is assigned to nu (Au2). The visible-region electronic absorption bands (384 (epsilon 30,680) and 472 nm (epsilon 610 M-1 cm-1)) are attributable to CS3(2-) localized transitions, as confirmed by the dominance of nu sym(C-Sexo) (delta nu = 951 cm-1) in RR spectra measured in this region. An absorption band at 314 nm (22,250 M-1 cm-1) is assigned as the metal-metal 1(d sigma*-->p sigma) transition, largely because nu sym(C-Sexo) is not strongly enhanced in RR involving this band. Observation of the expected strong resonance enhancement of nu (Au2) was precluded as a result of masking by intense solvent Rayleigh scattering in the UV. PMID:11196834

  13. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    ERIC Educational Resources Information Center

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  14. Chemometric evaluation of temperature-dependent surface-enhanced Raman spectra of riboflavin: What is the best multivariate approach to describe the effect of temperature?

    NASA Astrophysics Data System (ADS)

    Kokaislová, Alžběta; Kalhousová, Milena; Gráfová, Michaela; Matějka, Pavel

    2014-10-01

    Riboflavin is an essential nutrient involved in energetic metabolism. It is used as a pharmacologically active substance in treatment of several diseases. From analytical point of view, riboflavin can be used as an active part of sensors for substances with affinity to riboflavin molecules. In biological environment, metal substrates coated with riboflavin are exposed to temperatures that are different from room temperature. Hence, it is important to describe the influence of temperature on adsorbed molecules of riboflavin, especially on orientation of molecules towards the metal surface and on stability of adsorbed molecular layer. Surface-enhanced Raman scattering (SERS) spectroscopy is a useful tool for investigation of architecture of molecular layers adsorbed on metal surfaces because the spectral features in SERS spectra change with varying orientation of molecules towards the metal surface, as well as with changes in mutual interactions among adsorbed molecules. In this study, riboflavin was adsorbed on electrochemically prepared massive silver substrates that were exposed to temperature changes according to four different temperature programs. Raman spectra measured at different temperatures were compared considering positions of spectral bands, their intensities, bandwidths and variability of all these parameters. It was found out that increase of substrate temperature up to 50 °C does not lead to any observable decomposition of riboflavin molecules, but the changes of band intensity ratios within individual spectra are apparent. To distinguish sources of variability beside changes in band intensities and widths, Principal Component Analysis (PCA) was applied. Discriminant Analysis (DA) was used to explore if the SERS spectra can be separated according to temperature. The results of Partial Least Squares (PLS) regression demonstrate the possibility to predict the sample temperature using SERS spectral features. Results of all performed experiments and

  15. Analysis of infrared and Raman spectra of 116SnH 4 in the 1900 cm -1 region: Study of the 1000, 0010 interacting states

    NASA Astrophysics Data System (ADS)

    Tabyaoui, A.; Lavorel, B.; Pierre, G.; Bürger, H.

    1991-07-01

    Monoisotopic stannane 116SnH 4 has been investigated at room temperature in the 1775-2025 cm -1 region with the FTIR spectrometer at Giessen, Germany, with an effective resolution of nearly 3.8 × 10 -3 cm -1, and in the 1906.0-1908.2 cm -1 region with the high-resolution stimulated Raman spectrometer at Dijon, France, with an effective resolution of 3.2 × 10 -3 cm -1. Most observed transitions correspond to {ν 1}/{ν 3} lines. For this dyad we have used a Hamiltonian developed to the fifth order to analyze the two spectra, for J values up to 14. The simultaneous analysis of infrared and Raman transitions enabled us to determine 4 parameters of ν1, 17 parameters of ν3, and 6 interaction parameters. The standard deviation was about 0.2 × 10 -3 cm -1. For J values > 14 a perturbation appears because the third harmonic of the bending modes ( ν2, ν4) is close to the stretching dyad {ν 1}/{ν 3}. The interaction between the two polyads is too strong to be absorbed by the contact transformation. In order to be able to analyze the spectra for higher J values, the (1000, 0010, 0300, 0201, 0102, 0003) polyad interaction scheme must be considered.

  16. Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence

    NASA Astrophysics Data System (ADS)

    Karadan, Prajith; John, Siju; Anappara, Aji A.; Narayana, Chandrabhas; Barshilia, Harish C.

    2016-07-01

    We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer-Emmett-Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2-3 nm porous Si nanocrystallites ( P-SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P-SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.

  17. The stability and Raman spectra of ikaite, CaCO3·6H2O, at high pressure and temperature

    USGS Publications Warehouse

    Shahar, Anat; Bassett, William A.; Mao, Ho-kwang; Chou, I-Ming; Mao, Wendy

    2005-01-01

    Raman analyses of single crystals of ikaite, CaCO3·6H2O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm−1 corresponding to Eg(external) and A1g (internal) modes of vibrations in CO2− 3 ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a P-T phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite ↔ aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.

  18. Line Interference Effects Using a Refined Robert-Bonamy Formalism: the Test Case of the Isotropic Raman Spectra of Autoperturbed N2

    NASA Technical Reports Server (NTRS)

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck

    2014-01-01

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  19. Resonance Raman spectra of transient species of a respiration enzyme detected with an artificial cardiovascular system and Raman/absorption simultaneous measurement system

    NASA Astrophysics Data System (ADS)

    Kitagawa, Teizo; Ogura, Takashi

    1991-05-01

    Developments of our techniques for detecting resonance Ranian spectra of reaction intermediates of cytochroxne oxidase are suiainarized. It is demonstrated that combination of a device for Ranian/absorption simultaneous ineasurenient system with an artificial cardiovascular system enabled us to detect the FeO2 and Fe" O stretching vibrations for intermediates and thus to conclude that compounds A and B have the Fe''1-02 and Fe hexnes respectively. 1.

  20. Raman spectra analysis for Ba[(Mg1-xNix)1/3Nb2/3]O3 microwave dielectric ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Tu Lai; Chen, Xiang Ming

    2015-01-01

    Raman spectra analysis has been carried out for both the as-sintered and annealed Ba[(Mg1-xNix)1/3Nb2/3]O3 ceramics. Based on the harmonic resonant model, all the Raman modes are successfully assigned according to the effects of ion substitution and post-densification annealing. All of the as-sintered samples present 7 normal modes as predicted by factor group analysis; an extra mode at around 560 cm-1 exists in x = 0.6-1.0. The 3 modes Eg(O), Eg(Nb), A1g(Nb) between 150-350 cm-1 decrease in intensity with increasing x, agreeing well with the variation of ordering degree. By post-densification annealing for x = 0.4, a strong dependence on ordering degree has been proved for the A1g(O) mode at around 790 cm-1. For the as-sintered samples, the Q × f value correlates well with the oxygen octahedron stretch mode A1g(O), while the dielectric constant ɛr is dominated by ionic polarizability rather than the rigidity of the oxygen octahedra. After annealing, the Raman modes are intensified, corresponding to the enhancement of cations ordering. The annealing significantly increases the A1g(O) Raman shift and decreases the FWHM (full width at half maximum) of A1g(O) mode, resulting in the increase of ɛr and the improvement of Q × f value for each composition. The intensity ratio of A1g(Ba)+Eg(Ba) mode to A1g(O) mode increases after annealing, implying that A1g(Ba)+Eg(Ba) is more dominant in the ordered structure.

  1. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    PubMed

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-01

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data. PMID:25879986

  2. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde

    NASA Astrophysics Data System (ADS)

    Prasad, M. V. S.; Udaya Sri, N.; Veeraiah, V.

    2015-09-01

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm-1, respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data.

  3. Density functional theory studies on hydroxylamine mechanism of cyclohexanone ammoximation on titanium silicalite-1 catalyst.

    PubMed

    Chu, Chang Qing; Zhao, Hai Tao; Qi, Yan Ying; Xin, Feng

    2013-06-01

    The hydroxylamine mechanism of cyclohexanone ammoximation on defective titanium active site of titanium silicalite-1 (TS-1) was simulated using two-layer ONIOM (M062X/6-31G**:PM6) method. A new energy favorable reaction route was found, which contained two parts: (1) the catalytic oxidation of adsorbed NH3 to form hydroxylamine using the Ti-OOH as an active oxidant formed by reacting H2O2 with the defective Ti active site; (2) the subsequent noncatalytic oximation of desorbed hydroxylamine and cyclohexanone out of TS-1 pores to form cyclohexanone oxime. In the catalytic formation of hydroxylamine on the Ti active site of TS-1, the proposed mechanism of two-step single-proton transfer aided by a lattice oxygen atom bonded to Ti atom need a lower reaction energy than the mechanism proposed before. In the subsequent noncatalytic oximation of hydroxylamine and cyclohexanone, which contained two elementary reaction steps in total, the mechanisms of one-step double-proton transfer in the first elementary reaction step and the subsequent one-step three-proton transfer for the second elementary reaction step were proposed, in which the solvent water molecules played a very important role in assisting and stabilizing the proton transfer processes. PMID:23370788

  4. Effect of thermal denaturation, inhibition, and cleavage of disulfide bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolay N.; Chikishev, Andrey Yu; Mankova, Anna A.; Sakodynskaya, Inna K.

    2015-05-01

    The analysis of the structure-function relationship is extremely important in the study of proteins. The importance of function-related motions of large parts or subglobules of protein molecules stimulates the spectroscopic study in the low-frequency (terahertz) domain. However, only tentative assignments are available and the spectroscopic data are insufficiently discussed in terms of structural changes. This work is aimed at the analysis of regularities of changes in the low-frequency (100 to 600 cm-1) FTIR and Raman spectra of proteins related to their structural modifications. We study the spectra of two proteins with substantially different structures (albumin and chymotrypsin) and the spectra of samples in which the structures of protein molecules are modified using inhibition, thermal denaturation, and cleavage of disulfide bonds. The results indicate that the low-frequency spectral interval can be used to characterize protein conformations. Correlated variations in the intensities of several low-frequency bands are revealed in the spectra of the modified proteins. The strongest spectral changes are caused by thermal denaturation of proteins, and the effect of cleavage of disulfide bonds is generally weaker. It is demonstrated that the inhibitor binding in the active site causes spectral changes that can be compared to the changes induced by thermal denaturation.

  5. Effects of Cation Disordering in Magnesium Aluminate Spinel on the Rectangular Parallelepiped Resonance and Raman Measurements of Vibrational Spectra

    NASA Astrophysics Data System (ADS)

    Cynn, Hyunchae

    The effects of cation disordering of a natural MgAl_2O_4^inel on acoustic and optic vibration were measured for the first time using the rectangular parallelepiped resonance method and Raman measurements. In the resonant frequency measurements of a natural spinel at high temperatures over the temperature range 298 to 1068 K, a discontinuous increase in the measured acoustic resonant vibrations of the lower harmonic modes and a discontinuous decrease in the measured acoustic resonant vibrations of the higher harmonic modes were observed at around 1000 K. Similar differences among the resonant frequencies were also observed at ambient conditions between a less disordered spinel and the highly disordered states of a natural spinel. In the Raman measurements of the same natural spinel over the temperature range 298 to 1424 K, plots of the Raman vibrational frequencies of the external and internal vibrational modes versus temperature change slopes at around 1000 K. These two measurements clearly indicate that a major change occurred at 1000 K, which I label as a transition temperature. I interpret the change that occurred around 1000 K as the onset of cation disordering in the natural spinel. The interpretation is consistent with the following observations: (1) an abrupt decrease in oxygen positional parameter in an x-ray single crystal structure analysis of a synthetic spinel between 873 and 973 K; (2) a discontinuous decrease of linear thermal expansion coefficients in a synthetic spinel at 933 K by dilatometry, and (3) a discontinuous decrease of the unit cell parameter of a natural spinel at around 1073 K by x-ray diffraction. The adiabatic elastic moduli found here for the natural spinel are different from results which have been previously reported by others, however, the moduli of a disordered natural spinel are similar to those previously reported for synthetic spinels. These observations demonstrate that cation disordering of a spinel clearly affects the

  6. Ab initio MO Calculations on the Structure and Raman and Infrared Spectra of [Al4O2Cl10]2- Oxide in Chloroaluminate Melts

    NASA Astrophysics Data System (ADS)

    Berg, Rolf W.

    2007-04-01

    The oxide complexation chemistry in molten tetrachloroaluminate salts and ionic liquids is discussed with respect to what possible structures may be formed in addition to [AlCl4]-: [Al2OCl6]2-, [Al3OCl8]-, [Al2O2Cl4]2-, [Al3O2Cl6]- and [Al4O2Cl10]2-. Ab initio molecular orbital calculations are carried out on these various aluminium chloride and oxochloride ions, in assumed isolated gaseous free ionic state, by use of the Gaussian 03W program at the restricted Hartree-Fock (HF) level and with the 6-31+G(d,p) basis set.Without any pre-assumed symmetries and with tight optimization convergence criteria and by using the modified GDIIS algorithm, the model calculations generally converge. The structures and their binding energies are presented. The expected geometries are supported, with one exception perhaps being the [Al2OCl6]2- ion, that gave a linear Al-O-Al bonding system of staggered AlCl3-groups (approximate D3d symmetry), in analogy to the linear Al-O-Al geometry of the analogous [Al2OF6]2- ion, found previously. The calculations include determination of the vibrational harmonic normal modes and the infrared and Raman spectra (vibrational band wavenumbers and intensities), without any empiric adjustments of the harmonic force constants, using constants directly predicted from the Gaussian 03W program. Previously obtained IR absorption and Raman scattering spectra of melts are assigned, by comparing to the ab initio quantum mechanical vibrational analysis results. It is concluded that the small oxide content commonly found in basic and neutral tetrachloroaluminate melts, most probably consists of [Al4O2Cl10]2- ions, and the vibrational spectra are given.

