Listening to the noise: random fluctuations reveal gene network parameters
Munsky, Brian; Khammash, Mustafa
2009-01-01
The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.
Random numbers from vacuum fluctuations
NASA Astrophysics Data System (ADS)
Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian
2016-07-01
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
Statistical regimes of random laser fluctuations
Lepri, Stefano; Cavalieri, Stefano; Oppo, Gian-Luca; Wiersma, Diederik S.
2007-06-15
Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a simplified model which includes the population of the medium demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.
Local volume fraction fluctuations in random media
Quintanilla, J.; Torquato, S.
1997-02-01
Although the volume fraction is a constant for a statistically homogeneous random medium, on a spatially local level it fluctuates. We study the full distribution of volume fraction within an observation window of finite size for models of random media. A formula due to Lu and Torquato for the standard deviation or {open_quotes}coarseness{close_quotes} associated with the {ital local} volume fraction {xi} is extended for the nth moment of {xi} for any n. The distribution function F{sub L} of the local volume fraction of five different model microstructures is evaluated using analytical and computer-simulation methods for a wide range of window sizes and overall volume fractions. On the line, we examine a system of fully penetrable rods and a system of totally impenetrable rods formed by random sequential addition (RSA). In the plane, we study RSA totally impenetrable disks and fully penetrable aligned squares. In three dimensions, we study fully penetrable aligned cubes. In the case of fully penetrable rods, we will also simplify and numerically invert a prior analytical result for the Laplace transform of F{sub L}. In all of these models, we show that, for sufficiently large window sizes, F{sub L} can be reasonably approximated by the normal distribution. {copyright} {ital 1997 American Institute of Physics.}
Cosmological fluctuations of a random field and radiation fluid
Bastero-Gil, Mar; Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O. E-mail: ab@ph.ed.ac.uk E-mail: rudnei@uerj.br
2014-05-01
A generalization of the random fluid hydrodynamic fluctuation theory due to Landau and Lifshitz is applied to describe cosmological fluctuations in systems with radiation and scalar fields. The viscous pressures, parametrized in terms of the bulk and shear viscosity coefficients, and the respective random fluctuations in the radiation fluid are combined with the stochastic and dissipative scalar evolution equation. This results in a complete set of equations describing the perturbations in both scalar and radiation fluids. These derived equations are then studied, as an example, in the context of warm inflation. Similar treatments can be done for other cosmological early universe scenarios involving thermal or statistical fluctuations.
A primer for structural response to random pressure fluctuations
NASA Technical Reports Server (NTRS)
Dowell, E. H.; Vaicaitis, R.
1975-01-01
A review was made of power spectral methods for determining linear response of structures to random pressure fluctuations. Various simplifying assumptions are made for the purpose of obtaining useful formula for structural response. The transmission of sound through a flexible structure into an interior cavity was also treated.
Random paths and current fluctuations in nonequilibrium statistical mechanics
Gaspard, Pierre
2014-07-15
An overview is given of recent advances in nonequilibrium statistical mechanics about the statistics of random paths and current fluctuations. Although statistics is carried out in space for equilibrium statistical mechanics, statistics is considered in time or spacetime for nonequilibrium systems. In this approach, relationships have been established between nonequilibrium properties such as the transport coefficients, the thermodynamic entropy production, or the affinities, and quantities characterizing the microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate. This overview presents results for classical systems in the escape-rate formalism, stochastic processes, and open quantum systems.
Ultrafast quantum random number generation based on quantum phase fluctuations.
Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong
2012-05-21
A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG. PMID:22714224
Effect of random charge fluctuation on strongly coupled dusty Plasma
Issaad, M.; Rouiguia, L.; Djebli, M.
2008-09-07
Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.
NASA Astrophysics Data System (ADS)
Avena, L.; Thomann, P.
2012-07-01
We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamical setup too. Such anomalous fluctuations give rise to a new phase diagram. Further we discuss possible consequences for more general static and dynamic random environments.
On Fluctuations of Eigenvalues of Random Band Matrices
NASA Astrophysics Data System (ADS)
Shcherbina, M.
2015-10-01
We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.
Fluctuation power spectra reveal dynamical heterogeneity of peptides
NASA Astrophysics Data System (ADS)
Khatri, Bhavin; Yew, Zu Thur; Krivov, Sergei; McLeish, Tom; Paci, Emanuele
2010-07-01
Characterizing the conformational properties and dynamics of biopolymers and their relation to biological activity and function is an ongoing challenge. Single molecule techniques have provided a rich experimental window on these properties, yet they have often relied on simple one-dimensional projections of a multidimensional free energy landscape for a practical interpretation of the results. Here, we study three short peptides with different structural propensity (α helical, β hairpin, and random coil) in the presence (or absence) of a force applied to their ends using Langevin dynamics simulation and an all-atom model with implicit solvation. Each peptide produces fluctuation power spectra with a characteristic dynamic fingerprint consistent with persistent structural motifs of helices, hairpins, and random coils. The spectra for helix formation shows two well-defined relaxation modes, corresponding to local relaxation and cooperative coil to uncoil interconversion. In contrast, both the hairpin and random coil are polymerlike, showing a broad and continuous range of relaxation modes giving characteristic power laws of ω-5/4 and ω-3/2, respectively; the -5/4 power law for hairpins is robust and has not been previously observed. Langevin dynamics simulations of diffusers on a potential of mean force derived from the atomistic simulations fail to reproduce the fingerprints of each peptide motif in the power spectral density, demonstrating explicitly that such information is lacking in such one-dimensional projections. Our results demonstrate the yet unexploited potential of single molecule fluctuation spectroscopy to probe more fine scaled properties of proteins and biological macromolecules and how low dimensional projections may cause the loss of relevant information.
Social patterns revealed through random matrix theory
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Jalan, Sarika
2014-11-01
Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.
Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations
NASA Astrophysics Data System (ADS)
Lai, Lipeng; Cao, Jianshu
2014-07-01
The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.
Random River Fluctuations Shape the Root Profile of Riparian Plants
NASA Astrophysics Data System (ADS)
Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.
2015-12-01
Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.
NASA Astrophysics Data System (ADS)
Feng, Lei; Li, Pengxiong; Zhang, Mengzhen; Wang, Tun; Xiao, Yanhong
2014-01-01
It is known that cross correlation between the random intensity fluctuations of two lasers forming electromagnetically induced transparency (EIT) exhibits a transition from correlation to anticorrelation. We study the linewidth behavior of this transition and have found the linewidth is below the (effective) coherence lifetime limit and is limited only by competing noises. We established a numerical model which reveals the linewidth dependence on laser linewidth and laser power. Our experiments using lasers with different linewidth showed results in qualitative agreement with the model. This result is useful for quantum optics using EIT and may also have applications in spectroscopy and precision measurements.
Rice, William D; Liu, Wenyong; Baker, Thomas A; Sinitsyn, Nikolai A; Klimov, Victor I; Crooker, Scott A
2016-02-01
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn(2+), Co(2+) and so on) couple to band carriers via strong sp-d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. Here we directly and unambiguously reveal the large Beff that exist in Mn(2+)-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300-600 GHz) spin precession of photoinjected electrons is observed, indicating Beff ∼ 15 -30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. These signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn(2+) moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials. PMID:26595331
ACCELERATION OF VERY SMALL DUST GRAINS DUE TO RANDOM CHARGE FLUCTUATIONS
Hoang, Thiem; Lazarian, A.
2012-12-20
We study the acceleration of very small dust grains including polycyclic aromatic hydrocarbons arising from electrostatic interactions of dust grains that have charge fluctuating randomly in time. Random charge fluctuations of very small grains due to discrete charging events (i.e., sticking collisions with electrons and ions in plasma, and emission of photoelectrons by UV photons) are simulated using the Monte Carlo (MC) method. The motion of dust grains in randomly fluctuating electric fields induced by surrounding charged grains is studied using MC simulations. We identify the acceleration induced by random charge fluctuations as a dominant acceleration mechanism for very small grains in the diffuse interstellar medium (ISM). We find that this acceleration mechanism is efficient for environments with a low degree of ionization (i.e., large Debye length), where charge fluctuations are slow but have a large amplitude. The implications of the present acceleration mechanism for grain coagulation and shattering in the diffuse ISM and dark clouds are also discussed.
Variance of phase fluctuations of waves propagating through a random medium
NASA Technical Reports Server (NTRS)
Chu, Nelson C.; Kong, Jin AU; Yueh, Simon H.; Nghiem, Son V.; Fleischman, Jack G.; Ayasli, Serpil; Shin, Robert T.
1992-01-01
As an electromagnetic wave propagates through a random scattering medium, such as a forest, its energy is attenuated and random phase fluctuations are induced. The magnitude of the random phase fluctuations induced is important in estimating how well a Synthetic Aperture Radar (SAR) can image objects within the scattering medium. The two-layer random medium model, consisting of a scattering layer between free space and ground, is used to calculate the variance of the phase fluctuations induced between a transmitter located above the random medium and a receiver located below the random medium. The scattering properties of the random medium are characterized by a correlation function of the random permittivity fluctuations. The effective permittivity of the random medium is first calculated using the strong fluctuation theory, which accounts for large permittivity fluctuations of the scatterers. The distorted Born approximation is used to calculate the first-order scattered field. A perturbation series for the phase of the received field in the Rytov approximation is then introduced and the variance of the phase fluctuations is also calculated assuming that the transmitter and receiver are in the paraxial limit of the random medium, which allows an analytic solution to be obtained. Results are compared using the paraxial approximation, scalar Green's function formulation, and dyadic Green's function formulation. The effects studied are the dependence of the variance of the phase fluctuations on receiver location in lossy and lossless regions, medium thickness, correlation length and fractional volume of scatterers, depolarization of the incident wave, ground layer permittivity, angle of incidence, and polarization.
Chavanis; Sire
2000-07-01
This paper is devoted to a statistical analysis of the fluctuations of velocity and acceleration produced by a random distribution of point vortices in two-dimensional turbulence. We show that the velocity probability density function PDF behaves in a manner which is intermediate between Gaussian and Levy laws, while the distribution of accelerations is governed by a Cauchy law. Our study accounts properly for a spectrum of circulations among the vortices. In the case of real vortices (with a finite core), we show analytically that the distribution of accelerations makes a smooth transition from Cauchy (for small fluctuations) to Gaussian (for large fluctuations), probably passing through an exponential tail. We introduce a function T(V) which gives the typical duration of a velocity fluctuation V; we show that T(V) behaves like V and V-1 for weak and large velocities, respectively. These results have a simple physical interpretation in the nearest neighbor approximation, and in Smoluchowski theory concerning the persistence of fluctuations. We discuss the analogies with respect to the fluctuations of the gravitational field in stellar systems. As an application of these results, we determine an approximate expression for the diffusion coefficient of point vortices. When applied to the context of freely decaying two-dimensional turbulence, the diffusion becomes anomalous and we establish a relationship nu=1+(xi/2) between the exponent of anomalous diffusion nu and the exponent xi which characterizes the decay of the vortex density. PMID:11088485
Fluctuating pancake vortices revealed by dissipation of Josephson vortex lattice.
Koshelev, A. E.; Buzdin, A. I.; Kakeya, I.; Yamamoto, T.; Kadowaki, K.
2011-06-01
In strongly anisotropic layered superconductors in tilted magnetic fields, the Josephson vortex lattice coexists with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson vortex lattice is very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller than the corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the fluctuational regime either near the surface in large-size samples or in the central region for small-size mesas. We calculate the contribution of such fluctuating pancake vortices to the c-axis conductivity of the Josephson vortex lattice and compare the theoretical results with measurements on small mesas fabricated out of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} crystals. A fingerprint of fluctuating pancakes is a characteristic exponential dependence of the c-axis conductivity observed experimentally. Our results provide strong evidence of the existence of the fluctuating pancakes and their influence on the Josephson vortex lattice dissipation.
Spatiotemporal collapse in a nonlinear waveguide with a randomly fluctuating refractive index.
Gaididei, Y B; Christiansen, P L
1998-07-15
Analytical results, based on the virial theorem and the Furutsu-Novikov theorem, of the spatiotemporal evolution of a pulse in a nonlinear waveguide with a randomly fluctuating refractive index are presented. For initial conditions in which total collapse occurs in a homogeneous waveguide, random fluctuations postpone the collapse. Sufficiently large-amplitude and short-wavelength fluctuations can cause an initially localized pulse to spread instead of contracting. We show that the disorder can be applied to induce a high degree of controllability of the spatiotemporal extent of the pulses in the nonlinear waveguide. PMID:18087437
Fluctuations and correlations of emission from random lasers
NASA Astrophysics Data System (ADS)
Merrill, Jason W.; Cao, Hui; Dufresne, Eric R.
2016-02-01
When light travels through strongly scattering media with optical gain, the synergy between diffusive transport and stimulated emission can lead to lasing action. Below the threshold pump power, the emission spectrum is smooth and does not change from shot to shot. Above the lasing threshold, the spectrum of emitted light becomes spiky and shows strong fluctuations from shot to shot. Recent experiments have reported that emitted intensity resembles a power-law distribution (i.e., Lévy statistics). To separate intrinsic intensity fluctuations from the motion of scatterers, we compare the statistics of samples with stationary or freely diffusing scatterers. Consistent with previous reports, we observe Lévy-like statistics when intensity data are pooled across an ensemble of scatterer configurations. For fixed scatterers, we find exponential intensity distributions for individual lasing modes whose mean intensities vary widely from mode to mode. Lévy-like statistics reemerges when data are combined across many lasing modes. Additionally, we find strong correlations of intensity fluctuations of lasing modes across wavelengths. A simple mean-field statistical model captures the observed one- and two-point statistics, where correlations in emission intensity arise from competition among all lasing modes for limited gain.
The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra
Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca
2015-01-01
The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194
The influence of the property of random coded patterns on fluctuation-correlation ghost imaging
NASA Astrophysics Data System (ADS)
Wang, Chenglong; Gong, Wenlin; Shao, Xuehui; Han, Shensheng
2016-06-01
According to the reconstruction feature of fluctuation-correlation ghost imaging (GI), we define a normalized characteristic matrix and the influence of the property of random coded patterns on GI is investigated based on the theory of matrix analysis. Both simulative and experimental results demonstrate that for different random coded patterns, the quality of fluctuation-correlation GI can be predicted by some parameters extracted from the normalized characteristic matrix, which suggests its potential application in the optimization of random coded patterns for GI system.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
2000-01-01
In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFET's with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3-D) "atomistic" simulation technique described else-where. MOSFET's with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled-in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide-thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect or the polysilicon grain boundaries on the threshold voltage variation are also presented.
Search for Random Fluctuations in Periods of Short-period Cepheids
NASA Astrophysics Data System (ADS)
Berdnikov, L. N.; Stevens, I. R.
2010-02-01
Data from SMEI instrument (onboard the CORIOLIS spacecraft) for 16 brightest Cepheids were analyzed with the Eddington-Plakidis method and random fluctuations in periods for four of them, SU Cas (P=1.95d), δ Cep (P=5.37d), κ Pav (P=9.09d), and α UMi (P=3.97d) were detected. Such fluctuations for short period Cepheids were found for the first time.
Can fluctuations of classical random field produce quantum averages?
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2009-08-01
Albert Einstein did not believe in completeness of QM. He dreamed of creation of prequantum classical statistical mechanics such that QM will be reproduced as its approximation. He also dreamed of total exclusion of corpuscules from the future model. Reality of Einstein's dream was pure fields' reality. Recently I made his dream come true in the form of so called prequantum classical statistical field theory (PCSFT). In this approach quantum systems are described by classical random fields, e.g., electromagnetic field (instead of photon), electron field or neutron field. In this paper we generalize PCSFT to composite quantum system. It is well known that in QM, unlike classical mechanics, the state of a composite system is described by the tensor product of state spaces for its subsystems. In PCSFT one can still use Cartesian product, but state spaces are spaces of classical fields (not particles). In particular, entanglement is nothing else than correlation of classical random fields, cf. again Einstein. Thus entanglement was finally demystified.
Bettelheim, F A; Paunovic, M
1979-01-01
Light-scattering intensities in the I parallel and I+ mode were obtained on thin sections of three human lenses. Random density and orientation fluctuation theory, without cross correlation, was employed to evaluate light-scattering parameters. Both the density correlation distances, as well as the orientation correlation distances, were related to structural elements in the lens fiber cell that have been observed by other investigators with different techniques. The magnitude of these fluctuations were evaluated, and it was demonstrated that the density fluctuations are the main contributors to light scattering in normal human lenses. Changes in the light-scattering parameters were evaluated as a function of position within the lens. The changes observed agree with the biochemical data in the literature that reflects that an aging process occurs when one proceeds from the periphery of the lens toward the center. PMID:262413
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations.
Nie, You-Qi; Huang, Leilei; Liu, Yang; Payne, Frank; Zhang, Jun; Pan, Jian-Wei
2015-06-01
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage. PMID:26133826
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
Nie, You-Qi; Liu, Yang; Zhang, Jun Pan, Jian-Wei; Huang, Leilei; Payne, Frank
2015-06-15
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.
NASA Astrophysics Data System (ADS)
Almaev, R. Kh; Suvorov, A. A.
1993-09-01
We investigate the statistical characteristics of the phase of a wave propagating along a ranging path that includes a phase-conjugate mirror through a medium whose complex permittivity ɛ varies randomly. We obtain expressions for the mean change and variance of fluctuations in the phase of a plane wave. We show that phase fluctuations caused by the random changes of the imaginary part of ɛ are not canceled by the phase-conjugate mirror. We obtain conditions for the appearance of enhanced backward scattering in comparison with the mean phase and variance of phase fluctuations for the reflected wave in this absorbing, randomly inhomogeneous medium.
Huang, Liang; Yang, Rui; Lai, Ying-Cheng; Ferry, David K
2013-02-27
Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed 'coexistence' of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. PMID:23343960
Fluctuations around equilibrium laws in ergodic continuous-time random walks.
Schulz, Johannes H P; Barkai, Eli
2015-06-01
We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables. PMID:26172683
Fluctuations around equilibrium laws in ergodic continuous-time random walks
NASA Astrophysics Data System (ADS)
Schulz, Johannes H. P.; Barkai, Eli
2015-06-01
We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, S.
2000-01-01
In this paper for the first time we study the influence of the polysilicon gate on the random dopant induced threshold voltage fluctuations in sub 100 nm MOSFETs with tunnelling gate oxides. This is done by using an efficient 3D 'atomistic' simulation technique described elsewhere. Devices with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveale that the polysilicon gate is responsible for a substantial fraction of the threshold voltage fluctuations in both devices when the gate oxide is scaled to tunnelling thickness in the range of 1 - 2 nm.
Catalytic micromotor generating self-propelled regular motion through random fluctuation.
Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa
2013-07-21
Most of the current studies on nano∕microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation. PMID:23883050
NASA Astrophysics Data System (ADS)
Ravichandran, S.; Bagchi, Biman
1996-01-01
We have carried out a computer ``experiment'' of orientational relaxation in a spatially random and orientationally disordered dipolar lattice (RDL), generated by quenching only the translational motion of a dense liquid. In the high polarity limit, the orientational relaxation of the RDL is dramatically different from that of the parent liquid, the former exhibits a very slow, nonexponential long time decay of the orientational correlation functions and markedly non-Debye dielectric relaxation. These results clearly demonstrate the importance of spatial density fluctuations in orientational relaxation.
NASA Astrophysics Data System (ADS)
Hamaneh, Mehdi Bagheri; Haber, Jonah; Yu, Yi-Kuo
2015-11-01
A general model for random walks (RWs) on networks is proposed. It incorporates damping and time-dependent links, and it includes standard (undamped, noninteracting) RWs (SRWs), coalescing RWs, and coalescing-branching RWs as special cases. The exact, time-dependent solutions for the average numbers of visits (w ) to nodes and their fluctuations (σ2) are given, and the long-term σ -w relation is studied. Although σ ∝w1 /2 for SRWs, this power law can be fragile when coalescing-branching interaction is present. Damping, however, often strengthens it but with an exponent generally different from 1 /2 .
Catalytic micromotor generating self-propelled regular motion through random fluctuation
NASA Astrophysics Data System (ADS)
Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa
2013-07-01
Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.
Geomagnetic fluctuations reveal stable stratification at the top of the Earth's core.
Buffett, Bruce
2014-03-27
Modern observations of the geomagnetic field reveal fluctuations with a dominant period of about 60 years. These fluctuations are probably a result of waves in the liquid core, although the precise nature of the waves is uncertain. Common suggestions include a type of magnetic wave, known as a torsional oscillation, but recent studies favour periods that are too short to account for a 60-year fluctuation. Another possibility involves MAC waves, which arise from the interplay between magnetic, Archimedes and Coriolis forces. Waves with a suitable period can emerge when the top of the core is stably stratified. Here I show that MAC waves provide a good description of time-dependent zonal flow at the top of the core, as inferred from geomagnetic secular variation. The same wave motion can also account for unexplained fluctuations in the dipole field. Both of these independent predictions require a 140-kilometre-thick stratified layer with a buoyancy frequency comparable to the Earth's rotation rate. Such a stratified layer could have a thermal origin, implying a core heat flow of about 13 terawatts. Alternatively, the layer could result from chemical stratification. In either case, the existence of a stratified layer at the top of the core obscures the nature of flow deeper in the core, where the magnetic field is continually regenerated. PMID:24670768
NASA Astrophysics Data System (ADS)
Durand, O.; Soulard, L.; Bourasseau, E.; Filippini, G.
2016-07-01
We perform molecular dynamics simulations to investigate the static and dynamic fragmentation of metallic liquid sheets of tin induced by random surface fluctuations. The static regime is analyzed by simulating sheets of different thicknesses, and the dynamic fragmentation is ensured by applying along the longitudinal direction of a sheet an instantaneous expansion velocity per initial unit length (expansion rate) with values ranging from 1 × 109 to 3 × 1010 s-1. The simulations show that the static/dynamic fragmentation becomes possible when the fluctuations of the upper and lower surfaces of the sheets can either overlap or make the local volume density of the system go down below a critical value. These two mechanisms cause locally in the sheet the random nucleation of pores of void, on a timescale that exponentially increases with the sheet thickness. Afterwards, the pores develop following distinct stages of growth, coalescence, and percolation, and later in time aggregates of liquid metal are formed. The simulations also show that the fragmentation of static sheets is characterized by relatively mono-dispersed surface and volume distributions of the pores and aggregates, respectively, whereas in extreme conditions of dynamic fragmentation (expansion rate typically in the range of 1 × 1010 s-1), the distributions are rather poly-dispersed and obey a power law decay with surface (volume). A model derived from the simulations suggests that both dynamic and static regimes of fragmentation are similar for expansion rates below typically 1 × 107 s-1.
He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter
2015-01-01
Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846
He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J; Lu, H Peter
2015-09-22
Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846
Linear response and modified fluctuation-dissipation relation in random potential.
Sakuldee, Fattah; Suwanna, Sujin
2015-11-01
In this work, a physical system described by the Hamiltonian H(ω)=H(0)+V(ω)(t) consisting of a solvable model H(0) and external random and time-dependent potential V(ω)(t) is investigated. Under the conditions in which, for each realization, the potential changes smoothly so that the evolution of the system follows the Schrödinger dynamics, and that the average external potential with respect to all realizations is constant in time, an adjusted equilibrium state can be defined as a reference state and the mean dynamics can be derived from taking the average of the equation with respect to the configuration parameter ω. It provides extra contributions from the deviations of the Hamiltonian and evolves the state along the time by the Heisenberg and Liouville-von Neumann equations. Consequently, the Kubo formula and the fluctuation-dissipation relation (FDR) are modified in the sense that the contribution from the information of randomness and memory effects from the time dependence is also present. The modified Kubo formula now has a contribution from two terms. The first term is an antisymmetric cross correlation between two observables measured by a probe as expected, and the latter term is an accumulation of the propagation of the effects from the randomness. When the considered system is in the adjusted equilibrium state at the time the measurement probe interacts, the latter contribution vanishes, and the standard FDR is recovered. PMID:26651658
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash
1999-01-01
A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.
Aggelen, Helen van; Department of Chemistry, Duke University, Durham, North Carolina 27708 ; Yang, Yang; Yang, Weitao
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R{sup −6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
NASA Astrophysics Data System (ADS)
Spohn, Herbert
2011-03-01
In 1986 Kardar, Parisi, and Zhang (KPZ) proposed a stochastic evolution equation for growing interfaces, thereby triggering an intense study of growth processes with local growth rules. Specifically we have in mind the recent spectacular experiment of Takeuchi and Sano on droplet growth in a thin film of turbulent liquid crystal. Over the last ten years one has studied universal probability density functions on the basis of simplified lattice growth models. Surprisingly enough the one-point shape fluctuations are governed by the same statistical laws as the largest eigenvalue of a random matrix, Gaussian Unitary Ensemble (GUE) in case of a curved front and Gaussian Orthogonal Ensemble (GOE) for a flat front. Recently we obtained the first exact solution of the KPZ equation for initial conditions corresponding to droplet growth, thereby providing the probability density function for the height at any time. For long times we recover the universal statistical properties as computed from lattice growth models.
Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.
2014-09-21
In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.
NASA Astrophysics Data System (ADS)
Rezapour, Arash; Rezapour, Pegah
2015-09-01
We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel.
Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres
Wu, Dan; Kendrick, Keith M.; Levitin, Daniel J.; Li, Chaoyi; Yao, Dezhong
2015-01-01
Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach’s harmony patterns were having the most influence on those used by other composers, followed closely by Mozart. PMID:26545104
Foflonker, Fatima; Price, Dana C; Qiu, Huan; Palenik, Brian; Wang, Shuyi; Bhattacharya, Debashish
2015-02-01
An expected outcome of climate change is intensification of the global water cycle, which magnifies surface water fluxes, and consequently alters salinity patterns. It is therefore important to understand the adaptations and limits of microalgae to survive changing salinities. To this end, we sequenced the 13.5 Mbp genome of the halotolerant green alga Picochlorum SENEW3 (SE3) that was isolated from a brackish water pond subject to large seasonal salinity fluctuations. Picochlorum SE3 encodes 7367 genes, making it one of the smallest and most gene dense eukaryotic genomes known. Comparison with the pico-prasinophyte Ostreococcus tauri, a species with a limited range of salt tolerance, reveals the enrichment of transporters putatively involved in the salt stress response in Picochlorum SE3. Analysis of cultures and the protein complement highlight the metabolic flexibility of Picochlorum SE3 that encodes genes involved in urea metabolism, acetate assimilation and fermentation, acetoin production and glucose uptake, many of which form functional gene clusters. Twenty-four cases of horizontal gene transfer from bacterial sources were found in Picochlorum SE3 with these genes involved in stress adaptation including osmolyte production and growth promotion. Our results identify Picochlorum SE3 as a model for understanding microalgal adaptation to stressful, fluctuating environments. PMID:24965277
Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.
Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong
2015-01-01
Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart. PMID:26545104
Klatt, Michael A; Torquato, Salvatore
2016-08-01
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g_{2}(r) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the
Large fluctuations in the disassembly rate of microtubules revealed by atomic force microscopy.
Thomson, Neil H; Kasas, Sandor; Riederer, Beat M; Catsicas, Stefan; Dietler, Giovanni; Kulik, Andrzej J; Forró, László
2003-01-01
Atomic force microscopy (AFM) in situ has been used to observe the cold disassembly dynamics of microtubules at a previously unrealised spatial resolution. Microtubules either electrostatically or covalently bound to aminosilane surfaces disassembled at room temperature under buffer solutions with no free tubulin present. This process was followed by taking sequential tapping-mode AFM images and measuring the change in the microtubule end position as a function of time, with an spatial accuracy down to +/-20nm and a temporal accuracy of +/-1s. As well as giving average disassembly rates on the order of 1-10 tubulin monomers per second, large fluctuations in the disassembly rate were revealed, indicating that the process is far from smooth and linear under these experimental conditions. The surface bound rates measured here are comparable to the rates for GMPCPP-tubulin microtubules free in solution, suggesting that inhibition of tubulin curvature through steric hindrance controls the average, relatively low disassembly rate. The large fluctuations in this rate are thought to be due to multiple pathways in the kinetics of disassembly with differing rate constants and/or stalling due to defects in the microtubule lattice. Microtubules that were covalently bound to the surface left behind the protofilaments covalently cross-linked to the aminosilane via glutaraldehyde during the disassembly process. Further work is needed to quantitatively assess the effects of surface binding on protofibril disassembly rates, reveal any differences in disassembly rates between the plus and minus ends and to enable assembly as well as disassembly to be imaged in the microscope fluid cell in real-time. PMID:12801676
NASA Technical Reports Server (NTRS)
Asenov, Asen
2000-01-01
3D 'atomistic' simulations are used to study random dopant related threshold voltage fluctuations in 50 nm MOSFETs. Comparisons are made between conventionally doped transistors and transistors with thin epitaxial silicon layers on heavily doped silicon. Issues related to both the optimum threshold voltage control and the suppression of the threshold voltage dispersion are addressed.
Turner, Judith A; Mancl, Lloyd; Huggins, Kimberly Hanson; Sherman, Jeffrey J; Lentz, Gretchen; LeResche, Linda
2011-09-01
Mounting evidence supports the importance of hormonal fluctuations in temporomandibular disorder (TMD) pain among women. Stabilizing influential hormones or having a plan and skills for coping with hormonally related increases in TMD pain, therefore, may be beneficial for women with TMD pain. This randomized clinical trial evaluated the short- and long-term efficacy of 3 interventions for women with TMD pain: (1) dental hygienist-delivered pain self-management training (SMT; n=59); (2) the same dental hygienist-delivered pain self-management training, but with a focus on menstrual cycle-related changes in pain and other symptoms (targeted SMT, or TSMT; n=55); and (3) continuous oral contraceptive therapy (6-month trial) aimed at stabilizing hormones believed to be influential in TMD pain (COCT; n=57). Study participants completed outcome (pain, activity interference, depression) and process (pain beliefs, catastrophizing, coping effectiveness) measures before randomization, and 6 and 12months later. Intent-to-treat analyses supported the benefits of the SMT and TSMT interventions relative to COCT. Targeting the self-management treatment to menstrual cycle-related symptoms did not increase the treatment's efficacy. The benefits of the self-management interventions relative to COCT for pain and activity interference were statistically significant at 12 months, but not at 6 months, whereas the benefits for the process measures generally were apparent at both time points. COCT was associated with multiple adverse events (none serious). The study provides further support for long-term benefits of a safe, low-intensity (2 in-person sessions and 6 brief telephone contacts), dental hygienist-delivered self-management treatment for TMD pain. PMID:21680092
Turner, Judith A.; Mancl, Lloyd; Huggins, Kimberly Hanson; Sherman, Jeffrey J.; Lentz, Gretchen; LeResche, Linda
2011-01-01
Mounting evidence supports the importance of hormonal fluctuations in temporomandibular disorder (TMD) pain among women. Stabilizing influential hormones or having a plan and skills for coping with hormonally-related increases in TMD pain therefore may be beneficial for women with TMD pain. This randomized clinical trial evaluated the short- and long-term efficacy of three interventions for women with TMD pain: (1) dental hygienist-delivered pain self-management training (SMT; n = 59); (2) the same dental hygienist-delivered pain self-management training, but with a focus on menstrual cycle-related changes in pain and other symptoms (targeted SMT, or TSMT; n = 55); and (3) continuous oral contraceptive therapy (6 month trial), aimed at stabilizing hormones believed to be influential in TMD pain (COCT; n = 57). Study participants completed outcome (pain, activity interference, depression) and process (pain beliefs, catastrophizing, coping effectiveness) measures before randomization, and 6 and 12 months later. Intent-to-treat analyses supported the benefits of the SMT and TSMT interventions relative to COCT. Targeting the self-management treatment to menstrual cycle-related symptoms did not increase the treatment’s efficacy. The benefits of the self-management interventions relative to COCT for pain and activity interference were statistically significant at 12 months, but not at 6 months, whereas the benefits for the process measures generally were apparent at both timepoints. COCT was associated with multiple adverse events (none serious). The study provides further support for long-term benefits of a safe, low intensity (two in-person sessions and six brief telephone contacts), dental hygienist-delivered self-management treatment for TMD pain. PMID:21680092
Can log-periodic power law structures arise from random fluctuations?
NASA Astrophysics Data System (ADS)
Wosnitza, Jan Henrik; Leker, Jens
2014-05-01
Recent research has established log-periodic power law (LPPL) patterns prior to the detonation of the German stock index (DAX) bubble in 1998. The purpose of this article is to explore whether a Langevin equation extracted from real world data can generate synthetic time series with comparable LPPL structures. To this end, we first estimate the stochastic process underlying the DAX log-returns during the period from mid-1997 until end-2003. The employed data set contains about 3.93ṡ106 intraday DAX quotes at a sampling rate of 15 s. Our results indicate that the DAX log-returns can be described as a Markov process. As a consequence, a Langevin equation is derived. Based on this model equation, we run extensive simulations in order to generate 100 synthetic DAX trajectories each covering 3000 trading days. We find LPPL behavior in ten artificial time series. Moreover, we can establish a link between LPPL patterns and ensuing bubble bursts in seven synthetic 600-week windows. However, the LPPL components in most synthetic trajectories differ fundamentally from those LPPL structures that have previously been detected in real financial time series. Summarized, this paper demonstrates that LPPL structures are not necessarily the signature of imitative behavior among investors but can also stem from noise, even though the likelihood of this is extremely low. Thus, our findings confirm with high statistical confidence that the LPPL structures in the DAX development are rooted deeper than only in the random fluctuations of the German stock market.
Correlation and fluctuation in a random average process on an infinite line with a driven tracer
NASA Astrophysics Data System (ADS)
Cividini, J.; Kundu, A.; Majumdar, Satya N.; Mukamel, D.
2016-05-01
We study the effect of a single biased tracer particle in a bath of other particles performing the random average process (RAP) on an infinite line. We focus on the long time behavior of the mean and the fluctuations of the positions of the particles and also the correlations among them. In the long time t limit these quantities have well defined scaling forms and grow with time as \\sqrt{t} . A differential equation for the scaling function associated with the correlation function is obtained and solved perturbatively around the solution for a symmetric tracer. Interestingly, when the tracer is totally asymmetric, further progress is enabled by the fact that the particles behind the tracer do not affect the motion of the particles in front of it, which leads in particular to an exact expression for the variance of the position of the tracer. Finally, the variance and correlations of the gaps between successive particles are also studied. Numerical simulations support our analytical results.
Modeling water-table fluctuations in a sloping aquifer with random hydraulic conductivity
NASA Astrophysics Data System (ADS)
Srivastava, Kirti; Rai, S.; Singh, R.
2002-01-01
To prevent environmental problems like water logging and increase in soil salinity which are responsible for the degradation of the top productive soils, an optimum ditch drainage design is required. For this purpose a knowledge of the spatio-temporal variation of the water table is essential. In this study the spatio-temporal variation of the water table in a sloping ditch drainage system has been modeled from a stochastic point of view, incorporating randomness in hydraulic conductivity to get the expression for the mean and the standard deviation of the water-table height. The hydraulic conductivity has been considered to be a realization of a log-normal distribution. Application of these expressions in the prediction of mean water-table variation with the associated error bounds has been demonstrated with the help of a ditch drainage problem of a sloping aquifer. The sensitivity analysis has also been carried out to see the effect of variability in the hydraulic conductivity on the water-table fluctuations. The error bounds quantified on the water-table height will thus help in the decision-making process for proper drainage design.
Mean and Fluctuating Force Distribution in a Random Array of Spheres
NASA Astrophysics Data System (ADS)
Akiki, Georges; Jackson, Thomas; Balachandar, Sivaramakrishnan
2015-11-01
This study presents a numerical study of the force distribution within a cluster of mono-disperse spherical particles. A direct forcing immersed boundary method is used to calculate the forces on individual particles for a volume fraction range of [0.1, 0.4] and a Reynolds number range of [10, 625]. The overall drag is compared to several drag laws found in the literature. As for the fluctuation of the hydrodynamic streamwise force among individual particles, it is shown to have a normal distribution with a standard deviation that varies with the volume fraction only. The standard deviation remains approximately 25% of the mean streamwise force on a single sphere. The force distribution shows a good correlation between the location of two to three nearest upstream and downstream neighbors and the magnitude of the forces. A detailed analysis of the pressure and shear forces contributions calculated on a ghost sphere in the vicinity of a single particle in a uniform flow reveals a mapping of those contributions. The combination of the mapping and number of nearest neighbors leads to a first order correction of the force distribution within a cluster which can be used in Lagrangian-Eulerian techniques. We also explore the possibility of a binary force model that systematically accounts for the effect of the nearest neighbors. This work was supported by the National Science Foundation (NSF OISE-0968313) under Partnership for International Research and Education (PIRE) in Multiphase Flows at the University of Florida.
Isotopes reveal fluctuation in trophic levels of estuarine organisms, in space and time
NASA Astrophysics Data System (ADS)
Vinagre, C.; Salgado, J. P.; Mendonça, V.; Cabral, H.; Costa, M. J.
2012-08-01
The estimation of the trophic level (TL) occupied by organisms in estuarine food webs, based on isotopic analysis, is generally done only for one season or averaged among seasons and sites. This does not allow the observation of possible alterations of TL in time and space. As estuaries are highly dynamic environments, it is plausible that the TLs of many of its organisms are not static, like usually portrayed in food web diagrams, but fluctuate in space and time. The TLs of marine juvenile fish, resident fish, shrimp, polychaetes, bivalves and amphipods were determined isotopically, in the Tagus estuary. Sampling was carried out in two nursery areas at each season. Significant changes in TL were observed, in space and time, for the vast majority of the organisms. A drop in TL in summer was observed for various species. The high availability of microalgae and macroalgae in summer may be the cause for this drop, which mainly affects low TL omnivores. These omnivores may opportunistically increase the proportion of primary producers in their diet, thus lowering their mean TL. Such an effect seems to cascade to secondary consumers, like Solea senegalensis and Pomatoschistus microps, which also presented a drop in TL in summer. This study also revealed that organisms that have been considered to be mainly primary consumers, like Liza ramada, and Scrobicularia plana, can actually assume considerably higher TLs seasonally, placing them as secondary consumers.
Matsubara, Takashi; Uehara, Kuniaki
2016-01-01
Homeostatic plasticity is considered to maintain activity in neuronal circuits within a functional range. In the absence of homeostatic plasticity neuronal activity is prone to be destabilized because Hebbian plasticity mechanisms induce positive feedback change. Several studies on homeostatic plasticity assumed the existence of a process for monitoring neuronal activity on a time scale of hours and adjusting synaptic efficacy by scaling up and down. However, the underlying mechanism still remains unclear. Excitatory synaptic efficacy is associated with the size of the dendritic spine, and dendritic spine size fluctuates even after neuronal activity is silenced. These fluctuations could be a non-Hebbian form of synaptic plasticity that serves such a homeostatic function. This study proposed and analyzed a synaptic plasticity model incorporating random fluctuations and soft-bounded Hebbian plasticity at excitatory synapses, and found that the proposed model can prevent excessive changes in neuronal activity by scaling synaptic efficacy up and down. Soft-bounded Hebbian plasticity suppresses strong synapses, thereby scaling synapses down and preventing runaway excitation. Random fluctuations diffuse synaptic efficacy, thereby scaling synapses up and preventing neurons from falling silent. The proposed model acts as a form of homeostatic plasticity, regardless of neuronal activity monitoring. PMID:27313513
NASA Astrophysics Data System (ADS)
Pottier, Basile; Talini, Laurence; Frétigny, Christian
We investigate the properties of liquids confined at nanometric scales from a solid wall with a new noninvasive technique. The optical technique used consists of measuring the height of fluctuations of the free surface, using the reflection of a laser beam on that surface. We hence measure the spontaneous thermal fluctuations of the free surfaces of liquids to probe their hydrodynamic boundary condition at a solid wall. The surface fluctuations of a silicon oil film could be described with a no-slip boundary condition for film thicknesses down to 20 nm. Oppositely, a 4 nm negative slip length had to be introduced to describe the behavior of n-hexadecane, consistently with previous surface force apparatus data on the same system. Our results demonstrate that at vanishing flow, a nanometric solid-like layer close to the wall may exist according to the nature of the liquid. currently at Laboratoire de Physique ENS Lyon.
NASA Astrophysics Data System (ADS)
Pottier, B.; Frétigny, C.; Talini, L.
2015-06-01
We investigate the properties of nanometric liquid films with a new noninvasive technique. We measure the spontaneous thermal fluctuations of the free surfaces of liquids to probe their hydrodynamic boundary condition at a solid wall. The surface fluctuations of a silicon oil film could be described with a no-slip boundary condition for film thicknesses down to 20 nm. Oppositely, a 4 nm negative slip length had to be introduced to describe the behavior of n -hexadecane, consistently with previous surface force apparatus data on the same system. Our results demonstrate that at vanishing flow a nanometric solidlike layer close to the wall may exist according to the nature of the liquid.
