Science.gov

Sample records for raman spectra cyclohexanone

  1. Cyclohexanone

    Integrated Risk Information System (IRIS)

    Cyclohexanone ; CASRN 108 - 94 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Study on Raman spectra of synthetic celluloses

    NASA Astrophysics Data System (ADS)

    Tong, Na; Zhu, Changjun; Zhang, Yixin

    2015-02-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of aliphatic polyamide fiber and polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The results show that Raman peaks beyond 1200 cm-1 appear for aliphatic polyamide fiber processed by sodium hydroxide, while the Raman peaks beyond 1000 cm-1 disappear for aliphatic polyamide fiber processed by sulfuric acid. Raman peaks beyond 1750 cm-1 decrease for polyethylene terephthalate processed by sodium hydroxide, while Raman peaks beyond 1000 cm-1 disappear, except weak peaks around 3000 cm-1 , for polyethylene terephthalate processed by sulfuric acid. The variations of the Raman spectra are primarily related to the changes of chemical bonds and molecular structures.

  3. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  4. [Characteristics of Raman Spectra of Polyethylene Terephthalate].

    PubMed

    Tong, Na; Zhu, Chang-jun; Song, Li-xun; Zhang, Chong-hui; Zhang, Guo-qing; Zhang, Yi-xin

    2016-01-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1 750 cm(-1), while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1 750 cm(-1) and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated. The research results obtained by Atomic Force Microscopy show that the variations of the Raman spectra of PET fibers are closely related to. the chemical bonds and molecular structures of PET fibers. The surface of the PET treated with sodium hydroxide is rougher than that untreated, the surface roughness of the PET treated with sulfuric acid is reduced as compared to that untreated, while the surface roughness of the PET treated with copper sulphate is increased. The results obtained by Raman spectroscopy are consistent with those by Atomic Force Microscopy, indicating that the combination of Raman spectroscopy and Atomic Force Microscopy is expected to be a promising characterization technology for polymer characteristics. PMID:27228752

  5. Raman phonon spectra of pentacene polymorphs

    NASA Astrophysics Data System (ADS)

    Brillante, A.; Della Valle, R. G.; Farina, L.; Girlando, A.; Masino, M.; Venuti, E.

    2002-05-01

    We report for the first time lattice phonon Raman spectra of pentacene measured by means of a Raman microprobe technique. We experimentally prove the existence of two polymorphs, as expected from recent structural studies. A comparison with Quasi Harmonic Lattice Dynamics calculations, previously performed starting from the available X-ray data, help us in identifying the phase to which each crystal belongs.

  6. Raman spectra of carotenoids in natural products.

    PubMed

    Withnall, Robert; Chowdhry, Babur Z; Silver, Jack; Edwards, Howell G M; de Oliveira, Luiz F C

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form. PMID:12909134

  7. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  8. [Infrared and Raman spectra study on Tianhuang].

    PubMed

    Liu, Yun-gui; Chen, Tao

    2012-08-01

    The Tianhuang stones, from Shoushan in China, were studied by using X-ray powder diffractometry (XRD), infrared (IR) spectroscopy and Raman spectroscopy to obtain the spectra characterization. Wave numbers 3621, 3629 and 3631 cm(-1) in the IR spectra and 3626, 3627 and 3632 cm(-1) in the Raman spectra are the characteristic peaks of dickitic Tianhuang, nacritic Tianhuang and illitic Tianhuang, respectively. Raman spectra assigned to OH are in good agreement with the IR results at 3550 -3750 cm(-1). Dickitic Tianhuang includes ordered dickite and disordered dickite. Compared with ordered dickite, the band assigned to OH3 of disordered dickite shifts to low-frequency by 8 cm(-1) and the relative intensity becomes stronger. The disorder structure may relate to the high level of Fe. The IR absorption spectra of nacritic Tianhuang superimposes strong peaks of dickite, indicating that IR absorption bands of dickite are stronger than that of nacrite at 3550-3750 cm(-1). The main mineral composition of illitic Tianhuang is 2M(1), while illite Tianhuang contains a small amount of 1M. All these characters provide a theoretical basis for the scientific identification of Tianhuang. PMID:23156769

  9. Raman spectra of shocked minerals. I - Olivine

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Celucci, T. A.

    1988-01-01

    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition.

  10. Raman spectra of deuteriated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  11. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  12. Raman spectra of hydroxide-halide melts

    NASA Astrophysics Data System (ADS)

    Zakiriyanova, I. D.; Khokhlov, V. A.

    2012-08-01

    The Raman spectra of molten binary mixtures based on sodium hydroxide and containing (mol %) 35 NaCl, 30 NaBr, and 30 NaI have been recorded at various temperatures. An increase in the vibrational frequency and the force constant of the O-H bond is detected under isothermal conditions upon a variation of the anionic composition of a melt in the series I → Br → Cl. Based on the experimental data, the viscosity of the hydroxide-halide melts is estimated.

  13. Vibrational infrared and raman spectra of dicyanoacetylene

    NASA Astrophysics Data System (ADS)

    Khanna, R. K.; Perera-Jarmer, M. A.; Ospina, M. J.

    The raman and infrared spectra for solid C 4N 2 are reported. New assignments are given for ˜gn 1 (2333 cm -1), ˜gn 2 (2267) and ˜gn 3 (640 cm -1). These assignments are supported by a normal coordinate Analysis using eight force constants. Extinction coefficients for the infrared active fundamentals are also reported. Our results suggest C 4N 2 to be a likely candidate to explain the 478 cm -1 band in the Titan's emission recorded by the Voyager mission.

  14. Raman spectra of selected transuranium trihalides in the solid state

    SciTech Connect

    Wilmarth, W.R.; Begun, G.M.; Haire, R.G.; Peterson, J.R.

    1988-10-15

    Raman spectral data have been obtained from a number of transuranium trihalides in the solid state. The Raman spectra of these actinide compounds are reported and compared to the published Raman spectra of isostructural compounds. Tentative symmetry assignments have been made for the observed Raman-active lattice vibrations based on nuclear site symmetry analysis of their respective crystal structures and comparisons to the symmetry assignments made for isostructural lanthanide compounds. The Raman spectral data obtained in this study represent a partial data base for the use of Raman spectroscopy for identifying the crystal structures exhibited by these and isostructural compounds.

  15. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  16. Fourier transform Raman and IR spectra of snake skin

    NASA Astrophysics Data System (ADS)

    Barry, B. W.; Williams, A. C.; Edwards, H. G. M.

    1993-06-01

    The Fourier transform (FT) Raman and IR spectra of the shed dorsal skin of the snake Elaphe obsoleta (American black rat snake) are reported. Vibrational spectroscopic assignments are proposed for the first time. Although good quality Raman spectra were obtained from the hinge regions using an FT Raman microscope, the dorsal scale regions fluoresced even with 1064 nm IR excitation. This was ascribed to pigmentation markings on the scales.

  17. Raman spectra of rings in silicate material

    SciTech Connect

    Tallant, D.R.; Bunker, B.C.; Brinker, C.J.; Balfe, C.A.

    1986-01-01

    Raman spectroscopic studies on gel-derived silicates have confirmed that narrow bands near 607 cm-1 and 492 cm-1, first observed in the Raman spectrum of fused silica, are associated with three- and four-fold siloxane rings. Using these results, we have identified three- and four-fold siloxane rings in other high-surface-area silica materials, including leached glasses and Cab-O-Sil. This Raman spectroscopic evidence not only shows that small siloxane rings are a common characteristic of a number of silica materials but also suggests that they form preferentially at silica surfaces. This paper reviews the Raman spectroscopic evidence that led to the identification of the vibrational frequencies of the small siloxane rings and presents the results of Raman experiments on high-surface-area silica materials in which the concentration of small siloxane rings is enhanced compared to fused silica.

  18. Raman intensity and spectra predictions for cylindrical viruses

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric C.; Sankey, Otto F.; Tsen, Kong-Thon

    2007-07-01

    A theoretical framework for predicting low frequency Raman vibrational spectra of viral capsids is presented and applied to the M13 bacteriophage. The method uses a continuum elastic theory for the vibrational modes and a bond-charge polarizability model of an amorphous material to roughly predict the Raman intensities. Comparison is made to experimental results for the M13 bacteriophage virus.

  19. A flow cytometer for the measurement of Raman spectra.

    PubMed

    Watson, Dakota A; Brown, Leif O; Gaskill, Daniel F; Naivar, Mark; Graves, Steven W; Doorn, Stephen K; Nolan, John P

    2008-02-01

    Multiparameter measurements in flow cytometry are limited by the broad emission spectra of fluorescent labels. By contrast, Raman spectra are notable for their narrow spectral features. To increase the multiparameter analysis capabilities of flow cytometry, we investigated the possibility of measuring Raman signals in a flow cytometry-based system. We constructed a Raman Spectral Flow Cytometer, substituting a spectrograph and CCD detector for the traditional mirrors, optical filters, and photomultiplier tubes. Excitation at 633 nm was provided by a HeNe laser, and forward-angle light scatter is used to trigger acquisition of complete spectra from individual particles. Microspheres were labeled with nanoparticle surface enhanced Raman scattering (SERS) tags and measured using the RSFC. Fluorescence and Raman spectra from labeled microspheres were acquired using the Raman Spectral Flow Cytometer. SERS spectral intensities were dependent on integration time, laser power, and detector pixel binning. Spectra from particles labeled with one each of four different SERS tags could be distinguished by either a virtual bandpass approach using commercial flow cytometry data analysis software or by principal component analysis. Raman flow cytometry opens up new possibilities for highly multiparameter and multiplexed measurements of cells and other particles using a simple optical design and a single detector and light source. PMID:18189283

  20. Pulsed remote Raman system for daytime measurements of mineral spectra.

    PubMed

    Misra, Anupam K; Sharma, Shiv K; Chio, Chi Hong; Lucey, Paul G; Lienert, Barry

    2005-08-01

    A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds. In oblique geometry, measured sampling depth is more than 30m, during which the system maintains very high performance without any adjustments. Much longer sampling depth (0.1-120m) has been observed when the system is configured in the coaxial geometry. Clear advantages of using a gated detection mode over the continuous (CW) mode of operation in reducing the background signal and eliminating long-lived fluorescence signals from the Raman spectra are presented. The performance of the pulsed Raman system is demonstrated by measuring spectra of Raman standards including benzene (C(6)H(6)) and naphthalene (C(10)H(8)), a low Raman cross section silicate mineral muscovite (KAl(2)(Si(3)Al)O(10)(OH)(2)), and a medium Raman cross section mineral calcite (CaCO(3)). PMID:16029850

  1. Cancer detection based on Raman spectra super-paramagnetic clustering

    NASA Astrophysics Data System (ADS)

    González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual

    2016-08-01

    The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.

  2. [Raman spectra calculation and analysis of plasticizer dioctyl phthalate].

    PubMed

    Liu, Yu; Wang, Hu; Wang, Yan; Guo, Mo-ran; Shi, Jing; Feng, Shi-qi; Song, Wei; Zhai Rui-zhi; Cai, Hong-xing

    2015-01-01

    In recent years, with frequent domestic food safety incidents related to the plasticizing agent, the detection of plasticizers in food research becomes increasingly urgent. DEHP is one of the plasticizer. In the present paper, theoretical Raman spectrum and experimental Raman spectrum of DEHP were given. DEHP molecular structure was optimized by DFT(B3LYP) method. DEHP molecular Raman spectra and infrared spectra were calculated with. HF theory and DFT theory based on 3-2G level. The analytical reagent level DEHP Raman spectra was measured, and was compared with theoretical spectra, and good agreements were obtained between the theoretical and experimental results. Because of different calculation methods, we can see that both the wave number and relative intensity of peaks have small differences. DEHP structure parameters were also given in the paper including bond lengths and bond angles etc. Vibrational modes were assigned to all bands between 400 and 3 500 cm-1. Raman spectroscopy study of the commonly used plasticizer dioctyl phthalate was reported in this paper for the first time. This effort will contribute to the research and application of Raman spectroscopy in the field of food testing. PMID:25993833

  3. Analytic calculations of anharmonic infrared and Raman vibrational spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth

    2016-02-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  4. Raman spectra of silicon carbide small particles and nanowires

    NASA Astrophysics Data System (ADS)

    Wieligor, Monika; Wang, Yuejian; Zerda, T. W.

    2005-04-01

    Two manufacturing protocols of silicon carbide (SiC) nanowires are discussed. The Raman spectra of produced SiC nanowires are compared with spectra of SiC powders of various grain sizes. The temperature and pressure dependence of the Raman spectra for powders is similar to that of bulk crystals, but is different for nanowires. Frequency shifts, band broadenings and the presence of shoulders are discussed in terms of crystal size, character of defects and their population. The concentration of defects in synthesized nanowires depends on the sintering method. Raman intensity enhancement of the LO phonon was observed when the wavelength of the excitation laser was changed from 780 to 514 nm.

  5. Raman spectra and molecular dynamics of alkoxycyanobiphenyles

    NASA Astrophysics Data System (ADS)

    Babkov, Lev M.; Gabrusenoks, E.; Krasnoholovets, V.; Puchkovskaya, G. A.; Khakimov, I. N.

    2000-02-01

    The IR and Raman spectral-structural-phase correlations in a series of the 4-cyano-4'-n-alkoxybiphenyles are studied. The analysis of Q(C equalsV N) band behavior in the solid crystal (SC), liquid crystal (LC), isotropic liquid (IL) and hexane solution is carried out. The changes of the spectral parameters of several vibrational bands at phase transitions were interpreted as being caused by conformational changes of the nOCB molecules. The mechanism of intradimer energy transfer explaining the Q(C equalsV N) band breadth in the LC and IL phases is investigated in detail.

  6. Defect-induced hyper-Raman spectra in cubic zirconia

    SciTech Connect

    Shin, S.; Ishigame, M.

    1986-12-15

    Hyper-Raman scattering of cubic zirconia and CaF/sub 2/ is measured at room temperature. For a CaF/sub 2/ crystal, the frequencies of the TO and LO modes with T/sub 1//sub u/ symmetry are determined to be 260 and 480 cm/sup -1/, which are in good accord with the results of infrared measurements. In a fluorite-type cubic zirconia, the defect-induced hyper-Raman spectra due to the oxygen vacancies are observed. The structures of the hyper-Raman spectra are reasonably explained by the frequency distribution of hyper-Raman-active modes in the whole Brillouin zone, which is estimated from the imaginary part of the simple projections of the phonon displacement-displacement Green's functions onto a defect space consisting of an O/sub 6/ molecule. From the analysis of the mode vectors for the O/sub 6/ molecule, the attempt frequency of oxygen ions is found to correspond to the 690-cm/sup -1/ band in the observed hyper-Raman spectra with T/sub 1//sub u/ symmetry.

  7. Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions.

    PubMed

    Macernis, Mindaugas; Galzerano, Denise; Sulskus, Juozas; Kish, Elizabeth; Kim, Young-Hun; Koo, Sangho; Valkunas, Leonas; Robert, Bruno

    2015-01-01

    We report here the resonance Raman spectra and the quantum chemical calculations of the Raman spectra for β-carotene and 13,13'-diphenyl-β-carotene. The first aim of this approach was to test the robustness of the method used for modeling β-carotene, and assess whether it could accurately predict the vibrational properties of derivatives in which conjugated substituents had been introduced. DFT calculations, using the B3LYP functional in combination with the 6-311G(d,p) basis set, were able to accurately predict the influence of two phenyl substituents connected to the β-carotene molecule, although these deeply perturb the vibrational modes. This experimentally validated modeling technique leads to a fine understanding of the origin of the carotenoid resonance Raman bands, which are widely used for assessing the properties of these molecules, and in particular in complex media, such as binding sites provided by biological macromolecules. PMID:25476500

  8. Low-Cost Elimination of Plasma Lines in Raman Spectra.

    ERIC Educational Resources Information Center

    Behlow, Herbert W., Jr.; Petersen, John D.

    1985-01-01

    Describes a low-cost ($120) device which eliminates plasma lines in Raman spectra. The device consists of two prisms and two mirrors which are held in a symmetrical relationship to one another so that a particular position will allow only one wavelength to pass through on a given axis. (JN)

  9. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  10. Raman spectra of ZrS3-xSex

    NASA Astrophysics Data System (ADS)

    Provencher, R.; Jandl, S.; Carlone, C.

    1982-12-01

    Raman spectra of the one-dimensional ZrS3-ZrSe3 solid solutions are reported. A mixed one-mode and two-mode phonon behavior is observed. The study of the phonon width indicates a higher sensitivity to disorder in the case of the one-mode phonons compared to the case of the two-mode phonons.

  11. Complete symmetry analysis of the Raman spectra in cuprates

    NASA Astrophysics Data System (ADS)

    Venturini, F.; Zhang, Q.-M.; Hackl, R.; Erb, A.; Berger, H.; Revaz, B.; Nagao, Y.; Ando, Y.

    2002-03-01

    We describe results of Raman scattering measurements on differently doped cuprate single crystals. We performed a complete polarization analysis, using circular in addition to the commonly used linear polarizations. This allowed us to determine all symmetry components of the Raman signal being characteristic for tetragonal systems, including A_2g excitations which indicate the presence of a time-reversal broken symmetry in these systems. The A_2g signal has an intensity comparable to that of the other symmetries, but exhibits a distinctly different frequency dependence. In particular, there is a gap at low energies which decreases with increasing doping. The Raman relaxation rates and mass renormalization factor extracted from the pure B_1g and B_2g spectra are consistent with IR-results, and the unphysical drop of 1+λ(ω) below unity for high frequencies disappears teopel. 99 opel M. Opel et al., Phys. Rev. B 61, 9752 (2000). thebibliography

  12. Raman spectra of zirconium oxychloride crystalline hydrate and solutions

    SciTech Connect

    Kozhevnikova, G.V.; Myund, L.A.; Burkov, K.A.

    1988-08-01

    Raman spectra of zirconium oxychloride crystalline hydrate and its deuteroanalogs in the 50-4000 cm/sup -1/ region have been obtained and examined. They have been compared with the spectra of solutions. In the region of nu/sub Zr-O/ vibrations the Raman spectrum of the solution has been resolved into its components with the aid of a computer. Spectral properties of the nu/sub Zr-OH/ and nu/sub Zr-O(H)/sub 2/) bands of the (Zr/sub 4/(OH)/sub 8/(H/sub 2/O)/sub 16/)/sup 8 +/ complexes in the crystalline hydrate and in solution have been obtained.

  13. Raman spectra and optical coherent tomography images of skin

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Delgado-Atencio, J. A.; Vazquez-Villa, A.

    2011-03-01

    The optical coherence tomography images are useful to see the internal profile and the structure of material samples. In this work, OCT images were recorded in 10 volunteers with different skin tone which were related to Raman spectra. The areas where we obtained OCT images and Raman spectra were a) index finger nail, b) between index finger and middle finger, c) middle finger tip, d) half of middle finger, e) the thumb finger tip and f) between index finger and thumb, areas measured were for the purpose of finding extracellular fluids with contain triglycerides, cholesterol and glucose that are reported in the literature. The excitation wavelength used for this work was 785 nm, a spectrometer of 6 cm-1 resolution. The spectral region used ranges from 300 to 1800 cm-1. We use an OCT with 930 nm of Central Wavelength, 1.6 mm of Image Depth, 6 mm of image width and 6.2 μm of axial resolution.

  14. Processing Raman Spectra of High-Pressure Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.

  15. Raman spectra of solid benzene under high pressure

    NASA Technical Reports Server (NTRS)

    Thiery, M.-M.; Kobashi, K.; Spain, I. L.

    1985-01-01

    Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.

  16. Resonant Raman scattering background in XRF spectra of binary samples

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Leani, Juan José

    2015-02-01

    In x-ray fluorescence analysis, spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. In this work we present theoretical calculations of the resonant Raman scattering contributions to the background of x-ray fluorescence spectra of binary samples of current technological or biological interest. On one hand, a binary alloy of Fe with traces of Mn (Mn: 0.01%, Fe: 99.99%) was studied because of its importance in the stainless steels industries. On the second hand a pure sample of Ti with V traces (Ti: 99%, V: 1%) was analyzed due to the current relevance in medical applications. In order to perform the calculations the Shiraiwa and Fujino's model was used to calculate characteristic intensities and scattering interactions. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions and the incident and take-off beams. For the binary sample studied in this work and the considered experimental conditions, the calculations show that the resonant Raman scattering background is significant under the fluorescent peak, affects the symmetry of the peaks and, depending on the concentrations, overcomes the enhancements contributions (secondary fluorescence).

  17. Adapting Raman spectra from laboratory spectrometers to portable detection libraries.

    PubMed

    Weatherall, James C; Barber, Jeffrey; Brauer, Carolyn S; Johnson, Timothy J; Su, Yin-Fong; Ball, Christopher D; Smith, Barry T; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a format suitable for importing as a user library on a 1064 nm DeltaNu first generation, field-deployable spectrometer prototype. The two laboratory systems used are a 1064 nm Bruker Fourier transform (FT)-Raman spectrometer and a 785 nm Kaiser dispersive spectrometer. The steps taken to adapt for device-dependent spectral resolution, wavenumber shifts between instruments, and relative intensity response are described. Effects due to the differing excitation laser wavelengths were found to be minimal, indicating--at least for the near-infrared (NIR)--that data can be ported between different systems, so long as certain measures are taken with regard to the reference and field spectra. PMID:23622433

  18. Complete analytic anharmonic hyper-Raman scattering spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Ruud, Kenneth

    2016-08-10

    We present the first computational treatment of the complete second-order vibrational perturbation theory applied to hyper-Raman scattering spectroscopy. The required molecular properties are calculated in a fully analytic manner using a recently developed program [Ringholm, Jonsson and Ruud, J. Comp. Chem., 2014, 35, 622] that utilizes recursive routines. For some of the properties, these calculations are the first analytic calculations of their kind at their respective levels of theory. We apply this approach to the calculation of the hyper-Raman spectra of methane, ethane and ethylene and compare these to available experimental data. We show that the anharmonic corrections have a larger effect on the vibrational frequencies than on the spectral intensities, but that the inclusion of combination and overtone bands in the anharmonic treatment can improve the agreement with the experimental data, although the quality of available experimental data limits a detailed comparison. PMID:27459194

  19. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  20. An auto-adaptive background subtraction method for Raman spectra.

