Sample records for range-wide demographic expansion

  1. Postglacial range shift and demographic expansion of the marine intertidal snail Batillaria attramentaria

    PubMed Central

    Ho, Phuong-Thao; Kwan, Ye-Seul; Kim, Boa; Won, Yong-Jin

    2015-01-01

    To address the impacts of past climate changes, particularly since the last glacial period, on the history of the distribution and demography of marine species, we investigated the evolutionary and demographic responses of the intertidal batillariid gastropod, Batillaria attramentaria, to these changes, using the snail as a model species in the northwest Pacific. We applied phylogeographic and divergence population genetic approaches to mitochondrial COI sequences from B. attramentaria. To cover much of its distributional range, 197 individuals collected throughout Korea and 507 publically available sequences (mostly from Japan) were used. Finally, a Bayesian skyline plot (BSP) method was applied to reconstruct the demographic history of this species. We found four differentiated geographic groups around Korea, confirming the presence of two distinct, geographically subdivided haplogroups on the Japanese coastlines along the bifurcated routes of the warm Tsushima and Kuroshio Currents. These two haplogroups were estimated to have begun to split approximately 400,000 years ago. Population divergence analysis supported the hypothesis that the Yellow Sea was populated by a northward range expansion of a small fraction of founders that split from a southern ancestral population since the last glacial maximum (LGM: 26,000–19,000 years ago), when the southern area became re-submerged. BSP analyses on six geographically and genetically defined groups in Korea and Japan consistently demonstrated that each group has exponentially increased approximately since the LGM. This study resolved the phylogeography of B. attramentaria as a series of events connected over space and time; while paleoceanographic conditions determining the connectivity of neighboring seas in East Asia are responsible for the vicariance of this species, the postglacial sea-level rise and warming temperatures have played a crucial role in rapid range shifts and broad demographic expansions of its

  2. Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes.

    PubMed

    Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge

    2017-01-16

    Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism.

  3. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low

  4. The influence of interspecific interactions on species range expansion rates.

    PubMed

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe

    2014-12-01

    Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and

  5. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low

  6. Molecular evidence for a recent demographic expansion in the puma (Puma concolor) (Mammalia, Felidae).

    PubMed

    Matte, Eunice M; Castilho, Camila S; Miotto, Renata A; Sana, Denis A; Johnson, Warren E; O'Brien, Stephen J; de Freitas, Thales R O; Eizirik, Eduardo

    2013-12-01

    The puma is an iconic predator that ranges throughout the Americas, occupying diverse habitats. Previous phylogeographic analyses have revealed that it exhibits moderate levels of genetic structure across its range, with few of the classically recognized subspecies being supported as distinct demographic units. Moreover, most of the species' molecular diversity was found to be in South America. To further investigate the phylogeographic structure and demographic history of pumas we analyzed mtDNA sequences from 186 individuals sampled throughout their range, with emphasis on South America. Our objectives were to refine the phylogeographic assessment within South America and to investigate the demographic history of pumas using a coalescent approach. Our results extend previous phylogeographic findings, reassessing the delimitation of historical population units in South America and demonstrating that this species experienced a considerable demographic expansion in the Holocene, ca. 8,000 years ago. Our analyses indicate that this expansion occurred in South America, prior to the hypothesized re-colonization of North America, which was therefore inferred to be even more recent. The estimated demographic history supports the interpretation that pumas suffered a severe demographic decline in the Late Pleistocene throughout their distribution, followed by population expansion and re-colonization of the range, initiating from South America.

  7. Molecular evidence for a recent demographic expansion in the puma (Puma concolor) (Mammalia, Felidae)

    PubMed Central

    Matte, Eunice M.; Castilho, Camila S.; Miotto, Renata A.; Sana, Denis A.; Johnson, Warren E.; O’Brien, Stephen J.; de Freitas, Thales R. O.; Eizirik, Eduardo

    2013-01-01

    The puma is an iconic predator that ranges throughout the Americas, occupying diverse habitats. Previous phylogeographic analyses have revealed that it exhibits moderate levels of genetic structure across its range, with few of the classically recognized subspecies being supported as distinct demographic units. Moreover, most of the species’ molecular diversity was found to be in South America. To further investigate the phylogeographic structure and demographic history of pumas we analyzed mtDNA sequences from 186 individuals sampled throughout their range, with emphasis on South America. Our objectives were to refine the phylogeographic assessment within South America and to investigate the demographic history of pumas using a coalescent approach. Our results extend previous phylogeographic findings, reassessing the delimitation of historical population units in South America and demonstrating that this species experienced a considerable demographic expansion in the Holocene, ca. 8,000 years ago. Our analyses indicate that this expansion occurred in South America, prior to the hypothesized re-colonization of North America, which was therefore inferred to be even more recent. The estimated demographic history supports the interpretation that pumas suffered a severe demographic decline in the Late Pleistocene throughout their distribution, followed by population expansion and re-colonization of the range, initiating from South America. PMID:24385863

  8. Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones

    PubMed Central

    2011-01-01

    Background The Iberian Peninsula is recognized as an important refugial area for species survival and diversification during the climatic cycles of the Quaternary. Recent phylogeographic studies have revealed Iberia as a complex of multiple refugia. However, most of these studies have focused either on species with narrow distributions within the region or species groups that, although widely distributed, generally have a genetic structure that relates to pre-Quaternary cladogenetic events. In this study we undertake a detailed phylogeographic analysis of the lizard species, Lacerta lepida, whose distribution encompasses the entire Iberian Peninsula. We attempt to identify refugial areas, recolonization routes, zones of secondary contact and date demographic events within this species. Results Results support the existence of 6 evolutionary lineages (phylogroups) with a strong association between genetic variation and geography, suggesting a history of allopatric divergence in different refugia. Diversification within phylogroups is concordant with the onset of the Pleistocene climatic oscillations. The southern regions of several phylogroups show a high incidence of ancestral alleles in contrast with high incidence of recently derived alleles in northern regions. All phylogroups show signs of recent demographic and spatial expansions. We have further identified several zones of secondary contact, with divergent mitochondrial haplotypes occurring in narrow zones of sympatry. Conclusions The concordant patterns of spatial and demographic expansions detected within phylogroups, together with the high incidence of ancestral haplotypes in southern regions of several phylogroups, suggests a pattern of contraction of populations into southern refugia during adverse climatic conditions from which subsequent northern expansions occurred. This study supports the emergent pattern of multiple refugia within Iberia but adds to it by identifying a pattern of refugia coincident

  9. Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones.

    PubMed

    Miraldo, Andreia; Hewitt, Godfrey M; Paulo, Octavio S; Emerson, Brent C

    2011-06-17

    The Iberian Peninsula is recognized as an important refugial area for species survival and diversification during the climatic cycles of the Quaternary. Recent phylogeographic studies have revealed Iberia as a complex of multiple refugia. However, most of these studies have focused either on species with narrow distributions within the region or species groups that, although widely distributed, generally have a genetic structure that relates to pre-Quaternary cladogenetic events. In this study we undertake a detailed phylogeographic analysis of the lizard species, Lacerta lepida, whose distribution encompasses the entire Iberian Peninsula. We attempt to identify refugial areas, recolonization routes, zones of secondary contact and date demographic events within this species. Results support the existence of 6 evolutionary lineages (phylogroups) with a strong association between genetic variation and geography, suggesting a history of allopatric divergence in different refugia. Diversification within phylogroups is concordant with the onset of the Pleistocene climatic oscillations. The southern regions of several phylogroups show a high incidence of ancestral alleles in contrast with high incidence of recently derived alleles in northern regions. All phylogroups show signs of recent demographic and spatial expansions. We have further identified several zones of secondary contact, with divergent mitochondrial haplotypes occurring in narrow zones of sympatry. The concordant patterns of spatial and demographic expansions detected within phylogroups, together with the high incidence of ancestral haplotypes in southern regions of several phylogroups, suggests a pattern of contraction of populations into southern refugia during adverse climatic conditions from which subsequent northern expansions occurred. This study supports the emergent pattern of multiple refugia within Iberia but adds to it by identifying a pattern of refugia coincident with the southern distribution

  10. Demographic compensation and tipping points in climate-induced range shifts.

    PubMed

    Doak, Daniel F; Morris, William F

    2010-10-21

    To persist, species are expected to shift their geographical ranges polewards or to higher elevations as the Earth's climate warms. However, although many species' ranges have shifted in historical times, many others have not, or have shifted only at the high-latitude or high-elevation limits, leading to range expansions rather than contractions. Given these idiosyncratic responses to climate warming, and their varied implications for species' vulnerability to climate change, a critical task is to understand why some species have not shifted their ranges, particularly at the equatorial or low-elevation limits, and whether such resilience will last as warming continues. Here we show that compensatory changes in demographic rates are buffering southern populations of two North American tundra plants against the negative effects of a warming climate, slowing their northward range shifts, but that this buffering is unlikely to continue indefinitely. Southern populations of both species showed lower survival and recruitment but higher growth of individual plants, possibly owing to longer, warmer growing seasons. Because of these and other compensatory changes, the population growth rates of southern populations are not at present lower than those of northern ones. However, continued warming may yet prove detrimental, as most demographic rates that improved in moderately warmer years declined in the warmest years, with the potential to drive future population declines. Our results emphasize the need for long-term, range-wide measurement of all population processes to detect demographic compensation and to identify nonlinear responses that may lead to sudden range shifts as climatic tipping points are exceeded.

  11. Colonization and demographic expansion of freshwater fauna across the Hawaiian archipelago.

    PubMed

    Alda, F; Gagne, R B; Walter, R P; Hogan, J D; Moody, K N; Zink, F; McIntyre, P B; Gilliam, J F; Blum, M J

    2016-10-01

    It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here, we assessed whether this principle extends to oceanic island streams. We examined rangewide mtDNA sequence variation in four stream-dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither corresponds to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411-0.935 mya, suggesting ecological opportunities for colonization in this group were temporally constrained. These findings indicate that stream communities form across colonization windows, underscoring the importance of ecological opportunities in shaping island freshwater diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Targeted capture sequencing in Whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome

    Treesearch

    John V. Syring; Jacob A. Tennessen; Tara N. Jennings; Jill Wegrzyn; Camille Scelfo-Dalbey; Richard Cronn

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats – climate change, white pine blister rust, mountain pine beetle, and fire exclusion – and it is suffering significant mortality range-wide, prompting the tree to be listed as ‘...

  13. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  14. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  15. Evolution of density-dependent movement during experimental range expansions.

    PubMed

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Characterization of demographic expansions from pairwise comparisons of linked microsatellite haplotypes.

    PubMed

    Navascués, Miguel; Hardy, Olivier J; Burgarella, Concetta

    2009-03-01

    This work extends the methods of demographic inference based on the distribution of pairwise genetic differences between individuals (mismatch distribution) to the case of linked microsatellite data. Population genetics theory describes the distribution of mutations among a sample of genes under different demographic scenarios. However, the actual number of mutations can rarely be deduced from DNA polymorphisms. The inclusion of mutation models in theoretical predictions can improve the performance of statistical methods. We have developed a maximum-pseudolikelihood estimator for the parameters that characterize a demographic expansion for a series of linked loci evolving under a stepwise mutation model. Those loci would correspond to DNA polymorphisms of linked microsatellites (such as those found on the Y chromosome or the chloroplast genome). The proposed method was evaluated with simulated data sets and with a data set of chloroplast microsatellites that showed signal for demographic expansion in a previous study. The results show that inclusion of a mutational model in the analysis improves the estimates of the age of expansion in the case of older expansions.

  17. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories.

    PubMed

    Statham, Mark J; Murdoch, James; Janecka, Jan; Aubry, Keith B; Edwards, Ceiridwen J; Soulsbury, Carl D; Berry, Oliver; Wang, Zhenghuan; Harrison, David; Pearch, Malcolm; Tomsett, Louise; Chupasko, Judith; Sacks, Benjamin N

    2014-10-01

    Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world's most widely distributed wild terrestrial carnivore. Analyses of 697 bp of mitochondrial sequence in ~1000 individuals suggested an ancient Middle Eastern origin for all extant red foxes and a 400 kya (SD = 139 kya) origin of the primary North American (Nearctic) clade. Demographic analyses indicated a major expansion in Eurasia during the last glaciation (~50 kya), coinciding with a previously described secondary transfer of a single matriline (Holarctic) to North America. In contrast, North American matrilines (including the transferred portion of Holarctic clade) exhibited no signatures of expansion until the end of the Pleistocene (~12 kya). Analyses of 11 autosomal loci from a subset of foxes supported the colonization time frame suggested by mtDNA (and the fossil record) but, in contrast, reflected no detectable secondary transfer, resulting in the most fundamental genomic division of red foxes at the Bering Strait. Endemic continental Y-chromosome clades further supported this pattern. Thus, intercontinental genomic exchange was overall very limited, consistent with long-term reproductive isolation since the initial colonization of North America. Based on continental divergence times in other carnivoran species pairs, our findings support a model of peripatric speciation and are consistent with the previous classification of the North American red fox as a distinct species, V. fulva. © 2014 John Wiley & Sons Ltd.

  18. Range-wide success of red-cockaded woodpecker translocations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, John W; Costa, Ralph

    2004-12-31

    Edwards, John W.; Costa, Ralph. 2004. Range-wide success of red-cockaded woodpecker translocations. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 6. Translocation. Pp 307-311. Abstract: Red-cockaded woodpeckers (Picoides borealis) have declined range-wide during the past century, suffering from habitat loss and the effects of fire exclusion in older southern pine forests. Red-cockaded woodpecker translocations are a potentially important tool in conservation efforts to reestablish red-cockaded woodpeckers in areas from which they have been extirpated. Currently, translocations are critical in ongoing efforts to savemore » and restore the many existing small populations. We examined the effects of demographic and environmental factors on the range-wide success of translocations between 1989 and 1995.« less

  19. Using demography and movement behavior to predict range expansion of the southern sea otter.

    USGS Publications Warehouse

    Tinker, M.T.; Doak, D.F.; Estes, J.A.

    2008-01-01

    In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989–2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.

  20. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  1. Long-distance dispersal suppresses introgression of local alleles during range expansions

    PubMed Central

    Amorim, C E G; Hofer, T; Ray, N; Foll, M; Ruiz-Linares, A; Excoffier, L

    2017-01-01

    During range expansions, even low levels of interbreeding can lead to massive introgression of local alleles into an invader's genome. Nonetheless, this pattern is not always observed in human populations. For instance, European Americans in North America are barely introgressed by Amerindian genes in spite of known contact and admixture. With coalescent spatially explicit simulations, we examined the impact of long-distance dispersal (LDD) events on introgression of local alleles into the invading population using a set of different demographic scenarios applicable to a diverse range of natural populations and species. More specifically, we consider two distinct LDD models: one where LDD events originate in the range core and targets only the expansion front and a second one where LDD events can occur from any area to any other. We find that LDD generally prevents introgression, but that LDD events specifically targeting the expansion front are most efficient in suppressing introgression. This is likely due to the fact that LDD allows for the presence of a larger number of invader alleles at the wave front, where effective population size is thus increased and local introgressed alleles are rapidly outnumbered. We postulate that the documented settlement of pioneers directly on the wave front in North America has contributed to low levels of Amerindian admixture observed in European Americans and that this phenomenon may well explain the lack of introgression after a range expansion in natural populations without the need to evoke other mechanisms such as natural selection. PMID:27577693

  2. Multiple dispersal vectors drive range expansion in an invasive marine species.

    PubMed

    Richardson, Mark F; Sherman, Craig D H; Lee, Randall S; Bott, Nathan J; Hirst, Alastair J

    2016-10-01

    The establishment and subsequent spread of invasive species is widely recognized as one of the most threatening processes contributing to global biodiversity loss. This is especially true for marine and estuarine ecosystems, which have experienced significant increases in the number of invasive species with the increase in global maritime trade. Understanding the rate and mechanisms of range expansion is therefore of significant interest to ecologists and conservation managers alike. Using a combination of population genetic surveys, environmental DNA (eDNA) plankton sampling and hydrodynamic modelling, we examined the patterns of introduction of the predatory Northern Pacific seastar (Asterias amurensis) and pathways of secondary spread within southeast Australia. Genetic surveys across the invasive range reveal some genetic divergence between the two main invasive regions and no evidence of ongoing gene flow, a pattern that is consistent with the establishment of the second invasive region via a human-mediated translocation event. In contrast, hydrodynamic modelling combined with eDNA plankton sampling demonstrated that the establishment of range expansion populations within a region is consistent with natural larval dispersal and recruitment. Our results suggest that both anthropogenic and natural dispersal vectors have played an important role in the range expansion of this species in Australia. The multiple modes of spread combined with high levels of fecundity and a long larval duration in A. amurensis suggests it is likely to continue its range expansion and significantly impact Australian marine ecosystems. © 2016 John Wiley & Sons Ltd.

  3. Assessing global range expansion in a cryptic species complex: insights from the red seaweed genus Asparagopsis (Florideophyceae).

    PubMed

    Zanolla, Marianela; Altamirano, María; Carmona, Raquel; De la Rosa, Julio; Souza-Egipsy, Virginia; Sherwood, Alison; Tsiamis, Konstantinos; Barbosa, Ana Márcia; Muñoz, Antonio Román; Andreakis, Nikos

    2018-02-01

    The mitochondrial genetic diversity, distribution and invasive potential of multiple cryptic operational taxonomic units (OTUs) of the red invasive seaweed Asparagopsis were assessed by studying introduced Mediterranean and Hawaiian populations. Invasive behavior of each Asparagopsis OTU was inferred from phylogeographic reconstructions, past historical demographic dynamics, recent range expansion assessments and future distributional predictions obtained from demographic models. Genealogical networks resolved Asparagopsis gametophytes and tetrasporophytes into four A. taxiformis and one A. armata cryptic OTUs. Falkenbergia isolates of A. taxiformis L3 were recovered for the first time in the western Mediterranean Sea and represent a new introduction for this area. Neutrality statistics supported past range expansion for A. taxiformis L1 and L2 in Hawaii. On the other hand, extreme geographic expansion and an increase in effective population size were found only for A. taxiformis L2 in the western Mediterranean Sea. Distribution models predicted shifts of the climatically suitable areas and population expansion for A. armata L1 and A. taxiformis L1 and L2. Our integrated study confirms a high invasive risk for A. taxiformis L1 and L2 in temperate and tropical areas. Despite the differences in predictions among modelling approaches, a number of regions were identified as zones with high invasion risk for A. taxiformis L2. Since range shifts are likely climate-driven phenomena, future invasive behavior cannot be excluded for the rest of the lineages. © 2017 Phycological Society of America.

  4. Molecular Evidence of Demographic Expansion of the Chagas Disease Vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia

    PubMed Central

    Gómez-Palacio, Andrés; Triana, Omar

    2014-01-01

    Background Triatoma dimidiata is one of the most significant vectors of Chagas disease in Central America and Colombia, and, as in most species, its pattern of genetic variation within and among populations is strongly affected by its phylogeographic history. A putative origin from Central America has been proposed for Colombian populations, and high genetic differentiation among three biographically different population groups has recently been evidenced. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonization, can be inferred. We analyzed the genealogies of the nicotinamide adenine dinucleotide dehydrogenase 4 (ND4) and the cytochrome oxidase subunit 1-mitochondrial genes, as well as partial nuclear ITS-2 DNA sequences obtained across most of the eco-geographical range in Colombia, to assess the population structure and demographic factors that may explain the geographical distribution of T. dimidiata in this country. Results The population structure results support a significant association between genetic divergence and the eco-geographical location of population groups, suggesting that clear signals of demographic expansion can explain the geographical distribution of haplotypes of population groups. Additionally, empirical date estimation of the event suggests that the population's expansion can be placed after the emergence of the Panama Isthmus, and that it was possibly followed by a population fragmentation process, perhaps resulting from local adaptation accomplished by orographic factors such as geographical isolation. Conclusion Inferences about the historical population processes in Colombian T. dimidiata populations are generally in accordance with population expansions that may have been accomplished by two important biotic and orographic events such as the Great American Interchange and the uplift of the eastern range of the Andes mountains in central Colombia. PMID:24625572

  5. Range expansion of heterogeneous populations.

    PubMed

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  6. Demographic Responses To Climate Manipulations Across a Species Range

    NASA Astrophysics Data System (ADS)

    Oldfather, M. F.

    2016-12-01

    Species biogeographic responses to climate change will occur through the local extinction and establishment of populations. The overall performance of populations across a species range is shaped by the idiosyncratic sensitivities of demographic rates to the changing climate conditions. Heterogeneous topography partially decouples temperature and soil moisture presenting an opportunity to disentangle demographic sensitivity to multiple local climate variables and refine range shift predictions in response to complex climate change. Since 2013, I have monitored 16 populations of a long-lived alpine plant, Ivesia lycopodioides var. scandularis (Rosaceae) across the entirety of its altitudinal range in the arid White Mountains, CA (3350 - 4420m). I quantified microclimatic soil moisture and temperature, and the demographic rates of over 4,000 individuals. Demographic rates exhibited sensitivity to accumulated degree-days (ex. reproduction), soil volumetric water content (ex. germination), or the interaction between these climate variables (ex. survival). These observations motivated an experimental test of the relationship between demography and local climate with manipulations of increased summertime temperature and precipitation in nine populations. All demographic rates were sensitive to the climate manipulations and the magnitude of the demographic response depended on the population's location within the range. However, the modeled population growth rate was only minimally affected by the manipulations in most populations. The inverse responses of many of the demographic rates may allow populations to demographically buffer against the climate manipulations. However, in one low elevation edge population the negative effect of heating on survival overwhelmed the positive effect on germination, indicating that the capacity of populations to demographically buffer may have a limit.

  7. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    PubMed

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  8. Is the sky the limit? On the expansion threshold of a species' range.

    PubMed

    Polechová, Jitka

    2018-06-15

    More than 100 years after Grigg's influential analysis of species' borders, the causes of limits to species' ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species' ranges to shift in response to climate change-and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal-a measure of environmental heterogeneity-and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an 'expansion threshold': adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species' range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter-the strength of genetic drift-is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with 'neighbourhood size'-the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and

  9. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene.

    PubMed

    Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian

    2018-01-08

    The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.

  10. Range expansion through fragmented landscapes under a variable climate

    PubMed Central

    Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J

    2013-01-01

    Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124

  11. Range expansion promotes cooperation in an experimental microbial metapopulation

    PubMed Central

    Datta, Manoshi Sen; Korolev, Kirill S.; Cvijovic, Ivana; Dudley, Carmel; Gore, Jeff

    2013-01-01

    Natural populations throughout the tree of life undergo range expansions in response to changes in the environment. Recent theoretical work suggests that range expansions can have a strong effect on evolution, even leading to the fixation of deleterious alleles that would normally be outcompeted in the absence of migration. However, little is known about how range expansions might influence alleles under frequency- or density-dependent selection. Moreover, there is very little experimental evidence to complement existing theory, since expanding populations are difficult to study in the natural environment. In this study, we have used a yeast experimental system to explore the effect of range expansions on the maintenance of cooperative behaviors, which commonly display frequency- and density-dependent selection and are widespread in nature. We found that range expansions favor the maintenance of cooperation in two ways: (i) through the enrichment of cooperators at the front of the expanding population and (ii) by allowing cooperators to “outrun” an invading wave of defectors. In this system, cooperation is enhanced through the coupling of population ecology and evolutionary dynamics in expanding populations, thus providing experimental evidence for a unique mechanism through which cooperative behaviors could be maintained in nature. PMID:23569263

  12. Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand

    PubMed Central

    Boessenkool, Sanne; Austin, Jeremy J.; Worthy, Trevor H.; Scofield, Paul; Cooper, Alan; Seddon, Philip J.; Waters, Jonathan M.

    2008-01-01

    Recent human expansion into the Pacific initiated a dramatic avian extinction crisis, and surviving taxa are typically interpreted as declining remnants of previously abundant populations. As a case in point, New Zealand's endangered yellow-eyed penguin (Megadyptes antipodes) is widely considered to have been more abundant and widespread in the past. By contrast, our genetic and morphological analyses of prehistoric, historic and modern penguin samples reveal that this species expanded its range to the New Zealand mainland only in the last few hundred years. This range expansion was apparently facilitated by the extinction of M. antipodes' previously unrecognized sister species following Polynesian settlement in New Zealand. Based on combined genetic and morphological data, we describe this new penguin species, the first known to have suffered human-mediated extinction. The range expansion of M. antipodes so soon after the extinction of its sister species supports a historic paradigmatic shift in New Zealand Polynesian culture. Additionally, such a dynamic biological response to human predation reveals a surprising and less recognized potential for species to have benefited from the extinction of their ecologically similar sister taxa and highlights the complexity of large-scale extinction events. PMID:19019791

  13. Protected areas facilitate species’ range expansions

    PubMed Central

    Thomas, Chris D.; Gillingham, Phillipa K.; Bradbury, Richard B.; Roy, David B.; Anderson, Barbara J.; Baxter, John M.; Bourn, Nigel A. D.; Crick, Humphrey Q. P.; Findon, Richard A.; Fox, Richard; Hodgson, Jenny A.; Holt, Alison R.; Morecroft, Mike D.; O’Hanlon, Nina J.; Oliver, Tom H.; Pearce-Higgins, James W.; Procter, Deborah A.; Thomas, Jeremy A.; Walker, Kevin J.; Walmsley, Clive A.; Wilson, Robert J.; Hill, Jane K.

    2012-01-01

    The benefits of protected areas (PAs) for biodiversity have been questioned in the context of climate change because PAs are static, whereas the distributions of species are dynamic. Current PAs may, however, continue to be important if they provide suitable locations for species to colonize at their leading-edge range boundaries, thereby enabling spread into new regions. Here, we present an empirical assessment of the role of PAs as targets for colonization during recent range expansions. Records from intensive surveys revealed that seven bird and butterfly species have colonized PAs 4.2 (median) times more frequently than expected from the availability of PAs in the landscapes colonized. Records of an additional 256 invertebrate species with less-intensive surveys supported these findings and showed that 98% of species are disproportionately associated with PAs in newly colonized parts of their ranges. Although colonizing species favor PAs in general, species vary greatly in their reliance on PAs, reflecting differences in the dependence of individual species on particular habitats and other conditions that are available only in PAs. These findings highlight the importance of current PAs for facilitating range expansions and show that a small subset of the landscape receives a high proportion of colonizations by range-expanding species. PMID:22893689

  14. Region-wide and ecotype-specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences.

    PubMed

    Liu, Shenglin; Hansen, Michael M; Jacobsen, Magnus W

    2016-10-01

    We analysed 81 whole genome sequences of threespine sticklebacks from Pacific North America, Greenland and Northern Europe, representing 16 populations. Principal component analysis of nuclear SNPs grouped populations according to geographical location, with Pacific populations being more divergent from each other relative to European and Greenlandic populations. Analysis of mitogenome sequences showed Northern European populations to represent a single phylogeographical lineage, whereas Greenlandic and particularly Pacific populations showed admixture between lineages. We estimated demographic history using a genomewide coalescence with recombination approach. The Pacific populations showed gradual population expansion starting >100 Kya, possibly reflecting persistence in cryptic refuges near the present distributional range, although we do not rule out possible influence of ancient admixture. Sharp population declines ca. 14-15 Kya were suggested to reflect founding of freshwater populations by marine ancestors. In Greenland and Northern Europe, demographic expansion started ca. 20-25 Kya coinciding with the end of the Last Glacial Maximum. In both regions, marine and freshwater populations started to show different demographic trajectories ca. 8-9 Kya, suggesting that this was the time of recolonization. In Northern Europe, this estimate was surprisingly late, but found support in subfossil evidence for presence of several freshwater fish species but not sticklebacks 12 Kya. The results demonstrate distinctly different demographic histories across geographical regions with potential consequences for adaptive processes. They also provide empirical support for previous assumptions about freshwater populations being founded independently from large, coherent marine populations, a key element in the Transporter Hypothesis invoked to explain the widespread occurrence of parallel evolution across freshwater stickleback populations. © 2016 John Wiley & Sons Ltd.

  15. Historical demographic dynamics underlying local adaptation in the presence of gene flow

    PubMed Central

    Ribeiro, Ângela M; Lopes, Ricardo J; Bowie, Rauri C K

    2012-01-01

    The range of a species is the result of the relative contribution of spatial tracking of environmental requirements and adaptation to ecological conditions outside the ancestral niche. The appearance of novel habitats caused by climatic oscillation can promote range expansion and accompanying demographic growth. The demographic dynamics of populations leave a signal in \\ patterns. We modeled three competing scenarios pertaining to the circumstance of a range expansion by the Karoo Scrub-Robin into newly available habitat resulting from the increasing aridification of southern Africa. Genetic variation was contrasted with the theoretical expectations of a spatial range expansion, and compared with data of a putative adaptive trait. We infer that this bird likely colonized the arid zone, as a consequence of adaptive evolution in a small peripheral population, followed by an expansion with recurrent exchange of migrants with the ancestral populations. PMID:23170207

  16. Low Genetic Diversity in Wide-Spread Eurasian Liver Fluke Opisthorchis felineus Suggests Special Demographic History of This Trematode Species

    PubMed Central

    Brusentsov, Ilja I.; Katokhin, Alexey V.; Brusentsova, Irina V.; Shekhovtsov, Sergei V.; Borovikov, Sergei N.; Goncharenko, Grigoriy G.; Lider, Lyudmila A.; Romashov, Boris V.; Rusinek, Olga T.; Shibitov, Samat K.; Suleymanov, Marat M.; Yevtushenko, Andrey V.; Mordvinov, Viatcheslav A.

    2013-01-01

    Opisthorchis felineus or Siberian liver fluke is a trematode parasite (Opisthorchiidae) that infects the hepato-biliary system of humans and other mammals. Despite its public health significance, this wide-spread Eurasian species is one of the most poorly studied human liver flukes and nothing is known about its population genetic structure and demographic history. In this paper, we attempt to fill this gap for the first time and to explore the genetic diversity in O. felineus populations from Eastern Europe (Ukraine, European part of Russia), Northern Asia (Siberia) and Central Asia (Northern Kazakhstan). Analysis of marker DNA fragments from O. felineus mitochondrial cytochrome c oxidase subunit 1 and 3 (cox1, cox3) and nuclear rDNA internal transcribed spacer 1 (ITS1) sequences revealed that genetic diversity is very low across the large geographic range of this species. Microevolutionary processes in populations of trematodes may well be influenced by their peculiar biology. Nevertheless, we suggest that lack of population genetics structure observed in O. felineus can be primarily explained by the Pleistocene glacial events and subsequent sudden population growth from a very limited group of founders. Rapid range expansion of O. felineus through Asian and European territories after severe bottleneck points to a high dispersal potential of this trematode species. PMID:23634228

  17. Fine-scale genetic structure arises during range expansion of an invasive gecko.

    PubMed

    Short, Kristen Harfmann; Petren, Kenneth

    2011-01-01

    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.

  18. Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM.

    PubMed

    Vitorino, Luciana Cristina; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G

    2016-10-13

    We studied the phylogeography and demographical history of Tabebuia serratifolia (Bignoniaceae) to understand the disjunct geographical distribution of South American seasonally dry tropical forests (SDTFs). We specifically tested if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the last glacial maximum (LGM), the so called South American dry forest refugia hypothesis, using ecological niche modelling (ENM) and statistical phylogeography. We sampled 235 individuals of T. serratifolia in 17 populations in Brazil and analysed the polymorphisms at three intergenic chloroplast regions and ITS nuclear ribosomal DNA. Coalescent analyses showed a demographical expansion at the last c. 130 ka (thousand years before present). Simulations and ENM also showed that the current spatial pattern of genetic diversity is most likely due to a scenario of range expansion and range shift towards the Amazon Basin during the colder and arid climatic conditions associated with the LGM, matching the expected for the South American dry forest refugia hypothesis, although contrasting to the Pleistocene Arc hypothesis. Populations in more stable areas or with higher suitability through time showed higher genetic diversity. Postglacial range shift towards the Southeast and Atlantic coast may have led to spatial genome assortment due to leading edge colonization as the species tracks suitable environments, leading to lower genetic diversity in populations at higher distance from the distribution centroid at 21 ka. Haplotype sharing or common ancestry among populations from Caatinga in Northeast Brazil, Atlantic Forest in Southeast and Cerrado biome and ENM evince the past connection among these biomes.

  19. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

    PubMed

    Pomara, Lars Y; LeDee, Olivia E; Martin, Karl J; Zuckerberg, Benjamin

    2014-07-01

    Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability

  20. Ecocultural range-expansion scenarios for the replacement or assimilation of Neanderthals by modern humans.

    PubMed

    Wakano, Joe Yuichiro; Gilpin, William; Kadowaki, Seiji; Feldman, Marcus W; Aoki, Kenichi

    2018-02-01

    Recent archaeological records no longer support a simple dichotomous characterization of the cultures/behaviors of Neanderthals and modern humans, but indicate much cultural/behavioral variability over time and space. Thus, in modeling the replacement or assimilation of Neanderthals by modern humans, it is of interest to consider cultural dynamics and their relation to demographic change. The ecocultural framework for the competition between hominid species allows their carrying capacities to depend on some measure of the levels of culture they possess. In the present study both population densities and the densities of skilled individuals in Neanderthals and modern humans are spatially distributed and subject to change by spatial diffusion, ecological competition, and cultural transmission within each species. We analyze the resulting range expansions in terms of the demographic, ecological and cultural parameters that determine how the carrying capacities relate to the local densities of skilled individuals in each species. Of special interest is the case of cognitive and intrinsic-demographic equivalence of the two species. The range expansion dynamics may consist of multiple wave fronts of different speeds, each of which originates from a traveling wave solution. Properties of these traveling wave solutions are mathematically derived. Depending on the parameters, these traveling waves can result in replacement of Neanderthals by modern humans, or assimilation of the former by the latter. In both the replacement and assimilation scenarios, the first wave of intrusive modern humans is characterized by a low population density and a low density of skilled individuals, with implications for archaeological visibility. The first invasion is due to weak interspecific competition. A second wave of invasion may be induced by cultural differences between moderns and Neanderthals. Spatially and temporally extended coexistence of the two species, which would have

  1. Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome.

    PubMed

    Syring, John V; Tennessen, Jacob A; Jennings, Tara N; Wegrzyn, Jill; Scelfo-Dalbey, Camille; Cronn, Richard

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats - climate change, white pine blister rust, mountain pine beetle, and fire exclusion - and it is suffering significant mortality range-wide, prompting the tree to be listed as 'globally endangered' by the International Union for Conservation of Nature and 'endangered' by the Canadian government. Conservation collections (in situ and ex situ) are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 27 GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp), and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits), targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect. Quinquefolia) due to their

  2. Successive range expansion promotes diversity and accelerates evolution in spatially structured microbial populations.

    PubMed

    Goldschmidt, Felix; Regoes, Roland R; Johnson, David R

    2017-09-01

    Successive range expansions occur within all domains of life, where one population expands first (primary expansion) and one or more secondary populations then follow (secondary expansion). In general, genetic drift reduces diversity during range expansion. However, it is not clear whether the same effect applies during successive range expansion, mainly because the secondary population must expand into space occupied by the primary population. Here we used an experimental microbial model system to show that, in contrast to primary range expansion, successive range expansion promotes local population diversity. Because of mechanical constraints imposed by the presence of the primary population, the secondary population forms fractal-like dendritic structures. This divides the advancing secondary population into many small sub-populations and promotes intermixing between the primary and secondary populations. We further developed a mathematical model to simulate the formation of dendritic structures in the secondary population during succession. By introducing mutations in the primary or dendritic secondary populations, we found that mutations are more likely to accumulate in the dendritic secondary populations. Our results thus show that successive range expansion can promote intermixing over the short term and increase genetic diversity over the long term. Our results therefore have potentially important implications for predicting the ecological processes and evolutionary trajectories of microbial communities.

  3. Collared peccary range expansion in northwestern New Mexico

    USGS Publications Warehouse

    Albert, S.; Ramotnik, C.A.; Schmitt, C.G.

    2004-01-01

    We report new records of collared peccary (Pecari tajacu) in New Mexico that document its continued northward expansion in the United States, in general, and in northwestern New Mexico, in particular. These records might represent the northernmost extent of its range in the Southwest. Collared peccaries in New Mexico typically occur in desert, rocky, and brushy foothill regions and riparian communities. On the Zuni Indian Reservation, animals were observed at elevations up to 2,335 m in piñon-juniper and ponderosa pine habitats. Climate might play an important role in range expansion and contraction as collared peccaries might migrate north during years of drought or mild winters in search of food or new habitat.

  4. Range expansion by Passer montanus in North America

    USGS Publications Warehouse

    Burnett, J.L.; Roberts, C.P.; Allen, Craig R.; Brown, M.B.; Moulton, M.P.

    2017-01-01

    Passer montanus became established in a small area of central North America following its introduction in 1870. P. montanus underwent minimal range expansion in the first 100 years following introduction. However, the North American population of P. montanus is now growing in size and expanding in geographic distribution, having expanded approximately 125 km to the north by 1970. We quantify the distance of spread by P. montanus from its introduction site in the greater St. Louis, Missouri-Illinois, USA area, using distributional (presence) data from the National Audubon Society Christmas Bird Count surveys for the period of 1951 to 2014. Linear regressions of the average annual range center of P. montanus confirmed significant shifts to the north at a rate of 3.3 km/year (P < 0.001) km/year. Linear regressions of the linear and angular distance of range center indicates significant northern movement (change in angle of mean range center; P < 0.001) since 1951. Our results quantify the extent of a northward range expansion, and suggesting a probable spread of this species northward.

  5. Genetic diversity in butterflies: Interactive effects of habitat fragmentation and climate-driven range expansion.

    PubMed

    Hill, Jane K; Hughes, Clare L; Dytham, Calvin; Searle, Jeremy B

    2006-03-22

    Some species are expanding their ranges polewards during current climate warming. However, anthropogenic fragmentation of suitable habitat is affecting expansion rates and here we investigate interactions between range expansion, habitat fragmentation and genetic diversity. We examined three closely related Satyrinae butterflies, which differ in their habitat associations, from six sites along a transect in England from distribution core to expanding range margin. There was a significant decline in allozyme variation towards an expanding range margin in Pararge aegeria, which has the most restricted habitat availability, but not in Pyronia tithonus whose habitat is more widely available, or in a non-expanding 'control species' (Maniola jurtina). Moreover, data from another transect in Scotland indicated that declines in genetic diversity in P. aegeria were evident only on the transect in England, which had greater habitat fragmentation. Our results indicate that fragmentation of breeding habitats leads to more severe founder events during colonization, resulting in reduced diversity in marginal populations in more specialist species. The continued widespread loss of suitable habitats in the future may increase the likelihood of loss of genetic diversity in expanding species, which may affect whether or not species can adapt to future environmental change.

  6. Blacktip reef sharks, Carcharhinus melanopterus, have high genetic structure and varying demographic histories in their Indo-Pacific range.

    PubMed

    Vignaud, Thomas M; Mourier, Johann; Maynard, Jeffrey A; Leblois, Raphael; Spaet, Julia; Clua, Eric; Neglia, Valentina; Planes, Serge

    2014-11-01

    For free-swimming marine species like sharks, only population genetics and demographic history analyses can be used to assess population health/status as baseline population numbers are usually unknown. We investigated the population genetics of blacktip reef sharks, Carcharhinus melanopterus; one of the most abundant reef-associated sharks and the apex predator of many shallow water reefs of the Indian and Pacific Oceans. Our sampling includes 4 widely separated locations in the Indo-Pacific and 11 islands in French Polynesia with different levels of coastal development. Four-teen microsatellite loci were analysed for samples from all locations and two mitochondrial DNA fragments, the control region and cytochrome b, were examined for 10 locations. For microsatellites, genetic diversity is higher for the locations in the large open systems of the Red Sea and Australia than for the fragmented habitat of the smaller islands of French Polynesia. Strong significant structure was found for distant locations with FST values as high as ~0.3, and a smaller but still significant structure is found within French Polynesia. Both mitochondrial genes show only a few mutations across the sequences with a dominant shared haplotype in French Polynesia and New Caledonia suggesting a common lineage different to that of East Australia. Demographic history analyses indicate population expansions in the Red Sea and Australia that may coincide with sea level changes after climatic events. Expansions and flat signals are indicated for French Polynesia as well as a significant recent bottleneck for Moorea, the most human-impacted lagoon of the locations in French Polynesia. © 2014 John Wiley & Sons Ltd.