  7. Anharmonic Vibrational Analysis of the Infrared and Raman Gas-Phase Spectra of s-trans- and s-gauche-1,3-Butadiene.

    PubMed

    Krasnoshchekov, Sergey V; Craig, Norman C; Boopalachandran, Praveenkumar; Laane, Jaan; Stepanov, Nikolay F

    2015-10-29

    A quantum-mechanical (hybrid MP2/cc-pVTZ and CCSD(T)/cc-pVTZ) full quartic potential energy surface (PES) in rectilinear normal coordinates and the second-order operator canonical Van Vleck perturbation theory (CVPT2) are employed to predict the anharmonic vibrational spectra of s-trans- and s-gauche-butadiene (BDE). These predictions are used to interpret their infrared and Raman scattering spectra. New high-temperature Raman spectra in the gas phase are presented in support of assignments for the gauche conformer. The CVPT2 solution is based on a PES and electro-optical properties (EOP; dipole moment and polarizability) expanded in Taylor series. Higher terms than those routinely available from Gaussian09 software were calculated by numerical differentiation of quadratic force fields and EOP using the MP2/cc-pVTZ model. The integer coefficients of the polyad quantum numbers were derived for both conformers of BDE. Replacement of harmonic frequencies by their counterparts from the CCSD(T)/cc-pVTZ model significantly improved the agreement with experimental data for s-trans-BDE (root-mean-square deviation ≈ 5.5 cm(-1)). The accuracy in predicting the rather well-studied spectrum of fundamentals of s-trans-BDE assures good predictions of the spectrum of s-gauche-BDE. A nearly complete assignment of fundamentals was obtained for the gauche conformer. Many nonfundamental transitions of the BDE conformers were interpreted as well. The predictions of multiple Fermi resonances in the complex CH-stretching region correlate well with experiment. It is shown that solving a vibrational anharmonic problem through a numerical-analytic implementation of CVPT2 is a straightforward and computationally advantageous approach for medium-size molecules in comparison with the standard second-order vibrational perturbation theory (VPT2) based on analytic expressions. PMID:26437183

  8. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Elamurugu Porchelvi, E.

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed.

  9. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    PubMed

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. PMID:23845985

  10. Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model.

    PubMed

    Petrenko, Taras; Neese, Frank

    2012-12-21

    In this work, an improved method for the efficient automatic simulation of optical band shapes and resonance Raman (rR) intensities within the "independent mode displaced harmonic oscillator" is described. Despite the relative simplicity of this model, it is able to account for the intensity distribution in absorption (ABS), fluorescence, and rR spectra corresponding to strongly dipole allowed electronic transitions with high accuracy. In order to include temperature-induced effects, we propose a simple extension of the time dependent wavepacket formalism developed by Heller which enables one to derive analytical expressions for the intensities of hot bands in ABS and rR spectra from the dependence of the wavepacket evolution on its initial coordinate. We have also greatly optimized the computational procedures for numerical integration of complicated oscillating integrals. This is important for efficient simulations of higher-order rR spectra and excitation profiles, as well as for the fitting of experimental spectra of large molecules. In particular, the multimode damping mechanism is taken into account for efficient reduction of the upper time limit in the numerical integration. Excited state energy gradient as well as excited state geometry optimization calculations are employed in order to determine excited state dimensionless normal coordinate displacements. The gradient techniques are highly cost-effective provided that analytical excited state derivatives with respect to nuclear displacements are available. Through comparison with experimental spectra of some representative molecules, we illustrate that the gradient techniques can even outperform the geometry optimization method if the harmonic approximation becomes inadequate. PMID:23267471

  11. A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2014-10-01

    The structural stability, vibrational, 1H and 13C NMR spectra of valeric and valproic acids were investigated by the B3LYP calculations with the 6-311G** basis set. Valeric acid is predicted to exist predominantly in the planar cis form (80% abundance). Valproic acid is predicted to have an equilibrium mixture of 68% gauche-1 and 32% gauche-2 structures at 298.15 K. The spectral feature of the Osbnd H stretching mode in the infrared spectra of both acids suggests the presence of strong H-bonding in the condensed phase of valeric acid and weak H-bonding in the case of valproic acid. The harmonic and anharmonic vibrational wavenumbers were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of combined theoretical and experimental infrared and Raman data of the molecules. Not all of the calculated anharmonic wavenumbers showed a consistent trend with the observed wavenumbers. The 1H and 13C NMR spectra of both acids were interpreted by experimental and DFT calculated chemical shifts of the two acids. The RMSD between experimental and theoretical 1H and 13C chemical shifts for valeric acid is 1.8 and 3.8 ppm, whereas for valproic acid, it is 1.4 and 4.5 ppm, respectively.

  12. Quantum well effect in bulk PbI(2) crystals revealed by the anisotropy of photoluminescence and Raman spectra.

    PubMed

    Baltog, I; Baibarac, M; Lefrant, S

    2009-01-14

    On subjecting a bulk 2H-PbI(2) crystal to vacuum annealing at 500 K followed by a sudden cooling at liquid nitrogen temperature stacking faults are generated that separate distinct layers of nanometric thickness in which different numbers of I-Pb-I atomic layers are bundled together. Such structures, containing two, three, four, five etc I-Pb-I atomic layers, behave as quantum wells of different widths. The signature of such a transformation is given by a shift towards higher energies of the fundamental absorption edge, which is experimentally revealed by specific anisotropies in the photoluminescence and Raman spectra. The quantum confining effect is made visible by specific variations of a wide extra-excitonic band (G) at 2.06 eV that originates in the radiative recombination of carriers (electrons and holes), trapped on the surface defects. The excitation spectrum of the G band, with p polarized exciting light, reveals a fine structure comprised of narrow bands at 2.75, 2.64, 2.59 and 2.56 eV, which are associated with the PbI(2) quantum wells formed from two, three, four and five I-Pb-I atomic layers of 0.7 nm thickness. Regardless of the polarization state of the laser exciting light of 514.5 nm (2.41 eV), which is close to the band gap energy of PbI(2) (2.52 eV), the Raman scattering on bulk as-grown PbI(2) crystals has the character of a resonant process. For p polarized exciting light, the Raman scattering process on vacuum annealed PbI(2) becomes non-resonant. This originates from the quantum well structures generated inside the crystal, whose band gap energies are higher than the energy of the exciting light. PMID:21813984

  13. Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones

    PubMed Central

    Maher, Jason R.; Inzana, Jason A.; Awad, Hani A.; Berger, Andrew J.

    2013-01-01

    Abstract. Clinical diagnoses of bone health and fracture risk typically rely on measurements of bone density or structure, but the strength of a bone is also dependent on its chemical composition. Raman spectroscopy has been used extensively in ex vivo studies to measure the chemical composition of bone. Recently, spatially offset Raman spectroscopy (SORS) has been utilized to measure bone transcutaneously. Although the results are promising, further advancements are necessary to make noninvasive, in vivo measurements of bone with SORS that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based on fitting with spectral libraries. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both bone and soft tissue. The algorithm was utilized to transcutaneously detect biochemical differences in the tibiae of wild-type mice between 1 and 7 months of age and between the tibiae of wild-type mice and a mouse model of osteogenesis imperfecta. These results represent the first diagnostically sensitive, transcutaneous measurements of bone using SORS. PMID:23817761

  14. Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) — IR and Raman spectra, neutron diffraction of Fe(OH)2

    NASA Astrophysics Data System (ADS)

    Lutz, H. D.; Möller, H.; Schmidt, M.

    1994-12-01

    Fe3+-free white rust Fe(O(H,D))2 has been prepared and characterized by X-ray, neutron diffraction, and IR and Raman spectroscopic methods. The crystal structure of Fe(OH)2 (space group Poverline3ml, Z = 1, a = 326.289(1) pm and c = 460.4(1)pm; V = 42.45(1) × 106 pm3) was refined to a final RI = 5.6%. The results of IR and Raman spectra of the brucite-type M(O(H,D))2 (M = Ca, Mn, Fe, Co, Cd) are presented and discussed in terms of (i) assignment of the librational and translational modes, (ii) frequency shifts with respect to MO bond lengths, unit-cell volumes and masses of the atoms involved, and (iii) the nature of the large unit-cell group splittings of the OH stretching modes. Due to different bonding, i.e. more or less covalent, the brucite-type hydroxides can be divided into two groups of M = Ca, Mg, and M = Fe, Co, Ni, and Cd, respectively.

  15. The vibrational resonance Raman spectra and the valence force field of iridium dichalcogenides, IrS sub 2 and IrSe sub 2

    SciTech Connect

    Sourisseau, C.; Cavagnat, R.; Fouassier, M. ); Jobic, S.; Deniard, P.; Brec, R.; Rouxel, J. )

    1991-03-01

    The electronic (900-300 nm), infrared, and Raman (500-10 cm{sup {minus}1}) spectra of polycrystalline samples of IrS{sub 2} and IrSe{sup 2} were investigated. A complete vibrational assignment is proposed in terms of stretching and bending motions of IrX{sub 3} or IrX{sub 6} distorted units and based upon frequency shifts when substituting sulfur by selenium. All the assignments were checked by a complete valence force field calculation of the IrS{sub 2} phase, including short-range and long-range interactions where most of the force constants were transferred from the FeS{sub 2} pyrite and marcasite compounds. Values of the force constants, of the principal potential energy distributions and mean square vibrational amplitudes definitely confirm the existence of anomalously long (S{sub 2}) pairs, whose Raman stretching modes appear at 334 and 316 cm{sup {minus}1}, and of large constraints between the various IrS{sub 6} units.

  16. Quantum chemical vibrational study, molecular property, FTIR, FT-Raman spectra, NBO, HOMO-LUMO energies and thermodynamic properties of 1-methyl-2-phenyl benzimidazole

    NASA Astrophysics Data System (ADS)

    Karnan, M.; Balachandran, V.; Murugan, M.; Murali, M. K.

    2014-09-01

    The solid phase FT-IR and FT-Raman spectra of 1-methyl-2-phenyl benzimidazole (MPBZ) have been recorded in the condensed state. In this work, experimental and theoretical study on the molecular structure, quantum chemical calculations of energies and vibrational wavenumbers of MPBZ is presented. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311+G(d,p) and 6-311++G(d,p) basis set for optimized geometry and were compared with Fourier transform infrared spectrum (FTIR) in the region of 4000-400 cm-1 and with Fourier transform Raman spectrum in the region of 4000-100 cm-1. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. The study is extended to calculate the HOMO-LUMO energy gap, NBO, mapped molecular electrostatic potential (MEP) surfaces, polarizability, Mulliken charges and thermodynamic properties of the title compound.

  17. Fourier transform Raman and infrared spectra and normal coordinate analysis of organo-arsenic(III), -antimony(III) and -bismuth(III) thiolates

    NASA Astrophysics Data System (ADS)

    Ludwig, C.; Dolny, M.; Götze, H.-J.

    2000-02-01

    The FT-Raman and infrared spectra of (PhS)BiPh 2, (PhS) 2BiPh, (PhS) 3Bi, (PhS) 3Sb, (PhS) 3As and (PhSe)BiPh 2 were measured in the range 3600-100 cm -1. A normal coordinate analysis was performed for all substances in terms of the calculation and discussion of the force constants which are dependent on the element-sulphur and element-selenium group using a modified valence force field. Furthermore, for all compounds 1H-NMR, 13C-NMR and MS data were also given. The investigation of the microbiological activity of some substances against Escherichia coli was an additional aspect because of their strong bactericidal and fungicidal effects.

  18. Theoretical surface-enhanced Raman spectra study of substituted benzenes. II. Density functional theoretical SERS modelling of o-, m-, and p-methoxybenzonitrile

    NASA Astrophysics Data System (ADS)

    Fleming, Guillermo Diaz; Golsio, Italo; Aracena, Andres; Celis, Freddy; Vera, Leticia; Koch, Rainer; Campos-Vallette, Marcelo

    2008-12-01

    The SERS modelling of o-, m-, and p-methoxybenzonitrile has been performed following the same methodology that in Part I. Optimized structure obtained from DFT calculations in a B3LYP-LANL2DZ level of calculation shows different tilted positions for the isomers under study. From correlations obtained by comparison of Raman and SERS spectra concerning geometrical parameters, frequency shifting, change in band intensity, and force constants is possible to give insight about the different effect of the metal surface on these molecules and the structural reasons of this behaviour. Frontier orbital analysis gives further information and reveals a ligand to metal charge transfer mechanism for all isomers, as well as its relative importance.

  19. Deep analysis of Raman spectra of ZnO:Mo and ZnO:In sprayed thin films along with LO and TA+LO bands investigation

    NASA Astrophysics Data System (ADS)

    Souissi, A.; Amlouk, M.; Khemakhem, H.; Guermazi, S.

    2016-04-01

    ZnO and Mo, In doped ZnO thin films with the molar ratios (Mo/Zn) and (In/Zn) were dosed at 1%, 2% and 3%, respectively. These films were deposited on amorphous SiO2 substrate at 460 °C by the spray-pyrolysis process. A useful and concise reminder of the spatial resolutions of Raman spectroscopy was presented. The vibrational responses of these films at high doping exhibited strong fluctuations that were resolved by successive digital processing, choice of the optimal profile of the baseline, suppression of fluorescence and/or photoluminescence, and noise reduction. These treated spectra have allowed to identify possible multi-modes in highly doped studied samples and revealed the presence of LO and TA+LO broad bands, whose second was at cascade and could be explored in optoelectronic and sensitive systems.

  20. FTIR and Raman spectra and fundamental frequencies of 5-halosubstituted uracils: 5-X-uracil (X = F, Cl, Br and I)

    NASA Astrophysics Data System (ADS)

    Singh, J. S.

    2012-02-01

    FTIR and Raman spectra of 5-halosubstituted uracils (5-X-uracil; X = F, Cl, Br and I) were recorded in the region 200-4000 cm -1. Assuming under the Cs point group, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) are given by 21a' + 9a″, of which also correspond to the 30 modes of uracil moiety and the electro negativity of halogen group substitution causes some where mixing/shifting in their modes with other modes. The ring breathing and kekule stretching modes are observed in lower magnitudes compared to those of uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X = F, Cl, Br and I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  1. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  2. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. PMID:25305625

  3. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    SciTech Connect

    Ma, HuiLi; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 ; Zhao, Yi; Liang, WanZhen

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI{sup −})), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI{sup −} although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm{sup −1} agrees well with the experimental measurement.

  4. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Ma, HuiLi; Zhao, Yi; Liang, WanZhen

    2014-03-01

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI-)), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI- although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm-1 agrees well with the experimental measurement.