NASA Astrophysics Data System (ADS)
Yang, Yang; van Aggelen, Helen; Yang, Weitao
2014-03-01
Double, Rydberg and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N +/- 2) -electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.
Yang, Yang; Aggelen, Helen van; Yang, Weitao
2013-12-14
Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.
NASA Astrophysics Data System (ADS)
Yang, Yang; van Aggelen, Helen; Yang, Weitao
2013-12-01
Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.
Peleg, Micha; Normand, Mark D; Corradini, Maria G
2012-01-01
Randomly fluctuating industrial microbial count records, with and without zero counts, were simulated with a version of the Expanded Fermi Solution, originally developed for risk assessment. The basic assumption has been that each individual count is determined by the multiplicative effect of several random factors, which augment or suppress the microbial population size, and in the case of sporadic pathogens, determine the probability of their initial presence too. Records were generated by a series of Monte Carlo simulations in which the factors were specified by ranges and their values chosen randomly within them. The process has been automated and posted as a freely downloadable Wolfram Demonstration on the Internet. The program allows the user to enter and alter the series length, parameters' ranges, and count level deemed dangerous with sliders on the screen. The display includes the chosen factors' ranges, the corresponding generated count record and its histogram, and an estimate of the risk of surpassing the dangerous threshold. Where the record contains no zero counts, the histogram is accompanied by the lognormal distribution, which naturally emerges from the fluctuations' mathematical model. Once the factors are identified and their ranges specified, the method could be used as a tool to analyze, compare, and quantify microbial risks in foods and water. PMID:22122407
NASA Astrophysics Data System (ADS)
Wiecki, P.; Roy, B.; Johnston, D. C.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.
2015-09-01
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. These FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.
Pottier, B; Frétigny, C; Talini, L
2015-06-01
We investigate the properties of nanometric liquid films with a new noninvasive technique. We measure the spontaneous thermal fluctuations of the free surfaces of liquids to probe their hydrodynamic boundary condition at a solid wall. The surface fluctuations of a silicon oil film could be described with a no-slip boundary condition for film thicknesses down to 20 nm. Oppositely, a 4 nm negative slip length had to be introduced to describe the behavior of n-hexadecane, consistently with previous surface force apparatus data on the same system. Our results demonstrate that at vanishing flow a nanometric solidlike layer close to the wall may exist according to the nature of the liquid. PMID:26196646
Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.
2015-09-22
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using ^{75}As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe_{2}As_{2} families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of T_{c} and the shape of the superconducting dome in these and other iron-pnictide families.
Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.
2015-09-22
In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting domemore » in these and other iron-pnictide families.« less
Fluctuation Analysis of Centrosomes Reveals a Cortical Function of Kinesin-1.
Winkler, Franziska; Gummalla, Maheshwar; Künneke, Lutz; Lv, Zhiyi; Zippelius, Annette; Aspelmeier, Timo; Grosshans, Jörg
2015-09-01
The actin and microtubule networks form the dynamic cytoskeleton. Network dynamics is driven by molecular motors applying force onto the networks and the interactions between the networks. Here we assay the dynamics of centrosomes in the scale of seconds as a proxy for the movement of microtubule asters. With this assay we want to detect the role of specific motors and of network interaction. During interphase of syncytial embryos of Drosophila, cortical actin and the microtubule network depend on each other. Centrosomes induce cortical actin to form caps, whereas F-actin anchors microtubules to the cortex. In addition, lateral interactions between microtubule asters are assumed to be important for regular spatial organization of the syncytial embryo. The functional interaction between the microtubule asters and cortical actin has been largely analyzed in a static manner, so far. We recorded the movement of centrosomes at 1 Hz and analyzed their fluctuations for two processes—pair separation and individual movement. We found that F-actin is required for directional movements during initial centrosome pair separation, because separation proceeds in a diffusive manner in latrunculin-injected embryos. For assaying individual movement, we established a fluctuation parameter as the deviation from temporally and spatially slowly varying drift movements. By analysis of mutant and drug-injected embryos, we found that the fluctuations were suppressed by both cortical actin and microtubules. Surprisingly, the microtubule motor Kinesin-1 also suppressed fluctuations to a similar degree as F-actin. Kinesin-1 may mediate linkage of the microtubule (+)-ends to the actin cortex. Consistent with this model is our finding that Kinesin-1-GFP accumulates at the cortical actin caps. PMID:26331244
NASA Astrophysics Data System (ADS)
Fernandez-Illescas, C. P.; Rodriguez-Iturbe, I.
2001-05-01
While ecologist and hydrologists hace come to recognize the fundamental importance of soil water availability in many ecosystems, much less prgress has been made in understanding the impact of the temporal variability in soil moisture on ecosystem structure. One recent advance in this regard is the analytical treatment of the vegetation-soil-climate system described by Laio et al. (2001) and Porporato et al. (2001) which characterizes the impact of growing season soil moisture variability on vegetation overall condition. Here, this ecohydrological model is linked with the hierarchical competition-colonization model of Tilman (1994) to asses the impact of interannual growing season rainfall variability on vegetation competition and ecosystem biodiversity. Based on climatic and vegetative data from the La Copita Research Area in the Rio Grande Plains of Southern Texas, 10000 year simulations of spatial competition between a herbaceous C4 Paspaleum setaceum species and a woody Prosopis glandulosa (honey mesquite) species are run using the above linked models. Results show that ecosystem structure is quite sensitive to the inclusion of realistic amounts of interannual rainfall fluctuations. This sensitivity exists with respect to the expected magnitude of the fluctuations as well as the degree to which successive fluctuations are correlated. It is also found that markovian models of interannual rainfall variability - which lack long-term persistence- lead to self-affine time series of species abundances which display f-{β } spectral properties. The implications of these effects on ecological modeling are discussed.
Non-thermal fluctuations in living cells reveal nonlinear mechanical properties of the cytoskeleton
NASA Astrophysics Data System (ADS)
Ou-Yang, H. Daniel; Wei, Ming-Tzo; Vavylonis, Dimitris; Jedlicka, Sabrina
2015-03-01
Living cells are a non-equilibrium mechanical system, largely because intracellular molecular motors consume chemical energy to generate forces that reorganize and maintain cytoskeletal functions. Persistently under tension, the network of cytoskeletal proteins exhibits a nonlinear mechanical behavior where the network stiffness increases with intracellular tension. We examined the nonlinear mechanical properties of living cells by characterizing the differential stiffness of the cytoskeletal network for HeLa cells under different intracellular tensions. Combining active and passive microrheology methods, we measured non-thermal fluctuating forces and found them to be much larger than the thermal fluctuating force. From the variations of differential stiffness caused by the fluctuating non-thermal force for cells under different tension, we obtained a master curve describing the differential stiffness as a function of the intracellular tension. Varying the intracellular tension by treating cells with drugs that alter motor protein activities we found the differential stiffness follows the same master curve that describes intracellular stiffness as a function of intracellular tension. This observation suggests that cells can regulate their mechanical properties by adjusting intracellular tension. NSF DMR 0923299.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.
2000-01-01
In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.
NASA Astrophysics Data System (ADS)
Capes, H.; Christova, M.; Boland, D.; Catoire, F.; Godbert-Mouret, L.; Koubiti, M.; Mekkaoui, A.; Rosato, J.; Marandet, Y.; Stamm, R.
2010-10-01
Stark broadening of atomic lines in plasmas is calculated by modelling the plasma stochastic electric field using the CTRW approach [1,2]. This allows retaining non Markovian terms in the Schrödinger equation averaged over the electric field fluctuations. As an application we consider a special case of a non separable CTRW process, the so called Kangaroo process [3]. An analytic expression for the line profile is presented for arbitrary waiting time distribution functions. A preliminary application to the hydrogen Lyman α line is discussed.
NASA Astrophysics Data System (ADS)
Li, Yiming; Cheng, Hui-Wen
2012-04-01
This work estimates electrical and transfer-characteristic fluctuations in 16-nm-gate high-κ/metal gate (HKMG) metal-oxide-semiconductor field effect transistor (MOSFET) devices and inverter circuit induced by random interface traps (ITs) at high-κ/silicon interface. Randomly generated devices with two-dimensional (2D) ITs at HfO2/Si interface are incorporated into quantum-mechanically corrected 3D device simulation. Device characteristics, as influenced by different degrees of fluctuation, are discussed in relation to random ITs near source and drain ends. Owing to a decreasing penetration of electric field from drain to source, the drain induced barrier lowering (DIBL) of the edvice decreases when the number of ITs increases. In contrast to random-dopant fluctuation, the screening effect of device's inversion layer cannot effectively screen potential's variation; thus, devices still have noticeable fluctuation of gate capacitance (CG) under high gate bias. The cutoff frequency decreases as increasing the number of ITs owing to the decreasing transconductance and increasing CG. Decreasing on-state current and increasing CG further result in increasing intrinsic gate delay time (τ) when the number of ITs increases. The fluctuation magnitude of DIBL, cutoff frequency, and τ above is increased as the number of ITs increases. Even for cases with the same number of random ITs, noise margins (NMs) of the 16-nm-gate complementary metal-oxide-semiconductor inverter circuit are still quite different due to the different distribution of random ITs. The NMs of inverter circuit increase as the number of random ITs increases; however, the NMs' fluctuations are increased due to the more sources of fluctuation at HfO2/Si interface of HKMG devices.
Mokhtarpour, Laleh; Ponomarenko, Sergey A
2015-11-16
We numerically investigate partially coherent short pulse propagation in nonlinear media near optical resonance. We examine how the pulse state of coherence at the source affects the evolution of the ensemble averaged intensity, mutual coherence function, and temporal degree of coherence of the pulse ensemble. We report evidence of self-induced transparency random phase soliton formation for the relatively coherent incident pulses with sufficiently large average areas. We also show that random pulses lose their coherence on propagation in resonant media and we explain this phenomenon in qualitative terms. PMID:26698507
Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers
Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco
2014-01-01
Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection. PMID:24829449
3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography
Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang
2015-01-01
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions. PMID:25940394
3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography
Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang
2015-05-05
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.
3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography
Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang
2015-05-05
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
1999-01-01
A detailed three-dimensional (3-D) statistical 'atomistic' simulation study of fluctuation-resistant sub-0.1-(micron)meter MOSFET architectures with epitaxial channels and delta doping is presented. The need for enhancing the fluctuation resistance of the sub-0.1-(micron)meter generation transistors is highlighted by presenting summarized results from atomistic simulations of a wide range of conventional devices with uniformly doped channel. According to our atomistic results, the doping concentration dependence of the random dopant-induced threshold voltage fluctuations in conventional devices is stronger than the analytically predicted fourth-root dependence. As a result of this, the scaling of such devices will be restricted by the "intrinsic" random dopant-induced fluctuations earlier than anticipated. Our atomistic simulations confirm that the introduction of a thin epitaxial layer in the MOSFET's channel can efficiently suppress the random dopant-induced threshold voltage fluctuations in sub-0.1-(micron)meter devices. For the first time, we observe an "anomalous" reduction in the threshold voltage fluctuations with an increase in the doping concentration behind the epitaxial channel, which we attribute to screening effects. Also, for the first time we study the effect of a delta-doping, positioned behind the epitaxial layer, on the intrinsic threshold voltage fluctuations. Above a certain thickness of epitaxial layer, we observe a pronounced anomalous decrease in the threshold voltage fluctuation with the increase of the delta doping. This phenomenon, which is also associated with screening, enhances the importance of the delta doping in the design of properly scaled fluctuation-resistant sub-0.1-(micron)meter MOSFET's. Index Terms-Doping, fluctuations, MOSFET, semiconductor device simulation, silicon devices, threshold.
Tubasum, Sumera; Torbjörnsson, Magne; Yadav, Dheerendra; Camacho, Rafael; Söderlind, Gustaf; Scheblykin, Ivan G; Pullerits, Tõnu
2016-02-01
Protein is a flexible material with broad distribution of conformations forming an energy landscape of quasi-stationary states. Disentangling the system dynamics along this landscape is the key for understanding the functioning of the protein. Here we studied a photosynthetic antenna pigment-protein complex LH2 with single molecule two-dimensional polarization imaging. Modeling based on the Redfield relaxation theory well describes the observed polarization properties of LH2 fluorescence and fluorescence excitation, strongly suggesting that at 77 K the conformational subspace of the LH2 is limited to about three configurations with relatively frequent switching among each other. At room temperature the next level of fluctuations determines the conformational dynamics. The results support the multitier model of the energy landscape of proteins and demonstrate the potential of the method for the studies of structural dynamics in proteins. PMID:26741912
NASA Technical Reports Server (NTRS)
Asenov, Asen
1998-01-01
A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 microns MOSFET's is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFET's. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFET's was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.
NASA Astrophysics Data System (ADS)
Teramae, Jun-nosuke
2016-06-01
Neurons in the cortical circuit continuous to generate irregular spike firing with extremely low firing rate (about 1-2 Hz) even when animals neither receive any external stimuli nor they do not show any significant motor movement. The ongoing activity is often called neuronal noise because measured spike trains are often highly irregular and also spike timings are highly asynchronous among neurons. Many experiments imply that neural networks themselves must generate the noisy activity as an intrinsic property of cortical circuit. However, how a network of neurons sustains the irregular spike firings with low firing rate remains unclear. Recently, by focusing on long-tailed distribution of amplitude of synaptic connections or EPSP (Excitatory Post-Synaptic Potential), we successfully revealed that due to coexistence of a few extremely strong synaptic connections and majority of weak synapses, nonlinear dynamics of population of spiking neurons can have a nontrivial stable state that corresponding to the intrinsic ongoing fluctuation of the cortical circuit. We also found that due to the fluctuation fidelity of spike transmission between neurons are optimized. Here, we report our recent findings of the ongoing fluctuation from viewpoints of mathematical and computational side.
Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices
NASA Astrophysics Data System (ADS)
Lytova, A.; Pastur, L.
2009-01-01
We find the limit of the variance and prove the Central Limit Theorem (CLT) for the matrix elements φ jk ( M), j, k=1,…, n of a regular function φ of the Gaussian matrix M (GOE and GUE) as its size n tends to infinity. We show that unlike the linear eigenvalue statistics Tr φ( M), a traditional object of random matrix theory, whose variance is bounded as n→∞ and the CLT is valid for Tr φ( M)- E{Tr φ( M)}, the variance of φ jk ( M) is O(1/ n), and the CLT is valid for sqrt{n}(\\varphi _{jk}(M)-E\\{\\varphi _{jk}(M)\\}) . This shows the role of eigenvectors in the forming of the asymptotic regime of various functions (statistics) of random matrices. Our proof is based on the use of the Fourier transform as a basic characteristic function, unlike the Stieltjes transform and moments, used in majority of works of the field. We also comment on the validity of analogous results for other random matrices.
Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C
2016-05-01
We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context. PMID:26921558
Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan
2016-01-01
Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources. PMID:27021589
NASA Astrophysics Data System (ADS)
Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan
2016-03-01
Young’s double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.
Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan
2016-01-01
Young’s double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources. PMID:27021589
Surfing along Filopodia: A Particle Transport Revealed by Molecular-Scale Fluctuation Analyses.
Kohler, Felix; Rohrbach, Alexander
2015-05-01
Filopodia perform cellular functions such as environmental sensing or cell motility, but they also grab for particles and withdraw them leading to an increased efficiency of phagocytic uptake. Remarkably, withdrawal of micron-sized particles is also possible without noticeable movements of the filopodia. Here, we demonstrate that polystyrene beads connected by optical tweezers to the ends of adherent filopodia of J774 macrophages, are transported discontinuously toward the cell body. After a typical resting time of 1-2 min, the cargo is moved with alternating velocities, force constants, and friction constants along the surface of the filopodia. This surfing-like behavior along the filopodium is recorded by feedback-controlled interferometric three-dimensional tracking of the bead motions at 10-100 kHz. We measured transport velocities of up to 120 nm/s and transport forces of ∼ 70 pN. Small changes in position, fluctuation width, and temporal correlation, which are invisible in conventional microscopy, indicate molecular reorganization of transport-relevant proteins in different phases of the entire transport process. A detailed analysis implicates a controlled particle transport with fingerprints of a nanoscale unbinding/binding behavior. The manipulation and analysis methods presented in our study may also be helpful in other fields of cellular biophysics. PMID:25954870
Surfing along Filopodia: A Particle Transport Revealed by Molecular-Scale Fluctuation Analyses
Kohler, Felix; Rohrbach, Alexander
2015-01-01
Filopodia perform cellular functions such as environmental sensing or cell motility, but they also grab for particles and withdraw them leading to an increased efficiency of phagocytic uptake. Remarkably, withdrawal of micron-sized particles is also possible without noticeable movements of the filopodia. Here, we demonstrate that polystyrene beads connected by optical tweezers to the ends of adherent filopodia of J774 macrophages, are transported discontinuously toward the cell body. After a typical resting time of 1–2 min, the cargo is moved with alternating velocities, force constants, and friction constants along the surface of the filopodia. This surfing-like behavior along the filopodium is recorded by feedback-controlled interferometric three-dimensional tracking of the bead motions at 10–100 kHz. We measured transport velocities of up to 120 nm/s and transport forces of ∼70 pN. Small changes in position, fluctuation width, and temporal correlation, which are invisible in conventional microscopy, indicate molecular reorganization of transport-relevant proteins in different phases of the entire transport process. A detailed analysis implicates a controlled particle transport with fingerprints of a nanoscale unbinding/binding behavior. The manipulation and analysis methods presented in our study may also be helpful in other fields of cellular biophysics. PMID:25954870
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1981-01-01
By taking into account the singularity of the dyadic Green's function in the renormalization method, a theory is derived for vector electromagnetic wave propagation in a random medium with large permittivity fluctuations and with anisotropic correlation function. The strong fluctuation theory is then applied to a discrete scatterer problem in which the permittivity can assume only two values. The results are found to be consistent with those derived from discrete scatterer theory for all values of dielectric constants of the scatterers.
Random sampling of skewed distributions implies Taylor's power law of fluctuation scaling.
Cohen, Joel E; Xu, Meng
2015-06-23
Taylor's law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species' population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)(b), a > 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared. PMID:25852144
Engen, Steinar; Sæther, Bernt-Erik
2016-06-01
Here we analyze how dispersal, genetic drift, and adaptation to the local environment affect the geographical differentiation of a quantitative character through natural selection using a spatial dynamic model for the evolution of the distribution of mean breeding values in space and time. The variation in optimal phenotype is described by local Ornstein-Uhlenbeck processes with a given spatial autocorrelation. Selection and drift are assumed to be governed by phenotypic variation within areas with a given mean breeding value and constant additive genetic variance. Between such neighboring areas there will be white noise variation in mean breeding values, while the variation at larger distances has a spatial structure and a spatial scale that we investigate. The model is analyzed by solving balance equations for the stationary distribution of mean breeding values. We also present scaling results for the spatial autocovariance function for mean breeding values as well as that for the covariance between mean breeding value and the optimal phenotype expressing local adaption. Our results show in particular how these spatial scales depend on population density. For large densities the spatial scale of fluctuations in mean breeding values have similarities with corresponding results in population dynamics, where the effect of migration on spatial scales may be large if the local strength of density regulation is small. In our evolutionary model strength of density regulation corresponds to strength of local selection so that weak local selection may produce large spatial scales of autocovariances. Genetic drift and stochastic migration are shown to act through the population size within a characteristic area with much smaller variation in optimal phenotypes than in the whole population. PMID:26855423
Sanjari, Mohammad Ali; Arshi, Ahmad Reza; Parnianpour, Mohamad; Seyed-Mohseni, Saeedeh
2010-10-01
The effect of muscular fatigue on temporal and spectral features of muscle activities and motor performance, i.e., kinematics and kinetics, has been studied. It is of value to quantify fatigue related kinematic changes in biomechanics and sport sciences using simple measurements of joint angles. In this work, a new approach was introduced to extract kinematic changes from 2D phase portraits to study the fatigue adaptation patterns of subjects performing elbow repetitive movement. This new methodology was used to test the effect of load and repetition rate on the temporal changes of an elbow phase portrait during a dynamic iso-inertial fatiguing task. The local flow variation concept, which quantifies the trajectory shifts in the state space, was used to track the kinematic changes of an elbow repetitive fatiguing task in four conditions (two loads and two repetition rates). Temporal kinematic changes due to muscular fatigue were measured as regional curves for various regions of the phase portrait and were also expressed as a single curve to describe the total drift behavior of trajectories due to fatigue. Finally, the effect of load and repetition rate on the complexity of kinematic changes, measured by permutation entropy, was tested using analysis of variance with repeated measure design. Statistical analysis showed that kinematic changes fluctuated more (showed more complexity) under higher loads (p=0.014), but did not differ under high and low repetition rates (p=0.583). Using the proposed method, new features for complexity of kinematic changes could be obtained from phase portraits. The local changes of trajectories in epochs of time reflected the temporal kinematic changes in various regions of the phase portrait, which can be used for qualitative and quantitative assessment of fatigue adaptation of subjects and evaluation of the influence of task conditions (e.g., load and repetition rate) on kinematic changes. PMID:20887012
Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy.
Caldwell, Brittany; Ustione, Alessandro; Piston, David W
2016-08-01
Insulin secretion defects are central to the development of type II diabetes mellitus. Glucose stimulation of insulin secretion has been extensively studied, but its regulation by other stimuli such as incretins and neurotransmitters is not as well understood. We investigated the mechanisms underlying the inhibition of insulin secretion by dopamine, which is synthesized in pancreatic β-cells from circulating L-dopa. Previous research has shown that this inhibition is mediated primarily by activation of the dopamine receptor D3 subtype (DRD3), even though both DRD2 and DRD3 are expressed in β-cells. To understand this dichotomy, we investigated the dynamic interactions between the dopamine receptor subtypes and their G-proteins using two-color fluorescence fluctuation spectroscopy (FFS) of mouse MIN6 β-cells. We show that proper membrane localization of exogenous G-proteins depends on both the Gβ and Gγ subunits being overexpressed in the cell. Triple transfections of the dopamine receptor subtype and Gβ and Gγ subunits, each labeled with a different-colored fluorescent protein (FP), yielded plasma membrane expression of all three FPs and permitted an FFS evaluation of interactions between the dopamine receptors and the Gβγ complex. Upon dopamine stimulation, we measured a significant decrease in interactions between DRD3 and the Gβγ complex, which is consistent with receptor activation. In contrast, dopamine stimulation did not cause significant changes in the interactions between DRD2 and the Gβγ complex. These results demonstrate that two-color FFS is a powerful tool for measuring dynamic protein interactions in living cells, and show that preferential DRD3 signaling in β-cells occurs at the level of G-protein release. PMID:27508444
NASA Technical Reports Server (NTRS)
Tsang, L.; Newton, R. W.; Kong, J. A.
1982-01-01
The strong fluctuation random medium theory is applied to calculate scattering from a half-space of dielectric mixture. The first and second moments of the fields are calculated, respectively, by using the bilocal and the distorted Born approximations, and the low frequency limit is taken. The singularity of the dyadic Green's function is taken into account. Expressions for the effective permittivity for the full space case are derived. It is shown that the derived result of the effect permittivity is identical to that of the Polder and van Santern mixing formula. The correlation function of the random medium is obtained by using simple physical arguments and is expressed in terms of the fractional volumes and particle sizes of the constituents of the mixture. Backscattering coefficients of a half-space dielectric mixture are also calculated. Numerical results of the effective permittivity and backscattering coefficients are illustrated using typical parameters encountered in microwave remote sensing of dry and wet snow. It is also shown that experimental data can be matched with the theory by using physical parameters of the medium as obtained from ground truth measurements.
Kanwisher, Nancy; Fedorenko, Evelina
2014-01-01
What is the relationship between language and other high-level cognitive functions? Neuroimaging studies have begun to illuminate this question, revealing that some brain regions are quite selectively engaged during language processing, whereas other “multiple-demand” (MD) regions are broadly engaged by diverse cognitive tasks. Nonetheless, the functional dissociation between the language and MD systems remains controversial. Here, we tackle this question with a synergistic combination of functional MRI methods: we first define candidate language-specific and MD regions in each subject individually (using functional localizers) and then measure blood oxygen level-dependent signal fluctuations in these regions during two naturalistic conditions (“rest” and story-comprehension). In both conditions, signal fluctuations strongly correlate among language regions as well as among MD regions, but correlations across systems are weak or negative. Moreover, data-driven clustering analyses based on these inter-region correlations consistently recover two clusters corresponding to the language and MD systems. Thus although each system forms an internally integrated whole, the two systems dissociate sharply from each other. This independent recruitment of the language and MD systems during cognitive processing is consistent with the hypothesis that these two systems support distinct cognitive functions. PMID:24872535
Blank, Idan; Kanwisher, Nancy; Fedorenko, Evelina
2014-09-01
What is the relationship between language and other high-level cognitive functions? Neuroimaging studies have begun to illuminate this question, revealing that some brain regions are quite selectively engaged during language processing, whereas other "multiple-demand" (MD) regions are broadly engaged by diverse cognitive tasks. Nonetheless, the functional dissociation between the language and MD systems remains controversial. Here, we tackle this question with a synergistic combination of functional MRI methods: we first define candidate language-specific and MD regions in each subject individually (using functional localizers) and then measure blood oxygen level-dependent signal fluctuations in these regions during two naturalistic conditions ("rest" and story-comprehension). In both conditions, signal fluctuations strongly correlate among language regions as well as among MD regions, but correlations across systems are weak or negative. Moreover, data-driven clustering analyses based on these inter-region correlations consistently recover two clusters corresponding to the language and MD systems. Thus although each system forms an internally integrated whole, the two systems dissociate sharply from each other. This independent recruitment of the language and MD systems during cognitive processing is consistent with the hypothesis that these two systems support distinct cognitive functions. PMID:24872535
Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations.
Auf der Maur, Matthias; Pecchia, Alessandro; Penazzi, Gabriele; Rodrigues, Walter; Di Carlo, Aldo
2016-01-15
White light emitting diodes (LEDs) based on III-nitride InGaN/GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c-plane InGaN/GaN-based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy. PMID:26824564
Efficiency Drop in Green InGaN /GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations
NASA Astrophysics Data System (ADS)
Auf der Maur, Matthias; Pecchia, Alessandro; Penazzi, Gabriele; Rodrigues, Walter; Di Carlo, Aldo
2016-01-01
White light emitting diodes (LEDs) based on III-nitride InGaN /GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c -plane InGaN /GaN -based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy.
Arai, Takaomi
2014-01-01
The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3–40.2 Bq kg−1 in mean) and 137Cs (41.4–51.7 Bq kg−1 in mean) than did the anadromous (sea-run) type salmons (0.64–8.03 Bq kg−1 in mean 134Cs and 0.42–10.2 Bq kg−1 in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal. PMID:24964195
Verheyen, E; Rüber, L; Snoeks, J; Meyer, A
1996-06-29
The East African Lakes Tanganyika, Malawi and Victoria each harbour hundreds of endemic invertebrate and vertebrate species. Inferences about the ecological and evolutionary processes responsible for the origin of these species flocks will only be possible when they are made within historical and comparative frameworks. Specifically, the relative importance of intrinsic characteristics and extrinsic factors may offer information about the processes that drive diversification and speciation in these species. We investigated the sequence variation of a segment of the mitochondrial DNA control region of 32 populations representing all four nominal species in the three genera of eretmodine cichlids from Lake Tanganyika. Based on a phylogenetic analysis of these data we attempted to evaluate the importance of major lake level fluctuations on patterns of intralacustrine speciation. The geography of genetic variation reveals a high degree of within-lake endemism among genetically well-separated lineages distributed along the inferred shore lines of three historically intermittent lake basins. Seismic data indicate that extreme lowering of water levels in the Pleistocene caused the single Lake Tanganyika basin to split into three isolated ones. The strong phylogeographic structure of the Eretmodini, and the observation that some closely related populations occur on opposite shores of the lake, agree with this geological scenario. The three-clade-three-basin phylogeographic pattern was repeated twice within this tribe of cichlids. The phylogeographic pattern of eretmodine cichlids suggests that major fluctuations in the level of the lake have been important in shaping their adaptive radiation and speciation. The mitochondrially defined clades are in conflict with the current taxonomy of the group and suggest that there has been convergent evolution in trophic morphology, particularly in the shapes of oral teeth, taxonomically the most diagnostic characters of the three
Vervoort, Mariëtte T. W.; Vonk, J. Arie; Mooijman, Paul J. W.; Van den Elsen, Sven J. J.; Van Megen, Hanny H. B.; Veenhuizen, Peter; Landeweert, Renske; Bakker, Jaap; Mulder, Christian; Helder, Johannes
2012-01-01
Soils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems. Due to their ubiquity and the diverse responses to abiotic and biotic changes, nematodes are suitable indicators for environmental monitoring. However, the time-consuming microscopic analysis of nematode communities has limited the scale at which this indicator group is used. In an attempt to circumvent this problem, a quantitative PCR-based tool for the detection of a consistent part of the soil nematofauna was developed based on a phylum-wide molecular framework consisting of 2,400 full-length SSU rDNA sequences. Taxon-specific primers were designed and tested for specificity. Furthermore, relationships were determined between the quantitative PCR output and numbers of target nematodes. As a first field test for this DNA sequence signature-based approach, seasonal fluctuations of nematode assemblages under open canopy (one field) and closed canopy (one forest) were monitored. Fifteen taxa from four feeding guilds (covering ∼ 65% of the free-living nematode biodiversity at higher taxonomical level) were detected at two trophic levels. These four feeding guilds are composed of taxa that developed independently by parallel evolution and we detected ecologically interpretable patterns for free-living nematodes belonging to the lower trophic level of soil food webs. Our results show temporal fluctuations, which can be even opposite within taxa belonging to the same guild. This research on nematode assemblages revealed ecological information about the soil food web that had been partly overlooked. PMID:23112818
Vilfan, M.; Apih, T.; Lahajnar, G.; Sebastiao, P. J.; Zumer, S.
2007-11-15
We present the measurements of the proton spin-lattice relaxation time T{sub 1} of liquid crystal 4-n-octyl-4{sup '}-cyanobiphenyl (8CB) confined into randomly oriented {approx}15 nm pores of untreated porous glass. In the low kilohertz range the spin-lattice relaxation rate in the nanoconfined 8CB is about ten times larger than in the bulk. We show that the increase is mainly due to molecular reorientations mediated by translational displacements (RMTD). In the paranematic phase the power law describing the RMTD dispersion, (T{sub 1}{sup -1}){sub RMTD}{proportional_to}{omega}{sup -p}, is well characterized by the exponent p=0.5{+-}0.06 and suggests an equipartition of diffusion modes with different wavelengths. The largest distance related to the decay of the orientational correlation function is about twice the diameter of the cavity. The situation is different in the nematic phase, where the orientational correlation is eventually lost at {approx}60 nm in the direction along the pore, a distance corresponding roughly to the length of a pore segment in the glassy matrix. The exponent p is between 0.65 and 0.9, depending on the temperature, which implies that in the nematic phase long wavelength modes are relatively more important--a consequence of the uniform director field along the pore. These observations are in agreement with the model of mutually independent pores with nematic director parallel to the pore axis in each segment. We point out that in strongly confined liquid crystals the proton NMR relaxometry does not provide the evidence of director fluctuations correlated over micrometer distances as was suggested earlier. The local translational diffusion of molecules within the cavities is found about as fast as in bulk.
Rosvall, Martin; Bergstrom, Carl T.
2011-01-01
To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network — the optimal number of levels and modular partition at each level — with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks. PMID:21494658
Wieder, Nicolas; Fink, Rainer; von Wegner, Frederic
2015-01-01
In this study, we numerically analyzed the nonlinear Ca2+-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca2+ buffering, and Ca2+ diffusion. The IP3R is a ubiquitous intracellular Ca2+ release channel that plays an important role in the formation of complex spatiotemporal Ca2+ signals such as waves and oscillations. Dynamic subfemtoliter Ca2+ microdomains reveal low copy numbers of Ca2+ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca2+ diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca2+ noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca2+] = 25 μM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca2+ binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2+ noise autocorrelation times decrease the probability of Ca2+ association and consequently increase IP3R activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior
Zhang, Di; Cherkezyan, Lusik; Capoglu, Ilker; Subramanian, Hariharan; Chandler, John; Thompson, Sebastian; Taflove, Allen; Backman, Vadim
2015-11-01
We previously established that spectroscopic microscopy can quantify subdiffraction-scale refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. However, to study more realistic samples, such as biological cells, the effect of rough surface should be considered. In this Letter, we first report an analytical theory to synthesize microscopic images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions of Maxwell's equations, and characterize the spectral properties of light reflected from a rough surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as experimental data obtained from biological cells. PMID:26512486
Zhang, Di; Cherkezyan, Lusik; Capoglu, Ilker; Subramanian, Hariharan; Chandler, John; Thompson, Sebastian; Taflove, Allen; Backman, Vadim
2016-01-01
We previously established that spectroscopic microscopy can quantify subdiffraction-scale refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. However, to study more realistic samples, such as biological cells, the effect of rough surface should be considered. In this Letter, we first report an analytical theory to synthesize microscopic images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions of Maxwell’s equations, and characterize the spectral properties of light reflected from a rough surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as experimental data obtained from biological cells. PMID:26512486
Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage
Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent
2011-01-01
The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543
Haxton, Thomas K; Zuckermann, Ronald N; Whitelam, Stephen
2016-01-12
Peptoid polymers form extended two-dimensional nanostructures via an interface-mediated assembly process: the amphiphilic peptoids first adsorb to an air-water interface as a monolayer, then buckle and collapse into free-floating bilayer nanosheets when the interface is compressed. Here, we investigate the molecular mechanism of monolayer buckling by developing a method for incorporating interface fluctuations into an implicit-solvent coarse-grained model. Representing the interface with a triangular mesh controlled by surface tension and surfactant adsorption, we predict the direction of buckling for peptoids with a segregated arrangement of charged side chains and predict that peptoids with with an alternating charge pattern should buckle less easily than peptoids with a segregated charge pattern. PMID:26647143
Tomschik, Miroslav; Zheng, Haocheng; van Holde, Ken; Zlatanova, Jordanka; Leuba, Sanford H.
2005-01-01
The nucleosome core particle, the basic repeated structure in chromatin fibers, consists of an octamer of eight core histone molecules, organized as dimers (H2A/H2B) and tetramers [(H3/H4)2] around which DNA wraps tightly in almost two left-handed turns. The nucleosome has to undergo certain conformational changes to allow processes that need access to the DNA template to occur. By single-pair fluorescence resonance energy transfer, we demonstrate fast, long-range, reversible conformational fluctuations in nucleosomes between two states: fully folded (closed), with the DNA wrapped around the histone core, or open, with the DNA significantly unraveled from the histone octamer. The brief excursions into an extended open state may create windows of opportunity for protein factors involved in DNA transactions to bind to or translocate along the DNA. PMID:15728351
NASA Astrophysics Data System (ADS)
Yang, J.; Tang, Z. T.; Cao, G. H.; Zheng, Guo-qing
2015-10-01
We report 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb2Cr3As3 with a quasi-one-dimensional crystal structure. Below T ˜100 K , the spin-lattice relaxation rate (1 /T1 ) divided by temperature, 1 /T1T , increases upon cooling down to Tc=4.8 K , showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1 /T1 decreases rapidly below Tc without a Hebel-Slichter peak, and follows a T5 variation below T ˜3 K , which points to unconventional superconductivity with point nodes in the gap function.
Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael
2016-07-15
Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. PMID:27109713
Wang, Wei; Hou, Jingming; Qian, Shaowen; Liu, Kai; Li, Bo; Li, Min; Peng, Zhaohui; Xin, Kuolin; Sun, Gang
2016-06-15
The purpose of this study was to investigate the neural activity and functional connectivity in generalized anxiety disorder (GAD) during resting state, and how these alterations correlate to patients' symptoms. Twenty-eight GAD patients and 28 matched healthy controls underwent resting-state functional magnetic resonance (fMRI) scans. Amplitude of low-frequency fluctuation (ALFF) and seed-based resting-state functional connectivity (RSFC) were computed to explore regional activity and functional integration, and were compared between the two groups using the voxel-based two-sample t test. Pearson's correlation analyses were performed to examine the neural relationships with demographics and clinical symptoms scores. Compared to controls, GAD patients showed functional abnormalities: higher ALFF in the bilateral dorsomedial prefrontal cortex, bilateral dorsolateral prefrontal cortex and left precuneus/posterior cingulate cortex; lower connectivity in prefrontal gyrus; lower in prefrontal-limbic and cingulate RSFC and higher prefrontal-hippocampus RSFC were correlated with clinical symptoms severity, but these associations were unable to withstand correction for multiple testing. These findings may help facilitate further understanding of the potential neural substrate of GAD. PMID:27163197
Liu, Huasheng; Liao, Jian; Jiang, Weixiong; Wang, Wei
2014-01-01
Antisocial Personality Disorder (APD) is a personality disorder that is most commonly associated with the legal and criminal justice systems. The study of the brain in APD has important implications in legal contexts and in helping ensure social stability. However, the neural contribution to the high prevalence of APD is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of APD. Thirty-two healthy individuals and thirty-five patients with APD were recruited. The amplitude of low-frequency fluctuations (ALFF) was analyzed for the whole brain of all subjects. Our results showed that APD patients had a significant reduction in the ALFF in the right orbitofrontal cortex, the left temporal pole, the right inferior temporal gyrus, and the left cerebellum posterior lobe compared to normal controls. We observed that the right orbitofrontal cortex had a negative correlation between ALFF values and MMPI psychopathic deviate scores. Alterations in ALFF in these specific brain regions suggest that APD patients may be associated with abnormal activities in the fronto-temporal network. We propose that our results may contribute in a clinical and forensic context to a better understanding of APD. PMID:24598769
Kunze, Angelika; Bally, Marta; Höök, Fredrik; Larson, Göran
2013-01-01
Carbohydrate-carbohydrate interactions (CCIs) are of central importance for several biological processes. However, the ultra-weak nature of CCIs generates difficulties in studying this interaction, thus only little is known about CCIs. Here we present a highly sensitive equilibrium-fluctuation-analysis of single liposome binding events to supported lipid bilayers (SLBs) based on total internal reflection fluorescence (TIRF) microscopy that allows us to determine apparent kinetic rate constants of CCIs. The liposomes and SLBs both contained natural Le(x) glycosphingolipids (Galβ4(Fucα3)GlcNAcβ3Galβ4Glcβ1Cer), which were employed to mimic cell-cell contacts. The kinetic parameters of the self-interaction between Le(x)-containing liposomes and SLBs were measured and found to be modulated by bivalent cations. Even more interestingly, upon addition of cholesterol, the strength of the CCIs increases, suggesting that this interaction is strongly influenced by a cholesterol-dependent presentation and/or spatial organization of glycosphingolipids in cell membranes. PMID:23486243
Jiang, Weixiong; Wang, Wei
2014-01-01
Antisocial Personality Disorder (APD) is a personality disorder that is most commonly associated with the legal and criminal justice systems. The study of the brain in APD has important implications in legal contexts and in helping ensure social stability. However, the neural contribution to the high prevalence of APD is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of APD. Thirty-two healthy individuals and thirty-five patients with APD were recruited. The amplitude of low-frequency fluctuations (ALFF) was analyzed for the whole brain of all subjects. Our results showed that APD patients had a significant reduction in the ALFF in the right orbitofrontal cortex, the left temporal pole, the right inferior temporal gyrus, and the left cerebellum posterior lobe compared to normal controls. We observed that the right orbitofrontal cortex had a negative correlation between ALFF values and MMPI psychopathic deviate scores. Alterations in ALFF in these specific brain regions suggest that APD patients may be associated with abnormal activities in the fronto-temporal network. We propose that our results may contribute in a clinical and forensic context to a better understanding of APD. PMID:24598769
Zhou Kezhao; Liang Zhaoxin; Zhang Zhidong; Hu Ying
2010-10-15
We investigate a dilute Bose gas confined in a tight one-dimensional (1D) optical lattice plus a superimposed random potential at zero temperature. Accordingly, the ground-state energy, quantum depletion, and superfluid density are calculated. The presence of the lattice introduces a crossover to the quasi-two-dimensional (2D) regime, where we analyze asymptotically the 2D behavior of the system, particularly the effects of disorder. We thereby offer an analytical expression for the ground-state energy of a purely 2D Bose gas in a random potential. The obtained disorder-induced normal fluid density n{sub n} and quantum depletion n{sub d} both exhibit a characteristic 1/ln(1/n{sub 2D}a{sub 2D}{sup 2}) dependence. Their ratio n{sub n}/n{sub d} increases to 2 compared to the familiar 4/3 in lattice-free three-dimensional (3D) geometry, signifying a more pronounced contrast between superfluidity and Bose-Einstein condensation in low dimensions. The conditions for possible experimental realization of our scenario are also proposed.