    PubMed

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-15

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy. PMID:26950502

  1. An auto-adaptive background subtraction method for Raman spectra

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Yang, Lidong; Sun, Xilong; Wu, Dewen; Chen, Qizhen; Zeng, Yongming; Liu, Guokun

    2016-05-01

    Background subtraction is a crucial step in the preprocessing of Raman spectrum. Usually, parameter manipulating of the background subtraction method is necessary for the efficient removal of the background, which makes the quality of the spectrum empirically dependent. In order to avoid artificial bias, we proposed an auto-adaptive background subtraction method without parameter adjustment. The main procedure is: (1) select the local minima of spectrum while preserving major peaks, (2) apply an interpolation scheme to estimate background, (3) and design an iteration scheme to improve the adaptability of background subtraction. Both simulated data and Raman spectra have been used to evaluate the proposed method. By comparing the backgrounds obtained from three widely applied methods: the polynomial, the Baek's and the airPLS, the auto-adaptive method meets the demand of practical applications in terms of efficiency and accuracy.

  2. Infrared, Polarized Raman, and SERS Spectra of Borax

    NASA Astrophysics Data System (ADS)

    Devi, S. Arya; Philip, Daizy; Aruldhas, G.

    1994-11-01

    Infrared and polarized Raman spectra of Na2B4O7 · 10H2O are recorded and analyzed. The vibrational assignments are made on the basis of vibrations due to BO4 and BO3 groups, water molecules, and (B)OH bonds. Three types of water molecules exist in the crystal, and the BO4 groups are considerably distorted. Band assignments are confirmed by deuterium substitution. A SERS spectrum recorded in a silver colloid shows three enhanced bands at 800, 480, and 464 cm-1.

  3. Temperature dependence of resonance Raman spectra of carotenoids

    NASA Astrophysics Data System (ADS)

    Andreeva, A.; Apostolova, I.; Velitchkova, M.

    2011-04-01

    To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability ( n = 1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν1 band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the C dbnd C stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the C dbnd C stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν1 band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.

  4. [IR and Raman spectra studies of Rotundine based on DFT].

    PubMed

    Li, Jun-Ping; Zhou, Guang-Ming; Zhang, Li-Jun; Cheng, Hong-Mei; Qin, Hong-Ying

    2014-11-01

    Infrared spectroscopy (IR), the normal Raman spectroscopy (NRS) and the surface enhanced Raman spectroscopy (SERS) in new Ag/Cu nanomaterial of Rotundine were studied in the present paper. The IR and the NRS of Rotundine were calculated by the density functional theory (DFT) using B3LYP/6-311+G(d, p), then the spectral intensity graph of Rotundine were given. The vibrational peaks were assigned comprehensively by the visualization software of Gauss view 5. 0. Rotundine has obvious infrared and Raman vibrational peak in the wave number range of 3 300-2500 and 1 800-600 cm(-1). SnCl2 and PVP was used as capping agent for the silver nanoparticles in SERS of Rotundine. Finally, by using the method of cyclic immersion well dispersed silver nanoparticles was obtained and achieved good enhancement effect. This molecule acquired strong selective enhancement vibration peak, In the wave number ranges of 1 500-1 400 and 1 000-700 cm(-1) the enhancement effect is most obvious. After analyzed, the methylene of this molecule is adsorbed on the silver nanoparticles surface and the angle between the benzene ring and the silver substrate is close to 90 degrees. The theoretically calculated spectra of Rotundine are consistent with the obtained experimental spectra. There are some differences may be due to the interaction forces between molecules and so on. The visualization software displayed the structure characteristics and molecular group vibration of this molecular visually and provided important basis for assigning the vibrational peaks. Rotundine is an important traditional Chinese medicine agent contained in many kinds of sedative drugs. The study provides a strong basis for the rapid, feature and trace identification of Rotundine and also supplies important reference for the biological role of central inhibition of analgesic drugs. PMID:25752044

  5. Polarized Raman spectra and intensities of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Himmler, Hans J.; Eysel, Hans H.

    1989-01-01

    Raman spectra of aliphatic α- L-amino acids, glycine, alanine, and valine were re-investigated both in aqueous solution and deuterium oxide solution. The spectra were taken of the zwitterionic and of the completely deprotonated form of the amino acids. Spectra of leucine and isoleucine were studied in water at the isoelectric point. Spectra were recorded both with parallel and perpendicular polarization and the isotropic and anisotropic scattering components were isolated. The integrated intensities of CH stretch, CC stretch and carboxylate bend vibrations are discussed. Linear relations between the number of CC and CH bonds and the total scattered intensity in the appropriate spectral regions are observed. The sum over the carboxylate modes shows characteristic intensities for the first three members of the aliphatic amino acids. An increase of isotropic scattering of ϱ co 2 near 510 cm -1 with increasing chain length of the amino acid (or with increasing concentration) is interpreted as the result of micelle formation.

  6. Surface Raman spectra of a biased and buried ultrathin copper phthalocyanine layer

    SciTech Connect

    Hipps, K.W.; Dowdy, J.; Hoagland, J.J. )

    1991-01-01

    Raman spectra of Al-AlO{sub x}-CuPc (1 nm)-M devices, where M = Ag or Pb, are reported. The first Raman spectrum of a material buried in a working (biased) tunnel diode without Ag surface enhancement or substrate roughening is reported. Comparison of the Raman spectra resulting from biased devices with inelastic electron tunneling spectra proves that the anomalous features of the CuPc tunneling spectrum are not due to electrochemical changes inside the device.

  7. Multidimensional least-squares resolution of Raman spectra from intermediates in sensitized photochemical reactions

    SciTech Connect

    Fister, J.C. III; Harris, J.M.

    1995-12-01

    Transient resonance Raman spectroscopy is used to elicit reaction kinetics and intermediate spectra from sensitized photochemical reactions. Nonlinear least-squares analysis of Raman spectra of a triplet-state photosensitizer (benzophenone), acquired as a function of laser intensity and/or quencher concentration allow the Raman spectra of the sensitizer excited state and intermediate photoproducts to be resolved from the spectra of the ground state and solvent. In cases where physical models describing the system kinetics cannot be found, factor analysis techniques are used to obtain the intermediate spectra. Raman spectra of triplet state benzophenone and acetophenone, obtained as a function of laser excitation kinetics, and the Raman spectra of intermediates formed by energy transfer (triplet-state biacetyl) and hydrogen abstraction (benzhydrol radical) are discussed.

  8. [Correction Multiplicative Effects in Raman Spectra through Vector Angle Transformation].

    PubMed

    Yao, Zhi-xiang; Sun, Zeng-qiang; Su, Hui; Yuan, Hong-fu

    2016-02-01

    The linear relationship between the Raman spectral intensity and the analyte amount is frequently disrupted for a variety of complex reasons, which include these variations in laser source, focusing effect, sample scattering and refracting, so that causes poor quantitative results. As a whole, these disturbing effects can be divided to be additive and multiplicative, and the multiplicative effects are generally more difficult to be eliminated. A spectrum is a series data, also can be treated as a vector. In principle, unstable motions in spectrum intensity/amplitude corresponding to the module shifts for a vector, doesn't impact the vector direction which is the essence of the vector, so it is reasonable to rewrite the data form on module to on space angle for the same measurement. This thesis employed a data transformation to eliminate the multiplicative effects within spectra, i. e. , the spectrum signal on its amplitude has been transformed to be on the vector angles. The first step of the transformation is the selection of a stand vector which is near to the analyte and almost orthogonal to the background within the sample space; and the next step is to define a moving window, then to find out the angle between the sample vector (i. e. the transformed spectrum) and the stand vector within the window; while the window is moved along the spectrum data series, the transformation for vector angle (VA) series has been finished. The thesis has proved that an approximate linear quantitative relationship has been remained in the VA series. Multivariate calibration need full rank matrix which is combined by spectrum from variety samples, and variety VA series also can combine a full rank VA matrix, so the approximate linear VA matrix still perfectly meeting the demand for multivariate calibration. A mixed system consisted by methanol-ethanol-isopropanol has been employed to verify the eliminations to the multiplicative effects. These measuring values of the system are

  9. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  10. Raman and infrared spectra of some tetrahalide crystals

    NASA Astrophysics Data System (ADS)

    Anderson, Anthony; Torrie, Bruce

    1986-03-01

    Recent Raman and infrared spectra of a number of tetrahalide crystals are reported. While some examples of isotopic and crystal field splittings of the internal molecular modes are included, the emphasis is on the external lattice vibrations which are important for investigations of intermolecular forces and lattice dynamics calculations. Because of the weak signals from these non-polar near-spherical molecules and other experimental difficulties, these modes have not been investigated in detail in earlier work. Examples to be discussed include CCl 4, CBr 4 and CF 4, all of which exhibit solid state phase transitions; the tetrachlorides of Ge, Ti, Si and Sn, all of which are thought to have similar crystal structures; and SnBr 4, the structure of which is accurately known and is used as a basis for lattice dynamics calculations.

  11. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained. PMID:23285870

  12. [Raman and infrared spectra of non-stoichiometry uranium oxides].

    PubMed

    Lü, Jun-Bo; Li, Gan; Guo, Shu-Lan

    2014-02-01

    Both of Raman and infrared spectra of seven non-stoichiometry and threestoichiometry uranium oxides, including UO2, U3O7 and UO(2+x) (0spectra of UO(2+x) in the stoichiometry range, U3O7 to U3O8, were first obtained and reported. Three typical peaks were observed at 445, 578 and 1150 cm(-1) in the Raman spectrum of uranium dioxide. The intensities of the peaks at 578 and 1151 cm(-1) decrease quickly with increasing x value of UO(2+x), and while x=0.19, the two peaks disappear. Such peaks can therefore be considered as a fin-gerprint of the quasi-perfect UO2 fluorite structure. The peak at 445 cm(-1) tends to weaken, broaden and shift to higher wavenumber in more oxidised samples. When x=0.32, this peak is shifted to the 459 cm(-1) and a weak peak at about 630 cm(-1) appears. The two new peaks are typical of the tetragonal U3O7. While x> or =0.39, the peak at 459 cm(-1) further splits into separate components. Two peaks at 235 and 754 cm(-1) appear for UO(2.39) and are visible with increased intensity as the oxygen-uranium ratio is increased. And the Raman spectra of UO(2+x) are gradually close to U3O8 in the alpha-phase, which has an orthorhombic unit cell. But several strongest features of the alpha-U3O8 specturm at 333, 397, 483 and 805 cm(-1) are still not outstanding even in UO(2.60). The main feature of the UO2 infrared spectrum shows a very broad and strong adsorption band at 400-570 cm(-1) and another feature is a weak adsorption peak at about 700 cm(-1). The 400-570 cm(-1) band undergoes a progressive splitting into two new peaks at approximately 421 and approximately 515 cm(-1) through increasing incorporation of oxygen into UO2. The weak peak at about 700 cm(-1) disappears and a new weak peak appears at about 645 cm(-1). The three new peaks are the infrared absorption features of U3O7. An absorption peak at 744 cm(-1) which is the strongest feature of alpha-U3O8 infrared spectrum appears for UO(2.39) and is

  13. Automated decomposition algorithm for Raman spectra based on a Voigt line profile model.

    PubMed

    Chen, Yunliang; Dai, Liankui

    2016-05-20

    Raman spectra measured by spectrometers usually suffer from band overlap and random noise. In this paper, an automated decomposition algorithm based on a Voigt line profile model for Raman spectra is proposed to solve this problem. To decompose a measured Raman spectrum, a Voigt line profile model is introduced to parameterize the measured spectrum, and a Gaussian function is used as the instrumental broadening function. Hence, the issue of spectral decomposition is transformed into a multiparameter optimization problem of the Voigt line profile model parameters. The algorithm can eliminate instrumental broadening, obtain a recovered Raman spectrum, resolve overlapping bands, and suppress random noise simultaneously. Moreover, the recovered spectrum can be decomposed to a group of Lorentzian functions. Experimental results on simulated Raman spectra show that the performance of this algorithm is much better than a commonly used blind deconvolution method. The algorithm has also been tested on the industrial Raman spectra of ortho-xylene and proved to be effective. PMID:27411136

  14. Resonance Raman spectra of. cap alpha. -copper phthalocyanine

    SciTech Connect

    Bovill, A.J.; McConnell, A.A.; Nimmo, J.A.; Smith, W.E.

    1986-02-13

    Raman spectra of ..cap alpha..-copper phthalocyanine (..cap alpha..-CuPc) were recorded at room temperature and at 10 K with excitation wavelengths between 457 and 714 nm. Resonance enhancement was greatest for modes for which the largest displacements were on either the inner five-membered ring of the isoindole groups or the inner macrocycle and consequently assignment of the bands to modes of the entire molecule was possible by comparison with nickel octaethylporphyrin. Four out of five bands resonant in the Q band region and preresonant near the B band absorption region are totally symmetric modes. B band preresonance occurs more strongly with high-frequency modes. At low temperatures, multimode interactions are reduced and profiles were obtained which can be compared with solution profiles of porphyrins. Both Q/sub x/ and Q/sub y/ 0-0 scattering can be identified and a helper mode is evident. A term enhancement predominates, with B/sub 1g/ and B/sub 2g/ modes enhanced because of a Jahn-Teller distortion of the excited state. The resonance studies, together with electronic absorption spectra and published theoretical studies, confirm that the Q band in ..cap alpha..-CuPc is largely due to an allowed ..pi..-..pi..* transition associated mainly with the macrocycle and inner five-membered rings of the isoindole groups. 25 references, 5 figures, 2 tables.

  15. Microwave, infrared and Raman spectra and structure of 2-nitropropane

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Smoother Smith, J. A.; Li, Y. S.; Wasacz, F. M.

    1983-05-01

    The microwave spectrum of 2-nitropropane, C 3H 7NO 2, has been investigated from 12.5 to 40.0 GHz. Only α-type transitions were observed and R-branch assignments are made for the ground vibrational state. The effective rotational constants are found to have the following values: A = 5132 ± 12, B = 2895.70 ± 0.14, and C = 2706.51 ± 0.12 MHz. It is shown that these rotational constants are only consistent for the conformer where one NO bond eclipses the CH bond. From a diagnostic least-squares adjustment to fit these three rotational constants along with reasonably assumed structural parameters for the isopropyl moiety, excluding the CC distance, the following parameters are obtained: r( C C) = 1.533 ± 0.006 Å, r( C N) = 1.508 ± 0.018 Å, r( N O) = 1.218 ± 0.015 Å, ∩ CNO = 116.8 ± 1.5°, and ∩ CCN = 108.9 ± 1.7° . From a temperature study of the microwave spectrum, it appears that the NO 2 group is nearly freely rotating. The IR (3500-80 cm -1) and Raman (3500-10 cm -1) spectra have been recorded for both the gaseous and solid phases of 2-nitropropane. The Raman spectrum of the liquid has also been recorded and qualitative depolarization values obtained. All of the normal modes are assigned based on band contours, depolarization values, and group frequencies. The vibrational data are also consistent with a nearly freely rotating NO 2 group. These results are compared to the similar quantities for several related molecules.

  16. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  17. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  18. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications

    NASA Astrophysics Data System (ADS)

    Magnotti, G.; KC, U.; Varghese, P. L.; Barlow, R. S.

    2015-09-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  19. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  20. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.

    PubMed

    Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C

    2012-09-27

    Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS. PMID:22946645

  1. Real-Time Analysis of Raman Spectra for Temperature Field Characterization in Aircraft Exhaust Noise Studies

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Nelson, D. D.; Annen, K.; Locke, R. J.; Wernet, M.

    2009-06-01

    Raman scattering has long been used as a non-intrusive diagnostic of temperatures in combustion exhaust flows, using a variety of spectral analysis techniques. As part of their ongoing program of experiments to support development of computer codes that calculate exhaust flow fields and predict jet noise, NASA Glenn Research Center is developing a laser Raman diagnostic system that will measure mean temperatures and temperature fluctuations in hot and cold jet flows. We describe a software package, ART (Analysis for Raman Temperatures), that analyzes Raman spectra of air for temperature and density using vibrational or resolved or unresolved rotational bands, presenting results in a variety of real-time displays. Each analysis technique presents its own challenges in obtaining the most precise and accurate values, and we will comment on these issues by exhibiting example spectra of each type. The ART program is closely related to another Aerodyne software package (TDLWintel) which automates the acquisition and analysis of tunable laser absorption spectra.

  2. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    SciTech Connect

    Ringholm, Magnus; Ruud, Kenneth; Bast, Radovan; Oggioni, Luca; Ekström, Ulf

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  3. Fluorescence rejection in Raman spectra of Syncrude Sweet Blend distillation fractions.

    PubMed

    Michaelian, Kirk H; Yuan, Hongqi; Hall, Robert H; Bulmer, J Tim

    2005-11-01

    Four techniques for the reduction or elimination of fluorescence from Raman spectra of Syncrude process samples were examined in this study. These methods are based on the retrieval of Raman bands from differential, or derivative spectra. Differential data were generated by subtracting similar spectra of a given sample obtained in three ways: (a) shifted detection utilizing an array detector and two successive spectrometer settings; (b) shifted excitation (dispersive Raman) where the two spectra are recorded using neighbouring laser lines and ordinary photon counting; (c) shifted excitation (FT-Raman) in which the laser frequency is changed in software before acquisition of the second spectrum. In addition to these differential techniques, derivative spectra were acquired directly with a dispersive Raman system by modulating the wavelength during scanning. These fluorescence rejection methods were applied to two groups of Syncrude Sweet Blend distillation fractions. For light gas oils (boiling range, 195-343 degrees C) the ratio of monocyclic and bicyclic aromatic species was determined and bands due to aliphatic CH(n) groups were characterized. Heavy gas oils (343-524 degrees C) yielded bands that allowed quantitation of monocyclic, bicyclic and total aromatic groups. Bands due to aliphatics were also identified for the heavy gas oils. These results constitute a significant advance compared to the information obtainable using conventional dispersive and FT-Raman spectroscopy for the analysis of hydrocarbon distillation fractions. PMID:16257762

  4. Hydrogen bonding effects on infrared and Raman spectra of drug molecules

    NASA Astrophysics Data System (ADS)

    Bondesson, Laban; Mikkelsen, Kurt V.; Luo, Yi; Garberg, Per; Ågren, Hans

    2007-02-01

    Infrared and Raman spectra of three drug molecules, aspirin, caffeine and ibuprofen, in gas phase and in aqueous solution have been simulated using hybrid density functional theory. The long range solvent effect is modelled by the polarizable continuum model, while the short range hydrogen bonding effects are taken care of by the super-molecular approach with explicit inclusion of water molecules. The calculated spectra are found to compare well with available experimental results. The agreement obtained make grounds for proposing theoretical modeling as a tool for characterizing changes in the bonding environments of drug molecules in terms of particular variations in their IR and Raman spectra.

  5. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    SciTech Connect

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S.

    2015-03-15

    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  6. Raman spectra of Martian glass analogues: a tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena O.; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-04-01

    We present a study on the systematic changes of Raman spectra of a series of glasses as a function of their chemistry. These glass compositions are considered as analogues for rock materials identified on Mars. We performed a diffusion experiment between an iron-rich basaltic and a rhyolitic melt under reducing conditions to produce a wide range of intermediate chemical compositions. We then systematically acquired Raman spectra of the intermediate composition glasses across the diffusion interface and correlate them with the corresponding chemical compositions derived by electron microprobe analysis. Using a linear mixing model for the spectral evolution as a function of chemistry, we fitted a Raman parameter to each spectrum to estimate the chemical composition of each glass. The Raman model was verified using external natural and synthetic samples. This study: 1) expands the Raman database of silicate glasses including alkali and iron-rich compositions as expected to be found on Mars; and 2) contributes to develop Raman spectroscopy as a quantitative tool in geological and planetary science to estimate the chemistry of glasses on a microscopic level. Moreover, as Raman spectrometers have been developed for two forthcoming Mars missions [ExoMars program (2016-2018) and Mars 2020], with the benefit of this calibration, Raman spectroscopy will allow rapid, in-situ and remotely controlled identification and investigation of silicate glasses on future extraterrestrial rover missions.

  7. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    NASA Astrophysics Data System (ADS)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  8. Raman spectra of haloselenate(IV) ions—the SeO 2Br - anion

    NASA Astrophysics Data System (ADS)

    Milne, John; Lahaie, Pierre

    Compounds of the bromoselenite ion, MSeO 2Br(M + = φ 4Sb +, n-Bu 4N +) have been prepared and their Raman spectra studied. The spectra are consistent with C s symmetry. A normal coordinate analysis of the spectra of SeO 2F -, SeO 2Cl - and SeO 2Br - has been done and force constants determined. The SeX bonds are shown to be remarkably weak.

  9. Assignment of the Raman spectra of some deuterated-BEDT-TTF superconductors.

    SciTech Connect

    Eldridge, J. E.; Wang, H. H.; Kini, A. M.; Schlueter, J. A.; Materials Science Division; Univ. of British Columbia

    2002-08-01

    We present the room-temperature Raman spectra of both the protonated and deuterated forms of kappa-(BEDT-TTF)2Cu[N(CN)2]Br, kappa-(BEDT-TTF)2Cu(NCS)2 and beta-(BEDT-TTF)2I3. Along with data for the neutral BEDT-TTF molecule these spectra are used to assign the many features in the spectra of the deuterated compounds.

  10. Effect of gate-induced doping on the Raman spectra of disordered graphene

    NASA Astrophysics Data System (ADS)

    Childres, Isaac; Jauregui, Luis; Chen, Yong; Purdue Univeristy, Yong P. Chen Group Team

    2013-03-01

    We report a Raman spectroscopy study of graphene field-effect transistors (GFET) after exposure to electron-beam irradiation, used to introduce a controlled amount of defects in graphene. Raman spectra are taken over a range of temperatures (4-300 K), back gate voltages and electron-beam exposures. We observe that the intensity ratio between Raman ``D'' and ``G'' peaks,ID /IG , commonly used to determine the amount of disorder in graphene, not only changes with the irradiation dosage, but also with gate-induced doping. At low temperature (4 K), we observe a peak in the plot of ID /IG versus back gate voltage at the Dirac point of the GFET. As the temperature increases, the back gate voltage at which this peak occurs decreases relative to the Dirac point. Our findings may be valuable for understanding the Raman spectra and electron-phonon physics in doped and disordered graphene.