  5. Filling in of Fraunhofer and gas-absorption lines in sky spectra as caused by rotational Raman scattering.

    PubMed

    Sioris, C E; Evans, W F

    1999-04-20

    A line-by-line radiative-transfer model to quantify the Ring effect as caused by rotational Raman scattering has been developed for the 310-550-nm spectral interval. The solar zenith angle and the resolution are key input parameters, as is the sky spectrum (excluding inelastic atmospheric scattering), which was modeled with MODTRAN 3.5. The filling in is modeled for ground-based viewing geometry and includes surface reflection and single inelastic scattering. It is shown that O2 contributes half of the filling in of N2. A strong inverse relationship with wavelength is noted in the filling in. A comparison with observations shows moderate agreement. The largest filling in occurs in the Ca II K and H lines. PMID:18319844

  6. Raman optical activity spectra and conformational elucidation of chiral drugs. The case of the antiangiogenic aeroplysinin-1.

    PubMed

    Nieto-Ortega, Belén; Casado, Juan; Blanch, Ewan W; López Navarrete, Juan T; Quesada, Ana R; Ramírez, Francisco J

    2011-04-01

    We present the determination of the conformational properties of aeroplysinin-1 in aqueous solution by means of a combined experimental and theoretical Raman optical activity (ROA) and vibrational circular dichroism (VCD) study. Aeroplysinin-1 is an antiangiogenic drug extracted from the sponge Aplysina cavernicola which has been proved to be a valuable candidate for the treatment of cancer and other antiangiogenic diseases. Our study shows that this molecule possesses the 1S,6R absolute configuration in aqueous solution, where only two conformers are present to a significant level. We discuss in detail the relationships between the chiro-optical ROA and VCD features, and the structural properties of various energy accessible conformers are described. The present work is one of the first studies in which both ROA and VCD have been used as complementary tools for the determination of absolute configuration and dominant solution-state conformations of an unknown therapeutically significant molecule. PMID:21401047

  7. Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra

    NASA Astrophysics Data System (ADS)

    Hu, Z. G.; Li, W. W.; Wu, J. D.; Sun, J.; Shu, Q. W.; Zhong, X. X.; Zhu, Z. Q.; Chu, J. H.

    2008-11-01

    Optical response of rutile TiO2 films grown under different laser energy by pulsed laser deposition has been investigated by Raman scattering and spectral transmittance. Dielectric functions in the photon energy range of 1.24-6.5 eV have been extracted by fitting the experimental data with the Adachi's model [S. Adachi, Phys. Rev. B 35, 7454 (1987)]. The refractive index dispersion in the transparent region is mainly ascribed to the higher A1-A2 electronic transitions for the rutile TiO2 films. Owing to slightly different crystalline structures and film densities, the optical band gap linearly increases with increasing packing density. The phenomena were confirmed by different theoretical evaluation methods.

  8. Interference effects in Auger resonant Raman spectra of CO via selective vibrational excitations across the O 1s{yields}2{pi} resonance

    SciTech Connect

    Tanaka, T.; Shindo, H.; Kitajima, M.; Tanaka, H.; Makochekanwa, C.; De Fanis, A.; Tamenori, Y.; Okada, K.; Feifel, R.; Sorensen, S.; Kukk, E.; Ueda, K.

    2005-08-15

    The Auger resonant Raman spectra of CO, arising from the transitions to the X and A final electronic states of CO{sup +}, have been recorded at photon energies corresponding to the vibrational excitations v{sup '}=3,5, and 8 in the O 1s{yields}2{pi} resonance. The spectra are simulated within the model that takes into account both the lifetime-vibrational interference (LVI) and interference with the nonresonant photoemission. The spectroscopic parameters, {omega}{sub e}, {omega}{sub e}x{sub e}, {gamma} and r{sub e}, of the O 1s{sup -1}2{pi} core-excited state, necessary for the simulation, have been derived by fitting the Franck-Condon simulation to the total ion yield spectrum, assuming a Morse potential for the O 1s{sup -1}2{pi} state. Not only the LVI but also the interference with the nonresonant photoemission turn out to be significant.

  9. DFT calculations of 2,6-dimethylpyrazine (26DMP) and its complex with chloranilic acid (CLA): Comparison to INS, IR and Raman vibration spectra

    NASA Astrophysics Data System (ADS)

    Pawlukojć, A.; Sobczyk, L.; Prager, M.; Bator, G.; Grech, E.; Nowicka-Scheibe, J.

    2008-12-01

    The inelastic neutron scattering (INS), infrared and Raman spectra of crystalline 2,6-dimethylpyrazine (26DMP) and its complex with chloranilic acid (26DMP·CLA) were measured. Simultaneously the DFT calculations of the molecular structures and frequencies of the normal vibrations were performed by using various functionals. The INS spectra were simulated in the energy range up to 1200 cm -1, on the basis of the calculated frequencies. A very good conformity was obtained between experimental and calculated data with respect to the structure as well as to frequencies, with exception, however, of the CH 3 torsional modes. The structural analysis based on the deviation from the sum of the van der Waals radii showed that the packing of the methyl groups in the 26DMP·CLA complex was markedly stronger than that in the neat 26DMP. However, the DFT calculations overestimated the role of this effect that may be due to a limitation of the applied methods. In addition the anharmonicity of the rotational potential led to the librational energies different from those obtained using a harmonic potential.

  10. Analysis of vibrational spectra (FT-IR and FT-Raman) and nonlinear optical properties of organic 2-chloro-p-xylene.

    PubMed

    Govindarajan, M; Karabacak, M

    2012-08-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000cm(-1) and 400-4000cm(-1) respectively, for the title molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other method. The influences due to the substitution of halogen bond and methyl group were investigated. The results of the calculations are applied to simulate the vibrational spectra of the title compound, which show excellent agreement with observed spectra. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), and thermodynamic properties were performed. Mulliken charges of the title molecule were also calculated and interpreted. The dipole moment, linear polarizability and first hyperpolarizability values were also computed. PMID:22510490

  11. Analysis of vibrational spectra (FT-IR and FT-Raman) and nonlinear optical properties of organic 2-chloro-p-xylene

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000 cm-1 and 400-4000 cm-1 respectively, for the title molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other method. The influences due to the substitution of halogen bond and methyl group were investigated. The results of the calculations are applied to simulate the vibrational spectra of the title compound, which show excellent agreement with observed spectra. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), and thermodynamic properties were performed. Mulliken charges of the title molecule were also calculated and interpreted. The dipole moment, linear polarizability and first hyperpolarizability values were also computed.

  12. Structure and polarized IR and Raman spectra of Na 2SeO 4·H 2SeO 3·H 2O crystal

    NASA Astrophysics Data System (ADS)

    Baran, J.; Lis, T.; Marchewka, M.; Ratajczak, H.

    1991-10-01

    Na 2SeO 4·H 2SeO 3·H 2O crystals are orthorhombic, space group Cmc2 1, with α=9.615(6)Å, b=11.193(12)Å, c=9.615(10)Å and Z=4. The crystal structure was determined from three-di- mensional X-ray diffraction data taken on an automatic diffractometer with MoKa radiation and refined by least-squares techniques to R=0.049 for 775 non-zero reflections. The selenate anions and selenious acid molecules occupy Cs, sites and form infinite chains through hydrogen bonds with an O⋯O distance of 2.622(15)Å. Water molecules of Cs symmetry are attached to the selenious acid molecules by weak hydrogen bonds with an O⋯O distance of 2.957(25)Å. The second proton (H (61)) of the water molecule interacts with two pairs of oxygen atoms belonging to the neighbouring chains. The stretching vibration of the strong hydrogen bonds (2.622 (15)Å) shows a characteristic feature containing two strong bands at ≈ 2800 cm -1 (A) and 2400 cm -1 (B) and a very weak band at ≈ 1500 cm -1 (C), appearing in both IR and Raman spectra. The frequencies of the A and B bands are different in the IR spectra for the X( a) and Z( c) polarizations as well as in the polarized Raman spectra. This is due to a strong interaction /coupling between the νOH vibrations of the nearest hydrogen bonds in the same chain. The transition dipole moment of the νOH is almost parallel to the Se(1)⋯Se(2) direction. The δOH vibration gives bands in the region 1300- 1260 cm -1, while γOH appears at ≈ 790 cm -1. The internal vibrations of the selenate anions and selenious acid molecules are discussed in terms of a site and factor group effect. An assignment of their bands is proposed in terms of the approximate type of motions using the "oriented gas" model approach. The stretching vibrations of the water molecules appear, in fact, to be stretching vibrations of the hydrogen bonds. It is spectroscopically proved that the H (61) protons of water molecules interact with as many as four ozygens.

  13. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1986-04-01

    The period of this review is from late 1983 to late 1985. During this time over 5000 papers have appeared in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to several new areas of study. As in the previous review in this series most of the applications relevant to solids are covered in one or other of the ten categories, which are the same as those used previously. However, aspects relating to solids which are not covered elsewhere include general reviews and the specific field of semiconductors. This is an area of great current interest in terms of Raman spectroscopy and the characterization of semiconductor materials and surfaces has been reported. Raman scattering also provides a new probe for the elucidation of structural properties of microcrystalline silicon and resonance Raman scattering in silicon at elevated temperatures has been studied. Many studies on carbon have also appeared in the literature including that of the various types of carbon, the use of Raman scattering to investigate disorder and crystallite formation in annealed carbon, in situ studies of intercalation kinetics, structural aspects of cokes and coals, and instrumentation for coal gasification. Raman spectroscopy has been applied to such diverse systems as organic crystals, the determination of modifications in layered crystals, the detection of explosives on silica gel or carbon, diagnostics of heterogeneous chemical processes, and a study of tungsten-halogen bulbs. Laser Raman spectroscopy has also been coupled with liquid chromatography and phase-resolved background suppression has been used to enhance Raman spectra. 397 references.

  14. Line mixing effects in isotropic Raman spectra of pure N{sub 2}: A classical trajectory study

    SciTech Connect

    Ivanov, Sergey V.; Boulet, Christian; Buzykin, Oleg G.; Thibault, Franck

    2014-11-14

    Line mixing effects in the Q branch of pure N{sub 2} isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N{sub 2} molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of the results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.

  15. Raman and infrared spectra, r₀ structural parameters, and vibrational assignments of (CH₃)₂PX where X=H, CN, and Cl.

    PubMed

    Panikar, Savitha S; Deodhar, Bhushan S; Sawant, Dattatray K; Klaassen, Joshua J; Deng, June; Durig, James R

    2013-02-15

    The infrared (3500-80 cm(-1)) and Raman spectra (3500-40 cm(-1)) of gas/or liquid and solid (CH(3))(2)PX with X=H (DMH), CN (DMCN) and Cl (DMCl) as well as (CD(3))(2)PH have been recorded and complete vibrational assignments are given for all three molecules. To support the spectroscopic study, ab initio calculations by the Møller-Plesset perturbation method to second order MP2(full) and density functional theory calculations by the B3LYP method have been carried out. The infrared intensities, Raman activities, vibrational frequencies and band contours have been predicted from MP2(full)/6-31G(d) calculations and these theoretical quantities are compared to experimental ones when available. By utilizing the previously reported microwave rotational constants for DMH and DMCN along with the MP2(full)/6-311+G(d,p) predicted values, adjusted r(0) structural parameters for DMH and DMCN have been determined. The heavy atom parameters for DMH are: r(0)(P-C(3,4))=1.8477(30)Å, ∠CPC=99.88(50)° and for DMCN: r(0)(N-C)=1.159(3), r(0)(C-P)=1.790(3), r(0)(P-C(4,5))=1.841(3)Å, ∠NCP=175.7(5), ∠CPC(4,5)=97.9(5) and ∠CPC=100.7(5)°. Barriers to internal rotation are reported. The experimental values are compared to the corresponding values of some similar molecules whenever possible. PMID:23261615

  16. Consistent porphyrin force field. 1. Normal-mode analysis for nickel porphine and nickel tetraphenylporphine from resonance Raman and infrared spectra and isotope shifts

    SciTech Connect

    Li, Xiaoyuan; Czernuszewicz, R.S.; Su, Y.O.; Spiro, T.G. ); Kincaid, J.R. )

    1990-01-11

    Resonance Raman spectra with variable-wavelength excitation are reported for Ni{sup II} porphine (NiP) and for the pyrrole-d{sub 8}, meso-d{sub 4}, and (pyrrole + meso)-d{sub 12} isotopomers, as well as for Ni{sup II} meso-tetraphenylporphine (NiTPP) and its pyrrole-{sup 15}N{sub 4}, pyrrole-d{sub 8}, {sup 13}C{sub 4}-meso, and phenyl-d{sub 20} isotopomers. All the Raman-active in-plane modes have been identified and are assigned to local coordinates which take into account the phasing of adjacent bond stretches within the pyrrole rings and at the methine bridges. The IR spectra of NiP and its isotopomers are also assigned. For most of the local coordinates good frequency agreement is seen for the different symmetry blocks, showing that longer range phasings have minor effects. These in-plane mode assignments are supported by normal-coordinate calculations with a physically reasonable valence force field, which is nearly the same for NiP and NiTPP. The principal force constants are in good accord with bond length relationships selected on the basis of scaled ab initio calculations. The phenyl substituents of NiTPP lower the frequencies of the asymmetric methine bridge stretching modes {nu}{sub 10}(B{sub 1g}) and {nu}{sub 19}(A{sub 2g}) by {approximately}60 cm{sup {minus}1}; this shift is attributable partly to the loss of coupling with the C{sub m}H bending modes in NiP and partly to an electronic effect of the phenyl group. There are also near-resonant interactions in NiTPP between porphyrin and phenyl modes near 740 and 200 cm{sup {minus}1} resulting in strongly displaced modes. Otherwise the phenyl groups have little influence on the porphyrin skeletal mode frequencies. Several phenyl modes are subject to moderate RR enhancement, probably via intensity borrowing from nearby porphyrin modes.