Structural aspects of antibody-antigen interaction revealed through small random peptide libraries.
Slootstra, J W; Puijk, W C; Ligtvoet, G J; Langeveld, J P; Meloen, R H
1996-02-01
Two small random peptide libraries, one composed of 4550 dodecapeptides and one of 8000 tripeptides, were synthesized in newly developed credit-card format miniPEPSCAN cards (miniPEPSCAN libraries). Each peptide was synthesized in a discrete well (455 peptides/card). The two miniPEPSCAN libraries were screened with three different monoclonal antibodies (Mabs). Two other random peptide libraries, expressed on the wall of bacteria (recombinant libraries) and composed of 10(7) hexa- and octapeptides, were screened with the same three Mabs. The aim of this study was to compare the amino acid sequence of peptides selected from small and large pools of random peptides and, in this way, investigate the potential of small random peptide libraries. The screening of the two miniPEPSCAN libraries resulted in the identification of a surprisingly large number of antibody-binding peptides, while the screening of the large recombinant libraries, using the same Mabs, resulted in the identification of only a small number of peptides. The large number of peptides derived from the small random peptide libraries allowed the determination of consensus sequences. These consensus sequences could be related to small linear and nonlinear parts of the respective epitopes. The small number of peptides derived from the large random peptide libraries could only be related to linear epitopes that were previously mapped using small libraries of overlapping peptides covering the antigenic protein. Thus, with respect to the cost and speed of identifying peptides that resemble linear and nonlinear parts of epitopes, small diversity libraries based on synthetic peptides appear to be superior to large diversity libraries based on expression systems. PMID:9237197
Solution NMR of MPS-1 reveals a random coil cytosolic domain structure.
Li, Pan; Shi, Pan; Lai, Chaohua; Li, Juan; Zheng, Yuanyuan; Xiong, Ying; Zhang, Longhua; Tian, Changlin
2014-01-01
Caenorhabditis elegans MPS1 is a single transmembrane helical auxiliary subunit that co-localizes with the voltage-gated potassium channel KVS1 in the nematode nervous system. MPS-1 shares high homology with KCNE (potassium voltage-gated channel subfamily E member) auxiliary subunits, and its cytosolic domain was reported to have a serine/threonine kinase activity that modulates KVS1 channel function via phosphorylation. In this study, NMR spectroscopy indicated that the full length and truncated MPS-1 cytosolic domain (134-256) in the presence or absence of n-dodecylphosphocholine detergent micelles adopted a highly flexible random coil secondary structure. In contrast, protein kinases usually adopt a stable folded conformation in order to implement substrate recognition and phosphoryl transfer. The highly flexible random coil secondary structure suggests that MPS-1 in the free state is unstructured but may require a substrate or binding partner to adopt stable structure required for serine/threonine kinase activity. PMID:25347290
Solution NMR of MPS-1 Reveals a Random Coil Cytosolic Domain Structure
Lai, Chaohua; Li, Juan; Zheng, Yuanyuan; Xiong, Ying; Zhang, Longhua; Tian, Changlin
2014-01-01
Caenorhabditis elegans MPS1 is a single transmembrane helical auxiliary subunit that co-localizes with the voltage-gated potassium channel KVS1 in the nematode nervous system. MPS-1 shares high homology with KCNE (potassium voltage-gated channel subfamily E member) auxiliary subunits, and its cytosolic domain was reported to have a serine/threonine kinase activity that modulates KVS1 channel function via phosphorylation. In this study, NMR spectroscopy indicated that the full length and truncated MPS-1 cytosolic domain (134–256) in the presence or absence of n-dodecylphosphocholine detergent micelles adopted a highly flexible random coil secondary structure. In contrast, protein kinases usually adopt a stable folded conformation in order to implement substrate recognition and phosphoryl transfer. The highly flexible random coil secondary structure suggests that MPS-1 in the free state is unstructured but may require a substrate or binding partner to adopt stable structure required for serine/threonine kinase activity. PMID:25347290
Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka
2015-01-01
Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976
Truly random bit generation based on a novel random Brillouin fiber laser.
Xiang, Dao; Lu, Ping; Xu, Yanping; Gao, Song; Chen, Liang; Bao, Xiaoyi
2015-11-15
We propose a novel dual-emission random Brillouin fiber laser (RBFL) with bidirectional pumping operation. Numerical simulations and experimental verification of the chaotic temporal and statistical properties of the RBFL are conducted, revealing intrinsic unpredictable intensity fluctuations and two completely uncorrelated laser outputs. A random bit generator based on quantum noise sources in the random Fabry-Perot resonator of the RBFL is realized at a bit rate of 5 Mbps with verified randomness. PMID:26565888
Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.
2016-08-01
We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.
Nogueira, C A; Stafuzza, N B; Ribeiro, T P; Prado, A D L; Menezes, I P P; Peixoto, N; Gonçalves, P J; Almeida, L M
2015-01-01
Hancornia speciosa, popularly known as mangabeira, is a fruit tree native to the Brazilian Cerrado that shows great economic potential, due to its multiple uses. Intraspecific classification of this species is difficult because it shows high morphological diversity. An early study of the species reported that there are six botanic varieties that differ morphologically mainly in the shapes of their leaves and flowers. Except to note the wide morphological variation and economic potential of this species, few studies have been published about the genetic diversity of mangabeira. Knowledge of the genetic variability of this species among populations would be useful for genetic conservation and breeding programs. Therefore, we tested the transferability of 12 simple sequence repeats from expressed sequence tags (EST-SSRs) from Catharanthus roseus to H. speciosa and used 10 random amplified polymorphic DNA markers to evaluate the genetic variability among botanical varieties of H. speciosa. We obtained a high transferability frequency of EST-SSR markers from C. roseus to H. speciosa (75%). However, EST-SSR markers showed low heterozygosity and locus variability (two or three alleles by locus), which suggest low genetic diversity in the mangabeira samples. The Jaccard dissimilarity index and an examination of geographic distances indicated a non-spatial structuring of the genetic variability. Our markers were unable to distinguish H. speciosa botanical varieties. PMID:26662392
Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels
2016-01-01
An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. PMID:26518250
Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao
2016-03-01
Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. PMID:26400859
Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S
2016-06-01
Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. PMID:27036626
Ohta, Shinya; Montaño-Gutierrez, Luis F.; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G.; Takeda, Shunichi; Hudson, Damien F.; Earnshaw, William C.
2016-01-01
Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315
Ohta, Shinya; Montaño-Gutierrez, Luis F; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G; Takeda, Shunichi; Hudson, Damien F; Rappsilber, Juri; Earnshaw, William C
2016-08-01
Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315
NASA Astrophysics Data System (ADS)
Ishida, Takeshi; Tega, Naoki; Mori, Yuki; Miki, Hiroshi; Mine, Toshiyuki; Kume, Hitoshi; Torii, Kazuyoshi; Yamada, Ren-ichi; Shiraishi, Kenji
2013-11-01
Dynamic fluctuation in stress-induced leakage current - called “variable stress-induced leakage current” - in a gate oxide of a metal-oxide-semiconductor structure was investigated. Variable stress-induced leakage current is attributed to random telegraph noise, which is associated with the state-transition of a single defect. To analyze the mechanism of the state-transition, dependence of state-transition probabilities on gate current and on temperature were investigated. These dependences indicate that the state-transition mechanism is a defect-structure transition by charge collision.
2012-01-01
Background Epidemiological studies have consistently shown that whole grain (WG) cereals can protect against the development of chronic diseases, but the underlying mechanism is not fully understood. Among WG products, WG rye is considered even more potent because of its unique discrepancy in postprandial insulin and glucose responses known as the rye factor. In this study, an NMR-based metabolomics approach was applied to study the metabolic effects of WG rye as a tool to determine the beneficial effects of WG rye on human health. Methods Thirty-three postmenopausal Finnish women with elevated serum total cholesterol (5.0-8.5 mmol/L) and BMI of 20–33 kg/m2 consumed a minimum of 20% of their daily energy intake as high fiber WG rye bread (RB) or refined wheat bread (WB) in a randomized, controlled, crossover design with two 8-wk intervention periods separated by an 8-wk washout period. At the end of each intervention period, fasting serum was collected for NMR-based metabolomics and the analysis of cholesterol fractions. Multilevel partial least squares discriminant analysis was used for paired comparisons of multivariate data. Results The metabolomics analysis of serum showed lower leucine and isoleucine and higher betaine and N,N-dimethylglycine levels after RB than WB intake. To further investigate the metabolic effects of RB, the serum cholesterol fractions were measured. Total- and LDL-cholesterol levels were higher after RB intake than after WB (p<0.05). Conclusions This study revealed favorable shifts in branched amino acid and single carbon metabolism and an unfavorable shift in serum cholesterol levels after RB intake in postmenopausal women, which should be considered for evaluating health beneficial effects of rye products. PMID:23088297
Gambling with Superconducting Fluctuations
NASA Astrophysics Data System (ADS)
Foltyn, Marek; Zgirski, Maciej
2015-08-01
Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.
Krueger, S.D.
2010-03-02
By combining experimental measurements of the quasiparticle and dynamical magnetic properties of optimally electron-doped Pr{sub 0.88}LaCe{sub 0.12}CuO{sub 4} with theoretical calculations, we demonstrate that the conventional fermiology approach cannot possibly account for the magnetic fluctuations in these materials. In particular, we perform tunneling experiments on the very same sample for which a dynamical magnetic resonance has been reported recently and use photoemission data by others on a similar sample to characterize the fermionic quasiparticle excitations in great detail. We subsequently use this information to calculate the magnetic response within the conventional fermiology framework as applied in a large body of work for the hole-doped superconductors to find a profound disagreement between the theoretical expectations and the measurements: this approach predicts a steplike feature rather than a sharp resonance peak, it underestimates the intensity of the resonance by an order of magnitude, it suggests an unreasonable temperature dependence of the resonance, and most severely, it predicts that most of the spectral weight resides in incommensurate wings which are a key feature of the hole-doped cuprates but have never been observed in the electron-doped counterparts. Our findings strongly suggest that the magnetic fluctuations reflect the quantum-mechanical competition between antiferromagnetic and superconducting orders.
NASA Astrophysics Data System (ADS)
Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu
2008-02-01
Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at TCurie˜ 3 K and TS˜ 0.8 K [Huy et al.: Phys. Rev. Lett. 99 (2007) 067006], in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above TCurie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2 and YCo2. The onset SC transition is identified at TS˜ 0.7 K, below which 1/T1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T1, which follows a T3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T1 showing a \\sqrt{T} dependence below TS. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.
NASA Astrophysics Data System (ADS)
Muzy, Jean-François; Baïle, Rachel; Bacry, Emmanuel
2013-04-01
In this paper we propose a new model for volatility fluctuations in financial time series. This model relies on a nonstationary Gaussian process that exhibits aging behavior. It turns out that its properties, over any finite time interval, are very close to continuous cascade models. These latter models are indeed well known to reproduce faithfully the main stylized facts of financial time series. However, it involves a large-scale parameter (the so-called “integral scale” where the cascade is initiated) that is hard to interpret in finance. Moreover, the empirical value of the integral scale is in general deeply correlated to the overall length of the sample. This feature is precisely predicted by our model, which, as illustrated by various examples from daily stock index data, quantitatively reproduces the empirical observations.
NASA Astrophysics Data System (ADS)
Wu, D.; Barišić, N.; Dressel, M.; Cao, G. H.; Xu, Z.-A.; Schachinger, E.; Carbotte, J. P.
2010-10-01
The temperature and frequency dependences of the optical conductivity of Co-doped BaFe2As2 are analyzed and the electron-boson spectral density α2F(ω) are extracted using Eliashberg’s formalism. For the normal state at T=30K there is a relatively sharp and large peak around 10 meV and a secondary smaller and broader peak centered around 50 meV with the spectrum extending to high energies beyond the maximum phonon energy. The electron-boson mass enhancement parameter is 4.4, a value more consistent with spin-fluctuation scattering rather than with phonons. In addition the spectrum is found to evolve with temperature toward a less structured background at higher energies as in the spin susceptibility.
NASA Astrophysics Data System (ADS)
Nakagawa, Masaki; Aizawa, Yoji
2014-10-01
Universal aspects of a certain class of infinite ergodic systems are studied by using the infinite-modal maps with a special interest to their observed measures. It is shown that the ant-lion (AL) property is an important nature to realize the infinite ergodicity in the dissipative dynamics. The AL-property, which seems to be a little bit paradoxical one, is characterized by the monotonical relaxation of mean orbits into a singular stable point, but it causes the divergence of the Lyapunov exponent as well as the emergence of a number of absolutely-continuous invariant measures. Our main concern is to characterize the unique observed measure in those many admissible ergodic measures. To this end, firstly the randomization formulae are developed on the basis of the uniform distribution theorem by Weyl, to derive the stochastic aspects of the AL-property. Actually, it is shown that the statistical natures of the infinite-modal maps are well explained by the randomization formulae. Furthermore, it is shown that the observed measure derived from the randomization formulae is universal, and that the asymptotic form obeys the power law with the exponent -1, in agreement with numerical simulations.
Min, Woong-Ki; Han, Jung-Heon; Kang, Won-Hee; Lee, Heung-Ryul; Kim, Byung-Dong
2008-09-30
Microsatellites or simple sequence repeats (SSR) are widely distributed in eukaryotic genomes and are informative genetic markers. Despite many advantages of SSR markers such as a high degree of allelic polymorphisms, co-dominant inheritance, multi-allelism, and genome-wide coverage in various plant species, they also have shortcomings such as low polymorphic rates between genetically close lines, especially in Capsicum annuum. We developed an alternative technique to SSR by normalizing and alternating anchored primers in random amplified microsatellite polymorphisms (RAMP). This technique, designated reverse random amplified microsatellite polymorphism (rRAMP), allows the detection of nucleotide variation in the 3' region flanking an SSR using normalized anchored and random primer combinations. The reproducibility and frequency of polymorphic loci in rRAMP was vigorously enhanced by translocation of the 5' anchor of repeat sequences to the 3' end position and selective use of moderate arbitrary primers. In our study, the PCR banding pattern of rRAMP was highly dependent on the frequency of repeat motifs and primer combinations with random primers. Linkage analysis showed that rRAMP markers were well scattered on an intra-specific pepper map. Based on these results, we suggest that this technique is useful for studying genetic diversity, molecular fingerprinting, and rapidly constructing molecular maps for diverse plant species. PMID:18483466
Fluctuation effects in grain growth
NASA Astrophysics Data System (ADS)
Kim, Seong Gyoon; Park, Yong Bum
2016-08-01
In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.
Marquardt, Oliver; Geelhaar, Lutz; Brandt, Oliver
2015-07-01
We study the electronic properties of axial In(x)Ga(1-x)N/GaN nanowire heterostructures with randomly placed ionized donors. Our simulations are based on an eight-band k·p model and indicate large variations of both the ground state transition energy and the spatial distribution of the electron and hole charge density. We show that these variations are intrinsic to nanostructures containing ionized donors and that the presence of donors has important consequences for all nanowire-based light-emitting devices including single-photon emitters required for quantum computing and quantum cryptography. PMID:26042638
Broken detailed balance in active fluctuations of semiflexible filaments
NASA Astrophysics Data System (ADS)
Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Schmidt, Christoph F.; Broedersz, Chase P.
2015-03-01
Non-equilibrium microscopic force generation in cells often results in stochastic steady-state fluctuations. In the cell cytoskeleton, for example, cytoplasmic myosins can drive vigorous conformational fluctuations of actin filaments and microtubules. We here present an analytical and numerical analysis of randomly driven shape fluctuations of semiflexible filaments in a viscoelastic environment. To detect and quantify non-equilibrium dynamics, we focus on the breaking of detailed balance in a conformational phase space subtended by eigenmodes of the beam equation. Molecular dynamics simulations reveal a non-zero circulatory flux in phase space induced by motor activity. Furthermore, we derived an analytical expression of nonequilibrium mode correlations that allows us to predict temporal effects of active molecular motors.
Ciğerci, İbrahim Hakkı; Cenkci, Süleyman; Kargıoğlu, Mustafa; Konuk, Muhsin
2016-08-01
This study was undertaken to evaluate genotoxic potential of Thermopsis turcica aqueous extracts on the roots of onion bulb (Allium cepa L.) by comet assay and random amplified polymorphic DNA technique. The Allium root growth inhibition test indicated that the EC50 and 2×EC50 values were 8 and 16 mg/ml concentrations of T. turcica aqueous extracts, respectively. The negative control (distilled water), positive control (methyl methane sulfonate, 10 mg/l) and 8 and 16 mg/ml concentrations of T. turcica extracts were introduced to the roots of onion bulbs for 24 and 96 h. The root growth, DNA damage in root cells and randomly amplified polymorphic DNA (RAPD) profiles of root tissue were used as endpoints of the genotoxicity. The comet assay clearly indicated that dose-dependent single strand DNA breaks in the root nuclei of onions were determined for the treatment concentrations of T. turcica extracts. In comparison to RAPD profile of negative control group, RAPD polymorphisms became evident as disappearance and/or appearance of RAPD bands in treated roots. The diagnostic and phenetic numerical analyses of RAPD profiles obviously indicated dose-dependent genotoxicity induced by Thermopsis extracts. In conclusion, the results clearly indicated that water extract of T. turcica has genotoxic potential on the roots of onion bulbs as shown by comet assay and RAPD technique. PMID:25550040
Huang, J; Blackwell, T K; Kedes, L; Weintraub, H
1996-01-01
A method has been developed for selecting functional enhancer/promoter sites from random DNA sequences in higher eukaryotic cells. Of sequences that were thus selected for transcriptional activation by the muscle-specific basic helix-loop-helix protein MyoD, only a subset are similar to the preferred in vitro binding consensus, and in the same promoter context an optimal in vitro binding site was inactive. Other sequences with full transcriptional activity instead exhibit sequence preferences that, remarkably, are generally either identical or very similar to those found in naturally occurring muscle-specific promoters. This first systematic examination of the relation between DNA binding and transcriptional activation by basic helix-loop-helix proteins indicates that binding per se is necessary but not sufficient for transcriptional activation by MyoD and implies a requirement for other DNA sequence-dependent interactions or conformations at its binding site. PMID:8668207
Narechania, Apurva; Baker, Richard H.; Sit, Ryan; Kolokotronis, Sergios-Orestis; DeSalle, Rob; Planet, Paul J.
2012-01-01
Recent whole-genome approaches to microbial phylogeny have emphasized partitioning genes into functional classes, often focusing on differences between a stable core of genes and a variable shell. To rigorously address the effects of partitioning and combining genes in genome-level analyses, we developed a novel technique called Random Addition Concatenation Analysis (RADICAL). RADICAL operates by sequentially concatenating randomly chosen gene partitions starting with a single-gene partition and ending with the entire genomic data set. A phylogenetic tree is built for every successive addition, and the entire process is repeated creating multiple random concatenation paths. The result is a library of trees representing a large variety of differently sized random gene partitions. This library can then be mined to identify unique topologies, assess overall agreement, and measure support for different trees. To evaluate RADICAL, we used 682 orthologous genes across 13 cyanobacterial genomes. Despite previous assertions of substantial differences between a core and a shell set of genes for this data set, RADICAL reveals the two partitions contain congruent phylogenetic signal. Substantial disagreement within the data set is limited to a few nodes and genes involved in metabolism, a functional group that is distributed evenly between the core and the shell partitions. We highlight numerous examples where RADICAL reveals aspects of phylogenetic behavior not evident by examining individual gene trees or a “‘total evidence” tree. Our method also demonstrates that most emergent phylogenetic signal appears early in the concatenation process. The software is freely available at http://desalle.amnh.org. PMID:22094860
The importance of fluctuations in fluid mixing
Kadau, Kai; Rosenblatt, Charles; Barber, John L.; Germann, Timothy C.; Huang, Zhibin; Carlès, Pierre; Alder, Berni J.
2007-01-01
A ubiquitous example of fluid mixing is the Rayleigh–Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations. PMID:17470811
Bendhifi Zarroug, M; Baraket, G; Zourgui, L; Souid, S; Salhi Hannachi, A
2015-01-01
Opuntia ficus indica is one of the most economically important species in the Cactaceae family. Increased interest in this crop stems from its potential contribution to agricultural diversification, application in the exploitation of marginal lands, and utility as additional income sources for farmers. In Tunisia, O. ficus indica has been affected by drastic genetic erosion resulting from biotic and abiotic stresses. Thus, it is imperative to identify and preserve this germplasm. In this study, we focused on the use of random amplified microsatellite polymorphisms to assess genetic diversity among 25 representatives of Tunisian Opuntia species maintained in the collection of the National Institute of Agronomic Research of Tunisia. Seventy-two DNA markers were screened to discriminate accessions using 16 successful primer combinations. The high percentage of polymorphic band (100%), the resolving power value (5.68), the polymorphic information content (0.94), and the marker index (7.2) demonstrated the efficiency of the primers tested. Therefore, appropriate cluster analysis used in this study illustrated a divergence among the cultivars studied and exhibited continuous variation that occurred independently of geographic origin. O. ficus indica accessions did not cluster separately from the other cactus pear species, indicating that their current taxonomical classifications are not well aligned with their genetic variability or locality of origin. PMID:25730081
Floris, Ilaria; Billard, Hélène; Boquien, Clair-Yves; Joram-Gauvard, Evelyne; Simon, Laure; Legrand, Arnaud; Boscher, Cécile; Rozé, Jean-Christophe; Bolaños-Jiménez, Francisco; Kaeffer, Bertrand
2015-01-01
Background and Aims Human breast milk is an extremely dynamic fluid containing many biologically-active components which change throughout the feeding period and throughout the day. We designed a miRNA assay on minimized amounts of raw milk obtained from mothers of preterm infants. We investigated changes in miRNA expression within month 2 of lactation and then over the course of 24 hours. Materials and Methods Analyses were performed on pooled breast milk, made by combining samples collected at different clock times from the same mother donor, along with time series collected over 24 hours from four unsynchronized mothers. Whole milk, lipids or skim milk fractions were processed and analyzed by qPCR. We measured hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-146-5p, and hsa-let-7a, d and g (all -5p). Stability of miRNA endogenous controls was evaluated using RefFinder, a web tool integrating geNorm, Normfinder, BestKeeper and the comparative ΔΔCt method. Results MiR-21 and miR-16 were stably expressed in whole milk collected within month 2 of lactation from four mothers. Analysis of lipids and skim milk revealed that miR-146b and let-7d were better references in both fractions. Time series (5H-23H) allowed the identification of a set of three endogenous reference genes (hsa-let-7d, hsa-let-7g and miR-146b) to normalize raw quantification cycle (Cq) data. We identified a daily oscillation of miR-16-5p. Perspectives Our assay allows exploring miRNA levels of breast milk from mother with preterm baby collected in time series over 48–72 hours. PMID:26474056
Interstellar polarization in an irregularly fluctuating medium
NASA Technical Reports Server (NTRS)
Nee, S. F.; Jokipii, J. R.
1979-01-01
The interstellar polarization of starlight for an irregularly fluctuating medium is analyzed statistically. A general formulation is presented for the case in which the propagation distance s is larger than the coherence scale of the fluctuations. One specific result for randomly changing field direction is that the linear polarization saturates at a value which can be much less than unity, in agreement with observations.
Fluctuation theorem for partially masked nonequilibrium dynamics.
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations. PMID:25679593
Fluctuation theorem for partially masked nonequilibrium dynamics
NASA Astrophysics Data System (ADS)
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.
Instantaneous scale of fluctuation using Kalman-TFD and applications in machine tool monitoring
NASA Astrophysics Data System (ADS)
Madhavan, P. G.
1997-10-01
A new theory of random fields based on the concept of local averaging was developed in the 80s where the second-order properties of the random fields are characterized by the variance function. Certain asymptotic properties of the variance function lead to the definition of a scalar called the 'scale of fluctuation,' which has many interesting properties. A non- parametric method of estimating instantaneous scale of fluctuation is developed using the time-varying model-based time-frequency distribution. A wide range of random processes can be modeled by appropriate state-space models with white process noise. For properly defined state transition matrices and observation vectors, the states estimated using Kalman filtering or smoothing algorithms provide the estimated time-frequency distribution (Kalman-TFD). Using Kalman-TFD, the instantaneous scale of fluctuation is estimated. Performance of this estimator is compared to other instantaneous and block methods using the coefficient of variation of the estimators. The Kalman-TFD-based scale of fluctuation estimator has a coefficient of variation of 6% where as other methods yield coefficients of variation greater than 35%. The instantaneous scale of fluctuation quantifies the temporal variability of the underlying system and possible resultant limit- cycle oscillations. Tests with real vibration data from machine tools before and during chatter show that the estimated instantaneous scale of fluctuation may permit on-line prediction of chatter development many hundreds of milliseconds in advance. To explain the behavior of the estimated instantaneous scale of fluctuation during pre-chatter period, detailed simulations were undertaken which revealed that the random process during pre- chatter condition goes through an increase in 'degrees-of-freedom' or its unit standard deviation contour volume.
Multiscale Fluctuation Analysis Revisited
NASA Astrophysics Data System (ADS)
Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu
2007-07-01
Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.
Conductance fluctuations in nanostructures
NASA Astrophysics Data System (ADS)
Zhu, Ningjia
1997-12-01
In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level
Near-field magnetophotoluminescence spectroscopy of composition fluctuations in InGaAsN.
Mintariov, A. M.; Kosel, T. H.; Merz, J. L.; Blagnov, P. A.; Vlasov, A. S.; Ustinov, V. M.; Cook, R. E.; Materials Science Division; Univ. of Notre Dame; Ioffe Physico-Technical Inst.
2001-12-31
The localization of excitons on quantum-dot-like compositional fluctuations has been observed in temperature-dependent near-field magnetophotoluminescence spectra of InGaAsN. Localization is driven by the giant bowing parameter of these alloys and manifests itself by the appearance of ultranarrow lines (half-width <1 meV) at temperatures below 70 K. We show how near-field optical scanning microscopy can be used for the estimation of the size, density, and nitrogen excess of individual compositional fluctuations (clusters), thus revealing random versus phase-separation effects in the distribution of nitrogen.
NASA Astrophysics Data System (ADS)
Shiota, Takayoshi; Mukuda, Hidekazu; Uekubo, Masahiro; Engetsu, Fuko; Yashima, Mitsuharu; Kitaoka, Yoshio; Lai, Kwing To; Usui, Hidetomo; Kuroki, Kazuhiko; Miyasaka, Shigeki; Tajima, Setsuko
2016-05-01
We report on 31P-NMR studies of LaFe(As1‑xPx)(O1‑yFy) over wide compositions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Systematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of dxz/yz, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of dxy and dxz/yz. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As1‑xPx)(O1‑yFy) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.
Quantum fluctuations of radiation pressure
Wu, Chun-Hsien; Ford, L. H.
2001-08-15
Quantum fluctuations of electromagnetic radiation pressure are discussed. We use an approach based on the quantum stress tensor to calculate the fluctuations in velocity and position of a mirror subjected to electromagnetic radiation. Our approach reveals that radiation pressure fluctuations in the case of a coherent state are due to a cross term between vacuum and state dependent terms in a stress tensor operator product. Thus observation of these fluctuations would entail experimental confirmation of this cross term. We first analyze the pressure fluctuations on a single, perfectly reflecting mirror, and then study the case of an interferometer. This involves a study of the effects of multiple bounces in one arm, as well as the correlations of the pressure fluctuations between arms of the interferometer. In all cases, our results are consistent with those previously obtained by Caves using different methods. We argue that the agreement between the different methods supports the reality of the cross term and justifies the methods used in its evaluation.
Random time-scale invariant diffusion and transport coefficients.
He, Y; Burov, S; Metzler, R; Barkai, E
2008-08-01
Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement delta2[over ] of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that delta2[over ] differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable delta2[over ]. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed. PMID:18764430
Zhang, Ru; Patena, Weronika; Armbruster, Ute; Gang, Spencer S.; Blum, Sean R.; Jonikas, Martin C.
2014-01-01
A high-throughput genetic screening platform in a single-celled photosynthetic eukaryote would be a transformative addition to the plant biology toolbox. Here, we present ChlaMmeSeq (Chlamydomonas MmeI-based insertion site Sequencing), a tool for simultaneous mapping of tens of thousands of mutagenic insertion sites in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. We first validated ChlaMmeSeq by in-depth characterization of individual insertion sites. We then applied ChlaMmeSeq to a mutant pool and mapped 11,478 insertions, covering 39% of annotated protein coding genes. We observe that insertions are distributed in a manner largely indistinguishable from random, indicating that mutants in nearly all genes can be obtained efficiently. The data reveal that sequence-specific endonucleolytic activities cleave the transforming DNA and allow us to propose a simple model to explain the origin of the poorly understood exogenous sequences that sometimes surround insertion sites. ChlaMmeSeq is quantitatively reproducible, enabling its use for pooled enrichment screens and for the generation of indexed mutant libraries. Additionally, ChlaMmeSeq allows genotyping of hits from Chlamydomonas screens on an unprecedented scale, opening the door to comprehensive identification of genes with roles in photosynthesis, algal lipid metabolism, the algal carbon-concentrating mechanism, phototaxis, the biogenesis and function of cilia, and other processes for which C. reinhardtii is a leading model system. PMID:24706510
Szirovicza, Leonóra; López, Pilar; Kopena, Renáta; Benkő, Mária; Martín, José; Pénzes, Judit J.
2016-01-01
Here, we report the results of a large-scale PCR survey on the prevalence and diversity of adenoviruses (AdVs) in samples collected randomly from free-living reptiles. On the territories of the Guadarrama Mountains National Park in Central Spain and of the Chafarinas Islands in North Africa, cloacal swabs were taken from 318 specimens of eight native species representing five squamate reptilian families. The healthy-looking animals had been captured temporarily for physiological and ethological examinations, after which they were released. We found 22 AdV-positive samples in representatives of three species, all from Central Spain. Sequence analysis of the PCR products revealed the existence of three hitherto unknown AdVs in 11 Carpetane rock lizards (Iberolacerta cyreni), nine Iberian worm lizards (Blanus cinereus), and two Iberian green lizards (Lacerta schreiberi), respectively. Phylogeny inference showed every novel putative virus to be a member of the genus Atadenovirus. This is the very first description of the occurrence of AdVs in amphisbaenian and lacertid hosts. Unlike all squamate atadenoviruses examined previously, two of the novel putative AdVs had A+T rich DNA, a feature generally deemed to mirror previous host switch events. Our results shed new light on the diversity and evolution of atadenoviruses. PMID:27399970
Szirovicza, Leonóra; López, Pilar; Kopena, Renáta; Benkő, Mária; Martín, José; Pénzes, Judit J
2016-01-01
Here, we report the results of a large-scale PCR survey on the prevalence and diversity of adenoviruses (AdVs) in samples collected randomly from free-living reptiles. On the territories of the Guadarrama Mountains National Park in Central Spain and of the Chafarinas Islands in North Africa, cloacal swabs were taken from 318 specimens of eight native species representing five squamate reptilian families. The healthy-looking animals had been captured temporarily for physiological and ethological examinations, after which they were released. We found 22 AdV-positive samples in representatives of three species, all from Central Spain. Sequence analysis of the PCR products revealed the existence of three hitherto unknown AdVs in 11 Carpetane rock lizards (Iberolacerta cyreni), nine Iberian worm lizards (Blanus cinereus), and two Iberian green lizards (Lacerta schreiberi), respectively. Phylogeny inference showed every novel putative virus to be a member of the genus Atadenovirus. This is the very first description of the occurrence of AdVs in amphisbaenian and lacertid hosts. Unlike all squamate atadenoviruses examined previously, two of the novel putative AdVs had A+T rich DNA, a feature generally deemed to mirror previous host switch events. Our results shed new light on the diversity and evolution of atadenoviruses. PMID:27399970
Electrostatic potential fluctuations in a Maxwellian plasma
Hazeltine, R.D.; Lowrey, J.D.
2006-01-15
The spatial correlation function of a Maxwellian plasma with perturbations arising in the electrostatic potential due to random ion density fluctuations is examined. The entropy is found from the one-particle distribution function using the Shannon formula and then, using the Einstein method, the probability distribution for the electrostatic potential fluctuation is determined. This straightforward procedure is demonstrated to be a powerful tool in studying plasma correlation functions when the system entropy can be computed.
Fluctuational electrodynamics of hyperbolic metamaterials
Guo, Yu; Jacob, Zubin
2014-06-21
We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.
A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law
NASA Astrophysics Data System (ADS)
Donev, Aleksandar; Fai, Thomas G.; Vanden-Eijnden, Eric
2014-04-01
We study diffusive mixing in the presence of thermal fluctuations under the assumption of large Schmidt number. In this regime we obtain a limiting equation that contains a diffusive stochastic drift term with diffusion coefficient obeying a Stokes-Einstein relation, in addition to the expected advection by a random velocity. The overdamped limit correctly reproduces both the enhanced diffusion in the ensemble-averaged mean and the long-range correlated giant fluctuations in individual realizations of the mixing process, and is amenable to efficient numerical solution. Through a combination of Eulerian and Lagrangian numerical methods we demonstrate that diffusion in liquids is not most fundamentally described by Fick’s irreversible law; rather, diffusion is better modeled as reversible random advection by thermal velocity fluctuations. We find that the diffusion coefficient is effectively renormalized to a value that depends on the scale of observation. Our work reveals somewhat unexpected connections between flows at small scales, dominated by thermal fluctuations, and flows at large scales, dominated by turbulent fluctuations.
NASA Astrophysics Data System (ADS)
Boschan, A.; Ocampo, B. L.; Annichini, M.; Gauthier, G.
2016-06-01
A study on the spatial organization and velocity fluctuations of non-Brownian spherical particles settling at low Reynolds number in a vertical Hele-Shaw cell is reported. The particle volume fraction ranged from 0.005 to 0.05, while the distance between cell plates ranged from 5 to 15 times the particle radius. Particle tracking revealed that particles were not uniformly distributed in space but assembled in transient settling clusters. The population distribution of these clusters followed an exponential law. The measured velocity fluctuations are in agreement with that predicted theoretically for spherical clusters, from the balance between the apparent weight and the drag force. This result suggests that particle clustering, more than a spatial distribution of particles derived from random and independent events, is at the origin of the velocity fluctuations.
Scattering from a random surface
Abarbanel, H.D.I.
1980-11-01
We give a formulation of the problem of propagation of scalar waves over a random surface. By a judicious choice of variables we are able to show that this situation is equivalent to propagation of these waves through a medium of random fluctuations with fluctuating source and receiver. The wave equation in the new coordinates has an additional term, the fluctuation operator, which depends on derivatives of the surface in space and time. An expansion in the fluctuation operator is given which guarantees the desired boundary conditions at every order. We treat both the cases where the surface is time dependent, such as the sea surface, or fixed in time. Also discussed is the situation where the source and receiver lie between the random surface and another, possibly also random, surface. In detail we consider acoustic waves for which the surfaces are pressure release. The method is directly applicable to electromagnetic waves and other boundary conditions.
Fluctuation-dissipation theory of input-output interindustrial relations
NASA Astrophysics Data System (ADS)
Iyetomi, Hiroshi; Nakayama, Yasuhiro; Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Souma, Wataru
2011-01-01
In this study, the fluctuation-dissipation theory is invoked to shed light on input-output interindustrial relations at a macroscopic level by its application to indices of industrial production (IIP) data for Japan. Statistical noise arising from finiteness of the time series data is carefully removed by making use of the random matrix theory in an eigenvalue analysis of the correlation matrix; as a result, two dominant eigenmodes are detected. Our previous study successfully used these two modes to demonstrate the existence of intrinsic business cycles. Here a correlation matrix constructed from the two modes describes genuine interindustrial correlations in a statistically meaningful way. Furthermore, it enables us to quantitatively discuss the relationship between shipments of final demand goods and production of intermediate goods in a linear response framework. We also investigate distinctive external stimuli for the Japanese economy exerted by the current global economic crisis. These stimuli are derived from residuals of moving-average fluctuations of the IIP remaining after subtracting the long-period components arising from inherent business cycles. The observation reveals that the fluctuation-dissipation theory is applicable to an economic system that is supposed to be far from physical equilibrium.
RF current drive and plasma fluctuations
NASA Astrophysics Data System (ADS)
Peysson, Yves; Decker, Joan; Morini, L.; Coda, S.
2011-12-01
The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker-Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker-Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially
Proteins, fluctuations and complexity
Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W
2008-01-01
Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.
Riemannian geometry of fluctuation theory: An introduction
NASA Astrophysics Data System (ADS)
Velazquez, Luisberis
2016-05-01
Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory (information geometry), which describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dpξ(x|θ). This theory states a connection among geometry notions and statistical properties: separation distance as a measure of relative probabilities, curvature as a measure about the existence of irreducible statistical correlations, among others. In statistical mechanics, fluctuation geometry arises as the mathematical apparatus of a Riemannian extension of Einstein fluctuation theory, which is also closely related to Ruppeiner geometry of thermodynamics. Moreover, the curvature tensor allows to express some asymptotic formulae that account for the system fluctuating behavior beyond the gaussian approximation, while curvature scalar appears as a second-order correction of Legendre transformation between thermodynamic potentials.
Fluctuations in nuclear fragmentation
Aranda, A.; Dorso, C.O.; Furci, V.; Lopez, J.A.
1995-12-01
Heavy ion collisions can be used to study the thermodynamics of hot and dense nuclear matter only if the initial mass and energy fluctuations that lead to fragmentation are of thermal origin and survive the disassembly process. If this is the case, the observed fragment multiplicity should be directly related to those initial fluctuations and to the conditions of temperature and density causing them. The feasibility of this scenario is demonstrated with a molecular dynamics study of the evolution of mass and energy fluctuations, and fluctuations of the phase-space density. First, it is verified that the fluctuations leading to fragmentation are indeed early ones. Second, it is determined that different initial conditions of density and temperature can indeed produce varying final fragment multiplicities. The {rho}-{ital T} plane is mapped to the fragment multiplicity with good precision. This mapping should be easily reproducible with existing experimental data.
Multiscale temporal integrators for fluctuating hydrodynamics.
Delong, Steven; Sun, Yifei; Griffith, Boyce E; Vanden-Eijnden, Eric; Donev, Aleksandar
2014-12-01
Following on our previous work [S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Phys. Rev. E 87, 033302 (2013)], we develop temporal integrators for solving Langevin stochastic differential equations that arise in fluctuating hydrodynamics. Our simple predictor-corrector schemes add fluctuations to standard second-order deterministic solvers in a way that maintains second-order weak accuracy for linearized fluctuating hydrodynamics. We construct a general class of schemes and recommend two specific schemes: an explicit midpoint method and an implicit trapezoidal method. We also construct predictor-corrector methods for integrating the overdamped limit of systems of equations with a fast and slow variable in the limit of infinite separation of the fast and slow time scales. We propose using random finite differences to approximate some of the stochastic drift terms that arise because of the kinetic multiplicative noise in the limiting dynamics. We illustrate our integrators on two applications involving the development of giant nonequilibrium concentration fluctuations in diffusively mixing fluids. We first study the development of giant fluctuations in recent experiments performed in microgravity using an overdamped integrator. We then include the effects of gravity and find that we also need to include the effects of fluid inertia, which affects the dynamics of the concentration fluctuations greatly at small wave numbers. PMID:25615227
Fluctuating magnetic field induced resonant activation
Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra
2014-12-14
In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.
Simulating Brownian suspensions with fluctuating hydrodynamics
NASA Astrophysics Data System (ADS)
Delmotte, Blaise; Keaveny, Eric E.
2015-12-01
Fluctuating hydrodynamics has been successfully combined with several computational methods to rapidly compute the correlated random velocities of Brownian particles. In the overdamped limit where both particle and fluid inertia are ignored, one must also account for a Brownian drift term in order to successfully update the particle positions. In this paper, we present an efficient computational method for the dynamic simulation of Brownian suspensions with fluctuating hydrodynamics that handles both computations and provides a similar approximation as Stokesian Dynamics for dilute and semidilute suspensions. This advancement relies on combining the fluctuating force-coupling method (FCM) with a new midpoint time-integration scheme we refer to as the drifter-corrector (DC). The DC resolves the drift term for fluctuating hydrodynamics-based methods at a minimal computational cost when constraints are imposed on the fluid flow to obtain the stresslet corrections to the particle hydrodynamic interactions. With the DC, this constraint needs only to be imposed once per time step, reducing the simulation cost to nearly that of a completely deterministic simulation. By performing a series of simulations, we show that the DC with fluctuating FCM is an effective and versatile approach as it reproduces both the equilibrium distribution and the evolution of particulate suspensions in periodic as well as bounded domains. In addition, we demonstrate that fluctuating FCM coupled with the DC provides an efficient and accurate method for large-scale dynamic simulation of colloidal dispersions and the study of processes such as colloidal gelation.
