Sample records for rapamycin down-regulates ldl-receptor

  1. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    PubMed

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  2. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice

    PubMed Central

    Ai, Ding; Chen, Chiyuan; Han, Seongah; Ganda, Anjali; Murphy, Andrew J.; Haeusler, Rebecca; Thorp, Edward; Accili, Domenico; Horton, Jay D.; Tall, Alan R.

    2012-01-01

    Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9–/– mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy. PMID:22426206

  3. Leucine Stimulates Insulin Secretion via Down-regulation of Surface Expression of Adrenergic α2A Receptor through the mTOR (Mammalian Target of Rapamycin) Pathway

    PubMed Central

    Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei

    2012-01-01

    The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144

  4. The LDL receptor.

    PubMed

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  5. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels.

    PubMed Central

    Horton, J D; Cuthbert, J A; Spady, D K

    1993-01-01

    The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814

  6. Rapamycin down-regulates KCC2 expression and increases seizure susceptibility to convulsants in immature rats

    PubMed Central

    Huang, Xiaoxing; McMahon, John; Yang, Jun; Shin, Damian; Huang, Yunfei

    2012-01-01

    Summary Seizure susceptibility to neurological insults, including chemical convulsants, is age-dependent and most likely reflective of overall differences in brain excitability. The molecular and cellular mechanisms underlying development-dependent seizure susceptibility remain to be fully understood. Because the mTOR pathway regulates neurite outgrowth, synaptic plasticity and cell survival, thereby influencing brain development, we tested if exposure of the immature brain to the mTOR inhibitor rapamycin changes seizure susceptibility to neurological insults. We found that inhibition of mTOR by rapamycin in immature rats (3 to 4 weeks old) increases the severity of seizures induced by pilocarpine, including lengthening the total seizure duration and reducing the latency to the onset of seizures. Rapamycin also reduces the minimal dose of pentylenetetrazol (PTZ) necessary to induce clonic seizures. However, in mature rats, rapamycin does not significantly change the seizure sensitivity to pilocarpine and PTZ. Likewise, kainate sensitivity was not significantly affected by rapamycin treatment in either mature or immature rats. Additionally, rapamycin treatment down-regulates the expression of potassium-chloride cotransporter 2 (KCC2) in the thalamus and to a lesser degree in the hippocampus. Pharmacological inhibition of thalamic mTOR or KCC2 increases susceptibility to pilocarpine-induced seizure in immature rats. Thus, our study suggests a role for the mTOR pathway in age-dependent seizure susceptibility. PMID:22613737

  7. Rapamycin regulates the proliferation of Huh7, a hepatocellular carcinoma cell line, by up-regulating p53 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sora; Jeon, Ji-Sook; Ahn, Curie

    Rapamycin, a specific inhibitor of mTOR used extensively as an immunosuppressant, has been expanded recently to cancer therapy, because the mTOR signal is known to be up-regulated in various cancer cells including hepatocellular carcinoma (HCC) cells. In spite of extensive efforts to employ mTOR inhibitors as anti-HCC therapy, they have not yet been approved by the FDA. Because of the heterogeneity and complexity of molecular signaling in HCC, suitable biomarkers should be identified or discovered to improve clinical efficacy of mTOR-specific inhibitors to HCC cells. In this study, the effect of rapamycin was investigated on two different HCC cell lines,more » Huh7 cells and HepG2 cells. Rapamycin was found to inhibit the proliferation of Huh7 cells but not of HepG2 cells. Moreover, it was found that rapamycin can up-regulate p53 at the protein level, but not affect its transcript. To understand the critical role of p53 in the rapamycin effect, knock-down experiments were performed using small-interfering RNAs (siRNAs). The anti-proliferative effect of rapamycin on Huh7 cells clearly disappeared after blocking p53 production with siRNA, which indicates that p53 is a critical factor in the anti-proliferative effect of rapamycin in HCC cells. The over-expression system of p53 was also employed to mimic the effect of rapamycin and found that cell proliferation was clearly down-regulated by p53 over-expression. Finally, we found that the extracellular signal-regulated kinase 1/2 (ERK1/2) signal was regulated by p53 whose expression was induced by rapamycin. Overall, this study demonstrates that rapamycin inhibited the proliferation of Huh7 cells by up-regulating the expression of p53 and down-regulating the ERK1/2 signal, indicating that p53 is a useful biomarker for anti-cancer therapy using the specific inhibitor of mTOR signal, rapamycin, against hepatocellular carcinoma cells. - Highlights: • Rapamycin inhibits the proliferation of hepatocellular carcinoma

  8. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to controlmore » levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.« less

  9. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    PubMed

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  10. Regulation of the LDL receptor gene expression by hormones.

    PubMed

    Streicher, R; Kotzka, J; Müller-Wieland, D; Krone, W

    1998-01-01

    Promoter activity of the LDL receptor gene is stimulated by insulin and estradiol and mediated by SRE-1, which acts as a hormone sensitive cis-elemente. Using the antisense technique we reveal that SREBP-1 is selectively involved in the signal transduction pathway of insulin and IGF-I.

  11. FH Afrikaner-3 LDL receptor mutation results in defective LDL receptors and causes a mild form of familial hypercholesterolemia.

    PubMed

    Graadt van Roggen, J F; van der Westhuyzen, D R; Coetzee, G A; Marais, A D; Steyn, K; Langenhoven, E; Kotze, M J

    1995-06-01

    Three founder-related gene mutations (FH Afrikaner-1, -2, and -3) that affect the LDL receptor are responsible for 90% of the familial hypercholesterolemia (FH) in South African Afrikaners. Patients heterozygous for the FH Afrikaner-1 (FH1) mutation, which results in receptors having approximately 20% of normal receptor activity, have significantly lower plasma cholesterol levels and milder clinical symptoms than heterozygotes with the FH Afrikaner-2 mutation, which completely abolishes LDL receptor activity. In this study we re-created the FH3 mutation (Asp154-->Asn) in exon 4 by site-directed mutagenesis and analyzed the expression of the mutant receptors in Chinese hamster ovary cells. The mutation resulted in the formation of LDL receptors that are markedly defective in their ability to bind LDL, whereas binding of apoE-containing beta-VLDL is less affected. The mutant receptors are poorly expressed on the cell surface as a result of significant degradation of receptor precursors. The plasma cholesterol levels of 31 FH3 heterozygotes were similar to FH1 heterozygotes but significantly lower than FH2 heterozygotes. The FH1 and FH3 heterozygotes also tended to be less severely affected clinically (by coronary heart disease and xanthomata) than FH2 patients. This study demonstrates that mutational heterogeneity in the LDL receptor gene influences the phenotypic expression of heterozygous FH and that severity of expression correlates with the activity of the LDL receptor measured in vitro. The results further indicate that knowledge of the specific mutation underlying FH in heterozygotes is valuable in determining the potential risk of premature atherosclerosis and should influence the clinical management of FH patients.

  12. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3' untranslated region.

    PubMed

    Wilson, G M; Vasa, M Z; Deeley, R G

    1998-05-01

    The mRNA encoding the human low density lipoprotein (LDL) receptor is transiently stabilized after phorbol ester treatment of HepG2 cells and has been shown to associate with components of the cytoskeleton in this cell line (G. M. Wilson, E. A. Roberts, and R. G. Deeley, J. Lipid Res. 1997. 38: 437-446). Using an episomal expression system, fragments of the 3' untranslated region (3'UTR) of LDL receptor mRNA were transcribed in fusion with the coding region of beta-globin mRNA in HepG2 cells. Analyses of the decay kinetics of these beta-globin-LDL receptor fusion mRNA deletion mutants showed that sequences in the proximal 3'UTR of LDL receptor mRNA including several AU-rich elements (AREs) were sufficient to confer short constitutive mRNA half-life in the heterologous system. Stabilization of LDL receptor mRNA in the presence of PMA required sequences in the distal 3'UTR, at or near three Alu-like repetitive elements. Furthermore, the 3'UTR of LDL receptor mRNA conferred cytoskeletal association on the otherwise unassociated beta-globin mRNA, by a mechanism involving at least two distinct RNA elements. Comparisons of decay kinetics and subcellular localization of endogenous LDL receptor mRNA and beta-globin-LDL receptor mRNA fusions in HepG2 cells have demonstrated that several cis-acting elements in the receptor 3'UTR contribute to post-transcriptional regulation of receptor expression, and provide further support for involvement of the cytoskeleton in the regulation of LDL receptor mRNA turnover.

  13. The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization.

    PubMed

    Fumagalli, Marta; Bonfanti, Elisabetta; Daniele, Simona; Zappelli, Elisa; Lecca, Davide; Martini, Claudia; Trincavelli, Maria L; Abbracchio, Maria P

    2015-12-01

    During oligodendrocyte precursor cell (OPC) differentiation, defective control of the membrane receptor GPR17 has been suggested to block cell maturation and impair remyelination under demyelinating conditions. After the immature oligodendrocyte stage, to enable cells to complete maturation, GPR17 is physiologically down-regulated via phosphorylation/desensitization by G protein-coupled receptor kinases (GRKs); conversely, GRKs are regulated by the "mammalian target of rapamycin" mTOR. However, how GRKs and mTOR are connected to each other in modulating GPR17 function and oligodendrogenesis has remained elusive. Here we show, for the first time, a role for Murine double minute 2 (Mdm2), a ligase previously involved in ubiquitination/degradation of the onco-suppressor p53 protein. In maturing OPCs, both rapamycin and Nutlin-3, a small molecule inhibitor of Mdm2-p53 interactions, increased GRK2 sequestration by Mdm2, leading to impaired GPR17 down-regulation and OPC maturation block. Thus, Mdm2 intertwines mTOR with GRK2 in regulating GPR17 and oligodendrogenesis and represents a novel actor in myelination. © 2015 Wiley Periodicals, Inc.

  14. Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.

    PubMed

    Kovanen, P T

    1987-02-01

    The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.

  15. Role of contact inhibition in the regulation of receptor-mediated uptake of low density lipoprotein in cultured vascular endothelial cells.

    PubMed Central

    Vlodavsky, I; Fielding, P E; Fielding, C J; Gospodarowicz, D

    1978-01-01

    Bovine vascular endothelial cells during logarithmic growth bind, internalize, and degrade low density lipoprotein (LDL) via a receptor-mediated pathway. However, contact-inhibited (confluent) monolayers bind but do not internalize LDL. This is in contrast to aortic smooth muscle cells or endothelial cells that have lost the property of contact inhibition. These cells internalize and degrade LDL at both high and low cell densities. The LDL receptors of smooth muscle and sparse endothelial cells down-regulate in response to LDL. In contrast, normal endothelial cells at confluency show little response. When contact inhibition in endothelial monolayers was locally released by wounding, and LDL was present, only cells released from contact inhibition accumulated LDL cholesterol. In smooth muscle cells under the same conditions, the entire culture interiorized lipid. It thus appears that in endothelial cells, unlike smooth muscle cells, contact inhibition is the major factor regulating cellular uptake of LDL cholesteryl ester. Reversal of contact inhibition by wounding provides a mechanism by which the endothelium could be the primary initiator of the atherosclerotic plaque. Images PMID:203937

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Laura J.; Brown, Andrew J.

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffectedmore » by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2.« less

  17. Rapamycin reduced pulmonary vascular remodelling by inhibiting cell proliferation via Akt/mTOR signalling pathway down-regulation in the carotid artery-jugular vein shunt pulmonary hypertension rat model.

    PubMed

    Ma, Xiaofan; Yao, Jianping; Yue, Yuan; Du, Shangming; Qin, Han; Hou, Jian; Wu, Zhongkai

    2017-08-01

    Pulmonary arterial hypertension (PAH) is a common complication of congenital heart disease. However, effective treatments for PAH are rare. This study aimed to investigate the inhibitory effects of rapamycin on PAH in the carotid artery-jugular vein (CA-JV) shunt PAH rat model as well as the mechanism underlying these effects. Twenty-four Sprague-Dawley rats were randomized into the following 3 groups: a control group, a CA-JV shunt group and a treatment group. Rapamycin (2 mg/kg/day) was administered to the treatment group, and placebo was administered to the CA-JV shunt group. Haemodynamic evaluations, pulmonary tissue samplings for morphometry and immunofluorescence and western blot analyses were performed to evaluate the effects of rapamycin on PAH. Rapamycin attenuated the increase of right ventricular systolic pressure (RVSP) and the right ventricular (RV) hypertrophy (RVSP: CA-JV vs CA-JV + rapamycin, P = 0.017; RV: CA-JV vs CA-JV + rapamycin, P = 0.022), as well as the intrapulmonary vessel thickening (thickness index: CA-JV vs CA-JV + rapamycin, P = 0.028; area index: CA-JV vs CA-JV + rapamycin, P = 0.014), induced by overcirculation of the pulmonary vasculature in the CA-JV shunt-induced PAH rat model. Rapamycin decreased the expression level of the indicated cell proliferation marker (α-smooth muscle actin) in the lung vessel and mechanistic target of rapamycin (mTOR) pathway components (p-mTOR: CA-JV vs CA-JV + rapamycin, P = 0.004; p-Raptor: CA-JV vs CA-JV + rapamycin, P = 0.000; p-S6K1: CA-JV vs CA-JV + rapamycin, P = 0.000; p-Akt: CA-JV vs CA-JV + rapamycin, P = 0.001; p-Rheb: CA-JV vs CA-JV + rapamycin, P = 0.000) in pulmonary tissue. Rapamycin reduced pulmonary vascular remodelling by inhibiting cell proliferation via Akt/mTOR signalling pathway down-regulation in the CA-JV shunt-induced PAH model in rats. Thus, rapamycin may be a novel candidate drug for the treatment of

  18. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2007-10-01

    PCa (9). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (10, 11), ribozyme treatments (12...Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or...Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol

  19. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome.

    PubMed

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F; Gonias, Steven L

    2010-12-03

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.

  20. CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes.

    PubMed

    Schwartzkopff, Franziska; Petersen, Frank; Grimm, Tobias Alexander; Brandt, Ernst

    2012-02-01

    During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.