  7. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    USGS Publications Warehouse

    Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.

  8. Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Challagundla, Lavanya; Luo, Xiao; Tickler, Isabella A.; Coombs, Geoffrey W.; Sordelli, Daniel O.; Brown, Eric L.; Skov, Robert; Larsen, Anders Rhod; Reyes, Jinnethe; Robledo, Iraida E.; Vazquez, Guillermo J.; Rivera, Raul; Fey, Paul D.; Stevenson, Kurt; Wang, Shu-Hua; Kreiswirth, Barry N.; Mediavilla, Jose R.; Arias, Cesar A.; Planet, Paul J.; Nolan, Rathel L.; Tenover, Fred C.; Goering, Richard V.

    2018-01-01

    ABSTRACT The USA300 North American epidemic (USA300-NAE) clone of methicillin-resistant Staphylococcus aureus has caused a wave of severe skin and soft tissue infections in the United States since it emerged in the early 2000s, but its geographic origin is obscure. Here we use the population genomic signatures expected from the serial founder effects of a geographic range expansion to infer the origin of USA300-NAE and identify polymorphisms associated with its spread. Genome sequences from 357 isolates from 22 U.S. states and territories and seven other countries are compared. We observe two significant signatures of range expansion, including decreases in genetic diversity and increases in derived allele frequency with geographic distance from the Pennsylvania region. These signatures account for approximately half of the core nucleotide variation of this clone, occur genome wide, and are robust to heterogeneity in temporal sampling of isolates, human population density, and recombination detection methods. The potential for positive selection of a gyrA fluoroquinolone resistance allele and several intergenic regions, along with a 2.4 times higher recombination rate in a resistant subclade, is noted. These results are the first to show a pattern of genetic variation that is consistent with a range expansion of an epidemic bacterial clone, and they highlight a rarely considered but potentially common mechanism by which genetic drift may profoundly influence bacterial genetic variation. PMID:29295910

  9. Negative Thermal Expansion over a Wide Temperature Range in Fe-doped MnNiGe Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-02-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23×10-6 K-1 (192-305 K) and -1167.09×10-6 K-1 (246-305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from -64.92×10-6 K-1 (125-274 K) to -4.73×10-6 K-1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  10. The interplay of demography and selection during maize domestication and expansion

    USDA-ARS?s Scientific Manuscript database

    The history of maize has been characterized by major demographic events including changes in population size associated with domestication and subsequent range expansion as well as gene flow with wild relatives. This complex demographic history and its interplay with selection have shaped diversity ...

  11. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    PubMed Central

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of −285.23 × 10−6 K−1 (192–305 K) and −1167.09 × 10−6 K−1 (246–305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K) to −4.73 × 10−6 K−1 (173–229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment. PMID:29468152

  12. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    PubMed Central

    Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768

  13. Foraminiferal Range Expansions: The Mediterranean Sea as a natural laboratory for climate induced invasions

    NASA Astrophysics Data System (ADS)

    Hortense Mouanga, Gloria; Langer, Martin R.

    2015-04-01

    Climate change and biological invasions are key processes that modify biodiversity. One of the most severely affected areas of global change is the Mediterranean Sea, where global warming and the opening of the Suez Canal triggered a mass invasion of tropical Red Sea taxa into Mediterranean territories. Climate models prognosticate that the Mediterranean Sea will be one of the most affected ocean regions and may thus serve as a natural laboratory of future global changes. Among the key taxa that are rapidly expanding their latitudinal range in the Mediterranean Sea are symbiont-bearing foraminifera of the genus Amphistegina. Their range expansion strongly correlates with rising sea surface temperatures and mirrors processes of global change. Amphisteginid foraminifera are among the most prolific foraminiferal species and contribute significantly to shallow-water carbonate sediments. Given their prominent environmental role, rapid biogeographic range expansion, and impact on native ecosystems, amphisteginid range expansion and invasion into new territory are likely to trigger changes in ecosystem functioning. Among the uncertainties, it is not known whether all parts of the Mediterranean will be affected equally and to what extent amphisteginid invasions will impact native biotas. We have initiated a new baseline study to explore the effects of invasive amphisteginids on native foraminiferal biotas and to monitor expansion rates and effects on ecosystem functioning along the current range expansion front. We will present new data on recent shift along the range expansion front and discuss cascading effects on community structures and species richness of native foraminiferal biotas. The magnitude and effects that climate change will have on the Mediterranean foraminiferal faunas may ultimately serve as an example of what would happen along expansion fronts in global oceans.

  14. The Objective and Subjective Evaluation of Multichannel Expansion in Wide Dynamic Range Compression Hearing Instruments

    ERIC Educational Resources Information Center

    Plyler, Patrick N.; Lowery, Kristy J.; Hamby, Hilary M.; Trine, Timothy D.

    2007-01-01

    Purpose: The effects of multichannel expansion on the objective and subjective evaluation of 20 listeners fitted binaurally with 4-channel, digital in-the-ear hearing instruments were investigated. Method: Objective evaluations were conducted in quiet using the Connected Speech Test (CST) and in noise using the Hearing in Noise Test (HINT) at 40,…

  15. Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Li, Hongsheng; Shao, Xingling; Liu, Zhiyu; Kou, Zhiwei; Shan, Yanhu; Shi, Yunbo; Shen, Chong; Liu, Jun

    2018-01-01

    This paper presents the bandwidth expanding method with wide-temperature range for sense mode coupling dual-mass MEMS gyro. The real sensing mode of the gyroscope is analyzed to be the superposition of in-phase and anti-phase sensing modes. The mechanical sensitivity and bandwidth of the gyroscope structure are conflicted with each other and both governed by the frequency difference between sensing and drive modes (min {Δω1, Δω2}). The sensing mode force rebalancing combs stimulation method (FRCSM) is presented to simulate the Coriolis force, and based on this method, the gyro's dynamic characteristics are tested. The sensing closed- loop controller is achieved by operational amplifier based on phase lead method, which enable the magnitude margin and phase margin of the system to reach 7.21 dB and 34.6° respectively, and the closed-loop system also expands gyro bandwidth from 13 Hz (sensing open-loop) to 102 Hz (sensing closed-loop). What's more, the turntable test results show that the sensing closed-loop works stably in wide-temperature range (from -40 °C to 60 °C) and the bandwidth values are 107 Hz @-40 °C and 97 Hz @60 °C. The results indicate that the higher temperature causes lower bandwidth, and verify the simulation results are 103 Hz @-40 °C and 98.2 Hz @60 °C. The new bottleneck of the closed loop bandwidth is the valley generated by conjugate zeros, which is formed by superposition of sensing modes.

  16. The Oriental Fruit Fly, Bactrocera dorsalis, in China: Origin and Gradual Inland Range Expansion Associated with Population Growth

    PubMed Central

    Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers. PMID:21984907

  17. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth.

    PubMed

    Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.

  18. Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography.

    PubMed

    Tian, Shuang; Lei, Shu-Qing; Hu, Wan; Deng, Ling-Li; Li, Bo; Meng, Qing-Lin; Soltis, Douglas E; Soltis, Pamela S; Fan, Deng-Mei; Zhang, Zhi-Yong

    2015-04-01

    Most plant phylogeographic studies in subtropical China have stressed the importance of multiple refugia and limited admixture among refugia. Little attention has been paid to range expansion and recolonization routes in this region. In this study, we implemented a phylogeographic survey on Sargentodoxa cuneata, a widespread woody deciduous climber in subtropical China to determine if it conforms to the expansion-contraction (EC) model during the Pleistocene. Sequence variation of two chloroplast intergenic spacers (IGSs) in 369 individuals from 54 populations of S. cuneata was examined. Twenty-six chloroplast haplotypes were recovered. One of these (H5) occurred across the range of S. cuneata and was absent from only 13 populations. Sixteen of the 26 haplotypes were connected to H5 by one mutation and displayed a star-like pattern in the haplotype network. All chloroplast haplotypes clustered into two lineages (A and B) in a Bayesian tree, and most haplotypes (18 out of 26) originated during the mid-Pleistocene (0.63-1.07Ma). Demographic analyses detected a recent range expansion that occurred at 95.98ka (CI: 61.7-112.53ka) for Lineage A. The genetic signature of an ancient range expansion after the Middle Pleistocene Transition (MPT) was also evident. Three recolonization routes were identified in subtropical China. The results suggest that temperate plants in subtropical China may conform to the EC model to some extent. However, the genetic signature from multiple historical processes may complicate the phylogeographic patterns of organisms in the region due to the mild Pleistocene climate. This study provides a new perspective for understanding the evolutionary history of temperate plants in subtropical China. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China

    NASA Astrophysics Data System (ADS)

    Xiao, Derong; Zhang, Liquan; Zhu, Zhenchang

    2010-06-01

    The range expansion patterns of Spartina alterniflora and the roles which sexual reproduction and asexual propagation play in range expansion were investigated at the Chongming Dongtan nature reserve in the Yangtze Estuary, China. Two range expansion patterns of S. alterniflora at its advancing fronts could be found (1) S. alterniflora-mudflat front (S-M) and (2) S. alterniflora- Scirpus mariqueter-mudflat front (S-S-M). One feature revealed by this study was that a flush of seedling recruitment and establishment in spring was a crucial way for S. alterniflora to colonize new habitats and achieve a fast rate of range expansion. The mean number of seedlings recruited at the S-M front was much higher than that at the S-S-M front. Once established, the survivorship of seedlings was high, both at the S-M and S-S-M fronts. The established seedlings formed new tussocks quickly by vegetative tillering and growth of rhizomes and these finally merged into dense meadows. The mean distance of range expansion of S. alterniflora, after one growing season at the S-M front, was 25.4 ± 3.1 m yr -1 and 2.7 ± 0.5 m yr -1 at the S-S-M front. Sexual reproduction by seedlings and asexual propagation by tillering and growth of rhizomes were the two main means by which S. alterniflora could maintain a fast rate of range expansion on the salt marshes of the Yangtze Estuary. The colonization behaviors of S. alterniflora on advancing fronts differed as a reaction to various external and internal factors. The impact of abiotic and biotic factors governing the range expansion of S. alterniflora and its implications for the spatial structure of tidal wetlands are discussed.

  20. Rapid adaptation to climate facilitates range expansion of an invasive plant.

    PubMed

    Colautti, Robert I; Barrett, Spencer C H

    2013-10-18

    Adaptation to climate, evolving over contemporary time scales, could facilitate rapid range expansion across environmental gradients. Here, we examine local adaptation along a climatic gradient in the North American invasive plant Lythrum salicaria. We show that the evolution of earlier flowering is adaptive at the northern invasion front where it increases fitness as much as, or more than, the effects of enemy release and the evolution of increased competitive ability. However, early flowering decreases investment in vegetative growth, which reduces fitness by a factor of 3 in southern environments where the North American invasion commenced. Our results demonstrate that local adaptation can evolve quickly during range expansion, overcoming environmental constraints on propagule production.

  1. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding

    PubMed Central

    Wood, Eric M.

    2017-01-01

    Anthropogenic changes to the landscape and climate cause novel ecological and evolutionary pressures, leading to potentially dramatic changes in the distribution of biodiversity. Warm winter temperatures can shift species' distributions to regions that were previously uninhabitable. Further, urbanization and supplementary feeding may facilitate range expansions and potentially reduce migration tendency. Here we explore how these factors interact to cause non-uniform effects across a species's range. Using 17 years of data from the citizen science programme Project FeederWatch, we examined the relationships between urbanization, winter temperatures and the availability of supplementary food (i.e. artificial nectar) on the winter range expansion (more than 700 km northward in the past two decades) of Anna's hummingbirds (Calypte anna). We found that Anna's hummingbirds have colonized colder locations over time, were more likely to colonize sites with higher housing density and were more likely to visit feeders in the expanded range compared to the historical range. Additionally, their range expansion mirrored a corresponding increase over time in the tendency of people to provide nectar feeders in the expanded range. This work illustrates how humans may alter the distribution and potentially the migratory behaviour of species through landscape and resource modification. PMID:28381617

  2. Range-wide patterns of greater sage-grouse persistence

    USGS Publications Warehouse

    Aldridge, Cameron L.; Nielsen, Scott E.; Beyer, Hawthorne L.; Boyce, Mark S.; Connelly, John W.; Knick, Steven T.; Schroeder, Michael A.

    2008-01-01

    Aim: Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location: Sagebrush biome of the western USA. Methods: Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results: Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions: Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human

  3. Multimodal dispersal during the range expansion of the tropical house gecko Hemidactylus mabouia

    PubMed Central

    Short, Kristen H; Petren, Kenneth

    2011-01-01

    Dispersal influences both the ecological and evolutionary dynamics of range expansion. While some studies have demonstrated a role for human-mediated dispersal during invasion, the genetic effects of such dispersal remain to be understood, particularly in terrestrial range expansions. In this study, we investigated multimodal dispersal during the range expansion of the invasive gecko Hemidactylus mabouia in Florida using 12 microsatellite loci. We investigated dispersal patterns at the regional scale (metropolitan areas), statewide scale (state of Florida), and global scale (including samples from the native range). Dispersal was limited at the smallest, regional scale, within metropolitan areas, as reflected by the presence of genetic structure at this scale, which is in agreement with a previous study in this same invasion at even smaller spatial scales. Surprisingly, there was no detectable genetic structure at the intermediate statewide scale, which suggests dispersal is not limited across the state of Florida. There was evidence of genetic differentiation between Florida and other areas where H. mabouia occurs, so we concluded that at the largest scale, dispersal was limited. Humans likely contributed to patterns of dispersal at all three scales but in different ways. Infrequent low-volume dispersal has occurred within regions, frequent high-volume dispersal has occurred across the state, and infrequent long-distance dispersal has occurred among continents at the global scale. This study highlights the importance of considering different modes of dispersal at multiple spatial scales to understand the dynamics of invasion and range expansion. PMID:22393494

  4. Bergmann's rule is maintained during a rapid range expansion in a damselfly.

    PubMed

    Hassall, Christopher; Keat, Simon; Thompson, David J; Watts, Phillip C

    2014-02-01

    Climate-induced range shifts result in the movement of a sample of genotypes from source populations to new regions. The phenotypic consequences of those shifts depend upon the sample characteristics of the dispersive genotypes, which may act to either constrain or promote phenotypic divergence, and the degree to which plasticity influences the genotype-environment interaction. We sampled populations of the damselfly Erythromma viridulum from northern Europe to quantify the phenotypic (latitude-body size relationship based on seven morphological traits) and genetic (variation at microsatellite loci) patterns that occur during a range expansion itself. We find a weak spatial genetic structure that is indicative of high gene flow during a rapid range expansion. Despite the potentially homogenizing effect of high gene flow, however, there is extensive phenotypic variation among samples along the invasion route that manifests as a strong, positive correlation between latitude and body size consistent with Bergmann's rule. This positive correlation cannot be explained by variation in the length of larval development (voltinism). While the adaptive significance of latitudinal variation in body size remains obscure, geographical patterns in body size in odonates are apparently underpinned by phenotypic plasticity and this permits a response to one or more environmental correlates of latitude during a range expansion. © 2013 John Wiley & Sons Ltd.

  5. West Nile Virus Range Expansion into British Columbia

    PubMed Central

    Henry, Bonnie; Mak, Sunny; Fraser, Mieke; Taylor, Marsha; Li, Min; Cooper, Ken; Furnell, Allen; Wong, Quantine; Morshed, Muhammad

    2010-01-01

    In 2009, an expansion of West Nile virus (WNV) into the Canadian province of British Columbia was detected. Two locally acquired cases of infection in humans and 3 cases of infection in horses were detected by ELISA and plaque-reduction neutralization tests. Ten positive mosquito pools were detected by reverse transcription PCR. Most WNV activity in British Columbia in 2009 occurred in the hot and dry southern Okanagan Valley. Virus establishment and amplification in this region was likely facilitated by above average nightly temperatures and a rapid accumulation of degree-days in late summer. Estimated exposure dates for humans and initial detection of WNV-positive mosquitoes occurred concurrently with a late summer increase in Culex tarsalis mosquitoes (which spread western equine encephalitis) in the southern Okanagan Valley. The conditions present during this range expansion suggest that temperature and Cx. tarsalis mosquito abundance may be limiting factors for WNV transmission in this portion of the Pacific Northwest. PMID:20678319

  6. Widespread range expansions shape latitudinal variation in insect thermal limits

    NASA Astrophysics Data System (ADS)

    Lancaster, Lesley T.

    2016-06-01

    Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change--for instance to predict which regions are most susceptible to climate change-induced biodiversity loss. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

  7. Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics.

    PubMed

    van der Meer, Sascha; Jacquemyn, Hans; Carey, Peter D; Jongejans, Eelke

    2016-06-01

    The population dynamics and distribution limits of plant species are predicted to change as the climate changes. However, it remains unclear to what extent climate variables affect population dynamics, which vital rates are most sensitive to climate change, and whether the same vital rates drive population dynamics in different populations. In this study, we used long-term demographic data from two populations of the terrestrial orchid Himantoglossum hircinum growing at the northern edge of their geographic range to quantify the influence of climate change on demographic vital rates. Integral projection models were constructed to study how climate conditions between 1991 and 2006 affected population dynamics and to assess how projected future climate change will affect the long-term viability of this species. Based on the parameterised vital rate functions and the observed climatic conditions, one of the studied populations had an average population growth rate above 1 (λ = 1.04), while the other was declining at ca. 3 % year(-1) (λ = 0.97). Variation in temperature and precipitation mainly affected population growth through their effect on survival and fecundity. Based on UK Climate Projection 2009 estimates of future climate conditions for three greenhouse gas emission scenarios, population growth rates are expected to increase in one of the studied populations. Overall, our results indicate that the observed changes in climatic conditions appeared to be beneficial to the long-term survival of the species in the UK and suggest that they may have been the driving force behind the current range expansion of H. hircinum in England.

  8. Genetic drift and selection in many-allele range expansions.

    PubMed

    Weinstein, Bryan T; Lavrentovich, Maxim O; Möbius, Wolfram; Murray, Andrew W; Nelson, David R

    2017-12-01

    We experimentally and numerically investigate the evolutionary dynamics of four competing strains of E. coli with differing expansion velocities in radially expanding colonies. We compare experimental measurements of the average fraction, correlation functions between strains, and the relative rates of genetic domain wall annihilations and coalescences to simulations modeling the population as a one-dimensional ring of annihilating and coalescing random walkers with deterministic biases due to selection. The simulations reveal that the evolutionary dynamics can be collapsed onto master curves governed by three essential parameters: (1) an expansion length beyond which selection dominates over genetic drift; (2) a characteristic angular correlation describing the size of genetic domains; and (3) a dimensionless constant quantifying the interplay between a colony's curvature at the frontier and its selection length scale. We measure these parameters with a new technique that precisely measures small selective differences between spatially competing strains and show that our simulations accurately predict the dynamics without additional fitting. Our results suggest that the random walk model can act as a useful predictive tool for describing the evolutionary dynamics of range expansions composed of an arbitrary number of genotypes with different fitnesses.

  9. A wide-angle high Mach number modal expansion for infrasound propagation.

    PubMed

    Assink, Jelle; Waxler, Roger; Velea, Doru

    2017-03-01

    The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.

  10. Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird

    PubMed Central

    Liebl, Andrea L.; Martin, Lynn B.

    2012-01-01

    Global anthropogenic changes are occurring at an unprecedented rate; one change, human-facilitated introduction of species outside their native range, has had significant ecological and economic impacts. Surprisingly, what traits facilitate range expansions post-introduction is relatively unknown. This information could help predict future expansions of introduced species as well as native species shifting their ranges as climate conditions change. Here, we asked whether specific behavioural and physiological traits were important in the ongoing expansion of house sparrows (Passer domesticus) across Kenya. We predicted that birds at the site of initial introduction (Mombasa, introduced approx. 1950) would behave and regulate corticosterone, a stress hormone, differently than birds at the range edge (Kakamega, approx. 885 km from Mombasa; colonized within the last 5 years). Specifically, we predicted greater exploratory behaviour and stronger corticosterone response to stressors in birds at the range edge, which may facilitate the identification, resolution and memory of stressors. Indeed, we found that distance from Mombasa (a proxy for population age) was a strong predictor of both exploratory behaviour and corticosterone release in response to restraint (but only while birds were breeding). These results suggest that certain behavioural and neuroendocrine traits may influence the ability of species to colonize novel habitats. PMID:22951742

  11. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  12. Demographic attributes and knowledge acquisition among graduate-entry medical students.

    PubMed

    Finucane, Paul; Flannery, Denise; McGrath, Deirdre; Saunders, Jean

    2013-01-01

    Recent changes to undergraduate (basic) medical education in Ireland have linked an expansion of student numbers with wide-ranging reforms. Medical schools have broadened access by admitting more mature students from diverse backgrounds and have increased their international student numbers. This has resulted in major changes to the demographic profile of students at Irish medical schools. To determine whether the demographic characteristics of students impact on their academic performance and specifically on their rate of knowledge acquisition. As a formative assessment exercise, we administered a progress test to all students twice each year during a 4 year graduate-entry medical programme. We compared scores over time between students from different age cohorts, of different gender, of different nationalities and from different academic backgrounds. In the 1143 tests taken by 285 students to date, there were no significant differences in the rate of knowledge acquisition between the various groups. Early in the course, students from a non-biological science background performed less well than others but outperformed their peers by the time of graduation. Neither age, gender, nationality nor academic background impacts on the rate of knowledge acquisition among graduate-entry medical students.

  13. The Rate of Beneficial Mutations Surfing on the Wave of a Range Expansion

    PubMed Central

    Lehe, Rémi; Hallatschek, Oskar; Peliti, Luca

    2012-01-01

    Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions. PMID:22479175

  14. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  15. Rapid evolution of phenology during range expansion with recent climate change.

    PubMed

    Lustenhouwer, Nicky; Wilschut, Rutger A; Williams, Jennifer L; van der Putten, Wim H; Levine, Jonathan M

    2018-02-01

    Although climate warming is expected to make habitat beyond species' current cold range edge suitable for future colonization, this new habitat may present an array of biotic or abiotic conditions not experienced within the current range. Species' ability to shift their range with climate change may therefore depend on how populations evolve in response to such novel environmental conditions. However, due to the recent nature of thus far observed range expansions, the role of rapid adaptation during climate change migration is only beginning to be understood. Here, we evaluated evolution during the recent native range expansion of the annual plant Dittrichia graveolens, which is spreading northward in Europe from the Mediterranean region. We examined genetically based differentiation between core and edge populations in their phenology, a trait that is likely under selection with shorter growing seasons and greater seasonality at northern latitudes. In parallel common garden experiments at range edges in Switzerland and the Netherlands, we grew plants from Dutch, Swiss, and central and southern French populations. Population genetic analysis following RAD-sequencing of these populations supported the hypothesized central France origins of the Swiss and Dutch range edge populations. We found that in both common gardens, northern plants flowered up to 4 weeks earlier than southern plants. This differentiation in phenology extended from the core of the range to the Netherlands, a region only reached from central France over approximately the last 50 years. Fitness decreased as plants flowered later, supporting the hypothesized benefits of earlier flowering at the range edge. Our results suggest that native range expanding populations can rapidly adapt to novel environmental conditions in the expanded range, potentially promoting their ability to spread. © 2017 John Wiley & Sons Ltd.

  16. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangbo; Chen, Yanyu; Li, Tiantian

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  17. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE PAGES

    Li, Yangbo; Chen, Yanyu; Li, Tiantian; ...

    2018-02-02

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  18. Phylogeographic and genome-wide investigations of Vietnam ethnic groups reveal signatures of complex historical demographic movements.

    PubMed

    Pischedda, S; Barral-Arca, R; Gómez-Carballa, A; Pardo-Seco, J; Catelli, M L; Álvarez-Iglesias, V; Cárdenas, J M; Nguyen, N D; Ha, H H; Le, A T; Martinón-Torres, F; Vullo, C; Salas, A

    2017-10-03

    The territory of present-day Vietnam was the cradle of one of the world's earliest civilizations, and one of the first world regions to develop agriculture. We analyzed the mitochondrial DNA (mtDNA) complete control region of six ethnic groups and the mitogenomes from Vietnamese in The 1000 Genomes Project (1000G). Genome-wide data from 1000G (~55k SNPs) were also investigated to explore different demographic scenarios. All Vietnamese carry South East Asian (SEA) haplotypes, which show a moderate geographic and ethnic stratification, with the Mong constituting the most distinctive group. Two new mtDNA clades (M7b1a1f1 and F1f1) point to historical gene flow between the Vietnamese and other neighboring countries. Bayesian-based inferences indicate a time-deep and continuous population growth of Vietnamese, although with some exceptions. The dramatic population decrease experienced by the Cham 700 years ago (ya) fits well with the Nam tiến ("southern expansion") southwards from their original heartland in the Red River Delta. Autosomal SNPs consistently point to important historical gene flow within mainland SEA, and add support to a main admixture event occurring between Chinese and a southern Asian ancestral composite (mainly represented by the Malay). This admixture event occurred ~800 ya, again coinciding with the Nam tiến.

  19. Epigenetic Potential as a Mechanism of Phenotypic Plasticity in Vertebrate Range Expansions.

    PubMed

    Kilvitis, Holly J; Hanson, Haley; Schrey, Aaron W; Martin, Lynn B

    2017-08-01

    During range expansions, organisms are often exposed to multiple pressures, including novel enemies (i.e., predators, competitors and/or parasites) and unfamiliar or limited resources. Additionally, small propagule sizes at range edges can result in genetic founder effects and bottlenecks, which can affect phenotypic diversity and thus selection. Despite these obstacles, individuals in expanding populations often thrive at the periphery of a range, and this success may be mediated by phenotypic plasticity. Increasing evidence suggests that epigenetic mechanisms may underlie such plasticity because they allow for more rapid phenotypic responses to novel environments than are possible via the accumulation of genetic variation. Here, we review how molecular epigenetic mechanisms could facilitate plasticity in range-expanding organisms, emphasizing the roles of DNA methylation and other epigenetic marks in the physiological regulatory networks that drive whole-organism performance. We focus on the hypothalamic-pituitary-adrenal (HPA) axis, arguing that epigenetically-mediated plasticity in the regulation of glucocorticoids in particular might strongly impact range expansions. We hypothesize that novel environments release and/or select for epigenetic potential in HPA variation and hence organismal performance and ultimately fitness. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Population genetics and the evolution of geographic range limits in an annual plant.

    PubMed

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  1. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  2. Long-range corrected density functional through the density matrix expansion based semilocal exchange hole.

    PubMed

    Patra, Bikash; Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.

  3. Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming-correlated genetic admixture and population-specific temperature adaptations.

    PubMed

    Krehenwinkel, Henrik; Tautz, Diethard

    2013-04-01

    Poleward range expansions are observed for an increasing number of species, which may be an effect of global warming during the past decades. However, it is still not clear in how far these expansions reflect simple geographical shifts of species ranges, or whether new genetic adaptations play a role as well. Here, we analyse the expansion of the wasp spider Argiope bruennichi into Northern Europe during the last century. We have used a range-wide sampling of contemporary populations and historical specimens from museums to trace the phylogeography and genetic changes associated with the range shift. Based on the analysis of mitochondrial, microsatellite and SNP markers, we observe a higher level of genetic diversity in the expanding populations, apparently due to admixture of formerly isolated lineages. Using reciprocal transplant experiments for testing overwintering tolerance, as well as temperature preference and tolerance tests in the laboratory, we find that the invading spiders have possibly shifted their temperature niche. This may be a key adaptation for survival in Northern latitudes. The museum samples allow a reconstruction of the invasion's genetic history. A first, small-scale range shift started around 1930, in parallel with the onset of global warming. A more massive invasion of Northern Europe associated with genetic admixture and morphological changes occurred in later decades. We suggest that the latter range expansion into far Northern latitudes may be a consequence of the admixture that provided the genetic material for adaptations to new environmental regimes. Hence, global warming could have facilitated the initial admixture of populations and this resulted in genetic lineages with new habitat preferences. © 2013 Blackwell Publishing Ltd.

  4. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    USGS Publications Warehouse

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  5. Genetic traces of east-to-west human expansion waves in Eurasia.

    PubMed

    Chaix, Raphaëlle; Austerlitz, Frédéric; Hegay, Tatyana; Quintana-Murci, Lluís; Heyer, Evelyne

    2008-07-01

    In this study, we describe the landscape of human demographic expansions in Eurasia using a large continental Y chromosome and mitochondrial DNA dataset. Variation at these two uniparentally-inherited genetic systems retraces expansions that occurred in the past 60 ky, and shows a clear decrease of expansion ages from east to west Eurasia. To investigate the demographic events at the origin of this westward decrease of expansion ages, the estimated divergence ages between Eurasian populations are compared with the estimated expansion ages within each population. Both markers suggest that the demographic expansion diffused from east to west in Eurasia in a demic way, i.e., through migrations of individuals (and not just through diffusion of new technologies), highlighting the prominent role of eastern regions within Eurasia during Palaeolithic times. (c) 2008 Wiley-Liss, Inc.

  6. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  7. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  8. Potential trophic cascades triggered by the barred owl range expansion

    USGS Publications Warehouse

    Holm, Samantha R.; Noon, Barry R.; Wiens, David; Ripple, William J.

    2016-01-01

    Recently, the barred owl (Strix varia) has expanded its range into the Pacific Northwest of the United States resulting in pronounced effects on the demography and behavior of the northern spotted owl (S. occidentalis caurina). The range expansion has brought together historically allopatric species, creating the potential for significant changes in the avian predator community with possible cascading effects on food-web dynamics. The adverse effects of the barred owl on the behavior and demography of the northern spotted owl are well-documented, but little is known about the immediate and long-term effects changes in the predator community may have on native species composition and ecosystem processes. Based on northern spotted owl and barred owl selection for diet and habitat resources, there is a potential for trophic cascades within the region's predator and prey communities, differing responses by their shared and unique prey species, and possible direct and indirect effects on ecosystem processes. We explored the possible ecological consequences of the barred owl range expansion to wildlife communities of the Pacific Northwest based on the theoretical underpinnings of predator–prey relationships, interspecific competition, intraguild predation, and potential cascading trophic interactions. Negative effects on fitness of northern spotted owls because of interspecific competition with barred owls are strong selection forces that may contribute to the regional extinction of the northern spotted owl. In addition, we posit that shared prey species and those uniquely consumed by barred owls, along with other competing native predators, may experience changes in behavior, abundance, and distribution as a result of increased rates of predation by rapidly expanding populations of barred owls.

  9. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  10. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    PubMed

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest

  11. Successful despite poor flight performance: range expansion is associated with enhanced exploratory behaviour and fast development.

    PubMed

    Reim, Elisabeth; Blesinger, Simone; Förster, Lisa; Fischer, Klaus

    2018-05-29

    Anthropogenic interference forces species to respond to changing environmental conditions. One possible response is dispersal and concomitant range shifts, allowing individuals to escape unfavourable conditions or to track the shifting climate niche. Range expansions depend on both dispersal capacity and the ability to establish populations beyond the former range. We here compare well-established core populations with recently established edge populations in the currently northward expanding butterfly Lycaena tityrus. Edge populations were characterized by shorter development times and smaller size, a higher sensitivity to high temperature and an enhanced exploratory behaviour. The differences between core and edge populations found suggest adaptation to local climates and an enhanced dispersal ability in edge populations. In particular, enhanced exploratory behaviour may be advantageous in all steps of the dispersal process and may have facilitated the current range expansion. This study describes differences associated with a current range expansion, knowledge which might be useful for a better understanding of species responses to environmental change. We further report on variation between males and females in morphology and flight behaviour, with males showing a longer flight endurance and more pronounced exploratory behaviour than females. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  12. Logarithmic circuit with wide dynamic range

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  13. Oscillator or Amplifier With Wide Frequency Range

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.; Sutton, J.

    1987-01-01

    Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.

  14. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.

    PubMed

    Braschler, Brigitte; Hill, Jane K

    2007-05-01

    1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the

  15. Wide speed range turboshaft study

    NASA Technical Reports Server (NTRS)

    Dangelo, Martin

    1995-01-01

    NASA-Lewis and NASA-Ames have sponsored a series of studies over the last few years to identify key high speed rotorcraft propulsion and airframe technologies. NASA concluded from these studies that for near term aircraft with cruise speeds up to 450 kt, tilting rotor rotorcraft concepts are the most economical and technologically viable. The propulsion issues critical to tilting rotor rotorcraft are: (1) high speed cruise propulsion system efficiency and (2) adequate power to hover safely with one engine inoperative. High speed cruise propeller efficiency can be dramatically improved by reducing rotor speed, yet high rotor speed is critical for good hover performance. With a conventional turboshaft, this wide range of power turbine operating speeds would result in poor engine performance at one or more of these critical operating conditions. This study identifies several wide speed range turboshaft concepts, and analyzes their potential to improve performance at the diverse cruise and hover operating conditions. Many unique concepts were examined, and the selected concepts are simple, low cost, relatively low risk, and entirely contained within the power turbine. These power turbine concepts contain unique, incidence tolerant airfoil designs that allow the engine to cruise efficiently at 51 percent of the hover rotor speed. Overall propulsion system efficiency in cruise is improved as much as 14 percent, with similar improvements in engine weight and cost. The study is composed of a propulsion requirement survey, a concept screening study, a preliminary definition and evaluation of selected concepts, and identification of key technologies and development needs. In addition, a civil transport tilting rotor rotorcraft mission analysis was performed to show the benefit of these concepts versus a conventional turboshaft. Other potential applications for this technology are discussed.

  16. Population genetic structure and demographic history of the black fly vector, Simulium nodosum in Thailand.

    PubMed

    Chaiyasan, P; Pramual, P

    2016-09-01

    An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600-5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization. © 2016 The Royal Entomological Society.

  17. Structured Counseling for Auditory Dynamic Range Expansion.

    PubMed

    Gold, Susan L; Formby, Craig

    2017-02-01

    A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment.

  18. Structured Counseling for Auditory Dynamic Range Expansion

    PubMed Central

    Gold, Susan L.; Formby, Craig

    2017-01-01

    A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment. PMID:28286367

  19. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of

  20. Impacts of land cover data selection and trait parameterisation on dynamic modelling of species' range expansion.

    PubMed

    Heikkinen, Risto K; Bocedi, Greta; Kuussaari, Mikko; Heliölä, Janne; Leikola, Niko; Pöyry, Juha; Travis, Justin M J

    2014-01-01

    Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity), with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.

  1. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation

    USGS Publications Warehouse

    Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.

    2018-01-01

    Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the

  2. Non-climatic constraints on upper elevational plant range expansion under climate change

    PubMed Central

    Brown, Carissa D.; Vellend, Mark

    2014-01-01

    We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion. PMID:25253462

  3. Impact of Sampling Schemes on Demographic Inference: An Empirical Study in Two Species with Different Mating Systems and Demographic Histories

    PubMed Central

    St. Onge, K. R.; Palmé, A. E.; Wright, S. I.; Lascoux, M.

    2012-01-01

    Most species have at least some level of genetic structure. Recent simulation studies have shown that it is important to consider population structure when sampling individuals to infer past population history. The relevance of the results of these computer simulations for empirical studies, however, remains unclear. In the present study, we use DNA sequence datasets collected from two closely related species with very different histories, the selfing species Capsella rubella and its outcrossing relative C. grandiflora, to assess the impact of different sampling strategies on summary statistics and the inference of historical demography. Sampling strategy did not strongly influence the mean values of Tajima’s D in either species, but it had some impact on the variance. The general conclusions about demographic history were comparable across sampling schemes even when resampled data were analyzed with approximate Bayesian computation (ABC). We used simulations to explore the effects of sampling scheme under different demographic models. We conclude that when sequences from modest numbers of loci (<60) are analyzed, the sampling strategy is generally of limited importance. The same is true under intermediate or high levels of gene flow (4Nm > 2–10) in models in which global expansion is combined with either local expansion or hierarchical population structure. Although we observe a less severe effect of sampling than predicted under some earlier simulation models, our results should not be seen as an encouragement to neglect this issue. In general, a good coverage of the natural range, both within and between populations, will be needed to obtain a reliable reconstruction of a species’s demographic history, and in fact, the effect of sampling scheme on polymorphism patterns may itself provide important information about demographic history. PMID:22870403

  4. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  5. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients.

    PubMed

    Osland, Michael J; Day, Richard H; Hall, Courtney T; Brumfield, Marisa D; Dugas, Jason L; Jones, William R

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  6. Mangrove expansion and contraction at a poleward range limit: Climate extremes and land-ocean temperature gradients

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  7. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  8. Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion.

    PubMed

    Van Petegem, Katrien H P; Boeye, Jeroen; Stoks, Robby; Bonte, Dries

    2016-11-01

    In the context of climate change and species invasions, range shifts increasingly gain attention because the rates at which they occur in the Anthropocene induce rapid changes in biological assemblages. During range shifts, species experience multiple selection pressures. For poleward expansions in particular, it is difficult to interpret observed evolutionary dynamics because of the joint action of evolutionary processes related to spatial selection and to adaptation toward local climatic conditions. To disentangle the effects of these two processes, we integrated stochastic modeling and data from a common garden experiment, using the spider mite Tetranychus urticae as a model species. By linking the empirical data with those derived form a highly parameterized individual-based model, we infer that both spatial selection and local adaptation contributed to the observed latitudinal life-history divergence. Spatial selection best described variation in dispersal behavior, while variation in development was best explained by adaptation to the local climate. Divergence in life-history traits in species shifting poleward could consequently be jointly determined by contemporary evolutionary dynamics resulting from adaptation to the environmental gradient and from spatial selection. The integration of modeling with common garden experiments provides a powerful tool to study the contribution of these evolutionary processes on life-history evolution during range expansion.

  9. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  10. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  11. Modified expansive open-door laminoplasty technique improved postoperative neck pain and cervical range of motion.

    PubMed

    Yeh, Kuang-Ting; Chen, Ing-Ho; Yu, Tzai-Chiu; Liu, Kuan-Lin; Peng, Cheng-Huan; Wang, Jen-Hung; Lee, Ru-Ping; Wu, Wen-Tien

    2015-12-01

    Expansive open-door laminoplasty (EOLP) is a useful technique for multiple-level cervical spondylotic myelopathy. The common postoperative complications of EOLP include moderate to severe neck pain, loss of cervical lordosis, decrease of cervical range of motion, and C5 palsy. We modified the surgical technique to lessen these complications. This study is aimed to elucidate the efficacy of modified techniques to lessen the complications of traditional procedures. We collected data from 126 consecutive patients treated at our institution between August 2008 and December 2012. Of these, 66 patients underwent conventional EOLP (CEOLP) and the other 60 patients underwent modified EOLP (MEOLP). The demographic and preoperative data, axial pain visual analog scale scores at 2 weeks and 3 months postoperatively, clinical outcomes evaluated using Nurick score and Japanese Orthopedic Association recovery rate at 12 months postoperatively, and radiographic results assessed using plain films at 3 months and 12 months postoperatively for both groups were compared and analyzed. There were no significant differences regarding the preoperative condition between the CEOLP and MEOLP groups (p > 0.05). The Japanese Orthopedic Association recovery rate of the MEOLP group was 70.3%, comparable to the result of the other group (70.2%). Postoperative axial neck pain, loss of range of motion, and loss of lordosis of cervical curvature decreased significantly in the MEOLP group (p < 0.05). The complications of temporary C5 nerve palsy found in the CEOLP group did not exist in the MEOLP group. MEOLP is a minimally invasive surgical method to treat multiple-level cervical spondylotic myelopathy, which decreases postoperative complications effectively. Copyright © 2014. Published by Elsevier B.V.