  17. High resolution infrared and Raman spectra of {sup 13}C{sup 12}CD{sub 2}: The CD stretching fundamentals and associated combination and hot bands

    SciTech Connect

    Di Lonardo, G.; Fusina, L. Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-09-07

    Infrared and Raman spectra of mono {sup 13}C fully deuterated acetylene, {sup 13}C{sup 12}CD{sub 2}, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm{sup −1} in the region 1800–7800 cm{sup −1}. Sixty new bands involving the ν{sub 1} and ν{sub 3} C—D stretching modes also associated with the ν{sub 4} and ν{sub 5} bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν{sub 1} fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm{sup −1}. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ{sub 4} + υ{sub 5} up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ{sub 4} = 2 and υ{sub 5} = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm{sup −1}, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν{sub 2} manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows

  18. Infrared, Raman and Microwave Spectra, Conformational Stability, Barriers to Internal Rotation, and AB Initio Calculations of Some Allyl Halides and Substituted Allyl Halides.

    NASA Astrophysics Data System (ADS)

    Zhen, Mengzhang

    The infrared (3500 to 40 cm^{ -1}) and Raman (3500 to 20 cm^ {-1})^ectra of gaseous and solid 3-fluoropropene and trans-1-fluoro-2-butene, trans-CH_3 HC=CHCH_2F, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values have been obtained. The spectra have been interpreted on the basis that the conformation which has the fluorine atom cis to the double bond is thermodynamically preferred for both molecules over the gauche rotamer in both the gaseous and liquid phases and is the only rotamer present in the annealed solid. An assignment of the fundamental vibrations for both conformations for both molecules, based on their infrared band contours, depolarization values and group frequencies, is given and discussed. The microwave spectrum of 3-fluoro-2-methylpropene (methallyl fluoride), CH_2C(CH _3)CH_2F, has been recorded from 18.0 to 39.0 GHz. The a-type R-branches have been observed and assigned in the ground and first two vibrationally excited states of the asymmetric torsion for both the low energy cis and high energy gauche conformers. Additionally, the c-type Q-branches for the gauche conformer and b-type Q-branches for the cis conformer have been assigned. From the Stark effect the dipole moment components were determined for the cis conformer to be | mu_ a| = 1.65 +/- 0.02, |mu_ b| = 1.13 +/- 0.01 and | mu_ t| = 2.00 +/- 0.01 D and those for the gauche conformer to be |mu_ a| = 1.36 +/- 0.03, |mu_ b| = 0-26 +/- 0.07, |mu_ c| = 0 -89 +/- 0.07 and |mu_ t| = 1.65 +/- 0.01 D. Complete equilibrium geometries for both conformers have been determined with the RHF/3-21G, RHF/6-31G* and MP2/6-31G* basis sets. A normal coordinate analysis utilizing the harmonic force constants obtained with the MP2/6-31G* basis set has been carried out for both conformers. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.

  19. Conformational stability, vibrational (FT-IR and FT-Raman) spectra and computational analysis of m-trifluoromethyl benzoic acid

    NASA Astrophysics Data System (ADS)

    Balachandran, V.; Karpagam, V.; Santhi, G.; Revathi, B.; Ilango, G.; Kavimani, M.

    2015-02-01

    In this work, the vibrational characteristics of m-trifluoromethyl benzoic acid have been investigated and both the experimental and theoretical vibrational data indicate the presence of functional groups in the title molecule. The density functional theoretical (DFT) computations were performed at the B3LYP/6-31G (d, p), LSDA/6-31G (d, p), MP2/6-31G (d, p) levels to derive the optimized geometry, vibrational wavenumbers. Furthermore, the molecular orbital calculations such as natural bond orbitals (NBO), HOMO-LUMO energy gap and Mapped molecular electrostatic potential (MEP) surfaces, The Mulliken charges, the first-order hyperpolarizability were also performed with the same level of DFT. The thermal flexibility of molecule in associated with vibrational temperature was also illustrated on the basis of correlation graphs. The detailed interpretation of the vibrational spectra has been carried out with the aid of potential energy distribution (PED) results obtained from MOLVIB program. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO and HOMO-LUMO energy gap analysis.

  20. Conformational stability, vibrational (FT-IR and FT-Raman) spectra and computational analysis of m-trifluoromethyl benzoic acid.

    PubMed

    Balachandran, V; Karpagam, V; Santhi, G; Revathi, B; Ilango, G; Kavimani, M

    2015-02-25

    In this work, the vibrational characteristics of m-trifluoromethyl benzoic acid have been investigated and both the experimental and theoretical vibrational data indicate the presence of functional groups in the title molecule. The density functional theoretical (DFT) computations were performed at the B3LYP/6-31G (d, p), LSDA/6-31G (d, p), MP2/6-31G (d, p) levels to derive the optimized geometry, vibrational wavenumbers. Furthermore, the molecular orbital calculations such as natural bond orbitals (NBO), HOMO-LUMO energy gap and Mapped molecular electrostatic potential (MEP) surfaces, The Mulliken charges, the first-order hyperpolarizability were also performed with the same level of DFT. The thermal flexibility of molecule in associated with vibrational temperature was also illustrated on the basis of correlation graphs. The detailed interpretation of the vibrational spectra has been carried out with the aid of potential energy distribution (PED) results obtained from MOLVIB program. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO and HOMO-LUMO energy gap analysis. PMID:25218226

  1. Analysis of UV and vibrational spectra (FT-IR and FT-Raman) of hexachlorocyclotriphosphazene based on normal coordinate analysis, MP2 and DFT calculations.

    PubMed

    Zoghaib, Wajdi M; Husband, John; Soliman, Usama A; Shaaban, Ibrahim A; Mohamed, Tarek A

    2013-03-15

    The Raman (1400-100 cm(-1)) and infrared (4000-400 cm(-1)) of solid hexachlorocyclotriphosphazene, P(3)N(3)Cl(6) (HCCTP) were recorded. The conformational energies were calculated using MP2 and DFT (B3LYP and B3PW91) methods utilizing a variety of basis sets up to 6-311+G(d). On the basis of D(3h) symmetry, the simulated vibrational spectra of P(3)N(3)Cl(6) from MP2 and DFT methods were in excellent agreement with those obtained experimentally. Additionally, Frontier Molecular Orbitals and electronic transitions were predicted using steady state and time dependent DFT(B3LYP)/PCM calculations respectively, each employing the 6-311+G(d,p) optimized structural parameters. The predicted wavelengths were in excellent agreement with experimental values when CH(2)Cl(2) was used as solvent. The (14)N and (31)P chemical shifts were predicted with B3LYP/6-311+G(2d,p) calculations using the GIAO technique with solvent effect modeled using the PCM method. The computed structural parameters of the planar P(3)N(3)Cl(6) (D(3h)) agree well with experimental values from both X-ray and electron diffraction data with slight distortions observed due to lattice defects in the solid phase. The experimental/computational results favor a slightly distorted D(3h) symmetry for the title compound in the gas and solid phases and in solution (τPNPN and τNPNP ranged from 0.018° to 0.90°). Aided by normal coordinate analysis, and the simulated vibrational spectra utilizing MP2, B3LYP and B3PW91 methods at 6-31G(d) basis set, revised and complete vibrational assignments for all fundamentals are provided herein. PMID:23348197

  2. Analysis of UV and vibrational spectra (FT-IR and FT-Raman) of hexachlorocyclotriphosphazene based on normal coordinate analysis, MP2 and DFT calculations

    NASA Astrophysics Data System (ADS)

    Zoghaib, Wajdi M.; Husband, John; Soliman, Usama A.; Shaaban, Ibrahim A.; Mohamed, Tarek A.

    2013-03-01

    The Raman (1400-100 cm-1) and infrared (4000-400 cm-1) of solid hexachlorocyclotriphosphazene, P3N3Cl6 (HCCTP) were recorded. The conformational energies were calculated using MP2 and DFT (B3LYP and B3PW91) methods utilizing a variety of basis sets up to 6-311+G(d). On the basis of D3h symmetry, the simulated vibrational spectra of P3N3Cl6 from MP2 and DFT methods were in excellent agreement with those obtained experimentally. Additionally, Frontier Molecular Orbitals and electronic transitions were predicted using steady state and time dependent DFT(B3LYP)/PCM calculations respectively, each employing the 6-311+G(d,p) optimized structural parameters. The predicted wavelengths were in excellent agreement with experimental values when CH2Cl2 was used as solvent. The 14N and 31P chemical shifts were predicted with B3LYP/6-311+G(2d,p) calculations using the GIAO technique with solvent effect modeled using the PCM method. The computed structural parameters of the planar P3N3Cl6 (D3h) agree well with experimental values from both X-ray and electron diffraction data with slight distortions observed due to lattice defects in the solid phase. The experimental/computational results favor a slightly distorted D3h symmetry for the title compound in the gas and solid phases and in solution (τPNPN and τNPNP ranged from 0.018° to 0.90°). Aided by normal coordinate analysis, and the simulated vibrational spectra utilizing MP2, B3LYP and B3PW91 methods at 6-31G(d) basis set, revised and complete vibrational assignments for all fundamentals are provided herein.

  3. Solvent-dependent resonance Raman spectra of high-valent oxomolybdenum(V) tris[3,5-bis(trifluoromethyl)phenyl]corrolate.

    PubMed

    Czernuszewicz, Roman S; Mody, Vicky; Zareba, Adelajda A; Zaczek, Marzena B; Gałezowski, Michał; Sashuk, Volodymyr; Grela, Karol; Gryko, Daniel T

    2007-07-01

    UV-visible, infrared (IR), and resonance Raman (RR) spectra were measured and analyzed for a high-valent molybdenum(V)-oxo complex of 5,10,15-tris[3,5-bis(trifluoromethyl)phenyl]corrole (1) at room temperature. The strength of the metal-oxo bond in 1 was found to be strongly solvent-dependent. Solid-state IR and RR spectra of 1 exhibited the MoVO stretching vibration at nu(MoVO)=969 cm(-1). It shifted up by 6 cm(-1) to 975 cm(-1) in n-hexane and then gradually shifted to lower frequencies in more polar solvents, down to 960 cm(-1) in dimethyl sulfoxide. The results imply that stronger acceptor solvents weaken the MoVO bond. The 45-cm(-1) frequency downshifts displayed by 1 containing an 18O label in the molybdenum(V)-oxo unit confirmed the assignments for the observed IR and RR nu(MoVO) bands. The solvent-induced frequency shift for the nu(MoVO) RR band, measured in a series of 25 organic solvents ranging from n-hexane (AN=0.0) to N-methylformamide (AN=32.1), did not decrease in direct proportion to Gutmann's solvent acceptor numbers (ANs). However, a good linear correlation of the nu(MoVO) frequency was found against an empirical "solvent polarity" scale (A+B) of Swain et al. J. Am. Chem. Soc. 1983, 105, 502-513. A molecular association was observed between chloroform and oxomolybdenum(V) corrole 1 through MoO...H/CCl3 hydrogen-bonding interactions. This association manifested itself as a shift of the nu(MoVO) RR band of 1 in CDCl3 to a higher frequency compared to that in CHCl3. PMID:17547394

  4. [Raman spectral analysis of theanine].

    PubMed

    Chen, Yong-Jian; Chen, Rong; Li, Yong-Zeng; Huang, Zu-Fang; Chen, Jie-Si; Lin, Duo; Xi, Gang-Qin

    2011-11-01

    The L-theanine was tested using confocal Raman microscopy. Obvious Raman bands were showed in the range of 250 -1 700 and 2 800-3 000 cm(-1). The Raman bands were assigned with a preliminary analysis and the characteristic vibrational modes were gained in different range of wave numbers. Eight strong Raman bands were observed in the Raman spectra at 321, 900, 938, 1 153, 1 312, 1 358, 1 454 and 1 647 cm(-1), respectively. They are the characteristic Raman bands of L-theanine. The results showed that Raman spectroscopy might be a new kind of precise, direct and fast detecting method for theanine. PMID:22242495

  5. Composition Dependent Analysis of Raman Spectra in the Modified Boroaluminosilicate System: Implications for Coupling Between Structural Resonance and Relaxation in the Glass Network

    SciTech Connect

    S. V. Raman; R. S. Czernuszewicz; A. A. Zareba

    2004-04-01

    The boroaluminosilicate system was systematically modified by addition of magnesium, sodium and zirconium oxides. Strong bridging silicate bands and narrow and intense nonbridging silicate bands compose the Raman spectra of glasses. The fundamental nonbridging molecular species bands are related to the bridged network bands by the first overtone and signify anharmonic oscillation. At a constant degree of depolymerisation, the nonbridging band intensity depends on the silica content. With decrease in silica content, the bridged network band frequency shifts to a higher value and simultaneously the nonbridging bands intensify. The sharp rise in intensity for the nonbridging bands is attributed to resonant oscillations between the bridged lattice network and nonbridging molecular species. The resonance between the two structural entities possibly occurs in response to relaxation of the bridged network with decrease in silica content. Contributions to enhancement of intensity also presumably arise from resonance in valency bonds and oscillations in the oxygen edge shared polyhedral (ESP) structure for the nonbridging molecular species. The force constant of the ESP species varies as a function of zirconium, sodium and magnesium coordination to apex nonbridging oxygens. The single ESP band transforms to Fermi doublet upon crystallisation to orthosilicate structures of zircon and forsterite. 32 refs.

  6. FT-IR, Laser-Raman spectra and quantum chemical calculations of methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate-A DFT approach

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih

    2014-06-01

    In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  7. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of L-ascorbic acid and its anion and cation

    NASA Astrophysics Data System (ADS)

    Yadav, R. A.; Rani, P.; Kumar, M.; Singh, R.; Singh, Priyanka; Singh, N. P.

    2011-12-01

    IR and spectra of the L-ascorbic acid ( L-AA) also known as vitamin C have been recorded in the region 4000-50 cm -1. In order to make vibrational assignments of the observed IR and Raman bands computations were carried out by employing the RHF and DFT methods to calculate the molecular geometries and harmonic vibrational frequencies along with other related parameters for the neutral L-AA and its singly charged anionic ( L-AA -) and cationic ( L-AA +) species. Significant changes have been found for different characteristics of a number of vibrational modes. The four ν(O-H) modes of the L-AA molecule are found in the order ν(O 9-H 10) > ν(O 19-H 20) > ν(O 7-H 8) > ν(O 14-H 15) which could be due to complexity of hydrogen bonding in the lactone ring and the side chain. The C dbnd O stretching wavenumber ( ν46) decreases by 151 cm -1 in going from the neutral to the anionic species whereas it increases by 151 cm -1 in going from the anionic to the cationic species. The anionic radicals have less kinetic stabilities and high chemical reactivity as compared to the neutral molecule. It is found that the cationic radical of L-AA is kinetically least stable and chemically most reactive as compared to its neutral and anionic species.