  11. Acquisition of Raman spectra of amino acids using portable instruments: outdoor measurements and comparison.

    PubMed

    Culka, A; Jehlička, J; Edwards, H G M

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation. PMID:20863748

  12. Acquisition of Raman spectra of amino acids using portable instruments: Outdoor measurements and comparison

    NASA Astrophysics Data System (ADS)

    Culka, A.; Jehlička, J.; Edwards, H. G. M.

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation.

  13. Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries

    SciTech Connect

    Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.; Johnson, Timothy J.; Su, Yin-Fong; Ball, Christopher D.; Smith, Barry; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

  14. Pre-resonance Raman spectra of some simple gases. [sulfur oxides, hydrogen sulfide, and nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Low, P. W.

    1974-01-01

    The pre-resonance Raman spectra of SO2, N2O, and H2S were investigated using the 4880 A, 4727 A, and 4579 A lines of the argon ion laser. Although these molecules have electronic absorption bands in the near ultraviolet, none exhibit any pre-resonance enhancement within our experimental error of + or - 10%. Possible explanations taking into account the current theories for resonance Raman are discussed.

  15. Fourier-transform Raman spectra of ivory III: identification of mammalian specimens

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Farwell, D. W.; Holder, J. M.; Lawson, E. E.

    1997-11-01

    The FT-Raman spectra of six mammalian ivories, other than elephant and mammoth, are presented and spectral differences formulated into a protocol for the identification of animal species from the ivory samples. In this study, sperm whale, walrus, wart hog, narwhal, hippopotamus and domestic pig are considered. The results, which are obtained non-destructively from a variety of specimens, suggest that FT-Raman spectroscopy provides a potentially useful method for the identification of mammalian ivory.

  16. Effects of pathology dyes on Raman bone spectra

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Esmonde-White, Francis W. L.; Morris, Michael D.; Roessler, Blake J.

    2013-05-01

    We report an overlooked source of artifacts for clinical specimens, where unexpected and normally negligible contaminants can skew the interpretation of results. During an ongoing study of bone fragments from diabetic osteomyelitis, strong Raman signatures were found, which did not correspond with normal bone mineral or matrix. In a bone biopsy from the calcaneus of a patient affected by diabetic osteomyelitis, Raman microspectroscopic analysis revealed regions with both abnormal mineral and degraded collagen in addition to normal bone. Additional bands indicated a pathological material. Stenotrophomonas maltophilia was identified in the wound culture by independent microbiologic examination. We initially assigned the unusual bands to xanthomonadin, a bacterial pigment from S. maltophilia. However, the same bands were also found more than a year later on a second specimen that had been noticeably contaminated with pathology marking dye. Drop deposition/Raman spectroscopy of commonly used pathology dyes revealed that a blue tissue-marking dye was responsible for the unusual bands in both specimens, even in the first specimen where there was no visible evidence of contamination.

  17. Simulation of the resonance Raman spectra for 5-halogenated (F, Cl, and Br) uracils.

    PubMed

    Sun, Shuai; Brown, Alex

    2015-04-30

    The resonance Raman spectra of the 5-halogenated (F, Cl, and Br) uracils are simulated via the Herzberg-Teller (HT) short-time dynamics formalism. The gradient of the S1 excited state is computed at the CAMB3LYP/aug-cc-pVTZ level of theory in the conductor-like polarizable continuum model for water (C-PCM, H2O), based on the equilibrium geometry determined using PBE0/aug-cc-pVTZ in H2O (C-PCM). The simulated resonance Raman spectra show good agreement with the experimental spectra in terms of both peak positions and intensities. The differences between the resonance Raman spectra of the three 5-halogenated uracils, caused by the effect of halogen substitution, are examined in terms of ground-state normal-mode eigenvectors and excited-state Cartesian gradients, according to the HT formalism. The differences in the normal-mode eigenvectors and excited-state Cartesian gradients between 5-fluorouracil and 5-chlorouracil are used to interpret the dissimilarity between their resonance Raman spectra. Meanwhile, the similarity between the spectra of 5-chlorouracil and 5-bromouracil is explained by the correspondence between their normal modes and excited-state gradients. PMID:25856119

  18. Theoretical confirmation of the experimental Raman spectra of the lower-order diamondoid molecule: cyclohexamantane (C 26H 30)

    NASA Astrophysics Data System (ADS)

    Richardson, Steven L.; Baruah, Tunna; Mehl, Michael J.; Pederson, Mark R.

    2005-02-01

    The lower-order diamondoid hydrocarbon molecule, cyclohexamantane (C 26H 30), has been recently isolated from distilled Gulf Coast petroleum. While the structure of C 26H 30 has been confirmed through X-ray diffraction, mass spectroscopy, and 1H/ 13C NMR spectroscopy, its vibrational Raman spectra has only been identified through an indirect comparison with the experimental Raman spectra for adamantane and diamond. We used density-functional theory (DFT) to calculate a Raman spectra whose frequencies and relative intensities are in excellent agreement with the experimental Raman spectra for C 26H 30, thus providing direct vibrational proof of its existence.

  19. Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping

    SciTech Connect

    Childres, Isaac; Jauregui, Luis A.; Chen, Yong P.

    2014-12-21

    We report a Raman spectroscopy study of graphene field-effect transistors with a controlled amount of defects introduced in graphene by exposure to electron-beam irradiation. Raman spectra are taken at T = 8 K over a range of back gate voltages (V{sub g}) for various irradiation dosages (R{sub e}). We study effects in the Raman spectra due to V{sub g}-induced doping and artificially created disorder at various R{sub e}. With moderate disorder (irradiation), the Raman G peak with respect to the graphene carrier density (n{sub FE}) exhibits a minimum in peak frequency and a maximum in peak width near the charge-neutral point (CNP). These trends are similar to those seen in previous works on pristine graphene and have been attributed to a reduction of electron-phonon coupling strength (D) and removal of the Kohn anomaly as the Fermi level moves away from the CNP. We also observe a maximum in I{sub 2D}/I{sub G} and weak maximum in I{sub D}/I{sub G} near the CNP. All the observed dependences of Raman parameters on n{sub FE} weaken at stronger disorder (higher R{sub e}), implying that disorder causes a reduction of D as well. Our findings are valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene.

  20. Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping

    NASA Astrophysics Data System (ADS)

    Childres, Isaac; Jauregui, Luis A.; Chen, Yong P.

    2014-12-01

    We report a Raman spectroscopy study of graphene field-effect transistors with a controlled amount of defects introduced in graphene by exposure to electron-beam irradiation. Raman spectra are taken at T = 8 K over a range of back gate voltages (Vg) for various irradiation dosages (Re). We study effects in the Raman spectra due to Vg-induced doping and artificially created disorder at various Re. With moderate disorder (irradiation), the Raman G peak with respect to the graphene carrier density (nFE) exhibits a minimum in peak frequency and a maximum in peak width near the charge-neutral point (CNP). These trends are similar to those seen in previous works on pristine graphene and have been attributed to a reduction of electron-phonon coupling strength (D) and removal of the Kohn anomaly as the Fermi level moves away from the CNP. We also observe a maximum in I2D/IG and weak maximum in ID/IG near the CNP. All the observed dependences of Raman parameters on nFE weaken at stronger disorder (higher Re), implying that disorder causes a reduction of D as well. Our findings are valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene.

  1. Theoretical study of the resonance Raman spectra for meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-hui; Wei, Wen-mei; Zhu, Li-li; Shi, Qiang

    2014-12-01

    Applying time-dependent density functional theory (TDDFT), we study the resonance Raman spectra for the Q and B bands of the meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin (H2TBPP) molecule including both Raman A term (Franck-Condon term) and Raman B term (Herzberg-Teller term) contributions. It is found that Raman B term can be one order of magnitude larger than Raman A term and dominates resonance Raman for the Q band resonance. In comparison with the recent experimental Raman spectra of H2TBPP with incident light frequency 532 nm, we predict the absence of 1580 cm-1 band in the resonance Raman spectra which agrees well with the experimental results, whereas the previous theoretical calculation using non-resonance strategy failed to do so.

  2. Optical and dielectric properties of lithium iodate based on the IR reflection and Raman scattering spectra

    SciTech Connect

    Avdienko, K.I.; Puchkovskaya, G.A.; Semenov, A.E.; Tokmakova, G.N.; Frolkov, Yu.A.

    1987-11-01

    The authors investigate the reflection and Raman scattering spectra of the alpha-lithium iodate monocrystal and also determine the real and imaginary parts of the dielectric constant, the refractive index, the absorption coefficient, the nonlinear optical behavior, the oscillator strengths, and the damping constants based on the Kramers-Kroenig relations. The effect of the method used to work the surface and the polydispersity of the sample on the form of the spectral bands is also investigated. The Raman spectra of lithium iodate polycrystals were studied for comparative purposes. The contribution of longitudinal and transverse as well as anisotropic phonons and their vibrations in the lattice to the Raman spectra is also assessed.

  3. Experimental and theoretical investigation of pressure-dependent Raman spectra of triaminotrinitrobenzene (TATB) at high pressures

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron; Grant, Christian; Zaug, Joseph; Crowhurst, Jonathan; Oleynik, Ivan

    2015-06-01

    The experimental pressure dependent Raman spectra of triamino-trinitrobenzene (TATB) are determined up to 27 GPa, and compared with those obtained using density functional theory (DFT). The density functional perturbation theory calculations include the Grimme empirical van der Waals correction, as well as corrections for both thermal and zero-point energy contributions to pressure. DFT calculations of the crystal structure of TATB at ambient conditions, the equation of state, and Raman spectra up to 25 GPa are in good agreement with experiment. Pressure-dependence of specific vibrational modes is discussed in detail. Further, the comparison of experimental and calculated Raman spectra of TATB offers evidence that no first-order polymorphic phase transition occurs at least up to 25 GPa.

  4. Parallel acquisition of Raman spectra from a 2D multifocal array using a modulated multifocal detection scheme

    NASA Astrophysics Data System (ADS)

    Kong, Lingbo; Chan, James W.

    2015-03-01

    A major limitation of spontaneous Raman scattering is its intrinsically weak signals, which makes Raman analysis or imaging of biological specimens slow and impractical for many applications. To address this, we report the development of a novel modulated multifocal detection scheme for simultaneous acquisition of full Raman spectra from a 2-D m × n multifocal array. A spatial light modulator (SLM), or a pair of galvo-mirrors, is used to generate m × n laser foci. Raman signals generated within each focus are projected simultaneously into a spectrometer and detected by a CCD camera. The system can resolve the Raman spectra with no crosstalk along the vertical pixels of the CCD camera, e.g., along the entrance slit of the spectrometer. However, there is significant overlap of the spectra in the horizontal pixel direction, e.g., along the dispersion direction. By modulating the excitation multifocal array (illumination modulation) or the emitted Raman signal array (detection modulation), the superimposed Raman spectra of different multifocal patterns are collected. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra using a postacquisition data processing algorithm. This development leads to a significant improvement in the speed of acquiring Raman spectra. We discuss the application of this detection scheme for parallel analysis of individual cells with multifocus laser tweezers Raman spectroscopy (M-LTRS) and for rapid confocal hyperspectral Raman imaging.

  5. Quantum-mechanical analysis of the intensity distribution in spectra of resonant Raman scattering spectra of aqueous solutions of tyrosine

    NASA Astrophysics Data System (ADS)

    Burova, T. G.; Shcherbakov, R. S.

    2016-05-01

    Quantum-mechanical calculations of the intensity distribution in the resonant Raman scattering spectra of aqueous solutions of tyrosine excited by laser radiation with wavelengths of 244, 229, 218, 200, and 193 nm, as well as in the nonresonant Raman scattering spectrum excited at a wavelength of 488 nm, are performed. Satisfactory agreement is achieved between the calculation results and the experimental data. It is shown that the changes in the intensity distribution observed in the spectra with a change in the excitation wavelength from 244 to 193 nm correlate with the determined changes in the contribution made by excited electronic states into the scattering tensor components. It is noted that it is necessary to take into account the Herzberg-Teller effect and that the number of excited electronic states taken into account considerably affects the calculated relative intensities of lines. The possibility of existence of several tyrosine conformers in aqueous solution at room temperature is shown.

  6. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

  7. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT.

    PubMed

    Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Kovalenko, V I

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614cm(-1) in the experimental IR spectrum and by bands at 3327, 3241cm(-1) in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular NH⋯S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer. PMID:27179692

  8. [Raman spectra characteristics of alunite in the Zijinshan gold-copper deposit].

    PubMed

    Wang, Cui-Zhi; Xiong, Xin

    2014-02-01

    The Zijinshan gold-copper deposit is the first one of high sulfidation epithermal hydrothermal deposits. The gold bodies up, and the copper bodies down. The gold bodies mainly occur above the ground water table associated with strong silicification, and the copper bodies mainly occur below the ground water table associated with alunitization. The alunite of the Zijinshan gold-copper deposit has four types of occurrence status, that is the altered rock type, the intergrowth-with-Cu-sulphide type, the vein type and the powder type. Different types of the alunite are of different Raman spectra characteristics and fluorescence scattering background. Laser Raman spectra of inclusions in the alunite show that: (1) The characteristics of the Laser Raman spectra of the alunite are of characteristic spectral bands of alunite, just fluorescent scattering weaken gradually from the altered rock type, the intergrowth-with-Cu-sulphide type to the vein type; the alunite in the Powder type has different bands of the Laser Raman spectra relative to the former three types, the intensity of each band is weaker, and it's fluorescent scattering intensity is strongger. (2) The bands in 100-700 cm(-1) of the Laser Raman spectra can be used as "fingerprint" bands indicating the condition of the cation replacement in the molecular structure of alunite. The intensities at 161 and 234 peak change obviously in the bands of the alunite in the altered rock type, which indicating a wide replacement between K and Na; the intensities at 381 and 484 peak in the bands of the alunite in the intergrowth-with-Cu-sulphide type change significantly, indicating Al can be replaced with Cu, Ga, etc.; the larger and stable intensities of the alunite in the vein type in the bands at the peaks about 161, 234, 484, 508, etc. indicate that there are less chances with the replacement between K and Na, Al and Si; fluorescence scatorescent scattering is very strong and the intensity of each band is weaker in the

  9. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Singh, J.P.; Yueh, F.Y.; Kao, W.; Cook, R.L. )

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl ([chi][sub nr][sup HCl]), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  10. Investigation of the spectra of luminescence and Raman scattering in water and chlorophyll "a" excited by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Biryukova, Yu. S.; Ilyin, A. A.; Golik, S. S.; Mayor, A. Y.

    2015-11-01

    The Raman spectra of femtosecond laser pulses in distilled and tap water, and luminescence spectra of aqueous solutions containing dissolved organic matter, chlorophyll "a" and biological objects excited by ultra-short laser pulses was investigated.

  11. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  12. Comparative study of resonance Raman and surface-enhanced resonance Raman chlorophyll a spectra using soret and red excitation

    SciTech Connect

    Thomas, L.L.; Kim, Jaeho; Cotton, T.M. )

    1990-12-05

    Surface-enhanced resonance Raman scattering (SERRS) spectra are reported for chlorophyll a adsorbed on a silver electrode at 298 and 77 K with 406.7-, 457.9-, 514.5-, and 647.1-nm excitation. Submerging the electrode in degassed water at 298 K was found to improve the spectral quality by minimizing sample heating and photooxidation. Spectral intensities and peak resolutions were greater at all excitation wavelengths at liquid nitrogen temperature. Most significantly, roughened silver at the low temperature quenched the fluorescence accompanying red excitation and minimized sample photooxidation, resulting in richly detailed SERRS spectra of chlorophyll a. The close correspondence between chlorophyll a resonance Raman (RR) and SERRS spectra suggests that an electromagnetic mechanism is the major source of the surface enhancement, rather than a chemical mechanism (e.g. a charge-transfer complex between chlorophyll a and the metal). The spectral similarities, together with the presence of the MgN{sub 4} vibration band in the SERRS spectra, also provide evidence that structural alterations (e.g. cleavage of ring V or loss of Mg) do not occur in chlorophyll a after adsorption at the electrode surface. A distinctive SERRS spectrum was obtained for each excitation wavelength. Selective excitation within the various electronic transitions can thus be utilized to verify assignments of the vibrational modes of chlorophyll a and to monitor its interactions and photochemical behavior in biomimetic systems.

  13. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-02-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm-1) with spectral resolution of 10 cm-1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging.

  14. Broadband coherent Raman spectroscopy running at 24,000 spectra per second

    PubMed Central

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s – more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique’s strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200–1500 cm−1) with spectral resolution of 10 cm−1 at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  15. Broadband coherent Raman spectroscopy running at 24,000 spectra per second.

    PubMed

    Hashimoto, Kazuki; Takahashi, Megumi; Ideguchi, Takuro; Goda, Keisuke

    2016-01-01

    We present a Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy technique that achieves broadband CARS measurements at an ultrahigh scan rate of more than 20,000 spectra/s - more than 20 times higher than that of previous broadband coherent Raman scattering spectroscopy techniques. This is made possible by an integration of a FT-CARS system and a rapid-scanning retro-reflective optical path length scanner. To demonstrate the technique's strength, we use it to perform broadband CARS spectroscopy of the transient mixing dynamics of toluene and benzene in the fingerprint region (200-1500 cm(-1)) with spectral resolution of 10 cm(-1) at a record high scan rate of 24,000 spectra/s. Our rapid-scanning FT-CARS technique holds great promise for studying chemical dynamics and wide-field label-free biomedical imaging. PMID:26875786

  16. Raman spectra of adsorbed layers on space shuttle and AOTV thermal protection system surface

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1987-01-01

    Surfaces of interest to space vehicle heat shield design were struck by a 2 W argon ion laser line while subjected to supersonic arc jet flow conditions. Emission spectra were taken at 90 deg to the angle of laser incidence on the test object. Results showed possible weak Raman shifts which could not be directly tied to any particular parameter such as surface temperature or gas composition. The investigation must be considered exploratory in terms of findings. Many undesirable effects were found and corrected as the project progressed. For instance, initial spectra settings led to ghosts which were eliminated by closing the intermediate of filter slit of the Spex from 8 to 3 mm. Further, under certain conditions, plasma lines from the laser were observed. Several materials were also investigated at room temperature for Raman shifts. Results showed Raman shifts for RCC and TEOS coated materials. The HRSI materials showed only weak Raman shifts, however, substantial efforts were made in studying these materials. Baseline materials showed the technique to be sound. The original goal was to find a Raman shift for the High-temperature Reusable Surface Insulation (HRSI) Reaction Cured borosilicate Glass (RCG) coated material and tie the amplitude of this peak to Arc jet conditions. Weak Raman shifts may be present, however, time limitations prevented confirmation.

  17. High pressure Raman spectra of monoglycine nitrate single crystal

    NASA Astrophysics Data System (ADS)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.

    2016-05-01

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  18. High pressure Raman spectra of monoglycine nitrate single crystal.

    PubMed

    Carvalho, J O; Moura, G M; Dos Santos, A O; Lima, R J C; Freire, P T C; Façanha Filho, P F

    2016-05-15

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm(-1) point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal. PMID:26967511

  19. Organic Process Technology Valuation: Cyclohexanone Oxime Syntheses

    ERIC Educational Resources Information Center

    Cannon, Kevin C.; Breen, Maureen P.

    2010-01-01

    Three contemporary processes for cyclohexanone oxime synthesis are evaluated in a case study. The case study introduces organic chemistry students to basic cost accounting to determine the most economical technology. Technical and financial aspects of these processes are evaluated with problem-based exercises that may be completed by students…

  20. Raman spectra of the different phases in the CaSO4-H2O system.

    PubMed

    Prieto-Taboada, Nagore; Gómez-Laserna, Olivia; Martínez-Arkarazo, Irantzu; Olazabal, María Ángeles; Madariaga, Juan Manuel

    2014-10-21

    Although it is known that the CaSO4/H2O system is formed by at least five different phases, this fact is not correctly documented in Raman spectroscopy studies. The main problem detected in the literature was the incorrect definition of the anhydrite, which produced the assignation of different spectra for a single compound. In this sense, two different spectra were clearly identified from the bibliography, which showed different main Raman bands at 1017 or 1025 cm(-1), although anhydrite could be present even as three different polymorphous species with different structures. A better understanding of the whole system obtained from a review of the literature allowed new conclusions to be established. Thanks to that revision and the development of different thermodynamical experiments by Raman spectroscopy, the Raman spectra of each phase were successfully identified for the first time. In this way, the main Raman bands of gypsum, bassanite, anhydrite III, anhydrite II and anhydrite I were identified at 1008, 1015, 1025, 1017 and 1017 cm(-1), respectively. To conclude this work, the contradictions found in literature were critically summarized. PMID:25226433

  1. Sialylation sensitive bands in the Raman spectra of oligosaccharides and glycoproteins

    NASA Astrophysics Data System (ADS)

    Oleinikov, V.; Kryukov, E.; Kovner, M.; Ermishov, M.; Tuzikov, A.; Shiyan, S.; Bovin, N.; Nabiev, I.

    1999-05-01

    N-Acetylneuraminic (sialic) acid which plays a key role in process of cell recognition and interaction was studied by Raman spectroscopy. It was revealed that the strong band at 873 cm -1 arising from the glycerol fragment vibrations can be used as a Raman marker of sialic acid. In the Raman spectra of oligosaccharides and glycoproteins this band is observed at 880 cm -1. The strong dependence of the 880 cm -1 band intensity on the sialic acid ( Sia) content in α 1-acid glycoprotein was shown. The data demonstrate the possibility to use Raman spectroscopy approach as a simple and non-destructive assay for the rapid registration and quantification of Sia in the glycoproteins and on the membranes of the living cells.

  2. Resonance Raman spectra of some radiolytically prepared halogen derivatives of para-benzosemiquinone radical anion

    SciTech Connect

    Tripathi, G.N.R.; Schuler, R.H.