  1. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters

    PubMed Central

    Wu, Minhao; Dong, Bin; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2015-01-01

    Background PCSK9 has emerged as a key regulator of serum LDL-C metabolism by promoting the degradation of hepatic LDL receptor (LDLR). In this study, we investigated the effect of fasting on serum PCSK9, LDL-C, and hepatic LDLR expression in hamsters and further delineated the molecular pathways involved in fasting-induced repression of PCSK9 transcription. Results Fasting had insignificant effects on serum total cholesterol and HDL-C levels, but reduced LDL-C, triglyceride and insulin levels. The decrease in serum LDL-C was accompanied by marked reductions of hepatic PCSK9 mRNA and serum PCSK9 protein levels with concomitant increases of hepatic LDLR protein amounts. Fasting produced a profound impact on SREBP1 expression and its transactivating activity, while having modest effects on mRNA expressions of SREBP2 target genes in hamster liver. Although PPARα mRNA levels in hamster liver were elevated by fasting, ligand-induced activation of PPARα with WY14643 compound in hamster primary hepatocytes did not affect PCSK9 mRNA or protein expressions. Further investigation on HNF1α, a critical transactivator of PCSK9, revealed that fasting did not alter its mRNA expression, however, the protein abundance of HNF1α in nuclear extracts of hamster liver was markedly reduced by prolonged fasting. Conclusion Fasting lowered serum LDL-C in hamsters by increasing hepatic LDLR protein amounts via reductions of serum PCSK9 levels. Importantly, our results suggest that attenuation of SREBP1 transactivating activity owing to decreased insulin levels during fasting is primarily responsible for compromised PCSK9 gene transcription, which was further suppressed after prolonged fasting by a reduction of nuclear HNF1α protein abundance. PMID:22954675

  2. MicroRNAs May Mediate the Down-Regulation of Neurokinin-1 Receptor in Chronic Bladder Pain Syndrome

    PubMed Central

    Sanchez Freire, Veronica; Burkhard, Fiona C.; Kessler, Thomas M.; Kuhn, Annette; Draeger, Annette; Monastyrskaya, Katia

    2010-01-01

    Bladder pain syndrome (BPS) is a clinical syndrome of pelvic pain and urinary urgency-frequency in the absence of a specific cause. Investigating the expression levels of genes involved in the regulation of epithelial permeability, bladder contractility, and inflammation, we show that neurokinin (NK)1 and NK2 tachykinin receptors were significantly down-regulated in BPS patients. Tight junction proteins zona occludens-1, junctional adherins molecule -1, and occludin were similarly down-regulated, implicating increased urothelial permeability, whereas bradykinin B1 receptor, cannabinoid receptor CB1 and muscarinic receptors M3-M5 were up-regulated. Using cell-based models, we show that prolonged exposure of NK1R to substance P caused a decrease of NK1R mRNA levels and a concomitant increase of regulatory micro(mi)RNAs miR-449b and miR-500. In the biopsies of BPS patients, the same miRNAs were significantly increased, suggesting that BPS promotes an attenuation of NK1R synthesis via activation of specific miRNAs. We confirm this hypothesis by identifying 31 differentially expressed miRNAs in BPS patients and demonstrate a direct correlation between miR-449b, miR-500, miR-328, and miR-320 and a down-regulation of NK1R mRNA and/or protein levels. Our findings further the knowledge of the molecular mechanisms of BPS, and have relevance for other clinical conditions involving the NK1 receptor. PMID:20008142

  3. Down-regulation of Cyclooxygenase-2 by the Carboxyl Tail of the Angiotensin II Type 1 Receptor*

    PubMed Central

    Sood, Rapita; Minzel, Waleed; Rimon, Gilad; Tal, Sharon; Barki-Harrington, Liza

    2014-01-01

    The enzyme cyclooxygenase-2 (COX-2) plays an important role in the kidney by up-regulating the production of the vasoconstrictor hormone angiotensin II (AngII), which in turn down-regulates COX-2 expression via activation of the angiotensin II type 1 receptor (AT1) receptor. Chemical inhibition of the catalytic activity of COX-2 is a well-established strategy for treating inflammation but little is known of cellular mechanisms that dispose of the protein itself. Here we show that in addition to its indirect negative feedback on COX-2, AT1 also down-regulates the expression of the COX-2 protein via a pathway that does not involve G-protein or β-arrestin-dependent signaling. Instead, AT1 enhances the ubiquitination and subsequent degradation of the enzyme in the proteasome through elements in its cytosolic carboxyl tail (CT). We find that a mutant receptor that lacks the last 35 amino acids of its CT (Δ324) is devoid of its ability to reduce COX-2, and that expression of the CT sequence alone is sufficient to down-regulate COX-2. Collectively these results propose a new role for AT1 in regulating COX-2 expression in a mechanism that deviates from its canonical signaling pathways. Down-regulation of COX-2 by a short peptide that originates from AT1 may present as a basis for novel therapeutic means of eliminating excess COX-2 protein. PMID:25231994

  4. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    PubMed

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  5. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    PubMed

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  6. Prostaglandin E2 mediates growth arrest in NFS-60 cells by down-regulating interleukin-6 receptor expression.

    PubMed

    de Silva, Kumudika I; Daud, Asif N; Deng, JiangPing; Jones, Stephen B; Gamelli, Richard L; Shankar, Ravi

    2003-02-15

    Interleukin-6 (IL-6), a potent myeloid mitogen, and the immunosuppressive prostanoid prostaglandin E2 (PGE2) are elevated following thermal injury and sepsis. We have previously demonstrated that bone marrow myeloid commitment shifts toward monocytopoiesis and away from granulocytopoiesis during thermal injury and sepsis and that PGE2 plays a central role in this alteration. Here we investigated whether PGE2 can modulate IL-6-stimulated growth in the promyelocytic cell line, NFS-60, by down-regulating IL-6 receptor (IL-6r) expression. Exposure of NFS-60 cells to PGE2 suppressed IL-6-stimulated proliferation as well as IL-6r expression. Receptor down-regulation is functionally significant since IL-6-induced signal transduction through activators of transcription (STAT)-3 is also decreased. Down-regulation of IL-6r correlated with the ability of PGE2 to arrest cells in the G0/G1 phase of the cell cycle. PGE2 appears to signal through EP2 receptors. Butaprost (EP2 agonist) but not sulprostone (EP3 agonist) inhibited IL-6-stimulated proliferation. In addition, an EP2 antagonist (AH6809) alleviated the anti-proliferative effects of PGE2. NFS-60 cells express predominantly EP2 and EP4 receptors. While PGE2 down-regulated both the IL-6r protein and mRNA expression, it had no influence on EP2 or EP4 mRNA expression. The present study demonstrates that PGE2 is a potent down-regulator of IL-6r expression and thus may provide a mechanistic explanation for the granulocytopenia seen in thermal injury and sepsis.

  7. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors.

    PubMed

    Li, D; Mehta, J L

    2000-04-01

    A specific lectin-like endothelial receptor for oxidized low density lipoprotein (LOX-1), distinct from the scavenger receptor in monocytes/macrophages, has been identified and cloned. In this study, we examined the regulation of LOX-1 by oxidized low density lipoprotein (ox-LDL) and determined the role of LOX-1 in ox-LDL-induced apoptosis of cultured human coronary artery endothelial cells (HCAECs). Incubation of HCAECs with ox-LDL (40 microg/mL), but not native LDL, for 24 hours markedly increased LOX-1 expression (mRNA and protein). After 48 hours of preincubation of HCAECs with a specific antisense to LOX-1 mRNA (antisense LOX-1), ox-LDL-mediated upregulation of LOX-1 was suppressed (P<0.01). In contrast, treatment of HCAECs with sense LOX-1 had no effect. Ox-LDL also induced apoptosis (determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and DNA laddering) of HCAECs in a concentration- and time-dependent fashion. LOX-1 played an important role in ox-LDL-mediated apoptosis of HCAECs because antisense LOX-1 inhibited this effect of ox-LDL. Polyinosinic acid and carrageenan, 2 different chemical inhibitors of LOX-1, also decreased ox-LDL-mediated apoptosis of HCAECs. Nuclear factor (NF)-kappaB was markedly activated in ox-LDL-treated HCAECs. The critical role of NF-kappaB activation became evident in experiments with antisense LOX-1, which abolished ox-LDL-mediated NF-kappaB activation. In this process, an NF-kappaB inhibitor, caffeic acid phenethyl ester, also inhibited ox-LDL-mediated apoptosis of HCAECs. These findings indicate that ox-LDL upregulates its own endothelial receptor. Ox-LDL-induced apoptosis is mediated by the action of LOX-1. In this process, NF-kappaB activation may play an important role as a signal transduction mechanism.

  8. Development, food intake, and ethinylestradiol influence hepatic triglyceride lipase and LDL-receptor mRNA levels in rats.

    PubMed

    Staels, B; Jansen, H; van Tol, A; Stahnke, G; Will, H; Verhoeven, G; Auwerx, J

    1990-07-01

    The influence of development and ethinylestradiol on low density lipoprotein (LDL)-receptor mRNA and hepatic triglyceride lipase (HTGL) activity and mRNA levels was studied in rat liver and intestine. Intestinal LDL-receptor mRNA levels are maximal in the perinatal period, whereas liver LDL-receptor and HTGL mRNA levels are highest after weaning in adult life. All mRNA levels reach a maximum between day 15 and 20 when rats still consume a lipid-rich diet, and increase twofold during weaning. Liver and intestinal LDL-receptor mRNA levels are not influenced by ovariectomy, but increase after ethinylestradiol treatment. Liver LDL-receptor mRNA shows a dose-dependent increase after ethinylestradiol and a sevenfold rise in liver LDL-receptor mRNA is attained with a dose of 2000 micrograms/day. Intestinal LDL-receptor mRNA increases slightly more than twofold after ethinylestradiol and this increase is not dose-dependent. Changes in LDL-receptor mRNA are independent of changes in food intake induced by ethinylestradiol treatment, since they are still observed after pair-feeding. The ethinylestradiol-induced increases in LDL-receptor mRNA levels are reflected by decreased serum apoB levels. HTGL mRNA levels increase after ovariectomy and show a dose-dependent decrease after ethinylestradiol. Pair-feeding abolishes the increase seen after ovariectomy, while the estrogen-mediated decrease is attenuated. These alterations in HTGL mRNA are reflected by similar changes in liver HTGL activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Lectin-Like Oxidized LDL Receptor-1 Is an Enhancer of Tumor Angiogenesis in Human Prostate Cancer Cells

    PubMed Central

    González-Chavarría, Iván; Cerro, Rita P.; Parra, Natalie P.; Sandoval, Felipe A.; Zuñiga, Felipe A.; Omazábal, Valeska A.; Lamperti, Liliana I.; Jiménez, Silvana P.; Fernandez, Edelmira A.; Gutiérrez, Nicolas A.; Rodriguez, Federico S.; Onate, Sergio A.; Sánchez, Oliberto; Vera, Juan C.; Toledo, Jorge R.

    2014-01-01

    Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells. PMID:25170920

  10. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    PubMed

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  11. Mitogenic signaling of urokinase receptor-deficient kidney fibroblasts: actions of an alternative urokinase receptor and LDL receptor-related protein.

    PubMed

    Zhang, Guoqiang; Cai, Xiaohe; López-Guisa, Jesús M; Collins, Sarah J; Eddy, Allison A

    2004-08-01

    The urokinase receptor (uPAR) attenuates myofibroblast recruitment and fibrosis in the kidney. This study examined the role of uPAR and its co-receptor LDL receptor-related protein (LRP) in the regulation of kidney fibroblast proliferation and extracellular signal-regulated kinase (ERK) signaling. Compared with uPAR+/+ cells, uPAR-/- kidney fibroblasts were hyperproliferative. UPAR-/- fibroblast proliferation was 60% inhibited by an ERK kinase inhibitor. LRP protein was reduced and extracellular accumulation of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) proteins were greater in uPAR-/- cultures. Addition of functional uPA protein or LRP antisense RNA significantly increased ERK signaling and cell mitosis in both genotypes. Enhanced uPAR-/- fibroblast proliferation was reversed by a recombinant nonfunctional uPA peptide. The density of cell-bound fluor-uPA was similar between uPAR-/- and uPAR+/+ fibroblasts (78 +/- 6 versus 92 +/- 16 units). These data suggest that uPAR-deficient kidney fibroblasts express lower levels of its scavenger co-receptor LRP, resulting in greater extracellular accumulation of uPA and PAI-1. Enhanced proliferation of uPAR-/- fibroblasts seems to be mediated by uPA-dependent ERK signaling via an alternative urokinase receptor.

  12. Prolonged administration of pyridostigmine impairs neuromuscular function with and without down-regulation of acetylcholine receptors.

    PubMed

    Richtsfeld, Martina; Yasuhara, Shingo; Fink, Heidrun; Blobner, Manfred; Martyn, J A Jeevendra

    2013-08-01

    The acetylcholinesterase inhibitor, pyridostigmine, is prophylactically administered to mitigate the toxic effects of nerve gas poisoning. The authors tested the hypothesis that prolonged pyridostigmine administration can lead to neuromuscular dysfunction and even down-regulation of acetylcholine receptors. Pyridostigmine (5 or 25 mg·kg·day) or saline was continuously administered via osmotic pumps to rats, and infused for either 14 or 28 days until the day of neuromuscular assessment (at day 14 or 28), or discontinued 24 h before neuromuscular assessment. Neurotransmission and muscle function were examined by single-twitch, train-of-four stimulation and 100-Hz tetanic stimulation. Sensitivity to atracurium and acetylcholine receptor number (quantitated by I-α-bungarotoxin) provided additional measures of neuromuscular integrity. Specific tetanic tensions (Newton [N]/muscle weight [g]) were significantly (P < 0.05) decreased at 14 (10.3 N/g) and 28 (11.1 N/g) days of 25 mg·kg·day pyridostigmine compared with controls (13.1-13.6 N/g). Decreased effective dose (0.81-1.05 vs. 0.16-0.45 mg/kg; P < 0.05) and decreased plasma concentration (3.02-3.27 vs. 0.45-1.37 μg/ml; P < 0.05) of atracurium for 50% paralysis (controls vs. 25 mg·kg·day pyridostigmine, respectively), irrespective of discontinuation of pyridostigmine, confirmed the pyridostigmine-induced altered neurotransmission. Pyridostigmine (25 mg·kg·day) down-regulated acetylcholine receptors at 28 days. Prolonged administration of pyridostigmine (25 mg·kg·day) leads to neuromuscular impairment, which can persist even when pyridostigmine is discontinued 24 h before assessment of neuromuscular function. Pyridostigmine has the potential to down-regulate acetylcholine receptors, but induces neuromuscular dysfunction even in the absence of receptor changes.

  13. The LDL receptor gene family: signaling functions during development.

    PubMed

    Howell, B W; Herz, J

    2001-02-01

    The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.

  14. Regulation of D-cyclin translation inhibition in myeloma cells treated with mTOR inhibitors: Rationale for combined treatment with ERK inhibitors and rapamycin

    PubMed Central

    Frost, Patrick; Shi, Yijiang; Hoang, Bao; Gera, Joseph; Lichtenstein, Alan

    2009-01-01

    We have shown that heightened AKT activity sensitized multiple myeloma (MM) cells to the anti-tumor effects of the mTOR-inhibitor, CCI-779. To test the mechanism of AKT’s regulatory role, we stably transfected U266 MM cell lines with an activated AKT allele or empty vector. The AKT-transfected cells were more sensitive to cytostasis induced in vitro by rapamycin or in vivo by its analog, CCI-779, whereas cells with quiescent AKT were resistant. The ability of mTOR inhibitors to downregulate D-cyclin expression was significantly greater in AKT-transfected MM cells, due in part, to AKT’s ability to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. Similar AKT-dependent regulation of rapamycin responsiveness was demonstrated in a second myeloma model: the PTEN-null OPM-2 cell line transfected with wild type PTEN. As ERK/p38 activity facilitates IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of AKT-dependent effects on rapamycin sensitivity. AKT-transfected U266 cells demonstrated significantly decreased ERK and p38 activity. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant “low AKT” myeloma cells. Furthermore, the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down regulated D-cyclin protein expression and G1 arrest. However, ectopic over-expression of an activated MEK gene did not increase cap-independent translation of D-cyclin in “high AKT” myeloma cells indicating that MEK/ERK activity was required but not sufficient for activation of the IRES. These data support a scenario where heightened AKT activity down-regulates D-cyclin IRES function in MM cells and ERK facilitates activity. PMID:19139116

  15. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes.