Hadronic Correlations and Fluctuations
Koch, Volker
2008-10-09
We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.
NASA Astrophysics Data System (ADS)
Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian
2015-08-01
For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.
Heat fluctuations and initial ensembles.
Kim, Kwangmoo; Kwon, Chulan; Park, Hyunggyu
2014-09-01
Time-integrated quantities such as work and heat increase incessantly in time during nonequilibrium processes near steady states. In the long-time limit, the average values of work and heat become asymptotically equivalent to each other, since they only differ by a finite energy change in average. However, the fluctuation theorem (FT) for the heat is found not to hold with the equilibrium initial ensemble, while the FT for the work holds. This reveals an intriguing effect of everlasting initial memory stored in rare events. We revisit the problem of a Brownian particle in a harmonic potential dragged with a constant velocity, which is in contact with a thermal reservoir. The heat and work fluctuations are investigated with initial Boltzmann ensembles at temperatures generally different from the reservoir temperature. We find that, in the infinite-time limit, the FT for the work is fully recovered for arbitrary initial temperatures, while the heat fluctuations significantly deviate from the FT characteristics except for the infinite initial-temperature limit (a uniform initial ensemble). Furthermore, we succeed in calculating finite-time corrections to the heat and work distributions analytically, using the modified saddle point integral method recently developed by us. Interestingly, we find noncommutativity between the infinite-time limit and the infinite-initial-temperature limit for the probability distribution function (PDF) of the heat. PMID:25314405
Fluctuating noise drives Brownian transport
Hasegawa, Yoshihiko; Arita, Masanori
2012-01-01
The transport properties of Brownian ratchet were studied in the presence of stochastic intensity noise in both overdamped and underdamped regimes. In the overdamped case, an analytical solution using the matrix-continued fraction method revealed the existence of a maximum current when the noise intensity fluctuates on intermediate timescale regions. Similar effects were observed for the underdamped case by Monte Carlo simulations. The optimal time-correlation for Brownian transport coincided with the experimentally observed time-correlation of the extrinsic noise in Escherichia coli gene expression and implied the importance of environmental noise for molecular mechanisms. PMID:22977101
Fluctuations In Electrohydrodynamic Instability
NASA Astrophysics Data System (ADS)
Bianco, Francesco; Lucchesi, Mauro; Capaccioli, Simone; Fronzoni, Leone; Allegrini, Paolo
2005-11-01
Electrohydrodynamic Convection in Liquid Crystals (EHC) is a good system for the experimental study of spatio-temporal chaos. Particularly interesting is the behavior of the Nematic in presence of weak turbulence where ordered and disordered states are mixed. In this case, the fluctuations of velocity and electric current, for instance, are typical fluctuations of a system far from equilibrium. Recently some authors have analyzed the amplitude of the fluctuations as function of the applied electric field and they present interesting interpretations provided by some theories. Although important results have been obtained by these authors, many aspects of the dynamical behavior have to be further analyzed as the role of some localized coherences inside the turbulence regions. The direct optical observation allows us to make a correspondence between fluctuations and patterns, providing important information for a theoretical interpretation.
Fluctuations in Photosynthesis
NASA Astrophysics Data System (ADS)
Khajeh, Ramin; Nishikida, Dean; Haberstroh, John; Geissler, Phillip L.
2015-03-01
The dynamics of the energy gap fluctuations of chromophores in Fenna-Matthews-Olson (FMO) complex can lead to an understanding of the underlying mechanism which is responsible for an efficient exciton energy transfer in such photosynthetic structures. Using Molecular Dynamics simulation results, we investigate trajectory statistics of energy gap fluctuations in chromophores using methods of propagators and Fourier coefficient distributions and examine possible anharmonic signatures in their behavior. Berkeley Lab - Material Science Division.
Scaling metabolic rate fluctuations.
Labra, Fabio A; Marquet, Pablo A; Bozinovic, Francisco
2007-06-26
Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a "universal" form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents -0.352 and -1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913
Menke, Matt; Berger, Bonnie; Cowen, Lenore
2010-01-01
The recent explosion in newly sequenced bacterial genomes is outpacing the capacity of researchers to try to assign functional annotation to all the new proteins. Hence, computational methods that can help predict structural motifs provide increasingly important clues in helping to determine how these proteins might function. We introduce a Markov Random Field approach tailored for recognizing proteins that fold into mainly β-structural motifs, and apply it to build recognizers for the β-propeller shapes. As an application, we identify a potential class of hybrid two-component sensor proteins, that we predict contain a double-propeller domain. PMID:20147619
Lee, Eun-Gyung; Linial, Maxine L.
2000-01-01
We previously showed that the yeast three-hybrid system provides a genetic assay of both RNA and protein components for avian retroviral RNA encapsidation. In the current study, we used this assay to precisely define cis-acting determinants involved in avian leukosis sarcoma virus packaging RNA binding to Gag protein. In vivo screening of Rous sarcoma virus mutants was performed with randomly mutated minimal packaging sequences (MΨ) made using PCR amplification after cotransformation with GagΔPR protein into yeast cells. Colonies with low β-galactosidase activity were analyzed to locate mutations in MΨ sequences affecting binding to Gag proteins. This genetic assay delineated secondary structural elements that are important for efficient RNA binding, including a single-stranded small bulge containing the initiation codon for uORF3, as well as adjacent stem structures. This implies a possible tertiary structure favoring the high-affinity binding sites for Gag. In most cases, results from the three-hybrid assay were well correlated with those from the viral RNA packaging assays. The results from random mutagenesis using the rapid three-hybrid binding assay are consistent with those from site-directed mutagenesis using in vivo packaging assays. PMID:10982363
Faraday polarization fluctuations of satellite beacon signals
NASA Technical Reports Server (NTRS)
Lee, M. C.; Klobuchar, J. A.
1988-01-01
The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
Statistical physics approaches to understanding physiological fluctuations
NASA Astrophysics Data System (ADS)
Hu, Kun
This dissertation investigates the influences of the circadian pacemaker on the temporal structures of fluctuations in the human heartbeat and other related physiological signals. The scale-invariant properties of these physiological fluctuations are demonstrated to possess significant circadian rhythms. These findings are relevant in understanding the daily patterns of adverse cardiac events reported by epidemiological studies. Part I of this dissertation introduces the daily pattern in the onset of adverse cardiac events, the circadian pacemaker, and experimental methods of assessing the circadian influences. This part also reviews scale-invariant properties of physiological fluctuations, and scaling analyses that are used to access long-range correlations (an important scale-invariant property). Part II focuses on the effects of trends and nonstationarities---the mean value, standard deviation, and correlation function of signals are not invariant over time. In the case that trends and nonstationarities are unrelated to the underlying mechanism of a signal, simulations and analytic derivations are conducted to explore how to quantify accurately the correlations embedded in the noisy signals that have trends and nonstationarities. Part III investigates dynamics of human motor activity---a physiological function highly correlated with cardiac dynamics. Results demonstrate that apparently random forearm motion possesses previously unrecognized dynamic patterns. These are characterized by similar distribution forms, long-range correlations, and nonlinear Fourier phase interactions across separate individuals and measurements. Part IV reports circadian influences on the dynamic properties of heartbeat fluctuations and activity signals. Correlation properties of heartbeat fluctuations are found to exhibit a significant circadian rhythm that is independent of behavior-related factors including sleep/wake cycles, and random or scheduled events. This circadian rhythm is
Fluctuating shells under pressure
Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.
2012-01-01
Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558
NASA Astrophysics Data System (ADS)
Altaner, Bernhard; Wachtel, Artur; Vollmer, Jürgen
2015-10-01
Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015), 10.1103/PhysRevE.92.042132] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces.
Altaner, Bernhard; Wachtel, Artur; Vollmer, Jürgen
2015-10-01
Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015)] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces. PMID:26565194
Radio brightness distribution within cosmic background fluctuations
NASA Astrophysics Data System (ADS)
Sazhin, M. V.
1985-08-01
The angular fluctuations delta T in the microwave background temperature constitute a random process. Calculations are performed for the number of 'pips' above a base level that might be produced by primordial scalar density perturbations or gravitational waves. The flux density expected for typical pips is determined, as well as the mean solid angle subtended by a pip that would exceed a level three times the dispersion in delta T.
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2009-10-01
The mechanism of how critical end points of the first-order valence transition (FOVT) are controlled by a magnetic field is discussed. We demonstrate that critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field. This results explain the field dependence of the isostructural FOVT observed in Ce metal and YbInCu4. Magnetic field scan can make the system reenter in a critical valence fluctuation region. Even in intermediate-valence materials, the QCP is induced by applying a magnetic field, at which magnetic susceptibility also diverges. The driving force of the field-induced QCP is shown to be a cooperative phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct energy scale from the Kondo temperature. The key concept is that the closeness to the QCP of the FOVT is vital in understanding Ce- and Yb-based heavy-fermions. This explains the peculiar magnetic and transport responses in CeYIn5 (Y=Ir, Rh) and metamagnetic transition in YbXCu4 for X=In as well as the sharp contrast between X=Ag and Cd.
Mesoscale Temperature Fluctuations in the Southern Hemisphere Stratosphere
NASA Technical Reports Server (NTRS)
Gary, Bruce L.
2008-01-01
Isentrope surfaces in the Southern Hemisphere stratosphere reveal that air parcels undergo mesoscale temperature fluctuations that depend on latitude and season. The largest temperature fluctuations occur at high latitude winter, whereas the smallest fluctuations occur at high latitude summer. This is the same pattern found for the Northern Hemisphere stratosphere. However, the amplitude of the seasonal dependence in the Southern Hemisphere is only 37% of the Northern Hemisphere's seasonal amplitude.
Traction force and tension fluctuations in growing axons
Polackwich, Robert J.; Koch, Daniel; McAllister, Ryan; Geller, Herbert M.; Urbach, Jeffrey S.
2015-01-01
Actively generated mechanical forces play a central role in axon growth and guidance, but the mechanisms that underly force generation and regulation in growing axons remain poorly understood. We report measurements of the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stress field from a reference frame that moves with it, we are able to show that there is a clear and consistent average stress field that underlies the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. Using high time-resolution measurements of the growth cone traction stresses, we show that the stress field is composed of fluctuating local stress peaks, with a large number peaks that live for a short time, a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We show that the high time-resolution data also reveal that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics. PMID:26578882
NASA Astrophysics Data System (ADS)
Raine, Derek
2005-11-01
Einstein's 1905 (Einstein 1905 Ann. Phys. 17 549) paper on Brownian motion is his most cited work, yet in terms of the scope of its application, apparently the least understood. In this brief note, I look at some examples of problems involving frictional forces that have puzzled school teachers, university lecturers and students, all of which can be understood from a proper appreciation of the relation between fluctuations and dissipation. For completeness I shall first give a simple derivation of a fluctuation-dissipation theorem, followed by three examples.
Nishimura, Mie; Ohkawara, Tatsuya; Sato, Yuji; Satoh, Hiroki; Takahashi, Yoko; Hajika, Makita; Nishihira, Jun
2016-01-01
Soybean is recognized as a beneficial food with various functional components, such as β-conglycinin, which improves lipid metabolism. We evaluated the effects of the β-conglycinin-rich soybean Nanahomare on triglyceride (TG) levels. In this randomized, double-blind, placebo-controlled study, we divided 134 adult subjects into test and placebo groups that consumed processed food containing enriched-β-conglycinin soybean or low-β-conglycinin soybean. Hematological tests and body composition measurements were performed at weeks 0 (baseline), 4, 8, and 12 of the study period. TG levels significantly decreased in the test group compared with the placebo group at weeks 4 (change from baseline to week 4, placebo: 0.27 ± 44.13 mg/dL, test: -20.31 ± 43.74 mg/dL, p = 0.035) and 12 (change from baseline to week 12, placebo: -0.14 ± 65.83 mg/dL, test: -21.30 ± 46.21 mg/dL, p = 0.041). In addition, among subjects whose baseline TG levels were ≥100 mg/dL, the levels significantly improved in the test group at weeks 4 (p = 0.010) and 12 (p = 0.030), whereas the levels were not different between the test and placebo groups among those whose baseline levels were <100 mg/dL. These results suggest that the ingestion of enriched-β-conglycinin soybean improves serum TG levels. PMID:27529274
Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy
2016-01-01
CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function. PMID:27616327
Nishimura, Mie; Ohkawara, Tatsuya; Sato, Yuji; Satoh, Hiroki; Takahashi, Yoko; Hajika, Makita; Nishihira, Jun
2016-01-01
Soybean is recognized as a beneficial food with various functional components, such as β-conglycinin, which improves lipid metabolism. We evaluated the effects of the β-conglycinin-rich soybean Nanahomare on triglyceride (TG) levels. In this randomized, double-blind, placebo-controlled study, we divided 134 adult subjects into test and placebo groups that consumed processed food containing enriched-β-conglycinin soybean or low-β-conglycinin soybean. Hematological tests and body composition measurements were performed at weeks 0 (baseline), 4, 8, and 12 of the study period. TG levels significantly decreased in the test group compared with the placebo group at weeks 4 (change from baseline to week 4, placebo: 0.27 ± 44.13 mg/dL, test: −20.31 ± 43.74 mg/dL, p = 0.035) and 12 (change from baseline to week 12, placebo: −0.14 ± 65.83 mg/dL, test: −21.30 ± 46.21 mg/dL, p = 0.041). In addition, among subjects whose baseline TG levels were ≥100 mg/dL, the levels significantly improved in the test group at weeks 4 (p = 0.010) and 12 (p = 0.030), whereas the levels were not different between the test and placebo groups among those whose baseline levels were <100 mg/dL. These results suggest that the ingestion of enriched-β-conglycinin soybean improves serum TG levels. PMID:27529274
Zebala, John A.; Mundell, Alan; Messinger, Linda; Griffin, Craig E.; Schuler, Aaron D.; Kahn, Stuart J.
2014-01-01
Background Options are limited for patients with atopic dermatitis (AD) who do not respond to topical treatments. Antifolate therapy with systemic methotrexate improves the disease, but is associated with adverse effects. The investigational antifolate LD-aminopterin may offer improved safety. It is not known how antifolate dose and dosing frequency affect efficacy in AD, but a primary mechanism is thought to involve the antifolate-mediated accumulation of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). However, recent in vitro studies indicate that AICAR increases then decreases as a function of antifolate concentration. To address this issue and understand how dosing affects antifolate efficacy in AD, we examined the efficacy and safety of different oral doses and schedules of LD-aminopterin in the canine model of AD. Methods and Findings This was a multi-center, double-blind trial involving 75 subjects with canine AD randomized to receive up to 12 weeks of placebo, once-weekly (0.007, 0.014, 0.021 mg/kg) or twice-weekly (0.007 mg/kg) LD-aminopterin. The primary efficacy outcome was the Global Score (GS), a composite of validated measures of disease severity and itch. GS improved in all once-weekly cohorts, with 0.014 mg/kg being optimal and significant (43%, P<0.01). The majority of improvement was seen by 8 weeks. In contrast, GS in the twice-weekly cohort was similar to placebo and worse than all once-weekly cohorts. Adverse events were similar across all treated cohorts and placebo. Conclusions Once-weekly LD-aminopterin was safe and efficacious in canine AD. Twice-weekly dosing negated efficacy despite having the same daily and weekly dose as effective once-weekly regimens. Optimal dosing in this homologue of human AD correlated with the concentration-selective accumulation of AICAR in vitro, consistent with AICAR mediating LD-aminopterin efficacy in AD. PMID:25255447
Ageostrophic fluctuations in Cozumel Channel
NASA Astrophysics Data System (ADS)
Ochoa, José; Candela, Julio; Badan, Antonio; Sheinbaum, Julio
2005-02-01
The Cayman Current flows to the west, and most of it turns north as it approaches the Yucatan coast, producing a persistent northwesterly flow on both sides of Cozumel Island. The transport between the Yucatan Peninsula and Cozumel Island (i.e., through the Cozumel Channel) is close to 5 Sverdrups in the mean, with velocities at midchannel ranging from 20 to 180 cm/s. A recent study of the subinertial flow and pressure difference across Cozumel Channel by Chávez et al. (2003) showed the existence of periods lasting over 1 month with large 3-day to 1-week ageostrophic fluctuations. The flow was measured again for a year, now at four locations around Cozumel Island, including two instruments along the axis of the channel 8.6 km apart, thus allowing estimations of the along-channel velocity gradients. The new measurements reveal that, as suggested in the previous study, the centripetal or curvature acceleration of the current is the most significant contribution in the departure from geostrophy. Indeed, the curvature is, at times, so large that the pressure difference implies a geostrophic flow in the direction opposite to that of the actual flow; that is, the curvature is anticyclonic with amplitude in Rossby number larger than unity. Measures of the intensity of suprainertial variations, in pressure differences and velocity, show that periods of ageostrophic fluctuations are consistently much richer in high-frequency fluctuations than periods of nearly geostrophic behavior. Nonetheless, the large-scale Reynolds stresses play an insignificant role throughout.
Fluctuating Asymmetry and Intelligence
ERIC Educational Resources Information Center
Bates, Timothy C.
2007-01-01
The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger lengths). This…
NASA Astrophysics Data System (ADS)
Maes, Christian; Salazar, Alberto
2014-01-01
In contrast with the understanding of fluctuation symmetries for entropy production, similar ideas applied to the time-symmetric fluctuation sector have been less explored. Here we give detailed derivations of time-symmetric fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-range model. As a measure of time-symmetric dynamical activity over time T we count the difference (Nℓ - Nr)/T between the number of particle jumps in or out at the left edge and those at the right edge of the system. We show that this quantity satisfies a fluctuation symmetry from which we derive a new Green-Kubo-type relation. It will follow then that the system is more active at the edge connected to the particle reservoir with the largest chemical potential. We also apply these exact relations derived for stochastic particle models to a deterministic case, the spinning Lorentz gas, where the symmetry relation for the activity is checked numerically.
GRADFLEX: Fluctuations in Microgravity
NASA Technical Reports Server (NTRS)
Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.
2004-01-01
We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.
Terrestrial Gravity Fluctuations
NASA Astrophysics Data System (ADS)
Harms, Jan
2015-12-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Phase transition in spin systems with various types of fluctuations.
Miyashita, Seiji
2010-01-01
Various types ordering processes in systems with large fluctuation are overviewed. Generally, the so-called order-disorder phase transition takes place in competition between the interaction causing the system be ordered and the entropy causing a random disturbance. Nature of the phase transition strongly depends on the type of fluctuation which is determined by the structure of the order parameter of the system. As to the critical property of phase transitions, the concept "universality of the critical phenomena" is well established. However, we still find variety of features of ordering processes. In this article, we study effects of various mechanisms which bring large fluctuation in the system, e.g., continuous symmetry of the spin in low dimensions, contradictions among interactions (frustration), randomness of the lattice, quantum fluctuations, and a long range interaction in off-lattice systems. PMID:20689226
Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee
2013-01-01
Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165
Mode statistics in random lasers
Zaitsev, Oleg
2006-12-15
Representing an ensemble of random lasers with an ensemble of random matrices, we compute the average number of lasing modes and its fluctuations. The regimes of weak and strong coupling of the passive resonator to the environment are considered. In the latter case, contrary to an earlier claim in the literature, we do not find a power-law dependence of the average mode number on the pump strength. For the relative fluctuations, however, a power law can be established. It is shown that, due to the mode competition, the distribution of the number of excited modes over an ensemble of lasers is not binomial.
Fractal Tempo Fluctuation and Pulse Prediction
Rankin, Summer K.; Large, Edward W.; Fink, Philip W.
2010-01-01
WE INVESTIGATED PEOPLES’ ABILITY TO ADAPT TO THE fluctuating tempi of music performance. In Experiment 1, four pieces from different musical styles were chosen, and performances were recorded from a skilled pianist who was instructed to play with natural expression. Spectral and rescaled range analyses on interbeat interval time-series revealed long-range (1/f type) serial correlations and fractal scaling in each piece. Stimuli for Experiment 2 included two of the performances from Experiment 1, with mechanical versions serving as controls. Participants tapped the beat at ¼- and ⅛-note metrical levels, successfully adapting to large tempo fluctuations in both performances. Participants predicted the structured tempo fluctuations, with superior performance at the ¼-note level. Thus, listeners may exploit long-range correlations and fractal scaling to predict tempo changes in music. PMID:25190901
Multicellular density fluctuations in epithelial monolayers
NASA Astrophysics Data System (ADS)
Zehnder, Steven M.; Wiatt, Marina K.; Uruena, Juan M.; Dunn, Alison C.; Sawyer, W. Gregory; Angelini, Thomas E.
2015-09-01
Changes in cell size often accompany multicellular motion in tissue, and cell number density is known to strongly influence collective migration in monolayers. Density fluctuations in other forms of active matter have been explored extensively, but not the potential role of density fluctuations in collective cell migration. Here we investigate collective motion in cell monolayers, focusing on the divergent component of the migration velocity field to probe density fluctuations. We find spatial patterns of diverging and converging cell groups throughout the monolayers, which oscillate in time with a period of approximately 3-4 h. Simultaneous fluorescence measurements of a cytosol dye within the cells show that fluid passes between groups of cells, facilitating these oscillations in cell density. Our findings reveal that cell-cell interactions in monolayers may be mediated by intercellular fluid flow.
The nature and perception of fluctuations in human musical rhythms
NASA Astrophysics Data System (ADS)
Hennig, Holger; Fleischmann, Ragnar; Fredebohm, Anneke; Hagmayer, York; Nagler, Jan; Witt, Annette; Theis, Fabian; Geisel, Theo
2012-02-01
Although human musical performances represent one of the most valuable achievements of mankind, the best musicians perform imperfectly. Musical rhythms are not entirely accurate and thus inevitably deviate from the ideal beat pattern. Nevertheless, computer generated perfect beat patterns are frequently devalued by listeners due to a perceived lack of human touch. Professional audio editing software therefore offers a humanizing feature which artificially generates rhythmic fluctuations. However, the built-in humanizing units are essentially random number generators producing only simple uncorrelated fluctuations. Here, for the first time, we establish long-range fluctuations as an inevitable natural companion of both simple and complex human rhythmic performances [1]. Moreover, we demonstrate that listeners strongly prefer long-range correlated fluctuations in musical rhythms. Thus, the favorable fluctuation type for humanizing interbeat intervals coincides with the one generically inherent in human musical performances. [1] HH et al., PLoS ONE,6,e26457 (2011)
NASA Astrophysics Data System (ADS)
Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.
2012-11-01
We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.
Extracting primordial density fluctuations
Gawiser; Silk
1998-05-29
The combination of detections of anisotropy in cosmic microwave background radiation and observations of the large-scale distribution of galaxies probes the primordial density fluctuations of the universe on spatial scales varying by three orders of magnitude. These data are found to be inconsistent with the predictions of several popular cosmological models. Agreement between the data and the cold + hot dark matter model, however, suggests that a significant fraction of the matter in the universe may consist of massive neutrinos. PMID:9603724
Impact of magnetic fluctuations on lattice excitations in fcc nickel
NASA Astrophysics Data System (ADS)
Körmann, Fritz; Ma, Pui-Wai; Dudarev, Sergei L.; Neugebauer, Jörg
2016-02-01
The spin-space averaging formalism is applied to compute atomic forces and phonon spectra for magnetically excited states of fcc nickel. Transverse and longitudinal magnetic fluctuations are taken into account by a combination of magnetic special quasi random structures and constrained spin-density-functional theory. It turns out that for fcc Ni interatomic force constants and phonon spectra are almost unaffected by both kinds of spin fluctuations. Given the computational expense to simulate coupled magnetic and atomic fluctuations, this insight facilitates computational modeling of magnetic alloys such as Ni-based superalloys.
Quantum random number generation
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing
2016-01-01
Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness — coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.
Quantum random number generation
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing
2016-06-28
Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less
Model for lightcone fluctuations due to stress tensor fluctuations
NASA Astrophysics Data System (ADS)
Bessa, C. H. G.; De Lorenci, V. A.; Ford, L. H.; Ribeiro, C. C. H.
2016-03-01
We study a model for quantum lightcone fluctuations in which vacuum fluctuations of the electric field and of the squared electric field in a nonlinear dielectric material produce variations in the flight times of probe pulses. When this material has a nonzero third order polarizability, the flight time variations arise from squared electric field fluctuations, and are analogous to effects expected when the stress tensor of a quantized field drives passive spacetime geometry fluctuations. We also discuss the dependence of the squared electric field fluctuations upon the geometry of the material, which in turn determines a sampling function for averaging the squared electric field along the path of the pulse. This allows us to estimate the probability of especially large fluctuations, which is a measure of the probability distribution for quantum stress tensor fluctuations.
Activity-driven fluctuations in living cells
NASA Astrophysics Data System (ADS)
Fodor, É.; Guo, M.; Gov, N. S.; Visco, P.; Weitz, D. A.; van Wijland, F.
2015-05-01
We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.
Thermoemission of Eu + ions and its fluctuations
NASA Astrophysics Data System (ADS)
Gładyszewski, L.
1988-07-01
The surface ionization of europium on tungsten has been studied using a single filament ion source in a 90° magnetic mass spectrometer. The influence of temperature on the ion current was measured between 1100 and 2800 K. Additionally, the ion current noises arising from the fluctuations of the work function as a result of random fluctuations of the adsorbate density on the ion emitter surface has been investigated. The spectral density functions and their temperature dependence are discussed in terms of the surface diffusion noise model at adsorption-desorption equilibrium. The density probability function seems to be Gaussian and its skewness Sk and kurtosis Ex were: Sk ˜ 0, Ex ˜ 3.
Fluctuations, Intermittency and Predictivity
NASA Astrophysics Data System (ADS)
Charbonneau, Paul
This chapter considers the various mechanisms capable of producing amplitude and duration variations in the various dynamo models introduced in Chap. 3 (10.1007/978-3-642-32093-4_3). After a survey of observed and inferred fluctuation patterns of the solar cycle, the effects on the basic cycle of stochastic forcing, dynamical nonlinearities and time delay are considered in turn. The occurrence of intermittency in a subset of these models is then investigated, with an eye on explaining Grand Minima observed in the solar activity record. The chapter closes with a brief discussion of solar cycle prediction schemes based on dynamo models.
Current density fluctuations, nonlinear coupling, and transport in MST
Prager, S.C.; Almagri, A.F.; Assadi, S.; Cekic, M.; Chapman, B.E.; Crocker, N.; Den Hartog, D.J.; Dexter, R.N.; Fiksel, G.; Fonck, R.J.; Henry, J.S.; Hokin, S.A.; Holly, D.J.; Ji, H.; Rempel, T.D.; Sarff, J.S.; Scime, E.; Shen, W.; Sidikman, K.L.; Sprott, J.C.; Stoneking, M.R.; Watts, C.
1992-09-01
New information on magnetic fluctuations and transport in toroidal devices has been obtained in the MST reversed field pinch through measurement of nonlinear coupling of three waves in k-space, and measurement of current density fluctuations. Measurements of nonlinear coupling of magnetic fluctuations reveals that (1) two poloidal mode number m = 1 modes couple strongly to an m = 2 mode, (2) toroidal mode coupling is broad extending up to n = 20, (3) these features agree with predictions for tearing fluctuations from a nonlinear MHD code, (4) during a sawtooth crash the number of modes involved in nonlinear interactions increases dramatically and the k-spectrum broadens simultaneously. Measurements of current density fluctuations over the outer 20% of the minor radius reveal that (1) low frequency fluctuations are consistent with tearing modes, (2) high frequency fluctuations are localized turbulence which maintains resonance with the equilibrium field as q changes with radius, (3) particle transport from magnetic fluctuations is ambipolar (i.e., <{delta}j{sub {parallel}}B{sub r}> = O).
Are quasar redshifts randomly distributed
NASA Technical Reports Server (NTRS)
Weymann, R. J.; Boroson, T.; Scargle, J. D.
1978-01-01
A statistical analysis of possible clumping (not periodicity) of emission line redshifts of QSO's shows the available data to be compatible with random fluctuations of a smooth, non-clumped distribution. This result is demonstrated with Monte Carlo simulations as well as with the Kolmogorov-Smirnov test. It is in complete disagreement with the analysis by Varshni, which is shown to be incorrect.
NASA Technical Reports Server (NTRS)
Cannell, David
2005-01-01
We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.
NASA Astrophysics Data System (ADS)
Zamorano, Nelson; Gómez, Alfredo
2013-04-01
The existence of a fluctuating torque generates a wide variety of possible orbits. This situation contrasts with those examples where the torque vanishes and the angular momentum remains constant. Here we study a two dimensional example with a logarithmic effective potential V(x,y)= 12,,^2o,[ x^2 + (y/b)^2], with a small deviation from the axis symmetry given by the constant b with b < 1. Briefly, the effective potential models the gravitational force exerted by the N point particles on a test object. This potential is used to learn about the dynamics of galaxies and among other features, generates a fluctuating torque which is our main interest here. There is not an analytical solution for these two equations of motion. A simple numerical approach (provided) is required. Also, a change on the initial conditions may generate a different shape for the orbit. This apparently simple potential, represents a challenge for the students. We propose it as a good pedagogical tool for reviewing the main concepts of newtonian dynamics.
Fitness in fluctuating environments
NASA Astrophysics Data System (ADS)
Tanase Nicola, Sorin; Nemenman, Ilya
2011-03-01
Often environments change faster than the time needed to evolve optimal phenotypes through cycles of mutation and selection. We focus on this case, but assume that environmental oscillations are slower than an individual's lifetime. This is relevant, for example, for bacterial populations confronted with daily environmental changes. We analyze a resource-limited competition between a mutant phenotype and the ancestor. Environmental dynamics is represented by periodically varying, off-phase parameters of the corresponding Lotka-Volterra model. For the very slow dynamics (but still faster than the fixation time scale) the strength and the sign of selection are functions of the birth/death rates averaged over all of the environmental states and independent of the period of the fluctuations. For faster fluctuations, selection depends on the particular sequence of the successive environmental states. In particular, a time reversal of the environmental dynamics can change the sign of the selection. We conclude that the fittest phenotype in a changing environment can be very different from both the optimal phenotype in the average environment, and the phenotype with the largest average fitness.
Fluctuating mobility generation and transport in glasses
NASA Astrophysics Data System (ADS)
Wisitsorasak, Apiwat; Wolynes, Peter G.
2013-08-01
In the context of the random first order transition theory we use an extended mode coupling theory of the glass transition that includes activated events to account for spatiotemporal structures in rejuvenating glasses. We numerically solve fluctuating dynamical equations for mobility and fictive temperature fields which capture both mobility generation through activated events and facilitation effects. Upon rejuvenating, a source of high mobility at a glass surface initiates a growth front of mobility which propagates into the unstable low mobility region. The speed of the front quantitatively agrees with experiments on the rejuvenation of ultrastable glasses, which “melt” from their surface.
NASA Astrophysics Data System (ADS)
Cooper, Colin; Frieze, Alan
The aim of this article is to discuss some of the notions and applications of random walks on finite graphs, especially as they apply to random graphs. In this section we give some basic definitions, in Section 2 we review applications of random walks in computer science, and in Section 3 we focus on walks in random graphs.
Universality of flux-fluctuation law in complex dynamical systems
NASA Astrophysics Data System (ADS)
Zhou, Zhao; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng; Yang, Lei; Xue, De-Sheng
2013-01-01
Recent work has revealed a law governing flux fluctuation and the average flux in complex dynamical systems. We establish the universality of this flux-fluctuation law through the following steps: (i) We derive the law in a more general setting, showing that it depends on a single parameter characterizing the external driving; (ii) we conduct extensive numerical computations using distinct external driving, different network topologies, and multiple traffic routing strategies; and (iii) we analyze data from an actual vehicle traffic system in a major city in China to lend more credence to the universality of the flux-fluctuation law. Additional factors considered include flux fluctuation on links, window size effect, and hidden topological structures such as nodal degree correlation. Besides its fundamental importance in complex systems, the flux-fluctuation law can be used to infer certain intrinsic property of the system for potential applications such as control of complex systems for improved performance.
Fluctuating Thermodynamics for Biological Processes
NASA Astrophysics Data System (ADS)
Ham, Sihyun
Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.
Orientational fluctuations of amorphous nematogenic solids
NASA Astrophysics Data System (ADS)
Ye, Fangfu; Lu, Bing; Goldbart, Paul
2012-02-01
Amorphous nematogenic solids (ANS) are media comprising rod-like nematogens that have been randomly linked to form elastically deformable macroscopic networks. Classes of ANS include chemical nematogen gels (i.e., networks of small molecules) and liquid crystalline elastomers (built from crosslinked nematogen-containing macromolecules), as well as biophysical networks such as those composed of actin filaments. We use a method inspired by the cavity approach to construct a replica free energy for these random systems, and investigate the correlations of the thermal fluctuations of the orientational alignment of the nematogens at spatially separated points. We identify two qualitatively distinct regimes: (a) a weakly localized regime, in which the correlations decay exponentially with separation; and (b) a strongly localized regime, characterized by correlations that also decay but oscillate as they do.
Reflectometer measurements of density fluctuations in tokamak plasmas
Nazikian, R.; Mazzucato, E.
1994-08-01
We show that many anomalous features observed in reflectometer measurements of turbulent fluctuations in tokamak plasmas, such as loss of coherent reflection, large amplitude fluctuations, large angular divergence of the reflected waves and correlation lengths of the order of the free space wavelength of the probe beam, can be explained by modeling the plasma fluctuations as a poloidally varying random phase grating located at the cutoff with a phase magnitude given by 1D geometric optics. A key result of our analysis is that the turbulence spectrum cannot be inferred from phase measurements when large amplitude fluctuations are observed at the receiver. However, the turbulence spectrum may still be recovered from phase measurements by use of imaging optics, and wide angle phase sensitive receivers.
Effect of spin fluctuations on quasiparticles in simple metals
NASA Astrophysics Data System (ADS)
Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan; Cohen, Marvin; Louie, Steven
2014-03-01
We present a first-principles theory for quasiparticle excitations in condensed matter systems that includes their interaction with spin fluctuations. We apply this theory to sodium and lithium. Despite several previous studies, the importance of spin fluctuations in these materials and, in particular, their effect on the occupied band width remains unclear. We show that the coupling to spin fluctuations does not significantly change the occupied band width, but gives an important contribution to the quasiparticle lifetime. To obtain quantitative agreement with experiment for the occupied band width, we find that it is necessary to include vertex corrections beyond the random-phase approximation in the screening by charge fluctuations. S. G. L. acknowledges support by a Simons Foundation Fellowship in Theoretical Physics. This work was supported by NSF Grant No. DMR10-1006184 and by DOE Grant No. DE-AC02-05CH11231.
Motion of Euglena gracilis: Active fluctuations and velocity distribution
NASA Astrophysics Data System (ADS)
Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.
2015-07-01
We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.
Fluctuation theory of starlight polarization
Nee, S.F.
1980-04-15
The average and the variance of absolute polarization of starlight are calculated as a function of distance based on the fluctuation theory of Langevin's scheme. The computed curves from the theory agree with the sample observational data. It estimates a correlation length of 225 pc and a fluctuating angle of 22./sup 0/5 for the fluctuation of interstellar magnetic field for the observation direction within 60/sup 0/
Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
Parasassi, T; De Stasio, G; d'Ubaldo, A; Gratton, E
1990-01-01
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase. The difference in excitation spectra allows photoselection of Laurdan molecules in one of the two phases. Using the difference in emission spectra it is then possible to observe interconversion between the two phases. We have performed experiments in dipalmitoyl-phosphatidylcholine (DPPC) vesicles at different temperatures, in particular in the region of the phase transition, where phase coexistence and interconversion between phases is likely to be maximal. We have also studied vesicles of different lipids and mixtures dilauroyl-phosphatidylcholine (DLPC), DPPC, and 50% DLPC in DPPC. Both steady-state fluorescence intensity and polarization data have been collected. To quantitate phase coexistence and interconversion we have introduced the concept of "generalized polarization." We have also performed time-resolved experiments to directly prove the interconversion process. We have found that in DLPC-DPPC mixtures, at 20 degrees C, phase interconversion occurs in approximately 30-40 ns. PMID:2393703
Population Fluctuation Promotes Cooperation in Networks
Miller, Steve; Knowles, Joshua
2015-01-01
We consider the problem of explaining the emergence and evolution of cooperation in dynamic network-structured populations. Building on seminal work by Poncela et al., which shows how cooperation (in one-shot prisoner’s dilemma) is supported in growing populations by an evolutionary preferential attachment (EPA) model, we investigate the effect of fluctuations in the population size. We find that a fluctuating model – based on repeated population growth and truncation – is more robust than Poncela et al.’s in that cooperation flourishes for a wider variety of initial conditions. In terms of both the temptation to defect, and the types of strategies present in the founder network, the fluctuating population is found to lead more securely to cooperation. Further, we find that this model will also support the emergence of cooperation from pre-existing non-cooperative random networks. This model, like Poncela et al.’s, does not require agents to have memory, recognition of other agents, or other cognitive abilities, and so may suggest a more general explanation of the emergence of cooperation in early evolutionary transitions, than mechanisms such as kin selection, direct and indirect reciprocity. PMID:26061705
Population Fluctuation Promotes Cooperation in Networks.
Miller, Steve; Knowles, Joshua
2015-01-01
We consider the problem of explaining the emergence and evolution of cooperation in dynamic network-structured populations. Building on seminal work by Poncela et al., which shows how cooperation (in one-shot prisoner's dilemma) is supported in growing populations by an evolutionary preferential attachment (EPA) model, we investigate the effect of fluctuations in the population size. We find that a fluctuating model - based on repeated population growth and truncation - is more robust than Poncela et al.'s in that cooperation flourishes for a wider variety of initial conditions. In terms of both the temptation to defect, and the types of strategies present in the founder network, the fluctuating population is found to lead more securely to cooperation. Further, we find that this model will also support the emergence of cooperation from pre-existing non-cooperative random networks. This model, like Poncela et al.'s, does not require agents to have memory, recognition of other agents, or other cognitive abilities, and so may suggest a more general explanation of the emergence of cooperation in early evolutionary transitions, than mechanisms such as kin selection, direct and indirect reciprocity. PMID:26061705
On the composition fluctuations of reverse micelles.
Tovstun, Sergey A; Razumov, Vladimir F
2010-11-15
The polydispersity of the reverse micelles is determined mainly by the fluctuations of their composition. The composition of the reverse micelle is a two-dimensional random variable whose components are the numbers of water (i) and surfactant (j) molecules. In this study the fluctuations of the composition of the reverse micelles are considered in the Gaussian approximation. It is shown that the standard deviation of the quantity w=i/j may be calculated from the dependence of the water vapor pressure above the microemulsion on the molar ratio W=[water]/[surfactant]. The estimation based on the literature data for microemulsion system sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane at 37°C in the range W=0-18 has shown that the relative standard deviation of the quantity w is about 10%. It is shown that the value of the composition fluctuations is related to the dependence of average composition on the concentration of reverse micelles at constant parameter W. PMID:20800237
NASA Astrophysics Data System (ADS)
Akimoto, Takuma; Yamamoto, Eiji
2016-06-01
We consider the Langevin equation with dichotomously fluctuating diffusivity, where the diffusion coefficient changes dichotomously over time, in order to study fluctuations of time-averaged observables in temporally heterogeneous diffusion processes. We find that the time-averaged mean-square displacement (TMSD) can be represented by the occupation time of a state in the asymptotic limit of the measurement time and hence occupation time statistics is a powerful tool for calculating the TMSD in the model. We show that the TMSD increases linearly with time (normal diffusion) but the time-averaged diffusion coefficients are intrinsically random when the mean sojourn time for one of the states diverges, i.e., intrinsic nonequilibrium processes. Thus, we find that temporally heterogeneous environments provide anomalous fluctuations of time-averaged diffusivity, which have relevance to large fluctuations of the diffusion coefficients obtained by single-particle-tracking trajectories in experiments.
Phase transitions on random lattices: how random is topological disorder?