    1982-03-01

    The resonance Raman spectra have been obtained on radiolytically and chemically prepared halogen derivatives (chloro-, bromo-, 2.5 dichloro-, tetra chloro-, and tetra bromo-) of p-benzosemiquinone radical anion. Excitation is in the moderately intense absorption band at 430--460 nm. All Raman spectra show a strongly resonance enhanced and polarized line corresponding to a vibrational frequency of 1590--1620 cm/sup -1/ which is assigned to the Wilson phenyl mode 8a (CC stretch). A number of weaker lines are also observed and their assignment discussed. The electronic transitions in resonance are identified as /sup 2/B/sub 3g/--/sup 2/B/sub 1u/ (in D/sub 2h/ point group) in view of the resonance Raman band intensities. This supports the assignment by Harada based on ASMO CI calculations which has recently been in dispute.

  3. Effect of disordering in rare earth titanates on their Raman spectra

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1986-09-01

    The authors study the rare earth titanates obtained by quenching from the melt using Raman spectroscopy. Secimens with the general formula Ln/sub 2/Ti/sub 2/O/sub 7/ and Ln/sub 2/TiO/sub 5/ (Ln = La to Lu, Y) were prepared by melting the initial oxides on a Uran beam-heating unit, followed by quenching on a cooled substrate. The Raman spectra were excited by an argon laser and recorded by means of a double monochromator in the photon counting regime. With an increase in the rate of quenching the structure was altered for certain specimens, this being established from the x-ray diffraction patterns and the Raman spectra.

  4. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    SciTech Connect

    Aleksa, V. Ozerenskis, D.; Pucetaite, M.; Sablinskas, V.; Cotter, C.; Guirgis, G. A.

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  5. Coherent anti-Stokes Raman spectroscopy - Spectra of water vapor in flames

    NASA Technical Reports Server (NTRS)

    Hall, R. J.; Shirley, J. A.; Eckbreth, A. C.

    1979-01-01

    The results of experimental measurements of the coherent anti-Stokes Raman spectra of water vapor in flames are reported. A pulsed, frequency-doubled neodymium laser was used to supply the pump beam and to pump a dye laser to provide a broadband Stokes beam at 6600 A. Spectra were obtained in the postflame region of a premixed methane-air flame in the Raman frequency shift region of the symmetric stretch mode (3651.7 kaysers) at an approximate temperature of 1675 K. A theoretical calculation of the coherent anti-Stokes Raman spectrum of water vapor at this temperature was made, taking into account only isotropic Q-branch transitions, and using the energy level data of Floud et al. (1976). The theoretical prediction is shown essentially to reproduce all qualitative features of the experimental spectrum, and to exhibit a strong temperature dependence.

  6. Effect of pressure on the Raman spectra of solids. 2. Pyridine

    SciTech Connect

    Heyns, A.M.; Venter, M.W.

    1985-10-10

    Two modifications of pyridine have been identified when the liquid is solidified at 10 kbar in a diamond anvil cell at 300 K. The effect of pressure on the Raman spectra of these modifications is reported. The one modification is crystalline and characterized by narrow and well-defined lattice modes and undergoes a phase transition at 20 kbar, while the other has fewer and much broader lattice vibrations. The Raman spectra of none of these modifications are in agreement with the space group reported for solid pyridine obtained by cooling that liquid at atmospheric pressures. The pressure dependence of the Raman bands of the crystalline phase indicates that it possibly corresponds to the monoclinic phase II in planar, aromatic molecules such as benzene, while the other modification possibly resembles that glassy phase observed in infrared experiments. The internal modes of solid pyridine in all the phases closely resemble those of the liquid. 31 references, 2 figures, 3 tables.

  7. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  8. Theoretical Confirmation of the Experimental Raman Spectra of the Diamondoid Molecule: Cyclohexamantane (C26H30)

    NASA Astrophysics Data System (ADS)

    Richardson, Steven L.; Baruah, Tunna

    2005-03-01

    Diamondoids (C4n+6H4n+12) are rigid, cage-like hydrocarbon molecules which are superimposable upon the diamond crystal structure. For n=1, we have the simplest diamondoid, adamantane C10H16. While most of the diamondoids for n<=3 have been synthesized in the lab, routes for preparing larger diamondoids for n>4 have not yet been realized. The diamondoid, cyclohexamantane (C26H30), has recently been isolated from distilled Gulf Coast petroleum.[1] While its structure has been confirmed through x-ray diffraction, mass spectroscopy, and ^1H/^13C NMR spectroscopy, its vibrational Raman spectra has only been identified through an indirect comparison with the experimental Raman spectra for adamantane and diamond. We have used density-functional theory (DFT) to calculate a Raman spectra which is in excellent agreement with the experimental Raman spectra for C26H30, thus providing direct vibrational proof of its existence.[2] ^1J. E. P. Dahl et al., Angew. Chem. Int. Ed. 42, 2040 (2003). ^2S. L. Richardson, T. Baruah, M. J. Mehl, and M. R. Pederson, accepted for publication in Chem. Phys. Lett.

  9. Simulations of Two-dimensional Infrared and Stimulated Resonance Raman Spectra of Photoactive Yellow Protein

    PubMed Central

    Preketes, Nicholas K; Biggs, Jason D; Ren, Hao; Andricioaei, Ioan; Mukamel, Shaul

    2012-01-01

    We present simulations of one and two-dimensional infrared (2DIR) and stimulated resonance Raman (SRR) spectra of the dark state (pG) and early red-shifted intermediate (pR) of photoactive yellow protein (PYP). Shifts in the amide I and Glu46 COOH stretching bands distinguish between pG and pR in the IR absorption and 2DIR spectra. The one-dimensional SRR spectra are similar to the spontaneous RR spectra. The two-dimensional SRR spectra show large changes in cross peaks involving the C=O stretch of the two species and are more sensitive to the chromophore structure than 2DIR spectra. PMID:24244064

  10. Temperature effects in low-frequency Raman spectra of corticosteroid hormones

    NASA Astrophysics Data System (ADS)

    Minaeva, V. A.; Minaev, B. F.; Baryshnikov, G. V.; Surovtsev, N. V.; Cherkasova, O. P.; Tkachenko, L. I.; Karaush, N. N.; Stromylo, E. V.

    2015-02-01

    Experimental Raman spectra of the corticosteroid hormones corticosterone and desoxycorticosterone are recorded at different temperatures (in the range of 30-310 K) in the region of low-frequency (15-120 cm-1) vibrations using a solid-state laser at 532.1 nm. The intramolecular vibrations of both hormones are interpreted on the basis of Raman spectra calculated by the B3LYP/6-31G(d) density functional theory method. The intermolecular bonds in tetramers of hormones are studied with the help of the topological theory of Bader using data of X-ray structural analysis for crystalline samples of hormones. The total energy of intermolecular interactions in the tetramer of desoxycorticosterone (-49.1 kJ/mol) is higher than in the tetramer of corticosterone (-36.9 kJ/mol). A strong intramolecular hydrogen bond O21-H⋯O=C20 with an energy of -42.4 kJ/mol was revealed in the corticosterone molecule, which is absent in the desoxycorticosterone molecule. This fact makes the Raman spectra of both hormones somewhat different. It is shown that the low-frequency lines in the Raman spectra are associated with skeletal vibrations of molecules and bending vibrations of the substituent at the C17 atom. The calculated Raman spectrum of the desoxycorticosterone dimer allows one to explain the splitting and shift of some lines and to interpret new strong lines observed in the spectra at low temperatures, which are caused by the intermolecular interaction and mixing of normal vibrations in a crystal cell. On the whole the calculated frequencies are in a good agreement with the experimental results.

  11. Radiation damage to Kokchetav UHPM diamonds in zircon: Variations in Raman, photoluminescence, and cathodoluminescence spectra

    NASA Astrophysics Data System (ADS)

    Shimizu, Rentaro; Ogasawara, Yoshihide

    2014-10-01

    We conducted detailed in-situ Raman, photoluminescence (PL) and cathodoluminescence (CL) studies on microdiamonds in a tourmaline-rich quartzofeldspathic rock from the Kokchetav Massif, Kazakhstan. The microdiamonds occur as inclusions in the cores of K-tourmaline and in zoned zircons with varying U contents. The results of 2D Raman mapping of zircon showed that the U-rich parts were more metamictized than the U-poor parts. All the diamonds showed a strong Raman band at approximately 1332 cm- 1, however, the features of the Raman bands were distinctly different depending on the host minerals. On the one hand, diamonds in tourmaline had a sharp Raman band that is similar to that of kimberlite diamonds [full width at half maximum (FWHM): 2-3 cm- 1]. On the other hand, diamonds in zircon had a broad and downshifted band compared to those in tourmaline. In particular, diamonds in U-rich cores of zircons (up to 0.15 wt.% UO2) showed broader and more downshifted Raman bands (FWHMs and peak positions varied up to 9.3 cm- 1 and 1328 cm- 1, respectively), with additional small bands at approximately 1490 cm- 1 and 1630 cm- 1. A negative correlation was observed between the peak position and the FWHM of the principal Raman band of microdiamonds. Furthermore, the PL and CL spectra showed systematic variations. Diamonds in zircons with low to moderate U-concentrations had very strong PL and CL compared to diamonds in U-rich zircons and in tourmalines. Several characteristic peaks appeared in the PL and CL spectra, indicating the presence of irradiation and/or nitrogen-related point defects in the diamonds. PL and CL of microdiamonds in high-U zircon were weak, but still showed irradiation-related peaks. The relationship between the occurrence of microdiamonds (i.e., corresponding to the estimated total α-dose since crystallization) and the Raman, PL, and CL spectral characteristics of microdiamonds strongly suggests that radiation damage predominantly caused by

  12. Breit-Wigner-Fano line shapes in Raman spectra of graphene

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2014-12-01

    Excitation of electron-hole pairs in the vicinity of the Dirac cone by the Coulomb interaction gives rise to an asymmetric Breit-Wigner-Fano line shape in the phonon Raman spectra in graphene. This asymmetric line shape appears due to the interference effect between the phonon spectra and the electron-hole pair excitation spectra. The calculated Breit-Wigner-Fano asymmetric factor 1 /qBWF as a function of the Fermi energy shows a V-shaped curve with a minimum value at the charge neutrality point and gives good agreement with the experimental results.

  13. Studies of the Raman spectra of cyclic and acyclic molecules: Combination and prediction spectrum methods

    NASA Astrophysics Data System (ADS)

    Kim, Taejin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-01

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid. The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  14. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    SciTech Connect

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  15. Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.

    2008-02-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.

  16. The research of Raman spectra measurement system based on tiled-grating monochromator

    NASA Astrophysics Data System (ADS)

    Liu, Li-na; Zhang, Yin-chao; Chen, Si-ying; Chen, He; Guo, Pan; Wang, Yuan

    2013-09-01

    A set of Raman spectrum measurement system, essentially a Raman spectrometer, has been independently designed and accomplished by our research group. This system adopts tiled-grating structure, namely two 50mm × 50mm holographic gratings are tiled to form a big spectral grating. It not only improves the resolution but also reduces the cost. This article outlines the Raman spectroscopy system's composition structure and performance parameters. Then corresponding resolutions of the instrument under different criterions are deduced through experiments and data fitting. The result shows that the system's minimum resolution is up to 0.02nm, equivalent to 0.5cm-1 wavenumber under Rayleigh criterion; and it will be up to 0.007nm, equivalent to 0.19cm-1 wavenumber under Sparrow criterion. Then Raman spectra of CCl4 and alcohol have been obtained by the spectrometer, which agreed with the standard spectrum respectively very well. Finally, we measured the spectra of the alcohol solutions with different concentrations and extracted the intensity of characteristic peaks from smoothed spectra. Linear fitting between intensity of characteristic peaks and alcohol solution concentrations has been made. And the linear correlation coefficient is 0.96.

  17. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  18. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Lv, Chao-Jia; Zhuang, Chun-Qiang; Yi, Li; Liu, Hong; Du, Jian-Guo

    2015-12-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dνi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).

  19. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  20. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam.

    PubMed

    Ling, Lin; Li, Yong-qing

    2013-02-15

    We demonstrate a method for optical trapping and Raman spectroscopy of micron-sized, airborne absorbing particles using a single focused laser beam. A single Gaussian beam at 532 nm is used to trap and precisely manipulate absorbing airborne particles. The fluctuation of the position of the trapped particles is substantially reduced by controlling the power of the laser beam with a position-sensitive detector and a locking circuit. Raman spectra of the position-stabilized particles or clusters are then measured with an objective and CCD spectrograph. PMID:23455087

  1. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  2. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  3. Raman spectra of nitrogen-containing biomarkers obtained using a handheld instrument at winter mountain conditions

    NASA Astrophysics Data System (ADS)

    Culka, Adam; Jehlička, Jan; Čapoun, Tomáå.¡

    2010-05-01

    In this study a performance and feasibility of commercially available handheld Raman spectrometer was tested as an approximation to the Raman spectrometers that are to be used on the future robotic planetary surface exploration missions focused mainly on the search of the traces of life. The conditions on the Alpine test site (low temperature, snowstorm and increased radiation from Sun) were far from the common laboratory conditions and can be considered to be relatively extreme. Well-resolved Raman spectra of examples of mainly nitrogen-containing compounds were acquired using a portable Raman instrument (Ahura First Defender XL) outdoors at a low ambient temperature of -15°C and at an altitude of 2860 metres in the Austrian Alps. The rugged handheld Raman spectrometer tested here is equipped with a 785 nm diode laser and fixed frontal probe. Primary purpose of this type of instruments is to serve as tools for drug and explosives detection. Solid form of formamide, urea, 3-methylpyridine, aniline, 1-(2-aminoethyl)piperazine, indoline as well as two nitrogen-free compounds indene and benzofuran were detected unambiguously under these complex field conditions. Studied compounds were chosen as representatives of aliphatic and aromatic heteroatomic molecules that can potentially be found in the frame of Titan tholins. The main Raman features (strong, medium and partially weak bands) were observed at the correct wavenumber positions (with a spectral resolution 7 - 10 cm-1) in the wavenumber range 200 - 1600 cm-1. The results obtained demonstrate the possibility to apply a miniaturised Raman spectrometer as a key instrument for investigating the presence of nitrogen-containing organic compounds and biomolecules outdoors under low temperature conditions. Within the payload designed by ESA and NASA for future missions, focussing not only on Mars but also on the outer solar system worlds like Titan and Europa, Raman spectroscopy represents an important instrument for the

  4. Structure and Raman spectra in cryolitic melts: simulations with an ab initio interaction potential.

    PubMed

    Cikit, Serpil; Akdeniz, Zehra; Madden, Paul A

    2014-01-30

    The Raman spectra of cryolitic melts have been calculated from molecular dynamics computer simulations using a polarizable ionic potential obtained by force-fitting to ab initio electronic structure calculations. Simulations which made use of this ab initio derived polarizable interaction potential reproduced the structure and dynamical properties of crystalline cryolite, Na3AlF6, rather well. The transferability of the potential model from solid state to the molten state is tested by comparing results for the Raman spectra of melts of various compositions with those previously obtained with empirically developed potentials and with experimental data. The shapes of the spectra and their evolution with composition in the mixtures conform quite well to those seen experimentally, and we discuss the relationship between the bands seen in the spectra and the vibrational modes of the AlFn((3–n)) coordination complexes which are found in the NaF/AlF3 mixtures. The simulations thus enable a link between the structure of the melt as derived through Raman spectroscopy and through diffraction experiments. We report results for quantities which relate to the degree of cross-linking between these coordination complexes and the diffusive properties of ions. PMID:24432905

  5. Polarized Raman spectra of thin films. II. Apparent anomaly of polarization with uniaxially oriented samples

    NASA Astrophysics Data System (ADS)

    Harrand, Monique

    1986-09-01

    With uniaxially oriented thin films it happens that the two polarized Raman spectra given by the E∥ excitation are not alike as could be expected. It is shown that because the exciting beam is slanted inside the film, two components of the electric field are to be considered which give the two ``complex'' polarized Raman spectra: I∥X=(α2XX cos2 r +α2XZ sin2 r)E20 and I∥Y=(α2YX cos2 r +α2YZ sin2 r)E20. With uniaxially oriented samples the intensities can be added, as shown in part I. The values of α2XZ=α2YZ, obtained from the spectra are small in agreement with the calculated values. As these terms decrease when the tilting angle θ of the chains decreases in the case of properly oriented samples, the second terms of I∥X and I∥Y are negligible compared with the first ones, even if cos2 r is small (when the exciting beam is nearly perpendicular to the scattered beam). Therefore, contrary to expectations, the observed spectra are more similar to the (XX) and (XY) spectra than to the (ZX) and (ZY) spectra. The discussion has been carried out with respect to the ν(CH2) vibrations of the acyl chains in phospholipid films and completed with the comparison of the ν(C-C) relative intensities.

  6. [Comparison and analysis of laser Raman spectra of common drinking water].

    PubMed

    Yang, Chang-hu; Yuan, Jian-hui; Zeng, Xiao-ying

    2007-10-01

    In order to detect the drinking water quality in our country at the present time effectively, several brand brands of drinking water on the market and the distilled water that laboratory offered were measured and calculad were measured and calculated. The laser Raman spectra of samples were measured, while the sample's degree of degeneracy polarization at the symmetric stretching peak was calculated from the measurements. Results indicate that the relative intensity of the Raman spectrum and the degree of degeneracy polarization follow the same rule. Through comparison and analysis of the results of measurement and calculation, it is concluded that we can judge the relative content of mineral substance of drinking water by comparing the strengths of laser Raman spectrum characteristic peak and the magnitudes of the sample's degree of degeneracy polarization at the same characteristic peak. This conclusion will provide us a new and effective path to assaying the quality of drinking water. PMID:18306794

  7. Raman spectra of MOCVD-grown ferroelectric PbTiO{sub 3} thin films

    SciTech Connect

    Feng, Z.C.; Kwak, B.S. |; Erbil, A.; Boatner, L.A.

    1993-12-31

    Lead titanate (PbTiO{sub 3}) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO{sub 3}. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO{sub 3} perovskite-oxide crystals and indicative of high crystalline quality. The temperature behavior of the Raman modes, including the so-called ``soft-mode,`` was studied. A ``difference-Raman`` technique was used to distinguish the contributions of the PbTiO{sub 3} film and the KTaO{sub 3} single-crystal substrate.

  8. Raman spectra of crystalline 4Zn, 2Zn, and Na insulin

    NASA Astrophysics Data System (ADS)

    Tensmeyer, Lowell G.; Shields, J. E.

    1990-11-01

    Normal Raman spectra were obtained for three crystalline forms of human insulin: 4Zn, 2Zn, and Zn-free or Na, from 1800-200 cm1. The extraction of a large number of component bands from the heavily overlapped Raman bands was accomplished by Fourier Self Deconvolution and bandfitting. Bands considered to be indicative of protein conformation, including Amide I, Amide III, tyrosine, 5-5, and C-S bands, and some which are relatively insensitive to protein structure, such as phenylalanine and histidine, are compared. The published x-ray structures of 4Zn and 2Zn insulins are used to help interpret the corresponding parameters of the extracted Raman bands, and to suggest structures in the as yet unpublished Na/human insulin crystals.

  9. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes. [Electronic structure

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-01-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm the authors previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 18 references, 8 figures.

  10. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-09-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm our previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 8 figures.

  11. The use of near infrared Fourier Transform techniques in the study of surface enhanced Raman spectra

    NASA Astrophysics Data System (ADS)

    Fleischmann, M.; Sockalingum, D.; Musiani, M. M.

    Near infrared Fourier Transform Raman spectroscopy has been used to study the SERS of a number of electrode-solution interfaces. These measurements are illustrated by the following examples: the adsorption of pyridine on Ag, Cu and An surfaces; the adsorption of ferri- and ferrocyanide ions on An electrodes in two different support electrolytes; the behaviour of the corrosion inhibitors benzotriazole and 2-aminopyrimidine at Cu surfaces. Measurements of the DSERS spectra of pyridine at Ag electrodes and of normal Raman spectra of pyridine at Pt electrodes are also reported. The results are also compared with data taken by conventional methods in the visible region and the advantages of this newly developed technique are assessed.

  12. Raman spectra of probably shock-metamorphosed zircon in structures of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana; Nerovich, Luidmila; Lialina, Luidmila; Il'chenko, Vadim; Bocharov, Vladimir; Kunakkuzin, Evgeny

    2016-04-01

    Zircon crystals were studied by means of Raman spectroscopy from certain structures of the Kola Peninsula, for which impact events are expected according to geological and geochemical data: circular structure in Javrozersky area of the Tanaelv belt and granophyres of Jarva-Varaka layered massif of the Monchegorsky ore district. Zircons from anorthosites of the Javrozersky area showed some features of impact zircons: wavy extinction, blurred "aurora-like" CL image and a presence of additional bands in the Raman spectrum, which may indicate the presence of ZrSiO4 with the scheelite-type structure (reidite) surrounded by zircon material. Zircon crystals of Yavra-Varaka granophyres showed variation of Raman spectra from the core part of crystals with typical zircon Raman pattern to complete absence of spectral bands in the marginal parts and rims. There was also a transition zone between cores and marginal parts of crystals, where the Raman spectrum is "blurred". Such pattern may be associated with the transformation of crystalline zircon to diaplectic glass under the influence of shock metamorphism, since the Jarva-Varaka massif according to geological and geochemical data is compared with the Sudbury structure, for which impact origin is assumed. The work is supported by RSF grant N 16-17-10051.

  13. Anharmonic infrared and Raman spectra in Car-Parrinello molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Cavazzoni, Carlo; Cardini, Gianni; Erbacci, Giovanni; Parrinello, Michele; Schettino, Vincenzo

    2008-06-01

    The infrared and Raman spectra of naphthalene crystal with inclusion of anharmonic effects have been calculated by adopting the generalized variational density functional perturbation theory in the framework of Car-Parrinello molecular dynamics simulations. The computational approach has been generalized for cells of arbitrary shape. The intermolecular interactions have been analyzed with and without the van der Waals corrections, showing the importance of such interactions in the naphthalene crystal to reproduce the structural, dynamical, and spectroscopic properties.