  8. Finite temperature effects on the X-ray absorption spectra of lithium compounds: first-principles interpretation of X-ray Raman measurements.

    PubMed

    Pascal, Tod A; Boesenberg, Ulrike; Kostecki, Robert; Richardson, Thomas J; Weng, Tsu-Chien; Sokaras, Dimosthenis; Nordlund, Dennis; McDermott, Eamon; Moewes, Alexander; Cabana, Jordi; Prendergast, David

    2014-01-21

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N, and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole approach. Based on thermodynamic sampling via ab initio molecular dynamics simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. The excellent agreement with high-resolution XRS measurements validates the accuracy of our first-principles approach to simulating XAS, and provides both accurate benchmarks for model compounds and a predictive theoretical capability for identification and characterization of multi-component systems, such as lithium-ion batteries, under working conditions. PMID:25669363

  9. FTIR and Raman spectra and fundamental frequencies of 5-halosubstituted uracils: 5-X-uracil (X=F, Cl, Br and I).

    PubMed

    Singh, J S

    2012-02-15

    FTIR and Raman spectra of 5-halosubstituted uracils (5-X-uracil; X=F, Cl, Br and I) were recorded in the region 200-4000cm(-1). Assuming under the C(s) point group, the distribution of normal mode of vibrations between the two species as planar (a') and non-planar (a″) are given by 21a'+9a″, of which also correspond to the 30 modes of uracil moiety and the electro negativity of halogen group substitution causes some where mixing/shifting in their modes with other modes. The ring breathing and kekule stretching modes are observed in lower magnitudes compared to those of uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X=F, Cl, Br and I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations. PMID:22169026

  10. Raman spectra of organic compounds kladnoite (C6H4(CO)2NH) and hoelite (C14H8O2)--rare sublimation products crystallising on self-ignited coal heaps.

    PubMed

    Jehlicka, J; Zácek, V; Edwards, H G M; Shcherbakova, E; Moroz, T

    2007-12-15

    As minerals, aromatic compounds occur very rarely in nature. Not more than 10 of such minerals are known and most of them were described in the coal deposits where they were formed as a result of coal bed fires or burning of coal waste heaps. Raman spectra of kladnoite C(6)H(4)(CO)(2)NH (natural phthalimide) and hoelite C(14)H(8)O(2), (natural 9,10-anthraquinone) display complex features. Raman microspectroscopy help to detect these phases non-destructively directly in the frame of rare samples. Investigated minerals are transformation products formed from gaseous phase originating in natural pyrolytical process occurring in the frame of coal heaps and coal series outcrops. It is recommended to include Raman spectroscopic characteristics of similar materials in databases for exobiological studies. PMID:17398143

  11. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    NASA Astrophysics Data System (ADS)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  12. NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of nicotinic acid N-oxide: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Kose, Etem

    2012-01-01

    In this work, the experimental and theoretical UV, NMR, and vibrational features of nicotinic acid N-oxide (abbreviated as NANO, C 6H 5NO 3) were studied. The ultraviolet (UV) absorption spectrum of studied compound that dissolved in water was examined in the range of 200-800 nm. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm -1 and 3500-50 cm -1, respectively. The 1H and 13C NMR spectra in DMSO were recorded. The geometrical parameters, energies and the spectroscopic properties of NANO were obtained for all four conformers from density functional theory (DFT) B3LYP/6-311++G(d,p) basis set calculations. There are four conformers, C n, n = 1-4 for this molecule. The computational results identified the most stable conformer of title molecule as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by CIS approach. Finally the calculation results were applied to simulate infrared, Raman, and UV spectra of the title compound which show good agreement with observed spectra.

  13. Electronic structures of organometallic complexes of f elements LXXXIII: First comparison of experimental and calculated (on the basis of density functional theory) polarized Raman spectra of an oriented organometallic single crystal: Tris(pentamethylcyclopentadienyl)lanthanum

    NASA Astrophysics Data System (ADS)

    Amberger, Hanns-Dieter; Reddmann, Hauke; Mueller, Thomas J.; Evans, William J.

    2014-10-01

    The polarized Raman spectra of an oriented La(η5-C5Me5)3 (1) single crystal (where the principal axes of the two molecules per unit cell are uniformly oriented) as well as the mid (ca. 90 K) and far infrared spectra of pellets have been recorded. Applying the selection rules of C3h symmetry to the spectra obtained, the irreducible representations (irreps) of numerous lines/bands of intra-ligand character were derived. In the range <400 cm-1, where 28 Raman-allowed lines and 20 FIR-allowed bands of both skeletal and intra-ligand character are expected, only few assignments based on symmetry considerations were possible. In order to increase the number of identifications, model calculations on the basis of density functional theory (DFT) were performed. In the intra-ligand range >400 cm-1, the obtained results agree well with the experimental findings. Because of the strong mixing at lower wavenumbers, even the separation of calculated skeletal and intra-ligand modes and the identification of the former was only successful by comparing the calculated FIR and averaged Raman spectra of compound 1 with those of La(η5-C5Me4H)3 (2). Making use of both the calculated frequencies of normal modes and their polarizability tensors, the polarized Raman spectra of an oriented single crystal of 1 in the range <400 cm-1 were calculated and compared to the experimental ones. Because of an overestimation of the mixing of normal vibrations of A"; symmetry, the experimental intensities of the lines of the symmetric stretch ν1(A";) were not reproduced by the calculation for compound 1 but by that for Sm(η5-C5Me5)3 (3). Skeletal and intra-ligand modes were separated and designated. Neglecting νC-H modes, the DFT calculation for 1 achieved an r.m.s. deviation of 17.9 cm-1 for 72 assignments.

  14. Electronic structures of organometallic complexes of f elements LXXXIII: First comparison of experimental and calculated (on the basis of density functional theory) polarized Raman spectra of an oriented organometallic single crystal: Tris(pentamethylcyclopentadienyl)lanthanum.

    PubMed

    Amberger, Hanns-Dieter; Reddmann, Hauke; Mueller, Thomas J; Evans, William J

    2014-10-15

    The polarized Raman spectra of an oriented La(η(5)-C5Me5)3 (1) single crystal (where the principal axes of the two molecules per unit cell are uniformly oriented) as well as the mid (ca. 90K) and far infrared spectra of pellets have been recorded. Applying the selection rules of C3h symmetry to the spectra obtained, the irreducible representations (irreps) of numerous lines/bands of intra-ligand character were derived. In the range <400cm(-1), where 28 Raman-allowed lines and 20 FIR-allowed bands of both skeletal and intra-ligand character are expected, only few assignments based on symmetry considerations were possible. In order to increase the number of identifications, model calculations on the basis of density functional theory (DFT) were performed. In the intra-ligand range >400cm(-1), the obtained results agree well with the experimental findings. Because of the strong mixing at lower wavenumbers, even the separation of calculated skeletal and intra-ligand modes and the identification of the former was only successful by comparing the calculated FIR and averaged Raman spectra of compound 1 with those of La(η(5)-C5Me4H)3 (2). Making use of both the calculated frequencies of normal modes and their polarizability tensors, the polarized Raman spectra of an oriented single crystal of 1 in the range <400cm(-1) were calculated and compared to the experimental ones. Because of an overestimation of the mixing of normal vibrations of A' symmetry, the experimental intensities of the lines of the symmetric stretch ν1(A') were not reproduced by the calculation for compound 1 but by that for Sm(η(5)-C5Me5)3 (3). Skeletal and intra-ligand modes were separated and designated. Neglecting νC-H modes, the DFT calculation for 1 achieved an r.m.s. deviation of 17.9cm(-1) for 72 assignments. PMID:24845734

  15. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria

    PubMed Central

    Benedetti, Ilaria; Nikel, Pablo I.; de Lorenzo, Víctor

    2016-01-01

    Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/PchnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper “Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes” [1]. PMID:26870759

  16. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    PubMed

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. PMID:25727215

  17. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria.

    PubMed

    Benedetti, Ilaria; Nikel, Pablo I; de Lorenzo, Víctor

    2016-03-01

    Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/P chnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper "Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes" [1]. PMID:26870759

  18. Spin-phonon interactions of multiferroic Bi{sub 4}Ti{sub 3}O{sub 12}-BiFeO{sub 3} ceramics: Low-temperature Raman scattering and infrared reflectance spectra investigations

    SciTech Connect

    Jiang, P. P.; Zhang, X. L.; Chang, P.; Hu, Z. G. Bai, W.; Li, Y. W.; Chu, J. H.

    2014-04-14

    Optical phonons of multiferroic Bi{sub 4}Ti{sub 3}O{sub 12}-BiFeO{sub 3} ceramic have been investigated by low temperature Raman scattering and infrared reflectance spectra. Anomalies at about 85 K can be observed from the temperature dependence of the Raman and infrared modes, which arise from spin-phonon interaction during antiferromagnetic to paramagnetic phase transition. It was found that the change of exchange interaction in magnetic phase transition can be induced by Fe-O-Fe octahedral tilting driven from the A-site atoms. Moreover, ferroelectricity-related displacement of Bismuth atoms suggests the coupling of magnetic and ferroelectric orders.

  19. Raman spectra of 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ compounds (Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, Yb, Tb)

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1988-03-01

    This work uses Raman and x-ray phase analysis methods to investigate compounds of the type 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ (where Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, and Yb). The compounds were synthesized by melting in an optical beam on a water-cooled substrate (quench rate approx. 10/sup 2/ deg/sec) and by rapid quenching of a melt cupel by slamming with water-cooled blocks quench rate approx. 10/sup 5/ - 10/sup 6/ deg/sec. The x-ray diffraction study was done on a DRON-2 diffractometer. The Raman light spectra were recorded with a DFS-24 double monochromator employing argon laser excitation.

  20. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method.

    PubMed

    Chaitanya, K

    2012-02-01

    The FT-IR (4000-450 cm(-1)) and FT-Raman spectra (3500-100 cm(-1)) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals. PMID:22137747

  1. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method

    NASA Astrophysics Data System (ADS)

    Chaitanya, K.

    2012-02-01

    The FT-IR (4000-450 cm -1) and FT-Raman spectra (3500-100 cm -1) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability ( β0) and related properties ( β, α0 and Δ α) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.

  2. Dependence of the surface topology and raman scattering spectra of Ge{sub x}Si{sub 1-x}/Si films on the composition variation over the layer thickness

    SciTech Connect

    Lunin, L. S.; Sysoev, I. A.; Bavizhev, M. D.; Lapin, V. A.; Kuleshov, D. S.; Malyavin, F. F.

    2013-05-15

    The surface topology and Raman scattering spectra of Ge{sub x}Si{sub 1-x}/Si(100) films are investigated in dependence of the composition variation over the film thickness. It is shown that the character of the Ge content variation in the Ge{sub x}Si{sub 1-x} alloy at the constant cumulative Ge fraction in the film (x{sub int} = 0.5) affects the surface morphology of the grown Ge{sub x}Si{sub 1-x}/Si layer. The heterostructures were grown by molecular-beam epitaxy.

  3. Short-term monitoring of a gas seep field in the Katakolo bay (Western Greece) using Raman spectra DTS and DAS fibre-optic methods

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Mondanos, M.; Finfer, D.; Christodoulou, D.; Kordella, S.; Papatheodorou, G.; Geraga, M.; Ferentinos, G.

    2012-12-01

    A wide submarine seep of thermogenic gas in the Katakolo bay, Western Greece, was monitored passively using the intelligent Distributed Acoustic Sensor (iDAS) and Ultima Raman spectra Distributed Temperature Sensor (DTS), in order to study the thermal and noise signal of the bubble plumes released from the seafloor. Katakolo is one one of the most prolific thermogenic gas seepage zones in Europe and the biggest methane seep ever reported in Greece. Very detailed repetitive offshore gas surveys, including marine remote sensing (sub-bottom profiling, side scan sonar), underwater exploration by a towed instrumented system (MEDUSA), long-term monitoring benthic station (GMM), compositional and isotopic analyses, and flux measurements of gas, showed that: (a) gas seepage takes place over an extended area in the Katakolo harbour and along two main normal faults off the harbour; (b) at least 823 gas bubble ( 10-20 cm in diameter) plumes escaping over an area of 94,200 m2, at depths ranging from 5.5 to 16 m; (c) the gas consists mainly of methane and has H2S levels of hundreds to thousands ppmv, and shows significant amounts of other light hydrocarbons like ethane, propane, iso-butane and C6 alkanes, (d) offshore and onshore seeps release the same type of thermogenic gas; (e) due to the shallow depth, more than 90 % of CH4 released at the seabed enters the atmosphere, and (f) the gas seeps may produce severe geohazards for people, buildings and construction facilities due to the explosive and toxicological properties of methane and hydrogen sulfide, respectively. For the short-term monitoring, the deployment took place on a site located inside the harbour of Katakolo within a thermogenic gas seepage area where active faults are intersected. The iDAS system makes it possible to observe the acoustical signal along the entire length of an unmodified optical cable without introducing any form of point sensors such as Bragg gratings. When the bubble plumes are released by the

  4. Raman scattering in cuprate superconductors

    SciTech Connect

    Devereaux, T.P.; Kampf, A.P.

    1997-07-20

    A theory for electronic Raman scattering in the cuprate superconductors is presented with a specific emphasis on the polarization dependence of the spectra which can infer the symmetry of the energy gap. Signatures of the effects of disorder on the low frequency and low temperature behavior of the Raman spectra for different symmetry channels provide detailed information about the magnitude and the phase of the energy gap. Properties of the theory for finite T will be discussed and compared to recent data concerning the doping dependence of the Raman spectra in cuprate superconductors, and remaining questions will be addressed.

  5. Raman scattering in crystals

    SciTech Connect

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  6. Raman Spectra of Single-Walled Carbon Nanotubes Synthesized by Aerosol CVD-Method Using Ferrocene and CuNi Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lomakin, M. V.; Rybakov, M. S.; Kosobutsky, A. V.; Sevostyanov, O. G.; Shandakov, S. D.