  12. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude.

    PubMed

    Hasselman, Daniel J; Ricard, Daniel; Bentzen, Paul

    2013-03-01

    Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human-mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure. © 2013 Blackwell Publishing Ltd.

  13. Forecasting range expansion into ecological traps: climate-mediated shifts in sea turtle nesting beaches and human development.

    PubMed

    Pike, David A

    2013-10-01

    Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies. © 2013 John Wiley & Sons Ltd.

  14. Adaptive and neutral markers both show continent-wide population structure of mountain pine beetle (Dendroctonus ponderosae).

    PubMed

    Batista, Philip D; Janes, Jasmine K; Boone, Celia K; Murray, Brent W; Sperling, Felix A H

    2016-09-01

    Assessments of population genetic structure and demographic history have traditionally been based on neutral markers while explicitly excluding adaptive markers. In this study, we compared the utility of putatively adaptive and neutral single-nucleotide polymorphisms (SNPs) for inferring mountain pine beetle population structure across its geographic range. Both adaptive and neutral SNPs, and their combination, allowed range-wide structure to be distinguished and delimited a population that has recently undergone range expansion across northern British Columbia and Alberta. Using an equal number of both adaptive and neutral SNPs revealed that adaptive SNPs resulted in a stronger correlation between sampled populations and inferred clustering. Our results suggest that adaptive SNPs should not be excluded prior to analysis from neutral SNPs as a combination of both marker sets resulted in better resolution of genetic differentiation between populations than either marker set alone. These results demonstrate the utility of adaptive loci for resolving population genetic structure in a nonmodel organism.

  15. Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): implications for late Quaternary history of the taiga species in Eurasia.

    PubMed

    Fedorov, V B; Goropashnaya, A V; Boeskorov, G G; Cook, J A

    2008-01-01

    The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.

  16. Population increase in Kirtland's warbler and summer range expansion to Wisconsin and Michigan's Upper Peninsula, USA

    Treesearch

    John R. Probst; Deahn M. Donner; Carol I. Bocetti; Steve Sjogren

    2003-01-01

    The threatened Kirtland's warbler Dendroica kirtlandii breeds in stands of young jack pine Pinus banksiana growing on well-drained soils in Michigan, USA. We summarize information documenting the range expansion of Kirtland's warbler due to increased habitat management in the core breeding range in the Lower Peninsula of...

  17. Changing demographics affecting sprawl

    Treesearch

    John F. Dwyer; Susan I. Stewart

    1999-01-01

    Demographic changes including population growth, racial/ethnic diversity, aging, expansion of urban areas, and migration to rural areas can bring significant population increases in particular areas that may encourage sprawl. Areas where the pressures for sprawl are likely to be the greatest include the periphery of urban areas, popular retirement destinations, places...

  18. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera

    PubMed Central

    Zayed, Amro; Whitfield, Charles W.

    2008-01-01

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852–1,371 genes or ≈10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between FST estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee. PMID:18299560

  19. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera.

    PubMed

    Zayed, Amro; Whitfield, Charles W

    2008-03-04

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating "Africanized" honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (F(ST)) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher F(ST) estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852-1,371 genes or approximately 10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between F(ST) estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee.

  20. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  1. Range-wide parallel climate-associated genomic clines in Atlantic salmon

    PubMed Central

    Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.

    2017-01-01

    Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123

  2. Population increase in Kirtland's warbler and summer range expansion to Wisconsin and Michigan's Upper Peninsula, USA

    Treesearch

    John R. Probst; Deahn Donner; Carol I. Bocetti; Steve Sjogren

    2003-01-01

    The threatened Kirtland`s warbler Dendroica kirtlandii breeds in stands of young jack pine Pinus banksiana growing on well-drained soils in Michigan, USA. We summarize information documenting the range expansion of Kirtland`s warbler due to increased habitat management in the core breeding range in the Lower Peninsula of Michigan...

  3. Demographic history and population structure of Anopheles pseudopunctipennis in Argentina based on the mitochondrial COI gene.

    PubMed

    Dantur Juri, María J; Moreno, Marta; Prado Izaguirre, Mónica J; Navarro, Juan C; Zaidenberg, Mario O; Almirón, Walter R; Claps, Guillermo L; Conn, Jan E

    2014-09-04

    Anopheles pseudopunctipennis is an important malaria vector in the Neotropical region and the only species involved in Plasmodium transmission in the Andean foothills. Its wide geographical distribution in America, high preference for biting humans and capacity to rest inside dwellings after feeding, are attributes contributing to its vector status. Previous reports have tried to elucidate its taxonomic status, distinguishing populations from North, Central and South America. In the present study we used a mitochondrial marker to examine the demographic history of An. pseudopunctipennis in northwestern Argentina. Twelve localities were selected across 550 km of the distribution of this species in Argentina, including two near the Bolivian border and several in South Tucumán, for sampling. A fragment of the cytochrome oxidase I (COI) gene was sequenced and haplotype relationships were analyzed by a statistical parsimony network and a Neighbor-Joining (NJ) tree. Genetic differentiation was estimated with FST. Historical demographic processes were evaluated using diversity measures, neutrality tests and mismatch distribution. Forty-one haplotypes were identified, of which haplotype A was the most common and widely distributed. Neither the network nor the NJ tree showed any geographic differentiation between northern and southern populations. Haplotype diversities, Tajima's DT and Fu & Li's F and D neutrality tests and mismatch distribution supported a scenario of Holocene demographic expansion. The demographic pattern suggests that An. pseudopunctipennis has undergone a single colonization process, and the ancestral haplotype is shared by specimens from all localities, indicating mitochondrial gene flow. Genetic differentiation was minimal, observed only between one northern and one southern locality. The estimated time of the population expansion of this species was during the Holocene. These data suggest that regional vector control measures would be equally

  4. Species–genus ratios reflect a global history of diversification and range expansion in marine bivalves

    PubMed Central

    Krug, Andrew Z; Jablonski, David; Valentine, James W

    2008-01-01

    The distribution of marine bivalve species among genera and higher taxa takes the form of the classic hollow curve, wherein few lineages are species rich and many are species poor. The distribution of species among genera (S/G ratio) varies with latitude, with temperate S/G's falling within the null expectation, and tropical and polar S/G's exceeding it. Here, we test several hypotheses for this polar overdominance in the species richness of small numbers of genera. We find a significant positive correlation between the latitudinal range of a genus and its species richness, both globally and within regions. Genus age and species richness are also positively related, but this relationship breaks down when the analysis is limited to genera endemic to climate zones or with narrow latitudinal ranges. The data suggest a link between speciation and range-expansion, with genera expanding out of the tropical latitudinal bins tending to speciate more prolifically, both globally and regionally. These genera contain more species within climate zones than taxa endemic to that zone. Range expansion thus appears to be fundamentally coupled with speciation, producing the skewed distribution of species among genera, both globally and regionally, whereas clade longevity is achieved through extinction—resistance conferred by broad geographical ranges. PMID:18270156

  5. Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil.

    PubMed

    Gehara, Marcelo; Garda, Adrian A; Werneck, Fernanda P; Oliveira, Eliana F; da Fonseca, Emanuel M; Camurugi, Felipe; Magalhães, Felipe de M; Lanna, Flávia M; Sites, Jack W; Marques, Ricardo; Silveira-Filho, Ricardo; São Pedro, Vinícius A; Colli, Guarino R; Costa, Gabriel C; Burbrink, Frank T

    2017-09-01

    Many studies propose that Quaternary climatic cycles contracted and/or expanded the ranges of species and biomes. Strong expansion-contraction dynamics of biomes presume concerted demographic changes of associated fauna. The analysis of temporal concordance of demographic changes can be used to test the influence of Quaternary climate on diversification processes. Hierarchical approximate Bayesian computation (hABC) is a powerful and flexible approach that models genetic data from multiple species, and can be used to estimate the temporal concordance of demographic processes. Using available single-locus data, we can now perform large-scale analyses, both in terms of number of species and geographic scope. Here, we first compared the power of four alternative hABC models for a collection of single-locus data. We found that the model incorporating an a priori hypothesis about the timing of simultaneous demographic change had the best performance. Second, we applied the hABC models to a data set of seven squamate and four amphibian species occurring in the Seasonally Dry Tropical Forests (Caatinga) in northeastern Brazil, which, according to paleoclimatic evidence, experienced an increase in aridity during the Pleistocene. If this increase was important for the diversification of associated xeric-adapted species, simultaneous population expansions should be evident at the community level. We found a strong signal of synchronous population expansion in the Late Pleistocene, supporting the increase of the Caatinga during this time. This expansion likely enhanced the formation of communities adapted to high aridity and seasonality and caused regional extirpation of taxa adapted to wet forest. © 2017 John Wiley & Sons Ltd.

  6. Ternary bulk heterojunction for wide spectral range organic photodetectors

    NASA Astrophysics Data System (ADS)

    Shin, Hojung; Kim, Jaehoon; Lee, Changhee

    2017-08-01

    Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.

  7. Home on the Wide-Open Range of Gender

    ERIC Educational Resources Information Center

    Beemyn, Genny

    2011-01-01

    Kate Bornstein and S. Bear Bergman's "Gender Outlaws: The Next Generation" is a collection of narratives written by individuals with a wide range of gender identities and expressions from around the world. The text shows how gender-nonconforming people are changing how society looks at gender. As many of the individuals who are challenging gender…

  8. A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds.

    PubMed

    Manunza, Arianna; Noce, Antonia; Serradilla, Juan Manuel; Goyache, Félix; Martínez, Amparo; Capote, Juan; Delgado, Juan Vicente; Jordana, Jordi; Muñoz, Eva; Molina, Antonio; Landi, Vincenzo; Pons, Agueda; Balteanu, Valentin; Traoré, Amadou; Vidilla, Montse; Sánchez-Rodríguez, Manuel; Sànchez, Armand; Cardoso, Tainã Figueiredo; Amills, Marcel

    2016-07-25

    The main goal of the current work was to infer the demographic history of seven Spanish goat breeds (Malagueña, Murciano-Granadina, Florida, Palmera, Mallorquina, Bermeya and Blanca de Rasquera) based on genome-wide diversity data generated with the Illumina Goat SNP50 BeadChip (population size, N = 176). Five additional populations from Europe (Saanen and Carpathian) and Africa (Tunisian, Djallonké and Sahel) were also included in this analysis (N = 80) for comparative purposes. Our results show that the genetic background of Spanish goats traces back mainly to European breeds although signs of North African admixture were detected in two Andalusian breeds (Malagueña and Murciano-Granadina). In general, observed and expected heterozygosities were quite similar across the seven Spanish goat breeds under analysis irrespective of their population size and conservation status. For the Mallorquina and Blanca de Rasquera breeds, which have suffered strong population declines during the past decades, we observed increased frequencies of large-sized (ROH), a finding that is consistent with recent inbreeding. In contrast, a substantial part of the genome of the Palmera goat breed comprised short ROH, which suggests a strong and ancient founder effect. Admixture with African goats, genetic drift and inbreeding have had different effects across the seven Spanish goat breeds analysed in the current work. This has generated distinct patterns of genome-wide diversity that provide new clues about the demographic history of these populations.

  9. Predicted range expansion of Chinese tallow tree (Triadica sebifera) in forestlands of the southern United States

    Treesearch

    Hsiao-Hsuan Wang; William Grant; Todd Swannack; Jianbang Gan; William Rogers; Tomasz Koralewski; James Miller; John W. Taylor Jr.

    2011-01-01

    We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework.

  10. Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change.

    PubMed

    Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D

    2014-02-07

    Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.

  11. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  12. Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion

    PubMed Central

    Ouyang, Jianshu; Chen, Bo; Huang, Dahai

    2018-01-01

    Concretes with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures or devices, are important for civil engineering applications, such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable thermal expansion coefficients, from 8.65 × 10−6 °C−1 to 2.48 × 10−6 °C−1. Macro-scale experiments are implemented to quantify the evolution of the thermal expansion coefficients, compressive and flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging was conducted to quantify the specimens’ microstructural characteristics including pores ratio and size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8 and the ambient curing temperature. Macro-scale experimental results and microstructures have a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to 20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design cementitious composites with tunable thermal expansion for a wide range of engineering applications. PMID:29735957

  13. Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae).

    PubMed

    Matsuoka, Yoshihiro; Takumi, Shigeo; Kawahara, Taihachi

    2015-09-30

    How species ranges form in landscapes is a matter of long-standing evolutionary interest. However, little is known about how natural phenotypic variations of ecologically important traits contribute to species range expansion. In this study, we examined the phylogeographic patterns of phenotypic changes in life history (seed production) and phenological (flowering time) traits during the range expansion of Aegilops tauschii Coss. from the Transcaucasus and Middle East to central Asia. Our comparative analyses of the patterns of natural variations for those traits and their association with the intraspecific lineage structure showed that (1) the eastward expansion to Asia was driven by an intraspecific sublineage (named TauL1b), (2) high seed production ability likely had an important role at the initial dispersal stage of TauL1b's expansion to Asia, and (3) the phenological change to early flowering phenotypes was one of the key adaptation events for TauL1b to further expand its range in Asia. This study provides for the first time a broad picture of the process of Ae. tauschii's eastward range expansion in which life history and phenological traits may have had respective roles in its dispersal and adaptation in Asia. The clear association of seed production and flowering time patterns with the intraspecific lineage divergence found in this study invites further genetic research to bring the mechanistic understanding of the changes in these key functional traits during range expansion within reach.

  14. A meta-GGA level screened range-separated hybrid functional by employing short range Hartree-Fock with a long range semilocal functional.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The range-separated hybrid density functionals are very successful in describing a wide range of molecular and solid-state properties accurately. In principle, such functionals are designed from spherically averaged or system averaged as well as reverse engineered exchange holes. In the present attempt, the screened range-separated hybrid functional scheme has been applied to the meta-GGA rung by using the density matrix expansion based semilocal exchange hole (or functional). The hybrid functional proposed here utilizes the spherically averaged density matrix expansion based exchange hole in the range separation scheme. For slowly varying density correction the range separation scheme is employed only through the local density approximation based exchange hole coupled with the corresponding fourth order gradient approximate Tao-Mo enhancement factor. The comprehensive testing and performance of the newly constructed functional indicates its applicability in describing several molecular properties. The most appealing feature of this present screened hybrid functional is that it will be practically very useful in describing solid-state properties at the meta-GGA level.

  15. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism.

    PubMed

    Kim, Jong-Min; Hong, Susie; Kim, Gyoung Pyoung; Choi, Yoon Jae; Kim, Yu Kyeong; Park, Sung Sup; Kim, Sang Eun; Jeon, Beom S

    2007-10-01

    To examine the presence of an ATXN2 mutation in patients with parkinsonism in the Korean population and to find the difference in the ATXN2 mutation between ataxic and parkinsonian phenotypes. Survey. Seoul National University Hospital (a referral center). Patients Patients with Parkinson disease (PD) (n = 468) and the Parkinson variant of multiple system atrophy (MSA-P) (n = 135) who were seen at our Department of Neurology during the past 3 years. CAG expansion in spinocerebellar ataxia type 2 (SCA2) alleles was assessed by polymerase chain reaction amplification and fragment analysis, and its size and interruption were verified by cloning and sequencing. SCA2 was tested also in the family members of the probands. Striatal dopamine transporter (DAT) and D(2) receptor status were evaluated in the probands and their SCA2-positive family members using iodine I 123 [(123)I]-radiolabeled fluoropropyl (FP) 2-carbomethoxy-3-(4-iodophenyl) tropane (CIT) with single-photon emission computed tomography (SPECT) and carbon C 11 [(11)C]-radiolabeled raclopride positron emission tomography (PET). We found 3 patients with apparently sporadic disease with expanded CAG repeats in the ATXN2 locus. Two patients had a PD phenotype. The third patient showed an MSA-P phenotype. The CAG repeats in the ATXN2 locus of the patients were 35/22, 34/22, and 32/22, respectively (range in normal population, 19-27). The size of repeats was lower than the CAG repeats (38-51) in ataxic SCA2 in our population. The sequence of expanded CAG repeats was interrupted by CAA as (CAG)(n)(CAA)(CAG)(8) in all the patients. DNA analyses in 2 families showed 2 asymptomatic carriers in each family. In the patient with the PD phenotype, striatal DAT loss was more severe in the putamen than the caudate, and [(11)C]raclopride PET showed an increased relative putamen-caudate binding ratio. The patient with the MSA-P phenotype had severe DAT loss throughout the striatum. Two of 3 asymptomatic carriers had striatal

  16. Rapid Range Expansion Is Not Restricted by Inbreeding in a Sexually Cannibalistic Spider

    PubMed Central

    Zimmer, Stefanie M.; Krehenwinkel, Henrik; Schneider, Jutta M.

    2014-01-01

    Few studies investigated whether rapid range expansion is associated with an individual's short-term fitness costs due to an increased risk of inbred mating at the front of expansion. In mating systems with low male mating rates both sexes share potential inbreeding costs and general mechanisms to avoid or reduce these costs are expected. The spider Argiope bruennichi expanded its range recently and we asked whether rapid settlement of new sites exposes individuals to a risk of inbreeding. We sampled four geographically separated subpopulations, genotyped individuals, arranged matings and monitored hatching success. Hatching success was lowest in egg-sacs derived from sibling pairs and highest in egg-sacs derived from among-population crosses, while within-population crosses were intermediate. This indicates that inbreeding might affect hatching success in the wild. Unlike expected, differential hatching success of within- and among-population crosses did not correlate with genetic distance of mating pairs. In contrast, we found high genetic diversity based on 16 microsatellite markers and a fragment of the mitochondrial COI gene in all populations. Our results suggest that even a very recent settlement secures the presence of genetically different mating partners. This leads to costs of inbreeding since the population is not inbred. PMID:24759976

  17. Colonization behaviors of mountain pine beetle on novel hosts: Implications for range expansion into northeastern North America

    Treesearch

    Derek W. Rosenberger; Robert C. Venette; Mitchell P. Maddox; Brian H. Aukema; Gadi V.P. Reddy

    2017-01-01

    As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine...

  18. Holarctic genetic structure and range dynamics in the woolly mammoth

    PubMed Central

    Palkopoulou, Eleftheria; Dalén, Love; Lister, Adrian M.; Vartanyan, Sergey; Sablin, Mikhail; Sher, Andrei; Edmark, Veronica Nyström; Brandström, Mikael D.; Germonpré, Mietje; Barnes, Ian; Thomas, Jessica A.

    2013-01-01

    Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred. PMID:24026825

  19. Population genetic analysis of Bromus tectorum (Poaceae) indicates recent range expansion may be facilitated by specialist genotypes

    Treesearch

    Keith R. Merrill; Susan E. Meyer; Craig E. Coleman

    2012-01-01

    The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make...

  20. Differential wide temperature range CMOS interface circuit for capacitive MEMS pressure sensors.

    PubMed

    Wang, Yucai; Chodavarapu, Vamsy P

    2015-02-12

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between -55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%.

  1. Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors

    PubMed Central

    Wang, Yucai; Chodavarapu, Vamsy P.

    2015-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312

  2. Bobcats ( Lynx rufus) as a Model Organism to Investigate the Effects of Roads on Wide-Ranging Carnivores

    NASA Astrophysics Data System (ADS)

    Litvaitis, John A.; Reed, Gregory C.; Carroll, Rory P.; Litvaitis, Marian K.; Tash, Jeffrey; Mahard, Tyler; Broman, Derek J. A.; Callahan, Catherine; Ellingwood, Mark

    2015-06-01

    We are using bobcats ( Lynx rufus) as a model organism to examine how roads affect the abundance, distribution, and genetic structure of a wide-ranging carnivore. First, we compared the distribution of bobcat-vehicle collisions to road density and then estimated collision probabilities for specific landscapes using a moving window with road-specific traffic volume. Next, we obtained incidental observations of bobcats from the public, camera-trap detections, and locations of bobcats equipped with GPS collars to examine habitat selection. These data were used to generate a cost-surface map to investigate potential barrier effects of roads. Finally, we have begun an examination of genetic structure of bobcat populations in relation to major road networks. Distribution of vehicle-killed bobcats was correlated with road density, especially state and interstate highways. Collision models suggested that some regions may function as demographic sinks. Simulated movements in the context of the cost-surface map indicated that some major roads may be barriers. These patterns were supported by the genetic structure of bobcats. The sharpest divisions among genetically distinct demes occurred along natural barriers (mountains and large lakes) and in road-dense regions. In conclusion, our study has demonstrated the utility of using bobcats as a model organism to understand the variety of threats that roads pose to a wide-ranging species. Bobcats may also be useful as one of a group of focal species while developing approaches to maintain existing connectivity or mitigate the negative effects of roads.

  3. Bobcats (Lynx rufus) as a Model Organism to Investigate the Effects of Roads on Wide-Ranging Carnivores.

    PubMed

    Litvaitis, John A; Reed, Gregory C; Carroll, Rory P; Litvaitis, Marian K; Tash, Jeffrey; Mahard, Tyler; Broman, Derek J A; Callahan, Catherine; Ellingwood, Mark

    2015-06-01

    We are using bobcats (Lynx rufus) as a model organism to examine how roads affect the abundance, distribution, and genetic structure of a wide-ranging carnivore. First, we compared the distribution of bobcat-vehicle collisions to road density and then estimated collision probabilities for specific landscapes using a moving window with road-specific traffic volume. Next, we obtained incidental observations of bobcats from the public, camera-trap detections, and locations of bobcats equipped with GPS collars to examine habitat selection. These data were used to generate a cost-surface map to investigate potential barrier effects of roads. Finally, we have begun an examination of genetic structure of bobcat populations in relation to major road networks. Distribution of vehicle-killed bobcats was correlated with road density, especially state and interstate highways. Collision models suggested that some regions may function as demographic sinks. Simulated movements in the context of the cost-surface map indicated that some major roads may be barriers. These patterns were supported by the genetic structure of bobcats. The sharpest divisions among genetically distinct demes occurred along natural barriers (mountains and large lakes) and in road-dense regions. In conclusion, our study has demonstrated the utility of using bobcats as a model organism to understand the variety of threats that roads pose to a wide-ranging species. Bobcats may also be useful as one of a group of focal species while developing approaches to maintain existing connectivity or mitigate the negative effects of roads.

  4. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  5. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  6. Ultraprecise thermal expansion measurements of seven low expansion materials.

    PubMed

    Berthold Iii, J W; Jacobs, S F

    1976-10-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 degrees C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  7. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories

    Treesearch

    Mark J. Statham; James Murdoch; Jan Janecka; Keith B. Aubry; Ceiridwen J. Edwards; Carl D. Soulsbury; Oliver Berry; Zhenghuan Wang; David Harrison; Malcolm Pearch; Louise Tomsett; Judith Chupasko; Benjamin N. Sacks

    2014-01-01

    Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world’s most widely distributed wild terrestrial carnivore. Analyses of 697 bp of...

  8. Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics.

    PubMed

    Ge, Peng; Wang, Shuli; Liu, Yongshun; Liu, Wendong; Yu, Nianzuo; Zhang, Jianglei; Shen, Huaizhong; Zhang, Junhu; Yang, Bai

    2017-07-25

    In this paper, we report the preparation of anisotropic wetting surfaces that could control various wetting behaviors of liquids in a wide surface tension range (from water to oil), which could be employed as a platform for controlling the flow of liquids in microfluidics (MFs). The anisotropic wetting surfaces are chemistry-asymmetric "Janus" silicon cylinder arrays, which are fabricated via selecting and regulating the functional groups on the surface of each cylinder unit. Liquids (in a wide surface tension range) wet in a unidirectional manner along the direction that was modified by the group with large surface energy. Through introducing the Janus structure into a T-shaped pattern and integrating it with an identical T-shaped poly(dimethylsiloxane) microchannel, the as-prepared chips can be utilized to perform as a surface tension admeasuring apparatus or a one-way valve for liquids in a wide surface tension range, even oil. Furthermore, because of the excellent ability in controlling the flowing behavior of liquids in a wide surface tension range in an open system or a microchannel, the anisotropic wetting surfaces are potential candidates to be applied both in open MFs and conventional MFs, which would broaden the application fields of MFs.

  9. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific.

    PubMed

    Zeidberg, Louis D; Robison, Bruce H

    2007-07-31

    A unique 16-year time series of deep video surveys in Monterey Bay reveals that the Humboldt squid, Dosidicus gigas, has substantially expanded its perennial geographic range in the eastern North Pacific by invading the waters off central California. This sustained range expansion coincides with changes in climate-linked oceanographic conditions and a reduction in competing top predators. It is also coincident with a decline in the abundance of Pacific hake, the most important commercial groundfish species off western North America. Recognizing the interactive effects of multiple changes in the environment is an issue of growing concern in ocean conservation and sustainability research.

  10. Serial Founder Effects During Range Expansion: A Spatial Analog of Genetic Drift

    PubMed Central

    Slatkin, Montgomery; Excoffier, Laurent

    2012-01-01

    Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1 – 1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population. PMID:22367031

  11. Serial founder effects during range expansion: a spatial analog of genetic drift.

    PubMed

    Slatkin, Montgomery; Excoffier, Laurent

    2012-05-01

    Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1-1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population.

  12. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis)

    PubMed Central

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T.

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene. PMID:26083467

  13. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis).

    PubMed

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene.

  14. Multilocus dataset reveals demographic histories of two peat mosses in Europe

    PubMed Central

    Szövényi, Péter; Hock, Zsófia; Schneller, Jakob J; Tóth, Zoltán

    2007-01-01

    Background Revealing the past and present demographic history of populations is of high importance to evaluate the conservation status of species. Demographic data can be obtained by direct monitoring or by analysing data of historical and recent collections. Although these methods provide the most detailed information they are very time consuming. Another alternative way is to make use of the information accumulated in the species' DNA over its history. Recent development of the coalescent theory makes it possible to reconstruct the demographic history of species using nucleotide polymorphism data. To separate the effect of natural selection and demography, multilocus analysis is needed because these two forces can produce similar patterns of polymorphisms. In this study we investigated the amount and pattern of sequence variability of a Europe wide sample set of two peat moss species (Sphagnum fimbriatum and S. squarrosum) with similar distributions and mating systems but presumably contrasting historical demographies using 3 regions of the nuclear genome (appr. 3000 bps). We aimed to draw inferences concerning demographic, and phylogeographic histories of the species. Results All three nuclear regions supported the presence of an Atlantic and Non-Atlantic clade of S. fimbriatum suggesting glacial survival of the species along the Atlantic coast of Europe. Contrarily, S. squarrosum haplotypes showed three clades but no geographic structure at all. Maximum likelihood, mismatch and Bayesian analyses supported a severe historical bottleneck and a relatively recent demographic expansion of the Non-Atlantic clade of S. fimbriatum, whereas size of S. squarrosum populations has probably decreased in the past. Species wide molecular diversity of the two species was nearly the same with an excess of replacement mutations in S. fimbriatum. Similar levels of molecular diversity, contrasting phylogeographic patterns and excess of replacement mutations in S. fimbriatum

  15. Ergodic model for the expansion of spherical nanoplasmas.

    PubMed

    Peano, F; Coppa, G; Peinetti, F; Mulas, R; Silva, L O

    2007-06-01

    Recently, the collisionless expansion of spherical nanoplasmas has been analyzed with a new ergodic model, clarifying the transition from hydrodynamiclike to Coulomb-explosion regimes, and providing accurate laws for the relevant features of the phenomenon. A complete derivation of the model is presented here. The important issue of the self-consistent initial conditions is addressed by analyzing the initial charging transient due to the electron expansion, in the approximation of immobile ions. A comparison among different kinetic models for the expansion is presented, showing that the ergodic model provides a simplified description, which retains the essential information on the electron distribution, in particular, the energy spectrum. Results are presented for a wide range of initial conditions (determined from a single dimensionless parameter), in excellent agreement with calculations from the exact Vlasov-Poisson theory, thus providing a complete and detailed characterization of all the stages of the expansion.

  16. Genetic Signatures of Demographic Changes in an Avian Top Predator during the Last Century: Bottlenecks and Expansions of the Eurasian Eagle Owl in the Iberian Peninsula

    PubMed Central

    Graciá, Eva; Ortego, Joaquín; Godoy, José Antonio; Pérez-García, Juan Manuel; Blanco, Guillermo; del Mar Delgado, María; Penteriani, Vincenzo; Almodóvar, Irene; Botella, Francisco; Sánchez-Zapata, José Antonio

    2015-01-01

    The study of the demographic history of species can help to understand the negative impact of recent population declines in organisms of conservation concern. Here, we use neutral molecular markers to explore the genetic consequences of the recent population decline and posterior recovery of the Eurasian eagle owl (Bubo bubo) in the Iberian Peninsula. During the last century, the species was the object of extermination programs, suffering direct persecution by hunters until the 70’s. Moreover, during the last decades the eagle owl was severely impacted by increased mortality due to electrocution and the decline of its main prey species, the European rabbit (Oryctolagus cuniculus). In recent times, the decrease of direct persecution and the implementation of some conservation schemes have allowed the species’ demographic recovery. Yet, it remains unknown to which extent the past population decline and the later expansion have influenced the current species’ pattern of genetic diversity. We used eight microsatellite markers to genotype 235 eagle owls from ten Spanish subpopulations and analyse the presence of genetic signatures attributable to the recent population fluctuations experienced by the species. We found moderate levels of differentiation among the studied subpopulations and Bayesian analyses revealed the existence of three genetic clusters that grouped subpopulations from central, south-western and south-eastern Spain. The observed genetic structure could have resulted from recent human-induced population fragmentation, a patchy distribution of prey populations and/or the philopatric behaviour and habitat selection of the species. We detected an old population bottleneck, which occurred approximately 10,000 years ago, and significant signatures of recent demographic expansions. However, we did not find genetic signatures for a recent bottleneck, which may indicate that population declines were not severe enough to leave detectable signals on the

  17. Large allele frequency differences between human continental groups are more likely to have occurred by drift during range expansions than by selection.

    PubMed

    Hofer, T; Ray, N; Wegmann, D; Excoffier, L

    2009-01-01

    Several studies have found strikingly different allele frequencies between continents. This has been mainly interpreted as being due to local adaptation. However, demographic factors can generate similar patterns. Namely, allelic surfing during a population range expansion may increase the frequency of alleles in newly colonised areas. In this study, we examined 772 STRs, 210 diallelic indels, and 2834 SNPs typed in 53 human populations worldwide under the HGDP-CEPH Diversity Panel to determine to which extent allele frequency differs among four regions (Africa, Eurasia, East Asia, and America). We find that large allele frequency differences between continents are surprisingly common, and that Africa and America show the largest number of loci with extreme frequency differences. Moreover, more STR alleles have increased rather than decreased in frequency outside Africa, as expected under allelic surfing. Finally, there is no relationship between the extent of allele frequency differences and proximity to genes, as would be expected under selection. We therefore conclude that most of the observed large allele frequency differences between continents result from demography rather than from positive selection.

  18. Wide range optofluidically tunable multimode interference fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; LiKamWa, P.; May-Arrioja, D. A.

    2014-08-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range.

  19. Universality of long-range correlations in expansion randomization systems

    NASA Astrophysics Data System (ADS)

    Messer, P. W.; Lässig, M.; Arndt, P. F.

    2005-10-01

    We study the stochastic dynamics of sequences evolving by single-site mutations, segmental duplications, deletions, and random insertions. These processes are relevant for the evolution of genomic DNA. They define a universality class of non-equilibrium 1D expansion-randomization systems with generic stationary long-range correlations in a regime of growing sequence length. We obtain explicitly the two-point correlation function of the sequence composition and the distribution function of the composition bias in sequences of finite length. The characteristic exponent χ of these quantities is determined by the ratio of two effective rates, which are explicitly calculated for several specific sequence evolution dynamics of the universality class. Depending on the value of χ, we find two different scaling regimes, which are distinguished by the detectability of the initial composition bias. All analytic results are accurately verified by numerical simulations. We also discuss the non-stationary build-up and decay of correlations, as well as more complex evolutionary scenarios, where the rates of the processes vary in time. Our findings provide a possible example for the emergence of universality in molecular biology.

  20. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific

    PubMed Central

    Zeidberg, Louis D.; Robison, Bruce H.

    2007-01-01

    A unique 16-year time series of deep video surveys in Monterey Bay reveals that the Humboldt squid, Dosidicus gigas, has substantially expanded its perennial geographic range in the eastern North Pacific by invading the waters off central California. This sustained range expansion coincides with changes in climate-linked oceanographic conditions and a reduction in competing top predators. It is also coincident with a decline in the abundance of Pacific hake, the most important commercial groundfish species off western North America. Recognizing the interactive effects of multiple changes in the environment is an issue of growing concern in ocean conservation and sustainability research. PMID:17646649

  1. Dilatometer setup for low coefficient of thermal expansion materials measurements in the 140 K-250 K temperature range.

    PubMed

    Spannagel, Ruven; Hamann, Ines; Sanjuan, Josep; Schuldt, Thilo; Gohlke, Martin; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2016-10-01

    Space applications demand light weight materials with excellent dimensional stability for telescopes, optical benches, optical resonators, etc. Glass-ceramics and composite materials can be tuned to reach very low coefficient of thermal expansion (CTE) at different temperatures. In order to determine such CTEs, very accurate setups are needed. Here we present a dilatometer that is able to measure the CTE of a large variety of materials in the temperature range of 140 K to 250 K. The dilatometer is based on a heterodyne interferometer with nanometer noise levels to measure the expansion of a sample when applying small amplitude controlled temperature signals. In this article, the CTE of a carbon fiber reinforced polymer sample has been determined with an accuracy in the 10 -8 K -1 range.

  2. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  3. New Mitochondrial and Nuclear Evidences Support Recent Demographic Expansion and an Atypical Phylogeographic Pattern in the Spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae)

    PubMed Central

    Rodrigues, Ana S. B.; Silva, Sara E.; Marabuto, Eduardo; Silva, Diogo N.; Wilson, Mike R.; Thompson, Vinton; Yurtsever, Selçuk; Halkka, Antti; Borges, Paulo A. V.; Quartau, José A.; Paulo, Octávio S.; Seabra, Sofia G.

    2014-01-01

    Philaenus spumarius is a widespread insect species in the Holarctic region. Here, by focusing on the mtDNA gene COI but also using the COII and Cyt b genes and the nuclear gene EF-1α, we tried to explain how and when its current biogeographic pattern evolved by providing time estimates of the main demographic and evolutionary events and investigating its colonization patterns in and out of Eurasia. Evidence of recent divergence and expansion events at less than 0.5 Ma ago indicate that climate fluctuations in the Mid-Late Pleistocene were important in shaping the current phylogeographic pattern of the species. Data support a first split and differentiation of P. spumarius into two main mitochondrial lineages: the “western”, in the Mediterranean region and the “eastern”, in Anatolia/Caucasus. It also supports a following differentiation of the “western” lineage into two sub-lineages: the “western-Mediterranean”, in Iberia and the “eastern-Mediterranean” in the Balkans. The recent pattern seems to result from postglacial range expansion from Iberia and Caucasus/Anatolia, thus not following one of the four common paradigms. Unexpected patterns of recent gene-flow events between Mediterranean peninsulas, a close relationship between Iberia and North Africa, as well as high levels of genetic diversity being maintained in northern Europe were found. The mitochondrial pattern does not exactly match to the nuclear pattern suggesting that the current biogeographic pattern of P. spumarius may be the result of both secondary admixture and incomplete lineage sorting. The hypothesis of recent colonization of North America from both western and northern Europe is corroborated by our data and probably resulted from accidental human translocations. A probable British origin for the populations of the Azores and New Zealand was revealed, however, for the Azores the distribution of populations in high altitude native forests is somewhat puzzling and may imply a

  4. Genetic signals of past demographic changes and the history of oak populations in California

    NASA Astrophysics Data System (ADS)

    Dodd, R. S.

    2009-04-01

    A retrospective view of species' demographic changes can inform on population stability through times of climatic change and the origins and spatial structure of genetic diversity in contemporary populations. The former provides the means to predict responses to future climatic change, while the latter allows us to infer the ability of populations to buffer the effects of reductions in population size and fragmentation. The approximately 1.8 my of the Pleistocene is believed to have had a significant impact on diversity through high rates of extinction during early glacial cycles and population expansions and contractions during the later cycles. In the Mediterranean basin, early emphasis on taxa with wide latitudinal ranges led to models of refugial sites and subsequent recolonization routes that could explain geographic patterns in genetic diversity, with a trend towards reduced genetic diversity in the north. More recently, the study of strictly Mediterranean taxa has revealed relictual sites that have persisted over very long periods of time, commonly relatively poor in diversity, but populations well differentiated from one site to another. In California, relatively little is known of the population dynamics of plant taxa during the Pleistocene glacial cycles, or to what extent differentiation today is a result of pre-Pleistocene events. For several animal taxa, differentiation between Coastal and Sierran taxa are believed to date to the Pliocene. Major demographic changes resulting in population isolation, bottlenecks, founder events and population expansions leave a genetic signal that can be detected through appropriate genetic markers and analyses. Such signals help to infer whether past climate fluctuations have had important effects on population demographics. Here, I will focus on key oak species of the California mediterranean climate zone. I will explore the likely effects of the last glacial maximum on oak populations using palaeoclimate and niche

  5. Comparative phylogeography of a coevolved community: concerted population expansions in Joshua trees and four yucca moths

    USGS Publications Warehouse

    Smith, Christopher Irwin; Tank, Shantel; Godsoe, William; Levenick, Jim; Strand, Eva; Esque, Todd C.; Pellmyr, Olle

    2011-01-01

    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial

  6. Comparative phylogeography of a coevolved community: Concerted population expansions in Joshua trees and four Yucca moths

    USGS Publications Warehouse

    Smith, C.I.; Tank, S.; Godsoe, W.; Levenick, J.; Strand, Espen; Esque, T.; Pellmyr, O.

    2011-01-01

    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community - Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial

  7. Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    PubMed Central

    Smith, Christopher Irwin; Tank, Shantel; Godsoe, William; Levenick, Jim; Strand, Eva; Esque, Todd; Pellmyr, Olle

    2011-01-01

    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial

  8. Quality of Education Predicts Performance on the Wide Range Achievement Test-4th Edition Word Reading Subtest

    PubMed Central

    Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S.; Dean, Andy C.; Thames, April D.

    2014-01-01

    The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004

  9. Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis)

    PubMed Central

    BARKER, BRITTANY S.; ANDONIAN, KRIKOR; SWOPE, SARAH M.; LUSTER, DOUGLAS G.; DLUGOSCH, KATRINA M.

    2017-01-01

    Identifying sources of genetic variation and reconstructing invasion routes for non-native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome-wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe, and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic ‘bridgehead’ for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of California’s interior. These results reveal a long history of colonization, admixture, and trait evolution in C. solstitialis, and suggest routes for improving evidence-based management decisions for one of the most ecologically and economically damaging invasive species in the western United States. PMID:28029713

  10. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.

    PubMed

    Guo, Xiang; Su, Handong; Shi, Qinghua; Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu

    2016-04-01

    Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation.

  11. Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant.

    PubMed

    Kirchheimer, Bernhard; Wessely, Johannes; Gattringer, Andreas; Hülber, Karl; Moser, Dietmar; Schinkel, Christoph C F; Appelhans, Marc; Klatt, Simone; Caccianiga, Marco; Dellinger, Agnes; Guisan, Antoine; Kuttner, Michael; Lenoir, Jonathan; Maiorano, Luigi; Nieto-Lugilde, Diego; Plutzar, Christoph; Svenning, Jens-Christian; Willner, Wolfgang; Hörandl, Elvira; Dullinger, Stefan

    2018-03-01

    Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related sexual and asexual taxa arising from their differential sensitivity to minority cytotype disadvantage. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  12. Slow Response or No Response? Distinguishing Non-Climatic Range Limits from Demographic Inertia

    NASA Astrophysics Data System (ADS)

    Hillerislambers, J.; Anderegg, L. D. L.; Breckheimer, I.; Ford, K.; Kroiss, S.