    PubMed

    Zhao, Minglei; Yang, Songguang; Liu, Xuncheng; Wu, Keqiang

    2015-01-01

    Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening). The plant hormone abscisic acid (ABA) and DELAY OF GERMINATION1 (DOG1) protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2) act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2, and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  16. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  17. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberger, D.; Meiner, V.; Reshef, A.

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identicalmore » LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.« less

  18. The down-regulation of the mitogenic fibrinogen receptor (MFR) in serum-containing medium does not occur in defined medium.

    PubMed

    Levesque, J P; Hatzfeld, A; Domart, I; Hatzfeld, J

    1990-02-01

    Normal human hemopoietic cells such as early bone marrow progenitors, or lymphoma-derived cell lines such as Raji or JM cells, possess a low-affinity receptor specific for fibrinogen. This receptor triggers a mitogenic effect. It differs from the glycoprotein IIb-IIIa which is involved in fibrinogen-induced platelet aggregation. We demonstrate here that this mitogenic fibrinogen receptor (MFR) can be internalized or reexpressed, depending on culture conditions. Internalization was temperature-dependent. At 37 degrees C in the presence of cycloheximide or actinomycin D, the half-life of cell surface MFRs was 2 h, independent of receptor occupancy. Binding of fibrinogen to the MFR resulted in a down-regulation which was fibrinogen dose-dependent. This occurred in serum-supplemented medium but not in defined medium supplemented with fatty acids. Reexpression of MFRs could be induced in 28 to 42 h by serum removal. The down-regulation of mitogenic receptors in plasma or serum could explain why normal cells do not proliferate in the peripheral blood.

  19. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging.

    PubMed

    Zhang, Liang; Thurber, Greg M

    2016-02-01

    Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.

  20. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: cellular and population genetic studies.

    PubMed

    Hussain, Yasin; Ding, Qingming; Connelly, Philip W; Brunt, J Howard; Ban, Matthew R; McIntyre, Adam D; Huff, Murray W; Gros, Robert; Hegele, Robert A; Feldman, Ross D

    2015-01-01

    Estrogen deficiency is linked with increased low-density lipoprotein (LDL) cholesterol. The hormone receptor mediating this effect is unknown. G-protein estrogen receptor (GPER) is a recently recognized G-protein-coupled receptor that is activated by estrogens. We recently identified a common hypofunctional missense variant of GPER, namely P16L. However, the role of GPER in LDL metabolism is unknown. Therefore, we examined the association of the P16L genotype with plasma LDL cholesterol level. Furthermore, we studied the role of GPER in regulating expression of the LDL receptor and proprotein convertase subtilisin kexin type 9. Our discovery cohort was a genetically isolated population of Northern European descent, and our validation cohort consisted of normal, healthy women aged 18 to 56 years from London, Ontario. In addition, we examined the effect of GPER on the regulation of proprotein convertase subtilisin kexin type 9 and LDL receptor expression by the treatment with the GPER agonist, G1. In the discovery cohort, GPER P16L genotype was associated with a significant increase in LDL cholesterol (mean±SEM): 3.18±0.05, 3.25±0.08, and 4.25±0.33 mmol/L, respectively, in subjects with CC (homozygous for P16), CT (heterozygotes), and TT (homozygous for L16) genotypes (P<0.05). In the validation cohort (n=339), the GPER P16L genotype was associated with a similar increase in LDL cholesterol: 2.17±0.05, 2.34±0.06, and 2.42±0.16 mmol/L, respectively, in subjects with CC, CT, and TT genotypes (P<0.05). In the human hepatic carcinoma cell line, the GPER agonist, G1, mediated a concentration-dependent increase in LDL receptor expression, blocked by either pretreatment with the GPER antagonist G15 or by shRNA-mediated GPER downregulation. G1 also mediated a GPER- and concentration-dependent decrease in proprotein convertase subtilisin kexin type 9 expression. GPER activation upregulates LDL receptor expression, probably at least, in part, via proprotein convertase

  1. Down-regulation of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by LH-RH antagonist Cetrorelix.

    PubMed Central

    Halmos, G; Schally, A V; Pinski, J; Vadillo-Buenfil, M; Groot, K

    1996-01-01

    Antagonists of luteinizing hormone-releasing hormone (LH-RH), unlike the LH-RH agonists, suppress gonadotropins and sex steroid secretion immediately after administration, without initial stimulatory effects. [Ac-D-Nal(2)1,D-Ph(4Cl)2,D-Pal(3)3,D-Cit6,D-Ala10]LH-R H (SB-75; Cetrorelix) is a modern, potent antagonistic analog of LH-RH. In this study, the binding characteristics of receptors for LH-RH in membrane fractions from rat anterior pituitaries were investigated after a single injection of Cetrorelix at a dose of 100 microg per rat. To determine whether the treatment with Cetrorelix can affect the concentration of measurable LH-RH binding sites, we applied an in vitro method to desaturate LH-RH receptors by chaotropic agents such as manganous chloride (MnCl2) and ammonium thiocyanate (NH4SCN). Our results show that the percentages of occupied LH-RH receptors at 1, 3, and 6 h after administration of Cetrorelix were approximately 28%, 14%, and 10%, respectively, of total receptors. At later time intervals, we could not detect occupied LH-RH binding sites. Ligand competition assays, following in vitro desaturation, demonstrated that rat pituitary LH-RH receptors were significantly (P < 0.01) down-regulated for at least 72 h after administration of Cetrorelix. The lowest receptor concentration was found 3-6 h after Cetrorelix treatment and a recovery in receptor number began within approximately 24 h. The down-regulation of LH-RH binding sites induced by Cetrorelix was accompanied by serum LH and testosterone suppression. Higher LH-RH receptor concentrations coincided with elevated serum hormone levels at later time intervals. Our results indicate that administration of LH-RH antagonist Cetrorelix produces a marked down-regulation of pituitary receptors for LH-RH and not merely an occupancy of binding sites. PMID:8637885

  2. Down-regulation of angiotensin II receptor subtypes and desensitization of cyclic GMP production in neuroblastoma N1E-115 cells.

    PubMed

    Reagan, L P; Ye, X; Maretzski, C H; Fluharty, S J

    1993-01-01

    Murine neuroblastoma N1E-115 cells possess membranous receptors for the octapeptide angiotensin II (AngII) whose density is substantially increased by in vitro differentiation. Incubation of differentiated N1E-115 cells with AngII produced a rapid decrease in receptor density, but did not alter the affinity of these receptors for either 125I-AngII or the high-affinity antagonist 125I-[Sarc1,Ile8]-AngII. This apparent down-regulation was dose related with an ED50 of 1 nM, and maximal decreases of approximately 90% were obtained with 100 nM AngII. Receptor loss from differentiated cell membranes was unaffected by incubations of membranes obtained from agonist-exposed cells with non-hydrolyzable analogues of GTP for 60 min at 37 degrees C to ensure dissociation of the ligand. Partial loss of AngII receptors was apparent within 5 min of agonist exposure, whereas maximal declines were not observed until 30 min. This temporal pattern resulted from a preferential decrease in the AT1 receptor subtype during the first 5 min, followed by a decline in both AT1 and AT2 receptors with longer periods of agonist exposure. The loss of membranous receptors was reversible with partial recovery observed after 4 h, and with nearly full recovery observed 18 h after exposure of the cells to AngII. However, the long-term recovery of receptor density was blocked by the protein synthesis inhibitor, cycloheximide. The heptapeptide angiotensin III produced a similar down-regulation of receptors, and the high-affinity antagonist [Sarc1,Thr8]-AngII blocked agonist-induced down-regulation. Finally, the apparent loss of cell surface AngII receptors decreased the ability of AngII to stimulate cyclic GMP production within intact N1E-115 cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Efficacy of Histone Deacetylase and Estrogen Receptor Inhibition in Breast Cancer Cells Due to Concerted down Regulation of Akt

    PubMed Central

    Thomas, Scott; Thurn, K. Ted; Raha, Paromita; Chen, Stephanie; Munster, Pamela N.

    2013-01-01

    Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen. As histone deacetylases are key regulators of Akt, we evaluated the effect of combined treatment with the histone deacetylase inhibitor PCI-24781 and tamoxifen on Akt in breast cancer cells. We demonstrate that while both histone deacetylase and estrogen receptor inhibition down regulate AKT mRNA and protein, their concerted effort results in down regulation of AKT activity with induction of cell death. Histone deacetylase inhibition exerts its effect on AKT mRNA through an estrogen receptor-dependent mechanism, primarily down regulating the most abundant isoform AKT1. Although siRNA depletion of AKT modestly induces cell death, when combined with an anti-estrogen, cytotoxicity is significantly enhanced. Thus, histone deacetylase regulation of AKT mRNA is a key mediator of this therapeutic combination and may represent a novel biomarker for predicting response to this regimen. PMID:23874830

  4. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation

  5. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  6. Involvement of Heterogeneous Ribonucleoprotein F in the Regulation of Cell Proliferation via the Mammalian Target of Rapamycin/S6 Kinase 2 Pathway

    PubMed Central

    Goh, Eddy T. H.; Pardo, Olivier E.; Michael, Nicholas; Niewiarowski, Andrew; Totty, Nick; Volkova, Dariya; Tsaneva, Irina R.; Seckl, Michael J.; Gout, Ivan

    2010-01-01

    The S6 kinases (S6Ks) have been linked to a number of cellular processes, including translation, insulin metabolism, cell survival, and RNA splicing. Signaling via the phosphotidylinositol 3-kinase and mammalian target of rapamycin (mTOR) pathways is critical in regulating the activity and subcellular localization of S6Ks. To date, nuclear functions of both S6K isoforms, S6K1 and S6K2, are not well understood. To better understand S6K nuclear roles, we employed affinity purification of S6Ks from nuclear preparations followed by mass spectrometry analysis for the identification of novel binding partners. In this study, we report that in contrast to S6K1, the S6K2 isoform specifically associates with a number of RNA-binding proteins, including heterogeneous ribonucleoproteins (hnRNPs). We focused on studying the mechanism and physiological relevance of the S6K2 interaction with hnRNP F/H. Interestingly, the S6K2-hnRNP F/H interaction was not affected by mitogenic stimulation, whereas mTOR binding to hnRNP F/H was induced by serum stimulation. In addition, we define a new role of hnRNP F in driving cell proliferation, which could be partially attenuated by rapamycin treatment. S6K2-driven cell proliferation, on the other hand, could be blocked by small interfering RNA-mediated down-regulation of hnRNP F. These results demonstrate that the specific interaction between mTOR and S6K2 with hnRNPs is implicated in the regulation of cell proliferation. PMID:20308064

  7. Synthetic LDL as targeted drug delivery vehicle

    DOEpatents

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  8. Progress on the autophagic regulators and receptors in plants.

    PubMed

    Zeng, Xiao-wei; Liu, Cui-cui; Han, Ning; Bian, Hong-wu; Zhu, Mu-yuan

    2016-07-20

    Autophagy is an evolutionarily highly conserved catabolic pathway among eukaryotic cells that protects the organisms against environmental stress. Normally, autophagy is mainly involved with autophagy-related proteins(ATGs) and autophagic regulators including a series of cytoplasmic proteins and small molecules. Besides, the selective autophagy, which targets damaged organalles or protein aggregates, is mediated by the additional receptors to help the ATGs recognize different substrates. In this review, we summarize recent advances in autophagic regulators like ROS(Reactive oxygen species), TOR(Target of rapamycin) and receptors like NBR1(Neighbor of BRCA1 gene protein), RPN10(Regulatory particle non-ATPase 10) as well as their functional mechanisms mainly in Arabidopsis thaliana.

  9. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down's syndrome.

    PubMed

    Andrade-Talavera, Yuniesky; Benito, Itziar; Casañas, Juan José; Rodríguez-Moreno, Antonio; Montesinos, María Luz

    2015-10-01

    Down's syndrome (DS) is the most prevalent genetic intellectual disability. Memory deficits significantly contribute to the cognitive dysfunction in DS. Previously, we discovered that mTOR-dependent local translation, a pivotal process for some forms of synaptic plasticity, is deregulated in a DS mouse model. Here, we report that these mice exhibit deficits in both synaptic plasticity (i.e., BDNF-long term potentiation) and the persistence of spatial long-term memory. Interestingly, these deficits were fully reversible using rapamycin, a Food and Drug Administration-approved specific mTOR inhibitor; therefore, rapamycin may be a novel pharmacotherapy to improve cognition in DS. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Carbachol does not down-regulate substance P receptors in pancreatic acini.

    PubMed

    Patto, R J; Vinayek, R; Jensen, R T; Gardner, J D

    1992-01-01

    In a previous study, we found that first incubating guinea pig pancreatic acini with carbachol caused desensitization of the enzyme secretory response to cholecystokinin-octapeptide (CCK-8), bombesin, and carbachol but not that to substance P. This carbachol-induced desensitization could be accounted for by carbachol-induced down-regulation of receptors for CCK-8, bombesin, and carbachol. Although carbachol did not desensitize the enzyme secretory response to substance P, an effect of carbachol on substance P receptors was not examined. In the present study, in dispersed acini from guinea pig pancreas, substance P caused a twofold increase in amylase secretion. Stimulation was half-maximal at 0.7 nM and was maximal at 10 nM. Analysis of the ability of substance P to inhibit binding of 125I-substance P to substance P receptors indicated that acini possess a single class of receptors for substance P (Kd = 0.8 +/- 0.1 nM; Bmax = 1,037 +/- 145 fmol/mg of DNA). There was a close correlation between the relative potency with which substance P stimulated amylase secretion (0.7 nM) and the potency for inhibiting binding of 125I-substance P (Kd = 0.8 nM). First incubating pancreatic acini with carbachol did not alter either substance P-stimulated enzyme secretion or binding of 125I-substance P to substance P receptors, whereas in the same experiments, carbachol reduced binding of 125I-CCK-8 to cholecystokinin receptors by 50% and decreased in CCK-8-stimulated enzyme secretion by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  13. Biphasic rapamycin effects in lymphoma and carcinoma treatment

    PubMed Central

    Liu, Yang; Pandeswara, Srilakshmi; Dao, Vinh; Padrón, Álvaro; Drerup, Justin M.; Lao, Shunhua; Liu, Aijie; Hurez, Vincent; Curiel, Tyler J.