  14. A note on the Raman spectra of water-bearing albite glasses

    NASA Technical Reports Server (NTRS)

    Mcmillan, P. F.; Jakobsson, S.; Holloway, J. R.; Silver, L. A.

    1983-01-01

    The Raman spectra of albite glasses with 4.5 and 6.6 weight percent water have been obtained, and are compared with that of a dry sample. The hydrous glasses show bands near 3600/cm due to O-H stretching, and a previously unreported weak band near 1600/cm due to bending of molecular H2O. Other weak spectral features are discussed, and the effect of dissolved water on the aluminosilicate framework vibrations is considered.

  15. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  16. Spectral Signatures for the Classification of Microbial Species using Raman Spectra

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Bailey, Vanessa L.; Fansler, Sarah J.; Wilkins, Michael J.; Hess, Nancy J.

    2012-06-14

    In general, classification-based methods based on Confocal Raman microscopy are focused on targeted studies under which the spectral libraries are collected under controlled instrument parameters, which facilitate analyses via standard multivariate data analysis methods and cross-validation. We develop and compare approaches to combine spectra collected at different times and varying levels of spectral resolution into a single spectral library. We demonstrate these approaches on a relevant test case; the identification of microbial species from a natural environment.

  17. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    SciTech Connect

    Farrow, R.L.; Rahn, L.A.

    1985-06-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile.

  18. Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Koszykowski, M.L.; Farrow, R.L.; Palmer, R.E.

    1985-10-01

    High-resolution coherent anti-Stokes Raman spectroscopy spectra of the N/sub 2/ Q branch at 294 K have been obtained at 1, 5, and 10 atm. Even at 1-atm pressure, disagreements with spectra calculated using the isolated line approximation were observed, indicating the importance of collisional narrowing effects in describing these spectra. A method of using the full G-matrix approach for the calculation of these spectra that is both exact and computationally efficient (requiring only one matrix diagonalization and inversion per spectrum) is discussed. Excellent agreement with experimental data is obtained using this method and a simple exponential gap model for the off-diagonal G-matrix elements.

  19. Factor analysis for isolation of the Raman spectra of aqueous sulfuric acid components

    SciTech Connect

    Malinowski, E.R.; Cox, R.A.; Haldna, U.L.

    1984-04-01

    The Raman spectra of 16 sulfuric acid/water mixtures over the entire mole fraction range were studied by various factor analysis techniques. Abstract factor analysis showed that three factors account for 98.69% of the variation in the data with a real error of 13%. Key-set factor analysis, was used to identify three spectral wavenumbers unique to each component. Spectral-isolation factor analysis, based on the key wavenumbers, revealed the spectra of each unknown component. Target factor analysis, based on the isolated spectra, yielded the relative amounts of the three spectral components. The concentration profiles obtained from the factor loadings, as well as the isolated spectra, were used to identify the chemical species.

  20. Time-dependent density functional methods for Raman spectra in open-shell systems.

    PubMed

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra. PMID:24380604

  1. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    SciTech Connect

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-03-31

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  2. [Study on the infrared spectra and raman spectra of steel rusty layer with atmospheric corrosion].

    PubMed

    Yang, Xiao-mei

    2006-12-01

    In the present study two methods, infrared and Raman spectral analyses, were used to measure the rusty layer of samples with atmospheric corrosion from Qingdao. The main component rust phase of the rusty layer was observed, showing that the relative content of the rust phase varies with the change in corrosion time. The main component rust phases of the rusty layer were found to be alpha-Fe2O3 , gamma-FeOOH, alpha-FeOOH, delta-FeOOH and Fe3O4, with the relative content of each rust phase of A3 (1) rusty layer sample exhibiting the following relation: gamma-FeOOH> alpha-FeOOH>delta-FeOOH, and the relative contents of other rusty layer samples were found to follow the relation: gamma-FeOOH> delta-FeOOH>alpha-FeOOH. PMID:17361722

  3. Ultraviolet Raman spectroscopy of catalysts: Adsorption and coke formation in zeolites and vibrational spectra of supported metal oxides

    NASA Astrophysics Data System (ADS)

    Chua, Yek Tann

    2001-10-01

    The primary goal of this dissertation is to study the physicochemical and catalytic properties of zeolites and supported metal oxide catalysts using UV Raman spectroscopy. In order to reduce the thermal degradation and possible photodecomposition of adsorbates by UV radiation, we have developed a novel fluidized bed method for measuring the UV Raman spectra of catalysts and adsorbates. The UV Raman spectra of various organic compounds adsorbed in zeolites H-USY and H-ZSM-5 are recorded. When measurements are performed on stationary and spinning samples, the Raman spectra show the presence of coke, a typical end product of heat and photochemistry. In contrast, the Raman peaks of the unreacted adsorbates dominate the spectra measured using the fluidized bed method. These results indicate that the fluidized bed technique is a good method for measuring UV Raman spectra of catalysts and adsorbates. The formation of coke in the methanol-to-gasoline conversion over zeolite H-ZSM-5 causes deactivation of the catalyst. To gain insight into the formation of coke, we have studied this reaction using UV Raman spectroscopy. The Raman spectral changes suggest coke is produced from conjugated olefins via cyclopentadiene intermediates. Aromatic compounds in gasoline may also be produced from cyclopentadienes. The adsorbate-induced structural changes of zeolites may alter the molecular sieving characteristics of these materials which ultimately affect their performance as catalysts and adsorbents. We have quantified the adsorbate-induced structural changes of zeolite H-RHO using UV Raman spectroscopy. The Raman spectra of the zeolite after the adsorption of water, methanol or acetonitrile are consistent with an increase in the average T-O-T angle of the zeolite of 5-8°. The adsorption of ammonia, on the other hand, decreases the average T-O-T angle by 5°. Because of certain advantages of UV Raman spectroscopy over visible Raman spectroscopy, recently there is a strong interest in

  4. Characterisation of Raman spectra of high purity olivine as a function of temperature and shock history.

    NASA Astrophysics Data System (ADS)

    Hibbert, R.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-04-01

    ExoMars' Raman Laser Spectrometer (RLS, [1], [2]) will be the first Raman spectrometer deployed on another planetary body. It is probable the rover will land on the ancient terrain (TBD) within transverse distance to several impact craters where the rocks are estimated to be >3 billion years old. These ancient terrains have been subjected to impacts, and work at Kent has shown such impacts result in modification of minerals and organics [3, 4] and can induce a loss of volatiles [5, 6, 7]. This highlights some problematic scenarios for the interpretation of Raman spectra collected by ExoMars: i) The spectra of impact generated minerals may be misinterpreted since their signatures have not been systematically characterised; ii) The materials produced by the degradation of organic (biologically significant) compounds during impact are unknown, and consequently may be overlooked as evidence for life; iii) Shocked hydrated minerals may be erroneously identified as anhydrous, since it is currently unknown whether there is a spectral difference between volatile rich minerals that have been shocked and their anhydrous counterparts. Our primary goal is therefore to study impact modification. Using the Light Gas Gun at Kent [8], we have shocked minerals under Martian conditions and compared their Raman spectra from before and after impact. Thus far, we have conducted experiments by a firing a buckshot of ~50 μm molybdenum spheres onto gem quality olivine (peridots, which have a very clean and consistent composition) and analysing the impact craters on the surface of the sample using Raman spectroscopy. Raman spectroscopy is generally regarded as a nondestructive technique, however, concentrated laser power can generate localised heating leading to devolatisation, crystalline changes, and even melting of the sample. This can lead to misinterpretation of spectral data (such as incorrect mineralogical composition). Therefore, we have also set out to study and quantify any

  5. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.

    PubMed

    Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong

    2014-02-01

    Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure. PMID:24822414

  6. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach.

    PubMed

    Sahu, Nityananda; Gadre, Shridhar R

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm(-1) is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems. PMID:27004868

  7. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Gadre, Shridhar R.

    2016-03-01

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm-1 is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  8. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-01-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed.

  9. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    PubMed

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  10. Effect of ligand radicals on vibrational IR, Raman and vibronic spectra of europium beta-diketonates.

    PubMed

    Tsaryuk, V; Zolin, V; Legendziewicz, J; Szostak, R; Sokolnicki, J

    2005-01-01

    Vibrational IR, Raman spectra and vibronic sidebands of Eu(3+) electronic transitions of europium tris-beta-diketonates Eu(beta)(3).Ph (beta-dipyvaloylmethane (DPM), acetylacetone (AA), benzoylacetone (BA), thenoyltrifluoroacetone (TTFA) and other beta-diketones; Ph-methyl-, phenyl-, and nitro-derivatives of 1,10-phenanthroline (Phen)) as well as Eu(beta)(3).Bpy and Eu(beta)(3).D-Bpy (Bpy- and D-Bpy-H- and D-2,2'-bipyridine) were studied. Effect of ligand radical properties on spectra and manifestation of the reciprocal influence of non-equivalent ligands in spectra are discussed. Dependence of the spectra on electronic density distribution in both ligands as well as on the strength of M-O and M-N bonds at the variation of radicals of one of the ligands, beta or Ph, was examined. Shape of vibronic sidebands was analysed. Behaviour of bands in the middle and far regions of IR spectra of the series Eu(beta)(3).Phen and Eu(TTFA)(3).Ph was investigated. Increase of the polarising influence of Eu(3+) ions on Phen and Bpy molecules and strengthening the Eu-N bonds in TTFA compounds in comparison with DPM compounds were disclosed from the Raman spectra of Eu(beta)(3).Phen and Eu(beta)(3).Bpy, that is in accordance with properties of beta-diketone radicals. Conclusion about weaker Eu-N bonds in europium beta-diketonates with heterocyclic diimines in comparison with corresponding nitrates was derived from the spectra. Spectral data concerning the relative strength of Eu-ligand bonds are in agreement with available X-ray data. PMID:15556438

  11. Effect of ligand radicals on vibrational IR, Raman and vibronic spectra of europium β-diketonates

    NASA Astrophysics Data System (ADS)

    Tsaryuk, V.; Zolin, V.; Legendziewicz, J.; Szostak, R.; Sokolnicki, J.

    2005-01-01

    Vibrational IR, Raman spectra and vibronic sidebands of Eu 3+ electronic transitions of europium tris-β-diketonates Eu(β) 3·Ph (β-dipyvaloylmethane (DPM), acetylacetone (AA), benzoylacetone (BA), thenoyltrifluoroacetone (TTFA) and other β-diketones; Ph-methyl-, phenyl-, and nitro-derivatives of 1,10-phenanthroline (Phen)) as well as Eu(β) 3·Bpy and Eu(β) 3·D-Bpy (Bpy- and D-Bpy-H- and D-2,2'-bipyridine) were studied. Effect of ligand radical properties on spectra and manifestation of the reciprocal influence of non-equivalent ligands in spectra are discussed. Dependence of the spectra on electronic density distribution in both ligands as well as on the strength of MO and MN bonds at the variation of radicals of one of the ligands, β or Ph, was examined. Shape of vibronic sidebands was analysed. Behaviour of bands in the middle and far regions of IR spectra of the series Eu(β) 3·Phen and Eu(TTFA) 3·Ph was investigated. Increase of the polarising influence of Eu 3+ ions on Phen and Bpy molecules and strengthening the EuN bonds in TTFA compounds in comparison with DPM compounds were disclosed from the Raman spectra of Eu(β) 3·Phen and Eu(β) 3·Bpy, that is in accordance with properties of β-diketone radicals. Conclusion about weaker EuN bonds in europium β-diketonates with heterocyclic diimines in comparison with corresponding nitrates was derived from the spectra. Spectral data concerning the relative strength of Euligand bonds are in agreement with available X-ray data.

  12. Fermi energy dependence of first- and second-order Raman spectra in graphene: Kohn anomaly and quantum interference effect

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Intensities of the first- and the second-order Raman spectra are calculated as a function of the Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the first-order Raman spectra originates from the phonon renormalization by the interband electron-hole excitation, whereas in the second-order Raman spectra, a competition between the interband and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first- and the second-order Raman spectra, indicating the presence of the quantum interference effect. The electron-phonon matrix element plays an important role in the intensity increase (decrease) of the combination (overtone) phonon modes as a function of the Fermi energy.

  13. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  14. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  15. Subpicosecond resonance Raman spectra of the early intermediates in the photocycle of bacteriorhodopsin

    PubMed Central

    van den Berg, R.; Du-Jeon-Jang; Bitting, Herbert C.; El-Sayed, M. A.

    1990-01-01

    The resonance Raman spectra are presented for the species formed during the photocycle of bacteriorhodopsin (bR) on a timescale of 800-900 fs. In the ethylenic stretch region two intermediates were found with frequencies of 1,510 and 1,518 cm-1, corresponding to species with optical absorption maxima at 660 and 625 nm, respectively. This leads to the assignment of the 1,518 cm-1 band to the J625 intermediate. In the fingerprint region, the appearance of a vibration at 1,195 cm-1 strongly suggests that the isomerization indeed has taken place in a time less than the pulsewidth of our laser. This supports the previous proposals made on the basis of the optical spectra. The spectra are compared with those observed in tens of picoseconds up to nanoseconds. PMID:19431759

  16. Evidence of Polaron Excitations in Low Temperature Raman Spectra of Oxalic Acid Dihydrate.

    PubMed

    Mohaček-Grošev, Vlasta; Grdadolnik, Jože; Hadži, Dušan

    2016-05-12

    Low temperature Raman spectra of oxalic acid dihydrate (8-300 K) for both the polycrystalline and single crystal phase show strong variation with temperature in the interval from 1200 to 2000 cm(-1). Previous low temperature diffraction studies all confirmed the stability of the crystal P21/n phase with no indications of any phase transition, reporting the existence of a strong hydrogen bond between the oxalic acid and a water molecule. A new group of Raman bands in the 1200-1300 cm(-1) interval below 90 K is observed, caused by possible loss of the center of inversion. This in turn could originate either due to disorder in hydroxyl proton positions or due to proton transfer from carboxylic group to water molecule. The hypothesis of proton transfer is further supported by the emergence of new bands centered at 1600 and 1813 cm(-1), which can be explained with vibrations of H3O(+) ions. The broad band at 1600 cm(-1) looses intensity, while the band at 1813 cm(-1) gains intensity on cooling. The agreement between quantum calculations of vibrational spectra and experimentally observed Raman bands of hydronium ions in oxalic acid sesquihydrate crystal corroborates this hypothesis. PMID:27093217

  17. Application of the adaptive subspace detector to Raman spectra for biological threat detection

    NASA Astrophysics Data System (ADS)

    Russell, Thomas A.; Borchardt, Steven; Anderson, Richard; Treado, Patrick; Neiss, Jason

    2006-10-01

    Effective application of point detectors in the field to monitor the air for biological attack imposes a challenging set of requirements on threat detection algorithms. Raman spectra exhibit features that discriminate between threats and non-threats, and such spectra can be collected quickly, offering a potential solution given the appropriate algorithm. The algorithm must attempt to match to known threat signatures, while suppressing the background clutter in order to produce acceptable Receiver Operating Characteristic (ROC) curves. The radar space-time adaptive processing (STAP) community offers a set of tools appropriate to this problem, and these have recently crossed over into hyperspectral imaging (HSI) applications. The Adaptive Subspace Detector (ASD) is the Generalized Likelihood Ratio Test (GLRT) detector for structured backgrounds (which we expect for Raman background spectra) and mixed pixels, and supports the necessary adaptation to varying background environments. The structured background model reduces the training required for that adaptation, and the number of statistical assumptions required. We applied the ASD to large Raman spectral databases collected by ChemImage, developed spectral libraries of threat signatures and several backgrounds, and tested the algorithm against individual and mixture spectra, including in blind tests. The algorithm was successful in detecting threats, however, in order to maintain the desired false alarm rate, it was necessary to shift the decision threshold so as to give up some detection sensitivity. This was due to excess spread of the detector histograms, apparently related to variability in the signatures not captured by the subspaces, and evidenced by non-Gaussian residuals. We present here performance modeling, test data, algorithm and sensor performance results, and model validation conclusions.

  18. Microwave spectra and conformational studies of ethylamine from temperature dependent Raman spectra of xenon solutions and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Darkhalil, Ikhlas D.; Nagels, Nick; Herrebout, Wouter A.; van der Veken, Benjamin J.; Gurusinghe, Ranil M.; Tubergen, Michael J.; Durig, James R.

    2014-06-01

    FT-microwave spectroscopy was carried out where the trans conformer was identified to be the most stable conformer. Variable temperature (-60 to -100 °C) studies of the Raman spectra (4000-50 cm-1) of ethylamine, CH3CH2NH2 dissolved in liquefied xenon have been carried out. From these data both conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 62 ± 6 cm-1 (0.746 ± 0.072 kJ mol-1) with the trans conformer the more stable form. The percentage of the gauche conformer is estimated to be 60% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations with the Møller-Plesset perturbation method to the second order (MP2(full)) and the fourth order (MP4(SDTQ)) as well as with density functional theory by the B3LYP method by utilizing a variety of basis sets. Vibrational assignments have been made for the observed bands which have been predicted by MP2(full)/6-31G(d) ab initio calculations which includes harmonic force fields, frequencies, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some similar molecule.

  19. Raman spectra of biomarkers of relevance to analytical astrobiological exploration: hopanoids, sterols and steranes.

    PubMed

    Edwards, H G M; Herschy, B; Page, K; Munshi, T; Scowen, I J

    2011-01-01

    The aim of this work is to investigate the viability and potential of three groups of organic compounds as biomarkers in a future robotic analytical exploration of Mars. The three compounds have been identified as suitable candidates for potential biomarkers for extant or extinct life from the terrestrial fossil record. The three groups of compound were all similar in structure, being either tetra- or penta-cyclic compounds. The limits of detection for a sample were also tested to estimate what concentrations it would still be amenable to Raman spectroscopic investigation. This was investigated using both solid mixtures and liquid solutions. The spectra of these compounds are characterised so that they can be added to the Raman database for future Mars missions. This involved identifying functional group characteristics, assigning peaks for each individual sample and characteristic features which would categorise the samples. PMID:21050806

  20. Anharmonic interactions and temperature effects in Raman spectra of Si nanostructures

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Yukhymchuk, V. O.; Ponomaryov, S. S.; Koroteev, V. V.; Dzhagan, V. M.; Romanyuk, Yu. A.; Baran, J.

    2014-10-01

    An additional Raman phonon band observed for Si crystallites at high excitation power is studied theoretically. Laser-induced heating is supposed to induce stress in crystallites, leading to splitting of degenerated F2g, Eg phonon states into А‧ and А‧‧ ones. The enhancement of anharmonicity effects expected at high temperature may lead to strong coupling between А‧ (А‧‧) fundamental modes with combination tones arising at splitting F2g, Eg states. As a result, the Fermi resonance interaction between the optical modes from Г-point and sum of acoustic modes from L-point can explain the temperature behavior of experimentally observed additional optical phonon band in Raman spectra of Si nanocrystallites.

  1. IR absorption and Raman spectra of single crystals of stable germanium isotopes

    NASA Astrophysics Data System (ADS)

    Gavva, V. A.; Kotereva, T. V.; Lipskiy, V. A.; Nezhdanov, A. V.

    2016-02-01

    The Raman and IR absorption spectra of single crystals of germanium isotopes 72Ge, 73Ge, 74Ge, and 76Ge in the region of phonon absorption and interband electronic transitions are studied at room temperature. The dependence of the Raman peak position on the atomic mass has the form ν ~ M -1/2. The shifts of the phonon absorption peaks of individual isotopes with respect to germanium of natural isotopic composition natGe are determined. With increasing average atomic mass of germanium, these peaks shift to longer wavelengths. In the region of interband electronic transitions, the intrinsic absorption edge of 76Ge is observed to shift by 1 meV to higher energies with respect to Ge of natural isotopic composition. For isotopes with atomic masses close to that of natural germanium (72Ge,73Ge, 74Ge), we found no significant difference in the band gap width at room temperature.

  2. Raman and FTIR spectra of modified iron phosphate glasses containing arsenic

    NASA Astrophysics Data System (ADS)

    Shi, Meiqing; Liang, Yanjie; Chai, Liyuan; Min, Xiaobo; Zhao, Zongwen; Yang, Shu

    2015-02-01

    The structural properties of 20CaO-8B2O3-24Fe2O3-48P2O5 + xAs2O3 (x = 0, 1, 5, 10, 15 mol%) glasses have been investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), Raman and Fourier transform infrared spectrum (FTIR), differential thermal analysis (DTA). The XRD and TEM analysis indicates great solubility of arsenic in the modified iron phosphate melts. The Raman and FTIR spectra show that with increasing As2O3 content in glass compositions, the phosphate chains get less depolymerised, resulting in conversion of Q1 to Q2. As takes part network-forming positions and results in the PO2 units interacting with As2O3 and forming P-O-As linkages/bridges. The higher (Tr-Tg) suggests the thermal stability is improved with the addition of As2O3.

  3. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

    NASA Astrophysics Data System (ADS)

    Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.

    2012-04-01

    The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.

  4. Phase Transition in all-trans-β-Carotene Crystal: Temperature-Dependent Raman Spectra.

    PubMed

    da Silva, Kleber J R; Paschoal, Waldomiro; Belo, Ezequiel A; Moreira, Sanclayton G C

    2015-09-24

    In this study, we studied the stability of an all-trans-β-carotene single crystal using Raman spectroscopy with line excitation at 632.8 nm, in the temperature range 20–300 K. The Raman spectra exhibit clear modifications in the spectral range of the lattice and internal vibrational modes. The temperature dependence of the most intense vibrational modes ν1 (1511 cm(–1)) and ν2 (1156 cm(–1)) that are related to the C═C and C—C stretching vibrations of the polyene chain, respectively, shows an upward shift on the Raman modes. This behavior is similar to that stated in the theoretical work of Wei-Long Liu et al. We conclude that the all-trans-β-carotene crystal undergoes a temperature-induced phase transition at approximately 219 K. This transition is interpreted as a rotation experienced by β-ring groups at each end of the all-trans-β-carotene molecule around the dihedral angle. At low temperatures, the new molecular configuration affects the sliding plane of the space group C2h(5)(P2(1)/n), and the phase transition leads to an unchanged monoclinic structure; however, the original space group is possibly lowered to the space group C2. In the temperature range 200–220 K, the spectral ratio (S) of the integrated intensities of the spectral modes around the symmetric and asymmetric stretching wavenumbers of the methyl group (CH3) changes as a function of temperature in agreement with the phase transition. Furthermore, according to phase transition undergone by the all-trans-β-carotene, the thermal results obtained by differential scanning calorimetry show an exothermic process that occurs near the transition temperature assigned by the Raman spectra. PMID:26335691

  5. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  6. Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Ghodbane, S.; Deneuville, A.; Tromson, D.; Bergonzo, P.; Bustarret, E.; Ballutaud, D.