    2015-09-01

    Properties of single-walled carbon nanotubes (SWCNTs) obtained by aerosol method of chemical deposition from the gas phase using ethanol, ferrocene, and CuNi nanoparticles are studied. The structural and vibrational characteristics of synthesis products are determined by Raman spectroscopy. The influence of the catalyst nanoparticles introduced into the reaction mixture on the properties of the synthesized SWCNTs is discussed.

  7. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    PubMed

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. PMID:24813280

  8. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine

    NASA Astrophysics Data System (ADS)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-01

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 4000-10 cm-1, respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results.

  9. Molecular Iodine-Catalyzed Aerobic α,β-Diamination of Cyclohexanones with 2-Aminopyrimidine and 2-Aminopyridines.

    PubMed

    Nguyen, Thanh Binh; Ermolenko, Ludmila; Retailleau, Pascal; Al-Mourabit, Ali

    2016-05-01

    Molecular iodine is shown to be an excellent catalyst for aerobic oxidative α,β-diamination of cyclohexanones with 2-aminopyrimidine/2-aminopyridines. This α,β-C-H functionalization is remarkable for its simplicity in both substrates and conditions, involving one and a half oxygen molecules and releasing three water molecules as the only byproduct. In addition, the functionalized products including protected 2-aminoimidazoles introduced without aromatization can serve as useful building blocks for natural product synthesis and medicinal chemistry. PMID:27088653

  10. Synthesis, experimental spectra (IR & Raman and NMR), vibrational analysis and theoretical DFT investigations of N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide

    NASA Astrophysics Data System (ADS)

    Aydın, Lütfiye; Şahan, Emine; Önal, Zülbiye; Özpozan, Talat

    2014-08-01

    The title molecule, N-(5-(4-methylbenzoyl)-2-oxo-4-(4-methylphenyl)pyrimidine-1(2H)-yl)-4-methylbenzamide (C27H23N3O3), was synthesized and characterized by elemental analysis, IR, Raman, 1H and 13C NMR spectral data. To determine conformational flexibility, potential energy surfaces of the title compound were obtained by DFT regarding the selected degree of torsional freedom, which was varied from 0° to 360° in 6° and 20° steps. The ten conformers of the title compound were determined and it was found that the conformer 1 basis the most stable one. All conformers were also optimized by using the density functional theory (DFT/B3LYP) method with the 6-31G(d,p), 6-311G(d,p) and cc-pVDZ basis sets in the ground state. Potential energy distribution was calculated with the 6-31G(d,p) basis set. The vibrational spectra were recorded in solid phase IR and Raman spectra were compared based on the results of the theoretical calculations. The formation of hydrogen bonds was explained using natural bond orbital (NBO) analysis and spectroscopic analysis. NMR analysis and frontier molecular orbitals (FMOs) were also investigated by DFT.

  11. Coulometric generation of hydrogen ions by oxidation of mercury in methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.

    PubMed

    Mihajlović, R P; Joksimović, V M; Mihajlović, Lj V

    2003-11-01

    Mercury(II)-chloride reacts with anhydrous methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone in a precise stoichiometry ratio (1:2), and weakly ionized compounds of mercury with ketones are formed and equivalent quantity of HCl is released. The application of a mercury anode for the quantitative generation of H(+) ions in 0.25 M sodium perchlorate in anhydrous methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone has been investigated. Current/potentials curves for the solvents, titrated bases, indicator and mercury showed that in these solvents mercury is oxidized at potentials much more negative than those for the titrated bases and other components present in the solution. The protons generated in this way have been used for the titration of some organic bases, with either visual or potentiometric end-point detection. The oxidation of mercury in methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone and the reaction of mercury ions with these solvents have been found to proceed with 100% current efficiency. PMID:18969192

  12. Difference Raman spectroscopy of DNA molecules

    NASA Astrophysics Data System (ADS)

    Anokhin, Andrey S.; Gorelik, Vladimir S.; Dovbeshko, Galina I.; Pyatyshev, Alexander Yu; Yuzyuk, Yury I.

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm-1) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule.

  13. Raman spectra of Y(Pr)Ba{sub 2}Cu{sub 3}O{sub 6+{delta}} thin films and oxygen disorder

    SciTech Connect

    Faulques, E.; Gonzalez, C.

    1996-12-31

    The materials used in this study are a {perpendicular} or c {perpendicular} oriented thin films of Y(Pr)Ba{sub 2}Cu{sub 3}O{sub 6+{delta}} with thickness of 1,400 {angstrom} to 3,000 {angstrom}. The temperature dependence of the Raman spectrum of YBa{sub 2}Cu{sub 3}O{sub 6.9} (YBCO) is presented using the excitation wave length at 676.4 nm (red line). At 10 K all phonons exhibit Fano asymmetries. The phonon frequency and the linewidth of the bands at 335 and 449 cm{sup {minus}1} show anomalous temperature dependence in the vicinity of {Tc}. Thin films with oxygen stoichiometry near to {delta} = 0.9 are then investigated. Correlation is made between the appearance of strong Raman features at 230 and 596 cm{sup {minus}1} and the oxygen disorder of the films.

  14. Raman spectra and dielectric studies in Ti substituted Bi2 (Zn2/3Nb4/3)O7 pyrochlores

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Singh, Manoj K.; Singh, Gulab; Sudheendran, K.; Raju, K. C. James

    2016-05-01

    Bi2Zn2/3-x/3Nb4/3-2x/3TixO7 (m - BZNT) with x = 0 to 0.4 were synthesized in the conventional solid state route. The dielectric constants of these ceramics at microwave frequencies are found to be increasing from 70 to 114 when x increased from 0 to 0.4. Raman scattering studies were carried out to investigate the effect of Ti4+ substitution on the dielectric properties of Bi2 (Zn2/3Nb4/3)O7 (m-BZN) ceramics. The observed Raman peaks in the m-BZNT are slightly shifted towards lower frequency in comparison to that of m-BZN clearly indicated that the Ti4+ ions are indeed occupying substitution sites in the host m - BZN. The anomalous change in intensity and full with at half maxima (FWHM) of Raman modes at 749 and 847 cm-1 suggest change in oxygen octahedral closely related to dielectric properties of m-BZNT.

  15. Solid-state Raman spectra of non-centrosymmetric crystals - Theoretical vs. experimental study towards an application in THz-regime

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2012-05-01

    Experimental and theoretical solid-state Raman spectroscopic study of five model derivatives of amino acids (AAs), crystallizing in the non-centrosymmetric space groups, with the number molecules per unit cell Z = 1-8 were studied. The self-assembly association effects within the frame of crystals with P21, Pca21, and P212121, space groups and their effect on the Raman frequencies, within 10-0.3 THz were discussed. The assignment of the spectroscopic properties and the hydrogen bond interactions, depending of the crystal packing of the model tyramine hemihydrate was performed. The paper aims to make a bridge between the methods for analysis of the optical phenomena within the THz-region, such as far-IR, Raman and THz-spectroscopy. The observed individual characteristic excitations of materials within THz-region, provided unique opportunity for chemical identification in solid-state. The specific advantages of each of the methods provided unique combination allowing both qualitative and quantitative analysis, especially of macro-components, and achievement of the analytical information at an extremely high degree of certainty towards the individual characteristics of each of the studied chemicals as properties of evidence, and would contributed in varying degrees to the evidence in the field of forensic chemical analysis.

  16. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  17. Effects of structure distortion on optical phonon properties of crystalline beta-BaTeMo{sub 2}O{sub 9}—A novel nonlinear optical material: Infrared and Raman spectra as well as first-principles calculations

    SciTech Connect

    Zhou, S. T.; Huang, Y.; Qiu, W. Y.; Li, Y. L.; He, S. M.; Zhang, B. E-mail: xschen@mail.sitp.ac.cn Chen, X. S. E-mail: xschen@mail.sitp.ac.cn Lu, W. E-mail: xschen@mail.sitp.ac.cn; Zhang, J. J.; Tao, X. T.

    2013-12-21

    The infrared dielectric property of monoclinic BaTeMo{sub 2}O{sub 9} single crystals is studied by polarized IR reflectance spectra from 20 to 1800 cm{sup −1}. Based on the modified Lorentz model, the frequencies, strengths, and dampings of TO modes as well as the orientations of the dipole momenta are determined, agreeing well with Raman spectra and results from First-principles calculation. The observed modes are visually assigned to the specific atoms' motions in the primitive cell based on the theory calculations. A large shift of the internal modes of the anion groups relative to free anion co-ordination polyhedra is observed, which can be used to indicate the distortions of co-ordination polyhedra related to the nonlinear optical properties. Further, the experimental results of the strengths of the oscillators support the elimination and splitting of degenerate modes in free regular polyhedrons. These results offer a way to evaluate the nonlinear optical properties by use of traditional IR reflectivity spectra.

  18. Raman spectroscopy of transition metal dichalcogenides.

    PubMed

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs. PMID:27388703

  19. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  20. Extended x-ray absorption fine structure and micro-Raman spectra of Bridgman grown Cd1-xZnxTe ternary alloys

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2014-03-01

    We have performed low-temperature micro-Raman scattering and extended x-ray absorption fine-structure (EXAFS) measurements on the Bridgman-grown bulk zinc-blende Cd1-x Zn x Te (1.0 ≧̸ x ≧̸ 0.03) ternary alloys to comprehend their structural and lattice dynamical properties. The micro-Raman results are carefully appraised to authenticate the classical two-phonon mode behavior insinuated by far-infrared (FIR) reflectivity study. The composition-dependent EXAFS experiments have revealed a bimodal distribution of the nearest-neighbor bond lengths—its analysis by first-principles bond-orbital model enabled us to estimate the lattice relaxations around Zn/Cd atoms in CdTe/ZnTe to help evaluate the necessary force constant variations for constructing the impurity-perturbation matrices. The simulated results of impurity vibrational modes by average-t-matrix Green’s function (ATM-GF) theory has put our experimental findings of the gap mode ˜153 cm-1 near x ≈ 1 on a much firmer ground.

  1. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    NASA Astrophysics Data System (ADS)

    Himcinschi, Cameliu; Guo, Er-Jia; Talkenberger, Andreas; Dörr, Kathrin; Kortus, Jens

    2016-01-01

    BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO3, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  2. FT-IR and FT-Raman spectra of 6-chlorouracil: molecular structure, tautomerism and solid state simulation. A comparison between 5-chlorouracil and 6-chlorouracil.

    PubMed

    Ortiz, S; Alvarez-Ros, M C; Palafox, M Alcolea; Rastogi, V K; Balachandran, V; Rathor, S K

    2014-09-15

    A Raman and IR study of the biomolecule 6-chlorouracil was carried out in the solid state. The unit cell found in the crystal was simulated as a tetramer form by density functional calculations. Specific scale factors and scaling equations deduced from uracil molecule were employed in the predicted wavenumbers of 6-chlorouracil. The scaled wavenumbers were used in the reassignment of the IR and Raman experimental bands. Good reproduction of the experimental wavenumbers is obtained and the % error is very small in the majority of cases. A comparison between the molecular structure and charge distribution of 6-chlorouracil and 5-chlorouracil molecules was presented. The effect of the hydration with the PCM model in the molecular structure and charges was discussed. The optimum tautomers of 6-chlorouracil were optimized and analyzed. Six of them were related to those of uracil molecule. The effect of the halogen substitution in the sixth position of the pyrimidine ring in the stability of the different tautomers was evaluated. HOMO and LUMO orbital energy analysis were carried out. PMID:24856263

  3. FT-IR and FT-Raman spectra of 6-chlorouracil: Molecular structure, tautomerism and solid state simulation. A comparison between 5-chlorouracil and 6-chlorouracil

    NASA Astrophysics Data System (ADS)

    Ortiz, S.; Alvarez-Ros, M. C.; Alcolea Palafox, M.; Rastogi, V. K.; Balachandran, V.; Rathor, S. K.

    2014-09-01

    A Raman and IR study of the biomolecule 6-chlorouracil was carried out in the solid state. The unit cell found in the crystal was simulated as a tetramer form by density functional calculations. Specific scale factors and scaling equations deduced from uracil molecule were employed in the predicted wavenumbers of 6-chlorouracil. The scaled wavenumbers were used in the reassignment of the IR and Raman experimental bands. Good reproduction of the experimental wavenumbers is obtained and the % error is very small in the majority of cases. A comparison between the molecular structure and charge distribution of 6-chlorouracil and 5-chlorouracil molecules was presented. The effect of the hydration with the PCM model in the molecular structure and charges was discussed. The optimum tautomers of 6-chlorouracil were optimized and analyzed. Six of them were related to those of uracil molecule. The effect of the halogen substitution in the sixth position of the pyrimidine ring in the stability of the different tautomers was evaluated. HOMO and LUMO orbital energy analysis were carried out.

  4. Size-Dependent Raman Shifts for nanocrystals

    PubMed Central

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-01-01

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size. PMID:27102066

  5. [Raman active vibrations of aluminosilicates].

    PubMed

    Pan, Feng; Yu, Xue-hui; Mo, Xuan-xue; You, Jing-lin; Wang, Chen; Chen, Hui; Jiang, Guo-chang

    2006-10-01

    Raman spectra of aluminosilicate minerals, namely kyanite, andalusite, and sillimanite and K2O-Al2O3-SiO2 glasses were recorded. Four alumino-silicon tetrahedral model clusters were calculated by self-consistent (SCF) molecular orbital ab-ini-tio calculation of the quantum chem (QC) method. The result shows a decrease tendency in Raman frequencies in the 800-1200 cm(-1) frequency region with increase in four-coordinated Al content, which is assigned to the Si--Onb symmetry stretching vibrations. The Raman spectra in the 700-800 cm(-1) frequency region is attributed to Al-Onb symmetry stretching vibrations. PMID:17205741

  6. Raman and infrared spectra of barium and strontium halide monohydrates, MX2 · 1H2O (M = Ba, Sr; X = Cl, Br, I). A new interpretation of the frequency shiftings of OH stretching modes in solid hydrates

    NASA Astrophysics Data System (ADS)

    Lutz, H. D.; Christian, H.