    2017-01-01

    mTOR drives tumor growth but also supports T cell function, rendering the applications of mTOR inhibitors complex especially in T cell malignancies. Here we studied the effects of the mTOR inhibitor rapamycin in mouse EL4 T cell lymphoma. Typical pharmacologic rapamycin (1–8 mg/kg) significantly reduced tumor burden via direct suppression of tumor cell proliferation and improved survival in EL4 challenge independent of anti-tumor immunity. Denileukin diftitox (DD)-mediated depletion of regulatory T cells significantly slowed EL4 growth in vivo in a T cell-dependent fashion. However, typical rapamycin inhibited T cell activation and tumor infiltration in vivo and failed to boost DD treatment effects. Low dose rapamycin (LD, 75 μg/kg) increased potentially beneficial CD44hiCD62L+ CD8+ central memory T cells in EL4 challenge, but without clinical benefit. LD rapamycin significantly enhanced DD treatment efficacy, but DD plus LD rapamycin treatment effects were independent of anti-tumor immunity. Instead, rapamycin up-regulated EL4 IL-2 receptor in vitro and in vivo, facilitating direct DD tumor cell killing. LD rapamycin augmented DD efficacy against B16 melanoma and a human B cell lymphoma, but not against human Jurkat T cell lymphoma or ID8agg ovarian cancer cells. Treatment effects correlated with IL-2R expression, but mechanisms in some tumors were not fully defined. Overall, our data define a distinct, biphasic mechanisms of action of mTOR inhibition at doses that are clinically exploitable, including in T cell lymphomas. PMID:27737881

  14. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats.

    PubMed

    Luck, Christian; DeMarco, Vincent G; Mahmood, Abuzar; Gavini, Madhavi P; Pulakat, Lakshmi

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750  μ g/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters ( E / E ', E '/ A ', E / Vp ) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFN γ , and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.

  15. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats

    PubMed Central

    Luck, Christian; DeMarco, Vincent G.; Mahmood, Abuzar; Gavini, Madhavi P.

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes. PMID:28408970

  16. Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice.

    PubMed

    Xiao, Tangli; Guan, Xu; Nie, Ling; Wang, Song; Sun, Lei; He, Ting; Huang, Yunjian; Zhang, Jingbo; Yang, Ke; Wang, Junping; Zhao, Jinghong

    2014-09-01

    The aim was to explore the effects of rapamycin on autophagy and injury of podocytes in streptozocin (STZ)-induced type 1 diabetic mice, and its role in delaying progression of diabetic nephropathy. In this study, male Balb/c mice were divided into three groups: control (n = 12), STZ-induced diabetic (n = 12), and rapamycin-treated diabetic (DM + Rapa) (n = 12), which received intraperitoneal injection of rapamycin (2 mg/kg/48 h) after induction of DM. Levels of urinary albumin (UA), blood urea nitrogen, serum creatinine, and kidney weight/body weight were measured at week 12. Renal pathologic changes, number of podocytes autophagy, and organelles injury were investigated by PAS staining, transmission electron microscopy, and immunofluorescence staining, respectively. Western blot was performed to determine the expression of LC3 (a podocyte autophagy marker), phosphorylated mammalian target of rapamycin, p-p70S6K, bax, and caspase-3 protein. Podocytes count was evaluated by immunofluorescence staining and Wilms tumor 1 immunohistochemistry, and Western blot of nephrin and podocin. The results indicated that rapamycin could reduce the kidney weight/body weight and UA secretion. It could alleviate podocyte foot process fusion, glomerular basement membrane thickening, and matrix accumulation, and increase the number of autophagosomes, and LC3-expressing podocytes. Down-regulation of bax and caspase-3 protein, and up-regulation of nephrin and podocin protein were observed in the glomeruli of diabetic mice after administration of rapamycin. In conclusion, rapamycin can ameliorate renal injury in diabetic mice by increasing the autophagy activity and inhibition of apoptosis of podocytes.

  17. Rapamycin protects against paraquat-induced pulmonary fibrosis: Activation of Nrf2 signaling pathway.

    PubMed

    Xu, Yiheng; Tai, Wenlin; Qu, Xiaoyuan; Wu, Wenjuan; Li, ZhenKun; Deng, Shuhao; Vongphouttha, Chanthasone; Dong, Zhaoxing

    2017-08-19

    Paraquat (PQ) is a widely used herbicide indeveloping countries worldwide, and pulmonary fibrosis is one of the most typical features of PQ poisoning. The molecular mechanism of PQ toxicity especially how to treat PQ-induced pulmonary fibrosis is still largely unknown. In animal model of pulmonary fibrosis, we used HE staining, western blotting assay and Real-time PCR assay to analyze the effects of rapamycin on the PQ-induced epithelial mesenchymal transition (EMT). We found that PQ induced the pulmonary fibrosis using HE staining and Masson's staining, and up-regulated the activity of HYP and the mRNA expressions of Collagen I and III (COL-1and COL-3) in pulmonary tissues. We also found that rapamycin down-regulated the mesenchymal cell marker Vimentin and up-regulated the epithelial cell marker E-cadherin both in mRNA and protein levels compared with PQ group. And the EMT associated transcription factor Snail was decreased by rapamycin treatment compared with PQ group. And PQ decreased the Nrf2 expression both in mRNA and protein levels, and rapamycin inhibited these effects of PQ. SFN, a activator of Nrf2, could inhibit the EMT and the expression of Snail. And knockdowon of Nrf2 could abolish the inhibitory effects of rapamycin of PQ-induced EMT. In conclusion, rapamycin protects against paraquat-induced pulmonary fibrosis by activation of Nrf2 signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells.

    PubMed

    Jiang, Jun-xia; Zhang, Shui-juan; Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

  19. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells

    PubMed Central

    Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells. PMID:26035589

  20. MicroRNA-122 Down-Regulation Is Involved in Phenobarbital-Mediated Activation of the Constitutive Androstane Receptor

    PubMed Central

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988

  1. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 andmore » CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO

  2. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    PubMed

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  3. Impact of Pyrrolidine Dithiocarbamate and Interleukin-6 on Mammalian Target of Rapamycin Complex 1 Regulation and Global Protein TranslationS⃞

    PubMed Central

    Song, Shaoming; Abdelmohsen, Kotb; Zhang, Yongqing; Becker, Kevin G.; Gorospe, Myriam

    2011-01-01

    Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4. PMID:21917559

  4. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Hideyuki; Miyata, Masaaki; Kume, Noriaki

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL)more » stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.« less

  5. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury.

    PubMed

    Eto, Hideyuki; Miyata, Masaaki; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 microg/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescence staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  6. Lack of a direct role for macrosialin in oxidized LDL metabolism.

    PubMed

    de Beer, Maria C; Zhao, Zhenze; Webb, Nancy R; van der Westhuyzen, Deneys R; de Villiers, Willem J S

    2003-04-01

    Murine macrosialin (MS), a scavenger receptor family member, is a heavily glycosylated transmembrane protein expressed predominantly in macrophage late endosomes. MS is also found on the cell surface where it is suggested, on the basis of ligand blotting, to bind oxidized LDL (oxLDL). Here we report on the regulation of MS by an atherogenic high-fat diet and oxLDL, and on the inability of MS in transfected cells to bind oxLDL. MS expression was markedly increased in the livers of atherosclerosis-susceptible C57BL/6 and atherosclerosis-resistant C3H/HeJ mice fed an atherogenic high-fat diet. In resident-mouse peritoneal macrophages, treatment with oxLDL upregulated MS mRNA and protein expression 1.5- to 3-fold. MS, overexpressed in COS-7 cells through adenovirus mediated gene transfer, bound oxLDL by ligand blotting. However, no binding of oxLDL to MS was observed in intact transfected COS-7 and Chinese hamster ovary cells, despite significant cell surface expression of MS. Furthermore, inhibition of MS through gene silencing did not affect the binding of oxLDL to macrophages. We conclude that although MS expression in macrophages and Kupffer cells is responsive to a proatherogenic inflammatory diet and to oxLDL, MS does not function as an oxLDL receptor on the cell surface.

  7. Hippocampal ripples down-regulate synapses.

    PubMed

    Norimoto, Hiroaki; Makino, Kenichi; Gao, Mengxuan; Shikano, Yu; Okamoto, Kazuki; Ishikawa, Tomoe; Sasaki, Takuya; Hioki, Hiroyuki; Fujisawa, Shigeyoshi; Ikegaya, Yuji

    2018-03-30

    The specific effects of sleep on synaptic plasticity remain unclear. We report that mouse hippocampal sharp-wave ripple oscillations serve as intrinsic events that trigger long-lasting synaptic depression. Silencing of sharp-wave ripples during slow-wave states prevented the spontaneous down-regulation of net synaptic weights and impaired the learning of new memories. The synaptic down-regulation was dependent on the N -methyl-d-aspartate receptor and selective for a specific input pathway. Thus, our findings are consistent with the role of slow-wave states in refining memory engrams by reducing recent memory-irrelevant neuronal activity and suggest a previously unrecognized function for sharp-wave ripples. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  9. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Bing; Xiao, Bo; Liang, Desheng

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the

  10. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1

    PubMed Central

    Deng, Shi; Jin, Tao; Zhang, Li; Bu, Hong; Zhang, Peng

    2016-01-01

    Chronic renal allograft dysfunction (CRAD) is the most common cause of graft failure following renal transplantation. However, the underlying mechanisms remain to be fully elucidated. Immunosuppressants and hyperlipidemia are associated with renal fibrosis following long-term use. The present study aimed to determine the effects of tacrolimus (FK506) and lipid metabolism disorder on CRAD. In vitro and in vivo models were used for this investigation. Cells of the mouse proximal renal tubular epithelial cell strain, NRK-52E, were cultured either with oxidized low-density lipoprotein (ox-LDL), FK506, ox-LDL combined with FK506, or vehicle, respectively. Changes in cell morphology and changes in the levels of lectin-like ox-LDL receptor-1 (LOX-1), reactive oxygen species (ROS), hydrogen peroxide and fibrosis-associated genes were evaluated at 24, 48 and 72 h. In separate experiment, total of 60 Sprague-Dawley rats were divided randomly into four groups, which included a high-fat group, FK506 group, high-fat combined with FK506 group, and control group. After 2, 4 and 8 weeks, the serum lipid levels, the levels of ox-LDL, ROS, and the expression levels of transforming growth factor (TGF)-β1 and connective tissue growth factor were determined. The in vitro and in vivo models revealed that lipid metabolism disorder and FK506 caused oxidative stress and a fibrogenic response. In addition, decreased levels of LOX-1 markedly reduced the levels of TGF-β1 in the in vitro model. Taken together, FK506 and dyslipidemia were found to be associated with CRAD following transplantation. PMID:27633115

  11. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles, Katie M.; Center for Oral Health Research, School of Dental Medicine University of Pennsylvania, Philadelphia, PA 19104; Milne, Richard S.B.

    2008-03-30

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated.more » Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.« less

  12. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.

    PubMed

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-05-01

    Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.

  13. Study of low-density lipoprotein receptor regulation by oral (steroid) contraceptives: desogestrel, levonorgestrel and ethinyl estradiol in JEG-3 cell line and placental tissue.

    PubMed

    Ramakrishnan, Gopalakrishnan; Rana, Anita; Das, Chandana; Chandra, Nimai Chand

    2007-10-01

    The aim of this study was to compare in vitro the role of two oral contraceptives, desogestrel (a less androgenic derivative of levonorgestrel) and levonorgestrel--alone and in combination with ethinyl estradiol--on low-density lipoprotein (LDL) receptor regulation by assessing receptor protein expression and functional effectiveness. Placental tissue and cultured placental cells (JEG-3) were used to study the expression and endocytotic activity of LDL receptor protein. The expression of the receptor was assessed by immunocytochemistry and immunoblot assays with and without contraceptive challenge. Functioning activity of LDL receptor was studied by measuring the rate of uptake of LDL by placental cells. Quantification of LDL was based on the total cholesterol content of the lipoprotein. A combination of desogestrel (20 ng/mL of incubation medium) and ethinyl estradiol (10 ng/mL of incubation medium) maintained the LDL receptor at high level of expression and functioning mode. In contrast, the double-blind preparation of levonorgestrel (20 ng/mL) and ethinyl estradiol (10 ng/mL) had shown much lower expression as well as receptor-mediated LDL uptake. The concentration of contraceptives used in this study was similar to the prevailing concentration of oral contraceptives in clinical use. Higher expression of LDL receptor and enhanced rate of LDL uptake by the receptor protein projects the possibility that there might be less atherosclerosis-related disorders from the combination of desogestrol and ethinyl estradiol.

  14. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    PubMed

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  15. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD).

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Zhang, Yingze; Sciurba, Frank C; Mallampalli, Rama K; Duncan, Steven R; Reddy, Raju C

    2014-03-07

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.

  16. The physiology and pathophysiology of rapamycin resistance

    PubMed Central

    Boylan, Joan M; Sanders, Jennifer A

    2011-01-01

    Rapamycin is an inhibitor of the mammalian Target of Rapamycin, mTOR, a nutrient-sensing signaling kinase and a key regulator of cell growth and proliferation. While rapamycin and related compounds have anti-tumor activity, a prevalent characteristic of cancer cells is resistance to their anti-proliferative effects. Our studies on nutrient regulation of fetal development showed that hepatocyte proliferation in the late gestation fetal rat is resistant to rapamycin. Extension of these studies to other tissues in the fetal and neonatal rat indicated that rapamycin resistance is a characteristic of normal cell proliferation in the growing organism. In hepatic cells, ribosomal biogenesis and cap-dependent protein translation were found to be relatively insensitive to the drug even though mTOR signaling was highly sensitive. Cell cycle progression was also resistant at the level of cyclin E-dependent kinase activity. Studies on the effect of rapamycin on gene expression in vitro and in vivo demonstrated that mTOR-mediated regulation of gene expression is independent of effects on cell proliferation and cannot be accounted for by functional regulation of identifiable transcription factors. Genes involved in cell metabolism were overrepresented among rapamycin-sensitive genes. We conclude that normal cellular proliferation in the context of a developing organism can be independent of mTOR signaling, that cyclin E-containing complexes are a critical locus for rapamycin sensitivity, and that mTOR functions as a modulator of metabolic gene expression in cells that are resistant to the anti-proliferative effects of the drug. PMID:21389767

  17. Rapamycin and Glucose-Target of Rapamycin (TOR) Protein Signaling in Plants*

    PubMed Central

    Xiong, Yan; Sheen, Jen

    2012-01-01

    Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellular and seedling assays to monitor endogenous Arabidopsis TOR activity based on its conserved S6 kinase (S6K) phosphorylation. Surprisingly, rapamycin effectively inhibits Arabidopsis TOR-S6K1 signaling and retards glucose-mediated root and leaf growth, mimicking estradiol-inducible tor mutants. Rapamycin inhibition is relieved in transgenic plants deficient in Arabidopsis FK506-binding protein 12 (FKP12), whereas FKP12 overexpression dramatically enhances rapamycin sensitivity. The role of Arabidopsis FKP12 is highly specific as overexpression of seven closely related FKP proteins fails to increase rapamycin sensitivity. Rapamycin exerts TOR inhibition by inducing direct interaction between the TOR-FRB (FKP-rapamycin binding) domain and FKP12 in plant cells. We suggest that variable endogenous FKP12 protein levels may underlie the molecular explanation for longstanding enigmatic observations on inconsistent rapamycin resistance in plants and in various mammalian cell lines or diverse animal cell types. Integrative analyses with rapamycin and conditional tor and fkp12 mutants also reveal a central role of glucose-TOR signaling in root hair formation. Our studies demonstrate the power of chemical genetic approaches in the discovery of previously unknown and pivotal functions of glucose-TOR signaling in governing the growth of cotyledons, true leaves, petioles, and primary and secondary roots and root hairs. PMID:22134914

  18. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice

    PubMed Central

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-01-01

    Background and Purpose Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Experimental Approach Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Key Results Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (−31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (−70%) and secretion (−28%) by peritoneal macrophages. Conclusions and Implications Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. PMID:25572138

  19. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    PubMed Central

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  20. Gastrin-releasing peptide receptor-induced internalization, down-regulation, desensitization, and growth: possible role for cyclic AMP.