    2006-08-01

    About 20 m thick films were deposited in the same run by MPCVD at 900 °C on Si substrates and then hydrogenated in situ during 30 min with a hydrogen plasma at the same temperature. Their surfaces were kept as prepared or more or less strongly oxidized by annealing at 600 °C under ambient atmosphere or by sulphochromic acid or aqua regia treatments. Raman spectra were excited at 325 and 632.8 nm. Spectra of the as-prepared sample exhibit structures around 2835 and 2895 cm-1 from monohydride carbon-hydrogen ascribed to the atomically flat (111) and (100) areas, respectively, on the facets of the sample surface crystallites. The decrease of these structures in the normalized spectra after the various oxidation treatments confirms these assignments. The decrease is smaller for the aqua regia treatment than for the two other treatments which give similar effects. Other Raman signals from sp2 C around 1589 cm-1 and CHx bonds around 2930, 2952, 3025 and 3050 cm-1 originate from species at the surface and within the films. Their variation with the oxidizing treatments indicates a significant contribution from the surface species.

  7. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Lin, Miao-Ling; Tan, Qing-Hai; Qiao, Xiao-Fen; Zhang, Jun; Tan, Ping-Heng

    2016-06-01

    Defects strongly modify optical properties in pristine and nanostructured two-dimensional (2D) materials. The ion implantation technique can be used to gradually introduce defects in semiconductor to obtain nanocrystallites (NCs) with different domain sizes. Here, we present a detailed study on the Raman and photoluminescence spectra of 2D NCs of monolayer WS2 (1L WS2) and 1L WSe2 prepared by ion implantation. With increasing ion dosages, both {{{E}}}\\prime and {{{A}}}1\\prime modes of 1L WS2 exhibit a downshift in frequency and an asymmetrical broadening toward lower frequency, while the {{{A}}}1\\prime mode in 1L WSe2 NCs exhibits an opposite behavior, showing asymmetrical broadening and peak shift toward higher frequency. This behavior is well understood by phonon quantum confinement of the out-of-plane optical branch whose frequency displays a minimum at Γ in pristine 1L WSe2. After the ion implantation, phonons from the Brillouin zone boundary are revealed in the Raman spectra, and the corresponding assignments are identified by resonant Raman spectra at low temperature. The defects can act as trapping centers of free carriers, which result in a sharp decrease of photoluminescence (PL) emission from A exciton with increasing ion dosage. The PL peak from A-exciton in both 1L WS2 and 1L WSe2 NCs blueshifts with increasing the ion dosage due to the quantum confinement effect of smaller NC size. The ion-implantation results in a new emission peak of defect-bound neutral excitons below the A-exciton peak in both 1L WS2 and 1L WSe2 NCs. Its relative intensity to the A exciton increases with increasing the ion dosage and finally vanishes along with the A exciton. These results offer a route toward tailoring the optical properties of 2D materials by controlling the size of 2D NCs.

  8. Solvent effect on Raman spectra of conformational key bands of chloroacetone and bromoacetone

    NASA Astrophysics Data System (ADS)

    Shiratori, Yosuke; Kato, Minoru; Taniguchi, Yoshihiro

    1999-11-01

    Raman spectra were measured for chloroacetone and bromoacetone in various solvents at 20°C. The authors recorded the C-X (X:Cl and Br) stretching modes for both chloroacetone and bromoacetone and the CO stretching mode for bromoacetone. In each spectrum for aqueous solutions, an additional band appeared on the lower frequency side of the band of the syn conformer. These bands are assigned to the syn conformer which forms a hydrogen bond between each halogen atom of haloacetones and water molecule. From solvent effects on peak frequencies, half band widths and band profiles, the authors discussed local hydration structures of haloacetones.

  9. Feature-based recognition of surface-enhanced Raman spectra for biological targets.

    PubMed

    Pavillon, Nicolas; Bando, Kazuki; Fujita, Katsumasa; Smith, Nicholas I

    2013-08-01

    We propose and compare multiple approaches to automatically process data measured through surface-enhanced Raman scattering (SERS), in the context of intracellular molecule probing. It relies on locally detecting the most relevant spectra to retrieve all data independently through indexing, thus avoiding any pre-filtering which occurs with standard processing methods. We first assess our approach on simulated data of the spectrum of Rhodamine 6G, and then validate high-performing methods on experimental measurements of this compound. The optimized method is then utilized to extract and classify the complex SERS response behavior of gold nanoparticles taken in live cells. PMID:23192987

  10. [First-principles study of vibrational Raman spectra of amorphous carbon].

    PubMed

    Niu, Li; Zhu, Jia-qi; Gao, Wei; Du, Shan-yi

    2009-09-01

    The vibrational density of states and nonresonant reduced Raman spectra of amorphous carbon at densities of 2.6, 2.9 and 3.2 g x cm(-3) were calculated by the use of a first-principles plane-wave pesudopotential method. Three structural models were generated by liquid-quench method using Car-Parinello molecular dynamics, their vibrational frequencies and eigenmodes were determined using the linear response approach, and Raman coupling tensors were calculated using the finite electric field method. The calculated results show that the sp3 fraction increases from 50% to 84.4%, the sp2 configuration changes from mainly rings to short chains, the position of the G peak moves to higher frequencies, the intensity ratio of D and G peaks decreases, the position of the T peak moves to lower frequencies and the intensity ratio of T and G peaks increases as density increases from 2.6 to 3.2 g x cm(-3). The authors' calculated Raman spectra show an overall good agreement with experimental spectra. The analysis in terms of atomic vibrations confirms that the G and D peaks both come from sp2 C contribution, G peak is due to the stretching vibration of any pair of sp2 atoms and the T peak is due to the C-C sp3 vibration. The authors' analysis also confirms that the dispersion of G and T peaks is due to bond-length changes. The bond length of chains (olefins) is shorter than that of rings, so their vibrational frequency is higher and the G-peak position moves to higher frequencies with increasing the sp3 fraction. The number of sp3-sp2 type bonds decreases as the sp3 fraction increases. These bonds are shorter than pure sp3-sp3 bonds, hence the T-peak position moves to lower frequencies. The research results provide a theoretic basis for analyzing experimental Raman spectra of amorphous carbon. PMID:19950647

  11. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. PMID:25368345

  12. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-01

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules. PMID:26760444

  13. Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo

    Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.

  14. The infrared and Raman spectra of methacrylonitrile adducts with copper(I) halides

    NASA Astrophysics Data System (ADS)

    Zarembowitch, J.; Maleki, R.

    The i.r. and Raman spectra of polycrystalline MAN. CuX adducts (MAN = methacrylonitrile, X = Cl and Br) are reported and compared with those of the free nitrile. A detailed vibrational assignment is proposed. The frequency shifts observed upon coordination for the stretching modes νCN, νCCN and νCH are discussed. Copper(I) is shown to be bound to the nitrogen atom of the CN group. Evidence is given for the existence of a significant π back-bonding from the metal to the ligand. The low-frequency spectra are assigned by taking into account the crystalline structures of the compounds.

  15. FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Proniewicz, L. M.

    1999-11-01

    We present vibrational spectra of three stable, well-reproducible, polymorphic forms of cimetidine ( cim), a drug which is a powerful histamine H 2-receptor antagonist used in the treatment of peptic ulcer and the Zollinger-Ellison syndrome. Assignments of Raman and IR bands are made using semiempirical methods: MNDO, AM1 and PM3. We also describe the synthesis of Me( cim) 2(ClO 4) 2, where Me=Cu(II), Cd(II), Co(II) and Ni(II), and present their vibrational data. We show that the obtained complexes are isostructural, however a metal ion that occupies a center of octahedral unit introduces some distortions that can be seen in the spectra. We also make tentative assignment of metal-ligand stretching modes observed in low frequency range.

  16. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids

    NASA Astrophysics Data System (ADS)

    Koczoń, P.; Dobrowolski, J. Cz.; Lewandowski, W.; Mazurek, A. P.

    2003-07-01

    The experimental and theoretical (B3PW91/6-311++G**) vibrational (IR and Raman) spectra of picolinic, nicotinic and isonicotinic acids (pyridine-2-, -3-, and -4-carboxylic acid, respectively) were studied. Three stable calculated structures were found for picolinic acid: the structure with intramolecular hydrogen COOH⋯N bond, and the two without hydrogen bond. For the nicotinic acid two stable theoretical structures differ in orientation of the COOH group with respect to the nitrogen atom, whereas for the isonicotinic acid only one form was stable. The theoretical vibrational spectra of the three acids were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. Next, selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, the wavenumbers and intensities for the three isomeric acids were compared and discussed in terms of location of the carboxylic group.

  17. Raman spectra of gases. XVI - Torsional transitions in ethanol and ethanethiol

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A.

    1975-01-01

    The Raman spectra of gaseous ethanol and ethanethiol have been investigated. Thiol torsional fundamentals for the gauche conformer of EtSH and EtSD have been observed and the asymmetric potential function for this vibration has been calculated. Methyl torsional transitions and overtones have also been observed for both of these molecules. Barriers to internal rotation for the methyl top are calculated to be 3.77 and 3.84 kcal/mol for the EtSH and EtSD compounds, respectively. Hydroxyl torsional fundamentals were observed at 207 and 170 per cm in the EtOH and EtOD spectra, respectively. Overtones of the methyl torsion in both molecules yield a barrier to internal rotation of 3.62 kcal/mol for the gauche conformer.

  18. Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells

    NASA Astrophysics Data System (ADS)

    Notingher, Ioan; Jell, Gavin; Notingher, Petronela L.; Bisson, Isabelle; Tsigkou, Olga; Polak, Julia M.; Stevens, Molly M.; Hench, Larry L.

    2005-06-01

    Understanding the biochemical and biophysical properties of live cells is fundamental for unravelling the secrets of many diseases and developing new therapies. Raman micro-spectroscopy is a powerful non-invasive technique that allows in vitro studies of individual living cells or groups of cells without the use of any labels or contrast enhancing chemicals. We describe the use of various multivariate statistical methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Classical Least Square (CLS) fitting, to extract biochemical information related to various cellular events. Such methods are required because of the high complexity of the Raman spectra obtained from living cells. PCA and LDA are used to discriminate between healthy and tumor cells. A leave-one-out cross-validation method indicated high prediction accuracy (95%) in identification of tumorogenic bone cells. The CLS fitting method using commercially available biopolymers makes it possible to monitor biochemical changes during the differentiation of embryonic stem cells and foetal bone cells. The results suggest that in both cases differentiated cells are characterised by lower concentrations of RNA compared to undifferentiated cells. These studies suggest that Raman micro-spectroscopy could become an invaluable tool for in vitro cellular biochemistry studies.

  19. Raman spectra and conformations of dibenzo- and dicyclohexano-18-crown-6

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo; Arai, Takaki; Harada, Issei

    1990-06-01

    Conformations of dibenzo-18-crown-6 (DBC), dicyclohexano-18-crown-6 (DCC) and their alkali cation complexes in the solid state and in solution have been investigated by Raman spectroscopy. The Raman spectra were analysed by using the relationships between Raman frequencies and conformations previously found for unsubstituted crown ethers. DBC takes a conformation, ( tCttGttG't) 2, with gauche ( G) or gauche' ( G') 2CH 2 bonds, trans ( t) CO bonds and cis ( C) OCCO linkages at the benzene rings, when it complexes with a cation in the solid state and in solution. Uncomplexed DBC adopts another conformation in the solid state, which contains both the trans and gauche conformations about the CH 2CH 2 and CO bonds. In solution, uncomplexed DBC exists as a mixture of conformers including the two conformers described above. Vibrational couplings between the oxyethylene and cyclohexane rings are strong in DCC and its strength depends on the crown conformation. The cation-bound crown rings of DCC isomers A and B in solution predominantly take the same conformation, ( tG'ttGt) 3, found for the crystalline isomer B-NaBr complex. A metastable conformer containing trans CH 2CH 2 bonding is found for the Na + complexes of both isomers in solution. Uncomplexed DCC adopts different crown ring conformations in isomers A and B in the solid state and diverse conformational states in solution.

  20. Geometry and Raman spectra of P.R. 255 and its furo-furanone analogue

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav, Jr.; Frumarová, Božena; Vyňuchal, Jan; Hrdina, Radim

    2009-05-01

    Fourier transform Raman spectra of two π-isoelectronic compounds 3,6-diphenyl-2,5-dihydro-pyrrolo-[3,4-c]pyrrole-1,4-dione (BPPB, C.I. Pigment Red 255) and 3,6-diphenyl-2,5-dihydro-furo-[3,4-c]furanone (BFFB) with the same 1,4-diphenyl-buta-1,3-diene (DPB) backbone were first time measured in polycrystalline phase. The ground state geometry and vibrational frequencies together with Raman intensities were computed by density functional theory (DFT: B3LYP/6-311G++(d,p)). All intensive observed Raman frequencies were identified as totally symmetric. The difference of carbon-carbon bond lengths of BPPB and BFFB compared to DPB, relating very well with the shifts of C dbnd C and C-C stretching modes frequencies, was explained by aromatization of central butadiene unit bounded in diketo-pyrrolo-pyrrole and furo-furanone heterocycles. A strong coupling of modes was observed for BFFB enhancing selectively the intensity of one peak 1593 cm -1 in C dbnd C stretching region and one peak 1372 cm -1 in C-C stretching region. C dbnd O stretching and N-H bending modes of BPPB are significantly affected by intermolecular hydrogen bonding.

  1. Pressure-dependent Raman spectra of β-Ca3(PO4)2 whitlockite

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Wu, Xiang; Xue, Weihong

    2015-04-01

    The pressure dependence of Raman spectra for whitlockite β-Ca3(PO4)2 was investigated up to 18.0 GPa using a diamond-anvil cell at room temperature. The Raman frequencies of all observed bands for β-Ca3(PO4)2 continuously increase with increasing pressure. The quantitative analysis of pressure dependence of Raman bands for the sample shows that the ν 3 asymmetric and ν 1 symmetric stretching vibrations are with the larger pressure coefficients (from 3.44 to 4.59 cm-1 GPa-1) and that the ν 4 bending and ν 2 deforming vibrations are with the smaller pressure coefficients (from 1.46 to 3.12 cm-1 GPa-1). Combined with previous result, the isothermal mode Grüneisen parameters of β-Ca3(PO4)2 were calculated. The splitting of the PO4 symmetric stretching ν 1 vibrations changes during compression and disappears around 15.4 GPa, which may be attributed to the evolution of PO4 tetrahedra under high pressure.

  2. Real-space pseudopotential study of vibrational properties and Raman spectra in Si-Ge core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Bobbitt, N. Scott; Chelikowsky, James R.

    2016-03-01

    We examine the vibrational properties and Raman spectra of Si-Ge core-shell nanostructures using real-space pseudopotentials constructed within density functional theory. Our method uses no empirical parameters, unlike many popular methods for predicting Raman spectra for nanocrystals. We find the dominant features of the Raman spectrum for the Si-Ge core-shell structure to be a superposition of the Raman spectra of the Ge and Si nanocrystals with optical peaks around 300 and 500 cm-1, respectively. We also find a Si-Ge "interface" peak at 400 cm-1. The Ge shell causes the Si core to expand from the equilibrium structure. This strain induces significant redshift in the Si contribution to the vibrational and Raman spectra, while the Ge shell is largely unstrained and does not exhibit this shift. We find that the ratio of peak heights is strongly related to the relative size of the core and shell regions. This finding suggests that Raman spectroscopy may be used to characterize the size of the core and shell in these structures.

  3. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation.

    PubMed

    Lemler, P; Premasiri, W R; DelMonaco, A; Ziegler, L D

    2014-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The Raman spectra of dried whole human blood excited at 785 nm are shown to be exclusively due to oxyhemoglobin or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of the incident 785-nm-laser power, and features attributable to heme aggregates are observed for fluences on the order of 10(4) W/cm(2) and signal collection times of 20 s. In particular, the formation of this local-heating-induced heme aggregate product is indicated by a redshifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1,248 cm(-1), the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence band. This denaturation product is also observed in the low-power-excitation Raman spectrum of older ambient-air-exposed bloodstains (2 weeks or more). The Raman spectrum of methemoglobin whole blood excited at 785 nm is reported, and increasing amounts of this natural denaturation product can also be identified in Raman spectra of dried whole blood particularly when the blood has been stored prior to drying. These results indicate that to use 785-nm-excitation Raman spectra as an identification method for forensic applications to maximum effect, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785-nm-excitation Raman spectra to be a sensitive indicator of the age of dried bloodstains at crime scenes. PMID:24162820

  4. Surface enhanced Raman spectra from the films formed on nickel in the passive and transpassive regions

    SciTech Connect

    Oblonsky, L.J.; Devine, T.M.

    1995-11-01

    Surface enhanced Raman (SER) spectra were obtained from nickel electrodes immersed in borate buffer solution (pH 8.4) at +100, +600, and +900 mV(SCE) using electrodeposited gold particles to produce the surface enhancement effect. Comparison with earlier experiments performed using silver particles to obtain SERS indicates that the spectra of the nickel passive films are identical regardless of whether silver or gold is used. At +100 mV, the nickel passive film consists of amorphous Ni(OH){sub 2}; NiO is not observed. At +600 mV, amorphous Ni(OH){sub 2} persists, and Au-O forms on the gold particles. The SER spectrum of the transpassive film formed on nickel at +900 mV consists of peaks located at 480 and 560 cm{sup {minus}1}, and it is speculated that the species responsible for the Raman scattering resembles NiOOH. Upon returning the potential to +100 mV from +900 mV, Ni(OH){sub 2} reforms, accompanied by NiO. This is the first example of the use of gold particles to explore the passive film of nickel and the first time the SER spectrum of the transpassive film on nickel has been measured.

  5. Lidar-measured atmospheric N₂ vibrational-rotational Raman spectra and consequent temperature retrieval.

    PubMed

    Liu, Fuchao; Yi, Fan

    2014-11-17

    We have built a spectrally resolved Raman lidar to measure atmospheric N₂ Stokes vibrational-rotational Raman spectra. The lidar applies a double-grating polychromator with a reciprocal linear dispersion of ~0.12 nm mm(-1) for the wavelength separation and a 32-channel linear-array photomultiplier tube for sampling the spectral signals. The lidar can together measure the individual S- and O-branch line signals from J = 0 (2) through 14 (16). A comparison shows an excellent agreement between the lidar-measured and theoretically-calculated spectra. Based on the signal ratio of two individual lines (e.g., S-branch J = 6 and 12), the atmospheric temperature profiles are derived without requiring a calibration from another reference temperature. In terms of the envelope shape of an even-J section of the measured S-branch lines, we have also developed a new temperature retrieval approach without needing a calibration from reference temperature data. Both the approaches can give rise to reasonable temperature profiles comparable to that from local radiosonde. PMID:25402026

  6. Photoreductive titration of the resonance Raman spectra of cytochrome oxidase in whole mitochondria.

    PubMed

    Adar, F; Erecińska, M

    1979-05-01

    A photoreductive titration of the resonance Raman (RR) spectra of cytochrome c oxidase in whole mitochondria was recorded by exploiting the preferential enhancement of the Raman signals of reduced cytochrome oxidase excited at 441.6 nm. When the sample was cooled to about--10 degrees C, it was possible to slow down the photoreductive effect of the laser and to record RR spectra at various states of reduction. Compared to the earliest recorded scan (most oxidized), the dithionite-reduced sample shows the appearance of new bands at 216, 363, 560, and 1665 cm-1. At intermediate stages of photoreduction, the 216- and 560-cm-1 bands appear before the 363- and 1665-cm-1 bands; photoreduction induces full intensity in the former bands, whereas the latter bands are photoreduced to 50% of the dithionite-reduced intensity. The relative intensities of a doublet at 1609--1623 cm-1 are affected by reduction: the band at 1609 cm-1 is weaker in the earlier scans; in later scans this band has grown to equal intensity with the 1623-cm-1 band. We conclude that this reductive titration of the RR spectrum of cytochrome c oxidase reflects three states in its reduction. The behavior of the doublet at 1609--1623 cm-1 suggests that the two hemes are nonequivalent but interacting. The band at 216 cm-1 may be indicative of an iron-copper interaction that is affected by the presence of external ligands. PMID:219887

  7. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  8. Vibrational features of confined water in nanoporous TiO2 by Raman spectra

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Qiang, Wang; Gang, Sun; Chen-Xi, Li; Lin, Hu

    2016-02-01

    Raman spectra of confined water adsorbed in nanoporous TiO2 are obtained in experiment. TiO2 samples with different pore diameters under different humidity conditions are investigated. The results indicate that the symmetric vibrational mode of water molecule is destroyed when relative humidity decreases. This indicates that the interaction between water molecules and surface of TiO2 becomes stronger when the distance between water molecules and surface turns smaller, and the interaction plays a major role in depressing the symmetric vibrational peak. The spectra of confined water in TiO2 and Vycor are compared. When filling fractions are the same, their spectra show distinctions no matter whether they are in partial filling condition or in full filling condition. The spectra of HDO confined in TiO2 with different filling fractions are compared with each other. There is no clear distinction among their vibrational peaks, and the peaks mainly relate to asymmetric vibration. Therefore, the interaction between water molecules and the wall of pore decouples the symmetric vibrational mode only, and the influences on asymmetric vibrational mode show little differences among different filling fractions. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304049 and 11264006), the Guizhou Provincial Science and Technology Foundation, China (Grant No. J[2010]2132), and the Doctor Funds of Guizhou University, China (Grant No. [2012] 020).