    2016-12-01

    One of the greatest challenges ecologists face is forecasting how species distributions will respond to climate change. In general, species distributions have moved polewards and upslope with recent climate change (i.e. range shifts), supporting the assumption that range limits are climatically determined. However, studies also document a surprising number of species whose distributions have remained unchanged in the last 50-100 years, despite significant warming during that time period. This apparent lack of response to warming can arise for species whose range limits are determined by factors other than climate (e.g. species interactions) OR for long-lived, slow-growing, and/or dispersal-limited species whose range shifts are unable to keep pace with rapid climate change. Unfortunately, while these two possibilities are often difficult to distinguish, they have very different implications for the long-term viability of the species in question. Here, we use extensive demographic data for long-lived and slow-growing conifers collected across a large climatic gradient at Mount Rainier (WA, USA) to explore A) evidence for climatically determined range limits and B) the rate at which altitudinal distributions could shift in response to climate change in the region. In doing so, we highlight some of the complications we face in identifying whether species will be sensitive or resilient to climate change.

  13. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  14. CFD comparison with centrifugal compressor measurements on a wide operating range

    NASA Astrophysics Data System (ADS)

    Le Sausse, P.; Fabrie, P.; Arnou, D.; Clunet, F.

    2013-04-01

    Centrifugal compressors are widely used in industrial applications thanks to their high efficiency. They are able to provide a wide operating range before reaching the flow barrier or surge limits. Performances and range are described by compressor maps obtained experimentally. After a description of performance test rig, this article compares measured centrifugal compressor performances with computational fluid dynamics results. These computations are performed at steady conditions with R134a refrigerant as fluid. Navier-Stokes equations, coupled with k-ɛ turbulence model, are solved by the commercial software ANSYS-CFX by means of volume finite method. Input conditions are varied in order to calculate several speed lines. Theoretical isentropic efficiency and theoretical surge line are finally compared to experimental data.

  15. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    PubMed

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  16. Host-targeted RAD-Seq reveals genetic changes in the coral Oculina patagonica associated with range expansion along the Spanish Mediterranean coast.

    PubMed

    Leydet, Karine Posbic; Grupstra, Carsten G B; Coma, Rafel; Ribes, Marta; Hellberg, Michael E

    2018-06-01

    Many organisms are expanding their ranges in response to changing environmental conditions. Understanding the patterns of genetic diversity and adaptation along an expansion front is crucial to assessing a species' long-term success. While next-generation sequencing techniques can reveal these changes in fine detail, ascribing them to a particular species can be difficult for organisms that live in close association with symbionts. Using a novel modified restriction site-associated DNA sequencing (RAD-Seq) protocol to target coral DNA, we collected 595 coral-specific single nucleotide polymorphisms from 189 colonies of the invasive coral Oculina patagonica from the Spanish Mediterranean coast, including established core populations and two expansion fronts. Surprisingly, populations from the recent northern expansion are genetically distinct from the westward expansion and core populations and also harbour greater genetic diversity. We found that temperature may have driven adaptation along the northern expansion, as genome scans for selection found three candidate loci associated with temperature in the north but none in the west. We found no genomic signature of selection associated with artificial substrate, which has been proposed for explaining the rapid spread of O. patagonica. This suggests that this coral is simply an opportunistic colonizer of free space made available by coastal habitat modifications. Our results suggest that unique genetic variation, possibly due to limited dispersal across the Ibiza Channel, an influx of individuals from different depths and/or adaptation to cooler temperatures along the northern expansion front may have facilitated the northward range expansion of O. patagonica in the western Mediterranean. © 2018 John Wiley & Sons Ltd.

  17. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  18. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  19. What is driving range expansion in a common bat? Hints from thermoregulation and habitat selection.

    PubMed

    Ancillotto, Leonardo; Budinski, Ivana; Nardone, Valentina; Di Salvo, Ivy; Corte, Martina Della; Bosso, Luciano; Conti, Paola; Russo, Danilo

    2018-06-02

    Human-induced alterations often lead to changes in the geographical range of plants and animals. While modelling exercises may contribute to understanding such dynamics at large spatial scales, they rarely offer insights into the mechanisms that prompt the process at a local scale. Savi's pipistrelle (Hypsugo savii) is a vespertilionid bat widespread throughout the Mediterranean region. The species' recent range expansion towards northeastern Europe is thought to be induced by urbanization, yet no study actually tested this hypothesis, and climate change is a potential alternative driver. In this radio-telemetry study, set in the Vesuvius National Park (Campania region, Southern Italy) we provide insights into the species' thermal physiology and foraging ecology and investigate their relationships with potential large-scale responses to climate, and land use changes. Specifically, we test whether H. savii i) exploits urbanisation through a selection of urban areas for roosting and foraging, and ii) tolerates heatwaves (a proxy for thermophily) through a plastic use of thermoregulation. Tolerance to heatwaves would be consistent with the observation that the species' geographic range is not shifting but expanding northwards. Tracked bats roosted mainly in buildings but avoided urban habitats while foraging, actively selecting non-intensive farmland and natural wooded areas. Hypsugo savii showed tolerance to heat, reaching the highest body temperature ever recorded for a free-ranging bat (46.5 °C), and performing long periods of overheating. We conclude that H. savii is not a strictly synurbic species because it exploits urban areas mainly for roosting, and avoids them for foraging: this questions the role of synurbization as a range expansion driver. On the other hand, the species' extreme heat tolerance and plastic thermoregulatory behaviour represent winning traits to cope with heatwaves typical of climate change-related weather fluctuations. Copyright © 2018

  20. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range.

    PubMed

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  1. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    PubMed Central

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238

  2. A convenient and accurate wide-range parameter relationship between Buckingham and Morse potential energy functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng; Dawson, James Alexander

    2018-05-01

    This study explores the close-range, short-range and long-range relationships between the parameters of the Morse and Buckingham potential energy functions. The results show that the close-range and short-range relationships are valid for bond compression and for very small changes in bond length, respectively, while the long-range relationship is valid for bond stretching. A wide-range relationship is proposed to combine the comparative advantages of the close-range, short-range and long-range parameter relationships. The wide-range relationship is useful for replacing the close-range, short-range and long-range parameter relationships, thereby preventing the undesired effects of potential energy jumps resulting from functional switching between the close-range, short-range and long-range interaction energies.

  3. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids

    PubMed Central

    Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu

    2016-01-01

    Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation. PMID:27110907

  4. A New Wide-Range Equation of State for Xenon

    NASA Astrophysics Data System (ADS)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Effects of Demographic History on the Detection of Recombination Hotspots from Linkage Disequilibrium

    PubMed Central

    Dapper, Amy L; Payseur, Bret A

    2018-01-01

    Abstract In some species, meiotic recombination is concentrated in small genomic regions. These “recombination hotspots” leave signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in some species, but are conserved in others. Historic demographic events, such as population bottlenecks, are known to affect patterns of linkage disequilibrium across the genome, violating population genetic assumptions of this approach. Although such events are prevalent, demographic history is generally ignored when making inferences about the evolution of recombination hotspots. To determine the effect of demography on the detection of recombination hotspots, we use the coalescent to simulate haplotypes with a known recombination landscape. We measure the ability of popular linkage disequilibrium-based programs to detect hotspots across a range of demographic histories, including population bottlenecks, hidden population structure, population expansions, and population contractions. We find that demographic events have the potential to greatly reduce the power and increase the false positive rate of hotspot discovery. Neither the power nor the false positive rate of hotspot detection can be predicted without also knowing the demographic history of the sample. Our results suggest that ignoring demographic history likely overestimates the power to detect hotspots and therefore underestimates the degree of hotspot sharing between species. We suggest strategies for incorporating demographic history into population genetic inferences about recombination hotspots. PMID:29045724

  6. National Trade can Drive Range Expansion of Bark- and Wood-Boring Beetles.

    PubMed

    Rassati, Davide; Haack, Robert A; Knížek, Miloš; Faccoli, Massimo

    2018-02-09

    Several native species of bark- and wood-boring beetles (Coleoptera) have expanded their range within their native biogeographic regions in the last years, but the role of human activity in driving this phenomenon has been underinvestigated. Here we analyze 3 yr of trapping records of native bark- and wood-boring beetles (Cerambycidae and Scolytinae) collected at 12 Italian ports and their surrounding forests to help elucidate the human role in the movement of native species within their native biogeographic region. We trapped several species that occurred either inside or outside their native distributional range within Italy. Species richness and abundance of those species found in the ports located within their native range were most strongly associated with the amount of forest cover in the surrounding landscape, suggesting that they could have arrived in the ports from the nearby forests. The abundance of the species found outside their native range was instead most strongly linked to the amount of national imports arriving at the port where trapping occurred, suggesting that they were likely introduced to the ports from other parts of Italy. This study demonstrates that national sea transportation can favor species range expansion within a country, and confirms that the forests that surround ports can serve as a source of species that can be potentially moved with exports. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Truth, Love and Campus Expansion. The University of Pittsburgh Experience.

    ERIC Educational Resources Information Center

    Shaw, Paul C.

    This document provides a descriptive analysis of the University of Pittsburgh's experience with campus expansion during a 2 1/2 year period from fall 1970 to spring 1973. Part one describes a background and overview of campus expansion, a description of selective Oakland demographic characteristics, a discussion of the first major conflict with…

  8. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    USGS Publications Warehouse

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  9. Natural range expansion and local extirpation of an exotic psittacine--an unsuccessful colonization attempt

    USGS Publications Warehouse

    Wiley, J.W.

    1993-01-01

    The Brown-throated Parakeet Aratinga pertinax is native to Panama, northern South America, and the islands off the northern coast of Venezuela. It is widely believed that the parakeet was introduced to St. Thomas, Virgin Islands, from Curacao before the mid-19th century, although no records exist as to when and how this may have occurred. The parakeet was not recorded from Vieques or Culebra islands or mainland Puerto Rico before 1975. However, in that year A. pertinax underwent an apparent natural range expansion from St. Thomas into each of these sites. The 5 birds in the eastern Puerto Rico population made 5 breeding attempts and fledged 11 young since their discovery in April1975. That population grew to a maximum size of 10 birds in June 1979. However there was only 1 bird left by July 1980, and the population no longer existed at the beginning of what would have been the 1982 breeding season. The populations on Culebra and Vieques islands were apparently extirpated by 1976. Losses in the eastern Puerto Rico population were low during the first four years of colonization, when reproduction was adequate and the mortality was low. However, between 1978 and the time of population disappearance in 1982, the expected extirpation was 0.999. Habitat use, general behavior, breeding biology, competitors and predators of the colonizing population in eastern Puerto Rico are described. Biogeographic, evolutionary, and conservation implications of these observations are discussed.

  10. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  11. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  12. Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.

    2016-06-01

    Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.

  13. Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae)

    PubMed Central

    Shirk, R Y; Hamrick, J L; Zhang, C; Qiang, S

    2014-01-01

    Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations. PMID:24346497

  14. An update of demographic estimates for the Northern Spotted Owls (Strix occidentalis caurina) from Oregon's Central Coast Ranges

    Treesearch

    James A. Thrailkill; Robert G. Anthony; E. Charles Meslow

    1997-01-01

    Demographic characteristics of the Northern Spotted Owl (Strix occidentalis caurina) were studied on the Eugene District Bureau of Land Management, central Oregon Coast Ranges from 1989-1995. Survival rates were estimated from capture histories of banded owls using Cormack-Jolly-Seber open population models. We banded 233 owls, including 119 that...

  15. Length Distributions of Identity by Descent Reveal Fine-Scale Demographic History

    PubMed Central

    Palamara, Pier Francesco; Lencz, Todd; Darvasi, Ariel; Pe’er, Itsik

    2012-01-01

    Data-driven studies of identity by descent (IBD) were recently enabled by high-resolution genomic data from large cohorts and scalable algorithms for IBD detection. Yet, haplotype sharing currently represents an underutilized source of information for population-genetics research. We present analytical results on the relationship between haplotype sharing across purportedly unrelated individuals and a population’s demographic history. We express the distribution of IBD sharing across pairs of individuals for segments of arbitrary length as a function of the population’s demography, and we derive an inference procedure to reconstruct such demographic history. The accuracy of the proposed reconstruction methodology was extensively tested on simulated data. We applied this methodology to two densely typed data sets: 500 Ashkenazi Jewish (AJ) individuals and 56 Kenyan Maasai (MKK) individuals (HapMap 3 data set). Reconstructing the demographic history of the AJ cohort, we recovered two subsequent population expansions, separated by a severe founder event, consistent with previous analysis of lower-throughput genetic data and historical accounts of AJ history. In the MKK cohort, high levels of cryptic relatedness were detected. The spectrum of IBD sharing is consistent with a demographic model in which several small-sized demes intermix through high migration rates and result in enrichment of shared long-range haplotypes. This scenario of historically structured demographies might explain the unexpected abundance of runs of homozygosity within several populations. PMID:23103233

  16. Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts

    USGS Publications Warehouse

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew; Veblen, Thomas T.; Smith, Jeremy M.; Moyes, Andrew B.; Kueppers, Lara M.

    2018-01-01

    Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had greater recruitment to their third year (by 323%) than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating reduced (by 49%) recruitment to the third year of both low- and high-elevation seed sources across the elevation gradient, while watering alleviated some of the negative effects of heating (108% increase in watered plots). Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid post-fire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.

  17. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA.

    PubMed

    Armstrong, Philip M; Andreadis, Theodore G; Shepard, John J; Thomas, Michael C

    2017-05-01

    The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997-2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread

  18. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA

    PubMed Central

    Andreadis, Theodore G.; Shepard, John J.; Thomas, Michael C.

    2017-01-01

    Background The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Methodology/Principal findings Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997–2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. Conclusions/Significance This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the

  19. Range expansion potential of two co-occurring invasive vines to marginal habitats in Turkey

    NASA Astrophysics Data System (ADS)

    Farooq, Shahid; Tad, Sonnur; Onen, Huseyin; Gunal, Hikmet; Caldiran, Ugur; Ozaslan, Cumali

    2017-10-01

    Niche distribution models accurately predict the potential distribution range of invasive plants into new habitats based on their climatic requirements in the native regions. However, these models usually ignore the marginal habitats which can limit the distribution of exotic plants. We therefore tested the seedling survival, growth and nutrient acquisition capabilities of two co-occurring invasive vines [Persicaria perfoliata (L.) H. Gross and Sicyos angulatus L.] in three different manipulative greenhouse experiments to infer their range expansion potential to marginal habitats in Turkey. First experiment included five different moisture availability regimes (100, 75, 50, 25 and 12.5% available water), second experiment consisted of four different salinity levels (0, 3, 6 and 12 dSm-1 soil salinity) and third experiment had four different soil textures (clay-1, clay-2, sandy loam and silt-clay-loam). Seedling mortality was only observed under extreme moisture deficiency in both plant species, while most of the transplanted seedlings of both species did not survive under 6 and 12 dSm-1 salinity levels. Soil textures had no effect on seedling survival. POLPE better tolerated low moisture availability and high salinity compared to SIYAN. Biomass production in both plant species was linearly reduced with increasing salinity and moisture deficiency. SIYAN invested more resources towards shoot, accumulated higher K and P, whereas POLPE maintained higher root-to-shoot ratio under all experimental conditions. Both plant species employed different strategies to cope with adverse environmental conditions, but failed to persist under high soil salinity and moisture deficiency. Our study suggest that both plant species have limited potential of range expansion to marginal habitats and will be limited to moist and humid areas only. Therefore, further research activities should be concentrated in these regions to develop effective management strategies against both species.

  20. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  1. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  2. Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers.

    PubMed

    Semerikov, Vladimir L; Semerikova, Svetlana A; Polezhaeva, Maria A; Kosintsev, Pavel A; Lascoux, Martin

    2013-10-01

    While many species were confined to southern latitudes during the last glaciations, there has lately been mounting evidence that some of the most cold-tolerant species were actually able to survive close to the ice sheets. The contribution of these higher latitude outposts to the main recolonization thrust remains, however, untested. In the present study, we use the first range-wide survey of genetic diversity at cytoplasmic markers in Siberian larch (Larix sibirica; four mitochondrial (mt) DNA loci and five chloroplast (cp) DNA SSR loci) to (i) assess the relative contributions of southern and central areas to the current L. sibirica distribution range; and (ii) date the last major population expansion in both L. sibirica and adjacent Larix species. The geographic distribution of cpDNA variation was uninformative, but that of mitotypes clearly indicates that the southernmost populations, located in Mongolia and the Tien-Shan and Sayan Mountain ranges, had a very limited contribution to the current populations of the central and northern parts of the range. It also suggests that the contribution of the high latitude cryptic refugia was geographically limited and that most of the current West Siberian Plain larch populations likely originated in the foothills of the Sayan Mountains. Interestingly, the main population expansion detected through Approximate Bayesian Computation (ABC) in all four larch species investigated here pre-dates the LGM, with a mode in a range of 220,000-1,340,000 years BP. Hence, L. sibirica, like other major conifer species of the boreal forest, was strongly affected by climatic events pre-dating the Last Glacial Maximum. © 2013 John Wiley & Sons Ltd.

  3. Measuring the Environmental Dimensions of Human Migration: The Demographer's Toolkit.

    PubMed

    Fussell, Elizabeth; Hunter, Lori M; Gray, Clark L

    2014-09-01

    In recent years, the empirical literature linking environmental factors and human migration has grown rapidly and gained increasing visibility among scholars and the policy community. Still, this body of research uses a wide range of methodological approaches for assessing environment-migration relationships. Without comparable data and measures across a range of contexts, it is impossible to make generalizations that would facilitate the development of future migration scenarios. Demographic researchers have a large methodological toolkit for measuring migration as well as modeling its drivers. This toolkit includes population censuses, household surveys, survival analysis and multi-level modeling. This paper's purpose is to introduce climate change researchers to demographic data and methods and to review exemplary studies of the environmental dimensions of human migration. Our intention is to foster interdisciplinary understanding and scholarship, and to promote high quality research on environment and migration that will lead toward broader knowledge of this association.

  4. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.

    PubMed

    Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos

    2018-03-08

    Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.

  5. Effects of Demographic History on the Detection of Recombination Hotspots from Linkage Disequilibrium.

    PubMed

    Dapper, Amy L; Payseur, Bret A

    2018-02-01

    In some species, meiotic recombination is concentrated in small genomic regions. These "recombination hotspots" leave signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in some species, but are conserved in others. Historic demographic events, such as population bottlenecks, are known to affect patterns of linkage disequilibrium across the genome, violating population genetic assumptions of this approach. Although such events are prevalent, demographic history is generally ignored when making inferences about the evolution of recombination hotspots. To determine the effect of demography on the detection of recombination hotspots, we use the coalescent to simulate haplotypes with a known recombination landscape. We measure the ability of popular linkage disequilibrium-based programs to detect hotspots across a range of demographic histories, including population bottlenecks, hidden population structure, population expansions, and population contractions. We find that demographic events have the potential to greatly reduce the power and increase the false positive rate of hotspot discovery. Neither the power nor the false positive rate of hotspot detection can be predicted without also knowing the demographic history of the sample. Our results suggest that ignoring demographic history likely overestimates the power to detect hotspots and therefore underestimates the degree of hotspot sharing between species. We suggest strategies for incorporating demographic history into population genetic inferences about recombination hotspots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Note: A wide temperature range MOKE system with annealing capability.

    PubMed

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  7. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  8. Expansion of Private Engineering Institutions: Challenges Ahead

    ERIC Educational Resources Information Center

    Singh, Antra; Singh, Seema

    2018-01-01

    Globalization process and growth of knowledge economy with increasing dependency on innovative information technology necessitated an expansion of higher education institution. With the country counting on its demographic dividend, the increase in number of students seeking university degree is putting pressure on the higher education sector to…

  9. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient.

    PubMed

    Collins, Courtney G; Stajich, Jason E; Weber, Sören E; Pombubpa, Nuttapon; Diez, Jeffrey M

    2018-04-19

    Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change. © 2018 John Wiley & Sons Ltd.

  10. Inferring population structure and demographic history using Y-STR data from worldwide populations.

    PubMed

    Xu, Hongyang; Wang, Chuan-Chao; Shrestha, Rukesh; Wang, Ling-Xiang; Zhang, Manfei; He, Yungang; Kidd, Judith R; Kidd, Kenneth K; Jin, Li; Li, Hui

    2015-02-01

    The Y chromosome is one of the best genetic materials to explore the evolutionary history of human populations. Global analyses of Y chromosomal short tandem repeats (STRs) data can reveal very interesting world population structures and histories. However, previous Y-STR works tended to focus on small geographical ranges or only included limited sample sizes. In this study, we have investigated population structure and demographic history using 17 Y chromosomal STRs data of 979 males from 44 worldwide populations. The largest genetic distances have been observed between pairs of African and non-African populations. American populations with the lowest genetic diversities also showed large genetic distances and coancestry coefficients with other populations, whereas Eurasian populations displayed close genetic affinities. African populations tend to have the oldest time to the most recent common ancestors (TMRCAs), the largest effective population sizes and the earliest expansion times, whereas the American, Siberian, Melanesian, and isolated Atayal populations have the most recent TMRCAs and expansion times, and the smallest effective population sizes. This clear geographic pattern is well consistent with serial founder model for the origin of populations outside Africa. The Y-STR dataset presented here provides the most detailed view of worldwide population structure and human male demographic history, and additionally will be of great benefit to future forensic applications and population genetic studies.

  11. 10-decade wide-range neutron-monitoring system. Final test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, W.K.

    The objective of Project Agreement 49 was to design, fabricate, test, and evaluate under actual nuclear reactor operating conditions, one prototype counting-Campbelling wide-range type thermal neutron flux measurement channel. This report describes the basic system designed for PA 49, and describes and presents the results of tests conducted on the system. Individual module descriptions and schematics are contained in the instruction manual which was issued with the system.

  12. Local adaptation at the range peripheries of Sitka spruce.

    PubMed

    Mimura, M; Aitken, S N

    2010-02-01

    High-dispersal rates in heterogeneous environments and historical rapid range expansion can hamper local adaptation; however, we often see clinal variation in high-dispersal tree species. To understand the mechanisms of the species' distribution, we investigated local adaptation and adaptive plasticity in a range-wide context in Sitka spruce, a wind-pollinated tree species that has recently expanded its range after glaciations. Phenotypic traits were observed using growth chamber experiments that mimicked temperature and photoperiodic regimes from the limits of the species realized niche. Bud phenology exhibited parallel reaction norms among populations; however, putatively adaptive plasticity and strong divergent selection were seen in bud burst and bud set timing respectively. Natural selection appears to have favoured genotypes that maximize growth rate during available frost-free periods in each environment. We conclude that Sitka spruce has developed local adaptation and adaptive plasticity throughout its range in response to current climatic conditions despite generally high pollen flow and recent range expansion.

  13. An Optimized Control for LLC Resonant Converter with Wide Load Range

    NASA Astrophysics Data System (ADS)

    Xi, Xia; Qian, Qinsong

    2017-05-01

    This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.

  14. Tunable thermal expansion and magnetism in Zr-doped ScF 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tao; Xu, Jiale; Hu, Lei

    The negative thermal expansion (NTE) behavior provides us an opportunity to design materials with controllable coefficient of thermal expansion (CTE). In this letter, we report a tunable isotropic thermal expansion in the cubic (Sc1-xZrx)F3+δ over a wide temperature and CTE range (αl = -4.0 to +16.8 x 10-6 K-1, 298–648 K). The thermal expansion can be well adjusted from strong negative to zero, and finally to large positive. Intriguingly, isotropic zero thermal expansion (αl = 2.6 x 10-7 K-1, 298–648 K) has been observed in the composition of (Sc0.8Zr0.2)F3+δ. The controllable thermal expansion in (Sc1-xZrx)F3+δ is correlated to the localmore » structural distortion. Interestingly, the ordered magnetic behavior has been found in the zero thermal expansion compound of (Sc0.8Zr0.2)F3+δ at room temperature, which presumably correlates with the unpaired electron of the lower chemical valence of Zr cation. The present study provides a useful reference to control the thermal expansion and explore the multi-functionalization for NTE materials.« less

  15. Optical characterization in wide spectral range by a coherent spectrophotometer

    NASA Astrophysics Data System (ADS)

    Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.

    2003-11-01

    We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.

  16. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    PubMed

    Ruiz-Cooley, Rocio I; Ballance, Lisa T; McCarthy, Matthew D

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ(15)N values, a proxy for habitat baseline δ(15)N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15)N values in gladii for squid at small sizes (<30 cm gladii length). In contrast, bulk δ(15)N values from gladii of large squid (>60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15)N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  17. Range Expansion of the Jumbo Squid in the NE Pacific: δ15N Decrypts Multiple Origins, Migration and Habitat Use

    PubMed Central

    Ruiz-Cooley, Rocio I.; Ballance, Lisa T.; McCarthy, Matthew D.

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997–98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ15N values, a proxy for habitat baseline δ15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ15N values in gladii for squid at small sizes (<30 cm gladii length). In contrast, bulk δ15N values from gladii of large squid (>60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key “invasive” predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure. PMID:23527242

  18. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  19. Fast demographic traits promote high diversification rates of Amazonian trees

    PubMed Central

    Baker, Timothy R; Pennington, R Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J M M; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Brienen, Roel J W; Chave, Jerome; Dexter, Kyle G; Di Fiore, Anthony; Eler, Eduardo; Feldpausch, Ted R; Ferreira, Leandro; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje; Higuchi, Niro; Honorio, Eurídice; Huamantupa, Isau; Killeen, Tim J; Laurance, Susan; Leaño, Claudio; Lewis, Simon L; Malhi, Yadvinder; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur; Monteagudo Mendoza, Abel; Neill, David; Peñuela-Mora, Maria Cristina; Pitman, Nigel; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez Angulo, Hirma; Rudas, Agustin; Ruschel, Ademir R; Salomão, Rafael P; de Andrade, Ana Segalin; Silva, J Natalino M; Silveira, Marcos; Simon, Marcelo F; Spironello, Wilson; ter Steege, Hans; Terborgh, John; Toledo, Marisol; Torres-Lezama, Armando; Vasquez, Rodolfo; Vieira, Ima Célia Guimarães; Vilanova, Emilio; Vos, Vincent A; Phillips, Oliver L; Wiens, John

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests. PMID:24589190

  20. Reconstructing Seasonal Range Expansion of the Tropical Butterfly, Heliconius charithonia, into Texas Using Historical Records

    PubMed Central

    Cardoso, Márcio Zikán

    2010-01-01

    While butterfly responses to climate change are well studied, detailed analyses of the seasonal dynamics of range expansion are few. Therefore, the seasonal range expansion of the butterfly Heliconius charithonia L. (Lepidoptera: Nymphalidae) was analyzed using a database of sightings and collection records dating from 1884 to 1992 from Texas. First and last sightings for each year were noted, and residency time calculated, for each collection locality. To test whether sighting dates were a consequence of distance from source (defined as the southernmost location of permanent residence), the distance between source and other locations was calculated. Additionally, consistent directional change over time of arrival dates was tested in a well-sampled area (San Antonio). Also, correlations between temperature, rainfall, and butterfly distribution were tested to determine whether butterfly sightings were influenced by climate. Both arrival date and residency interval were influenced by distance from source: butterflies arrived later and residency time was shorter at more distant locations. Butterfly occurrence was correlated with temperature but not rainfall. Residency time was also correlated with temperature but not rainfall. Since temperature follows a north-south gradient this may explain the inverse relationship between residency and distance from entry point. No long-term directional change in arrival dates was found in San Antonio. The biological meaning of these findings is discussed suggesting that naturalist notes can be a useful tool in reconstructing spatial dynamics. PMID:20672989

  1. Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.

    Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. In this study, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sourcesmore » across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. In conclusion, our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.« less

  2. Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts

    DOE PAGES

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; ...

    2017-07-26

    Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. In this study, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sourcesmore » across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. In conclusion, our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.« less

  3. Range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Veblen, Kari E.; Pyke, David A.; Jones, Christopher A.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and

  4. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes.

    PubMed

    Bamba, Masaru; Nakata, Sayuri; Aoki, Seishiro; Takayama, Koji; Núñez-Farfán, Juan; Ito, Motomi; Miya, Masaki; Kajita, Tadashi

    2016-12-01

    To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.

  5. Population Genetics of Three Dimensional Range Expansions

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  6. A new species of Ormocerus Walker (Hymenoptera: Pteromalidae) from North America and a range expansion for Ormocerus latus Walker

    USDA-ARS?s Scientific Manuscript database

    Ormocerus dirigoius, n. sp. is described and compared to the North American O. americanus Dzhanokmen and Grissell and European species O. latus Walker and O. vernalis Walker. A range expansion into the Nearctic is reported for O. latus, previously only known from the Palearctic. Specimens were colle...

  7. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense.

    PubMed

    Yang, Aihong; Dick, Christopher W; Yao, Xiaohong; Huang, Hongwen

    2016-05-10

    Species ranges are influenced by past climate oscillations, geographical constraints, and adaptive potential to colonize novel habitats at range limits. This study used Liriodendron chinense, an important temperate Asian tree species, as a model system to evaluate the roles of biogeographic history and marginal population genetics in determining range limits. We examined the demographic history and genetic diversity of 29 L. chinense populations using both chloroplast and nuclear microsatellite loci. Significant phylogeographic structure was recovered with haplotype clusters coinciding with major mountain regions. Long-term demographical stability was suggested by mismatch distribution analyses, neutrality tests, and ecological niche models (ENM) and suggested the existence of LGM refuges within mountain regions. Differences in genetic diversity between central and marginal populations were not significant for either genomic region. However, asymmetrical gene flow was inferred from central populations to marginal populations, which could potentially limit range adaptation and expansion of L. chinense.

  8. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion.

    PubMed

    Riley, Megan E; Griffen, Blaine D

    2017-01-01

    Range shifts and expansions resulting from global climate change have the potential to create novel communities with unique plant-animal interactions. Organisms expanding their range into novel biotic and abiotic environments may encounter selection pressures that alter traditional biogeographic patterns of life history traits. Here, we used field surveys to examine latitudinal patterns of life history traits in a broadly distributed ectotherm (mangrove tree crab Aratus pisonii) that has recently experienced a climate change-induced range expansion into a novel habitat type. Additionally, we conducted laboratory and field experiments to investigate characteristics associated with these life history traits (e.g. fecundity, offspring quality, and potential selection pressures). We compared these characteristics in native mangrove habitats in which the species has historically dwelled and novel salt marsh habitats into which the species has recently expanded its range. Consistent with traditional biogeographic concepts (i.e. Bergmann's clines), size at maturity and mean body size of reproductive females increased with latitude within the native habitat. However, they decreased significantly in novel habitats at the highest latitudes of the species' range, which was consistent with habitat-specific differences in both biotic (predation) and abiotic (temperature) selection pressures. Although initial maternal investment (egg volume and weight) did not differ between habitats, fecundity was lower in novel habitats as a result of differences in size at reproduction. Offspring quality, as measured by larval starvation resistance, was likewise diminished in novel habitats relative to native habitats. These differences in offspring quality may have enduring consequences for species success and persistence in novel habitats. Life history characteristics such as those investigated here are fundamental organismal traits; consequently, understanding the potential impacts of

  9. Secondary sympatry caused by range expansion informs on the dynamics of microendemism in a biodiversity hotspot.

    PubMed

    Nattier, Romain; Grandcolas, Philippe; Elias, Marianne; Desutter-Grandcolas, Laure; Jourdan, Hervé; Couloux, Arnaud; Robillard, Tony

    2012-01-01

    Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.

  10. The wide-range ejector flowmeter: calibrated gas evacuation comprising both high and low gas flows.

    PubMed

    Waaben, J; Brinkløv, M M; Jørgensen, S

    1984-11-01

    The wide-range ejector flowmeter is an active scavenging system applying calibrated gas removal directly to the anaesthetic circuit. The evacuation rate can be adjusted on the flowmeter under visual control using the calibration scale ranging from 200 ml X min-1 to 151 X min-1. The accuracy of the calibration was tested on three ejector flowmeters at 12 different presettings. The percentage deviation from presetting varied from + 18 to - 19.4 per cent. The ejector flowmeter enables the provision of consistent and accurately calibrated extraction of waste gases and is applicable within a wide range of fresh gas flows.

  11. Diversification of the phaseoloid legumes: effects of climate change, range expansion and habit shift

    PubMed Central

    Li, Honglei; Wang, Wei; Lin, Li; Zhu, Xiangyun; Li, Jianhua; Zhu, Xinyu; Chen, Zhiduan

    2013-01-01

    Understanding which factors have driven the evolutionary success of a group is a fundamental question in biology. Angiosperms are the most successful group in plants and have radiated and adapted to various habitats. Among angiosperms, legumes are a good example for such successful radiation and adaptation. We here investigated how the interplay of past climate changes, geographical expansion and habit shifts has promoted diversification of the phaseoloid legumes, one of the largest clades in the Leguminosae. Using a comprehensive genus-level phylogeny from three plastid markers, we estimate divergence times, infer habit shifts, test the phylogenetic and temporal diversification heterogeneity, and reconstruct ancestral biogeographical ranges. We found that the phaseoloid lineages underwent twice dramatic accumulation. During the Late Oligocene, at least six woody clades rapidly diverged, perhaps in response to the Late Oligocene warming and aridity, and a result of rapidly exploiting new ecological opportunities in Asia, Africa and Australia. The most speciose lineage is herbaceous and began to rapidly diversify since the Early Miocene, which was likely ascribed to arid climates, along with the expansion of seasonally dry tropical forests in Africa, Asia, and America. The phaseoloid group provides an excellent case supporting the idea that the interplay of ecological opportunities and key innovations drives the evolutionary success. PMID:24130564

  12. Diversification of the phaseoloid legumes: effects of climate change, range expansion and habit shift.

    PubMed

    Li, Honglei; Wang, Wei; Lin, Li; Zhu, Xiangyun; Li, Jianhua; Zhu, Xinyu; Chen, Zhiduan

    2013-01-01

    Understanding which factors have driven the evolutionary success of a group is a fundamental question in biology. Angiosperms are the most successful group in plants and have radiated and adapted to various habitats. Among angiosperms, legumes are a good example for such successful radiation and adaptation. We here investigated how the interplay of past climate changes, geographical expansion and habit shifts has promoted diversification of the phaseoloid legumes, one of the largest clades in the Leguminosae. Using a comprehensive genus-level phylogeny from three plastid markers, we estimate divergence times, infer habit shifts, test the phylogenetic and temporal diversification heterogeneity, and reconstruct ancestral biogeographical ranges. We found that the phaseoloid lineages underwent twice dramatic accumulation. During the Late Oligocene, at least six woody clades rapidly diverged, perhaps in response to the Late Oligocene warming and aridity, and a result of rapidly exploiting new ecological opportunities in Asia, Africa and Australia. The most speciose lineage is herbaceous and began to rapidly diversify since the Early Miocene, which was likely ascribed to arid climates, along with the expansion of seasonally dry tropical forests in Africa, Asia, and America. The phaseoloid group provides an excellent case supporting the idea that the interplay of ecological opportunities and key innovations drives the evolutionary success.

  13. The role of anisotropic expansion for pulmonary acinar aerosol deposition

    PubMed Central

    Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613

  14. Medicaid Participation among Liver Transplant Candidates after the Affordable Care Act Medicaid Expansion.

    PubMed

    Tumin, Dmitry; Beal, Eliza W; Mumtaz, Khalid; Hayes, Don; Tobias, Joseph D; Pawlik, Timothy M; Washburn, W Kenneth; Black, Sylvester M

    2017-08-01

    The 2014 Medicaid expansion in participating states increased insurance coverage among people with chronic health conditions, but its implications for access to surgical care remain unclear. We investigated how Medicaid expansion influenced the insurance status of candidates for liver transplantation (LT) and transplant center payor mix. Data on LT candidates aged 18 to 64 years, in 2012 to 2013 (pre-expansion) and 2014 to 2015 (post-expansion), were obtained from the United Network for Organ Sharing registry. Change between the 2 periods in the percent of LT candidates using Medicaid was compared between expansion and nonexpansion states. Multivariable logistic regression was used to determine how Medicaid expansion influenced individual LT candidates' likelihood of using Medicaid insurance. The study included 33,017 LT candidates, of whom 29,666 had complete data for multivariable analysis. Medicaid enrollment increased by 4% after Medicaid expansion in participating states. One-quarter of the transplant centers in these states experienced ≥10% increase in the proportion of LT candidates using Medicaid insurance. Multivariable analysis confirmed that Medicaid expansion was associated with increased odds of LT candidates using Medicaid insurance (odds ratio 1.49; 95% CI 1.34, 1.66; p < 0.001). However, the absolute number and demographic characteristics of patients listed for LT did not change in Medicaid expansion states during the post-expansion period. Candidates for LT became more likely to use Medicaid after the 2014 Medicaid expansion policy came into effect. Enactment of this policy did not appear to increase access to LT or address socioeconomic and demographic disparities in access to the LT wait list. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    PubMed

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  16. Ozone formation in pulsed SDBD in a wide pressure range

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  17. Multimode VCSEL model for wide frequency-range RIN simulation

    NASA Astrophysics Data System (ADS)

    Perchoux, Julien; Rissons, Angélique; Mollier, Jean-Claude

    2008-01-01

    In this paper, we present an equivalent circuit model for oxide-confined AlGaAs/GaAs VCSEL with the noise contribution adapted to optomicrowave links applications. This model is derived from the multimode rate equations. In order to understand the modal competition process, we restrain our description to a two-modes rate equations system affected by the spectral hole-burning. The relative intensity noise (RIN) measurements which were achieved on a prober in Faraday cage confirm the low frequency enhancement described by the model. We validate our model for a wide frequency-range [1 MHz-10 GHz] and high bias level up to six times the threshold current.

  18. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities

    PubMed Central

    Zhang, Shao-Hui; Wang, Feng-Xia; Li, Jia-Jia; Peng, Hong-Dan; Yan, Jing-Hui; Pan, Ge-Bo

    2017-01-01

    Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%), good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave. PMID:29135928

  19. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    PubMed Central

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159

  20. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response

    PubMed Central

    Nakano, Masahiro; Arai, Yoshiyuki; Kotera, Ippei; Okabe, Kohki; Kamei, Yasuhiro; Nagai, Takeharu

    2017-01-01

    Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species. PMID:28212432

  1. Cycle expansions: From maps to turbulence

    NASA Astrophysics Data System (ADS)

    Lan, Y.

    2010-03-01

    We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.

  2. The business of demographics.

    PubMed

    Russell, C

    1984-06-01

    The emergence of "demographics" in the past 15 years is a vital tool for American business research and planning. Tracing demographic trends became important for businesses when traditional consumer markets splintered with the enormous changes since the 1960s in US population growth, age structure, geographic distribution, income, education, living arrangements, and life-styles. The mass of reliable, small-area demographic data needed for market estimates and projections became available with the electronic census--public release of Census Bureau census and survey data on computer tape, beginning with the 1970 census. Census Bureau tapes as well as printed reports and microfiche are now widely accessible at low cost through summary tape processing centers designated by the bureau and its 12 regional offices and State Data Center Program. Data accessibility, plummeting computer costs, and businessess' unfamiliarity with demographics spawned the private data industry. By 1984, 70 private companies were offering demographic services to business clients--customized information repackaged from public data or drawn from proprietary data bases created from such data. Critics protest the for-profit use of public data by companies able to afford expensive mainframe computer technology. Business people defend their rights to public data as taxpaying ceitzens, but they must ensure that the data are indeed used for the public good. They must also question the quality of demographic data generated by private companies. Business' demographic expertise will improve when business schools offer training in demography, as few now do, though 40 of 88 graduate-level demographic programs now include business-oriented courses. Lower cost, easier access to business demographics is growing as more census data become available on microcomputer diskettes and through on-line linkages with large data bases--from private data companies and the Census Bureau itself. A directory of private and

  3. Hemicellulose block copolymers made from woods for wide-range directed self-assembly lithography enabling wider range of applicable patterning size

    NASA Astrophysics Data System (ADS)

    Morita, Kazuyo; Yamamoto, Kimiko

    2017-03-01

    Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.