    PubMed

    Benya, R V; Fathi, Z; Kusui, T; Pradhan, T; Battey, J F; Jensen, R T

    1994-08-01

    Stimulation of the gastrin-releasing peptide receptor (GRP-R) in Swiss 3T3 cells resembles that of a number of other recently described G protein-coupled receptors, insofar as both the phospholipase C and adenylyl cyclase signal transduction pathways are activated. GRP-R activation induces numerous alterations in both the cell and the receptor, but because two signal transduction pathways are activated it is difficult to determine the specific contributions of either pathway. We have found that BALB/3T3 fibroblasts transfected with the coding sequence for the GRP-R are pharmacologically indistinguishable from native receptor-expressing cells and activate phospholipase C in a manner similar to that of the native receptor but fail to increase cAMP in response to bombesin; thus, they may be useful cells to explore the role of activation of each pathway in altering cell and receptor function. Swiss 3T3 cells and GRP-R-transfected BALB/3T3 cells expressed identically glycosylated receptors that bound various agonists and antagonists similarly. G protein activation, as determined by evaluation of agonist-induced activation of phospholipase C and by analysis of the effect of guanosine-5'-(beta,gamma-imido)triphosphate on GRP-R binding affinity, was indistinguishable. Agonist stimulation of GRP-R caused similar receptor changes (internalization and down-regulation) and homologous desensitization in both cell types. Bombesin stimulation of Swiss 3T3 cells that had been preincubated with forskolin increased cAMP levels 9-fold, but no bombesin-specific increase in cAMP levels was detected in transfected cells, even though forskolin and cholera toxin increased cAMP levels in these cells. Quiescent Swiss 3T3 cells treated with bombesin rapidly increased c-fos mRNA levels and [3H]thymidine incorporation, whereas both effects were potentiated by forskolin. The specific protein kinase A inhibitor H-89 blocked increases in c-fos levels and [3H]thymidine incorporation induced by low

  1. Rapamycin reversal of VEGF-C–driven lymphatic anomalies in the respiratory tract

    PubMed Central

    Yao, Li-Chin; Flores, Julio C.; Choi, Dongwon; Hong, Young-Kwon; McDonald, Donald M.

    2017-01-01

    Lymphatic malformations are serious but poorly understood conditions that present therapeutic challenges. The goal of this study was to compare strategies for inducing regression of abnormal lymphatics and explore underlying mechanisms. CCSP-rtTA/tetO-VEGF-C mice, in which doxycycline regulates VEGF-C expression in the airway epithelium, were used as a model of pulmonary lymphangiectasia. After doxycycline was stopped, VEGF-C expression returned to normal, but lymphangiectasia persisted for at least 9 months. Inhibition of VEGFR-2/VEGFR-3 signaling, Notch, β-adrenergic receptors, or autophagy and antiinflammatory steroids had no noticeable effect on the amount or severity of lymphangiectasia. However, rapamycin inhibition of mTOR reduced lymphangiectasia by 76% within 7 days without affecting normal lymphatics. Efficacy of rapamycin was not increased by coadministration with the other agents. In prevention trials, rapamycin suppressed VEGF-C–driven mTOR phosphorylation and lymphatic endothelial cell sprouting and proliferation. However, in reversal trials, no lymphatic endothelial cell proliferation was present to block in established lymphangiectasia, and rapamycin did not increase caspase-dependent apoptosis. However, rapamycin potently suppressed Prox1 and VEGFR-3. These experiments revealed that lymphangiectasia is remarkably resistant to regression but is responsive to rapamycin, which rapidly reduces and normalizes the abnormal lymphatics without affecting normal lymphatics. PMID:28814666

  2. Zyflamend Sensitizes Tumor Cells to TRAIL-Induced Apoptosis Through Up-Regulation of Death Receptors and Down-Regulation of Survival Proteins: Role of ROS-Dependent CCAAT/Enhancer-Binding Protein-Homologous Protein Pathway

    PubMed Central

    Kim, Ji Hye; Park, Byoungduck; Gupta, Subash C.; Kannappan, Ramaswamy; Sung, Bokyung

    2012-01-01

    Abstract Aim: TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), is a selective killer of tumor cells, although its potential is limited by the development of resistance. In this article, we investigated whether the polyherbal preparation Zyflamend® can sensitize tumor cells to TRAIL. Results: We found that Zyflamend potentiated TRAIL-induced apoptosis in human cancer cells. Zyflamend manifested its effects through several mechanisms. First, it down-regulated the expression of cell survival proteins known to be linked to resistance to TRAIL. Second, Zyflamend up-regulated the expression of pro-apoptotic protein, Bax. Third, Zyflamend up-regulated the expression of death receptors (DRs) for TRAIL. Up-regulation of DRs was critical as gene-silencing of these receptors significantly reduced the effect of Zyflamend on TRAIL-induced apoptosis. The up-regulation of DRs was dependent on CCAAT/enhancer-binding protein-homologous protein (CHOP), as Zyflamend induced CHOP, its gene-silencing abolished the induction of receptors, and mutation of the CHOP binding site on DR5 promoter abolished Zyflamend-mediated DR5 transactivation. Zyflamend mediated its effects through reactive oxygen species (ROS), as ROS quenching reduced its effect. Further, Zyflamend induced DR5 and CHOP and down-regulated the expression of cell survival proteins in nude mice bearing human pancreatic cancer cells. Innovation: Zyflamend can sensitize tumor cells to TRAIL through modulation of multiple cell signaling mechanisms that are linked to ROS. Conclusion: Zyflamend potentiates TRAIL-induced apoptosis through the ROS-CHOP-mediated up-regulation of DRs, increase in pro-apoptotic protein and down-regulation of cell survival proteins. Antioxid. Redox Signal. 16, 413–427. PMID:22004570

  3. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.

    PubMed

    Yoon, Mee-Sup

    2017-10-27

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.

  4. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekhtear; Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp; Karnan, Sivasundaram

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, anmore » anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.« less

  5. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells

    PubMed Central

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; van IJcken, Wilfred F. J.; Pothof, Joris; Leenen, Pieter J. M.

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation. PMID:24198819

  6. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    PubMed Central

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  7. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD.

    PubMed

    Lattante, Serena; de Calbiac, Hortense; Le Ber, Isabelle; Brice, Alexis; Ciura, Sorana; Kabashi, Edor

    2015-03-15

    Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairment of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild-type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  9. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing-Hsien; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Tsai, Chia-Wen

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foammore » cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.« less

  10. Rapamycin: the cure for all that ails.

    PubMed

    Hasty, Paul

    2010-02-01

    Target of rapamycin (TOR) signaling stimulates cell growth by regulating protein synthesis in response to a variety of stimuli in a wide range of species and is inhibited by rapamycin, a naturally occurring antifungal compound produced by bacteria and discovered on Easter Island or in the local vernacular, Rapa Nui (rapamycin's namesake). Recently, rapamycin was shown to extend life span for mice, even when administered late in life, suggesting that inhibiting the mammalian TOR pathway may improve health span for people.

  11. Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages

    PubMed Central

    Sui, Xuxia; Liu, Yanmin; Li, Qi; Liu, Gefei; Song, Xuhong; Su, Zhongjing; Chang, Xiaolan; Zhou, Yingbi; Liang, Bin; Huang, Dongyang

    2014-01-01

    EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages with oxidized low-density lipoprotein (oxLDL) treatment. We found that oxLDL decreased EP3 expression, in a dose-dependent manner, at both the mRNA and protein levels. Moreover, oxLDL inhibited nuclear factor-κB (NF-κB)-dependent transcription of the EP3 gene by the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, chromatin immunoprecipitation revealed decreased binding of NF-κB to the EP3 promoter with oxLDL and PPAR-γ agonist treatment. Our results show that oxLDL suppresses EP3 expression by activation of PPAR-γ and subsequent inhibition of NF-κB in macrophages. These results suggest that down-regulation of EP3 expression by oxLDL is associated with impairment of EP3-mediated anti-inflammatory effects, and that EP3 receptor activity may exert a beneficial effect on atherosclerosis. PMID:25333975

  12. Increased binding of LDL and VLDL to apo B,E receptors of hepatic plasma membrane of rats treated with Fibernat.

    PubMed

    Venkatesan, Nandini; Devaraj, S Niranjali; Devaraj, H

    2003-10-01

    Research has focussed on the hypocholesterolemic effects of certain types of dietary fiber such as enhancing conversion of hepatic cholesterol to bile acids or increase in catabolism of low density lipoprotein (LDL) via the apo B,E receptor. The effect of oral administration of a unique fibre cocktail of fenugreek seed powder, guar gum and wheat bran (Fibernat) and its varied effects on some aspects of lipid metabolism and cholesterol homeostasis in rats were examined. Rats were administered Fibernat along with the atherogenic diet containing 1.5 % cholesterol and 0.1 % cholic acid. Amounts of hepatic lipids, hepatic and fecal bile acids and activity of hepatic triglyceride lipase (HTGL) were determined. Transmission electron microscopic examination of the liver tissue and extent of uptake of (125)I-LDL and (125)I-VLDL by the hepatic apo B,E receptor was carried out. Food intake and body weight gain were similar between the 3 different dietary groups. Fibernat intake significantly increased apo B,E receptor expression in rat liver as reflected by an increase in the maximum binding capacity (B(max)) of the apo B,E receptor to (125)I-LDL and (125)I-VLDL. The activity of HTGL was increased by approximately 1.5-fold in Fibernat-fed rats as compared to those fed the atherogenic diet alone. A marked hypocholesterolemic effect was observed. Cholesterol homeostasis was achieved in Fibernat-fed rats. Two possible mechanisms are postulated to be responsible for the observed hypocholesterolemic effect a) an increase in conversion of cholesterol to bile acids and b) possibly by intra-luminal binding which resulted in increased fecal excretion of bile acids and neutral sterols. The resulting reduction in cholesterol content of liver cells coupled with upregulation of hepatic apo B,E receptors and increased clearance of circulating atherogenic lipoproteins-LDL and very low density lipoprotein (LDL and VLDL)-is the main mechanism involved in the hypocholesterolemic effect of

  13. The Effect of a Shear Flow on the Uptake of LDL and Ac-LDL by Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Niwa, Koichi; Karino, Takeshi

    The effects of a shear flow on the uptake of fluorescence-labeled low-density lipoprotein (DiI-LDL), acetylated LDL (DiI-Ac-LDL), and lucifer yellow (LY; a tracer of fluid-phase endocytosis) by cultured bovine aortic ECs were studied using a rotating-disk shearing apparatus. It was found that 2hours’ exposure of ECs to a laminar shear flow that imposed ECs an area-mean shear stress of 10dynes/cm2 caused an increase in the uptake of DiI-LDL and LY. By contrast, the uptake of DiI-Ac-LDL was decreased by exposure of the ECs to a shear flow. Addition of dextran sulfate (DS), a competitive inhibitor of scavenger receptors, reversed the effect of a shear flow on the uptake of DiI-Ac-LDL, resulting in an increase by the imposition of a shear flow, while the uptake of DiI-LDL and LY remained unaffected. It was concluded that a shear flow promotes the endocytosis of DiI-LDL and LY by ECs, but suppresses the uptake of DiI-Ac-LDL by ECs by inhibiting scavenger receptor-mediated endocytosis.

  14. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Kuang, Lisha; Hitron, John Andrew

    Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressedmore » CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.« less

  15. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions

    PubMed Central

    Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji

    2012-01-01

    Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735

  16. Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions

    PubMed Central

    Boor, P P C; Metselaar, H J; Mancham, S; van der Laan, L J W; Kwekkeboom, J

    2013-01-01

    Plasmacytoid dendritic cells (PDC) are involved in innate immunity by interferon (IFN)-α production, and in adaptive immunity by stimulating T cells and inducing generation of regulatory T cells (Treg). In this study we studied the effects of mammalian target of rapamycin (mTOR) inhibition by rapamycin, a commonly used immunosuppressive and anti-cancer drug, on innate and adaptive immune functions of human PDC. A clinically relevant concentration of rapamycin inhibited Toll-like receptor (TLR)-7-induced IFN-α secretion potently (−64%) but TLR-9-induced IFN-α secretion only slightly (−20%), while the same concentration suppressed proinflammatory cytokine production by TLR-7-activated and TLR-9-activated PDC with similar efficacy. Rapamycin inhibited the ability of both TLR-7-activated and TLR-9-activated PDC to stimulate production of IFN-γ and interleukin (IL)-10 by allogeneic T cells. Surprisingly, mTOR-inhibition enhanced the capacity of TLR-7-activated PDC to stimulate naive and memory T helper cell proliferation, which was caused by rapamycin-induced up-regulation of CD80 expression on PDC. Finally, rapamycin treatment of TLR-7-activated PDC enhanced their capacity to induce CD4+forkhead box protein 3 (FoxP3)+ regulatory T cells, but did not affect the generation of suppressive CD8+CD38+lymphocyte activation gene (LAG)-3+ Treg. In general, rapamycin inhibits innate and adaptive immune functions of TLR-stimulated human PDC, but enhances the ability of TLR-7-stimulated PDC to stimulate CD4+ T cell proliferation and induce CD4+FoxP3+ regulatory T cell generation. PMID:23968562

  17. G protein-coupled receptor 30 down-regulates cofactor expression and interferes with the transcriptional activity of glucocorticoid.

    PubMed

    Ylikomi, Timo; Vienonen, Annika; Ahola, Tytti M

    2004-11-01

    G protein-coupled receptor 30 (GPR30) has previously been described to be important in steroid-mediated growth and to inhibit cell proliferation. Here we investigated whether the effect of GPR30 on cell growth is dependent on steroid hormone receptors. We stably introduced GPR30 in immortalized normal mammary epithelial (HME) cells using retroviruses for gene delivery. GPR30 inhibited the growth and proliferation of the cells. They expressed glucocorticoid receptor, but not estrogen or progesterone receptor. GPR30 down-regulated the expression of cofactor transcription intermediary factor 2 (TIF2) analyzed using quantitative RT-PCR analysis, and also diminished the expression of TIF2 at protein level analyzed by Western blotting using nuclear extracts from mammary epithelial cells. When HME cells were transiently transfected with the glucocorticoid response element MMTV-luc reporter plasmid, stable expression of GPR30 resulted in the abolition of ligand-induced transactivation of the promoter. In COS cells, transient transfection of GPR30 with glucocorticoid receptor alpha resulted in an abrogation of the MMTV-luc and GRE-luc reporter activities induced by dexamethasone. The results suggest a novel mechanism by which membrane-initiated signaling interferes with steroid signaling.