    The infrared and Raman spectra of the isotypic alkaline earth halide monohydrates, MX2 · 1H2O, with M = Sr, Ba and X = Cl, Br, I, and of deuterated and isotopically dilute samples have been recorded in the H2O stretching and bending mode region. From the temperature dependence of the stretching modes it is shown that bifurcated hydrogen bridges are present in these hydrates. The water molecules are symmetrically bonded in the case of the iodides, possibly caused by dipole-like interactions with adjacent iodide ions, and assymmetrically bonded in the case of the chlorides and bromides due to normal hydrogen bonds, as shown from the absence or presence of splitting of the stretching modes in isotopically dilute samples. The relative Raman intensities of the two H2O stretching modes, {Ivsym}/{Ivasym}, which reveal the amount of intramolecular coupling of the stretching vibrations, give an additional view of the bond structure of the water molecules. The frequency shiftings of the stretching modes of water molecules in solid hydrates are discussed in terms of hydrogen bonds, metal-oxygen interaction and the repulsion potential of the lattice, as shown, for example, by the correlation with the unit cell volumes.

  7. A robust and effective time-independent route to the calculation of Resonance Raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg-Teller, anharmonic, and environmental effects

    PubMed Central

    Egidi, Franco; Bloino, Julien; Cappelli, Chiara; Barone, Vincenzo

    2015-01-01

    We present an effective time-independent implementation to model vibrational resonance Raman (RR) spectra of medium-large molecular systems with the inclusion of Franck-Condon (FC) and Herzberg-Teller (HT) effects and a full account of the possible differences between the harmonic potential energy surfaces of the ground and resonant electronic states. Thanks to a number of algorithmic improvements and very effective parallelization, the full computations of fundamentals, overtones, and combination bands can be routinely performed for large systems possibly involving more than two electronic states. In order to improve the accuracy of the results, an effective inclusion of the leading anharmonic effects is also possible, together with environmental contributions under different solvation regimes. Reduced-dimensionality approaches can further enlarge the range of applications of this new tool. Applications to imidazole, pyrene, and chlorophyll a1 in solution are reported, as well as comparisons with available experimental data. PMID:26550003

  8. IR and raman spectra of {Beta}"-(BEDT-TTF){sub 2}RCH{sub 2}SO{sub 3} (R = SF{sub 5}, CF{sub 3}) : dimerization related to hydrogen bonding.

    SciTech Connect

    Olejniczak, I.; Barszcz, B.; Szutarska, A.; Graja, A.; Wojciechowski, R.; Schlueter, J. A.; Hata, A. N.; Ward, B. H.; Polish Academy of Sciences; Technical Univ. of Lodz

    2009-01-01

    The {Beta}''-(BEDT-TTF)2CF3CH2SO3 organic conductor has been synthesized by electrocrystallization. The crystal structure was determined by single-crystal X-ray diffraction and electronic properties examined. The polarized IR reflectance of {Beta}''-(BEDT-TTF)2SF5CH2SO3 and {Beta}''-(BEDT-TTF)2CF3CH2SO3, as well as Raman spectra of {Beta}''-(BEDT-TTF)2CF3CH2SO3 have been measured as a function of temperature. Both materials display charge-nonequivalence within the whole temperature range and unusual activation of vibronic modes with lowering the temperature. In particular, electron-molecular vibration coupling is involved in the activation of the v27 mode. The effect is discussed in terms of lattice dimerization involving hydrogen bonding between the anion layer and the conducting BEDT-TTF layer.

  9. Raman spectra of Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} magnetic quaternary semiconductor compounds with tetragonal stannite type structure

    SciTech Connect

    Rincón, C. Quintero, M.; Power, Ch.; Moreno, E.; Quintero, E.; Morocoima, M.; Henao, J. A.; Macías, M. A.

    2015-05-28

    A comparative study of the Raman spectra of Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} and Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI}(where B = Mn or Fe) magnetic quaternary semiconductor compounds with stannite-type structure (I4{sup ¯}2m) has been done. Most of the fourteen Raman lines expected for these materials were observed in the spectra. The two strongest lines observed have been assigned to the IR inactive A{sub 1}{sup 1} and A{sub 1}{sup 2} stannite modes that originated from the motion of the S or Se anion around the Cu and C{sup IV} cations remaining at rest. The shift in the frequency of these two lines of about 150 cm{sup −1} to lower energies observed in Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI} compounds as compared to those in Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} ones, can then be explained as due to the anion mass effect. Based on the fact that values of these frequencies depend mainly on anion mass and bond-stretching forces between nearest-neighbor atoms, the vibrational frequencies v{sup ¯}(A{sub 1}{sup 2}) and v{sup ¯}(A{sub 1}{sup 2}) of both modes for several Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} stannite compounds (where X = S, Se, or Te) very close to the experimental data reported for these materials were calculated from a simple model that relates these stretching forces to the anion-cation bond-distances.

  10. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Zuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Maczka, Mirosław; Hanuza, Jerzy

    2009-07-15

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds. PMID:19328737

  11. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers.

    PubMed

    Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun

    2016-06-16

    We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities. PMID:27243104

  12. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  13. "On Water" Organocatalyzed [4 + 2] Cycloaddition of Enones and Nitro Dienes for the Enantioselective Synthesis of Densely Substituted Cyclohexanones.

    PubMed

    Vamisetti, Ganga B; Chowdhury, Raghunath; Kumar, Mukesh; Ghosh, Sunil K

    2016-05-01

    An "on water" hydroquinine-based primary amine-benzoic acid organocatalyst system was found to be best suited to produce 3,4,5-trisubstituted cyclohexanones with a nitro group in the 4-position from enones and nitro dienes under ambient conditions in good yield, with good diastereoselectivity, and with excellent enantioselectivity. An appreciable rate enhancement by water was observed compared to organic solvents. Mechanistic analysis of the reaction suggests that it followed an endo [4 + 2] cycloaddition with enamine of enone as diene and nitro diene as dienophile. PMID:27120404

  14. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    PubMed

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst. PMID:25009974

  15. Influence of Alumina Binder Content on Catalytic Performance of Ni/HZSM-5 for Hydrodeoxygenation of Cyclohexanone

    PubMed Central

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst. PMID:25009974

  16. Low-temperature absorption and resonance Raman spectra of the MnO-4 ion doped in a KClO4 crystal

    NASA Astrophysics Data System (ADS)

    Leuchs, M.; Kiefer, W.

    1993-12-01

    We have performed polarized absorption and resonance Raman experiments on a permanganate ion doped in a potassium perchlorate single crystal at temperature T=15 K. At this low temperature the m(Cs) site splitting of the excited degenerate 1T2 electronic level of the permanganate ion is well resolved and the amount of splitting is about 40 cm-1. Due to the electronic configuration, one would expect that non-Condon terms have to be considered in the description of the absorption spectrum. For the theoretical simulation of our experimental results we have used expressions derived from the time-correlator formulation for the optical absorption. These are much easier to handle and they cause significant shorter calculation times than the usual sum-over-states expressions. In order to determine the symmetries and the wave-number positions of the site-split permanganate vibrations, we have performed resonance Raman experiments. The results obtained from these experiments form the basis for the interpretation of the absorption spectrum. The applied model includes the linear and quadratic electron-phonon and linear non-Condon coupling. Within this model we describe the multimode system and we show how a normal vibration, which apparently has no significant effects in the absorption spectrum, influences the discussion of the model system. For the fully symmetric breathing mode of the permanganate ion, we have calculated the change of the Mn-O equilibrium bond length in the electronic excited state from the corresponding linear electron-phonon coupling constant to be 4.6+/-0.4 pm.

  17. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  18. A compact collinear AOTF Raman spectrometer.

    PubMed

    Gupta, N; Fell, N F

    1997-12-19

    A compact, lightweight, completely packaged, uncooled, fully-automated collinear acousto-optic tunable-filter (AOTF) based spectrometer has been used to measure Raman spectra of three organic energetic materials (NQ, HMX, and TNT) using argon-ion laser excitation. Even though the resolution of the AOTF spectrometer is modest (7.4 cm(-1)) and it was not specifically designed for measuring Raman spectra, it has performed impressively. Such an instrument is specially useful for remote sensing and field measurements. In this paper, we will describe this instrument, present the measured Raman spectra and their comparison with the corresponding FT-IR spectra. PMID:18967003

  19. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  20. Oxide-supported metals with molecular structures: Evidence of the metal-oxygen bond from Raman and inelastic electron tunneling spectra of [Re(CO) 3{O-MG}{HO-Mg} 2] and [Re(CO) 3{O-Al}{HO-Al} 2

    NASA Astrophysics Data System (ADS)

    Kirlin, P. S.; Dethomas, F. A.; Bailey, J. W.; Moller, K.; Gold, H. S.; Dybowski, C.; Gates, B. C.

    Raman and inelastic electron tunneling spectra of the anchored rhenium complexes [Re(CO) 3{O-Mg}{HO-Mg} 2] and [Re(CO) 3{O-Al}{HO-Al} 2] are reported, providing the first vibrational spectroscopic evidence of the metal-oxygen bond in mononuclear oxide-bound organometallic complexes.

  1. Oxide-supported metals with molecular structures: Evidence of the metal-oxygen bond from Raman and inelastic electron tunneling spectra of [Re(CO){ in3}{OMG}{HOMg} 2] and [Re(CO) 3{OAl}{HOAl} 2

    NASA Astrophysics Data System (ADS)

    Kirlin, P. S.; Dethomas, F. A.; Bailey, J. W.; Moller, K.; Gold, H. S.; Dybowski, C.; Gates, B. C.

    1986-09-01

    Raman and inelastic electron tunneling spectra of the anchored rhenium complexes [Re(CO){ in3}{OMG}{HOMg} 2] and [Re(CO) 3{OAl}{HOAl} 2] are reported, providing the first vibrational spectroscopic evidence of the metal-oxygen bond in mononuclear oxide-bound organometallic complexes.

  2. Vibrational analysis using FT-IR, FT-Raman spectra and HF-DFT methods and NBO, NLO, NMR, HOMO-LUMO, UV and electronic transitions studies on 2,2,4-trimethyl pentane

    NASA Astrophysics Data System (ADS)

    Suvitha, A.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-03-01

    In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for 2,2,4-Trimethyl Pentane, TMP (C8H18) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and geometrical parameter calculations based on Hartree Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The scaled B3LYP/6-311++G(d,p) results shows the best agreement with the experimental values over the other method. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The physical reactions of single bond hydrocarbon TMP were investigated. The results of the calculations were applied to simulate spectra of the title compound, which shows the excellent agreement with observed spectra. Besides, Mulliken atomic charges, UV, frontier molecular orbital (FMO), MEP, NLO activity, Natural Bond-Orbital (NBO) analysis, NMR and thermodynamic properties of title molecule were also performed.

  3. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  4. Solubilities and raman spectra of NdOCl in some chloride melts of interest for the electrowinning of magnesium from its oxide

    NASA Astrophysics Data System (ADS)

    Mediaas, H.; Tkatcheva, O.; Dracopoulos, V.; Papatheodorou, G. N.; Kipouros, G. J.; Østvold, T.

    2000-08-01

    Some fundamental data related to the solvent proposed for a new technical electrolytic process for magnesium production based on MgO as the raw material are presented. Liquidus data are obtained for MgCl2-rich melts in the MgCl2-NdOCl system. The solubility of MgO and NdOCl in pure liquid NdCl3, MgO in NdCl3-MgCl2 and in MgCl2-NdCl3-NaCl liquid mixtures, and NdOCl in CaCl2 and Cs2MgCl4 have also been studied. The solubility of MgO decreases when MgCl2 is added to the pure NdCl3 and further by additions of NaCl as expected. A so far unidentified compound having the composition Mg x Nd y OCl2 x-3 y-2 where x and y are larger than 1 seems to be formed in very small amounts in these melts. This compound seems to precipitate at temperatures higher than 910 °C in the NdCl3-MgO quasi-binary system containing about 8 mol pct MgO and seems to remain suspended in the melt in small quantities. The first liquid-solid phase transition observed, however, was the NdCl3 (1)=NdCl3 (s) transition <758 °C. X-ray diffraction (XRD) data of filtered samples of this solid show new X-ray lines not detected in MgCl2, NdCl3, NaCl, MgO, and NdOCl. The published phase diagram of the quasi binary system MgCl2-NdOCl is, according to the present work, not correct because the solubility of MgO seems to be much less than previously reported. Raman spectroscopic data of NdCl3-MgCl2-NdOCl melts show the known features of the NdCl3-MgCl2 and NdCl3-NdOCl melts. Raman bands due to dissolved species of the unidentified compound were not detected. In view of the obvious small concentration of this species in the liquid phase, this was reasonable.

  5. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl.

    PubMed

    Sagdinc, Seda G; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-01

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl. PMID:25022508

  6. Exciton-phonon interaction and Raman spectra of [(CH3)2NH2]5Cd2CuCl11 crystals

    NASA Astrophysics Data System (ADS)

    Kapustianik, V.; Batiuk, A.; Czapla, Z.; Podsiada, D.; Czupiski, O.; Eliyachevskyy, Yu.; Rudyk, V.

    2004-09-01

    Temperature evolution of the exciton-phonon interaction (EPI) in ((CH3)2NH2)5Cd2CuCl11 solid solution was studied on the basis of absorption spectroscopy data. The obtained values of effective phonon energies were compared with the data of Raman spectroscopy. It is shown that the (T) and E parameters of Urbach's rule show the continuous anomalous change characteristic of the second-order phase transition at T1 = 176 K. The anomalous behaviour of the EPI and other spectral parameters at T0 = 310-315 K was related to the complex co-operative effect involving weakening of the hydrogen bonds and variation of the Jahn-Teller distortion of metal-halogen polyhedra with temperature. This process takes place only within the copper-chlorine sublattice and due to this would be hardly related to the usual phase transition. At the same time, the considered temperature change of the tetragonal distortion of the metal-halogen octahedra is followed by nonfulfillment of Urbach's rule in the temperature range T T0.