  4. Better living through conifer removal: A demographic analysis of sage-grouse vital rates.

    PubMed

    Severson, John P; Hagen, Christian A; Tack, Jason D; Maestas, Jeremy D; Naugle, David E; Forbes, James T; Reese, Kerry P

    2017-01-01

    Sagebrush (Artemisia spp.) obligate wildlife species such as the imperiled greater sage-grouse (Centrocercus urophasianus) face numerous threats including altered ecosystem processes that have led to conifer expansion into shrub-steppe. Conifer removal is accelerating despite a lack of empirical evidence on grouse population response. Using a before-after-control-impact design at the landscape scale, we evaluated effects of conifer removal on two important demographic parameters, annual survival of females and nest survival, by monitoring 219 female sage-grouse and 225 nests in the northern Great Basin from 2010 to 2014. Estimates from the best treatment models showed positive trends in the treatment area relative to the control area resulting in an increase of 6.6% annual female survival and 18.8% nest survival relative to the control area by 2014. Using stochastic simulations of our estimates and published demographics, we estimated a 25% increase in the population growth rate in the treatment area relative to the control area. This is the first study to link sage-grouse demographics with conifer removal and supports recommendations to actively manage conifer expansion for sage-grouse conservation. Sage-grouse have become a primary catalyst for conservation funding to address conifer expansion in the West, and these findings have important implications for other ecosystem services being generated on the wings of species conservation.

  5. A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus

    PubMed Central

    Biek, Roman; Henderson, J. Caroline; Waller, Lance A.; Rupprecht, Charles E.; Real, Leslie A.

    2007-01-01

    Emerging pathogens potentially undergo rapid evolution while expanding in population size and geographic range during the course of invasion, yet it is generally difficult to demonstrate how these processes interact. Our analysis of a 30-yr data set covering a large-scale rabies virus outbreak among North American raccoons reveals the long lasting effect of the initial infection wave in determining how viral populations are genetically structured in space. We further find that coalescent-based estimates derived from the genetic data yielded an amazingly accurate reconstruction of the known spatial and demographic dynamics of the virus over time. Our study demonstrates the combined evolutionary and population dynamic processes characterizing the spread of pathogen after its introduction into a fully susceptible host population. Furthermore, the results provide important insights regarding the spatial scale of rabies persistence and validate the use of coalescent approaches for uncovering even relatively complex population histories. Such approaches will be of increasing relevance for understanding the epidemiology of emerging zoonotic diseases in a landscape context. PMID:17470818

  6. Liquid crystal 'blue phases' with a wide temperature range.

    PubMed

    Coles, Harry J; Pivnenko, Mikhail N

    2005-08-18

    Liquid crystal 'blue phases' are highly fluid self-assembled three-dimensional cubic defect structures that exist over narrow temperature ranges in highly chiral liquid crystals. The characteristic period of these defects is of the order of the wavelength of visible light, and they give rise to vivid specular reflections that are controllable with external fields. Blue phases may be considered as examples of tuneable photonic crystals with many potential applications. The disadvantage of these materials, as predicted theoretically and proved experimentally, is that they have limited thermal stability: they exist over a small temperature range (0.5-2 degrees C) between isotropic and chiral nematic (N*) thermotropic phases, which limits their practical applicability. Here we report a generic family of liquid crystals that demonstrate an unusually broad body-centred cubic phase (BP I*) from 60 degrees C down to 16 degrees C. We prove this with optical texture analysis, selective reflection spectroscopy, Kössel diagrams and differential scanning calorimetry, and show, using a simple polarizer-free electro-optic cell, that the reflected colour is switched reversibly in applied electric fields over a wide colour range in typically 10 ms. We propose that the unusual behaviour of these blue phase materials is due to their dimeric molecular structure and their very high flexoelectric coefficients. This in turn sets out new theoretical challenges and potentially opens up new photonic applications.

  7. Diluting the founder effect: cryptic invasions expand a marine invader's range

    PubMed Central

    Roman, Joe

    2006-01-01

    Most invasion histories include an estimated arrival time, followed by range expansion. Yet, such linear progression may not tell the entire story. The European green crab (Carcinus maenas) was first recorded in the US in 1817, followed by an episodic expansion of range to the north. Its population has recently exploded in the Canadian Maritimes. Although it has been suggested that this northern expansion is the result of warming sea temperatures or cold-water adaptation, Canadian populations have higher genetic diversity than southern populations, indicating that multiple introductions have occurred in the Maritimes since the 1980s. These new genetic lineages, probably from the northern end of the green crab's native range in Europe, persist in areas that were once thought to be too cold for the original southern invasion front. It is well established that ballast water can contain a wide array of nonindigenous species. Ballast discharge can also deliver genetic variation on a level comparable to that of native populations. Such gene flow not only increases the likelihood of persistence of invasive species, but it can also rapidly expand the range of long-established nonindigenous species. PMID:16959635

  8. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    PubMed

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  9. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle.

    PubMed

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (-):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  10. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

    PubMed Central

    McMullan, Mark; Gardiner, Anastasia; Bailey, Kate; Kemen, Eric; Ward, Ben J; Cevik, Volkan; Robert-Seilaniantz, Alexandre; Schultz-Larsen, Torsten; Balmuth, Alexi; Holub, Eric; van Oosterhout, Cock; Jones, Jonathan DG

    2015-01-01

    How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin's finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment. DOI: http://dx.doi.org/10.7554/eLife.04550.001 PMID:25723966

  11. Expansion and contraction tension zones in western pinon-juniper woodlands under projected climate change

    Treesearch

    Jacob Gibson; Gretchen G. Moisen; Tracey S. Frescino; Thomas C. Jr. Edwards

    2012-01-01

    Populations of pinons and junipers across the interior west have been highly dynamic over the last two centuries, undergoing an overall expansion but punctuated with regional mortality. Accumulating demographic studies across the interior west indicate the drivers of expansion and contraction of populations are compounded by regional land use legacies, but have an...

  12. A high gain wide dynamic range transimpedance amplifier for optical receivers

    NASA Astrophysics Data System (ADS)

    Lianxi, Liu; Jiao, Zou; Yunfei, En; Shubin, Liu; Yue, Niu; Zhangming, Zhu; Yintang, Yang

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.

  13. Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain

    NASA Astrophysics Data System (ADS)

    Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji

    The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.

  14. A Classroom Activity to Illustrate the Demographic Transition

    ERIC Educational Resources Information Center

    Weihe, Paul

    2006-01-01

    A discussion of the Demographic Transition is included in many Environmental Biology or Environmental Science classes. The Demographic Transition occurs as a nation becomes more urban and wealthy, and was widely observed in the twentieth century. The phenomenon includes decreasing family size (fewer children) across generations. In this classroom…

  15. Environmental imperatives reconsidered: demographic crises in western North America during the medieval climatic anomaly.

    PubMed

    Jones, T L; Brown, G M; Raab, L M; McVickar, J L; Spaulding, W G; Kennett, D J; York, A; Wlaker, P L

    1999-04-01

    Review of late Holocene paleoenvironmental and cultural sequences from four regions of western North America show striking correlations between drought and changes in subsistence, population, exchange, health, and interpersonal violence during the Medieval Climatic Anomaly (A.D. 800-1350). While ultimate causality is difficult to identify in the archaeological record, synchrony of the environmental and cultural changes and the negative character of many human responses--increased interpersonal violence, deterioration of long-distance exchange relationships, and regional abandonments--suggest widespread demographic crises caused by decreased environmental productivity. The medieval droughts occurred at a unique juncture in the demographic history of western North America when unusually large populations of both hunter-gathers and agriculturalists had evolved highly intensified economies that put them in unprecedented ecological jeopardy. Long-term patterns in the archaeological record are inconsistent with the predicted outcomes of simple adaptation or continuous economic intensification, suggesting that in this instance environmental dynamics played a major role in cultural transformations across a wide expanse of western North America among groups with diverse subsistence strategies. These events suggest that environment should not be overlooked as a potential cause of prehistoric culture change.

  16. Application of nonlinear regression in the development of a wide range formulation for HCFC-22

    NASA Astrophysics Data System (ADS)

    Kamei, A.; Beyerlein, S. W.; Jacobsen, R. T.

    1995-09-01

    An equation of state has been developed for HCFC-22 for temperatures from the triple point (115.73 K) to 550 K, at pressures up to 60 MPa. Based on comparisons between experimental data and calculated properties, the accuracy of the wide-range equation of state is ±0.1% in density, ±0.3% in speed of sound, and ±1.0% in isobaric heat capacity, except in the critical region. Nonlinear fitting techniques were used to fit a liquid equation of state based on P-ρ-T, speed of sound, and isobaric heat capacity data. Properties calculated from the liquid equation of state were then used to expand the range of validity of the wide range equation of state for HCFC-22.

  17. The role of anisotropic expansion for pulmonary acinar aerosol deposition.

    PubMed

    Hofemeier, Philipp; Sznitman, Josué

    2016-10-03

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (d p =0.005-5.0μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (d p ~0.5-0.75μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. LNA with wide range of gain control and wideband interference rejection

    NASA Astrophysics Data System (ADS)

    Wang, Jhen-Ji; Chen, Duan-Yu

    2016-10-01

    This work presents a low-noise amplifier (LNA) design with a wide-range gain control characteristic that integrates adjustable current distribution and output impedance techniques. For a given gain characteristic, the proposed LNA provides better wideband interference rejection performance than conventional LNA. Moreover, the proposed LNA also has a wider gain control range than conventional LNA. Therefore, it is suitable for satellite communications systems. The simulation results demonstrate that the voltage gain control range is between 14.5 and 34.2 dB for such applications (2600 MHz); the input reflection coefficient is less than -18.9 dB; the noise figure (NF) is 1.25 dB; and the third-order intercept point (IIP3) is 4.52 dBm. The proposed LNA consumes 23.85-28.17 mW at a supply voltage of 1.8 V. It is implemented by using TSMC 0.18-um RF CMOS process technology.

  19. Population Genetic Structure and Demographic History of Atrina pectinata Based on Mitochondrial DNA and Microsatellite Markers

    PubMed Central

    Xue, Dong-Xiu; Wang, Hai-Yan; Zhang, Tao; Liu, Jin-Xian

    2014-01-01

    The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata. PMID:24789175

  20. Surveillance for microbes and range expansion in house sparrows

    PubMed Central

    Martin, Lynn B.; Coon, Courtney A. C.; Liebl, Andrea L.; Schrey, Aaron W.

    2014-01-01

    Interactions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites. Here, we tested the hypothesis that variation in the regulation of inflammation contributed to the spread of house sparrows (Passer domesticus) across Kenya, one of the world's most recent invasions of this species. Specifically, we asked whether inflammatory gene expression declines with population age (i.e. distance from Mombasa (dfM), the site of introduction around 1950). We compared expression of two microbe surveillance molecules (Toll-like receptors, TLRs-2 and 4) and a proinflammatory cytokine (interleukin-6, IL-6) before and after an injection of an immunogenic component of Gram-negative bacteria (lipopolysaccharide, LPS) among six sparrow populations. We then used a best-subset model selection approach to determine whether population age (dfM) or other factors (e.g. malaria or coccidian infection, sparrow density or genetic group membership) best-explained gene expression. For baseline expression of TLR-2 and TLR-4, population age tended to be the best predictor with expression decreasing with population age, although other factors were also important. Induced expression of TLRs was affected by LPS treatment alone. For induced IL-6, only LPS treatment reliably predicted expression; baseline expression was not explained by any factor. These data suggest that changes in microbe surveillance, more so than downstream control of inflammation via cytokines, might have been important to the house sparrow invasion of Kenya. PMID:24258722

  1. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    NASA Astrophysics Data System (ADS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  2. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  3. A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes).

    PubMed

    Kutschera, Verena E; Lecomte, Nicolas; Janke, Axel; Selva, Nuria; Sokolov, Alexander A; Haun, Timm; Steyer, Katharina; Nowak, Carsten; Hailer, Frank

    2013-06-05

    Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown

  4. A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes)

    PubMed Central

    2013-01-01

    Background Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Results Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. Conclusions The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the

  5. Demographic consequences of invasion by a native, controphic competitor to an insular bird population.

    PubMed

    Johnson, K M; Germain, R R; Tarwater, C E; Reid, J M; Arcese, P

    2018-05-01

    Species invasions and range shifts can lead to novel competitive interactions between historically resident and colonizing species, but the demographic consequences of such interactions remain controversial. We present results from field experiments and 45 years of demographic monitoring to test the hypothesis that the colonization of Mandarte Is., BC, Canada, by fox sparrows (Passerella iliaca) caused the long-term decline of the resident population of song sparrows (Melospiza melodia). Several lines of evidence indicate that competition with fox sparrows for winter food reduced over-winter survival in juvenile song sparrows by 48% from 1960 to 2015, enforcing population decline despite an increase in annual reproductive rate in song sparrows over the same period. Preference for locally abundant seeds presented at experimental arenas suggested complete overlap in diet in song and fox sparrows, and observations at arenas baited with commercial seed showed that fox sparrows displaced song sparrows in 91-100% of interactions in two periods during winter. In contrast, we found no evidence of interspecific competition for resources during the breeding season. Our results indicate that in the absence of marked shifts in niche dimension, range expansions by dominant competitors have the potential to cause the extirpation of historically resident species when competitive interactions between them are strong and resources not equitably partitioned.

  6. Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    NASA Technical Reports Server (NTRS)

    Short, J. S.; Hyer, M. W.; Bowles, D. E.; Tompkins, S. S.

    1982-01-01

    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design.

  7. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.

    PubMed

    Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J

    2013-06-17

    We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

  8. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.

    PubMed

    Du, Yuhuan; Guo, Yingqing

    2016-07-15

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.

  9. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor

    PubMed Central

    Du, Yuhuan; Guo, Yingqing

    2016-01-01

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976

  10. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    NASA Astrophysics Data System (ADS)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  11. Range expansion and habitat shift triggered elevated diversification of the rice genus (Oryza, Poaceae) during the Pleistocene.

    PubMed

    Lin, Li; Tang, Liang; Bai, Yun-Jun; Tang, Zhi-Yao; Wang, Wei; Chen, Zhi-Duan

    2015-09-03

    The rice genus (Oryza) contains many wild genetic resources that are vital to the well-being of humans. However, little is known about the process by which the genus diversified or the factors that drove its speciation. Here, we integrated the phylogenetic, molecular dating and biogeographic methods to investigate the spatial-temporal patterns of Oryza diversification, and used a series of model tests to examine whether intercontinental migrations and/or key innovations were associated with significant changes in diversification rates in the genus. Oryza became differentiated in tropical Asia in the Miocene. There were two migrations from the ancestral area into Africa and Australia during the Miocene. We inferred at least 10 migration events out of tropical Asia since the Pleistocene, mainly involving the species adapting open habitat. A rapid increase in diversification rates of the whole Oryza occurred during the Pleistocene. Intercontinental migrations from tropical Asia to other tropical regions were positively correlated with shift in habitat, but not with changes in life history. A habitat preference shift from shade tolerant to open habitat predated the burst in diversification rates. Rice species may have been pre-adapted to invade open habitat. Significant increase in diversification rates occurred during the Pleistocene and is associated with range expansion and habitat shift, but not with life history. The rice genus provides an excellent case supporting the idea that range expansion and invasion of novel habitats can drive the diversification of a group.

  12. Variation along ITS markers across strains of Fibrocapsa japonica (Raphidophyceae) suggests hybridisation events and recent range expansion

    NASA Astrophysics Data System (ADS)

    Kooistra, Wiebe H. C. F.; de Boer, M. Karin; Vrieling, Engel G.; Connell, Laurie B.; Gieskes, Winfried W. C.

    2001-12-01

    The flagellate micro-alga Fibrocapsa japonica can form harmful algal blooms along all temperate coastal regions of the world. The species was first observed in coastal waters of Japan and the western US in the 1970s; it has been reported regularly worldwide since. To unravel whether this apparent range expansion can be tracked, we assessed genetic variation among nuclear ribosomal DNA ITS sequences, obtained from sixteen global strains collected over the course of three decades. Ten sequence positions showed polymorphism across the strains. Nine out of these revealed ambiguities in several or most sequences sampled. The oldest strain collected (LB-2161) was the only one without such intra-individual polymorphism. In the others, the proportion of ambiguities at variable sites increased with more recent collection date. The pattern does not result from loss of variation due to sexual reproduction and random drift in culture because sister cultures CS-332 and NIES-136 showed virtually the same ITS-pattern after seven years of separation. Neither are the patterns explained by recent range expansion of a single genotype, because in that case one would expect lowest genetic diversity in the recently invaded North Sea; instead, polymorphism is highest there. Recent ballast-water-mediated mixing of formerly isolated populations and subsequent ongoing sexual reproduction among them can explain the increase in ambiguities. The species' capacity to form harmful blooms may well have been enhanced through increased genetic diversity of regional populations.

  13. State Medicaid expansion decisions and disparities in women's cancer screening.

    PubMed

    Sabik, Lindsay M; Tarazi, Wafa W; Bradley, Cathy J

    2015-01-01

    There are substantial disparities in breast and cervical cancer screening that stem from lack of health insurance. Although the Affordable Care Act (ACA) expands insurance coverage to many Americans, there are differences in availability of Medicaid coverage across states. To understand the potential impact of Medicaid expansions on disparities in preventive care for low-income women by assessing pre-ACA breast and cervical cancer screening across states currently expanding and not expanding Medicaid to low-income adults. Data from the 2012 Behavioral Risk Factor Surveillance System (analyzed in 2014) were used to consider differences in demographics among women for whom screening is recommended, including income and race/ethnicity, across expansion and nonexpansion states. Self-reported screening was compared by state expansion status overall, for the uninsured, and for low-income women. Logistic regressions were estimated to assess differences in self-reported screening across expansion and nonexpansion states controlling for demographics. Women in states that are not expanding Medicaid had significantly lower odds of receiving recommended mammograms (OR=0.87, 95% CI=0.79, 0.95) or Pap tests (OR=0.87, 95% CI=0.79, 0.95). The difference was larger among the uninsured (OR=0.72, 95% CI=0.56, 0.91 for mammography; OR=0.78, 95% CI=0.65, 0.94 for Pap tests). As women in nonexpansion states remain uninsured and others gain coverage, existing disparities in cancer screening by race and socioeconomic status are likely to widen. Health risks and associated costs to underserved populations must be taken into account in ongoing debates over expansion. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Pleistocene to holocene expansion of the black-belt cichlid in Central America, Vieja maculicauda (Teleostei: Cichlidae)

    PubMed Central

    Ginger, Luke; Cage, Marcy; David, Kyle T.; Chakrabarty, Prosanta; Johnston, Mark; Matamoros, Wilfredo A.

    2017-01-01

    The distributions of many Northern Hemisphere organisms have been influenced by fluctuations in sea level and climatic conditions during Pleistocene interglacial periods. These cycles are associated with range contraction and refugia for northern-distributed organisms as a response to glaciers. However, lower sea levels in the tropics and sub-tropics created available habitat for expansion of the ranges of freshwater organisms. The goal of this study was to use ecological niche modeling to test the hypothesis of north to south range expansion of Vieja maculicauda associated with Pleistocene glacial cycles. Understanding the biogeography of this widespread species may help us better understand the geology and interconnectivity of Central American freshwaters. Occurrence data for V. maculicauda was based on georeferencing of all museum records of specimens recovered from FishNet2. General patterns of phylogeographic structure were assessed with mtDNA. Present day niche models were generated and subsequently projected onto paleoclimatic maps of the region during the Last Interglacial, Last Glacial Maximum, and mid-Holocene. Phylogenetic analysis of mtDNA sequence data showed no phylogeographic structure throughout the range of this widespread species. Present day niche models were congruent with the observed distribution of V. maculicauda in Central America. Results showed a lack of suitable freshwater habitat in northern Central America and Mexico during the Last Interglacial, with greatest range expansion during the Last Glacial Maximum and mid-Holocene. Results support the hypothesis of a north to south range expansion of V. maculicauda associated with glacial cycles. The wide distribution of this species compared to other closely related cichlids indicates the latter did not respond to the degree of V. maculicauda in expansion of their distributions. Future work aimed at comparisons with other species and modeling of future climatic scenarios will be a fruitful

  15. Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe

    PubMed Central

    Veličković, N; Ferreira, E; Djan, M; Ernst, M; Obreht Vidaković, D; Monaco, A; Fonseca, C

    2016-01-01

    Wild boar (Sus scrofa), one of the most widespread wildlife species, has entered a stage of continuous growth in Europe, and could even be considered a pest species. We analysed microsatellite variability in 723 wild boars from across Europe, including the northern Dinaric Balkans. Our aims were: (1) to define the population structure of wild boars in the Balkans and its relation with other European populations; (2) to estimate effective populations sizes, levels of intra- and inter-population diversity, inbreeding migration and gene flow patterns; (3) to test subpopulations for bottlenecks; (4) to interpret these results in light of current knowledge about the demographic history of wild boars in Europe; and (5) to discuss the relevance of these findings for management and conservation. Strong population structuring was observed and 14 subpopulations were revealed. High genetic diversity was found, and besides the well-known identity of the Italian populations of Sardinia and Castelporziano, we bring new insights into other potential relevant, refugial populations such as Littoral Slovenia, South Portugal, North-western Iberia and an entire cluster in the Balkans. There was evidence of gene flow going from these refugial subpopulations towards less peripheral and more admixed subpopulations. Recent population bottlenecks and expansions were detected, mostly in the peninsular refuge subpopulations. The results are consistent with the fluctuations of wild boar numbers in Europe since the beginning of the twentieth century. These results should be taken into account in future conservation and management plans for wild boar populations in Europe. PMID:27436523

  16. Genetic connectivity among swarming sites in the wide ranging and recently declining little brown bat (Myotis lucifugus)

    PubMed Central

    Burns, Lynne E; Frasier, Timothy R; Broders, Hugh G

    2014-01-01

    Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white-nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292-bp region of the mitochondrial genome. Analyses of FST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, P < 0.05, Global ΦST = 0.045, P < 0.01, STRUCTURE K = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male-biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation. PMID:25505539

  17. Computer-Drawn Field Lines and Potential Surfaces for a Wide Range of Field Configurations

    ERIC Educational Resources Information Center

    Brandt, Siegmund; Schneider, Hermann

    1976-01-01

    Describes a computer program that computes field lines and equipotential surfaces for a wide range of field configurations. Presents the mathematical technique and details of the program, the input data, and different modes of graphical representation. (MLH)

  18. Medicaid Expansion and ACA Repeal: Evidence From Ohio.

    PubMed

    Seiber, Eric E; Berman, Micah L

    2017-06-01

    To examine the health insurance coverage options for Medicaid expansion enrollees if the Affordable Care Act (ACA) is repealed, using evidence from Ohio, where more than half a million adults have enrolled in the state's Medicaid program through the ACA expansion. The Ohio Medicaid Assessment Survey interviewed 42 000 households in 2015. We report data from a unique battery of questions designed to identify insurance coverage immediately prior to Medicaid enrollment. Ninety-five percent of new Medicaid enrollees in Ohio did not have a private health insurance option immediately before enrollment. These new enrollees are predominantly older, low-income Whites with a high school education or less. Only 5% of new Medicaid enrollees were eligible for an employer-sponsored insurance plan to which they could potentially return in the case of repeal of the ACA. The vast majority of Medicaid expansion enrollees would have no plausible pathway to obtaining private-sector insurance if the ACA were repealed. Demographic similarities between the expansion population and 2016 exit polls suggest that coverage losses would fall disproportionately on members of the winning Republican coalition.

  19. A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.

  20. Evaluation of Fast Switching Diode 1N4448 Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Boomer, Kristen; Damron, James; Gray, Josh; Hammoud, Ahmad

    2017-01-01

    Electronic parts used in the design of power systems geared for space applications are often exposed to extreme temperatures and thermal cycling. Limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) electronic parts at temperatures beyond the manufacturers specified operating temperature range. This report summarizes preliminary results obtained on the evaluation of automotive-grade, fast switching diodes over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these diodes and to determine suitability for use outside their recommended temperature limits.

  1. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.

    PubMed

    Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir

    2017-02-07

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.

  2. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  3. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  4. Single diode laser sensor for wide-range H2O temperature measurements.

    PubMed

    Gharavi, Mohammadreza; Buckley, Steven G

    2004-04-01

    A single diode laser absorption sensor (near 1477 nm) useful for simultaneous temperature and H2O concentration measurements is developed. The diode laser tunes approximately 1.2 cm(-1) over three H2O absorption transitions in each measurement. The line strengths of the transitions are measured over a temperature range from 468 to 977 K, based on high-resolution absorption measurements in a heated static cell. The results indicate that the selected transitions are suitable for sensitive temperature measurements in atmospheric pressure combustion systems using absorption line ratios. Comparing the results with HITRAN 96 data, it appears that these transitions will be sensitive over a wide range of temperatures (450-2000 K), suggesting applicability for combustion measurements.

  5. Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report

    NASA Technical Reports Server (NTRS)

    Camperchioli, William

    2005-01-01

    A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.

  6. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis, in North America.

    PubMed

    Khatchikian, Camilo E; Prusinski, Melissa A; Stone, Melissa; Backenson, Peter Bryon; Wang, Ing-Nang; Foley, Erica; Seifert, Stephanie N; Levy, Michael Z; Brisson, Dustin

    2015-07-01

    Migration is a primary force of biological evolution that alters allele frequencies and introduces novel genetic variants into populations. Recent migration has been proposed as the cause of the emergence of many infectious diseases, including those carried by blacklegged ticks in North America. Populations of blacklegged ticks have established and flourished in areas of North America previously thought to be devoid of this species. The recent discovery of these populations of blacklegged ticks may have resulted from either in situ growth of long-established populations that were maintained at very low densities or by migration and colonization from established populations. These alternative evolutionary hypotheses were investigated using Bayesian phylogeographic approaches to infer the origin and migratory history of recently detected blacklegged tick populations in the Northeastern United States. The data and results indicate that newly detected tick populations are not the product of in situ population growth from a previously established population but from recent colonization resulting in a geographic range expansion. This expansion in the geographic range proceeded primarily through progressive and local migration events from southern populations to proximate northern locations although long-distance migration events were also detected. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-01-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to

  8. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data.

    PubMed

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-11-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to

  9. Resource selection and its implications for wide-ranging mammals of the brazilian cerrado.

    PubMed

    Vynne, Carly; Keim, Jonah L; Machado, Ricardo B; Marinho-Filho, Jader; Silveira, Leandro; Groom, Martha J; Wasser, Samuel K

    2011-01-01

    Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing

  10. Resource Selection and Its Implications for Wide-Ranging Mammals of the Brazilian Cerrado

    PubMed Central

    Vynne, Carly; Keim, Jonah L.; Machado, Ricardo B.; Marinho-Filho, Jader; Silveira, Leandro; Groom, Martha J.; Wasser, Samuel K.

    2011-01-01

    Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing

  11. An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija

    2018-06-01

    We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.

  12. Relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test.

    PubMed

    Smith, T D; Smith, B L

    1998-12-01

    The present study examined the relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test for a sample of children with learning disabilities in two rural school districts. Data were collected for 87 school children who had been classified as learning disabled and placed in special education resource services. Pearson product-moment correlations between scores on the two measures were significant and moderate to high; however, mean scores were not significantly different on Reading, Spelling, and Arithmetic subtests of the Wide Range Achievement Test 3 compared to those for the basic Reading, Spelling, and Mathematics Reasoning subtests of the Wechsler Individual Achievement Test. Although there were significant mean differences between scores on Reading and Reading Comprehension and on Arithmetic and Numerical Operations, magnitudes were small. It appears that the two tests provide similar results when screening for reading, spelling, and arithmetic.

  13. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite.

    PubMed

    Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-03-15

    Tetragonal PbTiO(3)-BiFeO(3) exhibits a strong negative thermal expansion in the PbTiO(3)-based ferroelectrics that consist of one branch in the family of negative thermal expansion materials. Its strong negative thermal expansion is much weakened, and then unusually transforms into positive thermal expansion as the particle size is slightly reduced. This transformation is a new phenomenon in the negative termal expansion materials. The detailed structure, temperature dependence of unit cell volume, and lattice dynamics of PbTiO(3)-BiFeO(3) samples were studied by means of high-energy synchrotron powder diffraction and Raman spectroscopy. Such unusual transformation from strong negative to positive thermal expansion is highly associated with ferroelectricity weakening. An interesting zero thermal expansion is achieved in a wide temperature range (30-500 °C) by adjusting particle size due to the negative-to-positive transformation character. The present study provides a useful method to control the negative thermal expansion not only for ferroelectrics but also for those functional materials such as magnetics and superconductors.

  14. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  15. Range expansion of invasive shrubs: implication for crown fire risk in forestlands of the southern USA

    PubMed Central

    Wang, Hsiao-Hsuan; Wonkka, Carissa L.; Grant, William E.; Rogers, William E.

    2016-01-01

    Non-native plant invasions and changing management activities have dramatically altered the structure and composition of forests worldwide. Invasive shrubs and fire suppression have led to increased densification and biomass accumulation in forest ecosystems of the southeastern USA. Notably, Chinese and European privets are rapid growing, shade-tolerant shrubs which number among the most aggressive invasive species in these forests. Privet encroachment has caused losses of native diversity, alteration of ecosystem processes and changes in community structure. The latter has become manifest through decreases in fine herbaceous fuels concurrent with increases in coarse woody fuels in forest understoreys. These alterations in fuel structure will potentially lead to less frequent, but more severe forest fires, which threaten important forest resources during extreme weather conditions. Drawing on extensive data sets compiled by the US Forest Service, we integrated statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework to predict potential range expansion of Chinese and European privet (Ligustrum sinense and L. vulgare) and the associated increase in crown fire risk over the next two decades in forestlands of Mississippi and Alabama. Our results indicate that probability of invasion is positively associated with elevation, adjacency (within 300 m) to water bodies, mean daily maximum temperature, site productivity and private land ownership, and is negatively associated with slope, stand age, artificial regeneration, distance to the nearest road and fire disturbance. Our projections suggest the total area invaded will increase from 1.36 to ≈31.39% of all forestlands in Mississippi and Alabama (≈7 million hectares) and the annual frequency of crown fires in these forestlands will approximately double within the next two decades. Such time series projections of annual range expansions and crown fire frequency

  16. Elo-rating for Tracking Rank Fluctuations after Demographic Changes Involving Semi-free– ranging Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Wooddell, Lauren J; Kaburu, Stefano SK; Suomi, Stephen J; Dettmer, Amanda M

    2017-01-01

    Rhesus macaques (Macaca mulatta) are gregarious primates that form despotic societies characterized by frequent and intense aggression. Within long-term social groups, demographic changes may influence hierarchical stability, potentially resulting in conflict and violently abrupt hierarchical changes. This conflict can result in serious implications for animal welfare, and thus, predictive tools would be invaluable to captive managers in determining social instabilities. Using the method Elo-rating to track rank changes and dominance stability, we predicted that demographic changes to a population of semi-free ranging rhesus macaques would result in changes in hierarchical stability. Over a 3 y period, dominance data were recorded on all troop members to track the hierarchy. Throughout the 3 y, significant changes occurred to the population (mainly due to health and colony management reasons; no changes specifically occurred for this study) including permanent removal of a large group of natal males, temporary and permanent removal of top-ranking females, and depositions of top-ranking families. Our retrospective study suggests that removing natal males was beneficial in promoting overall troop stability (that is, stability of dominance relationships), although remaining males opportunistically attempted to increase in rank, perhaps due to limited competition. Our results also suggest that removing top-ranking females, even temporarily, destabilized dominance relationships; consequently adjacently ranked females opportunistically increased in Elo-rating, both before and after the depositions of the α families. Thus, these challenges to the established hierarchy can be predicted by increases in Elo-rating within the β families after demographic changes to the α families. Our results suggest that the presence of natal males and the removal of top-ranking females should be minimized to maintain stable dominance relationships. In addition, longitudinal data

  17. Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy

    NASA Astrophysics Data System (ADS)

    Zocca, Alessia; Zanini, Corrado; Aimi, Andrea; Frigimelica, Gabriella; La Porta, Nicola; Battisti, Andrea

    2008-05-01

    The Mediterranean cypress ( Cupressus sempervirens) is a multi-purpose tree widely used in the Mediterranean region. An anthropogenic range expansion of cypress has taken place at the northern margin of the range in Italy in recent decades, driven by ornamental planting in spite of climatic constraints imposed by low winter temperature. The expansion has created new habitats for pathogens and pests, which strongly limit tree survival in the historical (core) part of the range. Based on the enemy release hypothesis, we predicted that damage should be lower in the expansion area. By comparing tree and seed cone damage by pathogens and pests in core and expansion areas of Trentino, a district in the southern Alps, we showed that tree damage was significantly higher in the core area. Seed cones of C. sempervirens are intensively colonized by an aggressive and specific pathogen (the canker fungus Seiridium cardinale, Coelomycetes), associated with seed insect vectors Megastigmus wachtli (Hymenoptera Torymidae) and Orsillus maculatus (Heteroptera Lygaeidae). In contrast, we observed lower tree damage in the expansion area, where a non-aggressive fungus ( Pestalotiopsis funerea, Coelomycetes) was more frequently associated with the same insect vectors. Our results indicate that both insect species have a great potential to reach the range margin, representing a continuous threat of the arrival of fungal pathogens to trees planted at extreme sites. Global warming may accelerate this process since both insects and fungi profit from increased temperature. In the future, cypress planted at the range margin may then face similar pest and pathogen threats as in the historical range.

  18. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  19. Range expansion of the invasive insect Greenidea (Trichosiphon) psidii (Hemiptera: Aphididae) in the Neotropical Region.

    PubMed

    Culik, M P; Ventura, J A; Dos S Martins, D

    2016-01-01

    Greenidea psidii is an invasive insect from Asia that feeds on a diverse variety of agriculturally and environmentally important plant species. As an essential component of research necessary for development of a better understanding of biodiversity and its conservation, this study documents a major recent expansion in range of G. psidii in the Neotropics to the region of the tropical restinga ecosystem of Brazil, where it was found infesting guava (Psidium guajava) and jabuticaba (Plinia cauliflora). A summary of information on the geographic distribution, host plants, identification, and potential natural enemies of G. psidii that may be useful for integrated management of this pest in the Neotropical Region and other areas where this invasive insect has recently become established and is likely to further spread is also provided.

  20. Piezo-based, high dynamic range, wide bandwidth steering system for optical applications

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Feinstein, Alan

    2017-05-01

    Piezoelectric motors and actuators are characterized by direct drive, fast response, high positioning resolution and high mechanical power density. These properties are beneficial for optical devices such as gimbals, optical image stabilizers and mirror angular positioners. The range of applications includes sensor pointing systems, image stabilization, laser steering and more. This paper reports on the construction, properties and operation of three types of piezo based building blocks for optical steering applications: a small gimbal and a two-axis OIS (Optical Image Stabilization) mechanism, both based on piezoelectric motors, and a flexure-assisted piezoelectric actuator for mirror angular positioning. The gimbal weighs less than 190 grams, has a wide angular span (solid angle of > 2π) and allows for a 80 micro-radian stabilization with a stabilization frequency up to 25 Hz. The OIS is an X-Y, closed loop, platform having a lateral positioning resolution better than 1 μm, a stabilization frequency up to 25 Hz and a travel of +/-2 mm. It is used for laser steering or positioning of the image sensor, based on signals from a MEMS Gyro sensor. The actuator mirror positioner is based on three piezoelectric actuation axes for tip tilt (each providing a 50 μm motion range), has a positioning resolution of 10 nm and is capable of a 1000 Hz response. A combination of the gimbal with the mirror positioner or the OIS stage is explored by simulations, indicating a <10 micro-radian stabilization capability under substantial perturbation. Simulations and experimental results are presented for a combined device facilitating both wide steering angle range and bandwidth.

  1. Multilocus Analyses Reveal Postglacial Demographic Shrinkage of Juniperus morrisonicola (Cupressaceae), a Dominant Alpine Species in Taiwan

    PubMed Central

    Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh

    2016-01-01

    Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration. PMID:27561108

  2. Multilocus Analyses Reveal Postglacial Demographic Shrinkage of Juniperus morrisonicola (Cupressaceae), a Dominant Alpine Species in Taiwan.

    PubMed

    Huang, Chi-Chun; Hsu, Tsai-Wen; Wang, Hao-Ven; Liu, Zin-Huang; Chen, Yi-Yen; Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh

    2016-01-01

    Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration.

  3. Estimates of premorbid ability in a neurodegenerative disease clinic population: comparing the Test of Premorbid Functioning and the Wide Range Achievement Test, 4th Edition.

    PubMed

    Berg, Jody-Lynn; Durant, January; Banks, Sarah J; Miller, Justin B

    2016-05-01

    Two frequently used measures to assess premorbid intellectual ability include the Wide Range Achievement Test, 4th Edition Reading Subtest (WRAT-4 READ) and the Test of Premorbid Functioning (TOPF). The present study compared estimates obtained from these measures in a neurodegenerative disease population. Records from 85 referrals seen for neuropsychological evaluation in a neurodegenerative disorders clinic were reviewed. Evaluations included TOPF, WRAT-4 READ, and measures of memory, reasoning, language, and executive functioning. Pairwise correlations and concordance correlation coefficients (CCC) were calculated between raw scores and predicted intelligence estimates. Discrepancy scores were calculated between estimates and data were divided into three groups based on size of standardized discrepancy score: Equal, WRAT-4 READ > TOPF, and TOPF > WRAT-4 READ. analysis of variances compared groups on demographic characteristics and cognitive performance. Despite strong Pearson correlation, CCC between predicted IQ estimates showed poor agreement between measures, with evidence of both fixed and proportional bias. Discrepancies ranged from -24.0 to 22.0 (M = 1.78, SD = 6.65), with TOPF generating higher estimates on average. Individuals performing better on WRAT-4 READ were significantly older (M age = 76.26, SD = 7.53) than those performing similarly on both measures and those performing better on TOPF (F (2, 82) = 7.31, p < .001). All other comparisons between groups on demographic variables and cognitive measures were non-significant. Estimates of premorbid intelligence obtained from the TOPF and WRAT-4 READ have a strong linear relationship, but systematically generate inconsistent estimates in a neurodegenerative disease clinical sample and should not be used interchangeably.

  4. A New Ultrasound Pulser Technique for Wide Range Measurements

    NASA Astrophysics Data System (ADS)

    Salim, M. S.; Abd Malek, M. F.; Noaman, N. M.; Sabri, Naseer; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The objective of this research was to design and implement a new ultrasonic pulse-power-decay technique that transmits multiple ultrasound pulses through slurry to determine the lowest concentration that can provide an accurate attenuation measurement. A wide measurement range is obtained using the pulsed-power-decay transmission technique, and regardless of the material used to construct the container. A signal in the receiver transducer provides the attenuation measurements, for each echo, a fast Fourier transform (FFT) of the appropriate signal was obtained and compared with the water signals to yield the attenuation as a function of frequency. The data show the feasibility of measuring a kaolin concentration of 5% wt. When using a commercial pulser with the same device setting, no detectable echo was observed. Therefore, new technique measurements may prove useful in detecting solid content in liquid. This study demonstrated that the proposed pulsed-power transmission technique is promising for evaluating low concentrations of solids in fluids and for measuring sedimentation in solid-liquid systems.