  18. Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells.

    PubMed

    Bhattacharyya, Rumi S; Krishnan, Aruna V; Swami, Srilatha; Feldman, David

    2006-06-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer. Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory or androgen-independent prostate cancer. In the present study, we showed that the antiestrogen fulvestrant [ICI 182,780 (ICI)] effectively suppressed AR expression in several human prostate cancer cells, including androgen-independent cells. In LNCaP cells, ICI (10 micromol/L) treatment decreased AR mRNA expression by 43% after 24 hours and AR protein expression by approximately 50% after 48 hours. We further examined the mechanism of AR down-regulation by ICI in LNCaP cells. ICI did not bind to the T877A-mutant AR present in the LNCaP cells nor did it promote proteasomal degradation of the AR. ICI did not affect AR mRNA or protein half-life. However, ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription. As a result of AR down-regulation by ICI, androgen induction of prostate-specific antigen mRNA and protein expression were substantially attenuated. Importantly, LNCaP cell proliferation was significantly inhibited by ICI treatment. Following 6 days of ICI treatment, a 70% growth inhibition was seen in androgen-stimulated LNCaP cells. These data show that the antiestrogen ICI is a potent AR down-regulator that causes significant inhibition of prostate cancer cell growth. Our study suggests that AR down-regulation by ICI would be an effective strategy for the treatment of all prostate cancer, especially AR-dependent androgen-independent prostate cancer.

  19. Involvement of neuron-derived orphan receptor-1 (NOR-1) in LDL-induced mitogenic stimulus in vascular smooth muscle cells: role of CREB.

    PubMed

    Rius, Jordi; Martínez-González, José; Crespo, Javier; Badimon, Lina

    2004-04-01

    Low density lipoproteins (LDLs) modulate the expression of key genes involved in atherogenesis. Recently, we have shown that the transcription factor neuron-derived orphan receptor-1 (NOR-1) is involved in vascular smooth muscle cell (VSMC) proliferation. Our aim was to analyze whether NOR-1 is involved in LDL-induced mitogenic effects in VSMC. LDL induced NOR-1 expression in a time- and dose-dependent manner. Antisense oligonucleotides against NOR-1 inhibit DNA synthesis induced by LDL in VSMCs as efficiently as antisense against the protooncogene c-fos. The upregulation of NOR-1 mRNA levels by LDL involves pertusis-sensitive G protein-coupled receptors, Ca2+ mobilization, protein kinases A (PKA) and C (PKC) activation, and mitogen-activated protein kinase pathways (MAPK) (p44/p42 and p38). LDL promotes cAMP response element binding protein (CREB) activation (phosphorylation in Ser133). In transfection assays a dominant-negative of CREB inhibits NOR-1 promoter activity, while mutation of specific (cAMP response element) CRE sites in the NOR-1 promoter abolishes LDL-induced NOR-1 promoter activity. In VSMCs, LDL-induced mitogenesis involves NOR-1 upregulation through a CREB-dependent mechanism. CREB could play a role in the modulation by LDL of key genes (containing CRE sites) involved in atherogenesis.

  20. LOX-1, OxLDL, and Atherosclerosis

    PubMed Central

    Catapano, Alberico Luigi

    2013-01-01

    Oxidized low-density lipoprotein (OxLDL) contributes to the atherosclerotic plaque formation and progression by several mechanisms, including the induction of endothelial cell activation and dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation. Vascular wall cells express on their surface several scavenger receptors that mediate the cellular effects of OxLDL. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main OxLDL receptor of endothelial cells, and it is expressed also in macrophages and smooth muscle cells. LOX-1 is almost undetectable under physiological conditions, but it is upregulated following the exposure to several proinflammatory and proatherogenic stimuli and can be detected in animal and human atherosclerotic lesions. The key contribution of LOX-1 to the atherogenic process has been confirmed in animal models; LOX-1 knockout mice exhibit reduced intima thickness and inflammation and increased expression of protective factors; on the contrary, LOX-1 overexpressing mice present an accelerated atherosclerotic lesion formation which is associated with increased inflammation. In humans, LOX-1 gene polymorphisms were associated with increased susceptibility to myocardial infarction. Inhibition of the LOX-1 receptor with chemicals or antisense nucleotides is currently being investigated and represents an emerging approach for controlling OxLDL-LOX-1 mediated proatherogenic effects. PMID:23935243

  1. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.

    PubMed

    Molino, Yves; David, Marion; Varini, Karine; Jabès, Françoise; Gaudin, Nicolas; Fortoul, Aude; Bakloul, Karima; Masse, Maxime; Bernard, Anne; Drobecq, Lucile; Lécorché, Pascaline; Temsamani, Jamal; Jacquot, Guillaume; Khrestchatisky, Michel

    2017-05-01

    The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals ( ldlr -/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. © FASEB.

  2. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes.

    PubMed

    Cenarro, Ana; Etxebarria, Aitor; de Castro-Orós, Isabel; Stef, Marianne; Bea, Ana M; Palacios, Lourdes; Mateo-Gallego, Rocío; Benito-Vicente, Asier; Ostolaza, Helena; Tejedor, Teresa; Martín, César; Civeira, Fernando

    2016-05-01

    The p.Leu167del mutation in the APOE gene has been associated with hyperlipidemia. Our objective was to determine the frequency of p.Leu167del mutation in APOE gene in subjects with autosomal dominant hypercholesterolemia (ADH) in whom LDLR, APOB, and PCSK9 mutations had been excluded and to identify the mechanisms by which this mutant apo E causes hypercholesterolemia. The APOE gene was analyzed in a case-control study. The study was conducted at a University Hospital Lipid Clinic. Two groups (ADH, 288 patients; control, 220 normolipidemic subjects) were included. We performed sequencing of APOE gene and proteomic and cellular experiments. To determine the frequency of the p.Leu167del mutation and the mechanism by which it causes hypercholesterolemia. In the ADH group, nine subjects (3.1%) were carriers of the APOE c.500_502delTCC, p.Leu167del mutation, cosegregating with hypercholesterolemia in studied families. Proteomic quantification of wild-type and mutant apo E in very low-density lipoprotein (VLDL) from carrier subjects revealed that apo E3 is almost a 5-fold increase compared to mutant apo E. Cultured cell studies revealed that VLDL from mutation carriers had a significantly higher uptake by HepG2 and THP-1 cells compared to VLDL from subjects with E3/E3 or E2/E2 genotypes. Transcriptional down-regulation of LDLR was also confirmed. p.Leu167del mutation in APOE gene is the cause of hypercholesterolemia in the 3.1% of our ADH subjects without LDLR, APOB, and PCSK9 mutations. The mechanism by which this mutation is associated to ADH is that VLDL carrying the mutant apo E produces LDLR down-regulation, thereby raising plasma low-density lipoprotein cholesterol levels.

  3. Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in Arabidopsis[W][OA

    PubMed Central

    Ren, Maozhi; Venglat, Prakash; Qiu, Shuqing; Feng, Li; Cao, Yongguo; Wang, Edwin; Xiang, Daoquan; Wang, Jinghe; Alexander, Danny; Chalivendra, Subbaiah; Logan, David; Mattoo, Autar; Selvaraj, Gopalan; Datla, Raju

    2012-01-01

    Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis. PMID:23275579

  4. The cannabinoid WIN55,212-2 protects against oxidized LDL-induced inflammatory response in murine macrophages[S

    PubMed Central

    Hao, Ming-xiu; Jiang, Li-sheng; Fang, Ning-yuan; Pu, Jun; Hu, Liu-hua; Shen, Ling-Hong; Song, Wei; He, Ben

    2010-01-01

    The endocannabinoid system has recently been attracted interest for its anti-inflammatory and anti-oxidative properties. In this study, we investigated the role of the endocannabinoid system in regulating the oxidized low-density lipoprotein (oxLDL)-induced inflammatory response in macrophages. RAW264.7 mouse macrophages and peritoneal macrophages isolated from Sprague-Dawley (SD) rats were exposed to oxLDL with or without the synthetic cannabinoid WIN55,212-2. To assess the inflammatory response, reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF- α) levels were determined, and activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B signaling pathways were assessed. We observed that: i) oxLDL strongly induced ROS generation and TNF- α secretion in murine macrophages; ii) oxLDL-induced TNF- α and ROS levels could be lowered considerably by WIN55,212-2 via inhibition of MAPK (ERK1/2) signaling and NF-kappa B activity; and iii) the effects of WIN55212-2 were attenuated by the selective CB2 receptor antagonist AM630. These results demonstrate the involvement of the endocannabinoid system in regulating the oxLDL-induced inflammatory response in macrophages, and indicate that the CB2 receptor may offer a novel pharmaceutical target for treating atherosclerosis. PMID:20305287

  5. Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways*

    PubMed Central

    Rispal, Delphine; Eltschinger, Sandra; Stahl, Michael; Vaga, Stefania; Bodenmiller, Bernd; Abraham, Yann; Filipuzzi, Ireos; Movva, N. Rao; Aebersold, Ruedi; Helliwell, Stephen B.; Loewith, Robbie

    2015-01-01

    Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology. PMID:25882841

  6. A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s

    PubMed Central

    Calabuig-Navarro, M. V.; Jackson, K. G.; Kemp, C. F.; Leake, D. S.; Walden, C. M.; Lovegrove, J. A.; Minihane, A. M.

    2017-01-01

    At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4–6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism. Trial registration number NCT01522482. PMID:28276521

  7. The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells.

    PubMed

    Cerovac, Vesna; Monteserin-Garcia, Jose; Rubinfeld, Hadara; Buchfelder, Michael; Losa, Marco; Florio, Tullio; Paez-Pereda, Marcelo; Stalla, Günter K; Theodoropoulou, Marily

    2010-01-15

    Rapamycin and its analogues have significant antiproliferative action against a variety of tumors. However, sensitivity to rapamycin is reduced by Akt activation that results from the ablative effects of rapamycin on a p70 S6K-induced negative feedback loop that blunts phosphoinositide 3-kinase (PI3K)-mediated support for Akt activity. Thus, sensitivity to rapamycin might be increased by imposing an upstream blockade to the PI3K/Akt pathway. Here, we investigated this model using the somatostatin analogue octreotide as a tool to decrease levels of activated Ser(473)-phosphorylated Akt (pAkt-Ser(473)) in pituitary tumor cells that express somatostatin receptors. Octreotide increased levels of phosphorylated insulin receptor substrate-1 that were suppressed by rapamycin, subsequently decreasing levels of pAkt-Ser(473) through effects on phosphotyrosine phosphatase SHP-1. Octreotide potentiated the antiproliferative effects of rapamycin in immortalized pituitary tumor cells or human nonfunctioning pituitary adenoma cells in primary cell culture, sensitizing tumor cells even to low rapamycin concentrations. Combined treatment of octreotide and rapamycin triggered G(1) cell cycle arrest, decreasing E2F transcriptional activity and cyclin E levels by increasing levels of p27/Kip1. These findings show that adjuvant treatment with a somatostatin analogue can sensitize pituitary tumor cells to the antiproliferative effects of rapamycin.

  8. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells.

    PubMed

    Sotthibundhu, Areechun; McDonagh, Katya; von Kriegsheim, Alexander; Garcia-Munoz, Amaya; Klawiter, Agnieszka; Thompson, Kerry; Chauhan, Kapil Dev; Krawczyk, Janusz; McInerney, Veronica; Dockery, Peter; Devine, Michael J; Kunath, Tilo; Barry, Frank; O'Brien, Timothy; Shen, Sanbing

    2016-11-15

    Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of

  9. Inhibition of low-density lipoprotein oxidation and up-regulation of low-density lipoprotein receptor in HepG2 cells by tropical plant extracts.

    PubMed

    Salleh, Mohd Nizar; Runnie, Irine; Roach, Paul D; Mohamed, Suhaila; Abeywardena, Mahinda Y

    2002-06-19

    Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.

  10. Store-operated calcium entry-activated autophagy protects EPC proliferation via the CAMKK2-MTOR pathway in ox-LDL exposure.

    PubMed

    Yang, Jie; Yu, Jie; Li, Dongdong; Yu, Sanjiu; Ke, Jingbin; Wang, Lianyou; Wang, Yanwei; Qiu, Youzhu; Gao, Xubin; Zhang, Jihang; Huang, Lan

    2017-01-02

    Improving biological functions of endothelial progenitor cells (EPCs) is beneficial to maintaining endothelium homeostasis and promoting vascular re-endothelialization. Because macroautophagy/autophagy has been documented as a double-edged sword in cell functions, its effects on EPCs remain to be elucidated. This study was designed to explore the role and molecular mechanisms of store-operated calcium entry (SOCE)-activated autophagy in proliferation of EPCs under hypercholesterolemia. We employed oxidized low-density lipoprotein (ox-LDL) to mimic hypercholesterolemia in bone marrow-derived EPCs from rat. Ox-LDL dose-dependently activated autophagy flux, while inhibiting EPC proliferation. Importantly, inhibition of autophagy either by silencing Atg7 or by 3-methyladenine treatment, further aggravated proliferative inhibition by ox-LDL, suggesting the protective effects of autophagy against ox-LDL. Interestingly, ox-LDL increased STIM1 expression and intracellular Ca 2+ concentration. Either Ca 2+ chelators or deficiency in STIM1 attenuated ox-LDL-induced autophagy activation, confirming the involvement of SOCE in the process. Furthermore, CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) activation and MTOR (mechanistic target of rapamycin [serine/threonine kinase]) deactivation were associated with autophagy modulation. Together, our results reveal a novel signaling pathway of SOCE-CAMKK2 in the regulation of autophagy and offer new insights into the important roles of autophagy in maintaining proliferation and promoting the survival capability of EPCs. This may be beneficial to improving EPC transplantation efficacy and enhancing vascular re-endothelialization in patients with hypercholesterolemia.

  11. Ox-LDL increases OX40L in endothelial cells through a LOX-1-dependent mechanism

    PubMed Central

    Dong, Q.; Xiang, R.; Zhang, D.Y.; Qin, S.

    2013-01-01

    Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression. PMID:24068192

  12. Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolaemia.