Barghathi, Hatem; Vojta, Thomas
2014-09-19
We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of ω=(d-1)/(2d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d+1)ν>2 rather than the usual Harris criterion dν>2, making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d>1. These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices. PMID:25279615
Faraday rotation echo spectroscopy and detection of quantum fluctuations
Chen, Shao-Wen; Liu, Ren-Bao
2014-01-01
Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials. PMID:24733086
Experimental evidence of replica symmetry breaking in random lasers
NASA Astrophysics Data System (ADS)
Ghofraniha, N.; Viola, I.; di Maria, F.; Barbarella, G.; Gigli, G.; Leuzzi, L.; Conti, C.
2015-01-01
Spin-glass theory is one of the leading paradigms of complex physics and describes condensed matter, neural networks and biological systems, ultracold atoms, random photonics and many other research fields. According to this theory, identical systems under identical conditions may reach different states. This effect is known as replica symmetry breaking and is revealed by the shape of the probability distribution function of an order parameter named the Parisi overlap. However, a direct experimental evidence in any field of research is still missing. Here we investigate pulse-to-pulse fluctuations in random lasers, we introduce and measure the analogue of the Parisi overlap in independent experimental realizations of the same disordered sample, and we find that the distribution function yields evidence of a transition to a glassy light phase compatible with a replica symmetry breaking.
Dynamical net-proton fluctuations near a QCD critical point
NASA Astrophysics Data System (ADS)
Herold, Christoph; Nahrgang, Marlene; Yan, Yupeng; Kobdaj, Chinorat
2016-02-01
We investigate the evolution of the net-proton kurtosis and the kurtosis of the chiral order parameter near the critical point in the model of nonequilibrium chiral fluid dynamics. The order parameter is propagated explicitly and coupled to an expanding fluid of quarks and gluons in order to describe the dynamical situation in a heavy-ion collision. We study the critical region near the critical point on the crossover side. There are two sources of fluctuations: noncritical initial event-by-event fluctuations and critical fluctuations. These fluctuations can be distinguished by comparing a mean-field evolution of averaged thermodynamic quantities with the inclusion of fluctuations at the phase transition. We find that while the initial state fluctuations give rise to flat deviations from statistical fluctuations, critical fluctuations reveal a clear structure of the phase transition. The signals of the critical point in the net-proton and σ -field kurtosis are affected by the nonequilibrium dynamics and the inhomogeneity of the space-time evolution but they develop clearly.
Transition in fluctuation behaviour of normal liquids under high pressures
NASA Astrophysics Data System (ADS)
Postnikov, Eugene B.; Chora&¸zdot; ewski, Mirosław
2016-05-01
We explore the behaviour of the inverse reduced density fluctuations and the isobaric expansion coefficient using α , ω-dibromoalkanes as an example. Two different states are revealed far from the critical point: the region of exponentially decaying fluctuations near the coexistence curve and the state with longer correlations under sufficiently high pressures. The crossing of the isotherms of the isobaric expansion coefficient occurs within the PVT range of the mentioned transition. We discuss the interplay of this crossing with the changes in molecular packing structure connected with the analysed function of the density, which represents inverse reduced volume fluctuations.
Fluctuations in flows near jamming.
Woldhuis, Erik; Chikkadi, Vijayakumar; van Deen, Merlijn S; Schall, Peter; van Hecke, Martin
2015-09-21
Bubbles, droplets or particles in flowing complex media such as foams, emulsions or suspensions follow highly complex paths, with the relative motion of the constituents setting the energy dissipation rate. What is their dynamics, and how is this connected to the global rheology? To address these questions, we probe the statistics and spatio-temporal organization of the local particle motion and energy dissipation in a model for sheared disordered materials. We find that the fluctuations in the local dissipation vary from nearly Gaussian and homogeneous at low densities and fast flows, to strongly intermittent for large densities and slow flows. The higher order moments of the relative particle velocities reveal strong evidence for a qualitative difference between two distinct regimes which are nevertheless connected by a smooth crossover. In the critical regime, the higher order moments are related by novel multiscaling relations. In the plastic regime the relations between these moments take on a different form, with higher moments diverging rapidly when the flow rate vanishes. As these velocity differences govern the energy dissipation, we can distinguish two qualitatively different types of flow: an intermediate density, critical regime related to jamming, and a large density, plastic regime. PMID:26244633
Error Threshold of Fully Random Eigen Model
NASA Astrophysics Data System (ADS)
Li, Duo-Fang; Cao, Tian-Guang; Geng, Jin-Peng; Qiao, Li-Hua; Gu, Jian-Zhong; Zhan, Yong
2015-01-01
Species evolution is essentially a random process of interaction between biological populations and their environments. As a result, some physical parameters in evolution models are subject to statistical fluctuations. In this work, two important parameters in the Eigen model, the fitness and mutation rate, are treated as Gaussian distributed random variables simultaneously to examine the property of the error threshold. Numerical simulation results show that the error threshold in the fully random model appears as a crossover region instead of a phase transition point, and as the fluctuation strength increases the crossover region becomes smoother and smoother. Furthermore, it is shown that the randomization of the mutation rate plays a dominant role in changing the error threshold in the fully random model, which is consistent with the existing experimental data. The implication of the threshold change due to the randomization for antiviral strategies is discussed.
Ageostrophic Fluctuations in the Cozumel Channel.
NASA Astrophysics Data System (ADS)
Ochoa, J.; Candela, J.; Badan, A.; Sheinbaum, J.
2004-05-01
The Caribbean Current flows easterly and turns mostly north as it impinges the Yucatan coast, producing a persistent northerly flow along the coast that passes between the Yucatan Peninsula and the Cozumel Island; through the Cozumel Channel. The near surface subinertial flow of the Cozumel Channel, which is 18 km wide, 50 km long and 400 m deep, and its relationship with pressure measurements at both sides of the channel, was recently examined by Chávez et. al. (2003) showing the existence of periods lasting over one month with large ageostrophic fluctuations. Five years latter, the flow velocity was measured again for a year, but at four locations around Cozumel Island, two of them 8.6 km apart in the middle of the channel, thus allowing estimations of the along the channel velocity gradients. The new measurements reveal that, as suggested by Chávez et. al. (2003), the advective nonlinearity or curvature of the current explains most of the lack in geostrophy for subinertial motions. The curvature is, at times, large enough that the geostrophic flow is in the opposite direction than the actual flow; i.e. a larger than unity Rossby number. Intensity indexes, in pressure difference as well as in velocity, that favor suprainertial variations show consistently that the periods of ageostrophic fluctuations are much richer in high frequency fluctuations than the periods of nearly geostrophic behavior. The intensity index is smaller on the eastern side of Cozumel Island remaining correlated with the other. The speculation is that small eddies or meanders ride, at times, on the Caribbean Current and produce: the ageostrophic fluctuations observed within the channel, and the intensification of high frequency fluctuations all around the island.
Khakimov, Bekzod; Poulsen, Sanne Kellebjerg; Savorani, Francesco; Acar, Evrim; Gürdeniz, Gözde; Larsen, Thomas M; Astrup, Arne; Dragsted, Lars O; Engelsen, Søren Balling
2016-06-01
A previous study has shown effects of the New Nordic Diet (NND) to stimulate weight loss and lower systolic and diastolic blood pressure in obese Danish women and men in a randomized, controlled dietary intervention study. This work demonstrates long-term metabolic effects of the NND as compared with an Average Danish Diet (ADD) in blood plasma and reveals associations between metabolic changes and health beneficial effects of the NND including weight loss. A total of 145 individuals completed the intervention and blood samples were taken along with clinical examinations before the intervention started (week 0) and after 12 and 26 weeks. The plasma metabolome was measured using GC-MS, and the final metabolite table contained 144 variables. Significant and novel metabolic effects of the diet, resulting weight loss, gender, and intervention study season were revealed using PLS-DA and ASCA. Several metabolites reflecting specific differences in the diets, especially intake of plant foods and seafood, and in energy metabolism related to ketone bodies and gluconeogenesis formed the predominant metabolite pattern discriminating the intervention groups. Among NND subjects, higher levels of vaccenic acid and 3-hydroxybutanoic acid were related to a higher weight loss, while higher concentrations of salicylic, lactic, and N-aspartic acids and 1,5-anhydro-d-sorbitol were related to a lower weight loss. Specific gender and seasonal differences were also observed. The study strongly indicates that healthy diets high in fish, vegetables, fruit, and whole grain facilitated weight loss and improved insulin sensitivity by increasing ketosis and gluconeogenesis in the fasting state. PMID:27146725
Chemical Applications of Fluctuation Spectroscopy.
ERIC Educational Resources Information Center
Green, Michael E.
1984-01-01
Examines some of the possibilities for applying the noise spectroscopic technique as well as the origin of noise (or fluctuations) which accompanies transport in physical systems. Indicates that fluctuation techniques are useful in studying liposome and micelle suspensions, liquid-liquid surfaces, semiconductors, and semiconductor devices. (JN)
Fluctuations as stochastic deformation.
Kazinski, P O
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590
Fluctuations as stochastic deformation
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Frequency fluctuations in silicon nanoresonators
NASA Astrophysics Data System (ADS)
Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K.; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L.; Jourdan, Guillaume; Hentz, Sébastien
2016-06-01
Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.
Fluctuation phenomena in layered superconductors
Klemm, R.A.
1996-10-01
Gaussian fluctuations in layered superconductors have been the subject of study for many years. Although the FD was studied in detail long ago, the FC (fluctuation conductivity) was studied only recently, since the MT and DOS diagrams were previously neglected. Recent comparisons with experiment on YBCO have shown that the DOS diagrams are important and can lead to qualitatively different behaviors for the FC parallel and perpendicular to the layers. In both cases, Gaussian fluctuations fit the data above {Tc} very well, even for YBCO. To date, nearly all calculations of fluctuation quantities were for B{parallel}{cflx c}. Nevertheless, it should be possible to treat an arbitrary B, but the evaluation of the required matrix elements for the fluctuation quantities will be more complicated.
Nonequilibrium fluctuations in a resistor
NASA Astrophysics Data System (ADS)
Garnier, N.; Ciliberto, S.
2005-06-01
In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I , and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P¯ =R I2 in the system by just studying the PDFs’ symmetries.
Frequency fluctuations in silicon nanoresonators.
Sansa, Marc; Sage, Eric; Bullard, Elizabeth C; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L; Jourdan, Guillaume; Hentz, Sébastien
2016-06-01
Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices. PMID:26925826
True random numbers from amplified quantum vacuum.
Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V
2011-10-10
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices. PMID:21997077
On the Inherent Self-Excited Macroscopic Randomness of Chaotic Three-Body Systems
NASA Astrophysics Data System (ADS)
Liao, Shijun; Li, Xiaoming
What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human beings. In this paper, 10 000 samples of reliable (convergent), multiple-scale (from 10-60 to 102) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 10-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopic randomness (at the level O(1)) until t = T*, the so-called physical limit time of prediction, but propagates algebraically thereafter when accurate prediction of orbit is impossible. Note that these 10 000 samples use micro-level, inherent physical fluctuations of initial position, which have nothing to do with human beings. Especially, the differences of these 10 000 fluctuations are mathematically so small (in the level of 10-60) that they are physically the same since a distance shorter than a Planck length does not make physical sense according to the string theory. This indicates that the macroscopic randomness of the chaotic three-body system is self-excited, say, without any external force or disturbances, from the inherent micro-level uncertainty. It provides us the new concept "self-excited macroscopic randomness (uncertainty)". The macroscopic randomness is found to be dependent upon microscopic uncertainty, from the statistical viewpoint. In addition, it is found that, without any external disturbance, the chaotic three-body system might randomly disrupt with symmetry-breaking at t = 1000 in about 25% probability, which provides us new concepts "self-excited random disruption", "self-excited random escape" and "self-excited symmetry breaking" of the chaotic three-body system. Hence, it suggests that a chaotic three-body system might randomly evolve by itself, without any external forces or disturbance. Thus, the world is essentially uncertain, since such kind of self
Fluctuation in option pricing using cellular automata based market models
NASA Astrophysics Data System (ADS)
Gao, Yuying; Beni, Gerardo
2005-05-01
A new agent-based Cellular Automaton (CA) computational algorithm for option pricing is proposed. CAs have been extensively used in modeling complex dynamical systems but not in modeling option prices. Compared with traditional tools, which rely on guessing volatilities to calculate option prices, the CA model is directly addressing market mechanisms and simulates price fluctuation from aggregation of actions made by interacting individual market makers in a large population. This paper explores whether CA models can provide reasonable good answers to pricing European options. The Black-Scholes model and the Binomial Tree model are used for comparison. Comparison reveals that CA models perform reasonably well in pricing options, reproducing overall characteristics of random walk based model, while at the same time providing plausible results for the 'fat-tail' phenomenon observed in many markets. We also show that the binomial tree model can be obtained from a CA rule. Thus, CA models are suitable tools to generalize the standard theories of option pricing.
Entropy of random entangling surfaces
NASA Astrophysics Data System (ADS)
Solodukhin, Sergey N.
2012-09-01
We consider the situation when a globally defined four-dimensional field system is separated on two entangled sub-systems by a dynamical (random) two-dimensional surface. The reduced density matrix averaged over ensemble of random surfaces of fixed area and the corresponding average entropy are introduced. The average entanglement entropy is analyzed for a generic conformal field theory in four dimensions. Two important particular cases are considered. In the first, both the intrinsic metric on the entangling surface and the spacetime metric are fluctuating. An important example of this type is when the entangling surface is a black hole horizon, the fluctuations of which cause necessarily the fluctuations in the spacetime geometry. In the second case, the spacetime is considered to be fixed. The detailed analysis is carried out for the random entangling surfaces embedded in flat Minkowski spacetime. In all cases, the problem reduces to an effectively two-dimensional problem of random surfaces which can be treated by means of the well-known conformal methods. Focusing on the logarithmic terms in the entropy, we predict the appearance of a new ln ln(A) term. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
Period and light-curve fluctuations of the Kepler Cepheid V1154 Cygni
NASA Astrophysics Data System (ADS)
Derekas, A.; Szabó, Gy. M.; Berdnikov, L.; Szabó, R.; Smolec, R.; Kiss, L. L.; Szabados, L.; Chadid, M.; Evans, N. R.; Kinemuchi, K.; Nemec, J. M.; Seader, S. E.; Smith, J. C.; Tenenbaum, P.
2012-09-01
We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V1154 Cyg; V = 9.1 mag, P ≈ 4.9 d) based on almost 600 d of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O - C values, the cycle lengths show a scatter of 0.015-0.02 d over 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O - C values was found, suggesting that the O - C variations might be due to the instability of the light-curve shape. Random-fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the light travel time effect caused by low-mass companions. We show that the observed period jitter in V1154 Cyg represents a serious limitation in the search for binary companions. While the Kepler data are accurate enough to allow the detection of planetary bodies in close orbits around a Cepheid, the astrophysical noise can easily hide the signal of the light-time effect.
Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles
NASA Astrophysics Data System (ADS)
Chakraborti, Subhadip; Mishra, Shradha; Pradhan, Punyabrata
2016-05-01
Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.
Crossover from superdiffusive to diffusive dynamics in fluctuating light fields
NASA Astrophysics Data System (ADS)
Marqués, Manuel I.
2016-06-01
The expressions for the optical drag force, the equilibrium kinetic energy, and the diffusion constant of an electric dipole in a light field consisting of electromagnetic plane waves with polarizations randomly distributed and fluctuating phases are obtained. The drag force is proportional to the extinction cross section of the dipole and to the intensity. The diffusion constant does not depend on the amplitude of the electromagnetic field and is proportional to the time interval between fluctuations. Numerical simulations for the dynamics of a resonant dipole, initially at rest, show the crossover between the superdiffusive and the diffusive regimes theoretically predicted.
Variance Anisotropy of Solar Wind Velocity and Magnetic Field Fluctuations
NASA Astrophysics Data System (ADS)
Oughton, S.; Matthaeus, W. H.; Wan, M.
2015-12-01
At MHD scales in the solar wind, velocity and magnetic fieldfluctuations are typically observed to have much more energy in thecomponents transverse to the mean magnetic field, relative to theparallel components [eg, 1,2]. This is often referred to asvariance anisotropy. Various explanations for it have been suggested,including that the fluctuations are predominantly shear Alfvén waves[1] and that turbulent dynamics leads to such states [eg, 3].Here we investigate the origin and strength of such varianceanisotropies, using spectral method simulations of thecompressible (polytropic) 3D MHD equations. We report on results from runs with several different classes ofinitial conditions. These classes include(i) fluctuations polarized only in the same sense as shear Alfvénwaves (aka toroidal polarization),(ii) randomly polarized fluctuations, and(iii) fluctuations restricted so that most of the energy is inmodes which have their wavevectors perpendicular, or nearly so, to thebackground magnetic field: quasi-2D modes. The plasma beta and Mach number dependence [4] of quantities like the variance anisotropy, Alfven ratio, and fraction of the energy in the toroidal fluctuations will be examined, along with the timescales for the development of any systematic features.Implications for solar wind fluctuations will be discussed. References:[1] Belcher & Davis 1971, J. Geophys. Res, 76, 3534.[2] Oughton et al 2015, Phil Trans Roy Soc A, 373, 20140152.[3] Matthaeus et al 1996, J. Geophys. Res, 101, 7619.[4] Smith et al 2006, J. Geophys. Res, 111, A09111.
The MDF technique for the analysis of tokamak edge plasma fluctuations
NASA Astrophysics Data System (ADS)
Lafouti, M.; Ghoranneviss, M.; Meshkani, S.; Elahi, A. Salar; Elahi
2014-02-01
Tokamak edge plasma was analyzed by applying the multifractal detrend fluctuation analysis (MF-DFA) technique. This method has found wide application in the analysis of correlations and characterization of scaling behavior of the time-series data in physiology, finance, and natural sciences. The time evolution of the ion saturation current (Is ), the floating potential fluctuation (Vf ), the poloidal electric field (Ep ), and the radial particle flux (Γ r ) has been measured by using a set of Langmuir probes consisting of four tips on the probe head. The generalized Hurst exponents (h(q)), local fluctuation function (Fq(s)), the Rényi exponents (τ(q)) as well as the multifractal spectrum f(α h ) have been calculated by applying the MF-DFA method to Is , Vf , and the magnetohydrodynamic (MHD) fluctuation signal. Furthermore, we perform the shuffling and the phase randomization techniques to detect the sources of multifractality. The nonlinearity shape of τ(q) reveals a multifractal behavior of the time-series data. The results show that in the presence of biasing, Is , Vf , Ep , and Γ r reduce about 25%, 90%, 70%, and 50%, respectively, compared with the situation with no biasing. Also, they reduce about 15%, 90%, 35%, and 25%, respectively, after resonant helical magnetic field (RHF) application. In the presence of biasing or RHF, the amplitude of the power spectrum of Is , Vf , Γ r , and MHD activity reduce remarkably in all the ranges of frequency, while their h(q) increase. The values of h(q) have been restricted between 0.6 and 0.68. These results are evidence of the existence of long-range correlations in the plasma edge turbulence. They also show the self-similar nature of the plasma edge fluctuations. Biasing or RHF reduces the amount of Fq(s). The multifractal spectrum width of Is , Vf , and MHD fluctuation amplitude reduce about 60%, 70%, and 42%, respectively, by applying biasing. In the presence of RHF, their width reduces about 60%, 85%, and 75
Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns
Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario
2015-01-01
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381
Fluctuation Dynamics of Block Copolymer Vesicles
Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.
2010-07-13
X-ray photon correlation spectroscopy was used to characterize the wave-vector- and temperature-dependent dynamics of spontaneous thermal fluctuations in a vesicle (L4) phase that occurs in a blend of a symmetric poly(styrene-ethylene/butylene-styrene) triblock copolymer with a polystyrene homopolymer. Measurements of the intermediate scattering function reveal stretched-exponential behavior versus time, with a stretching exponent slightly larger than 2/3. The corresponding relaxation rates show an approximate q{sup 3} dependence versus wave vector. Overall, the experimental measurements are well described by theories that treat the dynamics of independent membrane plaquettes.
Ion antiport accelerates photosynthetic acclimation in fluctuating light environments
Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.
2014-01-01
Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040
Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.
Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C
2014-01-01
Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040
Fluctuation Modes of a Twist-Bend Nematic Liquid Crystal
NASA Astrophysics Data System (ADS)
Parsouzi, Z.; Shamid, S. M.; Borshch, V.; Challa, P. K.; Baldwin, A. R.; Tamba, M. G.; Welch, C.; Mehl, G. H.; Gleeson, J. T.; Jakli, A.; Lavrentovich, O. D.; Allender, D. W.; Selinger, J. V.; Sprunt, S.
2016-04-01
We report a dynamic light-scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic (NTB ) phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic modes and one hydrodynamic mode in the NTB phase, and a single nonhydrodynamic mode plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations) in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-de Gennes expansion of the free-energy density in terms of heliconical director and helical polarization fields that characterize the NTB structure, with the latter serving as the primary order parameter. A "coarse-graining" approximation simplifies the theoretical analysis and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.
Fluctuation Probes of Quark Deconfinement
Asakawa, Masayuki; Heinz, Ulrich; Mueller, Berndt
2000-09-04
The size of the average fluctuations of net baryon number and electric charge in a finite volume of hadronic matter differs widely between the confined and deconfined phases. These differences may be exploited as indicators of the formation of a quark-gluon plasma in relativistic heavy-ion collisions, because fluctuations created in the initial state survive until freeze-out due to the rapid expansion of the hot fireball. (c) 2000 The American Physical Society.
Principle of minimal work fluctuations.
Xiao, Gaoyang; Gong, Jiangbin
2015-08-01
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)]. PMID:26382367
Principle of minimal work fluctuations
NASA Astrophysics Data System (ADS)
Xiao, Gaoyang; Gong, Jiangbin
2015-08-01
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality
Simulation Of Fluctuating Geomagnetic Index
NASA Technical Reports Server (NTRS)
Vedder, John; Tabor, Jill
1993-01-01
Mathematical model produces synthetic geomagnetic-index (ap) data including short-term fluctuations like those of real ap data. Measures geomagnetic activity computed from measurements of fluctuations in geomagnetic field taken at 12 high-latitude stations every 3 hours. Used in studies of interactions between solar wind and Earth, especially in studies of effect of geomagnetic field upon heating of thermosphere by impacts of energetic charged solar-wind particles.
Generalised tensor fluctuations and inflation
Cannone, Dario; Tasinato, Gianmassimo; Wands, David E-mail: g.tasinato@swansea.ac.uk
2015-01-01
Using an effective field theory approach to inflation, we examine novel properties of the spectrum of inflationary tensor fluctuations, that arise when breaking some of the symmetries or requirements usually imposed on the dynamics of perturbations. During single-clock inflation, time-reparameterization invariance is broken by a time-dependent cosmological background. In order to explore more general scenarios, we consider the possibility that spatial diffeomorphism invariance is also broken by effective mass terms or by derivative operators for the metric fluctuations in the Lagrangian. We investigate the cosmological consequences of the breaking of spatial diffeomorphisms, focussing on operators that affect the power spectrum of fluctuations. We identify the operators for tensor fluctuations that can provide a blue spectrum without violating the null energy condition, and operators for scalar fluctuations that lead to non-conservation of the comoving curvature perturbation on superhorizon scales even in single-clock inflation. In the last part of our work, we also examine the consequences of operators containing more than two spatial derivatives, discussing how they affect the sound speed of tensor fluctuations, and showing that they can mimic some of the interesting effects of symmetry breaking operators, even in scenarios that preserve spatial diffeomorphism invariance.
Random organization and plastic depinning
Reichhardt, Charles; Reichhardt, Cynthia
2008-01-01
We provide evidence that the general phenomenon of plastic depinning can be described as an absorbing phase transition, and shows the same features as the random organization which was recently studied in periodically driven particle systems [L. Corte, Nature Phys. 4, 420 (2008)]. In the plastic flow system, the pinned regime corresponds to the absorbing state and the moving state corresponds to the fluctuating state. When an external force is suddenly applied, the system eventually organizes into one of these two states with a time scale that diverges as a power law at a nonequilibrium transition. We propose a simple experiment to test for this transition in systems with random disorder.
Fluctuations in Symmetric Diblock Copolymers: Testing Theories Old and New
NASA Astrophysics Data System (ADS)
Qin, Jian; Morse, David C.
2012-06-01
Computer simulations are used to study composition fluctuations in disordered diblock copolymer melts over a range of values of the chain length N, and test several theories for the structure factor S(q). Specifically, we test the random-phase approximation (RPA), which is based on a self-consistent field treatment of fluctuations, the Fredrickson-Helfand theory, which was designed to describe fluctuations near the order-disorder transition, and the relatively new renormalized one-loop (ROL) theory. The results confirm claims that the RPA is exact in the limit N→∞ and that the ROL theory yields the dominant corrections to the RPA within a systematic expansion in powers of N-1/2, and show that the ROL theory is much more accurate than either older theory.
Fluctuation theorem in driven nonthermal systems with quenched disorder
Reichhardt, Charles; Reichhardt, C J; Drocco, J A
2009-01-01
We demonstrate that the fluctuation theorem of Evans and Searles can be used to characterize the class of dynamics that arises in nonthermal systems of collectively interacting particles driven over random quenched disorder. By observing the frequency of entropy-destroying trajectories, we show that there are specific dynamical regimes near depinning in which this theorem holds. Hence the fluctuation theorem can be used to characterize a significantly wider class of non-equilibrium systems than previously considered. We discuss how the fluctuation theorem could be tested in specific systems where noisy dynamics appear at the transition from a pinned to a moving phase such as in vortices in type-II superconductors, magnetic domain walls, and dislocation dynamics.
Visible imaging of edge fluctuations in TFTR
Zweben, S.J.; Medley, S.S.
1989-03-01
Images of the visible light emission from the inner wall region of TFTR have been made using a rapidly gated, intensified TV camera. Strong ''filamentation'' of the neutral deuterium D..cap alpha.. light is observed when the camera gating time is <100 ..mu..sec during neutral-beam-heated discharges. These turbulent filaments vary in position randomly vs. time and have a poloidal wavelength of approx.3-5 cm which is much shorter than their parallel wavelength of approx.100 cm. A second and new type of edge fluctuation phenomenon, which we call a ''merfe,'' is also described. Merfes are a regular poloidal pattern of toroidally symmetric, small-scale marfes which move away from the inner midplane during the current decay after neutral beam injection. Some tentative interpretations of these two phenomena are presented. 27 refs., 8 figs.
Maximum entropy distribution of stock price fluctuations
NASA Astrophysics Data System (ADS)
Bartiromo, Rosario
2013-04-01
In this paper we propose to use the principle of absence of arbitrage opportunities in its entropic interpretation to obtain the distribution of stock price fluctuations by maximizing its information entropy. We show that this approach leads to a physical description of the underlying dynamics as a random walk characterized by a stochastic diffusion coefficient and constrained to a given value of the expected volatility, in this way taking into account the information provided by the existence of an option market. The model is validated by a comprehensive comparison with observed distributions of both price return and diffusion coefficient. Expected volatility is the only parameter in the model and can be obtained by analysing option prices. We give an analytic formulation of the probability density function for price returns which can be used to extract expected volatility from stock option data.
Magnetic and velocity fluctuation measurements in the REPUTE-1 reversed-field pinch plasma
Ejiri, A.; Ohdachi, S.; Oikawa, T.; Shinohara, S.; Yamagishi, K.; Toyama, H.; Miyamoto, K. )
1994-05-01
Magnetic and velocity fluctuations are studied in the REPUTE-1 [Plasma Phys. Controlled Fusion [bold 28], 805 (1986)] reversed-field pinch (RFP). The first measurement of velocity fluctuation in an RFP plasma has been done using a Doppler shift of the O V(O[sup 4+], 278.1 nm) line. The fluctuation level increases as the radius of the viewing chord increases. Magnetic fluctuation measurements by an insertable probe reveal that the radial cross correlation of toroidal field fluctuation changes its sign at the radius slightly inside the reversal surface. The level of magnetohydrodynamic dynamo term is estimated from magnetic fluctuations at the surface correlation changes and oxygen velocity fluctuations measured with the chord distance of 115 mm. The dynamo term and that due to resistivity are the same level. This fact is consistent with Ohm's law on which magnetohydrodynamic dynamo models are based.
NASA Astrophysics Data System (ADS)
ajansen; kwhitefoot; panteltje1; edprochak; sudhakar, the
2014-07-01
In reply to the physicsworld.com news story “How to make a quantum random-number generator from a mobile phone” (16 May, http://ow.ly/xFiYc, see also p5), which describes a way of delivering random numbers by counting the number of photons that impinge on each of the individual pixels in the camera of a Nokia N9 smartphone.
Mardoukhi, Yousof; Jeon, Jae-Hyung; Metzler, Ralf
2015-11-28
We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T(-h) with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided. PMID:26503611
Non-Gaussian microwave background fluctuations from nonlinear gravitational effects
NASA Technical Reports Server (NTRS)
Salopek, D. S.; Kunstatter, G. (Editor)
1991-01-01
Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.
Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets
NASA Astrophysics Data System (ADS)
Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.
2016-05-01
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.
Fluctuation as a tool of biological molecular machines.
Yanagida, Toshio
2008-01-01
The mechanism for biological molecular machines is different from that of man-made ones. Recently single molecule measurements and other experiments have revealed unique operations where biological molecular machines exploit thermal fluctuation in response to small inputs of energy or signals to achieve their function. Understanding and applying this mechanism to engineering offers new artificial machine designs. PMID:18583025
Fluctuations in relativistic causal hydrodynamics
NASA Astrophysics Data System (ADS)
Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.
2014-05-01
Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.
Fluctuation scaling in the visual cortex at threshold
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-05-01
Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects, the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global property that modulates detection thresholds with a scaling exponent that departs from 2, β =2.48 ±0.07 . We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form K =(1.19 ±0.04 ) S2+(2.68 ±0.06 ) that departs from the expected 4/3 power function regime. A random multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative process provides a unifying description of fluctuation scaling and the quadratic S -K relation and is related to on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.
Barone, C. Mauro, C.; Pagano, S.; Landi, G.; Neitzert, H. C.
2015-10-05
Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions deriving from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.
NASA Astrophysics Data System (ADS)
Barone, C.; Landi, G.; Mauro, C.; Neitzert, H. C.; Pagano, S.
2015-10-01
Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions deriving from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.
Palacci, Henri; Idan, Ofer; Armstrong, Megan J; Agarwal, Ashutosh; Nitta, Takahiro; Hess, Henry
2016-08-01
Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry. PMID:27414063
Fluctuation driven electroweak phase transition
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo; Kolb, Edward W.
1991-01-01
We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.
Nonlocal soliton scattering in random potentials
NASA Astrophysics Data System (ADS)
Piccardi, Armando; Residori, Stefania; Assanto, Gaetano
2016-07-01
We experimentally investigate the transport behaviour of nonlocal spatial optical solitons when launched in and interacting with propagation-invariant random potentials. The solitons are generated in nematic liquid crystals; the randomness is created by suitably engineered illumination of planar voltage-biased cells equipped with a photosensitive wall. We find that the fluctuations follow a super-diffusive trend, with the mean square displacement lowering for decreasing spatial correlation of the noise.
Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam
NASA Astrophysics Data System (ADS)
Li, Peng; Zhang, Qiang; He, Xin; Ren, Wencai; Cheng, Hui-Ming; Zhang, Xi-xiang
2016-07-01
Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov-de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) c m2V-1s-1 , which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26 ,500 c m2V-1s-1 . Moreover, the spatial mobility fluctuated significantly from 64 ,200 c m2V-1s-1 to 1370 c m2V-1s-1 , accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.
Structures of the fluctuation precursor in an active explosive ionospheric experiment
NASA Astrophysics Data System (ADS)
Kovaleva, I. Kh.
2007-05-01
Results are presented from processing the measurement data on low-frequency fluctuations from the North Star active explosive ionospheric experiment. The fluctuation precursor signal was processed by the wavelet analysis method. The structures revealed are identified as ion acoustic envelope solitons.
Structures of the fluctuation precursor in an active explosive ionospheric experiment
Kovaleva, I. Kh.
2007-05-15
Results are presented from processing the measurement data on low-frequency fluctuations from the North Star active explosive ionospheric experiment. The fluctuation precursor signal was processed by the wavelet analysis method. The structures revealed are identified as ion acoustic envelope solitons.
Soft random solids and their heterogeneous elasticity.
Mao, Xiaoming; Goldbart, Paul M; Xing, Xiangjun; Zippelius, Annette
2009-09-01
Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids in terms of residual stress and Lamé-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long ranged and governed by a universal parameter that also gives the mean shear modulus. PMID:19905095
Soft random solids and their heterogeneous elasticity
NASA Astrophysics Data System (ADS)
Mao, Xiaoming; Goldbart, Paul M.; Xing, Xiangjun; Zippelius, Annette
2009-09-01
Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the structure of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their elastic properties. Vulcanization theory studies semimicroscopic models of random-solid-forming systems and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids in terms of residual stress and Lamé-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long ranged and governed by a universal parameter that also gives the mean shear modulus.
Instrument measures dynamic pressure fluctuations
NASA Technical Reports Server (NTRS)
Coats, J. W.; Penko, P. E.; Reshotko, M.
1977-01-01
Pressure probe instrument, incorporating "infinite line" principle, can be used to remotely measure dynamic pressure fluctuations in hot high-pressure environemnts too severe for sensors. System is designed and can be utilized for measurements in core of operating turbofan engine.
Direct measurement of antiferromagnetic domain fluctuations.
Shpyrko, O G; Isaacs, E D; Logan, J M; Feng, Yejun; Aeppli, G; Jaramillo, R; Kim, H C; Rosenbaum, T F; Zschack, P; Sprung, M; Narayanan, S; Sandy, A R
2007-05-01
Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a 'fingerprint' of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value-consistent with quantum fluctuations-on cooling below 40 K. PMID:17476263
Modeling of low- and high-frequency noise by slow and fast fluctuators
NASA Astrophysics Data System (ADS)
Nesterov, Alexander I.; Berman, Gennady P.
2012-05-01
We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.
Conductance fluctuations in graphene in the presence of long-range disorder
NASA Astrophysics Data System (ADS)
Liu, Bobo; Akis, Richard; Ferry, David K.; Bohra, Girish; Somphonsane, Ratchanok; Ramamoorthy, Harihara; Bird, Jonathan P.
2016-04-01
The fluctuations in the conductance of graphene that arise from a long-range disorder potential induced by random impurities are investigated with an atomic tight-binding lattice. The screened impurities lead to a slow variation of the background potential and this varies the overall potential landscape as the Fermi energy or an applied magnetic field is varied. As a result, the phase interference varies randomly and leads to fluctuations in the conductance. Recently, experiments have shown that an applied magnetic field produces a remarkable reduction in the amplitude of these conductance fluctuations. We find qualitative agreement with these experiments, and it appears that the reduction in magnetic field of the fluctuations arises from a field induced smoothing of the conductance landscape.
NASA Technical Reports Server (NTRS)
Messaro. Semma; Harrison, Phillip
2010-01-01
Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.
Fission mode fluctuations in the resonances of 235U(n,f)
NASA Astrophysics Data System (ADS)
Hambsch, F. J.; Knitter, H. H.; Budtz-Jørgensen, C.; Theobald, J. P.
1989-01-01
Fission fragment mass- and total kinetic energy distributions were measured for single, isolated resonances and neutron energy bins covering the incident neutron energy range from 0.006 eV to 130 eV. The measurements were performed at the Geel Electron Linear Accelerator (GELINA) of the European Communities using a Frisch-gridded ionization chamber. Fluctuations of the fission fragment mass distributions as function of resonance energy were observed, which are correlated with fluctuations of the reaction Q-value and with the measured total kinetic energy
Kam, Z; Koch, M H; Bordas, J
1981-01-01
Determination of the structure of biological particles, randomly oriented in solution, from spatial correlation analysis of fluctuations in x-ray scattering has recently been proposed. The feasibility of scattering fluctuation measurements was evaluated by using an x-ray synchrotron radiation camera to obtain the spatial correlation for a solution of tobacco mosaic virus along a line. The experimental system, analysis of data, and requirements for the determination of structures in solution are discussed using this example. PMID:6943555
Superconducting fluctuations in organic molecular metals enhanced by Mott criticality
Nam, Moon-Sun; Mézière, Cécile; Batail, Patrick; Zorina, Leokadiya; Simonov, Sergey; Ardavan, Arzhang
2013-01-01
Unconventional superconductivity typically occurs in materials in which a small change of a parameter such as bandwidth or doping leads to antiferromagnetic or Mott insulating phases. As such competing phases are approached, the properties of the superconductor often become increasingly exotic. For example, in organic superconductors and underdoped high-Tc cuprate superconductors a fluctuating superconducting state persists to temperatures significantly above Tc. By studying alloys of quasi-two-dimensional organic molecular metals in the κ-(BEDT-TTF)2X family, we reveal how the Nernst effect, a sensitive probe of superconducting phase fluctuations, evolves in the regime of extreme Mott criticality. We find strong evidence that, as the phase diagram is traversed through superconductivity towards the Mott state, the temperature scale for superconducting fluctuations increases dramatically, eventually approaching the temperature at which quasiparticles become identifiable at all. PMID:24292063
Wang, Jiadao; Chen, Shuai; Cui, Kai; Li, Dangguo; Chen, Darong
2016-02-23
The approach and coalescence behavior of gold nanoparticles on a silicon surface were investigated by experiments and molecular dynamics simulations. By analyzing the behavior of the atoms in the nanoparticles in the simulations, it was found that the atoms in a single isolated nanoparticle randomly fluctuated and that the surface atoms showed greater fluctuation. The fluctuation increased as the temperature increased. When there were two or more neighboring nanoparticles, the fluctuating surface atoms of the nanoparticles "flowed" toward the neighboring nanoparticle because of atomic interaction forces between the nanoparticles. With the surface atoms "flowing", the gold nanoparticles approached and finally coalesced. The simulation results were in good agreement with the experimental results. It can be concluded that surface thermodynamic fluctuations and atomic interaction forces are the causes of the approach and coalescence behavior of the gold nanoparticles. PMID:26756675
Effects of stochastic population fluctuations in two models of biological macroevolution
NASA Astrophysics Data System (ADS)
Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne
Two mathematical models of macroevolution are studied. These models have population dynamics at the species level, and mutations and extinction of species are also included. The population dynamics are updated by difference equations with stochastic noise terms that characterize population fluctuations. The effects of the stochastic population fluctuations on diversity and total population sizes on evolutionary time scales are studied. In one model, species can make either predator-prey, mutualistic, or competitive interactions, while the other model allows only predator-prey interactions. When the noise in the population dynamics is strong enough, both models show intermittent behavior and their power spectral densities show approximate 1/f fluctuations. In the noiseless limit, the two models have different power spectral densities. For the predator-prey model, 1/f2 fluctuations appears, indicating random-walk like behavior, while the other model still shows 1/f noise. These results indicate that stochastic population fluctuations may significantly affect long-time evolutionary dynamics.
Zhang, H.T.; Zhang, J.
2009-02-15
The effects of gas temperature fluctuations on the instantaneous evolution processes of nitrogenous species were investigated for pulverized coal particles undergoing devolatilization in a hot gas. The instantaneous mass variations of nitrogenous species released from the particles with diameters of 10-50 {mu} m were computed for different conditions. The instantaneous gas temperature was varied with time either in a simple harmonic way or in a random way. The calculated results showed that, under different time-average gas temperatures, the HCN evolution behaviors of particles with different diameters were all affected by the gas temperature fluctuations. The gas temperature fluctuations led to more rapid HCN release from the pulverized coal particles compared to the results obtained without gas temperature fluctuations. The effects were further enhanced by increasing the amplitude or intensity of the gas temperature fluctuations.
Density Fluctuations in Liquid Water
NASA Astrophysics Data System (ADS)
English, Niall J.; Tse, John S.
2011-01-01
The density distributions and fluctuations in grids of varying size in liquid water at ambient pressure, both above the freezing point and in the supercooled state, are analyzed from the trajectories obtained from large-scale molecular dynamics simulations. It is found that the occurrence of low- and high-density regions (LDL and HDL) is transient and their respective residence times are dependent on the size of the simulated system. The spatial extent of density-density correlation is found to be within 7 Å or less. The temporal existence of LDL and HDL arises as a result of natural density fluctuations of an equilibrium system. The density of bulk water at ambient conditions is homogenous.
Algorithm refinement for fluctuating hydrodynamics
Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.
2007-07-03
This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.