  9. Resonant Raman and FTIR spectra of carbon doped GaN

    NASA Astrophysics Data System (ADS)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  10. Raman spectra calculations for Si-Ge core-shell nanocrystals using ab initio real-space methods

    NASA Astrophysics Data System (ADS)

    Bobbitt, N. Scott; Chelikowsky, James R.

    We use a real-space pseudopotential method within density functional theory to calculate Raman spectra for Si-Ge core-shell nanocrystals. We examine the lattice strain induced by the interface of the core and the shell. We calculate how this strain affects the vibrational modes and Raman spectra. We also find that the relative size of the Si and Ge peaks in the Raman spectrum is proportional to the size of the Si core and Ge shell regions, which suggests that Raman spectroscopy can be used to experimentally determine the relative size of the core and the outer shell in these nanocrystals. This work is supported by the DOE under Grant Number DE-FG02-06ER46286. Computations were performed on machines at TACC and NERSC.

  11. Multivariate statistical analysis of Raman spectra to distinguish normal, tumor, lymph nodes and mastitis in mouse mammary tissues

    NASA Astrophysics Data System (ADS)

    Dai, H.; Thakur, J. S.; Serhatkulu, G. K.; Pandya, A. K.; Auner, G. W.; Naik, R.; Freeman, D. C.; Naik, V. M.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra ( > 680) of normal mammary gland, malignant mammary gland tumors, and lymph node tissues from mice injected with 4T1 tumor cells have been recorded using 785 nm excitation laser. The state of the tissues was confirmed by standard pathological tests. The multivariate statistical analysis methods (principle component analysis and discriminant functional analysis) have been used to categorize the Raman spectra. The statistical algorithms based on the Raman spectral peak heights, clearly separated tissues into six distinct classes, including mastitis, which is clearly separated from normal and tumor. This study suggests that the Raman spectroscopy can possibly perform a real-time analysis of the human mammary tissues for the detection of cancer.

  12. Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces

    NASA Astrophysics Data System (ADS)

    Dey, S.; Banik, M.; Hulkko, E.; Rodriguez, K.; Apkarian, V. A.; Galperin, M.; Nitzan, A.

    2016-01-01

    Surface-enhanced Raman scattering (SERS) from bipyridyl ethylene adsorbed on gold dumbbells shows Fano-like spectra at high incident light intensity. This is accompanied by an increased electronic temperature, while no vibrational anti-Stokes scattering is observed. Theory indicates that interference between vibrational and electronic Raman scattering can yield such asymmetric scattering lineshapes. The best fit to observations is however obtained by disregarding this coupling and accounting for the detailed lineshape of the continuous electronic component of the SERS.

  13. NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation

    PubMed Central

    Lemler, P.; Premasiri, W. R.; DelMonaco, A.; Ziegler, L. D.

    2013-01-01

    Care must be exercised in the use of Raman spectroscopy for the identification of blood in forensic applications. The 785 nm excited Raman spectra of dried whole human blood are shown to be exclusively due to oxyhemoglobin (oxyHb) or related hemoglobin denaturation products. Raman spectra of whole blood are reported as a function of incident 785 nm laser power and features attributable to heme aggregates are observed for fluences on the order of 104 W/cm2 and 20 sec signal collection times. In particular, the formation of this local heating induced heme aggregate product is indicated by a red-shifting of several heme porphyrin ring vibrational bands, the appearance of a large broad band at 1248 cm−1, the disappearance of the Fe-O2 stretching and bending bands, and the observation of a large overlapping fluorescence. This denaturation product is also observed in the low power excited Raman spectrum of older ambient air exposed bloodstains (≥ two weeks). The 785 nm excited Raman spectrum of methemoglobin whole blood is reported and increasing amounts of this natural denaturation product can also be identified in dried whole blood Raman spectra particularly when the blood has been stored prior to drying. These results indicate that to use 785 nm excited Raman spectra as an identification methodology for forensic applications to maximum effectiveness, incident laser powers need to be kept low to eliminate variable amounts of heme aggregate spectral components contributing to the signal and the natural aging process of hemoglobin denaturation needs to be accounted for. This also suggests that there is a potential opportunity for 785 nm excited Raman to be a sensitive indicator of dried bloodstain age at crime scenes. PMID:24162820

  14. Computer-generated predictions of the structure and of the IR and Raman spectra of VX. Final report, May-August 1992

    SciTech Connect

    Hameka, H.F.; Jensen, J.O.

    1993-05-01

    This report presents the computed optimized geometry and vibrational IR and Raman frequencies of the V-agent VX. The computations are performed with the Gaussian 90 Program Package using 6-31G* basis sets. We assign the vibrational frequencies and correct each frequency by multiplying it with a previously derived 6-31G* correction factor. The result is a computer-generated prediction of the IR and Raman spectra of VX. This study was intended as a blind test of the utility of IR spectral prediction. Therefore, we intentionally did not look at experimental data on the IR and Raman spectra of VX.... IR Spectra, VX, Raman spectra, Computer predictions.

  15. Predicting Raman Spectra of Aqueous Silica and Alumina Species in Solution From First Principles

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Schauble, E. A.; Manning, C. E.

    2006-12-01

    Dissolved silica and alumina play an important role in lithospheric fluid chemistry. Silica concentrations in aqueous fluids vary over the range of crustal temperatures and pressures enough to allow for significant mass transport of silica via fluid-rock interaction. The polymerization of silica, and the possible incorporation of alumina into the polymer structure, could afford crystal-like or melt-like sites to otherwise insoluble elements such as titanium, leading to enhanced mobility. Raman spectroscopy in a hydrothermal diamond anvil cell (HDAC) has been used to study silica polymerization at elevated pressure and temperature [Ref. 1, 2], but Raman spectra of expected solutes are not fully understood. We calculated Raman spectra of H4SiO4 monomers, H6Si2O7 dimers, and H6SiAlO_7^- dimers, from first principles using hybrid density functional theory (B3LYP). These spectra take into account the variation in bridging angle (Si-O-Si and Si-O-Al angles) that the dimers will have at a given temperature by calculating a potential energy surface of the dimer as the bridging angle varies, and using a Boltzmann distribution at that temperature to determine relative populations at each geometry. Solution effects can be incorporated by using a polarizable continuum model (PCM), and a potential energy surface has been constructed for the silica dimer using a PCM. The bridging angle variation explains the broadness of the 630 cm^-^1 silica dimer peak observed in HDAC experiments [Ref. 1, 2] at high temperatures. The silica-alumina dimer bridging angle is shown to be stiffer than the silica dimer bridging angle, which results in a much narrower main peak. The synthetic spectrum obtained for the silica-alumina dimer suggests that there may be a higher ratio of complexed alumina to free alumina in solution at highly basic pH than previously estimated [Ref. 3]. References: 1. Zotov, N. and H. Keppler, Chemical Geology, 2002. 184: p. 71-82. 2. Zotov, N. and H. Keppler, American

  16. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    PubMed Central

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-01-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method. PMID:26833130

  17. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

    NASA Astrophysics Data System (ADS)

    Leray, Aymeric; Brulé, Thibault; Buret, Mickael; Colas Des Francs, Gérard; Bouhelier, Alexandre; Dereux, Alain; Finot, Eric

    2016-02-01

    Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.

  18. Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation.

    PubMed

    Ricci, Marilena; Platania, Elena; Lofrumento, Cristiana; Castellucci, Emilio M; Becucci, Maurizio

    2016-07-14

    The properties of o-Safranin (SO) dye in the first electronic excited state were studied with combined experimental and theoretical methods. The electronic absorption spectra of SO molecules are measured in water solution and in the presence of silver nanoparticles. The normal Raman (NRS) and resonance Raman (RR) spectra of solid SO and the surface enhanced Raman (SERS) and surface enhanced resonance Raman (SE[R]RS) spectra of SO adsorbed on silver nanoparticles are measured at different excitation energies. The enhancement factors for selected vibrational bands of the RR, SERS, and SE[R]RS spectra of SO have been obtained with respect to the NRS spectra of the solid after a careful evaluation of the experimental conditions. The data furnished useful information on the excited electronic states and the interactions of SO with silver nanoparticles. The experimental results are discussed on the basis of DFT and TD-DFT calculations (B3LYP/6-311+G(d,p)) on the isolated SO molecule. PMID:27139691

  19. Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Montagnac, G.; Rouzaud, J.-N.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-09-01

    Geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due to weak lithostatic pressure and confinement. These results suggest that the use of low temperature carbon thermometers should be restricted to a given geological context. At the same time, the sensitivity of Raman spectra to precursors and certain metamorphic conditions could be used to obtain information other than temperature. The analysis also provides evidence of the accretion of relatively homogeneous PCM precursors among ordinary CO and CV carbonaceous chondrite parent bodies, given that the 514 nm Raman spectra of PCM efficiently trace the

  20. Wavelet data processing of micro-Raman spectra of biological samples

    NASA Astrophysics Data System (ADS)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  1. Use of a Fabry Perot Interferometer to Isolate Pure Rotational Raman Spectra of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey

    1999-07-01

    We propose to use a Fabry Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI s free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI s free spectral range f 4 B N 2 and the wavelength of the exciting radiation such that (1 exc ) 4 B N 2 ( k 1 2 ), where B N 2 is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

  2. Comparison of the Raman low frequency spectra of NBT and KLT

    NASA Astrophysics Data System (ADS)

    Jackson, Daniel; Pattnaik, Radha; Luo, Haosu; Viehland, Dwight; Toulouse, Jean

    2011-03-01

    We present the results of a detailed comparative study of the low frequency central peak in sodium bismuth titanate (Na 0.5 Bi 0.5 Ti O3 or NBT) and potassium lithium tantalate (K1 - x Li x Ta O3 or KLT) from 90 degree angle Raman scattering with a resolution of 1 cm-1 . The Raman spectra of NBT were obtained over a wide temperature range from 78 to 950 K, spanning the two transitions, from cubic to tetragonal at ~ 820 K and tetragonal to rhombohedral in the range 480-600 K. In an effort to better understand the nature of these phase transitions in NBT, we performed a detailed analysis of the central peak and soft mode combined, using different models. In particular, we compare the model in which these two features are uncoupled with the model in which they are coupled with a strength parameter, δ2 . These models are also discussed in the more general context of A-site substituted A BO3 perovskites. The effects of an external electric field and mechanical pressure on the transitions will also be discussed. The US work is funded by a NSF-MWN grant DMR-0806592.

  3. The 2ν3 Raman overtone of sulfur hexafluoride: Absolute spectra, pressure effects, and polarizability properties

    NASA Astrophysics Data System (ADS)

    Chrysos, M.; Rachet, F.; Kremer, D.

    2014-03-01

    Of the six normal vibrations of SF6, ν3 has a key role in the mechanisms of radiative forcing. This vibration, though inactive in Raman, shows up through the transition 2ν3 allowing for a complementary view on the asymmetric stretch of the molecule. Here, we look back into this topic, which has already caught some interest in the past but with some points been left out. We make a systematic incoherent-light-scattering analysis of the overtone with the use of different gas pressures and polarization orientations for the incident beam. Absolute-scale isotropic and anisotropic spectra are reported along with natural and pressure-induced widths and shifts, and other spectral features such as the peaks corresponding to the (experimentally indistinguishable) interfering channels Eg and F2g hitherto seen solely as two-photon IR-absorption features. We make the first-ever prediction of the SF6 polarizability second derivative with respect to the ν3-mode coordinate and we develop a heuristic argument to explain why the superposition of the three degenerate stretching motions that are related to the ν3 mode cannot but generate a polarized Raman band.

  4. Solvent effects on the resonance Raman and electronic absorption spectra of bacteriochlorophyll a cation radical

    SciTech Connect

    Misono, Yasuhito; Itoh, Koichi; Limanatara, Leenawaty; Koyama, Yasushi

    1996-02-08

    Resonance Raman and electronic absorption spectra of bacteriocholrophyll a cation radical (BChl a{sup .+}) were recorded in 14 different kinds of solvents. The frequency of the ring-breathing Raman band of BChl a{sup .+} was in the region of 1596-1599 cm{sup -1} in solvents forming the pentacoordinated state in neutral bacteriochlorophyll a (BChl a), while it was in the region of 1584-1588 cm{sup -1} in solvents forming the hexacoordinated state. BChl a{sup .+} exhibited a key absorption band in the regions 546-554 and 557-563 nm in the above penta- and hexa-coordinating solvents. Therefore, it has been concluded that the penta- and hexa-coordinated states are retained even after conversion of BChl a into BChl a{sup .+} (one-electron oxidization). Application of this rule to the case of 2-propanol solution showed transformation from the penta- to the hexa-coordinated state upon one-electron oxidation in this particular solution. The coordination states of BChl a{sup .+} could be correlated with the donor number(DN) and the Taft parameters, {Beta} and {pi}{sup *}, of the solvent: The hexacoordinated state was formed in solvents with DN >= 18 or {Beta} > 0.5 showing higher electron donating power, while the pentacoordinated state was formed in solvents with {pi}{sup *} > 0.65 showing higher dielectric stabilization. 27 refs., 8 figs., 3 tabs.

  5. Raman spectra of aligned carbon micro-coils and their impedance characteristics under loads

    SciTech Connect

    Tao, Wang; Yabo, Zhu Heliang, Fan; Zhicheng, Ju; Lei, Chen; Zhengyuan, Wang

    2014-02-21

    Scanning and transmission electron microscopy were used to characterize the morphology of the carbon microcoils (CMCs). The Raman spectra showed that CMCs had local regular structure as I{sub D}/I{sub G} = 0.841. Then, aligned CMCs/silicone–rubber composites (5 × 5 × 1 mm{sup 3}) were fabricated by coating of silicone rubber on the CMCs. Their alternating current impedance characteristics were measured as a function of applied load and the pressure sensitivity was discussed. The results showed that the impedance decreased as the increasing applied load, and the sample with less CMCs owned high pressure sensitivity, which indicated a novel composite film could act as an alternative of tactile sensor.

  6. 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra.

    PubMed

    Rastogi, V K; Alcolea Palafox, M; Tanwar, R P; Mittal, Lalit

    2002-07-01

    Geometry, vibrational wavenumbers and several thermodynamic parameters were calculated using ab initio quantum chemical methods for the 3,5-difluorobenzonitrile molecule. The results were compared with the experimental values. With the help of three specific scaling procedures, the observed vibrational wavenumbers in FTIR and Raman spectra were analysed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range and the error obtained was in general very low. Using PEDs the contributions were determined for the different modes to each wavenumber. From the PED, it is apparent that the frequency corresponding to C[triple bond]N stretching contains 87% contribution from the C[triple bond]N stretching force constant and it mixes with the C-CN stretching mode 13 to the extent of 12%. Other general conclusions were also deduced. PMID:12164497

  7. Quantum dynamics and spectra of vibrational Raman-resonance fluorescence in a two-mode cavity

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Sete, Eyob A.; Liu, W. M.

    2015-12-01

    We study the classically driven two-level system with its center-of-mass motion vibrating in a harmonic trap and coupled to the photons in a two-mode cavity. The first mode is resonant to the driving field and an electronic transition. The second mode is off-resonant, forming a vibrational-assisted Raman transition. Using an exact numerical method, we investigate the quantum dynamics of the light emitted by the atom and the cavity modes. We analyze and compare the corresponding atomic and intracavity photon spectra for a range of the driving laser field and the cavity coupling strengths. The results provide better understanding of the effects of the laser field and atom-cavity coupling strengths on quantum interference effects and photon blockade, particularly the Mollow's triplet and the Autler-Townes splitting in the good and bad cavity limits.

  8. Predicted infrared and Raman spectra for neutral Ti{sub 8}C{sub 12} isomers

    SciTech Connect

    Baruah, Tunna; Pederson, Mark R.; Lyn, M.L.; Castleman, A.W. Jr.

    2002-11-01

    Using a density-functional based algorithm, the full infrared and Raman spectra are calculated for the neutral Ti{sub 8}C{sub 12} cluster assuming geometries of T{sub h}, T{sub d}, D{sub 2d}, and C{sub 3v} symmetry. The T{sub h} pentagonal dodecahedron is found to be dynamically unstable. The calculated properties of the relaxed structure having C{sub 3v} symmetry are found to be in excellent agreement with experimental gas-phase infrared results, ionization potential and electron affinity measurements. Consequently, the results presented may be used as a reference for further experimental characterization using vibrational spectroscopy.

  9. Laser heating effect on Raman spectra of styrene-butadiene rubber/multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Yan, Xinlei; Kitahama, Yasutaka; Sato, Harumi; Suzuki, Toshiaki; Han, Xiaoxia; Itoh, Tamitake; Bokobza, Liliane; Ozaki, Yukihiro

    2012-01-01

    The laser heating effect on MWCNTs in styrene-butadiene rubber/multiwalled carbon nanotube (SBR/MWCNT) composites were studied by Raman spectra. The intensity ratio of the D band to G band (ID/IG) of SBR/MWCNT composites largely decreased with temperature. This indicates the self-rearranging behavior of MWCNTs in the SBR/MWCNTs system during temperature increase. In addition, the temperature-dependent downward shift of the G band of SBR/MWCNT composites was smaller than that of MWCNTs samples. The self-rearrangement of MWCNTs in SBR/MWCNT composites and a mechanical compression were explained as two possible reasons for the different behavior of the G band shift.

  10. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    SciTech Connect

    Xia Minggang; Su Zhidan; Zhang Shengli

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  11. FT-Raman and FTIR spectra, DFT investigation of the structure and vibrational assignment of mefenacet

    NASA Astrophysics Data System (ADS)

    Clemy Monicka, J.; James, C.

    2015-09-01

    FTIR and Raman spectral techniques were employed for the vibrational characterization of the herbicide mefenacet. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory calculations. A detailed assignment of the vibrational spectra was made with the aid of theoretically predicted vibrational frequencies. Natural bond orbital analysis on mefenacet was carried out to reveal the nature of different interactions responsible for electron delocalization and the charge transfer between the orbitals (n → π∗, n → σ∗, π → π∗). Structural changes in the molecule due to the substitution of highly electronegative oxygen atom, conjugation and resonance effect were analyzed.

  12. Infrared and Raman spectra, conformational analysis, ab initio calculations and vibrational assignment of 2-chloroethylsilyl chloride

    NASA Astrophysics Data System (ADS)

    Pan, Chunhua; Guirgis, Gamil A.; Durig, James R.

    2005-05-01

    The infrared (3100-40 cm -1) spectra of gaseous and solid and Raman (3200-20 cm -1) spectra of liquid 2-chloroethylsilyl chloride, ClCH 2CH 2SiH 2Cl, have been recorded. There are five possible stable conformers, Gg, Tg, Gt, Tt and Gg' for this molecule where the capital letter G ( gauche) or T ( trans) refer to rotation around the C-C bond and the lower case letters to rotation around the Si-C bond. Most ab initio calculations at the MP2(full) level predicted the order of the stability as Tg>Gg>Gt>Tt>Gg' whereas all density function theory calculations with the B3LYP method predicted the stability as Tg>Tt>Gg>Gt>Gg'. The four more stable conformers have been identified in the fluid phases with the Tg rotamer the only form remaining in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of the samples dissolved in liquid krypton have been recorded and the enthalpy differences determined to be: 50±20 (0.59±0.24 kJ/mol), 172±17 (2.06±0.20 kJ/mol) and 290±40 cm -1 (3.45±0.48 kJ/mol) for the Tg/Gg, Tg/Gt and Tg/Tt conformer pairs with the Tg conformer the most stable form. It is estimated that there is 42±2% of the Tg form, 33±1% of the Gg form, 20±2% of the Gt form, and 5±1% of the Tt form present at ambient temperature. A relatively complete vibrational assignment is proposed for the Tg conformer and many of the fundamentals have been identified for the other three (Gg, Gt and Tt) conformers based on the ab initio MP2(full)/6-31G(d) predicted frequencies, the relative infrared and Raman spectral intensities, and infrared band contours which are supported by normal coordinate calculations. Since the predicted energies between Tg and Gg' conformers from all calculations are very large, it is not surprising that no evidence in either the infrared or Raman spectra could be found for the Gg' conformer. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities

  13. Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation†

    PubMed Central

    Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien

    2015-01-01

    Computation of full infrared (IR) and Raman spectra (including absolute intensities and transition energies) for medium- and large-sized molecular systems beyond the harmonic approximation is one of the most interesting challenges of contemporary computational chemistry. Contrary to common beliefs, low-order perturbation theory is able to deliver results of high accuracy (actually often better than those issuing from current direct dynamics approaches) provided that anharmonic resonances are properly managed. This perspective sketches the recent developments in our research group toward the development a robust and user-friendly virtual spectrometer rooted into the second-order vibrational perturbation theory (VPT2) and usable also by non-specialists essentially as a black-box procedure. Several examples are explicitly worked out in order to illustrate the features of our computational tool together with the most important ongoing developments. PMID:24346191

  14. Solvent effects on the resonance Raman spectra of bacteriochlorophyll a cation radical

    NASA Astrophysics Data System (ADS)

    Misono, Yasuhito; Nishizawa, Ei-ichi; Limantara, Leenawaty; Koyama, Yasushi; Itoh, Koichi

    1995-04-01

    Resonance Raman (RR) spectra were measured for the cation radical of bacteriochlorophyll a in acetone, methanol, dichloromethane and mixed solvents of acetone and methanol. The ring-breathing (C a-C m stretching) frequency of the radical (abbreviated as vr+) was observed at 1601 cm -1 in acetone (forming a penta-coordinated monomer), at 1587 cm -1 in a methanol (forming a hexa-coordinated monomer) and at 1600 cm -1 in dichloromethane (forming a penta-coordinated aggregate). The RR spectrum of the radical in dichloromethane is almost identical to the transient RR spectrum ascribed to 'the aggregated T 1 species of Bchl a' formed in the particular solvent by Nishizawa, Limantara, Nanjou, Nagae, Kakuno and Koyama, indicating that their interpretation needs to be revised.

  15. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  16. Raman Spectra of Liquid Water from Ab Initio Molecular Dynamics: Vibrational Signatures of Charge Fluctuations in the Hydrogen Bond Network.