  5. DISCOUNTING OF DELAYED AND PROBABILISTIC LOSSES OVER A WIDE RANGE OF AMOUNTS

    PubMed Central

    Green, Leonard; Myerson, Joel; Oliveira, Luís; Chang, Seo Eun

    2014-01-01

    The present study examined delay and probability discounting of hypothetical monetary losses over a wide range of amounts (from $20 to $500,000) in order to determine how amount affects the parameters of the hyperboloid discounting function. In separate conditions, college students chose between immediate payments and larger, delayed payments and between certain payments and larger, probabilistic payments. The hyperboloid function accurately described both types of discounting, and amount of loss had little or no systematic effect on the degree of discounting. Importantly, the amount of loss also had little systematic effect on either the rate parameter or the exponent of the delay and probability discounting functions. The finding that the parameters of the hyperboloid function remain relatively constant across a wide range of amounts of delayed and probabilistic loss stands in contrast to the robust amount effects observed with delayed and probabilistic rewards. At the individual level, the degree to which delayed losses were discounted was uncorrelated with the degree to which probabilistic losses were discounted, and delay and probability loaded on two separate factors, similar to what is observed with delayed and probabilistic rewards. Taken together, these findings argue that although delay and probability discounting involve fundamentally different decision-making mechanisms, nevertheless the discounting of delayed and probabilistic losses share an insensitivity to amount that distinguishes it from the discounting of delayed and probabilistic gains. PMID:24745086

  6. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate

    PubMed Central

    Stige, Leif Christian; Yaragina, Natalia A.; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr.; Ottersen, Geir

    2017-01-01

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment–temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959−1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts. PMID:28115694

  7. The origin of uniaxial negative thermal expansion in layered perovskites

    NASA Astrophysics Data System (ADS)

    Ablitt, Chris; Craddock, Sarah; Senn, Mark S.; Mostofi, Arash A.; Bristowe, Nicholas C.

    2017-10-01

    Why is it that ABO3 perovskites generally do not exhibit negative thermal expansion (NTE) over a wide temperature range, whereas layered perovskites of the same chemical family often do? It is generally accepted that there are two key ingredients that determine the extent of NTE: the presence of soft phonon modes that drive contraction (have negative Grüneisen parameters); and anisotropic elastic compliance that predisposes the material to the deformations required for NTE along a specific axis. This difference in thermal expansion properties is surprising since both ABO3 and layered perovskites often possess these ingredients in equal measure in their high-symmetry phases. Using first principles calculations and symmetry analysis, we show that in layered perovskites there is a significant enhancement of elastic anisotropy due to symmetry breaking that results from the combined effect of layering and condensed rotations of oxygen octahedra. This feature, unique to layered perovskites of certain symmetry, is what allows uniaxial NTE to persist over a large temperature range. This fundamental insight means that symmetry and the elastic tensor can be used as descriptors in high-throughput screening and to direct materials design.

  8. Range expansion of the Asian native giant resin bee Megachile sculpturalis (Hymenoptera, Apoidea, Megachilidae) in France.

    PubMed

    Le Féon, Violette; Aubert, Matthieu; Genoud, David; Andrieu-Ponel, Valérie; Westrich, Paul; Geslin, Benoît

    2018-02-01

    In 2008, a new species for the French bee fauna was recorded in Allauch near Marseille: the giant resin bee, Megachile sculpturalis (Smith, 1853). This was the first European record of this species that is native to East Asia. To our knowledge, it is the first introduced bee species in Europe. Here, we provide an overview of the current distribution of M. sculpturalis in France and we describe the history of its range expansion. Besides our own observations, information was compiled from literature and Internet websites, and by contacting naturalist networks. We collected a total of 117 records ( locality  ×  year combinations) for the 2008-2016 period. The geographical range of M. sculpturalis has extended remarkably, now occupying a third of continental France, with the most northern and western records located 335 and 520 km from Allauch, respectively. Information on its phenology, feeding, and nesting behavior is also provided. We report several events of nest occupation or eviction of Osmia sp. and Xylocopa sp. individuals by M. sculpturalis . Our results show that M. sculpturalis is now well established in France. Given its capacity to adapt and rapidly expand its range, we recommend amplifying the monitoring of this species to better anticipate the changes in its geographical range and its potential impacts on native bees.

  9. Thermal expansion of silver iodide-silver molybdate glasses at low temperatures

    NASA Astrophysics Data System (ADS)

    Mandanici, A.; Raimondo, A.; Cutroni, M.; Ramos, M. A.; Rodrigo, J. G.; Vieira, S.; Armellini, C.; Rocca, F.

    2009-05-01

    Ionic glasses obtained combining silver iodide and silver molybdate are characterized by quite low values of the glass transition temperature Tg around 320-350 K, by high values of the dc ionic conductivity even at room temperature and by a peculiar behavior of the mechanical response at ultrasonic frequencies. In fact, at temperatures well below their glass transition temperature, these glasses exhibit an intense peak of acoustic attenuation well described by two different and almost overlapping relaxational contributions. Considering also that negative thermal expansion has been reported for some molybdate crystalline compounds, we have investigated in this work the thermal expansion of two silver iodomolybdate glasses (AgI)1-x(Ag2MoO4)x for x =0.25 and x =0.33 in a wide temperature range (4.2-300 K) from cryogenic temperatures up to some 20 K below Tg using a precision capacitance dilatometer aiming to understand whether the expansivity shows some possible fingerprint corresponding to the above-mentioned mechanical response. Two different measuring methods, a quasiadiabatic and a continuous one, have been used for the thermal expansion measurements. The results are discussed in comparison with the information obtained from previous investigations based on the extended x-ray absorption fine structure (EXAFS) technique and with the behavior of other ionic glasses.

  10. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    PubMed

    Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  11. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia

    PubMed Central

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs’ resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations. PMID:28472113

  12. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  13. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    NASA Astrophysics Data System (ADS)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  14. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    NASA Astrophysics Data System (ADS)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  15. Creating an Inclusive Classroom Address Wide-Ranging Developmental Needs through Your Classroom Environment

    ERIC Educational Resources Information Center

    Greenspan, Stanley, I.

    2005-01-01

    In this article, the author answers the following question: In addition to the usual wide-ranging abilities of a new class, I have one 4-year-old who has learning delays and three children with speech and language disorders. What can I do to be sure that I'm creating a classroom environment where the needs of all the children in my group can be…

  16. Holocene Demographic Changes and the Emergence of Complex Societies in Prehistoric Australia.

    PubMed

    Williams, Alan N; Ulm, Sean; Turney, Chris S M; Rohde, David; White, Gentry

    2015-01-01

    A continental-scale model of Holocene Australian hunter-gatherer demography and mobility is generated using radiocarbon data and geospatial techniques. Results show a delayed expansion and settlement of much of Australia following the termination of the late Pleistocene until after 9,000 years ago (or 9ka). The onset of the Holocene climatic optimum (9-6ka) coincides with rapid expansion, growth and establishment of regional populations across ~75% of Australia, including much of the arid zone. This diffusion from isolated Pleistocene refugia provides a mechanism for the synchronous spread of pan-continental archaeological and linguistic attributes at this time (e.g. Pama-Nyungan language, Panaramitee art style, backed artefacts). We argue longer patch residence times were possible at the end of the optimum, resulting in a shift to more sedentary lifestyles and establishment of low-level food production in some parts of the continent. The onset of El Niño - Southern Oscillation (ENSO; 4.5-2ka) restricted low-level food production, and resulted in population fragmentation, abandonment of marginal areas, and reduction in ranging territory of ~26%. Importantly, climate amelioration brought about by more pervasive La Niña conditions (post-2ka), resulted in an intensification of the mobility strategies and technological innovations that were developed in the early- to mid-Holocene. These changes resulted in population expansion and utilization of the entire continent. We propose that it was under these demographically packed conditions that the complex social and religious societies observed at colonial contact were formed.

  17. Holocene Demographic Changes and the Emergence of Complex Societies in Prehistoric Australia

    PubMed Central

    Williams, Alan N.; Ulm, Sean; Turney, Chris S. M.; Rohde, David; White, Gentry

    2015-01-01

    A continental-scale model of Holocene Australian hunter-gatherer demography and mobility is generated using radiocarbon data and geospatial techniques. Results show a delayed expansion and settlement of much of Australia following the termination of the late Pleistocene until after 9,000 years ago (or 9ka). The onset of the Holocene climatic optimum (9-6ka) coincides with rapid expansion, growth and establishment of regional populations across ~75% of Australia, including much of the arid zone. This diffusion from isolated Pleistocene refugia provides a mechanism for the synchronous spread of pan-continental archaeological and linguistic attributes at this time (e.g. Pama-Nyungan language, Panaramitee art style, backed artefacts). We argue longer patch residence times were possible at the end of the optimum, resulting in a shift to more sedentary lifestyles and establishment of low-level food production in some parts of the continent. The onset of El Niño - Southern Oscillation (ENSO; 4.5-2ka) restricted low-level food production, and resulted in population fragmentation, abandonment of marginal areas, and reduction in ranging territory of ~26%. Importantly, climate amelioration brought about by more pervasive La Niña conditions (post-2ka), resulted in an intensification of the mobility strategies and technological innovations that were developed in the early- to mid-Holocene. These changes resulted in population expansion and utilization of the entire continent. We propose that it was under these demographically packed conditions that the complex social and religious societies observed at colonial contact were formed. PMID:26083101

  18. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    NASA Astrophysics Data System (ADS)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  19. Transmission expansion with smart switching under demand uncertainty and line failures

    DOE PAGES

    Schumacher, Kathryn M.; Chen, Richard Li-Yang; Cohn, Amy E. M.

    2016-06-07

    One of the major challenges in deciding where to build new transmission lines is that there is uncertainty regarding future loads, renewal generation output and equipment failures. We propose a robust optimization model whose transmission expansion solutions ensure that demand can be met over a wide range of conditions. Specifically, we require feasible operation for all loads and renewable generation levels within given ranges, and for all single transmission line failures. Furthermore, we consider transmission switching as an allowable recovery action. This relatively inexpensive method of redirecting power flows improves resiliency, but introduces computational challenges. Lastly, we present a novelmore » algorithm to solve this model. Computational results are discussed.« less

  20. Genome surfing as driver of microbial genomic diversity

    USDA-ARS?s Scientific Manuscript database

    Historical changes in population size, such as those caused by demographic range expansions, can produce nonadaptive changes in genomic diversity through mechanisms such as gene surfing. We propose that demographic range expansion of a microbial population capable of horizontal gene exchange can res...

  1. Parallel PWMs Based Fully Digital Transmitter with Wide Carrier Frequency Range

    PubMed Central

    Zhou, Bo; Zhang, Kun; Zhou, Wenbiao; Zhang, Yanjun; Liu, Dake

    2013-01-01

    The carrier-frequency (CF) and intermediate-frequency (IF) pulse-width modulators (PWMs) based on delay lines are proposed, where baseband signals are conveyed by both positions and pulse widths or densities of the carrier clock. By combining IF-PWM and precorrected CF-PWM, a fully digital transmitter with unit-delay autocalibration is implemented in 180 nm CMOS for high reconfiguration. The proposed architecture achieves wide CF range of 2 M–1 GHz, high power efficiency of 70%, and low error vector magnitude (EVM) of 3%, with spectrum purity of 20 dB optimized in comparison to the existing designs. PMID:24223503

  2. [Healthcare expenditures growth: the red herring of demographic ageing?].

    PubMed

    Tenand, Marianne

    2016-02-01

    Demographic ageing is often deemed responsible for the massive increase in health expenditures experienced by developed countries. As the elderly consume more medical care than the rest of the population, how could the increase in the share of the 60 + not lead to a marked expansion of healthcare public and private budgets? Despite its apparent logics, such reasoning is fallacious: it ignores that medical care consumption depends on many factors beyond age, which have tremendously evolved in the last decades and may change again in the future. Based on French stylized facts, this article provides an overview of the international literature that aimed at disentangling the respective roles of population ageing and of the non-demographic factors in explaining the dynamics of health expenditures. Paradoxically, technical medical progress has been a major contributor to the increase of healthcare spending. Results from economics research lead to qualify the impact of demographic trends and call for more attention to the public policies decisions that shape healthcare systems. © 2016 médecine/sciences – Inserm.

  3. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  4. External Port Tissue Expansion in the Pediatric Population: Confirming Its Safety and Efficacy.

    PubMed

    Azadgoli, Beina; Fahradyan, Artur; Wolfswinkel, Erik M; Tsuha, Michaela; Magee, William; Hammoudeh, Jeffrey A; Urata, Mark M; Howell, Lori K

    2018-06-01

    External filling ports in tissue expander-based reconstruction have the advantages of being associated with less pain and emotional distress. However, among practicing surgeons using tissue expansion, a theoretical concern remains regarding higher risk of infection. The authors' goal was to evaluate external port safety in the pediatric population by looking at the complications and overall success rate of reconstruction. A retrospective review of all patients undergoing tissue expansion using external ports at Children's Hospital Los Angeles between January of 2008 and June of 2016 was conducted. Patient demographic and perioperative data were collected and analyzed. Two hundred forty-one expanders were placed in 100 pediatric patients, resulting in 123 procedures for congenital and acquired conditions, with an average age at the time of surgery of 7.1 years (range, 1 month to 19.9 years) and average follow-up length of 2.5 years (range, 2.8 months to 8.8 years). The overall complication rate was 29.9 percent, and the infection rate was 17 percent. The majority of these cases were treated conservatively without additional need for surgery. Of 123 cases, 25 required premature expander removal because of complications. Despite early intervention, 21 of these cases underwent successful completion of their reconstruction according to the preoperative plan, resulting in an overall 96.7 percent success rate of tissue expander reconstruction. In children, who are often less tolerant of the pain and distress associated with internal port expansion, the authors encourage the use of external ports. This study found a high success rate in terms of successful reconstruction, with the majority of complications being treated conservatively. Therapeutic, IV.

  5. Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging

    NASA Astrophysics Data System (ADS)

    He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji

    2018-01-01

    We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 < M1450 < -22.23 photometrically selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 < zspec < 4.6 with -28.0 < M1450 < -23.95 from the Sloan Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.

  6. The French 35-hour workweek: a wide-ranging social change.

    PubMed

    Prunier-Poulmaire, S; Gadbois, C

    2001-12-01

    The reduction of the legal working week to 35 hours in France has generated wide-ranging social change. We examine the resulting changes in working-time patterns as well as their repercussions on the use of the time gained and on the quality of life and health. To compensate the reduction in the length of the working week, companies have modified the working-time patterns, by extending operation time (shiftwork, atypical schedules) and by matching the on-site workforce to production requirements (flexible working hours). They have sought to make more efficient use of working time: job intensification or job compression. The effects on the off-the-job life and health are linked to the shiftwork and atypical schedules designed to increase the company's operating time, and adjustments to the company's need for flexibilization impose working time/free time patterns that are at odds with biological rhythms and social life patterns. Changes to working-time patterns have unexpected consequences for work organization: heightened difficulties for the individual and the crew. These changes may generate a range of health problems related to overwork and stress. The way some companies have adapted may call into question the usefulness of work done by employees, thus damaging their social identity and mental well-being.

  7. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  8. Hermit thrush breeding range expansion and habitat preferences in the southern Appalachian high-elevation forests

    Treesearch

    Andrew J. Laughlin

    2010-01-01

    The hermit thrush (Catharus guttatus) is a wide-ranging migratory songbird that is found throughout much of North America. In eastern North America, the hermit thrush spends the winter months in the southeastern states. During the summer breeding season, it migrates north and breeds across much of Canada, New England, and down the ridge of the...

  9. A digital wide range neutron flux measuring system for HL-2A

    NASA Astrophysics Data System (ADS)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  10. Joint Inference of Population Assignment and Demographic History

    PubMed Central

    Choi, Sang Chul; Hey, Jody

    2011-01-01

    A new approach to assigning individuals to populations using genetic data is described. Most existing methods work by maximizing Hardy–Weinberg and linkage equilibrium within populations, neither of which will apply for many demographic histories. By including a demographic model, within a likelihood framework based on coalescent theory, we can jointly study demographic history and population assignment. Genealogies and population assignments are sampled from a posterior distribution using a general isolation-with-migration model for multiple populations. A measure of partition distance between assignments facilitates not only the summary of a posterior sample of assignments, but also the estimation of the posterior density for the demographic history. It is shown that joint estimates of assignment and demographic history are possible, including estimation of population phylogeny for samples from three populations. The new method is compared to results of a widely used assignment method, using simulated and published empirical data sets. PMID:21775468

  11. Range-wide genetic analysis of Dermacentor variabilis and its Francisella-like endosymbionts demonstrates phylogeographic concordance between both taxa

    USDA-ARS?s Scientific Manuscript database

    Background: The American dog tick, Dermacentor variabilis, is an important vector of pathogens to humans, wildlife, and domestic animals in North America. Although this tick is widely distributed in the US and Canada, knowledge of its range-wide phylogeographic patterns remains incomplete. Methods:...

  12. Range expansion of invasive shrubs: implication for crown fire risk in forestlands of the southern USA.

    PubMed

    Wang, Hsiao-Hsuan; Wonkka, Carissa L; Grant, William E; Rogers, William E

    2016-01-01

    Non-native plant invasions and changing management activities have dramatically altered the structure and composition of forests worldwide. Invasive shrubs and fire suppression have led to increased densification and biomass accumulation in forest ecosystems of the southeastern USA. Notably, Chinese and European privets are rapid growing, shade-tolerant shrubs which number among the most aggressive invasive species in these forests. Privet encroachment has caused losses of native diversity, alteration of ecosystem processes and changes in community structure. The latter has become manifest through decreases in fine herbaceous fuels concurrent with increases in coarse woody fuels in forest understoreys. These alterations in fuel structure will potentially lead to less frequent, but more severe forest fires, which threaten important forest resources during extreme weather conditions. Drawing on extensive data sets compiled by the US Forest Service, we integrated statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework to predict potential range expansion of Chinese and European privet (Ligustrum sinenseandL. vulgare) and the associated increase in crown fire risk over the next two decades in forestlands of Mississippi and Alabama. Our results indicate that probability of invasion is positively associated with elevation, adjacency (within 300 m) to water bodies, mean daily maximum temperature, site productivity and private land ownership, and is negatively associated with slope, stand age, artificial regeneration, distance to the nearest road and fire disturbance. Our projections suggest the total area invaded will increase from 1.36 to ≈31.39% of all forestlands in Mississippi and Alabama (≈7 million hectares) and the annual frequency of crown fires in these forestlands will approximately double within the next two decades. Such time series projections of annual range expansions and crown fire frequency

  13. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    NASA Astrophysics Data System (ADS)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  14. Effective inactivation of a wide range of viruses by pasteurization.

    PubMed

    Gröner, Albrecht; Broumis, Connie; Fang, Randel; Nowak, Thomas; Popp, Birgit; Schäfer, Wolfram; Roth, Nathan J

    2018-01-01

    Careful selection and testing of plasma reduces the risk of blood-borne viruses in the starting material for plasma-derived products. Furthermore, effective measures such as pasteurization at 60°C for 10 hours have been implemented in the manufacturing process of therapeutic plasma proteins such as human albumin, coagulation factors, immunoglobulins, and enzyme inhibitors to inactivate blood-borne viruses of concern. A comprehensive compilation of the virus reduction capacity of pasteurization is presented including the effect of stabilizers used to protect the therapeutic protein from modifications during heat treatment. The virus inactivation kinetics of pasteurization for a broad range of viruses were evaluated in the relevant intermediates from more than 15 different plasma manufacturing processes. Studies were carried out under the routine manufacturing target variables, such as temperature and product-specific stabilizer composition. Additional studies were also performed under robustness conditions, that is, outside production specifications. The data demonstrate that pasteurization inactivates a wide range of enveloped and nonenveloped viruses of diverse physicochemical characteristics. After a maximum of 6 hours' incubation, no residual infectivity could be detected for the majority of enveloped viruses. Effective inactivation of a range of nonenveloped viruses, with the exception of nonhuman parvoviruses, was documented. Pasteurization is a very robust and reliable virus inactivation method with a broad effectiveness against known blood-borne pathogens and emerging or potentially emerging viruses. Pasteurization has proven itself to be a highly effective step, in combination with other complementary safety measures, toward assuring the virus safety of final product. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  15. Genetics Show Current Decline and Pleistocene Expansion in Northern Spotted Owls

    USGS Publications Warehouse

    Funk, W. Chris; Forsman, Eric D.; Mullins, Thomas D.; Haig, Susan M.

    2008-01-01

    The northern spotted owl (Strix occidentalis caurina) is one of the most controversial threatened subspecies ever listed under the U.S. Endangered Species Act. Because of concern for persistence of the subspecies, logging on Federal lands in the U.S. Pacific Northwest was dramatically reduced under the Northwest Forest Plan in 1994. Despite protection of its remaining forest habitat, recent field studies show continued demographic declines of northern spotted owls. One potential threat to northern spotted owls that has not yet been shown is loss of genetic variation from population bottlenecks that can increase inbreeding depression and decrease adaptive potential. Here, we show recent genetic bottlenecks in northern spotted owls using a large genetic dataset (352 individuals from across the subspecies' range and 11 microsatellite loci). The signature of bottlenecks was strongest in Washington State, in agreement with field data. Interestingly, we also found a genetic signature of Pleistocene expansion in the same study areas where recent bottlenecks were shown. Our results provide independent evidence that northern spotted owls have recently declined, and suggest that loss of genetic variation is an emerging threat to the subspecies' persistence. Reduced effective population size (Ne), shown here in addition to field evidence for demographic decline, highlights the increasing vulnerability of this bird to extinction.

  16. First aircraft experiment results with the wide-angle airborne laser ranging system

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Thom, Christian; Kasser, Michel

    1999-12-01

    The first aircraft experiment with the Wide-Angle Airborne Laser Ranging System has been conducted in May 1998 over an air base in France equipped with a network of 64 cub-corner retroreflectors. The ranging system was operated from the Avion de Recherche Atmospherique et de Teledetection of CNES/IGN/INSU. Data have been collected during two 4-hour flights. The paper describes the data processing methods and presents the first experimental results. The precision is of 2 cm on the difference of vertical coordinates from two sets of 3 X 103 distance measurements, which is consistent with simulations and a posteriori covariance. The precision is mainly limited by the smallness of the number of efficient measurements remaining after a drastic data sorting for outliers. Higher precision is expected for future experiments after some instrumental improvements (achieving higher link budget) and measurement of aircraft attitude during the flight.

  17. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  18. Exploring the thermal expansion of fluorides and oxyfluorides with rhenium trioxide-type structures: From negative to positive thermal expansion

    NASA Astrophysics Data System (ADS)

    Greve, Benjamin K.

    This thesis explores the thermal expansion and high pressure behavior of some materials with the ReO3 structure type. This structure is simple and has, in principle, all of the features necessary for negative thermal expansion (NTE) arising from the transverse thermal motion of the bridging anions and the coupled rotation of rigid units; however, ReO 3 itself only exhibits mild NTE across a narrow temperature range at low temperatures. ReO3 is metallic because of a delocalized d-electron, and this may contribute to the lack of NTE in this material. The materials examined in this thesis are all based on d 0 metal ions so that the observed thermal expansion behavior should arise from vibrational, rather than electronic, effects. In Chapter 2, the thermal expansion of scandium fluoride, ScF3 , is examined using a combination of in situ synchrotron X-ray and neutron variable temperature diffraction. ScF3 retains the cubic ReO3 structure across the entire temperature range examined (10 - 1600 K) and exhibits pronounced negative thermal expansion at low temperatures. The magnitude of NTE in this material is comparable to that of cubic ZrW2O8, which is perhaps the most widely studied NTE material, at room temperature and below. This is the first report of NTE in an ReO3 type structure across a wide temperature range. Chapter 3 presents a comparison between titanium oxyfluoride, TiOF 2, and a vacancy-containing titanium hydroxyoxyfluoride, Ti x(O/OH/F)3. TiOF2 was originally reported to adopt the cubic ReO3 structure type under ambient conditions, therefore the initial goal for this study was to examine the thermal expansion of this material and determine if it displayed interesting behavior such as NTE. During the course of the study, it was discovered that the original synthetic method resulted in Tix(O/OH/F)3, which does adopt the cubic ReO3 structure type. The chemical composition of the hydroxyoxyfluoride is highly dependent upon synthesis conditions and subsequent

  19. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.

    2016-10-01

    Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

  20. Demographic stability metrics for conservation prioritization of isolated populations.

    PubMed

    Finn, Debra S; Bogan, Michael T; Lytle, David A

    2009-10-01

    Systems of geographically isolated habitat patches house species that occur naturally as small, disjunct populations. Many of these species are of conservation concern, particularly under the interacting influences of isolation and rapid global change. One potential conservation strategy is to prioritize the populations most likely to persist through change and act as sources for future recolonization of less stable localities. We propose an approach to classify long-term population stability (and, presumably, future persistence potential) with composite demographic metrics derived from standard population-genetic data. Stability metrics can be related to simple habitat measures for a straightforward method of classifying localities to inform conservation management. We tested these ideas in a system of isolated desert headwater streams with mitochondrial sequence data from 16 populations of a flightless aquatic insect. Populations exhibited a wide range of stability scores, which were significantly predicted by dry-season aquatic habitat size. This preliminary test suggests strong potential for our proposed method of classifying isolated populations according to persistence potential. The approach is complementary to existing methods for prioritizing local habitats according to diversity patterns and should be tested further in other systems and with additional loci to inform composite demographic stability scores.

  1. High Gain and Wide Range Time Amplifier Using Inverter Delay Chain in SR Latches

    NASA Astrophysics Data System (ADS)

    Lee, Jaejun; Lee, Sungho; Song, Yonghoon; Nam, Sangwook

    This paper presents a time amplifier design that improves time resolution using an inverter chain delay in SR latches. Compared with the conventional design, the proposed time amplifier has better characteristics such as higher gain, wide range, and small die size. It is implemented using 0.13µm standard CMOS technology and the experimental results agree well with the theory.

  2. Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

    DOEpatents

    Kerner, Thomas M.

    2001-01-01

    The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.

  3. Climate controls the distribution of a widespread invasive species: Implications for future range expansion

    USGS Publications Warehouse

    McDowell, W.G.; Benson, A.J.; Byers, J.E.

    2014-01-01

    1. Two dominant drivers of species distributions are climate and habitat, both of which are changing rapidly. Understanding the relative importance of variables that can control distributions is critical, especially for invasive species that may spread rapidly and have strong effects on ecosystems. 2. Here, we examine the relative importance of climate and habitat variables in controlling the distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future distribution under a suite of climate scenarios using logistic regression and maximum entropy modelling (MaxEnt). 3. Logistic regression identified climate variables as more important than habitat variables in controlling Corbicula distribution. MaxEnt modelling predicted Corbicula's range expansion westward and northward to occupy half of the contiguous United States. By 2080, Corbicula's potential range will expand 25–32%, with more than half of the continental United States being climatically suitable. 4. Our combination of multiple approaches has revealed the importance of climate over habitat in controlling Corbicula's distribution and validates the climate-only MaxEnt model, which can readily examine the consequences of future climate projections. 5. Given the strong influence of climate variables on Corbicula's distribution, as well as Corbicula's ability to disperse quickly and over long distances, Corbicula is poised to expand into New England and the northern Midwest of the United States. Thus, the direct effects of climate change will probably be compounded by the addition of Corbicula and its own influences on ecosystem function.

  4. Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada

    PubMed Central

    Leighton, Patrick A.; Ogden, Nicholas H.; Lindsay, L. Robbin; Michel, Pascal; Pearl, David L.; Jardine, Claire M.

    2017-01-01

    The invasion of the blacklegged tick, Ixodes scapularis into Ontario, Canada poses a significant risk to public health because it is a vector for numerous pathogens, including Borrelia burgdorferi sensu stricto, the causative agent of Lyme disease. Baseline field sampling in 2014 and 2015 detected I. scapularis and B. burgdorferi at sites across southern, eastern and central Ontario, including a hot spot in eastern Ontario. A “speed of spread” model for I. scapularis developed by Leighton and colleagues (2012) estimated that the tick’s range was expanding northward at 46 km/year. In 2016, we revisited a subset of sites sampled in 2014 and 2015 to understand the changing nature of risk, and assess whether the rate of tick invasion is consistent with the speed of spread estimate. Ticks were collected via tick dragging at 17 out of 36 sites, 5 of which were new sites for I. scapularis. Samples were positive for B. burgdorferi at 8 sites. No other I. scapularis-borne pathogens were detected. Centrographic statistics revealed an increase in the dispersion of I. scapularis positive sites in eastern Ontario. Field data for each site were then compared to the model’s predicted year of establishment for each census subdivision. Our findings illustrate that the range expansion of I. scapularis and the emergence of B. burgdorferi is ongoing, and provide short timescale evidence of the processes associated with I. scapularis spread. The range front appears to be moving at a rate of ~46 km/year, with colonization of the tick behind this range front occurring at a slower and heterogeneous rate. Assessment of site-level ecological factors did not provide any insight into the underlying processes that may be influencing the colonization of I. scapularis in specific areas. Ongoing field sampling is needed to monitor this dynamic process. This study highlights the current geographic risk associated with Lyme disease, which can be used to target public health interventions to

  5. 'Stick with your own kind, or hang with the locals?' Implications of shoaling strategy for tropical reef fish on a range-expansion frontline.

    PubMed

    Smith, Shannen M; Fox, Rebecca J; Booth, David J; Donelson, Jennifer M

    2018-04-01

    Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate-mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range-expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body-size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species ('mixed' shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in 'mixed' shoals attaining larger body-sizes over the season than those in 'tropical-only' shoals. This benefit in terms of population body-size distributions was accompanied by greater social cohesion of 'mixed' shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate-induced range expansion of coral reef fishes. © 2018 John Wiley & Sons Ltd.

  6. Electron response of some low-Z scintillators in wide energy range

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  7. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  8. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization

    PubMed Central

    Romero-Soriano, Valèria; Burlet, Nelly; Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2016-01-01

    Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent. PMID:26872773

  9. Phenomenological model of maize starches expansion by extrusion

    NASA Astrophysics Data System (ADS)

    Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.

    2016-10-01

    During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.

  10. Mesoamerican Origin and Pre- and Post-Columbian Expansions of the Ranges of Acanthoscelides obtectus Say, a Cosmopolitan Insect Pest of the Common Bean

    PubMed Central

    Oliveira, Márcia Rodrigues Carvalho; Corrêa, Alberto Soares; de Souza, Giselle Anselmo; Guedes, Raul Narciso Carvalho; de Oliveira, Luiz Orlando

    2013-01-01

    An unprecedented global transfer of agricultural resources followed the discovery of the New World; one consequence of this process was that staple food plants of Neotropical origin, such as the common bean (Phaseolus vulgaris), soon expanded their ranges overseas. Yet many pests and diseases were also transported. Acanthoscelides obtectus is a cosmopolitan seed predator associated with P. vulgaris. Codispersal within the host seed seems to be an important determinant of the ability of A. obtectus to expand its range over long distances. We examined the phylogeographic structure of A. obtectus by (a) sampling three mitochondrial gene sequences (12s rRNA, 16s rRNA, and the gene that encodes cytochrome c oxidase subunit I (COI)) throughout most of the species’ range and (b) exploring its late evolutionary history. Our findings indicate a Mesoamerican origin for the current genealogical lineages of A. obtectus. Each of the two major centers of genetic diversity of P. vulgaris (the Andes and Mesoamerica) contains a highly differentiated lineage of the bean beetle. Brazil has two additional, closely related lineages, both of which predate the Andean lineage and have the Mesoamerican lineage as their ancestor. The cosmopolitan distribution of A. obtectus has resulted from recent expansions of the two Brazilian lineages. We present additional evidence for both pre-Columbian and post-Columbian range expansions as likely events that shaped the current distribution of A. obtectus worldwide. PMID:23936139

  11. Dark matter relics and the expansion rate in scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We alsomore » study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.« less

  12. The role of pioneers as indicators of biogeographic range expansion caused by global change in southern African coastal waters

    NASA Astrophysics Data System (ADS)

    Whitfield, Alan K.; James, Nicola C.; Lamberth, Stephen J.; Adams, Janine B.; Perissinotto, Renzo; Rajkaran, Anusha; Bornman, Thomas G.

    2016-04-01

    The South African coastline is just over 3000 km in length yet it covers three major biogeographic regions, namely subtropical, warm temperate and cool temperate. In this review we examine published information to assess the possible role of climate change in driving distributional changes of a wide variety of organisms around the subcontinent. In particular we focus on harmful algal blooms, seaweeds, eelgrass, mangroves, salt marsh plants, foraminiferans, stromatolites, corals, squid, zooplankton, zoobenthos, fish, birds, crocodiles and hippopotamus, but also refer to biota such as pathogens, coralline algae, jellyfish and otters. The role of pioneers or propagules as indicators of an incipient range expansion are discussed, with mangroves, zoobenthos, fishes and birds providing the best examples of actual and imminent distributional changes. The contraction of the warm temperate biogeographic region, arising from the intrusion of cool upwelled waters along the Western Cape shores, and increasingly warm Agulhas Current waters penetrating along the eastern parts of the subcontinent, are highlighted. The above features provide an ideal setting for the monitoring of biotic drivers and responses to global climate change over different spatial and temporal scales, and have direct relevance to similar studies being conducted elsewhere in the world. We conclude that, although this review focuses mainly on the impact of global climate change on South African coastal biodiversity, other anthropogenic drivers of change such as introduced alien invasive species may act synergistically with climate change, thereby compounding both short and long-term changes in the distribution and abundance of indigenous species.

  13. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  14. Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species.

    PubMed

    Matías, Luis; Jump, Alistair S

    2015-02-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data. © 2014 John Wiley & Sons Ltd.

  15. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?

    PubMed

    van Geffen, Koert G; Berg, Matty P; Aerts, Rien

    2011-12-01

    As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.

  16. Floods, Bottlenecks and Backwaters: An Analysis of Expansion in Higher Education in Norway.

    ERIC Educational Resources Information Center

    Aamodt, Per O.

    1995-01-01

    Discussion of the pressures for expansion in Norwegian higher education looks at both long-term trends (need for a better-educated workforce and rising level in parents' education) and current demographic, individual, and political forces (a deteriorating labor market, younger students, competition for admission). Whether this situation is unique…

  17. Proposed modification of the criterion for the region of validity of the inverse-power expansion in diatomic long-range potentials

    NASA Astrophysics Data System (ADS)

    Ji, Bing; Tsai, Chin-Chun; Stwalley, William C.

    1995-04-01

    A modified internuclear distance criterion, RLR- m, as the lower bound for the region of validity of the inverse-power expansion of the diatomic long-range potential is proposed. This new criterion takes into account the spatial orientation of the atomic orbitals while retaining the simplicity of the traditional Le Roy radius, RLR for the interaction of S state atoms. Recent experimental and theoretical results for various excited states in Na 2 suggest that this proposed RLR- m is an appropriate generalization of RLR.

  18. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, S.Y.

    1996-01-30

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  19. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOEpatents

    Limaye, Santosh Y.

    1996-01-01

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  20. EJSCREEN Version 1, Demographic Data

    EPA Pesticide Factsheets

    This map service displays demographic data used in EJSCREEN. All demographic data were derived from American Community Survey 2006-2010 estimates. EJSCREEN is an environmental justice screening tool that provides EPA with a nationally consistent approach to screening for potential areas of EJ concern that may warrant further investigation. The EJ indexes are block group level results that combine multiple demographic factors with a single environmental variable (such as proximity to traffic) that can be used to help identify communities living with the greatest potential for negative environmental and health effects. The EJSCREEN tool is currently for internal EPA use only. It is anticipated that as users become accustomed to this new tool, individual programs within the Agency will develop program use guidelines and a community of practice will develop around them within the EPA Geoplatform. Users should keep in mind that screening tools are subject to substantial uncertainty in their demographic and environmental data, particularly when looking at small geographic areas, such as Census block groups. Data on the full range of environmental impacts and demographic factors in any given location are almost certainly not available directly through this tool, and its initial results should be supplemented with additional information and local knowledge before making any judgments about potential areas of EJ concern.

  1. Estimates of expansion time scales

    NASA Astrophysics Data System (ADS)

    Jones, E. M.

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy.

  2. Strangers in Paradise: The biogeographic range expansion of the foraminifera Amphistegina in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Langer, M. R.; Weinmann, A. E.; Rödder, D.; Lötters, S.

    2012-04-01

    Species distribution models (SDMs) have become important tools in biogeography and biodiversity research over the last decades. They are mainly based on the fundamental niche concept and allow the correlative prediction of species' potential distributional ranges by combining occurrence records with information on environmental (e.g. climatic) conditions. The generated environmental envelope of a species is projected into geographic space, thus defining areas of adequate habitat suitability. Here we apply a species distribution model (SDM) to assess potential range expansions of Amphistegina spp. in the Mediterranean Sea under current und future climate conditions. The model uses an environmental envelope of information from localities where amphisteginids are currently known to occur. Amphisteginid foraminifers are a group of circumtropically distributed, larger symbiont-bearing, calcareous foraminifera that have a well-documented record as detectors of historical climate change. They are currently expanding their biogeographic range in the Mediterranean Sea and rapidly progressing northwestward, closely approaching the Adriatic and the Tyrrhenian Sea. The shift in range locally leads to profound ecological changes where amphisteginids have become the dominant species along entire stretches of coastline. Mass deposits of amphisteginids reflect an increased carbonate production and reduced assemblage diversity, and these are likely to trigger major changes in ecosystem functioning. It is anticipated that the ongoing warming trend will convey the northwestward migration of amphisteginid foraminifers. Our model indicates that further warming is likely to cause a northwestward range extension and predicts dispersal through the straits of Sicily, Messina and Otranto into the Tyrrhenian and Adriatic Sea. Rapid proliferation and the extreme abundances of amphisteginid foraminifera affect the dynamic equilibrium of established foraminiferal biotas. In the eastern

  3. Mitochondrial Variation among the Aymara and the Signatures of Population Expansion in the Central Andes

    PubMed Central

    BATAI, KEN; WILLIAMS, SLOAN R.

    2015-01-01

    Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040

  4. An operating principle of the turtle utricle to detect wide dynamic range.

    PubMed

    Nam, Jong-Hoon

    2018-03-01

    The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from <0.05 to >2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Genomic characterization of Ralstonia solanacearum phage phiRSB1, a T7-like wide-host-range phage.

    PubMed

    Kawasaki, Takeru; Shimizu, Mio; Satsuma, Hideki; Fujiwara, Akiko; Fujie, Makoto; Usami, Shoji; Yamada, Takashi

    2009-01-01

    PhiRSB1 is a wide-host-range, T7-like bacteriophage that infects and efficiently lyses the phytopathogenic bacterium Ralstonia solanacearum. The phiRSB1 genome comprises 43,079 bp of double-stranded DNA (61.7% G+C) with 325-bp terminal repeats and contains 47 open reading frames. Strong activity of tandem early promoters and wide specificity of phage promoters of phiRSB1 were demonstrated.

  6. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  7. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  8. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  9. Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40-70 eV.

    PubMed

    Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi

    2016-06-27

    An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.

  10. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  11. World-Wide and Regional Examination of Substrates Facilitating Timberline Expansion

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Yeakley, J. A.