  7. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    DOE PAGESBeta

    Himcinschi, Cameliu; Guo, Er -Jia; Talkenberger, Andreas; Dorr, Kathrin; Kortus, Jens

    2016-01-27

    In this study, BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows to obtain a quantitative correlation between strain and the shift of the Raman-active phonons, ruling out the influence of extrinsic factors, such as growth conditions, crystalline quality of substrates, or film thickness. Using the Poisson number for BiFeO3 one can determine the volume changemore » induced by strain, and therefore the Gr neisen parameters for specific phonon modes.« less

  8. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda G.; Erdas, Dilek; Gunduz, Ilknur; Sahinturk, Ayse Erbay

    2015-01-01

    Cyproheptadine hydrochloride (CYP HCl) {4-(5H-dibenzo[a,d]-cyclohepten-5-ylidene)-1-methylpiperidine hydrochloride} is a first-generation antihistamine with additional anticholinergic, antiserotonergic, and local-anesthetic properties. The geometry optimization, Mulliken atomic charges and wavenumber and intensity of the vibrational bands of all of the possible modes of CYP HCl have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing the B3LYP functional with the 6-311G(d,p) basis set. We have compared the calculated IR and Raman wavenumbers with experimental data. Quantum-chemical calculations of the geometrical structure, energies, and molecular electrostatic potential and NBO analysis of CYP HCl have been performed using the B3LYP/6-311G(d,p) method. The electric dipole moment (μ), static polarizability (α) and the first hyperpolarizability (β) values of the title compound have been computed using HF and DFT methods. The study reveals that the antihistaminic pharmacological property of CYP HCl has a large β value and, hence, may in general have potential applications in the development of non-linear optical materials. The experimental and calculated results for CYP HCl have also been compared with those for mianserin HCl.

  9. Domino Michael-Michael and Aldol-Aldol Reactions: Diastereoselective Synthesis of Functionalized Cyclohexanone Derivatives Containing Quaternary Carbon Center.

    PubMed

    Ghorai, Manas K; Halder, Sandipan; Das, Subhomoy

    2015-10-01

    A simple strategy for the synthesis of highly functionalized cyclohexanone derivatives containing an all-carbon quaternary center from α-(aryl/alkyl)methylidene-β-keto esters or β-diketones via a K-enolate mediated domino Michael-Michael reaction sequence with moderate to good yield and excellent diastereoselectivity (de > 99%) is described. Interestingly, Li-base mediated reaction of α-arylmethylidene-β-diketones affords functionalized 3,5-dihydroxy cyclohexane derivatives as the kinetically controlled products via a domino aldol-aldol reaction sequence with excellent diastereoselectivity. Li-enolates of the β-keto esters or β-diketones undergo facile domino Michael-Michael reaction with nitro-olefins to afford the corresponding nitrocyclohexane derivatives in good yields and excellent diastereoselectivity (de > 99%). The formation of the products and the observed stereoselectivity were explained by plausible mechanisms and supported by extensive computational study. An asymmetric version of the protocol was explored with (L)-menthol derived nonracemic substrates, and the corresponding nonracemic cyclohexanone derivatives containing an all-carbon quaternary center were obtained with excellent stereoselectivity (de, ee > 99%). PMID:26334184

  10. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.

    PubMed

    Parra, Loreto P; Acevedo, Juan P; Reetz, Manfred T

    2015-07-01

    Phenylacetone monooxygenase (PAMO) is an exceptionally robust Baeyer-Villiger monooxygenase, which makes it ideal for potential industrial applications. However, its substrate scope is limited, unreactive cyclohexanone being a prominent example. Such a limitation is unfortunate, because this particular transformation in an ecologically viable manner would be highly desirable, the lactone and the respective lactam being of considerable interest as monomers in polymer science. We have applied directed evolution in search of an active mutant for this valuable C-C activating reaction. Using iterative saturation mutagenesis (ISM), several active mutants were evolved, with only a minimal trade-off in terms of stability. The best mutants allow for quantitative conversion of 2 mM cyclohexanone within 1 h reaction time. In order to circumvent the NADP(+) regeneration problem, whole E. coli resting cells were successfully applied. Molecular dynamics simulations and induced fit docking throw light on the origin of enhanced PAMO activity. The PAMO mutants constitute ideal starting points for future directed evolution optimization necessary for an industrial process. PMID:25675885

  11. Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores

    PubMed Central

    Petrov, Georgi I.; Arora, Rajan; Yakovlev, Vladislav V.; Wang, Xi; Sokolov, Alexei V.; Scully, Marlan O.

    2007-01-01

    Single bacterial spores were analyzed by using nonlinear Raman microspectroscopy based on coherent anti-Stokes Raman scattering (CARS). The Raman spectra were retrieved from CARS spectra and found to be in excellent agreement with conventionally collected Raman spectra. The phase retrieval method based on maximum entropy model revealed significant robustness to external noise. The direct comparison of signal amplitudes exhibited a factor of 100 stronger CARS signal, as compared with the Raman signal. PMID:17483468

  12. The relationship between environmental abundant electromagnetic fields and packaging shape to their effects on the 17O NMR and Raman spectra of H2O-NaCl

    NASA Astrophysics Data System (ADS)

    Abdelsamie, Maher A. A.; Rahman, Russly B. Abdul; Mustafa, Shuhaimi; Hashim, Dzulkifly

    2015-07-01

    In this study, two identical groups of four containers with different packaging shapes made of polymethyl methacrylate (PMMA) were used to store H2O-NaCl solution for seven days at ambient room temperature (25 °C). Faraday shield was used to shield one group. The surrounding electromagnetic fields were measured during the storage period by using R&S®TS-EMF EMF measurement system. Samples of H2O-NaCl were collected at the end of the storage period and examined by 17Oxygene nuclear magnetic resonance spectroscopy (17O NMR) and Raman spectroscopy. Electromagnetic simulation was used to explore the relationship between the packaging shape of H2O-NaCl containers and the environmentally abundant electromagnetic fields to their effects on the cluster size of water. The study showed variations in the cluster size of water stored inside the two groups of containers. It was observed that the cluster size of water stored in the unshielded containers was lower than that of the shielded containers. The cluster size of water stored in the unshielded pyramidal container was lower than the cluster size of water stored in the unshielded rectangular, square, and cylindrical containers. The EM simulation results showed significant variations in the total specific absorption rate SAR and maximum point SAR values induced in the H2O-NaCl solution in the unshielded container models at 2400 MHz for both vertical and horizontal polarization. It can be concluded that the variations in the values of SAR induced in H2O-NaCl solution are directly related to the variations in the cluster size of the stored water.

  13. 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8'-carotenal and spheroidene

    NASA Astrophysics Data System (ADS)

    Fujii, Ritsuko; Chen, Chun-Hai; Mizoguchi, Tadashi; Koyama, Yasushi

    1998-05-01

    Eleven cis- trans isomers of okenone were isolated by means of HPLC using a silica-gel column from an isomeric mixture which was obtained by iodine-sensitized photo-isomerization of the all- trans isomer. The configurations of eight isomers among them were determined by NMR spectroscopy using the isomerization shifts of the olefinic 1Hs and the 1H- 1H NOE correlations to be all- trans, 7- cis, 7- cis,8-s- cis, 9- cis, 9'- cis, 13- cis, 13'- cis and 9,9'-di- cis, and their electronic-absorption and resonance-Raman spectra were recorded. Based on the results: (1) the chemical shifts of the olefinic 1Hs in NMR; (2) the wavelength of the A g-→B u+ transition; and (3) the relative intensity of the A g-→A g+ versus the A g-→B u+ transition in electronic absorption; (4) the CC stretching frequency; and (5) the relative intensity of the C10-C11 (C10'-C11') versus the C14-C15 (C14'-C15') stretching vibration in resonance Raman were compared among the all- trans, 7- cis, 9- cis (9'- cis) and 13- cis (13'- cis) isomers of β-carotene, canthaxanthin, β-apo-8'-carotenal, neurosporene, spheroidene and okenone. Relevance of the systematic changes in the above five different parameters originally found in β-carotene was examined in the rest of the carotenoids, and the effects of the peripheral groups on them were explained in terms of the length and asymmetry of the conjugated system consisting of the CC and CO bonds.

  14. Raman spectroscopy of composites

    SciTech Connect

    Young, R.J.; Andrews, M.C.; Yang, X.; Huang, Y.L.; Gu, X.; Day, R.J.

    1994-12-31

    It is demonstrated that Raman Spectroscopy can be used to follow the micromechanics of the deformation of high-performance fibers within composites. The technique can be applied to a wide range of fiber systems including aramids, carbon and ceramic (using fluorescence spectroscopy) fibers. Well-defined Raman spectra are obtained and the position of the Raman bands shift on the application of stress or strain. It is possible to determine the point-to-point variation of strain along an individual fiber inside a transparent matrix under any general state of stress or strain. Examples are given of the use of the technique to study a variety of phenomena in a wide range of composite systems. The phenomena investigated include thermal stresses, fiber/matrix adhesion, matrix yielding for both fragmentation and pull-out tests. The systems studied include aramid/epoxy, carbon/epoxy and ceramic-fiber/glass composites.

  15. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  16. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  17. Hadamard transform visible Raman spectrometry

    SciTech Connect

    Tilotta, D.C.; Freeman, R.D.; Fateley, W.G.

    1987-11-01

    The successful application of LC-SLM Hadamard transform spectrometry as a simultaneous multiwavelength detection system to Raman spectroscopy is presented. Multiplexed Raman data are obtained with the use of an Ar/sup +/ laser lasing at 514.5 nm and a room-temperature silicon photodiode. A conventional 90/sup 0/ scattering geometry is employed for measurements. It is demonstrated that the LC-SLM Hadamard transform Raman spectrometer possesses the capability of performing spectral subtraction and the ability to obtain depolarization ratios of Raman bands, and can function as a selectively tunable optical filter for both Rayleigh line rejection and optical band notching. It is also demonstrated that, for the Hadamard transform Raman experiment, the silicon photodiode used as the detector produces spectra with slightly better signal-to-noise ratios than those obtained with the photomultiplier tube (PMT) used as the detector, although the PMT shows an increase in sensitivity.

  18. Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis

    NASA Astrophysics Data System (ADS)

    Głaz, Waldemar; Bancewicz, Tadeusz; Godet, Jean-Luc; Gustafsson, Magnus; Haskopoulos, Anastasios; Maroulis, George

    2016-07-01

    A comprehensive study is presented of many aspects of the depolarized anisotropic collision induced (CI) component of light scattered by weakly bound compounds composed of a dihydrogen molecule and a rare gas (Rg) atom, H2-Rg. The work continues a series of earlier projects marking the revival of interest in linear light scattering following the development of new highly advanced tools of quantum chemistry and other theoretical, computational, and experimental means of spectral analyses. Sophisticated ab initio computing procedures are applied in order to obtain the anisotropic polarizability component's dependence on the H2-Rg geometry. These data are then used to evaluate the CI spectral lines for all types of Rg atoms ranging from He to Xe (Rn excluded). Evolution of the properties of CI spectra with growing polarizability/masses of the complexes studied is observed. Special attention is given to the heaviest, Kr and Xe based, scatterers. The influence of specific factors shaping the spectral lines (e.g., bound and metastable contribution, potential anisotropy) is discussed. Also the share of pressure broadened allowed rotational transitions in the overall spectral profile is taken into account and the extent to which it is separable from the pure CI contribution is discussed. We finish with a brief comparison between the obtained results and available experimental data.

  19. Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis.

    PubMed

    Głaz, Waldemar; Bancewicz, Tadeusz; Godet, Jean-Luc; Gustafsson, Magnus; Haskopoulos, Anastasios; Maroulis, George

    2016-07-21

    A comprehensive study is presented of many aspects of the depolarized anisotropic collision induced (CI) component of light scattered by weakly bound compounds composed of a dihydrogen molecule and a rare gas (Rg) atom, H2-Rg. The work continues a series of earlier projects marking the revival of interest in linear light scattering following the development of new highly advanced tools of quantum chemistry and other theoretical, computational, and experimental means of spectral analyses. Sophisticated ab initio computing procedures are applied in order to obtain the anisotropic polarizability component's dependence on the H2-Rg geometry. These data are then used to evaluate the CI spectral lines for all types of Rg atoms ranging from He to Xe (Rn excluded). Evolution of the properties of CI spectra with growing polarizability/masses of the complexes studied is observed. Special attention is given to the heaviest, Kr and Xe based, scatterers. The influence of specific factors shaping the spectral lines (e.g., bound and metastable contribution, potential anisotropy) is discussed. Also the share of pressure broadened allowed rotational transitions in the overall spectral profile is taken into account and the extent to which it is separable from the pure CI contribution is discussed. We finish with a brief comparison between the obtained results and available experimental data. PMID:27448883

  20. Proton transfer dynamics in the hydrogen bond. Inelastic neutron scattering, infrared and Raman spectra of Na 3H(SO 4) 2, K 3H(SO 4) 2 and Rb 3H(SO 4) 2

    NASA Astrophysics Data System (ADS)

    Fillaux, F.; Lautié, A.; Tomkinson, J.; Kearley, G. J.

    1991-06-01

    Na 3H(SO 4) 2, K 3H(SO 4) 2 and Rb 3H(SO 4) 2 crystals are composed of (SO 4HSO 4) -3 dimers linked by rather strong hydrogen bonds ( RO…O=2.43 Å for Na 3H(SO 4) 2, RO…O=2.48 Å for Rb 3H(SO 4) 2 and RO…O=2.49 Å for K 3H(SO 4) 2). Crystallographic data of the salts at room temperature indicate either asymmetric (Na 3H(SO 4) 2) or symmetric (K 3H(SO 4) 2 and Rb 3H(SO 4) 2) hydrogen bonds. Inelastic neutron scattering (INS), infrared and Raman spectra of crystal powders at 20 K are reported for these three compounds. The OH bending modes, which give large INS intensities, appear only weakly in the infrared. The two bending modes are degenerate in Na 3H(SO 4) 2 which has the shortest hydrogen bond but are well separated in K 3H(SO 4) 2 and Rb 3H(SO 4) 2. The OH stretching band profiles in INS are also quite different from those in the infrared. Strong INS bands at 57 and 44 cm -1 for K 3H(SO 4) 2 and Rb 3H(SO 4) 2, respectively, are assigned to 0→1 transitions in quasi-symmetric double-minimum potentials for the OH stretching coordinates. For K 3H(SO 4) 2 the frequency is unaffected by temperature between 2 and 100 K. Potential functions are calculated and the dynamics of the proton transfer are discussed. Infrared spectra are thus dominated by OH stretching transitions in asymmetric double-minimum potentials with low barriers, with relative intensities indicating a large electrical anharmonicity.