    PubMed

    Wan, Quan; Spanu, Leonardo; Galli, Giulia A; Gygi, François

    2013-09-10

    We report the first ab initio simulations of the Raman spectra of liquid water, obtained by combining first principles molecular dynamics and density functional perturbation theory. Our computed spectra are in good agreement with experiments, especially in the low frequency region. We also describe a systematic strategy to analyze the Raman intensities, which is of general applicability to molecular solids and liquids, and it is based on maximally localized Wannier functions and effective molecular polarizabilities. Our analysis revealed the presence of intermolecular charge fluctuations accompanying the hydrogen bond (HB) stretching modes at 270 cm(-1), in spite of the absence of any Raman activity in the isotropic spectrum. We also found that charge fluctuations partly contribute to the 200 cm(-1) peak in the anisotropic spectrum, thus providing insight into the controversial origin of such peak. Our results highlighted the importance of taking into account electronic effects in interpreting the Raman spectra of liquid water and the key role of charge fluctuations within the HB network; they also pointed at the inaccuracies of models using constant molecular polarizabilities to describe the Raman response of liquid water. PMID:26592405

  17. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational

  18. Coherent anti-Stokes Raman spectra of oxygen atoms in flames.

    PubMed

    Teets, R E; Bechtel, J H

    1981-10-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to detect oxygen atoms (electronic Raman scattering) and oxygen molecules (rotational Raman scattering) in both hydrogen-oxygen and methane-oxygen flames. The high spectral resolution of CARS is useful for distinguishing the oxygen-atom signals from larger nearby rotational Raman signals. Saturation of the molecular CARS signal that is due to stimulated Raman scattering was observed. This effect limits the sensitivity of the CARS method. PMID:19710736

  19. Analysis of photoluminescence background of Raman spectra of carbon nanotips grown by plasma-enhanced chemical vapor deposition

    SciTech Connect

    Wang, B. B.; Ostrikov, K.; Tsakadze, Z. L.; Xu, S.

    2009-07-01

    Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm{sup -1} besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.

  20. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  1. Surface-Enhanced Raman Spectra of Tetra(4-Sulfonatophenyl)Porphyrin on the Surface of Plasmonic Silver Films

    NASA Astrophysics Data System (ADS)

    Gogoleva, S. D.; Lavysh, A. V.; Motevich, I. G.; Askirka, V. F.; Strekal, N. D.; Sheinin, V. B.; Koifman, O. I.; Zenkevich, E. I.; Maskevich, S. A.

    2016-05-01

    Absorption and Raman spectra of the tetra(4-sulfonatophenyl)porphyrin (TSPP) zwitterion in aqueous solutions under conditions at which porphyrin nanotubes (PNT) form (pH 1) are presented. TSPP was immobilized on the surface of plasmonic silver films (PSF) via quick transfer of a suspension of the molecules into a solution at pH 5 and onto the film surface in order to avoid degrading the film. Images of PNT and spheroidal TSPP aggregates on the PSF surface were visualized using confocal microscopy. Spatially resolved surface-enhanced Raman spectra (SERS) of these objects were recorded. Differences in SERS of PNT and TSPP globular aggregates are discussed based on quantum-chemical calculations of TSPP vibrational spectra. Vibrational bands sensitive to the tube-spherulite transition are found.

  2. Size effects in near-ultraviolet Raman spectra of few-nanometer-thick silicon-on-insulator nanofilms

    NASA Astrophysics Data System (ADS)

    Poborchii, Vladimir; Morita, Yukinori; Tada, Tetsuya; Geshev, Pavel I.; Utegulov, Zhandos N.; Volkov, Alexey

    2016-04-01

    We have fabricated Si-on-insulator (SOI) layers with a thickness h1 of a few nanometers and examined them by Raman spectroscopy with 363.8 nm excitation. We have found that phonon and electron confinement play important roles in SOI with h1 < 10 nm. We have confirmed that the first-order longitudinal optical phonon Raman band displays size-induced major homogeneous broadening due to phonon lifetime reduction as well as minor inhomogeneous broadening due to wave vector relaxation (WVR), both kinds of broadening being independent of temperature. Due to WVR, transverse acoustic (TA) phonons become Raman-active and give rise to a broad band in the range of 100-200 cm-1. Another broad band appeared at 200-400 cm-1 in the spectrum of SOI is attributed to the superposition of 1st order Raman scattering on longitudinal acoustic phonons and 2nd order scattering on TA phonons. Suppression of resonance-assisted 2-nd order Raman bands in SOI spectra is explained by the electron-confinement-induced direct band gap enlargement compared to bulk Si, which is confirmed by SOI reflection spectra.

  3. Microwave, infrared, and Raman spectra, structure, vibrational assignment, and normal coordinate analysis of disilanyl cyanide

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Brletic, P. A.; Church, J. S.; Li, Y. S.

    1982-03-01

    The microwave spectra of SiH3SiH2 12C14N and SiH3SiH2 12C15N have been recorded from 18.0 to 26.5 GHz. Only a-type transitions were observed and R-branch assignments have been made for the ground vibrational state. The rotational constants were found to have the following values: for SiH3SiH2 12C14N, A = 8996.72±5.91, B = 2203.95±0.05, and C = 1844.03±0.05 MHz; for SiH3SiH2 12C15N, A = 8896.08±5.70, B = 2145.15±0.04, and C = 1798.63±0.03 MHz. From a diagnostic least-squares adjustment to fit the six rotational constants, the following structural parameters were obtained: r(Si-Si) = 2.332±0.014 Å; r(Si-C) = 1.841±0.015 Å; r(C≡N) = 1.156±0.010 Å; and ∢SiSiC = 107.4±0.1°. These parameters are compared to the corresponding ones in some other silanes and cyanide molecules. The infrared (2500 to 80 cm-1) and the Raman (2500 to 10 cm-1) spectra of the solid phase have been recorded for disilanyl cyanide-d0 and -d5. Additionally, the infrared spectrum of the gaseous phase and the Raman spectrum of the liquid phase were recorded and qualitative depolarization values were obtained. All of the normal modes have been assigned based upon band contours, depolarization ratios, and group frequencies but the assignment of the SiH3 torsional mode must be considered tentative. A normal coordinate calculation has been carried out by utilizing a modified valence force field to calculate the frequencies and the potential energy distribution. These results are compared to similar quantities in some corresponding molecules.

  4. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of cis- and trans-1,2-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    A study of the vibrational spectra of cis- and trans-1,2-dichloroethylene provides an excellent way for undergraduates to gain experience with the application of group theory in the physical chemistry laboratory. Although the group vibrations are similar for these two molecules, the selection rules for infrared (IR) and Raman spectra differ significantly. Most of the transitions for the fundamentals of the cis isomer of C2v symmetry are both IR and Raman active. Mutual exclusion for the vibrational transitions applies to the centrosymmetric trans isomer of C2h symmetry. Thus, half the transitions for the trans isomer are IR active and half are Raman active. The two isomers are volatile enough that gas-phase IR spectra can be recorded at room temperature. Band shapes in gas-phase IR spectra provide additional evidence for assignments of fundamentals. The two isomers are small enough that good quality quantum chemical calculations of harmonic frequencies can be done by students with commercial software.

  5. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  6. Time-resolved resonance raman spectra of polypyridyl complexes of ruthenium(II)

    SciTech Connect

    Kumar, C.V.; Barton, J.K.; Turro, N.J.; Gould, I.R.

    1987-05-06

    Time-resolved resonance Raman (TR/sup 3/) spectroscopy has recently evolved as a powerful tool for the investigation of the dynamics and structures of a variety of reactive intermediates, electronic excited states, biological systems, and enzyme-substrate complexes. In this communication, the authors report the TR/sup 3/ spectra of three ruthenium complexes of special importance because of three ruthenium complexes of special importance because of their binding ability to nucleic acids, because of their success as chiral probes that recognize the conformations and helicity of nucleic acids, and because of their potential to serve as models for the interaction of metal ions with nucleic acids. They report here the results of TR/sup 3/ and transient absorption experiments which demonstrate that the excited states of three Ru(II) complexes, tris(2,2'-bipyridyl)ruthenium(II) dichloride (I), tris(1,20-phenanthroline)-ruthenium(II) dichloride (II), and tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (III), are indeed localized on the ligand.

  7. Laser power influence on Raman spectra of ZnO(Co) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hadžić, B.; Romčević, N.; Sibera, D.; Narkiewicz, U.; Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Romčević, M.

    2016-04-01

    Influence of laser power on nanocrystalline samples of ZnO(Co) prepared by commonly used wet chemistry method followed by calcination was investigated. Previous confirmation of the existence of ZnO and Co3O4 phases was based on the X-ray diffraction measurements. Here we report the experimental spectra of non-resonant Raman scattering in the range between 100 cm-1 and 1600 cm-1, for a series of samples irradiated with four different laser power densities. The laser power density has different influence on relative intensity of peaks that belong to ZnO phase than on those corresponding to Co3O4 phase. Both peak types show characteristic broadening and red shift toward lower frequencies. The laser power densities used in our study did not cause thermal destruction in any of the investigated samples. Laser-induced local heating effects in samples caused formation of cobalt dimers on the surface of Co3O4.

  8. Structure and Raman spectra of pyridyl substituted diketo-pyrrolo-pyrrole isomers and polymorphs

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav, Jr.; Vyňuchal, Jan; Horáčková, Pavlína; Frumarová, Božena; Žák, Zdirad; Kučerík, Jiří; Salyk, Ota

    2010-11-01

    A complete series of symmetrical and unsymmetrical isomeric pairs of 4- and 2-pyridyl substituted diketo-pyrrolo-pyrroles was synthesized. Both polymorphs of 3,6-bis-(4'-pyridyl)-2,5-dihydro-pyrrolo[3,4- c]pyrrole-1,4-dione were prepared. Asymmetrical 3-phenyl-6-pyridine-2'-yl-2,5-dihydro-pyrrolo[3,4- c]pyrrole-1,4-dione was synthesized for the first time and X-ray structure of its monocrystal was determined. Density functional theory calculations of the ground state geometry were compared with experimental X-ray diffraction data. Theoretical Raman spectra enabled to assign the main peaks of the experimental ones for all four pyridyl DPP derivatives. Crucial spectral features, which reflect the molecular and crystal (H-bond invoked) asymmetry are C dbnd O (pyrrolinone) stretching, N sbnd H (pyrrolinone) bending and trigonal (hetero)aryl bending. Sublimation temperatures of 2-pyridyl derivatives are significantly lower than for 4-pyridyl derivatives, in which stronger in-plane NH(pyrrolinone) sbnd CO(pyrrolinone) intermolecular H-bonding dominates.

  9. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra. PMID:27208967

  10. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGESBeta

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  11. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    NASA Astrophysics Data System (ADS)

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-01

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  12. FT-Raman spectra of cis-bis(thiourea)tellurium(II) halides (Cl -, Br -, I -) and thiocyanate

    NASA Astrophysics Data System (ADS)

    Alía, J. M.; Edwards, H. G. M.; García-Navarro, F. J.

    1999-09-01

    The FT-Raman spectra of some cis-bis(thiourea)tellurium(II) coordination compounds [Te(tu) 2Cl 2, Te(tu) 2Br 2, Te(tu) 2I 2 and Te(tu) 2(SCN) 2] are reported. The observed spectral modifications affect all the Raman active modes of thiourea and can be interpreted as the result of a strong coordination between the Te(II) ion and the sulphur atom of thiourea that weakens the CS bond and subsequently strengthens the C-N bonds. The Raman bands assigned to (TeS) stretching are located at 266+253 cm -1 (thiocyanate), 276+262 cm -1 (chloride), 258+250 cm -1 (bromide) and 232 cm -1 (iodide). The corresponding wave numbers for (TeX) stretching are: 162 cm -1 for (TeCl) and (TeSCN), 150 cm -1 for (TeBr) and 139 cm -1 for (TeI).

  13. Revised vibrational band assignments for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile based on ab initio, DFT and normal coordinate calculations

    NASA Astrophysics Data System (ADS)

    Hiremath, C. S.; Kalkoti, G. B.; Aralakkanavar, M. K.

    2009-09-01

    In the present study, a systematic vibrational spectroscopic investigation for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile (TFB), aided by electronic structure calculations has been carried out. The electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) - have been performed with 6-31G* basis set. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. The results of the calculations have been used to simulate IR and Raman spectra for TFB that showed excellent agreement with the observed spectra. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed. A complete assignment of the observed spectra has been proposed.

  14. [Density functional theory study of surface-enhanced raman spectra and excited state of 1,4-benzenedithiol].

    PubMed

    Shao, Yang-Fan; Li, Chong-Yang; Feng, Yuan-Ming; Lin, Wang

    2014-02-01

    Raman scattering spectra and optimized geometries of the 1,4-benzenedithiol molecule and complexes have been calculated using density functional theory (DFT) with B3LYP functional at the level of 6-311G+(d) basis set for C, H, S atoms and LanL2DZ for Ag, Au atoms, respectively. The optimized 1,4-benzenedithiol molecule was non-planar structure and the angle between benzene ring plane and S-H is 20.20. By means of the simulation of molecule adsorbed on gold and silver cluster, we concluded that gold clusters are nearly parallel to the benzenedithiol molecule and silver clusters are almost perpendicular to the molecular surface. The authors studied the interaction between Raman intensity and molecular properties, such as static polarizablity and charge distribution. The Raman intensity of 1,4-BDT-Au2, 1,4-BDT-Ag2 and Ag2-1,4-BDT-Au2 were in good agreement with static polarizability. The excited states of Ag2-1,4-BDT-Au2 complex were calculated using time-dependent density functional theory (TDDFT). And the simulated absorption spectra and several allowed singlet excited states were analyzed to investigate the surface-enhanced Raman chemical enhancement mechanism. PMID:24822413

  15. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra

    NASA Astrophysics Data System (ADS)

    Ando, Masahiro; Hamaguchi, Hiro-o.

    2014-01-01

    Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.

  16. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra.

    PubMed

    Ando, Masahiro; Hamaguchi, Hiro-o

    2014-01-01

    Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell. PMID:24108582

  17. Infrared and Raman spectra, r0 structural parameters, conformational stability, and vibrational assignment of 2-cyanoethylamine

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Darkhalil, Ikhlas D.; Klaassen, Joshua J.

    2012-09-01

    The infrared spectra (4000-200 cm-1) of the gas and solid and the Raman spectrum (4000-40 cm-1) of the liquid have been recorded. Vibrational fundamentals have been identified for four of the possible five stable conformers and complete vibrational assignments have been made for the Gg and Gt forms where the Capital G is for Gauche for the orientation around the Csbnd C bond and the lower cases g and t for gauche and trans orientation for the amine. These forms are the two lowest energy conformers. Vibrational assignments have been supported by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, and depolarization ratios. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. The enthalpy differences between the Gg and Gt conformers was determined to be 75 cm-1 and for the Gg to Tg form 333 cm-1. The r0 structural parameters have been obtained for the two most stable conformers from predicted parameters from ab initio MP2(full)/6-311+G(d,p) calculations adjusted to fit the previously reported microwave rotational constants. The determined heavy atom structural values for the Gg [Gt] conformer are: the distances (Å) N1sbnd C2 = 1.461(3) [1.453(3)], C2sbnd C3 = 1.535(3) [1.545(3)], C3sbnd C4 = 1.466(3) [1.463(3)], C4tbnd N5 = 1.161(3) [1.161(3)] and angles (°) ∠N1C2C3 = 109.5(5) [116.0(5)], ∠C2C3C4 = 111.1(5) [111.1(5)], ∠C3C4N5 = 177.4(5) [177.0(5)]. These parameters are compared to those estimated from the microwave study. The results are discussed and compared to the corresponding properties of some similar molecules.

  18. DFT study of structure, IR and Raman spectra of the fluorescent "Janus" dendron built from cyclotriphosphazene core

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-11-01

    The FTIR and FT-Raman spectra of the zero generation dendron, possessing five fluorescent dansyl terminal groups, cyclotriphosphazene core, and one carbamate function G0v were studied. The structural optimization and normal mode analysis were performed for G0v dendron on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G0v dendron were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The frequency of ν(N-H) band in the IR spectrum reveal the presence of H-bonds in the G0v dendron.

  19. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    NASA Astrophysics Data System (ADS)

    Butenko, A.; Zion, E.; Kaganovskii, Yu.; Wolfson, L.; Richter, V.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-07-01

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C+ and Xe+ ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the "activated" area around structural defects.

  20. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  1. Raman Scattering Spectra of the Folded Acoustic Phonon in AlxGa1-xAs/GaAs Superlattices for Various Al Mole Fractions

    NASA Astrophysics Data System (ADS)

    Fukasawa, Ryoichi; Okubo, Yusei; Abe, Osamu; Ohta, Kimihiro

    1992-03-01

    We report the Raman scattering spectra of the folded longitudinal acoustic phonon of AlxGa1-xAs/GaAs superlattices for various aluminium (Al) mole fractions. The effect of Al mole fraction increases on the Raman intensities and the frequencies was studied.

  2. Spectra and structure of organophosphorus compounds. XII - Infrared and Raman spectra of /CH3/2PH and /CD3/2PH

    NASA Technical Reports Server (NTRS)

    Durig, J. R.; Saunders, J. E.

    1975-01-01

    The vibrational spectra of (CH3)2PH and (CD3)2PH have been studied and assignments made. In the infrared, the region between 4000 and 33 wavelength/cm was recorded for the gaseous and solid states, while Raman spectra from 3500 to 10 wavelength/cm in the gaseous, liquid and solid states were observed. There is some evidence of weak hydrogen bonding, based on the behavior of the phosphorus-hydrogen stretching and bending modes. There also appears to be considerable interaction between the methyl rocking and phosphorus-carbon stretching modes. The a double prime and a prime torsional modes appear to be accidentally degenerate at 182 and 142 wavelength/cm for the 'light' and 'heavy' compounds, respectively. This gives barriers of 2.14 and 2.30 kcal/mole, respectively.

  3. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    PubMed Central

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K.

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence. PMID:22319277

  4. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    PubMed

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. PMID:22981122

  5. Spectra of Surface-Enhanced Raman Scattering of 1-Propanethiol and 3-Mercaptopropionic Acid Chemisorbed on Thin Silver Films

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; German, A. E.; Gachko, G. A.; Maskevich, S. A.

    2000-12-01

    The influence of chemisorption and intermolecular Van der Waals interactions on the formation of surface-enhanced Raman spectra of 1-propanethiol and 3-mercaptopropionic acid coated as self-organized monolayers on vacuum-deposited thin silver films and thin silver films annealed at high temperatures is studied. Optical properties of films of both types are found to be strongly affected by the chemical modification, which is associated with peculiarities of the monolayer formation. It is shown that the reorganization of the substrate surface can be associated with intense repulsion between alkane chains of thiol when the distance between them decreases in comparison with the distance typical of crystalline paraffins. Conclusions on the presence and the nature of packing defects of short-chain thiols on the substrate surface are made on the basis of the analysis of Raman and surface-enhanced Raman spectra. It is shown that the interaction between the first (propanethiol) and the second (pyruvate) monolayers near the silver surface in the water phase results in the reorganization of the first monolayer, in which conformers of propanethiol in the gauche-conformation with respect to the C(1)-C(2) bond prevail.

  6. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek A.; Shaltout, I.; Al Yahyaei, K. M.

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO 2 + 5%Fe 2O 3 + 10%TMO], where transition metal oxides (TMO) are TiO 2, V 2O 5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm -1) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO 44- triagonal bipyramid ( C2v) and Te 2O 76- bridged tetrahedra ( Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO 3+1 binds to TeO 3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  7. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.

    PubMed

    Christesen, Steven D; Pendell Jones, Jay; Lochner, Joseph M; Hyre, Aaron M

    2008-10-01

    Ultraviolet (UV) Raman spectroscopy is being applied to the detection of chemical agent contamination of natural and man-made surfaces. In support of these efforts, we have measured the UV Raman signatures of the G-series nerve agents GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), and the agent simulant diisopropyl methylphosphonate (DIMP) at 248 nm and 262 nm, as well as taking their UV Raman and UV absorption cross-sections. Of these chemicals, only GA exhibits any significant pre-resonance enhancement. We also show that reduction of the excitation wavelength from 262 nm to 248 nm effectively shifts the Raman spectrum away from a substantial sample fluorescence background, implying a significant improvement in detection capability. PMID:18926015

  8. Spectra and structure of small ring compounds. LI. Infrared and Raman spectra, vibrational assignment and ab initio calculations of 1,1-dicyanocyclobutane

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Zhao, Wenyun; Little, T. S.; Dakkouri, M.

    1988-12-01

    The infrared (3500 to 50 cm -1) and Raman (3500 to 20 cm -1) spectra of solid 1,1-dicyanocyclobutane have been recorded. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. The spectral features observed at room temperature for the solid phase (m.p. 37 °C) are very similar to those obtained for the neat liquid at ≈ 60 °C but the spectral features observed at -120 °C were clearly those of an annealed solid. These spectra have been interpreted on the basis of C s molecular symmetry for 1,1-dicyanocyclobutane where the ring is puckered and the two cyano groups are "quasi-linear". The vibrational assignment is based on depolarization values, group frequencies, and in some cases the relative intensities of the observed bands. The potential function governing the ring puckering motion has been determined from optimized geometries obtained by ab initio Hartree-Fock gradient calculations at both the 3-21G and 4-31G basis set levels. The assignments of the fundamental vibrational frequencies are compared to those obtained from a force field obtained by ab initio calculations employing the 3-21G basis set. These results are discussed and compared to those obtained for some similar molecules.

  9. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    NASA Astrophysics Data System (ADS)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  10. FT-Raman and SERS spectra of rivanol in silver sol.

    PubMed

    Iliescu, T; Cinta, S; Kiefer, W

    2000-10-01

    FT-Raman of solid rivanol (2-ethoxy-6,9-diaminoacridinium lactate C(15)H(16)N(3)O-C(3)H(5)O(3) . H(2)O) and surface-enhanced Raman scattering (SERS) on silver surface of rivanol solution at pH 5.5 have been obtained and compared. The assignment of vibrational modes has been made for the monocation specie of rivanol. SERS spectrum shows a physisorption of rivanol on the silver surface. PMID:18968095