Thermal fluctuations and bouncing cosmologies
Cai, Yi-Fu; Zhang, Xinmin; Xue, Wei; Brandenberger, Robert E-mail: xuewei@physics.mcgill.ca E-mail: xmzhang@ihep.ac.cn
2009-06-01
We study the conditions under which thermal fluctuations generated in the contracting phase of a non-singular bouncing cosmology can lead to a scale-invariant spectrum of cosmological fluctuations at late times in the expanding phase. We consider point particle gases, holographic gases and string gases. In the models thus identified, we also study the thermal non-Gaussianities of the resulting distribution of inhomogeneities. For regular point particle radiation, we find that the background must have an equation of state w = 7/3 in order to obtain a scale-invariant spectrum, and that the non-Gaussianities are suppressed on scales larger than the thermal wavelength. For Gibbons-Hawking radiation, we find that a matter-dominated background yields scale-invariance, and that the non-Gaussianities are large. String gases are also briefly considered.
NASA Astrophysics Data System (ADS)
Li, Hongxin; Jiang, Haodong; Gao, Ming; Ma, Zhi; Ma, Chuangui; Wang, Wei
2015-12-01
The statistical fluctuation problem is a critical factor in all quantum key distribution (QKD) protocols under finite-key conditions. The current statistical fluctuation analysis is mainly based on independent random samples, however, the precondition cannot always be satisfied because of different choices of samples and actual parameters. As a result, proper statistical fluctuation methods are required to solve this problem. Taking the after-pulse contributions into consideration, this paper gives the expression for the secure key rate and the mathematical model for statistical fluctuations, focusing on a decoy-state QKD protocol [Z.-C. Wei et al., Sci. Rep. 3, 2453 (2013), 10.1038/srep02453] with a biased basis choice. On this basis, a classified analysis of statistical fluctuation is represented according to the mutual relationship between random samples. First, for independent identical relations, a deviation comparison is made between the law of large numbers and standard error analysis. Second, a sufficient condition is given that the Chernoff bound achieves a better result than Hoeffding's inequality based on only independent relations. Third, by constructing the proper martingale, a stringent way is proposed to deal issues based on dependent random samples through making use of Azuma's inequality. In numerical optimization, the impact on the secure key rate, the comparison of secure key rates, and the respective deviations under various kinds of statistical fluctuation analyses are depicted.
The fluctuation induced Hall effect
Shen, W.; Prager, S.C.
1993-02-01
The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.
The fluctuation induced Hall effect
Shen, W.; Prager, S.C.
1993-02-01
The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.
Boltzmann equation and hydrodynamic fluctuations.
Colangeli, Matteo; Kröger, Martin; Ottinger, Hans Christian
2009-11-01
We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics. PMID:20364972
Fluctuations in epidemic modeling - disease extinction and control
NASA Astrophysics Data System (ADS)
Schwartz, Ira
2009-03-01
The analysis of infectious disease fluctuations has recently seen an increasing rise in the use of new tools and models from stochastic dynamics and statistical physics. Examples arise in modeling fluctuations of multi-strain diseases, in modeling adaptive social behavior and its impact on disease fluctuations, and in the analysis of disease extinction in finite population models. Proper stochastic model reduction [1] allows one to predict unobserved fluctuations from observed data in multi-strain models [2]. Degree alteration and power law behavior is predicted in adaptive network epidemic models [3,4]. And extinction rates derived from large fluctuation theory exhibit scaling with respect to distance to the bifurcation point of disease onset with an unusual exponent [5]. In addition to outbreak prediction, another main goal of epidemic modeling is one of eliminating the disease to extinction through various control mechanisms, such as vaccine implementation or quarantine. In this talk, a description will be presented of the fluctuational behavior of several epidemic models and their extinction rates. A general framework and analysis of the effect of non-Gaussian control actuations which enhance the rate to disease extinction will be described. In particular, in it is shown that even in the presence of a small Poisson distributed vaccination program, there is an exponentially enhanced rate to disease extinction. These ideas may lead to improved methods of controlling disease where random vaccinations are prevalent. [4pt] Recent papers:[0pt] [1] E. Forgoston and I. B. Schwartz, ``Escape Rates in a Stochastic Environment with Multiple Scales,'' arXiv:0809.1345 2008.[0pt] [2] L. B. Shaw, L. Billings, I. B. Schwartz, ``Using dimension reduction to improve outbreak predictability of multi-strain diseases,'' J. Math. Bio. 55, 1 2007.[0pt] [3] L. B. Shaw and I. B. Schwartz, ``Fluctuating epidemics on adaptive networks,'' Physical Review E 77, 066101 2008.[0pt] [4] L. B
Wang, Sijian; Nan, Bin; Rosset, Saharon; Zhu, Ji
2011-03-01
We propose a computationally intensive method, the random lasso method, for variable selection in linear models. The method consists of two major steps. In step 1, the lasso method is applied to many bootstrap samples, each using a set of randomly selected covariates. A measure of importance is yielded from this step for each covariate. In step 2, a similar procedure to the first step is implemented with the exception that for each bootstrap sample, a subset of covariates is randomly selected with unequal selection probabilities determined by the covariates' importance. Adaptive lasso may be used in the second step with weights determined by the importance measures. The final set of covariates and their coefficients are determined by averaging bootstrap results obtained from step 2. The proposed method alleviates some of the limitations of lasso, elastic-net and related methods noted especially in the context of microarray data analysis: it tends to remove highly correlated variables altogether or select them all, and maintains maximal flexibility in estimating their coefficients, particularly with different signs; the number of selected variables is no longer limited by the sample size; and the resulting prediction accuracy is competitive or superior compared to the alternatives. We illustrate the proposed method by extensive simulation studies. The proposed method is also applied to a Glioblastoma microarray data analysis. PMID:22997542
Coherent random lasing in diffusive resonant media
Uppu, Ravitej; Tiwari, Anjani Kumar; Mujumdar, Sushil
2011-10-03
We investigate diffusive propagation of light and consequent random lasing in a medium comprising resonant spherical scatterers. A Monte-Carlo calculation based on photon propagation via three-dimensional random walks is employed to obtain the dwell-times of light in the system. We compare the inter-scatterer and intra-scatterer dwell-times for representative resonant and non-resonant wavelengths. Our results show that more efficient random lasing, with intense coherent modes, is obtained when the gain is present inside the scatterers. Further, a larger reduction in frequency fluctuations is achieved by the system with intra-scatterer gain.
Mechanistic constraints from the substrate concentration dependence of enzymatic fluctuations
Moffitt, Jeffrey R.; Chemla, Yann R.; Bustamante, Carlos
2010-01-01
The time it takes an enzyme to complete its reaction is a stochastic quantity governed by thermal fluctuations. With the advent of high-resolution methods of single-molecule manipulation and detection, it is now possible to observe directly this natural variation in the enzymatic cycle completion time and extract kinetic information from the statistics of its fluctuations. To this end, the inverse of the squared coefficient of variation, which we term nmin, is a useful measure of fluctuations because it places a strict lower limit on the number of kinetic states in the enzymatic mechanism. Here we show that there is a single general expression for the substrate dependence of nmin for a wide range of kinetic models. This expression is governed by three kinetic parameters, which we term NL, NS, and α. These parameters have simple geometric interpretations and provide clear constraints on possible kinetic mechanisms. As a demonstration of this analysis, we fit the fluctuations in the dwell times of the packaging motor of the bacteriophage φ29, revealing additional features of the nucleotide loading process in this motor. Because a diverse set of kinetic models display the same substrate dependence for their fluctuations, the expression for this general dependence may prove of use in the characterization and study of the dynamics of a wide range of enzymes. PMID:20729471
Facing rim cavities fluctuation modes
NASA Astrophysics Data System (ADS)
Casalino, Damiano; Ribeiro, André F. P.; Fares, Ehab
2014-06-01
Cavity modes taking place in the rims of two opposite wheels are investigated through Lattice-Boltzmann CFD simulations. Based on previous observations carried out by the authors during the BANC-II/LAGOON landing gear aeroacoustic study, a resonance mode can take place in the volume between the wheels of a two-wheel landing gear, involving a coupling between shear-layer vortical fluctuations and acoustic modes resulting from the combination of round cavity modes and wheel-to-wheel transversal acoustic modes. As a result, side force fluctuations and tonal noise side radiation take place. A parametric study of the cavity mode properties is carried out in the present work by varying the distance between the wheels. Moreover, the effects due to the presence of the axle are investigated by removing the axle from the two-wheel assembly. The azimuthal properties of the modes are scrutinized by filtering the unsteady flow in narrow bands around the tonal frequencies and investigating the azimuthal structure of the filtered fluctuation modes. Estimation of the tone frequencies with an ad hoc proposed analytical formula confirms the observed modal properties of the filtered unsteady flow solutions. The present study constitutes a primary step in the description of facing rim cavity modes as a possible source of landing gear tonal noise.
Duncan, Alison B; Gonzalez, Andrew; Kaltz, Oliver
2013-10-22
Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host-parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5 °C) and permissive (23 °C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise. PMID:23966645
Duncan, Alison B.; Gonzalez, Andrew; Kaltz, Oliver
2013-01-01
Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host–parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5°C) and permissive (23°C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise. PMID:23966645
Phase Transitions on Random Lattices: How Random is Topological Disorder?
NASA Astrophysics Data System (ADS)
Barghathi, Hatem; Vojta, Thomas
2015-03-01
We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of ω = (d - 1) / (2 d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d + 1) ν > 2 rather than the usual Harris criterion dν > 2 , making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d > 1 . These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices. This work was supported by the NSF under Grant Nos. DMR-1205803 and PHYS-1066293. We acknowledge the hospitality of the Aspen Center for Physics.
NASA Astrophysics Data System (ADS)
Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.
2014-02-01
We present first-principles calculations for quasiparticle excitations in sodium and lithium, including the effects of charge and spin fluctuations. We employ the Overhauser-Kukkonen form for the electron self-energy arising from spin fluctuations and demonstrate that the coupling of electrons to spin fluctuations gives an important contribution to the quasiparticle lifetime but does not significantly reduce the occupied bandwidth. Including correlation effects beyond the random-phase approximation in the screening from charge fluctuations yields good agreement with experiment.
NASA Astrophysics Data System (ADS)
Liu, Chao; Chang, Baolin; Qiu, Longqing; Dong, Hui; Qiu, Yang; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2015-08-01
Magnetic field fluctuations in our unshielded urban laboratory can reach hundreds of nT in the noisy daytime and is only a few nT in the quiet midnight. The field fluctuation causes the Larmor frequency fL to drift randomly for several Hz during the unshielded ultra-low field (ULF) nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) measurements, thus seriously spoiling the averaging effect and causing imaging artifacts. By using an active compensation (AC) technique based on the spatial correlation of the low-frequency magnetic field fluctuation, the field fluctuation can be suppressed to tens of nT, which is a moderate situation between the noisy daytime and the quiet midnight. In this paper, the effect of the field fluctuation on ULF MRI measurements was investigated. The 1D and 2D MRI signals of a water phantom were measured using a second-order low-Tc superconducting quantum interference device (SQUID) in three fluctuation cases: severe fluctuation (noisy daytime), moderate fluctuation (daytime with AC) and minute fluctuation (quiet midnight) when different gradient fields were applied. When the active compensation is applied or when the frequency encoding gradient field Gx reaches a sufficiently strong value in our measurements, the image artifacts become invisible in all three fluctuation cases. Therefore it is feasible to perform ULF-MRI measurements in unshielded urban environment without imaging artifacts originating from magnetic fluctuations by using the active compensation technique and/or strong gradient fields.
Liu, Chao; Chang, Baolin; Qiu, Longqing; Dong, Hui; Qiu, Yang; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming
2015-08-01
Magnetic field fluctuations in our unshielded urban laboratory can reach hundreds of nT in the noisy daytime and is only a few nT in the quiet midnight. The field fluctuation causes the Larmor frequency fL to drift randomly for several Hz during the unshielded ultra-low field (ULF) nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) measurements, thus seriously spoiling the averaging effect and causing imaging artifacts. By using an active compensation (AC) technique based on the spatial correlation of the low-frequency magnetic field fluctuation, the field fluctuation can be suppressed to tens of nT, which is a moderate situation between the noisy daytime and the quiet midnight. In this paper, the effect of the field fluctuation on ULF MRI measurements was investigated. The 1D and 2D MRI signals of a water phantom were measured using a second-order low-Tc superconducting quantum interference device (SQUID) in three fluctuation cases: severe fluctuation (noisy daytime), moderate fluctuation (daytime with AC) and minute fluctuation (quiet midnight) when different gradient fields were applied. When the active compensation is applied or when the frequency encoding gradient field Gx reaches a sufficiently strong value in our measurements, the image artifacts become invisible in all three fluctuation cases. Therefore it is feasible to perform ULF-MRI measurements in unshielded urban environment without imaging artifacts originating from magnetic fluctuations by using the active compensation technique and/or strong gradient fields. PMID:26037135
Barkhausen noise in the random field Ising magnet Nd2Fe14B
NASA Astrophysics Data System (ADS)
Xu, J.; Silevitch, D. M.; Dahmen, K. A.; Rosenbaum, T. F.
2015-07-01
With sintered needles aligned and a magnetic field applied transverse to its easy axis, the rare-earth ferromagnet Nd2Fe14B becomes a room-temperature realization of the random field Ising model. The transverse field tunes the pinning potential of the magnetic domains in a continuous fashion. We study the magnetic domain reversal and avalanche dynamics between liquid helium and room temperatures at a series of transverse fields using a Barkhausen noise technique. The avalanche size and energy distributions follow power-law behavior with a cutoff dependent on the pinning strength dialed in by the transverse field, consistent with theoretical predictions for Barkhausen avalanches in disordered materials. A scaling analysis reveals two regimes of behavior: one at low temperature and high transverse field, where the dynamics are governed by the randomness, and the second at high temperature and low transverse field, where thermal fluctuations dominate the dynamics.
Cell Volume Fluctuations in MDCK Monolayers
Zehnder, Steven M.; Suaris, Melanie; Bellaire, Madisonclaire M.; Angelini, Thomas E.
2015-01-01
Cells moving collectively in tissues constitute a form of active matter, in which collective motion depends strongly on driven fluctuations at the single-cell scale. Fluctuations in cell area and number density are often seen in monolayers, yet their role in collective migration is not known. Here we study density fluctuations at the single- and multicell level, finding that single-cell volumes oscillate with a timescale of 4 h and an amplitude of 20%; the timescale and amplitude are found to depend on cytoskeletal activity. At the multicellular scale, density fluctuations violate the central limit theorem, highlighting the role of nonequilibrium driving forces in multicellular density fluctuations. PMID:25606673
Analysis of dynamic multiplicity fluctuations at PHOBOS
NASA Astrophysics Data System (ADS)
Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.
2005-01-01
This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.
Time fluctuation analysis of forest fire sequences
NASA Astrophysics Data System (ADS)
Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.
2013-04-01
Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
NASA Astrophysics Data System (ADS)
Kachan, Devin Michael
speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain
Individual olfactory perception reveals meaningful nonolfactory genetic information
Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam
2015-01-01
Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865
Measurement of quantum fluctuations in geometry
NASA Astrophysics Data System (ADS)
Hogan, Craig J.
2008-05-01
A particular form for the quantum indeterminacy of relative spacetime position of events is derived from the context of a holographic geometry with a minimum length at the Planck scale. The indeterminacy predicts fluctuations from a classically defined geometry in the form of “holographic noise” whose spatial character, absolute normalization, and spectrum are predicted with no parameters. The noise has a distinctive transverse spatial shear signature and a flat power spectral density given by the Planck time. An interferometer signal displays noise due to the uncertainty of relative positions of reflection events. The noise corresponds to an accumulation of phase offset with time that mimics a random walk of those optical elements that change the orientation of a wavefront. It only appears in measurements that compare transverse positions and does not appear at all in purely radial position measurements. A lower bound on holographic noise follows from a covariant upper bound on gravitational entropy. The predicted holographic noise spectrum is estimated to be comparable to measured noise in the currently operating interferometric gravitational-wave detector GEO600. Because of its transverse character, holographic noise is reduced relative to gravitational wave effects in other interferometer designs, such as the LIGO observatories, where beam power is much less in the beam splitter than in the arms.
Height Fluctuations for the Stationary KPZ Equation
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Corwin, Ivan; Ferrari, Patrik; Vető, Bálint
2015-12-01
We compute the one-point probability distribution for the stationary KPZ equation (i.e. initial data , for B( X) a two-sided standard Brownian motion) and show that as time T goes to infinity, the fluctuations of the height function grow like T 1/3 and converge to those previously encountered in the study of the stationary totally asymmetric simple exclusion process, polynuclear growth model and last passage percolation. The starting point for this work is our derivation of a Fredholm determinant formula for Macdonald processes which degenerates to a corresponding formula for Whittaker processes. We relate this to a polymer model which mixes the semi-discrete and log-gamma random polymers. A special case of this model has a limit to the KPZ equation with initial data given by a two-sided Brownian motion with drift ß to the left of the origin and b to the right of the origin. The Fredholm determinant has a limit for ß > b, and the case where ß = b (corresponding to the stationary initial data) follows from an analytic continuation argument.
From fluctuations to phenotypes: the physiology of noise.
Samoilov, Michael S; Price, Gavin; Arkin, Adam P
2006-12-19
There are fundamental physical reasons why biochemical processes might be subject to noise and stochastic fluctuations. Indeed, it has long been understood that random molecular-scale mechanisms, such as those that drive genetic mutation, lie at the heart of population-scale evolutionary dynamics. What we can now appreciate is how stochastic fluctuations inherent in biochemical processes contribute to cellular and organismal phenotypes. Advancements in techniques for empirically measuring single cells and in corresponding theoretical methods have enabled the rigorous design and interpretation of experiments that provide incontrovertible proof that there are important endogenous sources of stochasticity that drive biological processes at the scale of individual organisms. Recently, some studies have progressed beyond merely ascertaining the presence of noise in biological systems; they trace its role in cellular physiology as it is passed through and processed by the biomolecular pathways-from the underlying origins of stochastic fluctuations in random biomolecular interactions to their ultimate manifestations in characteristic species phenotypes. These emerging results suggest new biological network design principles that account for a constructive role played by noise in defining the structure, function, and fitness of biological systems. They further show that stochastic mechanisms open novel classes of regulatory, signaling, and organizational choices that can serve as efficient and effective biological solutions to problems that are more complex, less robust, or otherwise suboptimal to deal with in the context of purely deterministic systems. Research in Drosophila melanogaster eye color-vision development and Bacillus subtilis competence induction has elegantly traced the role of noise in vital physiological processes from fluctuations to phenotypes, and is used here to highlight these developments. PMID:17179490
Thermal Fluctuations in Nonequilibrium Systems
NASA Astrophysics Data System (ADS)
Garcia, Alex Luis
A general Monte Carlo algorithm was developed for thermal systems whose transport and chemistry can be described by a Master Equation. Nicolis and Malek Mansour examined a model in which the transition rate could be derived exactly, namely a system coupled to two reservoirs by Knudsen flow. Their Fokker-Planck equation formulation of the thermal fluctuations is confirmed by the numerical simulation. In general it is very difficult to formulate the transition rate for thermal processes. Nicolis and Malek Mansour devised a parameterized transition rate using equilibrium and deterministic properties. They predicted the existence of long-range nonequilibrium temperature fluctuation correlations for a system subjected to a linear temperature gradient. Their construction, however, is not amenable to Monte Carlo simulation due to the nonkinetic nature of the resulting stochastic process. It is shown that a direct comparison can be made between their generic thermal system and the multicell Knudsen system. Quantitative confirmation of linear temperature correlations is obtained. A vectorized version of the Monte Carlo simulation which runs on an array processor is presented. The appearance of anomalous correlations when a system is not initialized at the steady state is discussed. It is found that even a deterministic system will display a fictitious long range correlation of fluctuations due to the slow decay of the lowest order mode even when the system is initially relatively close to steady state. Some guidelines for guarding against this type of data contamination are discussed. The analytic methods and numerical codes obtained in the above studies are used in the study of the stochastic temporal evolution of a complex thermal ignition system. A simple qualitative argument used for one-variable systems is found to yield important quantitative information concerning the variance of the explosion time. The results are confirmed by Monte Carlo numerical simulations.
Fermionic influence on inflationary fluctuations
NASA Astrophysics Data System (ADS)
Boyanovsky, Daniel
2016-04-01
Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.
Fluctuation modes of nanoconfined DNA
Karpusenko, Alena; Carpenter, Joshua H.; Zhou, Chunda; Lim, Shuang Fang; Pan, Junhan; Riehn, Robert
2012-01-01
We report an experimental investigation of the magnitude of length and density fluctuations in DNA that has been stretched in nanofluidic channels. We find that the experimental data can be described using a one-dimensional overdamped oscillator chain with nonzero equilibrium spring length and that a chain of discrete oscillators yields a better description than a continuous chain. We speculate that the scale of these discrete oscillators coincides with the scale at which the finite extensibility of the polymer manifests itself. We discuss how the measurement process influences the apparent measured dynamic properties, and outline requirements for the recovery of true physical quantities. PMID:22312183
Emittance growth from radiation fluctuations
Sands, M.
1985-12-01
As an electron bunch travels through a transport system, fluctuations in the energy loss of individual electrons cause the size of the bunch to grow. A calculation is given of the quantum-induced growth of the emittance of a beam in one transverse coordinate, making the following approximations: (1) that the transport system is linear; (2) that there is no coupling between the two transverse motions; and (3) that the radiation effects can be described by their values on the central design trajectory. This last assumption means that systems are considered in which the quantum effects from bending magnets are much larger than from the focusing lenses.
Quantum friction and fluctuation theorems
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Dalvit, D. A. R.
2014-05-01
We use general concepts of statistical mechanics to compute the quantum frictional force on an atom moving at constant velocity above a planar surface. We derive the zero-temperature frictional force using a nonequilibrium fluctuation-dissipation relation, and we show that in the large-time, steady-state regime, quantum friction scales as the cubic power of the atom's velocity. We also discuss how approaches based on Wigner-Weisskopf and quantum regression approximations fail to predict the correct steady-state zero-temperature frictional force, mainly due to the low-frequency nature of quantum friction.
Velocity fluctuations of fission fragments
NASA Astrophysics Data System (ADS)
Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz
2016-02-01
We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.
Current density fluctuations and ambipolarity of transport
Shen, W.; Dexter, R.N.; Prager, S.C.
1991-10-01
The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center_dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.
Current density fluctuations and ambipolarity of transport
Shen, W.; Dexter, R.N.; Prager, S.C.
1991-10-01
The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.
Constraining dark energy fluctuations with supernova correlations
Blomqvist, Michael; Enander, Jonas; Mörtsell, Edvard E-mail: enander@fysik.su.se
2010-10-01
We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state w≠−1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.
Velocity fluctuation analysis via dynamic programming
Schlossberg, D. J.; Gupta, D. K.; Fonck, R. J.; McKee, G. R.; Shafer, M. W.
2006-10-15
A new method of calculating one-dimensional velocity fluctuations from spatially resolved density fluctuation measurements is presented. The algorithm uses vector-matching methods of dynamic programming that match structures, such as turbulent fluctuations, in two data sets. The associated time delay between data sets is estimated by determining an optimal path to transform one vector to another. This time-delay-estimation (TDE) method establishes a new benchmark for velocity analysis by achieving higher sensitivity and frequency response than previously developed methods, such as time-resolved cross correlations and wavelets. TDE has been successfully applied to beam emission spectroscopy measurements of density fluctuations to obtain poloidal flow fluctuations associated with such phenomena as the geodesic acoustic mode. The dynamic programming algorithm should allow extension to high frequency velocity fluctuations associated with underlying electrostatic potential and resulting ExB fluctuations.
Insights on dramatic radial fluctuations in track formation by energetic ions.
Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F; Weber, William J
2016-01-01
We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV (208)Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology. PMID:27250764
Insights on dramatic radial fluctuations in track formation by energetic ions
NASA Astrophysics Data System (ADS)
Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.
2016-06-01
We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV 208Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1‑x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology.
Insights on dramatic radial fluctuations in track formation by energetic ions
Sachan, Ritesh; Zarkadoula, Eva; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.
2016-01-01
We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV 208Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1−x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology. PMID:27250764
Is random access memory random?
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.
Multifractal detrended fluctuation analysis of human gait diseases
Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita
2013-01-01
In this paper multifractal detrended fluctuation analysis (MFDFA) is used to study the human gait time series for normal and diseased sets. It is observed that long range correlation is primarily responsible for the origin of multifractality. The study reveals that the degree of multifractality is more for normal set compared to diseased set. However, the method fails to distinguish between the two diseased sets. PMID:24109454
Stoichiometry, spin fluctuations, and superconductivity in LaNiPO
Klimczuk, Tomasz; Mcqueen, Tyrel M; Williams, Anthony J; Huang, Qiang; Cava, Robert J
2009-01-01
Superconductivity in LaNiPO is disrupted by small ({approx}5%) amounts of non-stoichiometry on the lanthanum site, even though the electronic contribution to the heat capacity increases with increasing non-stoichiometry. All samples also exhibit specific heat anomalies consistent with the presence of ferromagnetic spin fluctuations (T{sub sf}{approx} 14K). Comparison of layered nickel phosphide and nickel borocarbide superconductors reveals different structure-property correlations in the two families.
Velocity Fluctuations in Gas-Fluidized Beds
NASA Astrophysics Data System (ADS)
Cody, G. D.
1998-03-01
Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres
Universal bounds on current fluctuations
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo
2016-05-01
For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.
Interplanetary magnetic fields, their fluctuations, and cosmic ray variations
NASA Technical Reports Server (NTRS)
Barouch, E.; Sari, J. W.
1975-01-01
The cause of Forbush decreases is examined using neutron monitor data and measurements of the interplanetary magnetic field. It is found that for the period examined (Dec. 15, 1965 to April 23, 1966) large enhancements of the interplanetary magnetic field correlate well with decreases in cosmic ray intensity, while various parameters connected with the fluctuations in the field do not display such good correlation. The inference is drawn that Forbush decreases are not related to the turbulence or random motions in the field but to the large scale features of the field.
Plasma fluctuations and x-ray laser transverse coherence
NASA Astrophysics Data System (ADS)
Amendt, Peter; Strauss, Moshe; London, Richard A.
1996-01-01
The effect of plasma fluctuations on transverse spatial coherence of x-ray lasers is investigated. Hose type (random) transverse displacements of the x-ray lasing medium induced by pump-laser nonuniformities are considered in detail. Such displacements lead to decreased transverse coherence via reduced gain discrimination from mode coupling. This effect may be related to a previously reported insensitivity of transverse coherence to laser length in neonlike selenium at 206 and 210 Å [Trebes et al.,
Symmetries in fluctuations far from equilibrium.
Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L
2011-05-10
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865
Symmetries in fluctuations far from equilibrium
Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.
2011-01-01
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Randomly Hyperbranched Polymers
NASA Astrophysics Data System (ADS)
Konkolewicz, Dominik; Gilbert, Robert G.; Gray-Weale, Angus
2007-06-01
We describe a model for the structures of randomly hyperbranched polymers in solution, and find a logarithmic growth of radius with polymer mass. We include segmental overcrowding, which puts an upper limit on the density. The model is tested against simulations, against data on amylopectin, a major component of starch, on glycogen, and on polyglycerols. For samples of synthetic polyglycerol and glycogen, our model holds well for all the available data. The model reveals higher-level scaling structure in glycogen, related to the β particles seen in electron microscopy.
Data-adaptive unfolding of nonergodic spectra: Two-Body Random Ensemble
NASA Astrophysics Data System (ADS)
Fossion, R.; Torres Vargas, G.; Velázquez, V.; López Vieyra, J. C.
2015-01-01
The statistics of spectral fluctuations is sensitive to the unfolding procedure that separates global from local properties. Previously, we presented a parameter-free and data- adaptive unfolding method that we demonstrated to be highly effective for standard random- matrix ensembles from Random Matrix Theory (RMT). More general ensembles often break the ergodicity property, which leads to ambiguities between individual-spectrum averaged and ensemble-averaged fluctuation measures. Here, we apply our data-adaptive unfolding to a nonergodic Two-Body Random Ensemble (TBRE). In the present approach, both fluctuation measures can be calculated simultaneously within the same unfolding step, and possible arbitrarities introduced by traditional unfolding procedures are avoided.
Keller, Corey J.; Bickel, Stephan; Honey, Christopher J.; Groppe, David M.; Entz, Laszlo; Craddock, R. Cameron; Lado, Fred A.; Kelly, Clare; Milham, Michael; Mehta, Ashesh D.
2013-01-01
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Since the BOLD signal is an indirect measure of neuronal activity, and anticorrelations can be introduced by preprocessing steps such as global signal regression (GSR), the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high gamma power (HGP) signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying GSR to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations. PMID:23575832
Longitudinal spin fluctuations in nickel
Boeni, P. , Villigen ); Martinez, J.L. ); Tranquada, J.M. )
1989-10-10
The longitudinal and transverse spin fluctuations in Ni have been measured below {Tc} by means of polarized neutron scattering in the momentum range 0.06 < q < 0.18 {angstrom}{sup -1}. In transverse scans spin wave peaks at E{sub q} = Dq{sup 2} appear as expected from early measurements performed with unpolarized neutrons. The longitudinal magnetic scattering {sub {chi}L}(q, E), on the other hand, is quasielastic without any signature of inelastic peaks near E{sub q}. The q and T dependences of {sub {chi}L}(q, E) resemble the paramagnetic scattering above {Tc}, i.e., the linewidth is roughly proportional to q{sup 2.5} and the integrated intensity I(q) is proportional to (q{sup 2} + {kappa}{sub z}{sup 2}){sup -1}. 8 refs., 3 figs.
Resonant tunneling of fluctuation Cooper pairs
Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.
2015-02-09
Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, T_{c}, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at T_{c}. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to T_{c}. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.
Resonant tunneling of fluctuation Cooper pairs
Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.
2015-02-09
Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formore » direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less
Equilibrium fluctuation theorems compatible with anomalous response
NASA Astrophysics Data System (ADS)
Velazquez, L.; Curilef, S.
2010-12-01
Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C = β2langδU2rang, which is able to describe the existence of macrostates with negative heat capacities C < 0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the fundamental and the complementary fluctuation theorems, which represent the generalization of two fluctuation identities already obtained in previous works, and the associated fluctuation theorem, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of the 2D Ising model.
Thermal property in Brownian motion of a particle coupled to vacuum fluctuations
NASA Astrophysics Data System (ADS)
Oshita, Naritaka; Yamamoto, Kazuhiro; Zhang, Sen
2014-06-01
We investigate Brownian motions of a particle coupled to vacuum fluctuations of a quantum field. The Unruh effect predicts that an observer in an accelerated motion sees the Minkowski vacuum as thermally excited. This addresses the problem of whether or not a thermal property appears in a perturbative random motion of a particle in an accelerated motion due to the coupling. We revisit this problem by solving the equation of motion of a particle coupled to vacuum fluctuations including the radiation reaction force. We compute a Fourier integral for the variance of the random velocity in a rigorous manner. Similarly, we consider a particle coupled to vacuum fluctuations in de Sitter spacetime motivated by the argument that an observer in de Sitter spacetime sees the Bunch-Davies vacuum as a thermally excited state with the Gibbons-Hawking temperature. Our investigation clarifies the condition that the energy equipartition relation arises in the Brownian motions of a particle.
Fluctuations in strongly coupled cosmologies
NASA Astrophysics Data System (ADS)
Bonometto, Silvio A.; Mainini, Roberto
2014-03-01
In the early Universe, a dual component made of coupled CDM and a scalar field Φ, if their coupling β > (3)1/2/2, owns an attractor solution, making them a stationary fraction of cosmic energy during the radiation dominated era. Along the attractor, both such components expand proptoa-4 and have early density parameters Ωd = 1/(4β2) and Ωc = 2 Ωd (field and CDM, respectively). In a previous paper it was shown that, if a further component, expanding proptoa-3, breaks such stationary expansion at z ~ 3-5 × 103, cosmic components gradually acquire densities consistent with observations. This paper, first of all, considers the case that this component is warm. However, its main topic is the analysis of fluctuation evolution: out of horizon modes are then determined; their entry into horizon is numerically evaluated as well as the dependence of Meszaros effect on the coupling β finally, we compute: (i) transfer function and linear spectral function; (ii) CMB Cl spectra. Both are close to standard ΛCDM models; in particular, the former one can be so down to a scale smaller than Milky Way, in spite of its main DM component being made of particles of mass < 1 keV. The previously coupled CDM component, whose present density parameter is Script O(10-3), exhibits wider fluctuations δρ/ρ, but approximately β-independent δρ values. We discuss how lower scale features of these cosmologies might ease quite a few problems that ΛCDM does not easily solve.
Extreme values and fat tails of multifractal fluctuations
NASA Astrophysics Data System (ADS)
Muzy, J. F.; Bacry, E.; Kozhemyak, A.
2006-06-01
In this paper we discuss the problem of the estimation of extreme event occurrence probability for data drawn from some multifractal process. We also study the heavy (power-law) tail behavior of probability density function associated with such data. We show that because of strong correlations, the standard extreme value approach is not valid and classical tail exponent estimators should be interpreted cautiously. Extreme statistics associated with multifractal random processes turn out to be characterized by non-self-averaging properties. Our considerations rely upon some analogy between random multiplicative cascades and the physics of disordered systems and also on recent mathematical results about the so-called multifractal formalism. Applied to financial time series, our findings allow us to propose an unified framework that accounts for the observed multiscaling properties of return fluctuations, the volatility clustering phenomenon and the observed “inverse cubic law” of the return pdf tails.
Quantum dynamics with non-Markovian fluctuating parameters
NASA Astrophysics Data System (ADS)
Goychuk, Igor
2004-07-01
A stochastic approach to the quantum dynamics randomly modulated in time by a discrete state non-Markovian noise, which possesses an arbitrary nonexponential distribution of the residence times, is developed. The formally exact expression for the Laplace-transformed quantum propagator averaged over the stationary realizations of such N -state non-Markovian noise is obtained. The theory possesses a wide range of applications. It includes some previous Markovian and non-Markovian theories as particular cases. In the context of the stochastic theory of spectral line shape and relaxation, the developed approach presents a non-Markovian generalization of the Kubo-Anderson theory of sudden modulation. In particular, the exact analytical expression is derived for the spectral line shape of optical transitions described by a Kubo oscillator with randomly modulated frequency which undergoes jumplike non-Markovian fluctuations in time.
High-resolution mapping of intracellular fluctuations using carbon nanotubes.
Fakhri, Nikta; Wessel, Alok D; Willms, Charlotte; Pasquali, Matteo; Klopfenstein, Dieter R; MacKintosh, Frederick C; Schmidt, Christoph F
2014-05-30
Cells are active systems with molecular force generation that drives complex dynamics at the supramolecular scale. We present a quantitative study of molecular motions in cells over times from milliseconds to hours. Noninvasive tracking was accomplished by imaging highly stable near-infrared luminescence of single-walled carbon nanotubes targeted to kinesin-1 motor proteins in COS-7 cells. We observed a regime of active random "stirring" that constitutes an intermediate mode of transport, different from both thermal diffusion and directed motor activity. High-frequency motion was found to be thermally driven. At times greater than 100 milliseconds, nonequilibrium dynamics dominated. In addition to directed transport along microtubules, we observed strong random dynamics driven by myosins that result in enhanced nonspecific transport. We present a quantitative model connecting molecular mechanisms to mesoscopic fluctuations. PMID:24876498
Extreme values and fat tails of multifractal fluctuations.
Muzy, J F; Bacry, E; Kozhemyak, A
2006-06-01
In this paper we discuss the problem of the estimation of extreme event occurrence probability for data drawn from some multifractal process. We also study the heavy (power-law) tail behavior of probability density function associated with such data. We show that because of strong correlations, the standard extreme value approach is not valid and classical tail exponent estimators should be interpreted cautiously. Extreme statistics associated with multifractal random processes turn out to be characterized by non-self-averaging properties. Our considerations rely upon some analogy between random multiplicative cascades and the physics of disordered systems and also on recent mathematical results about the so-called multifractal formalism. Applied to financial time series, our findings allow us to propose an unified framework that accounts for the observed multiscaling properties of return fluctuations, the volatility clustering phenomenon and the observed "inverse cubic law" of the return pdf tails. PMID:16906921
Kinetic market models with single commodity having price fluctuations
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Chakrabarti, B. K.
2006-12-01
We study here numerically the behavior of an ideal gas like model of markets having only one non-consumable commodity. We investigate the behavior of the steady-state distributions of money, commodity and total wealth, as the dynamics of trading or exchange of money and commodity proceeds, with local (in time) fluctuations in the price of the commodity. These distributions are studied in markets with agents having uniform and random saving factors. The self-organizing features in money distribution are similar to the cases without any commodity (or with consumable commodities), while the commodity distribution shows an exponential decay. The wealth distribution shows interesting behavior: gamma like distribution for uniform saving propensity and has the same power-law tail, as that of the money distribution, for a market with agents having random saving propensity.
Universal Scaling of Spectral Fluctuation Transitions for Interacting Chaotic Systems.
Srivastava, Shashi C L; Tomsovic, Steven; Lakshminarayan, Arul; Ketzmerick, Roland; Bäcker, Arnd
2016-02-01
The statistical properties of interacting strongly chaotic systems are investigated for varying interaction strength. In order to model tunable entangling interactions between such systems, we introduce a new class of random matrix transition ensembles. The nearest-neighbor-spacing distribution shows a very sensitive transition from Poisson statistics to those of random matrix theory as the interaction increases. The transition is universal and depends on a single scaling parameter only. We derive the analytic relationship between the model parameters and those of a bipartite system, with explicit results for coupled kicked rotors, a dynamical systems paradigm for interacting chaotic systems. With this relationship the spectral fluctuations for both are in perfect agreement. An accurate approximation of the nearest-neighbor-spacing distribution as a function of the transition parameter is derived using perturbation theory. PMID:26894713
ERIC Educational Resources Information Center
Moos, Daniel C.; Azevedo, Roger
2008-01-01
We collected think-aloud, pre-test, post-test, and motivation data from 43 undergraduates to examine the impact of conceptual scaffolds on the fluctuation of certain motivation constructs and use of self-regulatory processes during learning with hypermedia. Participants were randomly assigned to either the No Scaffolding (NS) or Conceptual…
NASA Astrophysics Data System (ADS)
Álvarez, P.; Gorria, P.; Blanco, J. A.
2011-07-01
A theoretical model including both crystal-field and exchange interactions that considers the effect of magnetic fluctuations is developed to evaluate the temperature dependence of the isothermal magnetic entropy changes in ferromagnetic rare-earth-based intermetallic compounds. The Green’s functions are derived from their equation of motion. The magnetic moment correlation functions are determined beyond the random phase approximation by incorporating a measure of magnetic spontaneous fluctuations in a way that ensures self-consistency with regard to the fluctuation-dissipation theorem. In particular, the exact magnitude of the entropy change without magnetic moment fluctuations depends on the ratio of both the crystal-field first- and the crystal-field third-order magnetic susceptibilities at the Curie temperature, TC. These theoretical predictions are compared with experimental data on cubic RM2 (R=rareearth and M=Al and Ni) compounds, where the principal crystal-field and exchange parameters are well known.
Transient fluctuation of the prosperity of firms in a network economy
NASA Astrophysics Data System (ADS)
Maeno, Yoshiharu
2013-08-01
The transient fluctuation of the prosperity of firms in a network economy is investigated with an abstract stochastic model. The model describes the profit which firms make when they sell materials to a firm which produces a product and the fixed cost expense to the firms to produce those materials and product. The formulas for this model are parallel to those for population dynamics. The swinging changes in the fluctuation in the transient state from the initial growth to the final steady state are the consequence of a topology-dependent time trial competition between the profitable interactions and expense. The firm in a sparse random network economy is more likely to go bankrupt than expected from the value of the limit of the fluctuation in the steady state, and there is a risk of failing to reach by far the less fluctuating steady state.
Optical probe with light fluctuation protection
Da Silva, Luiz B.; Chase, Charles L.
2003-11-11
An optical probe for tissue identification includes an elongated body. Optical fibers are located within the elongated body for transmitting light to and from the tissue. Light fluctuation protection is associated with the optical fibers. In one embodiment the light fluctuation protection includes a reflective coating on the optical fibers to reduce stray light. In another embodiment the light fluctuation protection includes a filler with very high absorption located within the elongated body between the optical fibers.
Multiplicity fluctuations in the string clustering approach
Cunqueiro, L.; Ferreiro, E.G.; Moral, F. del; Pajares, C.
2005-08-01
We present our results on multiplicity fluctuations in the framework of the string clustering approach. We compare our results - with and without clustering formation - with CERN Super Proton Synchrotron NA49 data. We find a nonmonotonic behavior of these fluctuations as a function of the collision centrality, which has the same origin as the observed fluctuations of transverse momentum: the correlations between the produced particles because of the cluster formation.
Measurement of magnetic fluctuation induced energy transport
Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.
1993-11-01
The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm{sup 2}) in the ``core`` (r/a < 0.85) and small (< 10--30 kW/cm{sup 2}) in the edge.