    PubMed

    Jeenah, M; September, W; Graadt van Roggen, F; de Villiers, W; Seftel, H; Marais, D

    1993-01-04

    Simvastatin, an inhibitor of HMG CoA reductase, lowers the plasma total cholesterol and LDL-cholesterol concentration in familial hypercholesterolemic patients. The efficacy of the drug shows considerable inter-individual variation, however. In this study we have assessed the influence of certain LDL-receptor gene mutations on this variation. A group of 20 male and female heterozygotic familial hypercholesterolemic patients, all Afrikaners and each bearing one of two different LDL receptor gene mutations, FH Afrikaner-1 (FH1) and FH Afrikaner-2 (FH2), was treated with simvastatin (40 mg once daily) for 18 months. The average reduction in total plasma cholesterol was 35.3% in the case of the FH2 men but only 23.2% in that of the FH1 men (P = 0.005); the reduction in LDL cholesterol concentrations was also greater in the FH2 group (39% as opposed to 27.1%, P = 0.02). The better response of the FH2 group was also evident when men and women were considered together. Female FH1 patients responded better to simvastatin treatment, however, than did males with the same gene defect. Mutations at the LDL-receptor locus may thus play a significant role in the variable efficacy of the drug. The particular mutations in the males of this group may have contributed up to 35% of the variance in total cholesterol response and 29% of the variance in LDL-cholesterol response to simvastatin treatment.

  13. Stress Conditions Promote Yeast Gap1 Permease Ubiquitylation and Down-regulation via the Arrestin-like Bul and Aly Proteins*

    PubMed Central

    Crapeau, Myriam; Merhi, Ahmad; André, Bruno

    2014-01-01

    Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation. PMID:24942738

  14. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis.

    PubMed

    Masana, Luis; Girona, Josefa; Ibarretxe, Daiana; Rodríguez-Calvo, Ricardo; Rosales, Roser; Vallvé, Joan-Carles; Rodríguez-Borjabad, Cèlia; Guardiola, Montserrat; Rodríguez, Marina; Guaita-Esteruelas, Sandra; Oliva, Iris; Martínez-Micaelo, Neus; Heras, Mercedes; Ferré, Raimon; Ribalta, Josep; Plana, Núria

    While the impact of very low concentrations of low-density lipoprotein cholesterol (LDL-C) on cardiovascular prevention is very reassuring, it is intriguing to know what effect these extremely low LDL-C concentrations have on lipid homoeostasis. The evidence supporting the safety of extremely low LDL levels comes from genetic studies and clinical drug trials. Individuals with lifelong low LDL levels due to mutations in genes associated with increased LDL-LDL receptor (LDLR) activity reveal no safety issues. Patients achieving extremely low LDL levels in the IMPROVE-IT and FOURIER, and the PROFICIO and ODYSSEY programs seem not to have an increased prevalence of adverse effects. The main concern regarding extremely low LDL-C plasma concentrations is the adequacy of the supply of cholesterol, and other molecules, to peripheral tissues. However, LDL proteomic and kinetic studies reaffirm that LDL is the final product of endogenous lipoprotein metabolism. Four of 5 LDL particles are cleared through the LDL-LDLR pathway in the liver. Given that mammalian cells have no enzymatic systems to degrade cholesterol, the LDL-LDLR pathway is the main mechanism for removal of cholesterol from the body. Our focus, therefore, is to review, from a physiological perspective, why such extremely low LDL-C concentrations do not appear to be detrimental. We suggest that extremely low LDL-C levels due to increased LDLR activity may be a surrogate of adequate LDL-LDLR pathway function. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. Induction of Melanogenesis by Rapamycin in Human MNT-1 Melanoma Cells

    PubMed Central

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon

    2012-01-01

    Background Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. Objective The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. Methods In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. Results In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Conclusion Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells. PMID:22577264

  16. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells.

    PubMed

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon; Yoon, Tae-Jin

    2012-05-01

    Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells.

  17. LDL oxidation by THP-1 monocytes: implication of HNP-1, SgIII and DMT-1.

    PubMed

    He, Chunyan; Huang, Rui; Du, Fen; Zheng, Fang; Wei, Lei; Wu, Junzhu

    2009-04-01

    Oxidized low-density lipoprotein (oxLDL) plays an important role in the pathogenesis of atherosclerosis. However, the mechanisms of the initiation and progression of LDL oxidation by cells are still unknown. We investigated the molecular mechanism underlying THP-1 cell-mediated LDL oxidation. LDL oxidation was monitored at 234 nm by detecting the formation of conjugated dienes. cDNA array analysis was applied to profile changes in gene expression of human THP-1 monocytes in response to LDL stimulation. The mRNA and protein levels of secretogranin III (SgIII), divalent metal transporter (DMT-1) and human alpha-defensin 1 (HNP-1) were determined by real-time RT-PCR and Western blotting respectively. Eukaryotic expression vectors containing full-length cDNA sequence of HNP-1 (pEGFP-C1/HNP-1) SgIII (pEGFP-C1/SgIII) or DMT-1 (pEGFP-C1/DMT-1) were constructed and transfected to THP-1 cells. The effects of overexpression of these three genes on THP-1 cell-mediated LDL oxidation were observed. LDL oxidation was most pronounced after LDL was incubated with THP-1 cells for 9 h. 1651 genes in total were detected by cDNA array analysis in THP-1 cells with or without LDL treatment for 9 h. Thirteen genes with >2-fold relative expression difference were identified, including nine genes whose expression was up-regulated and four genes whose expression was down-regulated. Among the up-regulated genes, SgIII, DMT-1 and HNP-1 were reported to be associated with atherosclerosis. The increased mRNA expressions of these three genes were confirmed by real-time RT-PCR. Western blotting analysis demonstrated that protein expressions of SgIII and DMT-1 were also enhanced in THP-1 cells in response to LDL. Furthermore, transient overexpression of HNP-1, SgIII or DMT-1 in THP-1 cells significantly increased THP-1 cell-mediated LDL oxidation. Our data suggest that SgIII, DMT-1 and HNP-1 are implicated in cell-mediated LDL oxidation.

  18. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms

    PubMed Central

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang

    2014-01-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27Kip1, p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27Kip1 at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN. PMID:25349217

  19. Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain.

    PubMed

    Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao

    2008-06-01

    Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.

  20. Solution structure of the Legionella pneumophila Mip-rapamycin complex.

    PubMed

    Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius

    2008-03-17

    Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. We have solved the solution structure of free Mip77-213 and the Mip77-213-rapamycin complex by NMR spectroscopy. Mip77-213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors.

  1. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  2. Epigenetic down regulation of G protein-coupled estrogen receptor (GPER) functions as a tumor suppressor in colorectal cancer.

    PubMed

    Liu, Qiao; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Yang, Xiangling; Huang, Hongbin; Liu, Huanliang; Du, Jun; Wang, Hongsheng

    2017-05-05

    Estrogenic signals are suggested to have protection roles in the development of colorectal cancer (CRC). The G protein-coupled estrogen receptor (GPER) has been reported to mediate non-genomic effects of estrogen in hormone related cancers except CRC. Its expression and functions in CRC were investigated. The expression of GPER and its associations with clinicopathological features were examined. The mechanisms were further investigated using cells, mouse xenograft models, and clinical human samples. GPER was significantly (p < 0.01) down regulated in CRC tissues compared with their matched adjacent normal tissues in our two cohorts and three independent investigations from Oncomine database. Patients whose tumors expressing less (n = 36) GPER showed significant (p < 0.01) poorer survival rate as compared with those with greater levels of GPER (n = 54). Promoter methylation and histone H3 deacetylation were involved in the down regulation of GPER in CRC cell lines and clinical tissues. Activation of GPER by its specific agonist G-1 inhibited proliferation, induced cell cycle arrest, mitochondrial-related apoptosis and endoplasmic reticulum (ER) stress of CRC cells. The upregulation of reactive oxygen species (ROS) induced sustained ERK1/2 activation participated in G-1 induced cell growth arrest. Further, G-1 can inhibit the phosphorylation, nuclear localization, and transcriptional activities of NF-κB via both canonical IKKα/ IκBα pathways and phosphorylation of GSK-3β. Xenograft model based on HCT-116 cells confirmed that G-1 can suppress the in vivo progression of CRC. Epigenetic down regulation of GPER acts as a tumor suppressor in colorectal cancer and its specific activation might be a potential approach for CRC treatment.

  3. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.

    PubMed

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan

    2015-07-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN. © 2014 by the Society for Experimental Biology and Medicine.

  4. An overview of rapamycin: from discovery to future perspectives.

    PubMed

    Yoo, Young Ji; Kim, Hanseong; Park, Sung Ryeol; Yoon, Yeo Joon

    2017-05-01

    Rapamycin is an immunosuppressive metabolite produced from several actinomycete species. Besides its immunosuppressive activity, rapamycin and its analogs have additional therapeutic potentials, including antifungal, antitumor, neuroprotective/neuroregenerative, and lifespan extension activities. The core structure of rapamycin is derived from (4R,5R)-4,5-dihydrocyclohex-1-ene-carboxylic acid that is extended by polyketide synthase. The resulting linear polyketide chain is cyclized by incorporating pipecolate and further decorated by post-PKS modification enzymes. Herein, we review the discovery and biological activities of rapamycin as well as its mechanism of action, mechanistic target, biosynthesis, and regulation. In addition, we introduce the many efforts directed at enhancing the production of rapamycin and generating diverse analogs and also explore future perspectives in rapamycin research. This review will also emphasize the remarkable pilot studies on the biosynthesis and production improvement of rapamycin by Dr. Demain, one of the world's distinguished scientists in industrial microbiology and biotechnology.

  5. Endothelial LOX-1 activation differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and ERK1/2 pathways.

    PubMed

    Akhmedov, Alexander; Camici, Giovanni G; Reiner, Martin F; Bonetti, Nicole R; Costantino, Sarah; Holy, Erik W; Spescha, Remo D; Stivala, Simona; Schaub Clerigué, Ariane; Speer, Thimoteus; Breitenstein, Alexander; Manz, Jasmin; Lohmann, Christine; Paneni, Francesco; Beer, Juerg-Hans; Lüscher, Thomas F

    2017-04-01

    The lectin-like oxLDL receptor-1 (LOX-1) promotes endothelial uptake of oxidized low-density lipoprotein (oxLDL) and plays an important role in atherosclerosis and acute coronary syndromes (ACS). However, its role in arterial thrombus formation remains unknown. We investigated whether LOX-1 plays a role in arterial thrombus formation in vivo at different levels of oxLDL using endothelial-specific LOX-1 transgenic mice (LOX-1TG) and a photochemical injury thrombosis model of the carotid artery. In mice fed a normal chow diet, time to arterial occlusion was unexpectedly prolonged in LOX-1TG as compared to WT. In line with this, tissue factor (TF) expression and activity in carotid arteries of LOX-1TG mice were reduced by half. This effect was mediated by activation of octamer transcription factor 1 (Oct-1) leading to upregulation of the mammalian deacetylase silent information regulator-two 1 (SIRT1) via binding to its promoter and subsequent inhibition of NF-κB signaling. In contrast, intravenous injection of oxLDL as well as high cholesterol diet for 6 weeks led to a switch from the Oct-1/SIRT1 signal transduction pathway to the ERK1/2 pathway and in turn to an enhanced thrombotic response with shortened occlusion time. Thus, LOX-1 differentially regulates thrombus formation in vivo depending on the degree of activation by oxLDL. At low oxLDL levels LOX-1 activates the protective Oct-1/SIRT1 pathway, while at higher levels of the lipoprotein switches to the thrombogenic ERK1/2 pathway. These findings may be important for arterial thrombus formation in ACS and suggest that SIRT1 may represent a novel therapeutic target in this context. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  6. Rapamycin-based inducible translocation systems for studying phagocytosis.

    PubMed

    Bohdanowicz, Michal; Fairn, Gregory D

    2011-01-01

    Phagocytosis is an immune receptor-mediated process whereby cells engulf large particles. The process is dynamic and requires several localized factors acting in concert with and sequentially after the engagement of immune receptors to envelope the particle. Once the particle is internalized, the nascent -phagosome undergoes a series of events leading to its maturation to the microbicidal phagolysosome. Investigating these dynamic and temporally controlled series of events in live cells requires noninvasive methods. The ability to rapidly recruit the proteins of interest to the sites of phagocytosis or to nascent phagosomes would help dissect the regulatory mechanisms involved during phagocytosis. Here, we describe a general approach to express in RAW264.7 murine macrophages, a genetically encoded rapamycin--induced heterodimerization system. In the presence of rapamycin, tight association between FK506-binding protein (FKBP) and FKBP rapamycin-binding protein (FRB) is observed. Based on this principle, a synthetic system consisting of a targeting domain attached to FKBP can recruit a protein of interest fused to FRB upon the addition of rapamycin. Previously, this technique has been used to target lipid-modifying enzymes and small GTPases to the phagosome or plasma membrane. The recruitment of the FRB module can be monitored by fluorescent microscopy if a fluorescent protein is fused to the FRB sequence. While the focus of this chapter is on phagocytic events, this method can be employed to study any organelle of interest when the appropriate targeting sequence is used.

  7. p65 down-regulates DEPTOR expression in response to LPS stimulation in hepatocytes.

    PubMed

    Yu, Xiaoling; Jin, Dan; Yu, An; Sun, Jun; Chen, Xiaodong; Yang, Zaiqing

    2016-09-01

    DEPTOR, a novel endogenous inhibitor of mTOR, plays an important role in regulating the inflammatory response in vascular endothelial cells (ECs) and in mouse skeletal muscle. However, the regulatory mechanism of DEPTOR transcription and its effects on liver inflammation are unknown presently. Here we reported the role of DEPTOR in regulating inflammatory response in mouse liver-derived Hepa1-6 cells and in a mouse model with LPS-induced hepatic inflammation. The results revealed that DEPTOR over-expression in Hepa1-6 liver cells increased the mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). Contrasting results were observed in Hepa1-6 cells with DEPTOR interference. Treatment Hepa1-6 cells with rapamycin, a specific inhibitor of mTORC1, increased MCP-1 mRNA, but have no significant effect on IL-6 mRNA. DEPTOR expression was down-regulated in Hepa1-6 cells with the treatment of inflammatory stimuli LPS or the over-expression of p65/NF-κB, a key inflammatory transcription factor. NF-κB antagonist (PDTC) and inhibitor (IκBα) blocked the effect of LPS on DEPTOR expression. The study in vivo showed that DEPTOR mRNA and protein were significantly reduced in a mouse model with LPS-induced hepatic inflammation, which was accompanied by a concurrent activation of the mTOR signaling pathway. Further, the transcriptional regulation of DEPTOR was explored, which revealed that DEPTOR promoter activity was significantly down-regulated by NF-κB. The progressive deletions and mutations demonstrated that the NF-κB binding motif situated at -145/-127 region is an essential component required for the DEPTOR promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that p65 can directly interact with the DEPTOR promoter DNA. Those results indicate DEPTOR regulates liver inflammation at least partially via mTORC1 pathway, and is down-regulated by LPS through p65. Copyright © 2016 Elsevier B.V. All

  8. Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2014-01-01

    Overactivation of the mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of syndromic forms of autism spectrum disorders (ASDs), such as tuberous sclerosis complex, neurofibromatosis 1, and fragile X syndrome. Administration of mTORC1 (mTOR complex 1) inhibitors (e.g. rapamycin) in syndromic mouse models of ASDs improved behavior, cognition, and neuropathology. However, since only a minority of ASDs are due to the effects of single genes (∼10%), there is a need to explore inhibition of mTOR activity in mouse models that may be more relevant to the majority of nonsyndromic presentations, such as the genetically inbred BTBR T(+)Itpr3(tf)/J (BTBR) mouse model of ASDs. BTBR mice have social impairment and exhibit increased stereotypic behavior. In prior work, d-cycloserine, a partial glycineB site agonist that targets the N-methyl-d-aspartate (NMDA) receptor, was shown to improve sociability in both Balb/c and BTBR mouse models of ASDs. Importantly, NMDA receptor activation regulates mTOR signaling activity. The current study investigated the ability of rapamycin (10mg/kg, i.p.×four days), an mTORC1 inhibitor, to improve sociability and stereotypic behavior in BTBR mice. Using a standard paradigm to assess mouse social behavior, rapamycin improved several measures of sociability in the BTBR mouse, suggesting that mTOR overactivation represents a therapeutic target that mediates or contributes to impaired sociability in the BTBR mouse model of ASDs. Interestingly, there was no effect of rapamycin on stereotypic behaviors in this mouse model. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Autophagy and cardiovascular aging: lesson learned from rapamycin.