    2010-12-01

    Upward advance of timberlines, associated with climate warming, is occurring in the Pacific Northwest (PNW) as well as many other mountainous regions of the world. Examination of seedling establishment and survival of sensitive seedlings, rather than examination of older resilient trees, may give a clearer understanding of current climatic factors affecting potential expansion of timberline. Our investigation of seedling establishment along timberline edges in the PNW indicates that trees often germinate on small landforms known as microsites. Microsites include small convexities or concavities on the soil surface having a scale of centimeters to meters, but also include associations with slope, aspect, rocks or plants, or substrates dominated by mineral soil or wood. Growing on favorable microsites helps seedlings cope with some of the stresses that exist at high elevation sites including wind, cold temperatures, high radiation, drought, animal predation, and infestation by fungal pathogens found in snow and soil. Microsites, by providing warmer substrates, adequate moisture, and shelter, allow plants to function more affectively in mountain environments. Our summary of microsite type and associated timberline advance in a world-wide context indicates that factors such as snow accumulation, summer rainfall, and availability of microsites, will control timberline advance. In windswept timberline locations, rocks and plants provide shelter from wind and reduce the likelihood of night frost. In arid climates, concave microsites aid in snow deposition providing needed moisture to seedlings during periods of drought. In contrast, convex microsites and wood substrates, typical sites of regeneration in the PNW where precipitation typically exceeds 150 cm per year, facilitate early snow melt, thereby increasing growing season. Large trees at the edge of timberline fall into alpine meadows, decay, and provide sites for seedling establishment. These sites commonly called

  12. Population declines lead to replicate patterns of internal range structure at the tips of the distribution of the California red-legged frog (Rana draytonii)

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Backlin, Adam R.; Tatarian, Patricia J.; Solvesky, Ben G.; Fisher, Robert N.

    2014-01-01

    Demographic declines and increased isolation of peripheral populations of the threatened California red-legged frog (Rana draytonii) have led to the formation of internal range boundaries at opposite ends of the species’ distribution. While the population genetics of the southern internal boundary has been studied in some detail, similar information is lacking for the northern part of the range. In this study, we used microsatellite and mtDNA data to examine the genetic structuring and diversity of some of the last remaining R. draytonii populations in the northern Sierra Nevada, which collectively form the northern external range boundary. We compared these data to coastal populations in the San Francisco Bay Area, where the species is notably more abundant and still exists throughout much of its historic range. We show that ‘external’ Sierra Nevada populations have lower genetic diversity and are more differentiated from one another than their ‘internal’ Bay Area counterparts. This same pattern was mirrored across the distribution in California, where Sierra Nevada and Bay Area populations had lower allelic variability compared to those previously studied in coastal southern California. This genetic signature of northward range expansion was mirrored in the phylogeography of mtDNA haplotypes; northern Sierra Nevada haplotypes showed greater similarity to haplotypes from the south Coast Ranges than to the more geographically proximate populations in the Bay Area. These data cast new light on the geographic origins of Sierra Nevada R. draytonii populations and highlight the importance of distinguishing the genetic effects of contemporary demographic declines from underlying signatures of historic range expansion when addressing the most immediate threats to population persistence. Because there is no evidence of contemporary gene flow between any of the Sierra Nevada R. draytonii populations, we suggest that management activities should focus on

  13. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-01

    The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  14. A micromixer with consistent mixing performance for a wide range of flow rates.

    PubMed

    Goovaerts, Robert; Van Assche, Tom; Sonck, Marc; Denayer, Joeri; Desmet, Gert

    2015-02-01

    A micromixer with consistent mixing performance for a wide range of flow rates is presented. The mixer makes use of internally moving elements, i.e. steel balls that are located in dedicated mixing chambers. Movement is induced by a rotating magnetic field. To get better insight in differences between active and passive mixing, we studied a mixer that can operate in both regimes. A mixing performance study for a range of flow rates along with pressure drop data is presented. The response of the moving elements in regard to the magnetic field is shown experimentally and shows the limitations of earlier modeling studies. Lastly, the estimated power input on the fluids was calculated and allows for a comparison with more well-known convective-type mixers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  16. [Population and crisis. Economic inflexibility or demographic subordination].

    PubMed

    Morelos, J B

    1989-01-01

    Much speculation, fact-based and subjective, has centered on the links between population and economic crisis, and between population and progress. In the past, famines directly affected the size and dynamics of population in affected regions, and such cycles inspired theories that regarded subsistence as the adjustment mechanism for demographic regimes. Population has alternatively been viewed as a crucial factor of production and a force for modernization and progress. After World War I and the Great Depression, many economists believed that population growth would be indispensable for renewing economic expansion. The favorable view of population growth in Mexico led to measures to repatriate emigrants, attract immigrants, and improve health conditions. The gross national product grew by around 6.0% annually on average between 1940 and 1960, and the per capita GNP by about 3%. Demographic dynamics acquired momentum by the 1960s, with high growth rates, a young age structure, considerable demographic inertia, and relative predominance of the urban population. Indications began to appear that a primarily economic solution to achieving full development would be unlikely. The polarization of development, distributive insufficiency, distortions in exchange relations for agricultural products, and incorporation of inappropriate technologies were factors decreasing the ability of the economy to respond adequately to population demands. National development was insufficient to meet growing demographic pressures in the labor market, educational system, housing, and urban services. The adjustment programs reduced even further the flexibility of the government to respond to pressures. Expectations for the future have been seriously compromised by the fall of real incomes.

  17. A unified perturbation expansion for surface scattering

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin

    1992-01-01

    Starting with the extinction theorem, a perturbation expansion which, to first and second orders, converges over a wider domain than the small perturbation expansion and the momentum transfer expansion is presented. It is shown that, in the appropriate limits, both of these theories, as well as the two-scale expansion, are recovered. There is no adjustable parameter, such as a spectral split, in the theory. This theory is applied to random rough surfaces and derive analytic expressions for the coherent field and the bistatic cross section. Finally, a numerical test of the theory against method of moments results for Gaussian random rough surfaces with a power law spectrum is given. These results show that the expansion is ramarkably accurate over a large range of surface heights and slopes for both horizontal and vertical polarization.

  18. Thermal expansion of boron subnitrides

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill A.; Gigli, Lara; Solozhenko, Vladimir L.

    2018-07-01

    The lattice parameters of two boron subnitrides, B13N2 and B50N2, have been measured as a function of temperature between 298 and 1273 K, and the corresponding thermal expansion coefficients have been determined. Thermal expansion of both boron subnitrides was found to be quasi-linear, and the volume thermal expansion coefficients of B50N2 (15.7 (2) × 10-6 K-1) and B13N2 (21.3 (2) × 10-6 K-1) are of the same order of magnitude as those of boron-rich compounds with structure related to α-rhombohedral boron. For both boron subnitrides no temperature-induced phase transitions have been observed in the temperature range under study.

  19. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  20. Controlling range expansion in habitat networks by adaptively targeting source populations.

    PubMed

    Hock, Karlo; Wolff, Nicholas H; Beeden, Roger; Hoey, Jessica; Condie, Scott A; Anthony, Kenneth R N; Possingham, Hugh P; Mumby, Peter J

    2016-08-01

    Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected. © 2016 Society for Conservation Biology.

  1. Demographic patterns and trends in Central Ghana: baseline indicators from the Kintampo Health and Demographic Surveillance System.

    PubMed

    Owusu-Agyei, Seth; Nettey, Obed Ernest A; Zandoh, Charles; Sulemana, Abubakari; Adda, Robert; Amenga-Etego, Seeba; Mbacke, Cheikh

    2012-12-20

    The dearth of health and demographic data in sub-Saharan Africa from vital registration systems and its impact on effective planning for health and socio-economic development is widely documented. Health and Demographic Surveillance Systems have the capacity to address the dearth of quality data for policy making in resource-poor settings. This article demonstrates the utility of the Kintampo Health and Demographic Surveillance System (KHDSS) by showing the patterns and trends of population change from 2005 to 2009 in the Kintampo North Municipality and Kintampo South districts of Ghana through data obtained from the KHDSS biannual update rounds. Basic demographic rates for fertility, mortality, and migration were computed by year. School enrolment was computed as a percentage in school by age and sex for 6-18 year-olds. Socio-economic status was derived by use of Principal Components Analysis on household assets. Over the period, an earlier fertility decline was reversed in 2009; mortality declined slightly for all age-groups, and a significant share of working-age population was lost through out-migration. Large minorities of children of school-going age are not in school. Socio-economic factors are shown to be important determinants of fertility and mortality. Strengthening the capacity of HDSSs could offer added value to evidence-driven policymaking at local level.

  2. Characterizing Speech Intelligibility in Noise After Wide Dynamic Range Compression.

    PubMed

    Rhebergen, Koenraad S; Maalderink, Thijs H; Dreschler, Wouter A

    The effects of nonlinear signal processing on speech intelligibility in noise are difficult to evaluate. Often, the effects are examined by comparing speech intelligibility scores with and without processing measured at fixed signal to noise ratios (SNRs) or by comparing the adaptive measured speech reception thresholds corresponding to 50% intelligibility (SRT50) with and without processing. These outcome measures might not be optimal. Measuring at fixed SNRs can be affected by ceiling or floor effects, because the range of relevant SNRs is not know in advance. The SRT50 is less time consuming, has a fixed performance level (i.e., 50% correct), but the SRT50 could give a limited view, because we hypothesize that the effect of most nonlinear signal processing algorithms at the SRT50 cannot be generalized to other points of the psychometric function. In this article, we tested the value of estimating the entire psychometric function. We studied the effect of wide dynamic range compression (WDRC) on speech intelligibility in stationary, and interrupted speech-shaped noise in normal-hearing subjects, using a fast method-based local linear fitting approach and by two adaptive procedures. The measured performance differences for conditions with and without WDRC for the psychometric functions in stationary noise and interrupted speech-shaped noise show that the effects of WDRC on speech intelligibility are SNR dependent. We conclude that favorable and unfavorable effects of WDRC on speech intelligibility can be missed if the results are presented in terms of SRT50 values only.

  3. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus.

    PubMed

    Wolfe, Benjamin E; Pringle, Anne

    2012-04-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.

  4. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus

    PubMed Central

    Wolfe, Benjamin E; Pringle, Anne

    2012-01-01

    The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645

  5. Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements.

    PubMed

    Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu

    2014-06-01

    A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.

  6. 3He(α, γ)7Be cross section in a wide energy range

    NASA Astrophysics Data System (ADS)

    Szücs, Tamás; Gyürky, György; Halász, Zoltán; Kiss, Gábor Gy.; Fülöp, Zsolt

    2018-01-01

    The reaction rate of the 3He(α,γ)7 Be reaction is important both in the Big Bang Nucleosynthesis (BBN) and in the Solar hydrogen burning. There have been a lot of experimental and theoretical efforts to determine this reaction rate with high precision. Some long standing issues have been solved by the more precise investigations, like the different S(0) values predicted by the activation and in-beam measurement. However, the recent, more detailed astrophysical model predictions require the reaction rate with even higher precision to unravel new issues like the Solar composition. One way to increase the precision is to provide a comprehensive dataset in a wide energy range, extending the experimental cross section database of this reaction. This paper presents a new cross section measurement between Ecm = 2.5 - 4.4 MeV, in an energy range which extends above the 7Be proton separation threshold.

  7. Range Image Flow using High-Order Polynomial Expansion

    DTIC Science & Technology

    2013-09-01

    included as a default algorithm in the OpenCV library [2]. The research of estimating the motion between range images, or range flow, is much more...Journal of Computer Vision, vol. 92, no. 1, pp. 1‒31. 2. G. Bradski and A. Kaehler. 2008. Learning OpenCV : Computer Vision with the OpenCV Library

  8. About Ganoderma boninense in oil palm plantations of Sumatra and peninsular Malaysia: Ancient population expansion, extensive gene flow and large scale dispersion ability.

    PubMed

    Mercière, Maxime; Boulord, Romain; Carasco-Lacombe, Catherine; Klopp, Christophe; Lee, Yang-Ping; Tan, Joon-Sheong; Syed Alwee, Sharifah S R; Zaremski, Alba; De Franqueville, Hubert; Breton, Frédéric; Camus-Kulandaivelu, Létizia

    Wood rot fungi form one of the main classes of phytopathogenic fungus. The group includes many species, but has remained poorly studied. Many species belonging to the Ganoderma genus are well known for causing decay in a wide range of tree species around the world. Ganoderma boninense, causal agent of oil palm basal stem rot, is responsible for considerable yield losses in Southeast Asian oil palm plantations. In a large-scale sampling operation, 357 sporophores were collected from oil palm plantations spread over peninsular Malaysia and Sumatra and genotyped using 11 SSR markers. The genotyping of these samples made it possible to investigate the population structure and demographic history of G. boninense across the oldest known area of interaction between oil palm and G. boninense. Results show that G. boninense possesses a high degree of genetic diversity and no detectable genetic structure at the scale of Sumatra and peninsular Malaysia. The fact that few duplicate genotypes were found in several studies including this one supports the hypothesis of spore dispersal in the spread of G. boninense. Meanwhile, spatial autocorrelation analysis shows that G. boninense is able to disperse across both short and long distances. These results bring new insight into mechanisms by which G. boninense spreads in oil palm plantations. Finally, the use of approximate Bayesian computation (ABC) modelling indicates that G. boninense has undergone a demographic expansion in the past, probably before the oil palm was introduced into Southeast Asia. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Study methods, recruitment, socio-demographic findings and demographic representativeness in the OPPERA study

    PubMed Central

    Slade, Gary D.; Bair, Eric; By, Kunthel; Mulkey, Flora; Baraian, Cristina; Rothwell, Rebecca; Reynolds, Maria; Miller, Vanessa; Gonzalez, Yoly; Gordon, Sharon; Ribeiro-Dasilva, Margarete; Lim, Pei Feng; Greenspan, Joel D; Dubner, Ron; Fillingim, Roger B; Diatchenko, Luda; Maixner, William; Dampier, Dawn; Knott, Charles; Ohrbach, Richard

    2011-01-01

    This paper describes methods used in the project “Orofacial Pain Prospective Evaluation and Risk Assessment” (OPPERA) and evaluates socio-demographic characteristics associated with temporomandibular disorders (TMD) in the OPPERA case-control study. Representativeness was investigated by comparing socio-demographic profiles of OPPERA participants with population census profiles of counties near study sites and by comparing age- and gender-associations with TMD in OPPERA and the 2007-09 US National Health Interview Survey. Volunteers aged 18-44 years were recruited at four US study sites: 3,263 people without TMD were enrolled into the prospective cohort study; 1,633 of them were selected as controls for the baseline case-control study. Cases were 185 volunteers with examiner-classified TMD. Distributions of some demographic characteristics among OPPERA participants differed from census profiles, although there was less difference in socio-economic profiles. Odds of TMD was associated with greater age in this 18-44 year range; females had three times the odds of TMD as males; and relative to non-Hispanic-Whites, other racial groups had one-fifth the odds of TMD. Age- and gender-associations with chronic TMD were strikingly similar to associations observed in the US population. Assessments of representativeness in this demographically diverse group of community volunteers suggest that OPPERA case-control findings have good internal validity. PMID:22074749

  10. Determination of the V- I characteristic of NbTi wires in a wide resistivity range

    NASA Astrophysics Data System (ADS)

    Musenich, R.; Fabbricatore, P.; Farinon, S.; Greco, M.

    2004-01-01

    The voltage-current curve of superconducting wires and cables is generally directly measured within the resistivity range 10 -15-10 -12 Ω m being limited by the sensitivity and the Joule dissipation. Indirect measurements, based on the current decay in a superconducting loop, allow the determination of the curve in lower resistivity regions. Using a loop made with a Cu-NbTi wire we performed indirect V- I measurements in the range 10 -19-10 -16 Ω m. The comparison of the curves obtained by the direct and indirect method allows the experimental verification of the power law describing the transition of the superconducting wire to the normal state in a wide resistivity range. The law is discussed and justified on the basis of the superconductor behaviour in the flux creep dynamic regime.

  11. Evaluating population expansion of black bears using spatial capture-recapture

    USGS Publications Warehouse

    Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.

    2017-01-01

    The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses. 

  12. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  13. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  14. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    PubMed Central

    Reddy, Umesh K.; Nimmakayala, Padma; Abburi, Venkata Lakshmi; Reddy, C. V. C. M.; Saminathan, Thangasamy; Percy, Richard G.; Yu, John Z.; Frelichowski, James; Udall, Joshua A.; Page, Justin T.; Zhang, Dong; Shehzad, Tariq; Paterson, Andrew H.

    2017-01-01

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima’s D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication. PMID:28128280

  15. Travel Times for Screening Mammography: Impact of Geographic Expansion by a Large Academic Health System.

    PubMed

    Rosenkrantz, Andrew B; Liang, Yu; Duszak, Richard; Recht, Michael P

    2017-09-01

    This study aims to assess the impact of off-campus facility expansion by a large academic health system on patient travel times for screening mammography. Screening mammograms performed from 2013 to 2015 and associated patient demographics were identified using the NYU Langone Medical Center Enterprise Data Warehouse. During this time, the system's number of mammography facilities increased from 6 to 19, reflecting expansion beyond Manhattan throughout the New York metropolitan region. Geocoding software was used to estimate driving times from patients' homes to imaging facilities. For 147,566 screening mammograms, the mean estimated patient travel time was 19.9 ± 15.2 minutes. With facility expansion, travel times declined significantly (P < 0.001) from 26.8 ± 18.9 to 18.5 ± 13.3 minutes (non-Manhattan residents: from 31.4 ± 20.3 to 18.7 ± 13.6). This decline occurred consistently across subgroups of patient age, race, ethnicity, payer status, and rurality, leading to decreased variation in travel times between such subgroups. However, travel times to pre-expansion facilities remained stable (initial: 26.8 ± 18.9 minutes, final: 26.7 ± 18.6 minutes). Among women undergoing mammography before and after expansion, travel times were shorter for the postexpansion mammogram in only 6.3%, but this rate varied significantly (all P < 0.05) by certain demographic factors (higher in younger and non-Hispanic patients) and was as high as 18.2%-18.9% of patients residing in regions with the most active expansion. Health system mammography facility geographic expansion can improve average patient travel burden and reduce travel time variation among sociodemographic populations. Nonetheless, existing patients strongly tend to return to established facilities despite potentially shorter travel time locations, suggesting strong site loyalty. Variation in travel times likely relates to various factors other than facility proximity

  16. Two disjunct Pleistocene populations and anisotropic postglacial expansion shaped the current genetic structure of the relict plant Amborella trichopoda

    PubMed Central

    Tournebize, Rémi; Manel, Stéphanie; Vigouroux, Yves; Munoz, François; de Kochko, Alexandre

    2017-01-01

    Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km) and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion. PMID:28820899

  17. Analysis of Er{sup 3+} and Ho{sup 3+} codoped fluoroindate glasses as wide range temperature sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Gonzalez, P., E-mail: patharo@ull.es; Leon-Luis, S.F.; Gonzalez-Perez, S.

    2011-07-15

    Graphical abstract: The sensor sensitivity as a function of the temperature of erbium and holmium doped fluoroindate glasses. A wide temperature range from 20 K to 425 K is covered with a sensitivity larger than 0.0005. Highlights: {yields} The FIR technique has been carried out in fluoroindate glass sample. {yields} The Er doped fluoroindate sample has a maximum sensitivity of 0.0028 K{sup -1} at 425 K. {yields} The Ho doped fluoroindate sample has a maximum sensitivity of 0.0036 K{sup -1} at 59 K. -- Abstract: The fluorescence intensity ratio technique for two fluoroindate glass samples has been carried out. Themore » green emissions at 523 nm and at 545 nm in a 0.1 mol% of Er{sup 3+} doped fluoroindate glass was studied in a wide range of temperature from 125 K to 425 K with a maximum sensitivity of 0.0028 K{sup -1} for 425 K. In a sample doped with 0.1 mol% of Ho{sup 3+} the emissions at 545 nm and at 750 nm were analyzed as a function of temperature from 20 K to 300 K obtaining a maximum sensitivity of 0.0036 K{sup -1} at 59 K. Using both fluoroindate glass samples a wide temperature range from 20 K to 425 K is easily covered pumping with two low-cost diode laser at 406 nm and 473 nm.« less

  18. A new method for achieving enhanced dielectric response over a wide temperature range

    DOE PAGES

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; ...

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  19. A new method for achieving enhanced dielectric response over a wide temperature range

    PubMed Central

    Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank

    2015-01-01

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors. PMID:26477391

  20. Tropical specialist vs. climate generalist: Diversification and demographic history of sister species of Carlia skinks from northwestern Australia.

    PubMed

    Afonso Silva, Ana C; Bragg, Jason G; Potter, Sally; Fernandes, Carlos; Coelho, Maria Manuela; Moritz, Craig

    2017-08-01

    Species endemic to the tropical regions are expected to be vulnerable to future climate change due in part to their relatively narrow climatic niches. In addition, these species are more likely to have responded strongly to past climatic change, and this can be explored through phylogeographic analyses. To test the hypothesis that tropical specialists are more sensitive to climate change than climate generalists, we generated and analyse sequence data from mtDNA and ~2500 exons to compare scales of historical persistence and population fluctuation in two sister species of Australian rainbow skinks: the tropical specialist Carlia johnstonei and the climate generalist C. triacantha. We expect the tropical specialist species to have deeper and finer-scale phylogeographic structure and stronger demographic fluctuations relative to the closely related climate generalist species, which should have had more stable populations through periods of harsh climate in the late Quaternary. Within C. johnstonei, we find that some populations from the northern Kimberley islands are highly divergent from mainland populations. In C. triacantha, one major clade occurs across the deserts and into the mesic Top End, and another occurs primarily in the Kimberley with scattered records eastwards. Where their ranges overlap in the Kimberley, both mitochondrial DNA and nuclear DNA suggest stronger phylogeographic structure and range expansion within the tropical specialist, whereas the climate generalist has minimal structuring and no evidence of recent past range expansion. These results are consistent with the hypothesis that tropical specialists are more sensitive to past climatic change. © 2017 John Wiley & Sons Ltd.

  1. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  2. The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place

    PubMed Central

    Mitchell, Lewis; Frank, Morgan R.; Harris, Kameron Decker; Dodds, Peter Sheridan; Danforth, Christopher M.

    2013-01-01

    We conduct a detailed investigation of correlations between real-time expressions of individuals made across the United States and a wide range of emotional, geographic, demographic, and health characteristics. We do so by combining (1) a massive, geo-tagged data set comprising over 80 million words generated in 2011 on the social network service Twitter and (2) annually-surveyed characteristics of all 50 states and close to 400 urban populations. Among many results, we generate taxonomies of states and cities based on their similarities in word use; estimate the happiness levels of states and cities; correlate highly-resolved demographic characteristics with happiness levels; and connect word choice and message length with urban characteristics such as education levels and obesity rates. Our results show how social media may potentially be used to estimate real-time levels and changes in population-scale measures such as obesity rates. PMID:23734200

  3. The geography of happiness: connecting twitter sentiment and expression, demographics, and objective characteristics of place.

    PubMed

    Mitchell, Lewis; Frank, Morgan R; Harris, Kameron Decker; Dodds, Peter Sheridan; Danforth, Christopher M

    2013-01-01

    We conduct a detailed investigation of correlations between real-time expressions of individuals made across the United States and a wide range of emotional, geographic, demographic, and health characteristics. We do so by combining (1) a massive, geo-tagged data set comprising over 80 million words generated in 2011 on the social network service Twitter and (2) annually-surveyed characteristics of all 50 states and close to 400 urban populations. Among many results, we generate taxonomies of states and cities based on their similarities in word use; estimate the happiness levels of states and cities; correlate highly-resolved demographic characteristics with happiness levels; and connect word choice and message length with urban characteristics such as education levels and obesity rates. Our results show how social media may potentially be used to estimate real-time levels and changes in population-scale measures such as obesity rates.

  4. The affordable care act and family planning services: the effect of optional medicaid expansion on safety net programs.

    PubMed

    Lanese, Bethany G; Oglesby, Willie H

    2016-01-01

    Title X of the Public Health Service Act provides funding for a range of reproductive health services, with a priority given to low-income persons. Now that many of these services are provided to larger numbers of people with low-income since the passage of the Affordable Care Act and Medicaid expansion, questions remain on the continued need for the Title X program. The current project highlights the importance of these safety net programs. To help inform this policy issue, research was conducted to examine the revenue and service changes for Title X per state and compare those findings to the states' Medicaid expansion and demographics. The dataset include publicly available data from 2013 and 2014 Family Planning Annual Reports (FPAR). Paired samples differences of means t-tests were then used to compare the means of family planning participation rates for 2013 and 2014 across the different categories for Medicaid expansion states and non-expansion states. The ACA has had an impact on Title X services, but the link is not as direct as previously thought. The findings indicate that all states' Title X funded clinics lost revenue; however, expansion states fared better than non-expansion states. While the general statements from the FPAR National surveys certainly are supported in that Title X providers have decreased in number and scope of services, which has led to the decrease in total clients, these variations are not evenly applied across the states. The ACA has very likely had an impact on Title X services, but the link is not as obvious as previously thought. Title X funded clinics have helped increase access to health insurance at a greater rate in expansion states than non-expansion states. There was much concern from advocates that with the projected increased revenue from Medicaid and private insurance, that Title X programs could be deemed unnecessary. However, this revenue increase has yet to actually pan out. Title X still helps fill a much needed

  5. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range.

    PubMed

    Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying

    2018-05-30

    Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of a precision, wide-dynamic-range actuator for use in active optical systems

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.

    1989-01-01

    The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.

  7. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.

    PubMed

    Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G

    2017-11-01

    One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of

  8. Pleistocene range shifts, refugia and the origin of widespread species in western Palaearctic water beetles.

    PubMed

    García-Vázquez, David; Bilton, David T; Foster, Garth N; Ribera, I

    2017-09-01

    Quaternary glacial cycles drove major shifts in both the extent and location of the geographical ranges of many organisms. During glacial maxima, large areas of central and northern Europe were inhospitable to temperate species, and these areas are generally assumed to have been recolonized during interglacials by range expansions from Mediterranean refugia. An alternative is that this recolonization was from non-Mediterranean refugia, in central Europe or western Asia, but data on the origin of widespread central and north European species remain fragmentary, especially for insects. We studied three widely distributed lineages of freshwater beetles (the Platambus maculatus complex, the Hydraena gracilis complex, and the genus Oreodytes), all restricted to running waters and including both narrowly distributed southern endemics and widespread European species, some with distributions spanning the Palearctic. Our main goal was to determine the role of the Pleistocene glaciations in shaping the diversification and current distribution of these lineages. We sequenced four mitochondrial and two nuclear genes in populations drawn from across the ranges of these taxa, and used Bayesian probabilities and Maximum Likelihood to reconstruct their phylogenetic relationships, age and geographical origin. Our results suggest that all extant species in these groups are of Pleistocene origin. In the H. gracilis complex, the widespread European H. gracilis has experienced a rapid, recent range expansion from northern Anatolia, to occupy almost the whole of Europe. However, in the other two groups widespread central and northern European taxa appear to originate from central Asia, rather than the Mediterranean. These widespread species of eastern origin typically have peripherally isolated forms in the southern Mediterranean peninsulas, which may be remnants of earlier expansion-diversification cycles or result from incipient isolation of populations during the most recent Holocene

  9. Perceptual scale expansion: an efficient angular coding strategy for locomotor space.

    PubMed

    Durgin, Frank H; Li, Zhi

    2011-08-01

    Whereas most sensory information is coded on a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for the angular variables important to precise motor control. In four experiments, we show that the perceived declination of gaze, like the perceived orientation of surfaces, is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and nonverbal measures (Experiments 1 and 2), as well as in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching, while allowing for accurate spatial action to be understood as the result of calibration.

  10. Perceptual Scale Expansion: An Efficient Angular Coding Strategy for Locomotor Space

    PubMed Central

    Durgin, Frank H.; Li, Zhi

    2011-01-01

    Whereas most sensory information is coded in a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for angular variables important to precise motor control. In four experiments it is shown that the perceived declination of gaze, like the perceived orientation of surfaces is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and non-verbal measures (Experiments 1 and 2) and in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching while allowing accurate spatial action to be understood as the result of calibration. PMID:21594732

  11. Range-wide wetland associations of the King Rail: A multi-scale approach

    USGS Publications Warehouse

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.; Laxson, Thomas A.

    2015-01-01

    King Rail populations have declined and identifying wetland features that influence King Rail occupancy can help prevent further population declines. We integrated continent-wide marsh bird survey data with spatial wetland data from the National Wetland Inventory (NWI) to examine wetland features that influenced King Rail occupancy throughout the species’ range. We analyzed wetland data at 7 spatial scales to examine the scale(s) at which 68 wetland features were most strongly related to King Rail occupancy. Occupancy was most strongly associated with estuarine features and brackish and tidal saltwater regimes. King Rail occupancy was positively associated with emergent and scrub-shrub wetlands and negatively associated with forested wetlands. The best spatial scale for assessing King Rail occupancy differed among wetland features; we could not identify one spatial scale (among all wetland features) that best explained variation in occupancy. Future research on King Rail habitat that includes multiple spatial scales is more likely to identify the suite of features that influence occupancy. Our results indicate that NWI data may be useful for predicting occupancy based on broad habitat features across the King Rail’s range, which may help inform management decisions for this and other wetland-dependent birds.

  12. Near-zero thermal expansion and phase transitions in HfMg1-xZnxMo3O12

    NASA Astrophysics Data System (ADS)

    Li, Sailei; Ge, Xianghong; Yuan, Huanli; Chen, Dongxia; Guo, Juan; Shen, Ruofan; Chao, Mingju; Liang, Erjun

    2018-04-01

    The effects of Zn2+ incorporation on the phase formation, thermal expansion, phase transition and vibrational properties ofHfMg1-xZnxMo3O12 are investigated by XRD, dilatometry and Raman spectroscopy. The results show that (i) single phase formation is only possible for x≤0.5, otherwise, additional phases ofHfMo2O8 and ZnMoO4 appear; (ii) The phase transition temperature from monoclinic to orthorhombic structure of the single phase HfMg1-xZnxMo3O12 can be well tailored, which increases with the content of Zn2+; (iii) The incorporation of Zn2+ leads to an pronounced reduction in the positive expansion of the b-axis and a enhanced negative thermal expansion in the c-axes, leading to a near-zero thermal expansion property with lower anisotropy over a wide temperature range; (iv) Replacement of Mg2+ by Zn2+ weakens the Mo-O bonds as revealed by obvious red shifts of all the Mo-O stretching modes with increasing the content of Zn2+ and improves the sintering performance of the samples which is observed by SEM. The mechanisms of the negative and near-zero thermal expansion are discussed.

  13. Domestication and human demographic history in South America.

    PubMed

    Perez, S Ivan; Postillone, María Bárbara; Rindel, Diego

    2017-05-01

    The early groups of hunter-gatherers who peopled South America faced significant ecological changes in their trophic niche for a relatively short period after the initial peopling. In particular, the incorporation of cultigens during the Holocene led to a wider trophic niche and probably to an increased carrying capacity of the environment. Here, we study the relationship between the incorporation of domestic resources during the Holocene and the demographic dynamics of human populations at a regional scale in South America. We employ mitochondrial DNA (mtDNA), radiocarbon data and Bayesian methods to estimate differences in population size, human occupation and explore the demographic changes of human populations in three regions (i.e., South-Central Andes, Northwest, and South Patagonia). We also use archaeological evidence to infer the main diet changes in these regions. The absolute population size during the later Late Holocene was fifteen times larger in the South-Central Andes than in Northwest Patagonia, and two times larger in the latter region than in South Patagonia. The South-Central Andes display the earlier and more abrupt population growth, beginning about 9000 years BP, whereas Northwest Patagonia exhibits a more slow growth, beginning about 7000-7500 years BP. South Patagonia represents a later and slower population increase. In this work we uncovered a well-supported pattern of the demographic change in the populations from South-Central Andes and Patagonia, obtained on the basis of different data and quantitative approaches, which suggests that the incorporation of domestic resources was paramount for the demographic expansion of these populations during the Holocene. © 2017 Wiley Periodicals, Inc.

  14. Reconstructing Roma History from Genome-Wide Data

    PubMed Central

    Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla

    2013-01-01

    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520

  15. Expansion method in secondary total ear reconstruction for undesirable reconstructed ear.

    PubMed

    Liu, Tun; Hu, Jintian; Zhou, Xu; Zhang, Qingguo

    2014-09-01

    Ear reconstruction by autologous costal cartilage grafting is the most widely applied technique with fewer complications. However, undesirable ear reconstruction brings more problems to plastic surgeons. Some authors resort to free flap or osseointegration technique with prosthetic ear. In this article, we introduce a secondary total ear reconstruction with expanded skin flap method. From July 2010 to April 2012, 7 cases of undesirable ear reconstruction were repaired by tissue expansion method. Procedures including removal of previous cartilage framework, soft tissue expander insertion, and second stage of cartilage framework insertion were performed to each case regarding their local conditions. The follow-up time ranged from 6 months to 2.5 years. All of the cases recovered well with good 3-dimensional forms, symmetrical auriculocephalic angle, and stable fixation. All these evidence showed that this novel expansion method is safe, stable, and less traumatic for secondary total ear reconstruction. With sufficient expanded skin flap and refabricated cartilage framework, lifelike appearance of reconstructed ear could be acquired without causing additional injury.

  16. Genetic structure and demographic history of the endangered and endemic schizothoracine fish Gymnodiptychus pachycheilus in Qinghai-Tibetan Plateau.

    PubMed

    Su, Junhu; Ji, Weihong; Wei, Yanming; Zhang, Yanping; Gleeson, Dianne M; Lou, Zhongyu; Ren, Jing

    2014-08-01

    The endangered schizothoracine fish Gymnodiptychus pachycheilus is endemic to the Qinghai-Tibetan Plateau (QTP), but very little genetic information is available for this species. Here, we accessed the current genetic divergence of G. pachycheilus population to evaluate their distributions modulated by contemporary and historical processes. Population structure and demographic history were assessed by analyzing 1811-base pairs of mitochondrial DNA from 61 individuals across a large proportion of its geographic range. Our results revealed low nucleotide diversity, suggesting severe historical bottleneck events. Analyses of molecular variance and the conventional population statistic FST (0.0435, P = 0.0215) confirmed weak genetic structure. The monophyly of G. pachycheilus was statistically well-supported, while two divergent evolutionary clusters were identified by phylogenetic analyses, suggesting a microgeographic population structure. The consistent scenario of recent population expansion of two clusters was identified based on several complementary analyses of demographic history (0.096 Ma and 0.15 Ma). This genetic divergence and evolutionary process are likely to have resulted from a series of drainage arrangements triggered by the historical tectonic events of the region. The results obtained here provide the first insights into the evolutionary history and genetic status of this little-known fish.

  17. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    PubMed

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  18. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-07-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in a closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  19. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  20. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2018b) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  1. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.

    PubMed

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-06-03

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.

  2. Constrained range expansion and climate change assessments

    Treesearch

    Yohay Carmel; Curtis H. Flather

    2006-01-01

    Modeling the future distribution of keystone species has proved to be an important approach to assessing the potential ecological consequences of climate change (Loehle and LeBlanc 1996; Hansen et al. 2001). Predictions of range shifts are typically based on empirical models derived from simple correlative relationships between climatic characteristics of occupied and...

  3. Demographic patterns and trends in Central Ghana: baseline indicators from the Kintampo Health and Demographic Surveillance System

    PubMed Central

    Owusu-Agyei, Seth; Nettey, Obed Ernest A.; Zandoh, Charles; Sulemana, Abubakari; Adda, Robert; Amenga-Etego, Seeba; Mbacke, Cheikh

    2012-01-01

    Background The dearth of health and demographic data in sub-Saharan Africa from vital registration systems and its impact on effective planning for health and socio-economic development is widely documented. Health and Demographic Surveillance Systems have the capacity to address the dearth of quality data for policy making in resource-poor settings. Objective This article demonstrates the utility of the Kintampo Health and Demographic Surveillance System (KHDSS) by showing the patterns and trends of population change from 2005 to 2009 in the Kintampo North Municipality and Kintampo South districts of Ghana through data obtained from the KHDSS biannual update rounds. Design Basic demographic rates for fertility, mortality, and migration were computed by year. School enrolment was computed as a percentage in school by age and sex for 6–18 year-olds. Socio-economic status was derived by use of Principal Components Analysis on household assets. Results Over the period, an earlier fertility decline was reversed in 2009; mortality declined slightly for all age-groups, and a significant share of working-age population was lost through out-migration. Large minorities of children of school-going age are not in school. Socio-economic factors are shown to be important determinants of fertility and mortality. Conclusion Strengthening the capacity of HDSSs could offer added value to evidence-driven policymaking at local level. PMID:23273249

  4. Climate-Driven Range Extension of Amphistegina (Protista, Foraminiferida): Models of Current and Predicted Future Ranges

    PubMed Central

    Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis

    2013-01-01

    Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081

  5. Climate-driven range extension of Amphistegina (protista, foraminiferida): models of current and predicted future ranges.

    PubMed

    Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis

    2013-01-01

    Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.

  6. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China.

    PubMed

    Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping

    2011-06-01

    This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation.

  7. CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2012-01-01

    Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.

  8. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  9. Range-Wide Snow Leopard Phylogeography Supports Three Subspecies.

    PubMed

    Janecka, Jan E; Zhang, Yuguang; Li, Diqiang; Munkhtsog, Bariushaa; Bayaraa, Munkhtsog; Galsandorj, Naranbaatar; Wangchuk, Tshewang R; Karmacharya, Dibesh; Li, Juan; Lu, Zhi; Uulu, Kubanychbek Zhumabai; Gaur, Ajay; Kumar, Satish; Kumar, Kesav; Hussain, Shafqat; Muhammad, Ghulam; Jevit, Matthew; Hacker, Charlotte; Burger, Pamela; Wultsch, Claudia; Janecka, Mary J; Helgen, Kristofer; Murphy, William J; Jackson, Rodney

    2017-09-01

    The snow leopard, Panthera uncia, is an elusive high-altitude specialist that inhabits vast, inaccessible habitat across Asia. We conducted the first range-wide genetic assessment of snow leopards based on noninvasive scat surveys. Thirty-three microsatellites were genotyped and a total of 683 bp of mitochondrial DNA sequenced in 70 individuals. Snow leopards exhibited low genetic diversity at microsatellites (AN = 5.8, HO = 0.433, HE = 0.568), virtually no mtDNA variation, and underwent a bottleneck in the Holocene (∼8000 years ago) coinciding with increased temperatures, precipitation, and upward treeline shift in the Tibetan Plateau. Multiple analyses supported 3 primary genetic clusters: (1) Northern (the Altai region), (2) Central (core Himalaya and Tibetan Plateau), and (3) Western (Tian Shan, Pamir, trans-Himalaya regions). Accordingly, we recognize 3 subspecies, Panthera uncia irbis (Northern group), Panthera uncia uncia (Western group), and Panthera uncia uncioides (Central group) based upon genetic distinctness, low levels of admixture, unambiguous population assignment, and geographic separation. The patterns of variation were consistent with desert-basin "barrier effects" of the Gobi isolating the northern subspecies (Mongolia), and the trans-Himalaya dividing the central (Qinghai, Tibet, Bhutan, and Nepal) and western subspecies (India, Pakistan, Tajikistan, and Kyrgyzstan). Hierarchical Bayesian clustering analysis revealed additional subdivision into a minimum of 6 proposed management units: western Mongolia, southern Mongolia, Tian Shan, Pamir-Himalaya, Tibet-Himalaya, and Qinghai, with spatial autocorrelation suggesting potential connectivity by dispersing individuals up to ∼400 km. We provide a foundation for global conservation of snow leopard subspecies, and set the stage for in-depth landscape genetics and genomic studies. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.

    PubMed

    St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei

    2015-12-01

    Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000  μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.

  11. WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY.

    PubMed

    Jantz, Paul B; Bigler, Erin D; Froehlich, Alyson L; Prigge, Molly B D; Cariello, Annahir N; Travers, Brittany G; Anderson, Jeffrey; Zielinski, Brandon A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet E

    2015-06-01

    The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6-22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8 mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.