Measurement of magnetic fluctuation induced energy transport
Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.R. )
1994-02-14
The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range [ital r]/[ital a][gt]0.75).The flux, produced by electrons traveling parallel to a fluctuating magentic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm[sup 2]) in the core'' ([ital r]/[ital a][lt]0.85) and small ([lt]10--30 kW/cm[sup 2]) in the edge.
Hydration force fluctuations in hydrophilic planar systems.
Kanduč, Matej; Netz, Roland R
2016-03-01
Utilizing all-atom simulations with explicit solvent, the authors model hydrophilic surfaces interacting across water at a fixed chemical potential. They extract the hydration forces acting between the surfaces and assess force fluctuations as well as interlamellar water number fluctuations. The trends obtained from the simulations are captured by a continuum-based description with effective model parameters. The significance of fluctuations depends on surface hydrophilicity and rigidity. The authors show that the force fluctuations play an important role in kinetic processes in systems with lateral sizes smaller than several tens of nanometers. PMID:26746163
Froissart bound and gluon number fluctuations
Xiang Wenchang
2010-05-01
We study the effect of gluon number fluctuations (Pomeron loops) on the impact parameter behavior of the scattering amplitude in the fixed coupling case. We demonstrate that the dipole-hadron cross section computed from gluon number fluctuations saturates the Froissart bound and the growth of the radius of the black disk with rapidity is enhanced by an additional term as compared to the single event case. We find that the physical amplitude has a Gaussian impact parameter dependence once the gluon number fluctuations are included. This indicates that the fluctuations may be the microscopic origin for the Gaussian impact parameter dependence of the scattering amplitude.
2016-01-01
Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs) of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs) has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation. PMID:26901346
Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.
Kawai, Shinnosuke; Komatsuzaki, Tamiki
2010-07-21
A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104
Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation
Paulsson, Johan; Berg, Otto G.; Ehrenberg, Måns
2000-01-01
Many regulatory molecules are present in low copy numbers per cell so that significant random fluctuations emerge spontaneously. Because cell viability depends on precise regulation of key events, such signal noise has been thought to impose a threat that cells must carefully eliminate. However, the precision of control is also greatly affected by the regulatory mechanisms' capacity for sensitivity amplification. Here we show that even if signal noise reduces the capacity for sensitivity amplification of threshold mechanisms, the effect on realistic regulatory kinetics can be the opposite: stochastic focusing (SF). SF particularly exploits tails of probability distributions and can be formulated as conventional multistep sensitivity amplification where signal noise provides the degrees of freedom. When signal fluctuations are sufficiently rapid, effects of time correlations in signal-dependent rates are negligible and SF works just like conventional sensitivity amplification. This means that, quite counterintuitively, signal noise can reduce the uncertainty in regulated processes. SF is exemplified by standard hyperbolic inhibition, and all probability distributions for signal noise are first derived from underlying chemical master equations. The negative binomial is suggested as a paradigmatic distribution for intracellular kinetics, applicable to stochastic gene expression as well as simple systems with Michaelis–Menten degradation or positive feedback. SF resembles stochastic resonance in that noise facilitates signal detection in nonlinear systems, but stochastic resonance is related to how noise in threshold systems allows for detection of subthreshold signals and SF describes how fluctuations can make a gradual response mechanism work more like a threshold mechanism. PMID:10852944
Moving mirrors and the fluctuation-dissipation theorem
NASA Astrophysics Data System (ADS)
Stargen, D. Jaffino; Kothawala, Dawood; Sriramkumar, L.
2016-07-01
We investigate the random motion of a mirror in (1 +1 )-dimensions that is immersed in a thermal bath of massless scalar particles which are interacting with the mirror through a boundary condition. Imposing the Dirichlet or the Neumann boundary conditions on the moving mirror, we evaluate the mean radiation reaction force on the mirror and the correlation function describing the fluctuations in the force about the mean value. From the correlation function thus obtained, we explicitly establish the fluctuation-dissipation theorem governing the moving mirror. Using the fluctuation-dissipation theorem, we compute the mean-squared displacement of the mirror at finite and zero temperature. We clarify a few points concerning the various limiting behavior of the mean-squared displacement of the mirror. While we recover the standard result at finite temperature, we find that the mirror diffuses logarithmically at zero temperature, confirming similar conclusions that have been arrived at earlier in this context. We also comment on a subtlety concerning the comparison between zero temperature limit of the finite temperature result and the exact zero temperature result.
QGP flow fluctuations and the characteristics of higher moments
NASA Astrophysics Data System (ADS)
Wang, D. J.; Csernai, L. P.; Strottman, D.; Anderlik, Cs.; Cheng, Y.; Zhou, D. M.; Yan, Y. L.; Cai, X.; Sa, B. H.
2012-11-01
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb + Pb collisions at sqrt{s_{NN}}=2.76 TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source, changing skewness and kurtosis by time depending on beam energy as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state.
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka
2016-06-01
The field-driven magnetisation reversal processes in disordered systems exhibit a collective behaviour that is manifested in the scale-invariance of avalanches, closely related to underlying dynamical mechanisms. Using the multifractal time series analysis, we study the structure of fluctuations at different scales in the accompanying Barkhausen noise. The stochastic signal represents the magnetisation discontinuities along the hysteresis loop of a three-dimensional random field Ising model simulated for varied disorder strength and driving rates. The analysis of the spectrum of the generalised Hurst exponents reveals that the dominant segments of the signal with large fluctuations represent two distinct classes of stochastic processes in weak and strong pinning regimes. Furthermore, in the weak pinning regime, the part of the signal originating from the beginning of the hysteresis loop has a different multifractal spectrum than the signal near the coercive field. The enhanced fluctuations (primarily in the central part of the hysteresis loop) for increased driving rate and larger system size, lead to a further broadening of the spectrum. The analysed Barkhausen signals are also shown to exhibit temporal correlations and power-law distributions of the magnetisation discontinuity and avalanche sizes, in agreement with previous studies. The multifractal properties of Barkhausen noise describe the dynamical state of domains and precisely discriminate the weak pinning, permitting the motion of individual walls, from the mechanisms occurring in strongly disordered systems.
Patterns and intrinsic fluctuations in semi-dilute motor-filament systems.
Swaminathan, S.; Ziebert, F.; Aranson, I. S.; Karpeev, D.; Northwestern Univ.; UMR CNRS Gulliver
2010-04-01
We perform Brownian dynamics simulations of molecular motor-induced ordering and structure formations in semi-dilute cytoskeletal filament solutions. In contrast to the previously studied dilute case where binary filament interactions prevail, the semi-dilute regime is characterized by multiple motor-mediated interactions. Moreover, the forces and torques exerted by motors on filaments are intrinsically fluctuating quantities. We incorporate the influences of thermal and motor fluctuations into our model as additive and multiplicative noises, respectively. Numerical simulations reveal that filament bundles and vortices emerge from a disordered initial state. Subsequent analysis of motor noise effects reveals: (i) Pattern formation is very robust against fluctuations in motor force; (ii) bundle formation is associated with a significant reduction of the motor fluctuation contributions; (iii) the time scale of vortex formation and coalescence decreases with increases in motor noise amplitude.
Fluctuations and discreteness in diffusion limited growth
NASA Astrophysics Data System (ADS)
Devita, Jason P.
This thesis explores the effects of fluctuations and discreteness on the growth of physical systems where diffusion plays an important role. It focuses on three related problems, all dependent on diffusion in a fundamental way, but each with its own unique challenges. With diffusion-limited aggregation (DLA), the relationship between noisy and noise-free Laplacian growth is probed by averaging the results of noisy growth. By doing so in a channel geometry, we are able to compare to known solutions of the noise-free problem. We see that while the two are comparable, there are discrepancies which are not well understood. In molecular beam epitaxy (MBE), we create efficient computational algorithms, by replacing random walkers (diffusing atoms) with approximately equivalent processes. In one case, the atoms are replaced by a continuum field. Solving for the dynamics of the field yields---in an average sense---the dynamics of the atoms. In the other case, the atoms are treated as individual random-walking particles, but the details of the dynamics are changed to an (approximately) equivalent set of dynamics. This approach involves allowing adatoms to take long hops. We see approximately an order of magnitude speed up for simulating island dynamics, mound growth, and Ostwald ripening. Some ideas from the study of MBE are carried over to the study of front propagation in reaction-diffusion systems. Many of the analytic results about front propagation are derived from continuum models. It is unclear, however, that these results accurately describe the properties of a discrete system. It is reasonable to think that discrete systems will converge to the continuum results when sufficiently many particles are included. However, computational evidence of this is difficult to obtain, since the interesting properties tend to depend on a power law of the logarithm of the number of particles. Thus, the number of particles included in simulations must be exceedingly large. By
Evolutionary Phase Transitions in Random Environments.
Skanata, Antun; Kussell, Edo
2016-07-15
We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance. PMID:27472146
Evolutionary Phase Transitions in Random Environments
NASA Astrophysics Data System (ADS)
Skanata, Antun; Kussell, Edo
2016-07-01
We present analytical results for long-term growth rates of structured populations in randomly fluctuating environments, which we apply to predict how cellular response networks evolve. We show that networks which respond rapidly to a stimulus will evolve phenotypic memory exclusively under random (i.e., nonperiodic) environments. We identify the evolutionary phase diagram for simple response networks, which we show can exhibit both continuous and discontinuous transitions. Our approach enables exact analysis of diverse evolutionary systems, from viral epidemics to emergence of drug resistance.
A random matrix approach to credit risk.
Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided. PMID:24853864
A Random Matrix Approach to Credit Risk
Guhr, Thomas
2014-01-01
We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided. PMID:24853864
Vélez, Alejandro; Höbel, Gerlinde; Gordon, Noah M; Bee, Mark A
2012-12-01
Despite the importance of perceptually separating signals from background noise, we still know little about how nonhuman animals solve this problem. Dip listening, an ability to catch meaningful 'acoustic glimpses' of a target signal when fluctuating background noise levels momentarily drop, constitutes one possible solution. Amplitude-modulated noises, however, can sometimes impair signal recognition through a process known as modulation masking. We asked whether fluctuating noise simulating a breeding chorus affects the ability of female green treefrogs (Hyla cinerea) to recognize male advertisement calls. Our analysis of recordings of the sounds of green treefrog choruses reveal that their levels fluctuate primarily at rates below 10 Hz. In laboratory phonotaxis tests, we found no evidence for dip listening or modulation masking. Mean signal recognition thresholds in the presence of fluctuating chorus-like noises were never statistically different from those in the presence of a non-fluctuating control. An analysis of statistical effects sizes indicates that masker fluctuation rates, and the presence versus absence of fluctuations, had negligible effects on subject behavior. Together, our results suggest that females listening in natural settings should receive no benefits, nor experience any additional constraints, as a result of level fluctuations in the soundscape of green treefrog choruses. PMID:23069882
Ion charge state fluctuations in vacuum arcs
Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu
2004-12-14
Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.
Smith, T G; Seto, S; Ganne, P; Votruba, M
2016-04-01
Dominant optic atrophy (DOA) arises from mutations in the OPA1 gene that promotes fusion of the inner mitochondrial membrane and plays a role in maintaining ATP levels. Patients display optic disc pallor, retinal ganglion cell (RGC) loss and bilaterally reduced vision. We report a randomized, placebo-controlled trial of idebenone at 2000 mg/kg/day in 56 Opa1 mutant mice (B6;C3-Opa1(Q285STOP)), with RGC dendropathy and visual loss, and 63 wildtype mice. We assessed cellular responses in the retina, brain and liver and RGC morphology, by diolistic labeling, Sholl analysis and quantification of dendritic morphometric features. Vision was assessed by optokinetic responses. ATP levels were raised by 0.57 nmol/mg (97.73%, p=0.035) in brain from idebenone-treated Opa1 mutant mice, but in the liver there was an 80.35% (p=0.011) increase in oxidative damage. NQO1 expression in Opa1 mutant mice was reduced in the brain (to 30.5%, p=0.002) but not in retina, and neither expression level was induced by idebenone. ON-center RGCs failed to show major recovery, other than improvements in secondary dendritic length (by 53.89%, p=0.052) and dendritic territory (by 2.22 × 10(4) μm(2) or 90.24%, p=0.074). An improvement in optokinetic response was observed (by 12.2 ± 3.2s, p=0.003), but this effect was not sustained over time. OFF-center RGCs from idebenone-treated wildtype mice showed shrinkage in total dendritic length by 2.40 mm (48.05%, p=0.025) and a 47.37% diminished Sholl profile (p=0.029). Visual function in wildtype idebenone-treated mice was impaired (2.9 fewer head turns than placebo, p=0.007). Idebenone appears largely ineffective in protecting Opa1 heterozygous RGCs from dendropathy. The detrimental effect of idebenone in wildtype mice has not been previously observed and raises some concerns. PMID:26820596
Confinement of superconducting fluctuations due to emergent electronic inhomogeneities
NASA Astrophysics Data System (ADS)
Carbillet, C.; Caprara, S.; Grilli, M.; Brun, C.; Cren, T.; Debontridder, F.; Vignolle, B.; Tabis, W.; Demaille, D.; Largeau, L.; Ilin, K.; Siegel, M.; Roditchev, D.; Leridon, B.
2016-04-01
The microscopic nature of an insulating state in the vicinity of a superconducting state in the presence of disorder is a hotly debated question. While the simplest scenario proposes that Coulomb interactions destroy the Cooper pairs at the transition, leading to localization of single electrons, an alternate possibility supported by experimental observations suggests that Cooper pairs instead directly localize. The question of the homogeneity, granularity, or possibly glassiness of the material on the verge of this transition is intimately related to this fundamental issue. Here, by combining macroscopic and nanoscale studies of superconducting ultrathin NbN films, we reveal nanoscopic inhomogeneities that emerge when the film thickness is reduced. For the thinnest films, scanning tunneling spectroscopy at low temperature unveils inhomogeneities in the superconducting properties, of typical size Li, that are not correlated to any structural inhomogeneity and that are found to persist above the critical temperature in the form of a pseudogap. Remarkably enough, while the thickest films display a purely two-dimensional behavior in the superconducting fluctuations above the critical temperature, paraconductivity in the pseudogap regime of the thinnest samples demonstrates fluctuations of the amplitude of the order parameter, corresponding to zero-dimensional fluctuating regions of size precisely Li. We propose that an anomalous diffusion slowing-down process is at play at long wave vectors, leading to some "confinement" of the superconducting fluctuations, which allows us to explain the simultaneous paradoxical presence of a pseudogap and zero-dimensional amplitude fluctuations of the order parameter. These findings call for further theoretical investigation to understand this intermediate state where Cooper pairs continuously evolve from a bound state of fermionic objects into localized bosonic entities.
Random lasing in dye doped nematic liquid crystals: the role of confinement geometry
NASA Astrophysics Data System (ADS)
Strangi, G.; Ferjani, S.; Barna, V.; De Luca, A.; Versace, C.; Scaramuzza, N.; Bartolino, R.
2007-05-01
The first experimental evidence of random laser action in a partially ordered, dye doped nematic liquid crystal with long-range dielectric tensor fluctuations is reported. Above a given pump power the fluorescence curve collapses and discrete sharp peaks emerge above the residual spontaneous emission spectrum. The spectral linewidth of these emission peaks is narrow banded, typically around 0.5nm. The unexpected surviving of interference effects in recurrent multiple scattering of the emitted photons provide the required optical feedback for lasing in nematic liquid crystalline materials. Light waves coherent backscattering in orientationally ordered nematics manifests a weak localization, strongly supporting the diffusive laser action phenomenon in the presence of a gain medium. Unlike distributed feedback mirror-less laser, this system can be considered as a cavity-less microlaser where the disorder unexpectedly plays the most important role, behaving as randomly distributed feedback laser. The far field spatial distribution of the emission intensity shows a huge number of bright tiny spots spatially overlapped and the intensity of each pulse strongly fluctuates in time and space. Here, we report the main characteristics of this novel systems for various confinement geometries and under different conditions. A brief presentation of boundary-less systems such as free standing and freely suspended dye doped nematic films and droplets is also introduced, revealing unique emission features because of the complete absence of confining borders.
Fluctuations in Total Quantities as a Probe of Complex Behaviour
NASA Astrophysics Data System (ADS)
McRobie, F.; Watkins, N. W.; Chapman, S. C.; Rowlands, G.
2004-12-01
Very frequently in physics one studies a macroscopic variable which averages the effect of N microscopic degrees of freedom (dof). In equilibrium systems, where the dof are uncorrelated, the fluctuations are forced to a Gaussian form quite rapidly with increasing N by the central limit theorem. Increasingly, however, attention is focused on the non-Gaussian fluctuations seen in long-range correlated, critical systems. Recent progress was made by Bramwell et \\ al [Nature, 1998; PRL, 2000] who observed a particular non-Gaussian fluctuation probability density (pdf) in both confined laboratory turbulence and the XY model of critical phenomena, subsequently reporting it in many other critical models such as sandpiles. Chapman et al [2000] proposed that the similar functional form of this pdf to the Gumbel distribution of extreme statistics might be due to the fluctuations in patches of activity in a complex system being dominated by the largest event. This is counter-intuitive, because of the behaviour of the short-ranged distributions with which we are more familiar, but similar questions been the subject of recent interest in solid state physics [Romeo et al, Eur. Phys. J. B, 2003]. We here examine this idea using a lognormal random process, showing under which circumstances the sums and maxima are similarly distributed. We also examine the effect of breaking statistical independence by means of a Hurst exponent not equal to 0.5. We also discuss applications to burst pdfs of the type first calculated for the auroral indices by Takalo [1993] and Consolini [1997].
Parker, Andrew J.
2014-01-01
The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI). Our results emphasized the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt's portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings. PMID:24795552
Drift-wave fluctuation in an inviscid tokamak plasma
NASA Astrophysics Data System (ADS)
Yang, Jian-Rong; Mao, Jie-Jian; Tang, Xiao-Yan
2013-11-01
In order to describe the characterization of resistive drift-wave fluctuation in a tokamak plasma, a coupled inviscid two-dimensional Hasegawa—Wakatani model is investigated. Two groups of new analytic solutions with and without phase shift between the fluctuant density and the fluctuant potential are obtained by using the special function transformation method. It is demonstrated that the fluctuant potential shares similar spatio—temporal variations with the density. It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex, and that the fluctuation may be controlled through the adiabaticity and diffusion. By using the typical parameters in the quasi-adiabatic regime in the solutions with phase shift, it is shown that the density gradient becomes larger as the contours become dense toward the plasma edge and the contours have irregular structures, which reveal the nonuniform distribution in the tokamak edge.
Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems
Yang, Y. T.; Callegari, C.; Feng, X. L.; Roukes, M. L.
2013-01-01
Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption–desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems. PMID:21388120
Spectral fluctuations of quantum graphs
Pluhař, Z.; Weidenmüller, H. A.
2014-10-15
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.
Measuring shape fluctuations in biological membranes
NASA Astrophysics Data System (ADS)
Monzel, C.; Sengupta, K.
2016-06-01
Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.
Isocurvature cold dark matter fluctuations
NASA Technical Reports Server (NTRS)
Efstathiou, G.; Bond, J. R.
1986-01-01
According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.
Quantum fluctuations stabilize skyrmion textures
NASA Astrophysics Data System (ADS)
Roldán-Molina, A.; Santander, M. J.; Nunez, A. S.; Fernández-Rossier, J.
2015-12-01
We study the quantum spin waves associated to skyrmion textures. We show that the zero-point energy associated to the quantum spin fluctuations of a noncollinear spin texture produce Casimir-like magnetic fields. We study the effect of these Casimir fields on the topologically protected noncollinear spin textures known as skyrmions. In a Heisenberg model with Dzyalonshinkii-Moriya interactions, chosen so the classical ground state displays skyrmion textures, we calculate the spin-wave spectrum, using the Holstein-Primakoff approximation, and the associated zero-point energy, to the lowest order in the spin-wave expansion. Our calculations are done both for the single-skyrmion case, for which we obtain a discrete set of skyrmion bound states, as well as for the skyrmion crystal, for which the resulting spectrum gives the spin-wave bands. In both cases, our calculations show that the Casimir magnetic field contributes up to 10% of the total Zeeman energy necessary to delete the skyrmion texture with an applied field.
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.
2009-04-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size
Coupled Quantum Fluctuations and Quantum Annealing
NASA Astrophysics Data System (ADS)
Hormozi, Layla; Kerman, Jamie
We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Spontaneous symmetry breaking at the fluctuating level.
Hurtado, Pablo I; Garrido, Pedro L
2011-10-28
Phase transitions not allowed in equilibrium steady states may happen, however, at the fluctuating level. We observe for the first time this striking and general phenomenon measuring current fluctuations in an isolated diffusive system. While small fluctuations result from the sum of weakly correlated local events, for currents above a critical threshold the system self-organizes into a coherent traveling wave which facilitates the current deviation by gathering energy in a localized packet, thus breaking translation invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns which enhance their probability. PMID:22107617
Transmittance Fluctuation from Nearly Extinct Nematic Cells
NASA Astrophysics Data System (ADS)
Ken Sumiyoshi,
2010-04-01
By introducing geometrical optics approximation (GOA) solutions to a nearly extinct homogeneous nematic director, the effects of assembly misalignment and director fluctuation on light leakage transmittance are studied. Transmittance expressions including fluctuation swing are obtained for three misoriented cases: misaligned homogeneous case, misaligned analyzer case, and mistwisted nematic case. Except for the misaligned homogeneous case with second-order fluctuation, all the other expressions have a linear contribution caused by their own misorientation. From these results, the transmittance variance from fluctuation at a misaligned situation is more enhanced than that in the extinction situation. After introducing thermal average statistics, expressions for the average and variance of transmittance with fluctuation are given. A numerical estimation for these expressions shows that in the misaligned homogeneous case by 1°, the standard deviation of transmittance is 20% of its average.
Evolution of fluctuations near QCD critical point
Stephanov, M. A.
2010-03-01
We propose to describe the time evolution of quasistationary fluctuations near QCD critical point by a system of stochastic Boltzmann-Langevin-Vlasov-type equations. We derive the equations and study the system analytically in the linearized regime. Known results for equilibrium stationary fluctuations as well as the critical scaling of diffusion coefficient are reproduced. We apply the approach to the long-standing question of the fate of the critical point fluctuations during the hadronic rescattering stage of the heavy-ion collision after chemical freeze-out. We find that if conserved particle number fluctuations survive the rescattering, so do, under a certain additional condition, the fluctuations of nonconserved quantities, such as mean transverse momentum. We derive a simple analytical formula for the magnitude of this memory effect.
K/π Fluctuations at Relativistic Energies
NASA Astrophysics Data System (ADS)
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; de La Barca Sánchez, M. Calderón; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; Silva, L. C. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Leeuwen, M.; Molen, A. M. Vander; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.
2009-08-01
We report K/π fluctuations from Au+Au collisions at sNN=19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. K/π fluctuations in central collisions show little dependence on incident energy and are on the same order as those from NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at sNN=12.3 and 17.3 GeV. We report results for the collision centrality dependence of K/π fluctuations and results for charge-separated fluctuations. We observe that the K/π fluctuations scale with the charged particle multiplicity density.
NASA Astrophysics Data System (ADS)
Genzer, Jan; Kuk Jhon, Young; Krishnamoorti, Ramanan
2010-03-01
We report on the effect of chemical composition, co-monomer distribution and ^1H/^2D isotopic substitution on the phase behavior in random copolymers of poly(styrene-co-4-bromostyrene) (PBrxS), where x denotes the mole fraction of 4-bromostyrene (4-BrS), in cyclohexane. By adjusting the solvent quality during bromination of parent polystyrene, either random or random blocky PBrxS, (r-PBrxS or b-PBrxS, respectively), were synthesized. We study the temperature dependence of phase behavior of PBrxS with various x in cyclohexane as a function of the polymer concentration using cloud point measurements and small-angle neutron scattering. Our results reveal that for a given 4-BrS content, the cloud points of b-PBrxS solutions are consistently higher and broader than those observed in r-PBrxS solutions. The transition temperature has also been found to depend on the isotope substitution of ^1H or ^2D in either the polymer or the solvent. Small angle neutron scattering measurements indicate significant differences in the temperature dependence of the thermodynamic behavior for the random and blocky samples and the nature of the fluctuations upon approaching the phase boundaries.
Meyer, M; Rahmel, A; Marconi, C; Grassi, B; Skinner, J E; Cerretelli, P
1998-01-01
The dynamics of heartbeat interval time series over large time scales were studied by a modified random walk analysis introduced recently as Detrended Fluctuation Analysis. In this analysis, the intrinsic fractal long-range power-law correlation properties of beat-to-beat fluctuations generated by the dynamical system (i.e., cardiac rhythm generator), after decomposition from extrinsic uncorrelated sources, can be quantified by the scaling exponent (alpha) which, in healthy subjects, for time scales of approximately 10(4) beats is approximately 1.0. The effects of chronic hypoxia were determined from serial heartbeat interval time series of digitized twenty-four-hour ambulatory ECGs recorded in nine healthy subjects (mean age thirty-four years old) at sea level and during a sojourn at 5,050 m for thirty-four days (EvK2-CNR Pyramid Laboratory, Sagarmatha National Park, Nepal). The group averaged alpha exponent (+/- SD) was 0.99 +/- 0.04 (range 0.93-1.04). Longitudinal assessment of alpha in individual subjects did not reveal any effect of exposure to chronic high altitude hypoxia. The finding of alpha approximately 1 indicating scale-invariant long-range power-law correlations (1/f noise) of heartbeat fluctuations would reflect a genuinely self-similar fractal process that typically generates fluctuations on a wide range of time scales. Lack of a characteristic time scale along with the absence of any effect from exposure to chronic hypoxia on scaling properties suggests that the neuroautonomic cardiac control system is preadapted to hypoxia which helps prevent excessive mode-locking (error tolerance) that would restrict its functional responsiveness (plasticity) to hypoxic or other physiological stimuli. PMID:9594353
Braun, Alexander; Schneider, Stephan; Auerswald, Karl; Bellof, Gerhard; Schnyder, Hans
2013-01-01
Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces) under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ∼12 h, and that of feces ∼20 h. The half-life (t½) for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The 13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose), and a slower pool with a t½ of 21 h (likely including casein and milk fat). The diet-switch based turnover information provided a precise prediction (RMSE ∼0.2 ‰) of the natural 13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition. PMID:24392000
Transdimensional imaging of random velocity inhomogeneities in Nankai subduction zone
NASA Astrophysics Data System (ADS)
Takahashi, T.; Obana, K.; Yamamoto, Y.; Kaiho, Y.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.
2014-12-01
The Nankai trough in southwestern Japan is a convergent margin where the Philippine Sea plate is subducting beneath the Eurasian plate. We have conducted five seismic observations with ocean bottom seismograms (OBSs) from 2008 to 2012 to elucidate detailed seismic structures and its relations with fault segments of large earthquakes. These observations covered the entire area of the Nankai trough, but quantity and quality of data are not spatially uniform because of different observing lengths and various noises. Waveform data of OBSs suggests variously-sized anomalies of random velocity inhomogeneity (i.e., scattering strength) in this subduction zone. To clarify details of random inhomogeneity structures, we conducted a transdimensional imaging of random inhomogeneities by means of the reversible jump Markov Chain Monte Carlo (rjMCMC) without assuming smooth spatial distributions of unknown parameters. We applied the rjMCMC for the inversion of peak delay times of S-wave envelopes at 4-8, 8-16, and 16-32 Hz, where the peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This delay time mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities. We assumed the von Karman type power spectral density function (PSDF) for random velocity fluctuation, and estimated two parameters related with the PSDF at large wavenumber. Study area is partitioned by discrete Voronoi cells of which number and spatial sizes are variable. Estimated random inhomogeneities show clear lateral variations along the Nankai trough. The strongest inhomogeneity on the Nankai trough was found near the subducted Kyushu-Palau ridge that is located at the western margin of the fault segments. We also find a horizontal variation of inhomogeneity along the non-volcanic tremor zone. Relatively strong inhomogeneities in this tremor zone were imaged beneath west Shikoku and Kii-Peninsula. These anomalies were not clearly
Fluctuation-controlled front propagation
NASA Astrophysics Data System (ADS)
Ridgway, Douglas Thacher
1997-09-01
A number of fundamental pattern-forming systems are controlled by fluctuations at the front. These problems involve the interaction of an infinite dimensional probability distribution with a strongly nonlinear, spatially extended pattern-forming system. We have examined fluctuation-controlled growth in the context of the specific problems of diffusion-limited growth and biological evolution. Mean field theory of diffusion-limited growth exhibits a finite time singularity. Near the leading edge of a diffusion-limited front, this leads to acceleration and blowup. This may be resolved, in an ad hoc manner, by introducing a cutoff below which growth is weakened or eliminated (8). This model, referred to as the BLT model, captures a number of qualitative features of global pattern formation in diffusion-limited aggregation: contours of the mean field match contours of averaged particle density in simulation, and the modified mean field theory can form dendritic features not possible in the naive mean field theory. The morphology transition between dendritic and non-dendritic global patterns requires that BLT fronts have a Mullins-Sekerka instability of the wavefront shape, in order to form concave patterns. We compute the stability of BLT fronts numerically, and compare the results to fronts without a cutoff. A significant morphological instability of the BLT fronts exists, with a dominant wavenumber on the scale of the front width. For standard mean field fronts, no instability is found. The naive and ad hoc mean field theories are continuum-deterministic models intended to capture the behavior of a discrete stochastic system. A transformation which maps discrete systems into a continuum model with a singular multiplicative noise is known, however numerical simulations of the continuum stochastic system often give mean field behavior instead of the critical behavior of the discrete system. We have found a new interpretation of the singular noise, based on maintaining
Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Bao
2016-01-01
Heterodyne interferometry is a high-precision method applied in roll angle measurements. Phase metering is essential for high precision. During a high-precision measurement, a phase fluctuation appears even when the roll angle does not vary, which has never been analyzed before. Herein, the reason for the phase fluctuation is revealed, which results from the frequency-difference fluctuation and time difference between measurement and reference beams. A mathematical model of that phase-fluctuation mechanism is established, and that model provides a theoretical basis for analyzing and reducing the phase fluctuation. The impact that the main factors have on the phase metering is analyzed quantitatively, and experiments are carried out to validate the model. Finally, the phase fluctuation decreases to 0.02° by frequency reduction, which conversely verifies the theoretical model. PMID:27490552
Axions and inflation: Vacuum fluctuations
NASA Astrophysics Data System (ADS)
Lyth, D. H.
1992-05-01
Cosmological consequences of the Peccei-Quinn field ψ=reiθ/ √2 are explored. It has a Mexican-hat potential W=1/4λ(r2-f2a)2. During inflation the potential may be modified so that fa has a different effective value fa1; it is assumed that r sits in the vacuum at r=fa1. After inflation the temperature is supposed to be less than fa so that r=fa, and the only degree of freedom is the axion field faθ. It has a Gaussian inhomogeneity coming from the vacuum fluctuation of θ during inflation. When the axion mass ma(T) becomes significant at T~1 GeV, θ has dispersion σθ~=(4/2π)(H1/fa1) and some mean θ¯ (in the observable Universe). The axion potential is U(θ)=(79 MeV)4(1-cosNθ), and the ensuing cosmology is determined by the three parameters fa/N, Nθ¯, and Nσθ. The entire domain of parameter space is considered, including the regime where the axion density perturbation is non-Gaussian and the regime where axionic domain walls are produced. Observational constraints on the parameters are established. At the end of the paper the additional assumption is made that during inflation the vacuum is at r=fa. Unless fa/N is near the Planck scale and axions make up only a small fraction of the dark matter, this leads to the bound V1/41<2×1015 GeV, where V1 is the energy density during inflation, at the epoch when the observable Universe leaves the horizon.
Concentration fluctuations in a mesoscopic oscillating chemical reaction system
NASA Astrophysics Data System (ADS)
Qian, Hong; Saffarian, Saveez; Elson, Elliot L.
2002-08-01
Under sustained pumping, kinetics of macroscopic nonlinear biochemical reaction systems far from equilibrium either can be in a stationary steady state or can execute sustained oscillations about a fixed mean. For a system of two dynamic species X and Y, the concentrations nx and ny will be constant or will repetitively trace a closed loop in the (nx, ny) phase plane, respectively. We study a mesoscopic system with nx and ny very small; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We show that nx and ny execute cyclic random walks in the (nx, ny) plane whether or not the deterministic kinetics for the corresponding macroscopic system represents a steady or an oscillating state. Probability distributions and correlation functions for nx(t) and ny(t) show quantitative but not qualitative differences between states that would appear as either oscillating or steady in the corresponding macroscopic systems. A diffusion-like equation for probability P(nx, ny, t) is obtained for the two-dimensional Brownian motion in the (nx, ny) phase plane. In the limit of large nx, ny, the deterministic nonlinear kinetics derived from mass action is recovered. The nature of large fluctuations in an oscillating nonequilibrium system and the conceptual difference between "thermal stochasticity" and "temporal complexity" are clarified by this analysis. This result is relevant to fluorescence correlation spectroscopy and metabolic reaction networks. fluorescence correlation spectroscopy | limit cycle | nanobiochemistry | nonequilibrium steady state | random walk
Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects.
Dey, Snigdhadip; Proulx, Stephen R; Teotónio, Henrique
2016-02-01
All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than
Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects
Dey, Snigdhadip; Proulx, Stephen R.; Teotónio, Henrique
2016-01-01
All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia–anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia–anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than
Force fluctuations impact kinetics of biomolecular systems.
Koslover, Elena F; Spakowitz, Andrew J
2012-07-01
A wide array of biological processes occur at rates that vary significantly with force. Instantaneous molecular forces fluctuate due to thermal noise and active processes, leading to concomitant fluctuations in biomolecular rate constants. We demonstrate that such fluctuations have a dramatic effect on the transition kinetics of force-dependent processes. As an illustrative, biologically relevant example, we model the pausing of eukaryotic RNA polymerase as it transcribes nucleosomal DNA. Incorporating force fluctuations in the model yields qualitatively different predictions for the pausing time scales when compared to behavior under the average force alone. We use our model to illustrate the broad range of behaviors that can arise in biomolecular processes that are susceptible to force fluctuations. The fluctuation time scale, which varies significantly for in vivo biomolecular processes, yields very different results for overall rates and dramatically alters the force regime of relevance to the transition. Our results emphasize the importance of transient high-force behavior for determining kinetics in the fluctuating environment of a living cell. PMID:23005451
Force fluctuations impact kinetics of biomolecular systems
NASA Astrophysics Data System (ADS)
Koslover, Elena F.; Spakowitz, Andrew J.
2012-07-01
A wide array of biological processes occur at rates that vary significantly with force. Instantaneous molecular forces fluctuate due to thermal noise and active processes, leading to concomitant fluctuations in biomolecular rate constants. We demonstrate that such fluctuations have a dramatic effect on the transition kinetics of force-dependent processes. As an illustrative, biologically relevant example, we model the pausing of eukaryotic RNA polymerase as it transcribes nucleosomal DNA. Incorporating force fluctuations in the model yields qualitatively different predictions for the pausing time scales when compared to behavior under the average force alone. We use our model to illustrate the broad range of behaviors that can arise in biomolecular processes that are susceptible to force fluctuations. The fluctuation time scale, which varies significantly for in vivo biomolecular processes, yields very different results for overall rates and dramatically alters the force regime of relevance to the transition. Our results emphasize the importance of transient high-force behavior for determining kinetics in the fluctuating environment of a living cell.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Yang, Fang; Khan, Jamil; Reifsnider, Ken; Wang, Guiren
2016-01-01
Although unsteady and electrokinetic flows are widely used in microfluidics, there is unfortunately no velocimeter today that can measure the random velocity fluctuation at high temporal and spatial resolution simultaneously in microfluidics. Here we, for the first time, theoretically study the temporal resolution of laser induced fluorescence photobleaching anemometer (LIFPA) and experimentally verify that LIFPA can have simultaneously ultrahigh temporal ({˜ } 4 \\upmu s) and spatial ({˜ }203 nm) resolution and can measure velocity fluctuation up to at least 2 kHz, whose corresponding wave number is about 6× 10^6 {/}m in an electrokinetically forced unsteady flow in microfluidics.
Model of m-level low-frequency current fluctuations in metal thermionic cathodes
NASA Astrophysics Data System (ADS)
Ghots, S. S.; Bakhtizin, R. Z.
2003-06-01
A new model of low-frequency fluctuations, based on the thermionic current model [Mathematical Handbook for Scientists and Engineers, New York, 1961; Introduction to Statistical Radio-Physic. Part 1: Random Processes, Moscow, 1976 (in Russian)], has been designed. The proposed model provides calculation of realization, auto-correlation function (ACF) and power spectral density (PSD) of an m-level quantum signal. This model has allowed to explain the reason of very small magnitude of low-frequency (LF) boundary (10 -4 to 10 -2 Hz) on experimental spectra of LF current fluctuations in a metal thermionic cathodes.
Bérut, A; Imparato, A; Petrosyan, A; Ciliberto, S
2016-02-12
We experimentally study the statistical properties of the energy fluxes between two trapped Brownian particles, interacting through dissipative hydrodynamic coupling, and submitted to an effective temperature difference ΔT, obtained by random forcing the position of one trap. We identify effective heat fluxes between the two particles and show that they satisfy an exchange fluctuation theorem in the stationary state. We also show that after the sudden application of a temperature gradient ΔT, the total hot-cold flux satisfies a transient exchange fluctuation theorem for any integration time, whereas the total cold-hot flux only does it asymptotically for long times. PMID:26919017
Long-wavelength fluctuations lead to a model of the glass crossover
NASA Astrophysics Data System (ADS)
Rizzo, Tommaso
2014-06-01
The effect of long-wavelength fluctuations on the Mode-Coupling-Theory (MCT) dynamical singularity at Tc in the β-regime is studied by means of the standard field-theoretical procedure for a genuine second-order phase transition. The resulting perturbative loop expansion can be resummed leading to an extension of the MCT equation for the critical correlator with local random fluctuations of the separation parameter. The corresponding model explains both qualitatively and quantitatively why the MCT dynamical singularity is transformed into a crossover from relaxational to activated dynamics. Dynamical Heterogeneities emerge naturally as the ergodicity-restoring mechanism instead of ad hoc hopping processes.
Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto
2015-01-01
Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer. PMID:26419420
Suh, Yung D.; Schenter, Gregory K.; Zhu, Leyun; Lu, H PETER.
2003-10-01
We have studied the laser-excitation-intensity-dependent and Ag-nanocluster interstitial-site-dependent SERS intensity fluctuations under low molecule surface coverage of rhodamine 6G and cytochrome c. a new two-channel photon time-stamping system coupled with atomic force microscopic (AFM), Raman spectroscopic, and imaging microscopy was developed and applied to record Raman intensity fluctuation trajectories at sub-microsecond resolution correlated with in-situ characterization of the nanoparticle clusters. Our experimental results suggest that the nanoconfinement of the local electromagnetic-field enhancement and the interaction of the local field with the molecules, presumably under rotational motions, result in nano-Raman fluctuations. The SERS spectral fluctuation was pertinent to the nanoscale local enhancement and local interaction of the molecules with the surface when the number of molecules to contribute the microscopic Raman signal collected from a diffraction-limited focus spot. The SERS fluctuation dynamics were both photo-induced and spontaneous for rhodamine 6G, but only the photo-induced interstitial sites with heterogeneous geometries. To interpret the observed nano-SERS fluctuation dynamics, we used computer simulation of optical multiple scattering, based on multi-sphere scattering Mie theory, and rotational diffusion of molecules at an interstitial site, based on a random walk in orientation space.
Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto
2015-01-01
Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer. PMID:26419420
Nonisothermal fluctuating hydrodynamics and Brownian motion.
Falasco, G; Kroy, K
2016-03-01
The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions. PMID:27078335
Spin-current noise from fluctuation relations
Lim, Jong Soo; Sánchez, David; López, Rosa
2013-12-04
We present fluctuation relations that connect spin-polarized current and noise in mesoscopic conductors. In linear response, these relations are equivalent to the fluctuation-dissipation theorem that relates equilibrium current-current correlations to the linear conductance. More interestingly, in the weakly nonlinear regime of transport, these relations establish a connection between the leading-order rectification spin conductance, the spin noise susceptibility and the third cumulant of spin current fluctuations at equilibrium. Our results are valid even for systems in the presence of magnetic fields and coupled to ferromagnetic electrodes.
Nonisothermal fluctuating hydrodynamics and Brownian motion
NASA Astrophysics Data System (ADS)
Falasco, G.; Kroy, K.
2016-03-01
The classical theory of Brownian dynamics follows from coarse graining the underlying linearized fluctuating hydrodynamics of the solvent. We extend this procedure to globally nonisothermal conditions, requiring only a local thermal equilibration of the solvent. Starting from the conservation laws, we establish the stochastic equations of motion for the fluid momentum fluctuations in the presence of a suspended Brownian particle. These are then contracted to the nonisothermal generalized Langevin description of the suspended particle alone, for which the coupling to stochastic temperature fluctuations is found to be negligible under typical experimental conditions.
Interface fluctuations on a hierarchical lattice
NASA Astrophysics Data System (ADS)
Iglói, Ferenc; Szalma, Ferenc
1996-08-01
We consider interface fluctuations on a two-dimensional layered lattice where the couplings follow a hierarchical sequence. This problem is equivalent to the diffusion process of a quantum particle in the presence of a one-dimensional hierarchical potential. According to a modified Harris criterion, this type of perturbation is relevant and one expects anomalous fluctuating behavior. By transfer-matrix techniques and by an exact renormalization-group transformation we have obtained analytical results for the interface fluctuation exponents, which are discontinuous at the homogeneous lattice limit.
Fluctuation spectroscopy of granularity in superconducting structures.
Lerner, I. V.; Varlamov, A. A.; Vinokur, V. M.; Materials Science Division; Univ. of Birmingham; Viale del Politecnico
2008-03-01
We suggest to use 'fluctuation spectroscopy' as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature T the resistance R(T) of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in R(T) turns out to be sensitive to weak magnetic fields due to a novel Maki-Thompson-type mechanism.
Elasticity and Fluctuations of Frustrated Nanoribbons
NASA Astrophysics Data System (ADS)
Grossman, Doron; Sharon, Eran; Diamant, Haim
2016-06-01
We derive a reduced quasi-one-dimensional theory of geometrically frustrated elastic ribbons. Expressed in terms of geometric properties alone, it applies to ribbons over a wide range of scales, allowing the study of their elastic equilibrium, as well as thermal fluctuations. We use the theory to account for the twisted-to-helical transition of ribbons with spontaneous negative curvature and the effect of fluctuations on the corresponding critical exponents. The persistence length of such ribbons changes nonmonotonically with the ribbon's width, dropping to zero at the transition. This and other statistical properties qualitatively differ from those of nonfrustrated fluctuating filaments.
On the fluctuation induced mass enhancement
NASA Astrophysics Data System (ADS)
Van Hoa, Nguyen; Tuan, Vu Ngoc; Van Xuan, Le; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-06-01
The effective mass induced by the background fluctuation on particles is considered. The analytical results show that the effective mass depends only on the properties of fluctuation, and takes non-zero value when and only when fluctuation mean value is non-zero. The possible applications of the obtained results to complex systems such as biology and ecology where environmental factors lead to the changes of the information exchange ranges from long to short one are discussed, i.e. the possibility of using physical modeling techniques to investigate macroscopic behaviors of some complex systems under consideration.
Hawking radiation from fluctuating black holes
NASA Astrophysics Data System (ADS)
Takahashi, Tomohiro; Soda, Jiro
2010-09-01
Classically, black holes have a rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of the interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.
Index statistical properties of sparse random graphs
NASA Astrophysics Data System (ADS)
Metz, F. L.; Stariolo, Daniel A.
2015-10-01
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K ,λ ) that a large N ×N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ . The method allows to determine, in principle, all moments of PN(K ,λ ) , from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we show that the index variance scales linearly with N ≫1 for |λ |>0 , with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erdös-Rényi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ . These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN , with an universal prefactor that is independent of λ . Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.
Conserved charge fluctuations and susceptibilities in strongly interacting matter
NASA Astrophysics Data System (ADS)
Shi, Shuzhe; Liao, Jinfeng
2013-06-01
We study the conserved charge fluctuations, as quantified by the corresponding susceptibilities, in strongly interacting matter as motived by the quark-gluon plasma. Using the gauge-gravity correspondence approach, we study the patterns of conserved charge fluctuations in two types of holographic models for QCD, the D4/D8 and the D3/D7 models. We compute and compare the quark number susceptibilities in both models and find an interesting common feature of the two: at very strong coupling higher order susceptibilities are suppressed and the conserved charge fluctuations become purely Guassian. In light of the state-of-the-art lattice QCD results we also discuss what we can learn from these susceptibilities about the underlying degrees of freedom in the 1 ~ 2 T c quark-gluon plasma and examine the viability of different ideas such as holography, quasi-particles, as well as bound states. From analyzes of second order susceptibilities we conclude that the bound states exist and are important in the 1 ~ 2 T c region. We further construct and make predictions for several ratios of fourth-order susceptibilities that can sensitively reveal such bound states.
NASA Astrophysics Data System (ADS)
Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.
2015-09-01
Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.
Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.
2015-01-01
Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508
Information-to-free-energy conversion: Utilizing thermal fluctuations
Toyabe, Shoichi; Muneyuki, Eiro
2013-01-01
Maxwell’s demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon’s operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell’s demon of Szilard’s engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle’s free energy. PMID:27493548
Mechanics of Single Cells: Rheology, Time Dependence, and Fluctuations
Massiera, Gladys; Van Citters, Kathleen M.; Biancaniello, Paul L.; Crocker, John C.
2007-01-01
The results of mechanical measurements on single cultured epithelial cells using both magnetic twisting cytometry (MTC) and laser tracking microrheology (LTM) are described. Our unique approach uses laser deflection for high-performance tracking of cell-adhered magnetic beads either in response to an oscillatory magnetic torque (MTC) or due to random Brownian or ATP-dependent forces (LTM). This approach is well suited for accurately determining the rheology of single cells, the study of temporal and cell-to-cell variations in the MTC signal amplitude, and assessing the statistical character of the tracers' random motion in detail. The temporal variation of the MTC rocking amplitude is surprisingly large and manifests as a frequency-independent multiplicative factor having a 1/f spectrum in living cells, which disappears upon ATP depletion. In the epithelial cells we study, random bead position fluctuations are Gaussian to the limits of detection both in the Brownian and ATP-dependent cases, unlike earlier studies on other cell types. PMID:17693461
Nonequilibrium radiative properties in fluctuating plasmas1
Rosmej, F. B.; Lisitsa, V. S.
2011-06-15
A general kinetic model was developed to simulate the radiative properties of nonstationary fluctuating plasmas and characterize the relationship between the nonstationary fluctuation time and the atomic relaxation times. The developed theory is applied to the radiative line emission in the case of instabilities in tokamaks. It is shown by exact time dependent simulations that involve explicitly LSJ-split excited states that the radiation emission in fluctuating plasma can be larger than in the corresponding stationary limits. For regular fluctuations like the sawtooth activity, also the startup phase of sawtooth activity can lead to higher emission compared to the time dependent regular phase. It is demonstrated that the sawtooth crash can be almost exactly followed by resonance line emission like H-like Lyman-alpha and He-like Helium-alpha of, e.g., argon impurity ions, whereas the effective charge state distribution lags seriously behind.
Collective fluctuations in networks of noisy components
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi
2010-09-01
Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect the functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is not clear. Here, we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such non-trivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.
Fluctuating pressures in flow fields of jets
NASA Technical Reports Server (NTRS)
Schroeder, J. C.; Haviland, J. K.
1976-01-01
The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.
Spontaneous Fluctuations in the Flexible Control of Covert Attention
Courtney, Susan M.; Yantis, Steven
2016-01-01
Spontaneous fluctuations in cognitive flexibility are characterized by moment-to-moment changes in the efficacy of control over attentional shifts. We used fMRI to investigate the neural correlates in humans of spontaneous fluctuations in readiness to covertly shift attention between two peripheral rapid serial visual presentation streams. Target detection response time (RT) after a shift or hold of covert spatial attention served as a behavioral index of fluctuations in attentional flexibility. In particular, the cost associated with shifting attention compared with holding attention varied as a function of pretrial brain activity in key regions of the default mode network (DMN), but not the dorsal attention network. High pretrial activity within the DMN was associated with a greater increase in shift trial RT relative to hold trial RT, revealing that these areas are associated with a state of attentional stability. Conversely, high pretrial activity within bilateral anterior insula and the presupplementary motor area/supplementary motor area was associated with a greater decrease in shift trial RT relative to hold trial RT, reflecting increased flexibility. Our results importantly clarify the roles of the precuneus, medial prefrontal cortex, and lateral parietal cortex, indicating that reduced activity may not simply indicate greater task engagement, but also, specifically, a readiness to update the focus of attention. Investigation of the neural correlates of spontaneous changes in attentional flexibility may contribute to our understanding of disorders of cognitive control as well as healthy variability in the control of spatial attention. SIGNIFICANCE STATEMENT Individuals regularly experience fluctuations in preparatory cognitive control that affect performance in everyday life. For example, individuals are able to more quickly initiate a spatial shift of attention at some moments than at others. The current study revealed that pretrial brain activity in
Numerical prediction of pressure fluctuations in a prototype pump turbine base on PANS methods
NASA Astrophysics Data System (ADS)
Liu, J. T.; Li, Y.; Gao, Y.; Hu, Q.; Wu, Y. L.
2016-05-01
Unsteady flow and pressure fluctuations within a prototypel pump turbine are numerically studied using a nonlinear Partial Averaged Navier Stokes (PANS) model. Pump turbine operating at different conditions with guide vanes opening angle 6° is simulated. Results revealed that the predictions of performance and relative peak-to-peak amplitude by PANS approach agree well with the experimental data. The amplitude of the pressure fluctuation in the vaneless space at turbine mode on a “S” curve increases with the decrease of the flow rate, and it has maximum value when it runs close to runaway line at turbine braking mode. The amplitude of the pressure fluctuation in the vaneless space at turbine braking mode on a “S” curve decreases with the reduce of the flow rate. The above high pressure fluctuations should be avoided during the design of pump turbines especially those operating at high-head condition.
Fluctuations in nuclear envelope's potential mediate synchronization of early neural activity
Yamashita, Masayuki
2011-03-04
Research highlights: {yields} Nuclear envelope's potential changes with a release of Ca{sup 2+}. {yields} Changes in nuclear envelope's potential underlie synchronous burst discharges. {yields} Nuclear envelope's potential generates periodic bursts of fluctuations. {yields} Fluctuations in nuclear envelope's potential function as a current noise generator. -- Abstract: Neural progenitor cells and developing neurons show periodic, synchronous Ca{sup 2+} rises even before synapse formation, and the origin of the synchronous activity remains unknown. Here, fluorescence measurement revealed that the membrane potential of the nuclear envelope, which forms an intracellular Ca{sup 2+} store, changed with a release of Ca{sup 2+} and generated spontaneous, periodic bursts of fluctuations in potential. Furthermore, changes in the nuclear envelope's potential underlay spike burst generations. These results support the model that voltage fluctuations of the nuclear envelope synchronize Ca{sup 2+} release between cells and also function as a current noise generator to cause synchronous burst discharges.
Fluctuating Asymmetry in Menidia beryllina before and after the 2010 Deepwater Horizon Oil Spill
Michaelsen, Savannah; Schaefer, Jacob; Peterson, Mark S.
2015-01-01
Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry) is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length) were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River), as well as between years of collection (2011, 2012)-one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon) showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites) could be due to a combination of oil, dispersants, or other unknown stressors. PMID:25714356
Fluctuating asymmetry in Menidia beryllina before and after the 2010 Deepwater Horizon oil spill.
Michaelsen, Savannah; Schaefer, Jacob; Peterson, Mark S
2015-01-01
Assessing the impacts of the Deepwater Horizon oil spill with a dependable baseline comparison can provide reliable insight into environmental stressors on organisms that were potentially affected by the spill. Fluctuating asymmetry (small, non-random deviations from perfect bilateral symmetry) is an informative metric sensitive to contaminants that can be used to assess environmental stress levels. For this study, the well-studied and common Gulf of Mexico estuarine fish, Menidia beryllina, was used with pre and post-oil spill collections. Comparisons of fluctuating asymmetry in three traits (eye diameter, pectoral fin length, and pelvic fin length) were made pre and post-oil spill across two sites (Old Fort Bayou and the Pascagoula River), as well as between years of collection (2011, 2012)--one and two years, respectfully, after the spill in 2010. We hypothesized that fluctuating asymmetry would be higher in post-Deepwater Horizon samples, and that this will be replicated in both study areas along the Mississippi Gulf coast. We also predicted that fluctuating asymmetry would decrease through time after the oil spill as the oil decomposed and/or was removed. Analyses performed on 1135 fish (220 pre and 915 post Deepwater Horizon) showed significantly higher post spill fluctuating asymmetry in the eye but no difference for the pectoral or pelvic fins. There was also higher fluctuating asymmetry in one of the two sites both pre and post-spill, indicating observed asymmetry may be the product of multiple stressors. Fluctuating asymmetry decreased in 2012 compared to 2011. Fluctuating asymmetry is a sensitive measure of sub lethal stress, and the observed variability in this study (pre vs. post-spill or between sites) could be due to a combination of oil, dispersants, or other unknown stressors. PMID:25714356
Thermal Casimir drag in fluctuating classical fields
NASA Astrophysics Data System (ADS)
Démery, Vincent; Dean, David S.
2011-07-01
A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force that depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.
Temperature-polarization correlations from tensor fluctuations
Crittenden, R.G.; Coulson, D.; Turok, N.G. |
1995-11-15
We study the polarization-temperature correlations on the cosmic microwave sky resulting from an initial scale-invariant spectrum of tensor (gravity wave) fluctuations, such as those which might arise during inflation. The correlation function has the opposite sign to that for scalar fluctuations on large scales, raising the possibility of a direct determination of whether the microwave anisotropies have a significant tensor component. We briefly discuss the important problem of estimating the expected foreground contamination.
Power fluctuations, large deviations and turbulence
Bandi, Mahesh M; Chumakov, Sergei; Connaughton, Colm P
2008-01-01
We study local power fluctuations in numerical simulations of stationary, homogenous, isotropic turbulence in two and three dimensions with Gaussian forcing. Due to the near-Gaussianity of the one-point velocity distribution, the probability distribution function (pdf) of the local power is well modeled by the pdf of the product of two joint normally distributed variables. In appropriate units, this distribution is calculated exactly and shown to satisfy a Fluctuation Relation (FR) with a coefficient which depends on {epsilon}.
Quantum fluctuations of the superconducting cosmic string
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng
1987-01-01
Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.
Fluctuations and the QCD phase diagram
Schaefer, B.-J.
2012-06-15
In this contribution the role of quantum fluctuations for the QCD phase diagram is discussed. This concerns in particular the importance of the matter back-reaction to the gluonic sector. The impact of these fluctuations on the location of the confinement/deconfinement and the chiral transition lines as well as their interrelation are investigated. Consequences of our findings for the size of a possible quarkyonic phase and location of a critical endpoint in the phase diagram are drawn.
Quasithermodynamic Contributions to the Fluctuations of a Protein Nanopore
2015-01-01
Proteins undergo thermally activated conformational fluctuations among two or more substates, but a quantitative inquiry on their kinetics is persistently challenged by numerous factors, including the complexity and dynamics of various interactions, along with the inability to detect functional substates within a resolvable time scale. Here, we analyzed in detail the current fluctuations of a monomeric β-barrel protein nanopore of known high-resolution X-ray crystal structure. We demonstrated that targeted perturbations of the protein nanopore system, in the form of loop-deletion mutagenesis, accompanying alterations of electrostatic interactions between long extracellular loops, produced modest changes of the differential activation free energies calculated at 25 °C, ΔΔG⧧, in the range near the thermal energy but substantial and correlated modifications of the differential activation enthalpies, ΔΔH⧧, and entropies, ΔΔS⧧. This finding indicates that the local conformational reorganizations of the packing and flexibility of the fluctuating loops lining the central constriction of this protein nanopore were supplemented by changes in the single-channel kinetics. These changes were reflected in the enthalpy–entropy reconversions of the interactions between the loop partners with a compensating temperature, TC, of ∼300 K, and an activation free energy constant of ∼41 kJ/mol. We also determined that temperature has a much greater effect on the energetics of the equilibrium gating fluctuations of a protein nanopore than other environmental parameters, such as the ionic strength of the aqueous phase as well as the applied transmembrane potential, likely due to ample changes in the solvation activation enthalpies. There is no fundamental limitation for applying this approach to other complex, multistate membrane protein systems. Therefore, this methodology has major implications in the area of membrane protein design and dynamics, primarily by
Origin of density fluctuations in extended inflation
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Salopek, David S.; Turner, Michael S.
1990-01-01
The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.
Indistinguishability of thermal and quantum fluctuations
NASA Astrophysics Data System (ADS)
Kolekar, Sanved; Padmanabhan, T.
2015-10-01
The existence of Davies-Unruh temperature in a uniformly accelerated frame shows that quantum fluctuations of the inertial vacuum state appears as thermal fluctuations in the accelerated frame. Hence thermodynamic experiments cannot distinguish between phenomena occurring in a thermal bath of temperature T in the inertial frame from those in a frame accelerating through inertial vacuum with the acceleration a=2π T. We show that this indisguishability between quantum fluctuations and thermal fluctuations goes far beyond the fluctuations in the vacuum state. We show by an exact calculation, that the reduced density matrix for a uniformly accelerated observer when the quantum field is in a thermal state of temperature {T}\\prime , is symmetric between acceleration temperature T=a/(2π ) and the thermal bath temperature {T}\\prime . Thus thermal phenomena cannot distinguish whether (i) one is accelerating with a=2π T through a bath of temperature {T}\\prime or (ii) accelerating with a=2π {T}\\prime through a bath of temperature T. This shows that thermal and quantum fluctuations in an accelerated frame affect the observer in a symmetric manner. The implications are discussed.
Random broadcast on random geometric graphs
Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias
2009-01-01
In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.
Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions
Wilk, Grzegorz; Wlodarczyk, Zbigniew
2009-05-15
We investigate the multiplicity fluctuations observed in high-energy nuclear collisions attributing them to intrinsic fluctuations of temperature of the hadronizing system formed in such processes. To account for these fluctuations, we replace the usual Boltzmann-Gibbs (BG) statistics by the nonextensive Tsallis statistics characterized by the nonextensivity parameter q, with |q-1| being a direct measure of fluctuation. In the limit of vanishing fluctuations, q{yields}1 and Tsallis statistics converge to the usual BG. We evaluate the nonextensivity parameter q and its dependence on the hadronizing system size from the experimentally observed collision centrality dependence of the mean multiplicity
Quantumness, Randomness and Computability
NASA Astrophysics Data System (ADS)
Solis, Aldo; Hirsch, Jorge G.
2015-06-01
Randomness plays a central role in the quantum mechanical description of our interactions. We review the relationship between the violation of Bell inequalities, non signaling and randomness. We discuss the challenge in defining a random string, and show that algorithmic information theory provides a necessary condition for randomness using Borel normality. We close with a view on incomputablity and its implications in physics.
Phase diffusion and random walk interpretation of electromagnetic scattering
NASA Astrophysics Data System (ADS)
Bahcivan, Hasan; Hysell, David L.; Kelley, Michael C.
2003-08-01
The relaxation behavior of phase observables for different particle diffusion models is found to establish a ground for radioscience interpretations of coherent backscatter spectra. The characteristic function for a random walk process at twice the incident radiation wave number is associated with the complex amplitude of the scattered field from a medium containing refractive index fluctuations. The phase relaxation function can be connected to the evolution of the characteristic function and may describe the average regression of the scattered field from a spontaneous fluctuation undergoing turbulent mixing. This connection holds when we assume that the stochastic description of particle movements based on a diffusion model is valid. The phase relaxation function, when identified as the generalized susceptibility function of the fluctuation dissipation theorem, is related to the spectral density of the scattered field from steady-state fluctuations.
Differential porosimetry and permeametry for random porous media.
Hilfer, R; Lemmer, A
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates. PMID:26274305
Differential porosimetry and permeametry for random porous media
NASA Astrophysics Data System (ADS)
Hilfer, R.; Lemmer, A.
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ -CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850 μ m , thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.
How random is a random vector?
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2015-12-01
Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.
Entropy of finite random binary sequences with weak long-range correlations.
Melnik, S S; Usatenko, O V
2014-11-01
We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented. PMID:25493739
Random telegraph signal and spin characteristics of the gate-all-around poly-silicon nanowire
Lee, Tsung-Han; Li, Yan-Ting; Hu, Shu-Fen E-mail: sfhu.hu@gmail.com
2014-11-07
An arsenic (As)-doped poly-silicon nanowire gate-all-around transistor fabricated using standard semiconductor methods was used to measure the Coulomb blockade effect by applying a tunable gate voltage. Two-level trapping states due to the random telegraph signal of fluctuating drain current were observed in the silicon transport channel. Under high magnetic fields, the superposition points of differential conductance revealed weak 2-electron singlet-triplet splitting states of the arsenic magnetic impurity. The weak spin-orbital coupling suggests that the electron-spin-polarization in the As-doped silicon nanowire and the two-level trapping state coexisted in the Coulomb blockade oscillations. These characteristics indicate that a few arsenic donors strongly affect the quantum behavior of the poly-silicon material.
Entropy of finite random binary sequences with weak long-range correlations
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2014-11-01
We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.
The production of turbulent stress in a shear flow by irrotational fluctuations
NASA Technical Reports Server (NTRS)
Gartshore, I. S.; Durbin, P. A.; Hunt, J. C. R.
1983-01-01
Attention is given to the way in which external turbulence affects an initially turbulence-free region in which there is a mean velocity gradient. External turbulence induces irrotational fluctuations in the sheared region which interact with the shear to produce rotational velocity fluctuations and mean Reynolds stresses. Since the actual front between the initial external turbulence and the shear flow is a randomly contorted surface, the turbulence near the front is intermittent, and is presently included in the form of a simple statistical model. In wind tunnel tests, turbulent shear stress was found to grow from zero to significant values in the interaction region. Observed stress magnitude and extent agrees with predictions, and it is concluded that turbulent stresses can be produced by irrotational fluctuations in a region of mean shear.
Free-Energy-Based Design Policy for Robust Network Control against Environmental Fluctuation
Iwai, Takuya; Kominami, Daichi; Murata, Masayuki; Yomo, Tetsuya
2015-01-01
Bioinspired network control is a promising approach for realizing robust network controls. It relies on a probabilistic mechanism composed of positive and negative feedback that allows the system to eventually stabilize on the best solution. When the best solution fails due to environmental fluctuation, the system cannot keep its function until the system finds another solution again. To prevent the temporal loss of the function, the system should prepare some solution candidates and stochastically select available one from them. However, most bioinspired network controls are not designed with this issue in mind. In this paper, we propose a thermodynamics-based design policy that allows systems to retain an appropriate degree of randomness depending on the degree of environmental fluctuation, which prepares the system for the occurrence of environmental fluctuation. Furthermore, we verify the design policy by using an attractor selection model-based multipath routing to run simulation experiments. PMID:26167525
The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows
NASA Technical Reports Server (NTRS)
Chinitz, W.; Antaki, P. J.; Kassar, G. M.
1981-01-01
Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described
NASA Astrophysics Data System (ADS)
Guzman, Orlando; Velez, Jose Antonio; Castañeda, David
2008-03-01
Experimental biosensors based on liquid crystals (LC) use nematics to detect the presence of specific analytes, via the optical textures exhibited by the LC at long times. Efforts to model the time evolution of these textures have relied on relaxational models, ignoring transport phenomena. In this work we include hydrodynamics into a model for these LC biosensors, using lattice Boltzmann (LB) methods and assess the effect on the lifetime of multidomain structures, characteristic of high concentrations of analyte. We apply Yeoman's et al. LB algorithm, which reproduces the hydrodynamic equations developed by Beris and Edwards for LCs. We also take into account thermal fluctuations, by adding random perturbations to the hydrodynamic modes. Following Adhikari et al., their amplitude is determined by the Fluctuation-Dissipation theorem and we excite both hydrodynamic and the sub-hydrodynamic modes (also called ghost modes). As a result, we analyze the influence of the fluctuations and hydrodynamics on the movement of topological defects.
NASA Astrophysics Data System (ADS)
Solontsov, A.
2015-06-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects.
Fluctuation Induced Structure in Chemical Reaction with Small Number of Molecules
NASA Astrophysics Data System (ADS)
Suzuki, Yasuhiro
We investigate the behaviors of chemical reactions of the Lotka-Volterra model with small number of molecules; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We model it by using Abstract Rewriting System on Multisets, ARMS; ARMS is a stochastic method of simulating chemical reactions and it is based on the reaction rate equation. We confirmed that the magnitude of fluctuations on periodicity of oscillations becomes large, as the number of involved molecules is getting smaller; and these fluctuations induce another structure, which have not observed in the reactions with large number of molecules. We show that the underling mechanism through investigating the coarse grained phase space of ARMS.
Glassy correlations and thermal fluctuations in nematic elastomers
NASA Astrophysics Data System (ADS)
Lu, Bing; Xing, Xiangjun; Ye, Fangfu; Goldbart, Paul
2010-03-01
By means of the vulcanization theory framework we address the properties of nematic elastomers prepared in the isotropic liquid state and subsequently randomly cross-linked beyond the gelation point. We base our analysis on a model replica Landau free energy, in which the vulcanization order parameter is coupled to the order parameter describing the local degree of nematic ordering, retaining fluctuation terms to the Gaussian level. We explore how the cross-linking renormalizes the thermal correlations of the local nematic order, and also results in frozen-in, glassy nematic correlations. We examine these thermal and glassy correlations for two different preparation histories of the system: in the first, the cross-linking is done at temperatures close to the isotropic-nematic transition; in the other, the cross-linking is done at higher temperatures, but the system is subsequently cooled to near this transition temperature.
Traction force and tension fluctuations in growing axons
NASA Astrophysics Data System (ADS)
Urbach, Jeffrey; Polackwich, Jamie; Koch, Daniel; McAllister, Ryan; Geller, Herbert
Actively generated mechanical forces play a central role in axon growth and guidance during nervous system development. We describe the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stresses in a co-moving reference frame, we show that there is a clear and consistent average stress field underlying the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a Contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. In addition, using high time-resolution measurements, we show that the stress field is composed of fluctuating local stress peaks, with a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We also find that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.
Force fluctuations in three-dimensional suspended fibroblasts
Schlosser, Florian; Rehfeldt, Florian; Schmidt, Christoph F.
2015-01-01
Cells are sensitive to mechanical cues from their environment and at the same time generate and transmit forces to their surroundings. To test quantitatively forces generated by cells not attached to a substrate, we used a dual optical trap to suspend 3T3 fibroblasts between two fibronectin-coated beads. In this simple geometry, we measured both the cells' elastic properties and the force fluctuations they generate with high bandwidth. Cell stiffness decreased substantially with both myosin inhibition by blebbistatin and serum-starvation, but not with microtubule depolymerization by nocodazole. We show that cortical forces generated by non-muscle myosin II deform the cell from its rounded shape in the frequency regime from 0.1 to 10 Hz. The amplitudes of these forces were strongly reduced by blebbistatin and serum starvation, but were unaffected by depolymerization of microtubules. Force fluctuations show a spectrum that is characteristic for an elastic network activated by random sustained stresses with abrupt transitions. PMID:25533089
Force fluctuations in three-dimensional suspended fibroblasts.
Schlosser, Florian; Rehfeldt, Florian; Schmidt, Christoph F
2015-02-01
Cells are sensitive to mechanical cues from their environment and at the same time generate and transmit forces to their surroundings. To test quantitatively forces generated by cells not attached to a substrate, we used a dual optical trap to suspend 3T3 fibroblasts between two fibronectin-coated beads. In this simple geometry, we measured both the cells' elastic properties and the force fluctuations they generate with high bandwidth. Cell stiffness decreased substantially with both myosin inhibition by blebbistatin and serum-starvation, but not with microtubule depolymerization by nocodazole. We show that cortical forces generated by non-muscle myosin II deform the cell from its rounded shape in the frequency regime from 0.1 to 10 Hz. The amplitudes of these forces were strongly reduced by blebbistatin and serum starvation, but were unaffected by depolymerization of microtubules. Force fluctuations show a spectrum that is characteristic for an elastic network activated by random sustained stresses with abrupt transitions. PMID:25533089
Electron diffusion in tokamaks due to electromagnetic fluctuations
Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.
1986-05-01
Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ..omega../sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3..omega../sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density.
Cover times of random searches
NASA Astrophysics Data System (ADS)
Chupeau, Marie; Bénichou, Olivier; Voituriez, Raphaël
2015-10-01
How long must one undertake a random search to visit all sites of a given domain? This time, known as the cover time, is a key observable to quantify the efficiency of exhaustive searches, which require a complete exploration of an area and not only the discovery of a single target. Examples range from immune-system cells chasing pathogens to animals harvesting resources, from robotic exploration for cleaning or demining to the task of improving search algorithms. Despite its broad relevance, the cover time has remained elusive and so far explicit results have been scarce and mostly limited to regular random walks. Here we determine the full distribution of the cover time for a broad range of random search processes, including Lévy strategies, intermittent strategies, persistent random walks and random walks on complex networks, and reveal its universal features. We show that for all these examples the mean cover time can be minimized, and that the corresponding optimal strategies also minimize the mean search time for a single target, unambiguously pointing towards their robustness.
Randomness and Earth’s Climate Variability
NASA Astrophysics Data System (ADS)
Levinshtein, Michael; Dergachev, Valentin; Dmitriev, Alexander; Shmakov, Pavel
2016-02-01
Paleo-Sciences including palaeoclimatology and palaeoecology have accumulated numerous records related to climatic changes. The researchers have usually tried to identify periodic and quasi-periodic processes in these paleoscientific records. In this paper, we show that this analysis is incomplete. As follows from our results, random processes, namely processes with a single-time-constant τ0 (noise with a Lorentzian noise spectrum), play a very important and, perhaps, a decisive role in numerous natural phenomena. For several of very important natural phenomena the characteristic time constants τ0 are very similar and equal to (5‑8) × 103 years. However, this value of τ0 is not universal. For example, the spectral density fluctuations of the atmospheric radiocarbon δ14C are characterized by a Lorentzian with τ0 ≈ 300 years. The frequency dependence of spectral density fluctuations for benthic δ18O records contains two Lorentzians with τ0 ≈ 8000 years and τ0 > 105 years.
Comparing MTI randomization procedures to blocked randomization.
Berger, Vance W; Bejleri, Klejda; Agnor, Rebecca
2016-02-28
Randomization is one of the cornerstones of the randomized clinical trial, and there is no shortage of methods one can use to randomize patients to treatment groups. When deciding which one to use, researchers must bear in mind that not all randomization procedures are equally adept at achieving the objective of randomization, namely, balanced treatment groups. One threat is chronological bias, and permuted blocks randomization does such a good job at controlling chronological bias that it has become the standard randomization procedure in clinical trials. But permuted blocks randomization is especially vulnerable to selection bias, so as a result, the maximum tolerated imbalance (MTI) procedures were proposed as better alternatives. In comparing the procedures, we have somewhat of a false controversy, in that actual practice goes uniformly one way (permuted blocks), whereas scientific arguments go uniformly the other way (MTI procedures). There is no argument in the literature to suggest that the permuted block design is better than or even as good as the MTI procedures, but this dearth is matched by an equivalent one regarding actual trials using the MTI procedures. So the 'controversy', if we are to call it that, pits misguided precedent against sound advice that tends to be ignored in practice. We shall review the issues to determine scientifically which of the procedures is better and, therefore, should be used. PMID:26337607
NASA Astrophysics Data System (ADS)
Tang, You-Fu; Liu, Shu-Lin; Jiang, Rui-Hong; Liu, Ying-Hui
2013-03-01
We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained.
Conditions for generating synthetic data to investigate characteristics of fluctuating quantities
NASA Astrophysics Data System (ADS)
Kim, Jaewook; Fox, M. F. J.; Field, A. R.; Nam, Y. U.; Ghim, Y.-c.
2016-07-01
Synthetic data describing coherent random fluctuations have widely been used to validate numerical simulations against experimental observations or to examine the reliability of extracting statistical properties of plasma turbulence via correlation functions. Estimating correlation time or lengths based on correlation functions implicitly assumes that the observed data are stationary and homogeneous. It is, therefore, important that numerically generated synthetic data also satisfy the stationary process and homogeneous state. Based on the synthetic data with randomly generated moving Gaussian shaped fluctuations both in time and space, the correlation function depending on the size of averaging time window is analytically derived. Then, the smallest possible spatial window size of synthetic data satisfying the stationary process and homogeneous state is proposed, thereby reducing the computation time to generate proper synthetic data and providing a constraint on the minimum size of simulation domains when using synthetic diagnostics to compare with experiment. This window size is also numerically confirmed with 1D synthetic data with various parameter scans.
Extracting hidden fluctuation patterns of Hang Seng stock index from network topologies
NASA Astrophysics Data System (ADS)
Li, Ping; Wang, Bing-Hong
2007-05-01
We present a model of complex network generated from Hang Seng index (HSI) of Hong Kong stock market, which encodes stock market relevant both interconnections and interactions between fluctuation patterns of HSI in the network topologies. In the network, the nodes (edges) represent all kinds of patterns of HSI fluctuation (their interconnections). Based on network topological statistic, we present efficient algorithms, measuring betweenness centrality ( BC) and inverse participation ratio ( IPR) of network adjacency matrix, for detecting topological important nodes. We have at least obtained three uniform nodes of topological importance, and find the three nodes, i.e. 18.7% nodes undertake 71.9% betweenness centrality and closely correlate other nodes. From these topological important nodes, we can extract hidden significant fluctuation patterns of HSI. We also find these patterns are independent the time intervals scales. The results contain important physical implication, i.e. the significant patterns play much more important roles in both information control and transport of stock market, and should be useful for us to more understand fluctuations regularity of stock market index. Moreover, we could conclude that Hong Kong stock market, rather than a random system, is statistically stable, by comparison to random networks.
NASA Astrophysics Data System (ADS)
Kuk Jhon, Young; Krishnamoorti, Ramanan; Genzer, Jan
2008-03-01
We report on the effect of chemical composition, co-monomer distribution and H/D isotopic substitution on the phase behavior in copolymers of poly(styrene-co-4-bromostyrene) (PBrxS), where x denotes the mole fraction of 4-bromostyrene (4-BrS), in cyclohexane. By adjusting the solvent quality during bromination of parent polystyrene, either random or random blocky PBrxS, (r-PBrxS or b-PBrxS, respectively), were synthesized. We studied the temperature dependence of phase behavior of PBrxS with various x in cyclohexane as a function of the polymer concentration using light scattering. Our results reveal that for a given 4-BrS content, the cloud points of b-PBrxS solutions are consistently higher and broader than those observed in r-PBrxS solutions. The transition temperature has also been found to depend on the isotope substitutions of H or D in either the polymer or the solvent. Small angle neutron scattering measurements indicate significant differences in the temperature dependence of the thermodynamic behavior for the random and blocky samples and the nature of the fluctuations upon approaching the phase boundaries.
Joint probability distributions and fluctuation theorems
NASA Astrophysics Data System (ADS)
García-García, Reinaldo; Lecomte, Vivien; Kolton, Alejandro B.; Domínguez, Daniel
2012-02-01
We derive various exact results for Markovian systems that spontaneously relax to a non-equilibrium steady state by using joint probability distribution symmetries of different entropy production decompositions. The analytical approach is applied to diverse problems such as the description of the fluctuations induced by experimental errors, for unveiling symmetries of correlation functions appearing in fluctuation-dissipation relations recently generalized to non-equilibrium steady states, and also for mapping averages between different trajectory-based dynamical ensembles. Many known fluctuation theorems arise as special instances of our approach for particular twofold decompositions of the total entropy production. As a complement, we also briefly review and synthesize the variety of fluctuation theorems applying to stochastic dynamics of both continuous systems described by a Langevin dynamics and discrete systems obeying a Markov dynamics, emphasizing how these results emerge from distinct symmetries of the dynamical entropy of the trajectory followed by the system. For Langevin dynamics, we embed the 'dual dynamics' with a physical meaning, and for Markov systems we show how the fluctuation theorems translate into symmetries of modified evolution operators.
Effects of fluctuations on propagating fronts
NASA Astrophysics Data System (ADS)
Panja, Debabrata
Propagating fronts are seen in varieties of nonequilibrium pattern forming systems in Physics, Chemistry and Biology. In the last two decades, many researchers have contributed to the understanding of the underlying dynamics of the propagating fronts. Of these, the deterministic and mean-field dynamics of the fronts were mostly understood in late 1980s and 1990s. On the other hand, although the earliest work on the effect of fluctuations on propagating fronts dates back to early 1980s, the subject of fluctuating fronts did not reach its adolescence until the mid 1990s. From there onwards the last few years witnessed a surge in activities in the effect of fluctuations on propagating fronts. Scores of papers have been written on this subject since then, contributing to a significant maturity of our understanding, and only recently a full picture of fluctuating fronts has started to emerge. This review is an attempt to collect all the works on fluctuating (propagating) fronts in a coherent and cogent manner in proper perspective. It is based on the idea of making our knowledge in this field available to a broader audience, and it is also expected to help to collect bits and pieces of loose thread-ends together for possible further investigation.
Variance Anisotropy of Solar Wind fluctuations
NASA Astrophysics Data System (ADS)
Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K.
2013-12-01
Solar wind observations at MHD scales indicate that the energy associated with velocity and magnetic field fluctuations transverse to the mean magnetic field is typically much larger than that associated with parallel fluctuations [eg, 1]. This is often referred to as variance anisotropy. Various explanations for it have been suggested, including that the fluctuations are predominantly shear Alfven waves [1] and that turbulent dynamics leads to such states [eg, 2]. Here we investigate the origin and strength of such variance anisotropies, using spectral method simulations of the compressible (polytropic) 3D MHD equations. We report on results from runs with initial conditions that are either (i) broadband turbulence or (ii) fluctuations polarized in the same sense as shear Alfven waves. The dependence of the variance anisotropy on the plasma beta and Mach number is examined [3], along with the timescale for any variance anisotropy to develop. Implications for solar wind fluctuations will be discussed. References: [1] Belcher, J. W. and Davis Jr., L. (1971), J. Geophys. Res., 76, 3534. [2] Matthaeus, W. H., Ghosh, S., Oughton, S. and Roberts, D. A. (1996), J. Geophys. Res., 101, 7619. [3] Smith, C. W., B. J. Vasquez and K. Hamilton (2006), J. Geophys. Res., 111, A09111.
Dynamical charge fluctuations in the hadronic medium
NASA Astrophysics Data System (ADS)
Sharma, Bhanu; Aggarwal, Madan M.; Sahoo, Nihar Ranjan; Nayak, Tapan K.
2015-02-01
Dynamical charge fluctuations have been studied in ultrarelativistic heavy-ion collisions by using hadronic model simulations, such as Ultrarelativistic Quantum Molecular Dynamics (UrQMD) and Heavy Ion Jet Interaction Generator (HIJING). The evolution of fluctuations has been calculated at different time steps during the collision as well as at different observation windows in pseudorapidity (△η ) . The final state effects on the fluctuations have been investigated by varying △η and the time steps with the aim of obtaining an optimum observation window for capturing maximum fluctuations. It is found that △η between 2.0 and 3.5 gives the best coverage for the fluctuations studies. The results of these model calculations for Au+Au collisions at √{sNN} = 7.7 to 200 GeV and for Pb+Pb collisions at 2.76 TeV are presented and compared to the available experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).
Characterizing the Cosmic Infrared Background Fluctuations
NASA Astrophysics Data System (ADS)
Li, Yanxia; Hasinger, Guenther; Cappelluti, Nico; Cappelluti^{, Nico; Arendt, Richard G.}
2016-01-01
A salient feature of the Cosmic Infrared Background (CIB) fluctuations is that their spatial power spectrum rises a factor of ~10 above the expected contribution from all known sources at angular scales >20". A tantalizing large-scale correlation signal between the residual Cosmic X-ray Background (CXB) and CIB found in the Extended Groth Strip (EGS) further suggests that at least 20% of the CIB fluctuations are associated with accreting X-ray sources, with efficient energy production similar to black holes. However, there is still a controversy about the sources that produce the excess flux. They could be faint, local populations with different spatial distribution from other known galaxies, or high-z populations at the epoch of reionization that we know little of. Constraining the origin of the CIB fluctuations will help to establish our understanding of the overall cosmic energy budget. We will combine the archival Spitzer/IRAC and the Chandra data of the Cosmic Evolution Survey (COSMOS), to accurately measure the source-subtracted CIB and CXB fluctuations to the largest angular scale (~1-2 deg) to date. The newly discovered link between CIB and CXB fluctuations found in the EGS will be revisited in the COSMOS, which provides better photon statistics. We will present current state of data collection and analysis progress.