  12. Beyond the Castro: the role of demographics in the selection of gay and lesbian enclaves.

    PubMed

    Compton, D'Lane R; Baumle, Amanda K

    2012-01-01

    Although some qualitative research has noted differences in gay and lesbian enclaves based on characteristics such as race and sex, in this article, we draw upon quantitative data from the U.S. Census to demonstrate the manner in which enclave formation is affected by the interaction of sexual orientation and other demographic characteristics (such as sex, race, age, and income). We focus our attention on enclaves located in three counties in the San Francisco Bay Area: San Francisco County, Alameda County, and Sonoma County as one example. Even though these spaces fall within close proximity to one another and share similar geographic appeal, our analyses indicate that these enclaves are far from homogenous in terms of the demographic composition of their inhabitants. These quantitative analyses provide further support to past qualitative findings, as well as highlight additional distinctions in the manner in which demographics affect enclave selection. We supplement our demographic analyses with supporting field research and interviews, further highlighting both the variation and the commonalities of these enclaves. Overall, our findings promote an expansion of the understanding how intersecting demographic characteristics affect selection of a particular enclave and what may constitute a gay enclave.

  13. [The theory of the demographic transition as a reference for demo-economic models].

    PubMed

    Genne, M

    1981-01-01

    The aim of the theory of demographic transition (TTD) is to better understand the behavior and interrelationship of economic and demographic variables. There are 2 types of demo-economic models: 1) the malthusian models, which consider demographic variables as pure exogenous variables, and 2) the neoclassical models, which consider demographic variables as strictly endogenous. If TTD can explore the behavior of exogenous and endogenous demographic variables, it cannot demonstrate neither the relation nor the order of causality among the various demographic and economic variables, but it is simply the theoretical framework of a complex social and economic phenomenon which started in Europe in the 19th Century, and which today can be extended to developing countries. There are 4 stages in the TTD; the 1st stage is characterized by high levels of fecundity and mortality; the 2nd stage is characterized by high fecundity levels and declining mortality levels; the 3rd stage is characterized by declining fecundity levels and low mortality levels; the 4th stage is characterized by low fertility and mortality levels. The impact of economic variables over mortality and birth rates is evident for mortality rates, which decline earlier and at a greater speed than birth rates. According to reliable mathematical predictions, around the year 1987 mortality rates in developing countries will have reached the low level of European countries, and growth rate will be only 1.5%. If the validity of demo-economic models has not yet been established, TTD has clearly shown that social and economic development is the factor which influences demographic expansion.

  14. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  15. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    PubMed

    Merz, Clayton; Catchen, Julian M; Hanson-Smith, Victor; Emerson, Kevin J; Bradshaw, William E; Holzapfel, Christina M

    2013-01-01

    Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  16. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  17. Origami structures for tunable thermal expansion

    NASA Astrophysics Data System (ADS)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  18. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality.

    PubMed

    Goldenberg, Shifra Z; Douglas-Hamilton, Iain; Wittemyer, George

    2018-05-30

    Repeated use of the same areas may benefit animals as they exploit familiar sites, leading to consistent home ranges over time that can span generations. Changing risk landscapes may reduce benefits associated with home range fidelity, however, and philopatric animals may alter movement in response to new pressures. Despite the importance of range changes to ecological and evolutionary processes, little tracking data have been collected over the long-term nor has range change been recorded in response to human pressures across generations. Here, we investigate the relationships between ecological, demographic and human variables and elephant ranging behaviour across generations using 16 years of tracking data from nine distinct female social groups in a population of elephants in northern Kenya that was heavily affected by ivory poaching during the latter half of the study. Nearly all groups-including those that did not experience loss of mature adults-exhibited a shift north over time, apparently in response to increased poaching in the southern extent of the study area. However, loss of mature adults appeared to be the primary indicator of range shifts and expansions, as generational turnover was a significant predictor of range size increases and range centroid shifts. Range expansions and northward shifts were associated with higher primary productivity and lower poached carcass densities, while westward shifts exhibited a trend to areas with higher values of primary productivity and higher poached carcass densities relative to former ranges. Together these results suggest a trade-off between resource access, mobility and safety. We discuss the relevance of these results to elephant conservation efforts and directions meriting further exploration in this disrupted society of a keystone species. © 2018 The Author(s).

  19. Low expansion superalloy with improved toughness

    DOEpatents

    Smith, Darrell F.; Stein, Larry I.; Hwang, Il S.

    1995-01-01

    A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4.degree. K. The composition is adapted for use with wrought superconducting sheathing.

  20. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa

    PubMed Central

    Cane, James H.; Minckley, Robert L.; Danforth, Bryan N.

    2016-01-01

    Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita. The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene. PMID:27335417

  1. Collective pulsatile expansion and swirls in proliferating tumor tissue

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok Daniel; Kim, Hyun; Yoon, Changhyeong; Baek, Seung-Kuk; Lee, Kyoung J.

    2016-10-01

    Understanding the dynamics of expanding biological tissues is essential to a wide range of phenomena in morphogenesis, wound healing and tumor proliferation. Increasing evidence suggests that many of the relevant phenomena originate from complex collective dynamics, inherently nonlinear, of constituent cells that are physically active. Here, we investigate thin disk layers of proliferating, cohesive, monoclonal tumor cells and report the discovery of macroscopic, periodic, soliton-like mechanical waves with which cells are collectively ratcheting, as in the traveling-wave chemotaxis of dictyostelium discodium amoeba cells. The relevant length-scale of the waves is remarkably large (∼1 mm), compared to the thickness of a mono-layer tissue (∼ 10 μ {{m}}). During the tissue expansion, the waves are found to repeat several times with a quite well defined period of approximately 4 h. Our analyses suggest that the waves are initiated by the leading edge that actively pulls the tissue in the outward direction, while the cells within the bulk tissue do not seem to generate a strong self-propulsion. Subsequently, we demonstrate that a simple mathematical model chain of nonlinear springs that are constantly pulled in the outward direction at the leading edge recapitulates the observed phenomena well. As the areal cell density becomes too high, the tissue expansion stalls and the periodic traveling waves yield to multiple swirling vortices. Cancer cells are known to possess a broad spectrum of migration mechanisms. Yet, our finding has established a new unusual mode of tumor tissue expansion, and it may be equally applicable for many different expanding thin layers of cell tissues.

  2. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation

    PubMed Central

    2012-01-01

    The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models. Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites. In this paper we discuss the deficiencies of existing spatial population datasets

  3. Low expansion superalloy with improved toughness

    DOEpatents

    Smith, D.F.; Stein, L.I.; Hwang, I.S.

    1995-06-20

    A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.

  4. Phylogeographic structure of Canthon cyanellus (Coleoptera: Scarabaeidae), a Neotropical dung beetle in the Mexican Transition Zone: Insights on its origin and the impacts of Pleistocene climatic fluctuations on population dynamics.

    PubMed

    Nolasco-Soto, Janet; González-Astorga, Jorge; Espinosa de Los Monteros, Alejandro; Galante-Patiño, Eduardo; Favila, Mario E

    2017-04-01

    Canthon cyanellus is a roller dung beetle with a wide distribution range in the tropical forests of the New World. In Mexico, it inhabits the Pacific and the Gulf coasts, the Yucatan Peninsula and the south mainly in the State of Chiapas. This species shows a wide geographical variation in cuticle color, which has been used as defining trait for subspecies. In this study we analyzed the phylogeographic and demographic history of the Mexican populations of C. cyanellus using DNA sequences of the nuclear ITS2, and the mitochondrial COI and 16S genes. We found that not all the current valid subspecies are supported by the molecular analysis. The populations are genetically and geographically structured in five lineages. The diversification events that gave origin to the main lineages within this species complex occurred during the Pleistocine in a time range of 1.63-0.91Myr. The demographic history of these lineages suggests post-glacial expansions toward the middle and the end of the Pleistocene. The combined data of mitochondrial and nuclear DNA suggest that the phylogeographic structure and demographic history of the C. cyanellus populations are the result of: the geological and volcanic activity that occurred from the end of the Pliocene to the Pleistocene; and the contraction and expansion of tropical forests due to the glacial and inter-glacial cycles during the Pleistocene. Landscape changes derived from historical events have affected the demographic history of the populations of this species. The results presented here point to the need to review the taxonomic status and delimitation of the lineages encompassed in the Canthon cyanellus complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  6. Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite

    PubMed Central

    Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong

    2016-01-01

    The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420

  7. Demographic influences on risk perceptions.

    PubMed

    Savage, I

    1993-08-01

    Over the past 15 years, psychologists have empirically investigated how people perceive technological, consumer, and natural hazards. The psychometric-attitudes to risk being summarized by three factors: "dread," whether the risk is known, and personal exposure to the risk. The results have been used to suggest that certain types of hazards are viewed very differently from other hazards. The purpose of this paper is somewhat different, in that it investigates whether individual demographic characteristics influence psychometric perceptions of risk. This paper makes use of a large, professionally conducted, survey of a wide cross-section of the residents of metropolitan Chicago. One thousand adults were interviewed in a random-digit dial telephone survey, producing a useable dataset of about 800. Data on the three risk factors mentioned above were obtained on 7-point scales for four common hazards: aviation accidents, fires in the home, automobile accidents, and stomach cancer. The survey also collected demographic data on respondents' age, schooling, income, sex, and race. Regressions were then conducted to relate the demographic characteristics to risk perceptions. Some strong general conclusions can be drawn. The results suggest that women, people with lower levels of schooling and income, younger people, and blacks have more dread of hazards. The exception being age-related illnesses which, not unnaturally, are feared by older people. Unlike previous literature, we cannot substantiate the argument that these groups of people are less informed about hazards and thus less accepting of them. The most likely leading explanation of the relationship between demographic factors and dread of a hazard is the perceived personal exposure to the hazard.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Factors governing hole expansion ratio of steel sheets with smooth sheared edge

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Gyo-Sung; Kim, Hyoung Seop

    2016-11-01

    Stretch-flangeability measured using hole expansion test (HET) represents the ability of a material to form into a complex shaped component. Despite its importance in automotive applications of advanced high strength steels, stretch-flangeability is a less known sheet metal forming property. In this paper, we investigate the factors governing hole expansion ratio (HER) by means of tensile test and HET. We correlate a wide range of tensile properties with HERs of steel sheet specimens because the stress state in the hole edge region during the HET is almost the same as that of the uniaxial tensile test. In order to evaluate an intrinsic HER of steel sheet specimens, the initial hole of the HET specimen is produced using a milling process after punching, which can remove accumulated shearing damage and micro-void in the hole edge region that is present when using the standard HER evaluation method. It was found that the intrinsic HER of steel sheet specimens was proportional to the strain rate sensitivity exponent and post uniform elongation.

  9. Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription

    NASA Astrophysics Data System (ADS)

    Schmidt, Moritz; Summerer, Daniel

    2014-02-01

    The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.

  10. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    PubMed Central

    Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che

    2014-01-01

    In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736

  11. Expansion of direction space around the cardinal axes revealed by smooth pursuit eye movements.

    PubMed

    Krukowski, Anton E; Stone, Leland S

    2005-01-20

    It is well established that perceptual direction discrimination shows an oblique effect; thresholds are higher for motion along diagonal directions than for motion along cardinal directions. Here, we compare simultaneous direction judgments and pursuit responses for the same motion stimuli and find that both pursuit and perceptual thresholds show similar anisotropies. The pursuit oblique effect is robust under a wide range of experimental manipulations, being largely resistant to changes in trajectory (radial versus tangential motion), speed (10 versus 25 deg/s), directional uncertainty (blocked versus randomly interleaved), and cognitive state (tracking alone versus concurrent tracking and perceptual tasks). Our data show that the pursuit oblique effect is caused by an effective expansion of direction space surrounding the cardinal directions and the requisite compression of space for other directions. This expansion suggests that the directions around the cardinal directions are in some way overrepresented in the visual cortical pathways that drive both smooth pursuit and perception.

  12. Expansion of direction space around the cardinal axes revealed by smooth pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Krukowski, Anton E.; Stone, Leland S.

    2005-01-01

    It is well established that perceptual direction discrimination shows an oblique effect; thresholds are higher for motion along diagonal directions than for motion along cardinal directions. Here, we compare simultaneous direction judgments and pursuit responses for the same motion stimuli and find that both pursuit and perceptual thresholds show similar anisotropies. The pursuit oblique effect is robust under a wide range of experimental manipulations, being largely resistant to changes in trajectory (radial versus tangential motion), speed (10 versus 25 deg/s), directional uncertainty (blocked versus randomly interleaved), and cognitive state (tracking alone versus concurrent tracking and perceptual tasks). Our data show that the pursuit oblique effect is caused by an effective expansion of direction space surrounding the cardinal directions and the requisite compression of space for other directions. This expansion suggests that the directions around the cardinal directions are in some way overrepresented in the visual cortical pathways that drive both smooth pursuit and perception.

  13. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range.

    PubMed

    Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin

    2017-04-01

    Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO 4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory

    ERIC Educational Resources Information Center

    Reinhart, Paul N.; Souza, Pamela E.

    2016-01-01

    Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…

  15. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    PubMed Central

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899

  16. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    PubMed

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  17. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  18. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  19. Vegetation Demographics in Earth System Models: a review of progress and priorities

    DOE PAGES

    Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.; ...

    2017-09-18

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less

  20. Vegetation Demographics in Earth System Models: a review of progress and priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). Furthermore, these developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. We review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections butmore » also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We also argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication.« less

  1. Plan demographics, participants' saving behavior, and target-date fund investments.

    PubMed

    Park, Youngkyun

    2009-05-01

    the highest success rate at a particular replacement rate target will vary with the assumed starting date of the participant (see Figure 17). Given the highly stylized nature of the simulations in this Issue Brief it is important to note that the results are not intended to provide a single equity glide path solution in relation to plan demographics. Instead, they serve as a framework to be considered when plan sponsors make a selection concerning which target-date funds to include in their plan. IMPORTANCE OF PARTICIPANT CONTRIBUTION RATES: This analysis finds that although target-date funds with different equity glide paths affect the retirement income replacement success rate, participant contribution rates corresponding to different plan demographic characteristics have a stronger impact. AUTO FEATURES OF THE PPA: This Issue Brief provides a stylized study using observed contribution rates as of the 2007 plan year. However, with the passage of the Pension Protection Act of 2006 and its likely impact on plan design in the future (increased utilization of automatic enrollment and automatic contribution escalations), it is likely that contribution rates among the participants may become more homogenous. In such a scenario, it may be more likely that a single equity glide path would meet a wide range of demographic profiles.

  2. A lithium-ion capacitor model working on a wide temperature range

    NASA Astrophysics Data System (ADS)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  3. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  4. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Treesearch

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  5. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota.

    PubMed

    Bagley, Justin C; Sandel, Michael; Travis, Joseph; Lozano-Vilano, María de Lourdes; Johnson, Jerald B

    2013-10-09

    Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction' model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Congruent results from diverse data indicate H. formosa fits the classic Pleistocene

  6. Demographic compensation among populations: what is it, how does it arise and what are its implications?

    PubMed

    Villellas, Jesús; Doak, Daniel F; García, María B; Morris, William F

    2015-09-10

    Most species are exposed to significant environmental gradients across their ranges, but vital rates (survival, growth, reproduction and recruitment) need not respond in the same direction to those gradients. Opposing vital rate trends across environments, a phenomenon that has been loosely called 'demographic compensation', may allow species to occupy larger geographical ranges and alter their responses to climate change. Yet the term has never been precisely defined, nor has its existence or strength been assessed for multiple species. Here, we provide a rigorous definition, and use it to develop a strong test for demographic compensation. By applying the test to data from 26 published, multi-population demographic studies of plants, we show that demographic compensation commonly occurs. We also investigate the mechanisms by which this phenomenon arises by assessing which demographic processes and life stages are most often involved. In addition, we quantify the effect of demographic compensation on variation in population growth rates across environmental gradients, a potentially important determinant of the size of a species' geographical range. Finally, we discuss the implications of demographic compensation for the responses of single populations and species' ranges to temporal environmental variation and to ongoing environmental trends, e.g. due to climate change. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Revisiting demographic processes in cattle with genome-wide population genetic analysis

    PubMed Central

    Orozco-terWengel, Pablo; Barbato, Mario; Nicolazzi, Ezequiel; Biscarini, Filippo; Milanesi, Marco; Davies, Wyn; Williams, Don; Stella, Alessandra; Ajmone-Marsan, Paolo; Bruford, Michael W.

    2015-01-01

    The domestication of the aurochs took place approximately 10,000 years ago giving rise to the two main types of domestic cattle known today, taurine (Bos taurus) domesticated somewhere on or near the Fertile Crescent, and indicine (Bos indicus) domesticated in the Indus Valley. However, although cattle have historically played a prominent role in human society the exact origin of many extant breeds is not well known. Here we used a combination of medium and high-density Illumina Bovine SNP arrays (i.e., ~54,000 and ~770,000 SNPs, respectively), genotyped for over 1300 animals representing 56 cattle breeds, to describe the relationships among major European cattle breeds and detect patterns of admixture among them. Our results suggest modern cross-breeding and ancient hybridisation events have both played an important role, including with animals of indicine origin. We use these data to identify signatures of selection reflecting both domestication (hypothesized to produce a common signature across breeds) and local adaptation (predicted to exhibit a signature of selection unique to a single breed or group of related breeds with a common history) to uncover additional demographic complexity of modern European cattle. PMID:26082794

  8. Changing demographics and state fiscal outlook: the case of sales taxes.

    PubMed

    Mullins, D R; Wallace, S

    1996-04-01

    "Broad-scale demographic changes have implications for state and local finance in terms of the composition of the base of revenue sources and their yields. This article examines the effect of such changes on the potential future yield of consumption-based taxes. The effect of household characteristics and composition on the consumption of selected groups of goods subject to ad valorem retail sales taxes is estimated, generating demographic elasticities of consumption. These elasticities are applied to projected demographic changes in eight states through the year 2000. The results show rather wide variation in expected consumption shifts and potential tax bases across the states, with income growth having the greatest effect...." The geographical focus is on the United States. excerpt

  9. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest

    USGS Publications Warehouse

    Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B.; Germino, Matthew; de Valpine, Perry; Torn, Margaret S.; Mitton, Jeffry B.

    2017-01-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower

  10. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    PubMed

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further

  11. Thermal expansion anomaly regulated by entropy.

    PubMed

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-11-13

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  12. Thermal Expansion Anomaly Regulated by Entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  13. Phylogeography of the sand dune ant Mycetophylax simplex along the Brazilian Atlantic Forest coast: remarkably low mtDNA diversity and shallow population structure.

    PubMed

    Cardoso, Danon Clemes; Cristiano, Maykon Passos; Tavares, Mara Garcia; Schubart, Christoph D; Heinze, Jürgen

    2015-06-10

    During past glacial periods, many species of forest-dwelling animals experienced range contractions. In contrast, species living outside such moist habitats appear to have reacted to Quaternary changes in different ways. The Atlantic Forest represents an excellent opportunity to test phylogeographic hypotheses, because it has a wide range of vegetation types, including unforested habitats covered predominantly by herbaceous and shrubby plants, which are strongly influenced by the harsh environment with strong wind and high insolation. Here, we investigated the distribution of genetic diversity in the endemic sand dune ant Mycetophylax simplex across its known range along the Brazilian coast, with the aim of contributing to the understanding of alternative phylogeographic patterns. We used partial sequences of the mitochondrial gene cytochrome oxidase I and nuclear gene wingless from 108 specimens and 51 specimens, respectively, to assess the phylogeography and demographic history of this species. To achieve this we performed different methods of phylogenetic and standard population genetic analyses. The observed genetic diversity distribution and historical demographic profile suggests that the history of M. simplex does not match the scenario suggested for other Atlantic Forest species. Instead, it underwent demographic changes and range expansions during glacial periods. Our results show that M. simplex presents a shallow phylogeographic structure with isolation by distance among the studied populations, living in an almost panmictic population. Our coalescence approach indicates that the species maintained a stable population size until roughly 75,000 years ago, when it underwent a gradual demographic expansion that were coincident with the low sea-level during the Quaternary. Such demographic events were likely triggered by the expansion of the shorelines during the lowering of the sea level. Our data suggest that over evolutionary time M. simplex did not

  14. Modification of YAPE keypoint detection algorithm for wide local contrast range images

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A.; Nikolaev, D.; Konovalenko, I.

    2018-04-01

    Keypoint detection is an important tool of image analysis, and among many contemporary keypoint detection algorithms YAPE is known for its computational performance, allowing its use in mobile and embedded systems. One of its shortcomings is high sensitivity to local contrast which leads to high detection density in high-contrast areas while missing detections in low-contrast ones. In this work we study the contrast sensitivity of YAPE and propose a modification which compensates for this property on images with wide local contrast range (Yet Another Contrast-Invariant Point Extractor, YACIPE). As a model example, we considered the traffic sign recognition problem, where some signs are well-lighted, whereas others are in shadows and thus have low contrast. We show that the number of traffic signs on the image of which has not been detected any keypoints is 40% less for the proposed modification compared to the original algorithm.

  15. Study of Saturn Electrostatic Discharges in a Wide Range of Timec SCALES

    NASA Astrophysics Data System (ADS)

    Mylostna, K.; Zakharenko, V.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griemeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Nikolaenko, V.; Shevchenko, V.

    Saturn Electrostatic discharges (SED) are sporadic broadband impulsive radio bursts associated with lightning in Saturnian atmosphere. After 25 years of space investigations in 2006 the first successful observations of SED on the UTR-2 radio telescope were carried out [1]. Since 2007 a long-term program of ED search and study in the Solar system has started. As a part of this program the unique observations with high time resolution were taken in 2010. New possibilities of UTR-2 radio telescope allowed to provide a long-period observations and study with high temporal resolution. This article presents the results of SED study in a wide range of time scales: from seconds to microseconds. For the first time there were obtained a low frequency spectrum of SED. We calculated flux densities of individual bursts at the maximum achievable time resolution. Flux densities of most intensive bursts reach 4200 Jy.

  16. Potential (mis)match?: Marriage Markets amidst Socio-Demographic Change in India, 2005–2050

    PubMed Central

    Kashyap, Ridhi; Esteve, Albert; García-Román, Joan

    2015-01-01

    We explore the impact of socio-demographic change on marriage patterns in India by examining the hypothetical consequences of applying three sets of marriage pairing propensities – contemporary patterns by age, by age and education, and changing propensities that allow for greater educational homogamy and reduced educational asymmetries – to future population projections. Future population prospects for India indicate three trends that will impact marriage patterns: i) female-deficit in sex ratios at birth; ii) declining birth cohort size; iii) female educational expansion. Existing literature posits declining marriage rates for men arising from skewed sex ratios at birth (SRB) in India’s population. In addition to skewed SRBs, India’s population will experience female educational expansion in the coming decades. Female educational expansion and its impact on marriage patterns must be jointly considered with demographic changes, given educational differentials and asymmetries in union formation that exist in India, as across much of the world. We systematize contemporary pairing propensities using data from the 2005–2006 Indian National Family Health Survey and the 2004 Socio-Economic Survey and apply these and the third set of changing propensities to IIASA/VID multi-state population projections by educational attainment using an iterative longitudinal projection procedure. If today’s age patterns of marriage are viewed against age-sex population composition until 2050, men experience declining marriage prevalence. However, when education is included, women, particularly those with higher education experience a more salient rise in non-marriage. Significant changes in pairing patterns towards greater levels of educational homogamy and gender symmetry can counteract a marked rise in non-marriage. PMID:25604846

  17. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  18. A wide-range programmable frequency synthesizer based on a finite state machine filter

    NASA Astrophysics Data System (ADS)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  19. Young people with features of gender dysphoria: Demographics and associated difficulties.

    PubMed

    Holt, Vicky; Skagerberg, Elin; Dunsford, Michael

    2016-01-01

    This article presents the findings from a cross-sectional study on demographic variables and associated difficulties in 218 children and adolescents (Mean age = 14 years, SD = 3.08, range = 5-17 years), with features of gender dysphoria, referred to the Gender Identity Development Service (GIDS) in London during a 1-year period (1 January 2012-31 December 2012). Data were extracted from patient files (i.e. referral letters, clinical notes and clinician reports). The most commonly reported associated difficulties were bullying, low mood/depression and self-harming. There was a gender difference on some of the associated difficulties with reports of self-harm being significantly more common in the natal females and autism spectrum conditions being significantly more common in the natal males. The findings also showed that many of the difficulties increased with age. Findings regarding demographic variables, gender dysphoria, sexual orientation and family features are reported, and limitations and implications of the cross-sectional study are discussed. In conclusion, young people with gender dysphoria often present with a wide range of associated difficulties which clinicians need to take into account, and our article highlights the often complex presentations of these young people. © The Author(s) 2014.

  20. Population dynamics can be more important than physiological limits for determining range shifts under climate change.

    PubMed

    Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W

    2013-10-01

    Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.

  1. Characterization of motor units in behaving adult mice shows a wide primary range

    PubMed Central

    Ritter, Laura K.; Tresch, Matthew C.; Heckman, C. J.; Manuel, Marin

    2014-01-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10–60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. PMID:24805075

  2. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    NASA Astrophysics Data System (ADS)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.

    2017-02-01

    Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  3. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  4. Wide range of mercury contamination in chicks of southern ocean seabirds.

    PubMed

    Blévin, Pierre; Carravieri, Alice; Jaeger, Audrey; Chastel, Olivier; Bustamante, Paco; Cherel, Yves

    2013-01-01

    Using top predators as sentinels of the marine environment, Hg contamination was investigated within the large subantarctic seabird community of Kerguelen Islands, a remote area from the poorly known Southern Indian Ocean. Chicks of 21 sympatric seabirds presented a wide range of Hg concentrations, with the highest contaminated species containing ~102 times more feather Hg than the less contaminated species. Hence, Kerguelen seabirds encompass the whole range of chick feather Hg values that were previously collected worldwide in poorly industrialized localities. Using stable isotopes, the effects of foraging habitats (reflected by δ(13)C) and trophic positions (reflected by δ(15)N) on Hg concentrations were investigated. Species-related Hg variations were highly and positively linked to feather δ(15)N values, thus highlighting the occurrence of efficient Hg biomagnification processes within subantarctic marine trophic webs. By contrast, Hg contamination overall correlated poorly with feeding habitats, because of the pooling of species foraging within different isotopic gradients corresponding to distinct seabird habitats (benthic, pelagic, neritic and oceanic). However, when focusing on oceanic seabirds, Hg concentration was related to feather δ(13)C values, with species feeding in colder waters (lower δ(13)C values) south of Kerguelen Islands being less prone to be contaminated than species feeding in northern warmer waters (higher δ(13)C values). Within the context of continuous increase in global Hg emissions, Kerguelen Islands that are located far away from anthropogenic sources can be considered as an ideal study site to monitor the temporal trend of global Hg contamination. The present work helps selecting some seabird species as sentinels of environmental pollution according to their high Hg concentrations and their contrasted foraging ecology.

  5. Construct Validity of the Wechsler Abbreviated Scale of Intelligence and Wide Range Intelligence Test: Convergent and Structural Validity

    ERIC Educational Resources Information Center

    Canivez, Gary L.; Konold, Timothy R.; Collins, Jason M.; Wilson, Greg

    2009-01-01

    The Wechsler Abbreviated Scale of Intelligence (WASI; Psychological Corporation, 1999) and the Wide Range Intelligence Test (WRIT; Glutting, Adams, & Sheslow, 2000) are two well-normed brief measures of general intelligence with subtests purportedly assessing verbal-crystallized abilities and nonverbal-fluid-visual abilities. With a sample of…

  6. Quantifying the Spatial Ecology of Wide-Ranging Marine Species in the Gulf of California: Implications for Marine Conservation Planning

    PubMed Central

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R.

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks. PMID:22163013

  7. Quantifying the spatial ecology of wide-ranging marine species in the Gulf of California: implications for marine conservation planning.

    PubMed

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.

  8. Performance Demonstration of Mcmb-LiNiCoO2 Cells Containing Electrolytes Designed for Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.

    2009-01-01

    With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.

  9. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    NASA Astrophysics Data System (ADS)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  10. An effective iodide formulation for killing Bacillus and Geobacillus spores over a wide temperature range.

    PubMed

    Kida, N; Mochizuki, Y; Taguchi, F

    2004-01-01

    To develop a sporicidal reagent which shows potent activity against bacterial spores not only at ambient temperatures but also at low temperatures. Suspension tests on spores of Bacillus and Geobacillus were conducted with the reagent based on a previously reported agent (N. Kida, Y. Mochizuki and F. Taguchi, Microbiology and Immunology 2003; 47: 279-283). The modified reagent (tentatively designated as the KMT reagent) was composed of 50 mmol l(-1) EDTA-2Na, 50 mmol l(-1) ferric chloride hexahydrate (FeCl(3).6H(2)O), 50 mmol l(-1) potassium iodide (KI) and 50% ethanol in 0.85% NaCl solution at pH 0.3. The KMT reagent showed significant sporicidal activity against three species of Bacillus and Geobacillus spores over a wide range of temperature. The KMT reagent had many practical advantages, i.e. activity was much less affected by organic substances than was sodium hypochlorite, it did not generate any harmful gas and it was stable for a long period at ambient temperatures. The mechanism(s) of sporicidal activity of the KMT reagent was considered to be based on active iodine species penetrating the spores with enhanced permeability of the spore cortex by a synergistic effect of acid, ethanol and generated active oxygen. The data suggest that the KMT reagent shows potent sporicidal activity over a wide range temperatures and possesses many advantages for practical applications. The results indicate development of a highly applicable sporicidal reagent against Bacillus and Geobacillus spores.

  11. Surgically assisted rapid maxillary expansion in adults.

    PubMed

    Pogrel, M A; Kaban, L B; Vargervik, K; Baumrind, S

    1992-01-01

    Twelve adults with maxillary width discrepancy of greater than 5 mm were treated by surgically assisted rapid maxillary expansion. The procedure consisted of bilateral zygomatic buttress and midpalatal osteotomies combined with the use of a tooth-borne orthopedic device postoperatively. Mean palatal expansion of 7.5 mm (range of 6 to 13 mm), measured in the first molar region, was achieved within 3 weeks in all patients. Expansion remained stable during the 12-month study period, with a mean relapse for the entire group of 0.88 +/- 0.48 mm. Morbidity was limited to mild postoperative discomfort. The results of this preliminary study indicated that surgically assisted rapid maxillary expansion is a safe, simple, and reliable procedure for achieving a permanent increase in skeletal maxillary width in adults. Further study is necessary to document the three-dimensional movements of the maxillary segments and long-term stability of the skeletal and dental changes.

  12. Polymer Deposition from a Quasi-Vapor Phase as a New Route to Access a Wide Temperature Range for Crystallization

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol; Arnold, Craig; Priestley, Rodney

    Polymer crystallization is strongly governed by kinetics where crystallization temperature (Tc) plays an important role in determining materials properties. Due to the high entropic barrier required for reorganization, the long-chain molecules typically form folded-chain crystals, whose thickness and thermal stability decrease as Tc is lowered. Interesting questions remain regarding crystallization in the deeply supercooled regime. This is partially due to the difficulty in accessing the low Tc range without nucleation. For a strong crystal-former like polyethylene (PE), cooling from a melt or solution always confronts the onset of nucleation at a high Tc followed by rapid crystal growth. Here, we introduce an alternative approach to grow polymer crystals via Matrix Assisted Pulsed Laser Evaporation (MAPLE). This methodology achieves the crystallization of polymers from a quasi-vapor phase at a controlled temperature, allowing for the study of the empirical relationship between Tc and crystal structure over a wide range of Tc. With PE as a model polymer, we investigated the morphological and thermal properties of crystals grown over a wide temperature range down to 120 °C below bulk crystallization point.

  13. Demographics and practices of semi-intensive free-range farming systems in Australia with an outdoor stocking density of ≤1500 hens/hectare

    PubMed Central

    Ruhnke, Isabelle; de Koning, Carolyn; Drake, Kelly; Skerman, Alan G.; Hinch, Geoff N.; Glatz, Philip C.

    2017-01-01

    Baseline information on demographics and practices on semi-intensive free-range egg farms with an outdoor stocking density of ≤1500 hens/hectare in Australia is presented. Free-range egg production is changing the structure of the egg industry in Australia and a broad variety and tiers of free-range systems have emerged due to lack of concrete legislative standards on outdoor stocking densities in the past. Information was extracted from a pre-existing online free-range poultry survey dataset, consisting of a total of 79 questions related to nutrition, pasture management, welfare and health, animal housing, environmental impact and economics. Forty-one free-range egg farms, with an outdoor stocking density of ≤1500 hens/hectare, were identified in the dataset from all major Australian states. Two types of semi-intensive free-range housing systems were documented: mobile (modified caravan/trailer) housing (56%), and fixed sheds (44%). Seventy-two percent of respondents reported >75% of the hens in the flock used the outdoor range. All respondents reported ingestion of range components by hens in the form of vegetation, insects, stones and grit. Up to 10% mortality was reported by 40% respondents with predation (34%), cannibalism (29%), heat stress (24%) and grass impaction (19.5%) as major causes. Biosecurity on farms was sub-optimal with 8 of the 10 actions implemented by <50% respondents. Customer demand, consumer sentiment and welfare were the major factors for farmers moving into free-range egg production. This study resulted in identification of current practices and key challenges on semi-intensive free-range egg farms. Applied research and communication of results to farmers is highly recommended to ensure optimum health and welfare of free-range laying hens and sustained egg production. PMID:29065169

  14. Demographics and practices of semi-intensive free-range farming systems in Australia with an outdoor stocking density of ≤1500 hens/hectare.

    PubMed

    Singh, Mini; Ruhnke, Isabelle; de Koning, Carolyn; Drake, Kelly; Skerman, Alan G; Hinch, Geoff N; Glatz, Philip C

    2017-01-01

    Baseline information on demographics and practices on semi-intensive free-range egg farms with an outdoor stocking density of ≤1500 hens/hectare in Australia is presented. Free-range egg production is changing the structure of the egg industry in Australia and a broad variety and tiers of free-range systems have emerged due to lack of concrete legislative standards on outdoor stocking densities in the past. Information was extracted from a pre-existing online free-range poultry survey dataset, consisting of a total of 79 questions related to nutrition, pasture management, welfare and health, animal housing, environmental impact and economics. Forty-one free-range egg farms, with an outdoor stocking density of ≤1500 hens/hectare, were identified in the dataset from all major Australian states. Two types of semi-intensive free-range housing systems were documented: mobile (modified caravan/trailer) housing (56%), and fixed sheds (44%). Seventy-two percent of respondents reported >75% of the hens in the flock used the outdoor range. All respondents reported ingestion of range components by hens in the form of vegetation, insects, stones and grit. Up to 10% mortality was reported by 40% respondents with predation (34%), cannibalism (29%), heat stress (24%) and grass impaction (19.5%) as major causes. Biosecurity on farms was sub-optimal with 8 of the 10 actions implemented by <50% respondents. Customer demand, consumer sentiment and welfare were the major factors for farmers moving into free-range egg production. This study resulted in identification of current practices and key challenges on semi-intensive free-range egg farms. Applied research and communication of results to farmers is highly recommended to ensure optimum health and welfare of free-range laying hens and sustained egg production.

  15. Past and future demographic dynamics of alpine species: limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada.

    PubMed

    Blanco-Pastor, J L; Fernández-Mazuecos, M; Vargas, P

    2013-08-01

    Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine-Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of L. glacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming. © 2013 John Wiley & Sons Ltd.

  16. Combined climate- and prey-mediated range expansion of Humboldt squid (Dosidicus gigas), a large marine predator in the California Current System.

    PubMed

    Stewart, Julia S; Hazen, Elliott L; Bograd, Steven J; Byrnes, Jarrett E K; Foley, David G; Gilly, William F; Robison, Bruce H; Field, John C

    2014-06-01

    Climate-driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator-prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long-term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean. © 2014 John Wiley & Sons Ltd.

  17. The Demographic Crisis and Global Migration - Selected Issues

    NASA Astrophysics Data System (ADS)

    Frątczak, Ewa Zofia

    2016-01-01

    Currently the world is undergoing a serious demographic shift, characterised by slowing population growth in developed countries. However, the population in certain less-developed regions of the world is still increasing. According to UN data, as of 2015, (World...2015), 244 million people (or 3.3% of the global population) lived outside their country of birth. While most of these migrants travel abroad looking for better economic and social conditions, there are also those forced to move by political crises, revolutions and war. Such migration is being experienced currently in Europe, a continent which is thus going through both a demographic crisis related to the low fertility rate and population ageing, and a migration crisis. Global migrations link up inseparably with demographic transformation processes taking place globally and resulting in the changing tempo of population growth. Attracting and discouraging migration factors are changing at the same time, as is the scale and range of global migration, and with these also the global consequences. The focus of work addressed in this paper is on global population, the demographic transformation and the role of global migrations, as well as the range and scale of international migration, and selected aspects of global migrations including participation in the global labour market, the scale of monetary transfers (remittances) and the place of global migration in the UN 2030 Agenda for Sustainable Development (Transforming...2015) and the Europe of two crises (Domeny 2016).

  18. [Demographic influence on economic stability: the United States experience].

    PubMed

    Easterlin, R A; Wachter, M; Wachter, S M

    1978-01-01

    Up to the 1930s the international migration rate into the U.S. was very high, while birth and mortality rates had little variation; migration was, therefore, the principal responsible for population growth rate. Migration cycles were induced by economic conditions, and had, in their turn, important effects on economic feedback. The growing of urban areas, i.e., accelerated demand for new homes and urban services in general, prolonged the economic expansion. After World War 2 a new period opened in the relation between demographic and economic cycles. At the end of the 1950s the U.S. experienced a considerable growth in the number of people between 15-29, due to corresponding birth rate increase, which initiated around 1940. This marked difference in the relative number of young adults, or manpower, resulted in an economic situation relatively unfavorable. For the future a decrease in the relative number of young adults is expected, reflecting the decrease in birth rate experienced around 1960. If the U.S. should experience a new "baby boom" in the next few decades, radical changes in the demographic composition of manpower will have to be expected.

  19. Optimized equation of the state of the square-well fluid of variable range based on a fourth-order free-energy expansion.

    PubMed

    Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol

    2009-01-14

    The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.

  20. DNA barcoding as a tool for elucidating species delineation in wide-ranging species as illustrated by owls (Tytonidae and Strigidae).

    PubMed

    Nijman, Vincent; Aliabadian, Mansour

    2013-11-01

    The mitochondrial cytochrome c-oxidase subunit I (cox1) can serve as a fast and accurate marker for the identification of animal species, and for the discovery of new species across the tree of life. Distinguishing species using this universal molecular marker, a technique known as DNA barcoding, relies on the identifying the gap between intra- and interspecific divergence. One of the difficulties could be wide-ranging, cosmopolitan species that show large amounts of morphological variation. The barn owl Tyto alba is a case in point. It occurs worldwide and varies morphologically, leading to the recognition of many subspecies or, more recently, species. We analysed data from the cox1 gene for 31 individuals of seven subspecies, and compared this with 214 sequences from 29 other owl species. Phylogenetic analysis of the T. alba samples gives very strong support for an Old World alba-clade (three subspecies) and a New World furcata-clade (four subspecies) that are genetically equidistant. The amount of intraspecific variation within each of these clades ranges from 0.66-0.99%, but variation among these clades ranges from 5.33-6.20%. Combined these data suggest that barn owl of the Old World is indeed best considered a separate species different from that of the New World. For combined dataset, sample size of owl species (n between 1 and 21 sequences) increased with geographic range size but we did not find significant relationships between interspecific divergence and sample size or between interspecific divergence and geographic range. For 21/24 species of owls with sample sizes of n ≥4 the maximum interspecific divergences was ≤ 3.00%. However, similar to those found in barn owls, the largest amount of divergence (3.23-4.09%) was present in two other wide-ranging species (Strix nebulosa and Aegolius funereus) raising the possibility of multiple species in other wide-ranging owls as well.