    PubMed

    Nair, Sreejayan; Ren, Jun

    2012-06-01

    The biological aging process is commonly associated with increased risk of cardiovascular diseases. Several theories have been put forward for aging-associated deterioration in ventricular function, including attenuation of growth hormone (insulin-like growth factors and insulin) signaling, loss of DNA replication and repair, histone acetylation and accumulation of reactive oxygen species. Recent evidence has depicted a rather unique role of autophagy as another important pathway in the regulation of longevity and senescence. Autophagy is a predominant cytoprotective (rather than self-destructive) process. It carries a prominent role in determination of lifespan. Reduced autophagy has been associated with aging, leading to accumulation of dysfunctional or damaged proteins and organelles. To the contrary, measures such as caloric restriction and exercise may promote autophagy to delay aging and associated comorbidities. Stimulation of autophagy using rapamycin may represent a novel strategy to prolong lifespan and combat aging-associated diseases. Rapamycin regulates autophagy through inhibition of the nutrient-sensing molecule mammalian target of rapamycin (mTOR). Inhibition of mTOR through rapamycin and caloric restriction promotes longevity. The purpose of this review is to recapitulate some of the recent advances in an effort to better understand the interplay between rapamycin-induced autophagy and decelerating cardiovascular aging.

  10. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members

    PubMed Central

    MacArthur, Jennifer M.; Bishop, Joseph R.; Stanford, Kristin I.; Wang, Lianchun; Bensadoun, André; Witztum, Joseph L.; Esko, Jeffrey D.

    2007-01-01

    We examined the role of hepatic heparan sulfate in triglyceride-rich lipoprotein metabolism by inactivating the biosynthetic gene GlcNAc N-deacetylase/N-sulfotransferase 1 (Ndst1) in hepatocytes using the Cre-loxP system, which resulted in an approximately 50% reduction in sulfation of liver heparan sulfate. Mice were viable and healthy, but they accumulated triglyceride-rich lipoprotein particles containing apoB-100, apoB-48, apoE, and apoCI-IV. Compounding the mutation with LDL receptor deficiency caused enhanced accumulation of both cholesterol- and triglyceride-rich particles compared with mice lacking only LDL receptors, suggesting that heparan sulfate participates in the clearance of cholesterol-rich lipoproteins as well. Mutant mice synthesized VLDL normally but showed reduced plasma clearance of human VLDL and a corresponding reduction in hepatic VLDL uptake. Retinyl ester excursion studies revealed that clearance of intestinally derived lipoproteins also depended on hepatocyte heparan sulfate. These findings show that under normal physiological conditions, hepatic heparan sulfate proteoglycans play a crucial role in the clearance of both intestinally derived and hepatic lipoprotein particles. PMID:17200715

  11. Biphasic Rapamycin Effects in Lymphoma and Carcinoma Treatment.

    PubMed

    Liu, Yang; Pandeswara, Srilakshmi; Dao, Vinh; Padrón, Álvaro; Drerup, Justin M; Lao, Shunhua; Liu, Aijie; Hurez, Vincent; Curiel, Tyler J

    2017-01-15

    mTOR drives tumor growth but also supports T-cell function, rendering the applications of mTOR inhibitors complex especially in T-cell malignancies. Here, we studied the effects of the mTOR inhibitor rapamycin in mouse EL4 T-cell lymphoma. Typical pharmacologic rapamycin (1-8 mg/kg) significantly reduced tumor burden via direct suppression of tumor cell proliferation and improved survival in EL4 challenge independent of antitumor immunity. Denileukin diftitox (DD)-mediated depletion of regulatory T cells significantly slowed EL4 growth in vivo in a T-cell-dependent fashion. However, typical rapamycin inhibited T-cell activation and tumor infiltration in vivo and failed to boost DD treatment effects. Low-dose (LD) rapamycin (75 μg/kg) increased potentially beneficial CD44hiCD62L + CD8 + central memory T cells in EL4 challenge, but without clinical benefit. LD rapamycin significantly enhanced DD treatment efficacy, but DD plus LD rapamycin treatment effects were independent of antitumor immunity. Instead, rapamycin upregulated EL4 IL2 receptor in vitro and in vivo, facilitating direct DD tumor cell killing. LD rapamycin augmented DD efficacy against B16 melanoma and a human B-cell lymphoma, but not against human Jurkat T-cell lymphoma or ID8agg ovarian cancer cells. Treatment effects correlated with IL2R expression, but mechanisms in some tumors were not fully defined. Overall, our data define a distinct, biphasic mechanisms of action of mTOR inhibition at doses that are clinically exploitable, including in T-cell lymphomas. Cancer Res; 77(2); 520-31. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. The Role of Siglec-1 and SR-BI Interaction in the Phagocytosis of Oxidized Low Density Lipoprotein by Macrophages

    PubMed Central

    Li, Chang; Zhu, Lin; Wu, Li-juan; Zhong, Ren-qian

    2013-01-01

    Background Macrophages play a proatherosclerotic role in atherosclerosis via oxLDL uptake. As an adhesion molecular of I-type lectins, Siglec-1 is highly expressed on circulating monocytes and plaque macrophages of atherosclerotic patients, but the exact role of Siglec-1 has not been elucidated. Methods In this study, oxLDL was used to stimulate Siglec-1 and some oxLDL receptors (SR-BI, CD64, CD32B, LOX-1 and TLR-4) expression on bone marrow-derived macrophages, whereas small interfering RNA was used to down-regulate Siglec-1. Meanwhile, an ELISA-based assay for Siglec-1-oxLDL interaction was performed, and co-immunoprecipitation (co-IP) and laser scanning confocal microscopy (LSCM) were used to determine the role of Siglec-1 in oxLDL uptake by macrophages. Results We found that oxLDL could up-regulate the expression of various potential oxLDL receptors, including Siglec-1, in a dose-dependent manner. Moreover, down-regulation of Siglec-1 could attenuate oxLDL uptake by Oil red O staining. LSCM revealed that Siglec-1 and CD64/SR-BI may colocalize on oxLDL-stimulated macrophage surface, whereas co-IP showed that Siglec-1 and SR-BI can be immunoprecipitated by each other. However, no direct interaction between Siglec-1 and oxLDL was found in the in vitro protein interaction system. Conclusions Thus, Siglec-1 can interact with SR-BI in the phagocytosis of oxLDL by macrophages, rather than act as an independent receptor for oxLDL. PMID:23520536

  13. Overexpression of 15-lipoxygenase in the vascular endothelium is associated with increased thymic apoptosis in LDL receptor-deficient mice.

    PubMed

    Afek, A; Zurgil, N; Bar-Dayan, Y; Polak-Charcon, S; Goldberg, I; Deutsch, M; Kopolovich, J; Keren, G; Harats, D; George, J

    2004-01-01

    15-Lipoxygenase (15-LO) is a nonheme iron-containing enzyme that catalyzes the peroxidation of fatty acids. Herein, we studied the effect of 15-LO overexpression in the vascular endothelium on thymocyte apoptosis by evaluating thymuses from low-density lipoprotein receptor-deficient (LDL-RD) mice and LDL-RD/15-LO mice. Thymuses were evaluated by immunohistochemistry and by TUNEL whereas in vitro studies were carried out by employing freshly isolated thymocytes from the respective mice and evaluation of apoptosis by propidium iodide and annexin V cytometry. The apoptotic index in LDL-RD/15-LO mice was significantly higher than in the LDL-RD mice. In the thymic medulla the difference was smaller, although still significant. Freshly isolated thymus cells from LDL-RD/15-LO mice exhibited a higher rate of spontaneous cell death than controls. Incubation of thymus cells in the presence of the cell-permeable caspase-3 inhibitor DEVD-CMK resulted in a decrease in the frequency of apoptotic cells in LDL-RD/15-LO thymocytes, whereas no effect was evident in control thymocytes. The antioxidant N-acetylcysteine causes the increase in apoptosis in both groups. LDL-RD/15-LO mice exhibit increased thymocyte apoptosis both in vivo and in vitro. These findings may suggest a role for 15-LO in the natural selection of thymocytes.

  14. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster.

    PubMed

    Spady, D K; Dietschy, J M

    1985-07-01

    The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver.

  15. The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines.

    PubMed Central

    Hultsch, T; Martin, R; Hohman, R J

    1992-01-01

    The immunosuppressive drugs FK506 and cyclosporin A have an identical spectrum of activities with respect to IgE receptor (Fc epsilon RI)-mediated exocytosis from mast cells and T cell receptor-mediated transcription of IL-2. These findings suggest a common step in receptor-mediated signal transduction leading to exocytosis and transcription and imply that immunosuppressive drugs target specific signal transduction pathways, rather than specific cell types. This hypothesis is supported by studies on the effect of rapamycin on IL-3 dependent proliferation of the rodent mast cell line PT18. Rapamycin inhibits proliferation of PT18 cells, achieving a plateau of 80% inhibition at 1 nM. This inhibition is prevented in a competitive manner by FK506, a structural analogue of rapamycin. Proliferation of rat basophilic leukemia cells and WEHI-3 cells was also inhibited, at doses comparable to those shown previously to inhibit IL-2-dependent proliferation of cytotoxic T lymphocyte line (CTLL) cells. In contrast, proliferation of A-431 cells, a epidermoid cell line, was not affected by rapamycin. DNA histograms indicate that complexes formed between the rapamycin-FK506-binding protein (FKBP) and rapamycin arrest-proliferating PT18 cells in the G0/G1-phase. It is concluded that FKBP-rapamycin complexes may inhibit proliferative signals emanating from IL-3 receptors, resulting in growth arrest of cytokine-dependent, hematopoietic cells. PMID:1384815

  16. Solution structure of the Legionella pneumophila Mip-rapamycin complex

    PubMed Central

    Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius

    2008-01-01

    Background Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. Results We have solved the solution structure of free Mip77–213 and the Mip77–213-rapamycin complex by NMR spectroscopy. Mip77–213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. Conclusion The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors. PMID:18366641

  17. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    PubMed

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  18. Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids.

    PubMed

    Jeong, Yu-Jin; Choi, Yean-Jung; Kwon, Hyang-Mi; Kang, Sang-Wook; Park, Hyoung-Sook; Lee, Myungsook; Kang, Young-Hee

    2005-05-01

    High plasma level of cholesterol is a well-known risk factor for atherosclerotic diseases. Oxidized LDL induces cellular and nuclear damage that leads to apoptotic cell death. We tested the hypothesis that flavonoids may function as antioxidants with regard to LDL incubated with 5 microm-Cu(2+) alone or in combination with human umbilical vein endothelial cells (HUVEC). Cytotoxicity and formation of thiobarbituric acid-reactive substances induced by Cu(2+)-oxidized LDL were examined in the presence of various subtypes of flavonoid. Flavanols, flavonols and flavanones at a non-toxic dose of 50 microm markedly inhibited LDL oxidation by inhibiting the formation of peroxidative products. In contrast, the flavones luteolin and apigenin had no such effect, with >30 % of cells killed after exposure to 0.1 mg LDL/ml. Protective flavonoids, especially (-)-epigallocatechin gallate, quercetin, rutin and hesperetin, inhibited HUVEC nuclear condensation and fragmentation induced by Cu(2+)-oxidized LDL. In addition, immunochemical staining and Western blot analysis revealed that anti-apoptotic Bcl-2 expression was enhanced following treatment with these protective flavonoids. However, Bax expression and caspase-3 cleavage stimulated by 18 h incubation with oxidized LDL were reduced following treatment with these protective flavonoids. The down-regulation of Bcl-2 and up-regulation of caspase-3 activation were reversed by the cytoprotective flavonoids, (-)-epigallocatechin gallate, quercetin and hesperetin, at >/=10 microm. These results suggest that flavonoids may differentially prevent Cu(2+)-oxidized LDL-induced apoptosis and promote cell survival as potent antioxidants. Survival potentials of certain flavonoids against cytotoxic oxidized LDL appeared to stem from their disparate chemical structure. Furthermore, dietary flavonoids may have therapeutic potential for protecting the endothelium from oxidative stress and oxidized LDL-triggered atherogenesis.

  19. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration.

    PubMed

    Bhattacharjee, Surjyadipta; Zhao, Yuhai; Dua, Prerna; Rogaev, Evgeny I; Lukiw, Walter J

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3'UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-kB - [corrected] inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-kB - [corrected] sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular

  20. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration

    PubMed Central

    Dua, Prerna; Rogaev, Evgeny I.; Lukiw, Walter J.

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3’UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-B-inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-B-sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular medium; and (v) that anti

  1. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRzeta for degradation.

    PubMed

    Myers, Margaret D; Dragone, Leonard L; Weiss, Arthur

    2005-07-18

    Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)-CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP-/- thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRzeta chain expression as a result of a defect in TCRzeta degradation. Failure to degrade TCRzeta leads to an increased pool of fully assembled TCR-CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRzeta chain and the Src family kinase Lck, but not ZAP-70 (zeta-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.

  2. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    PubMed

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  3. Rapamycin reduces renal hypoxia, interstitial inflammation and fibrosis in a rat model of unilateral ureteral obstruction.

    PubMed

    Liu, Chun-feng; Liu, Hing; Fang, Yi; Jiang, Su-hua; Zhu, Jia-ming; Ding, Xiao-qiang

    2014-06-01

    The purpose of this study was to explore effects of rapamycin on renal hypoxia, interstitial inflammation and fibrosis, and the expression of transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), Flk-1 and Flt-1 in a rat model of unilateral ureteral obstruction (UUO). Male Sprague-Dawley rats (n=36) were randomly divided into three groups (n=12 per group): sham surgery, UUO and UUO plus rapamycin (0.2 mg/kg/d). Serum creatinine (Scr), blood urea nitrogen, uric acid, triglycerides, cholesterol and 24-h urine protein levels were measured. The extent of interstitial fibrosis was determined by Masson's trichrome staining. ED-1 positive macrophages, type III collagen, hypoxia, TGF-1, VEGF, Flk-1, and Flt-1 mRNA and protein expressions were detected using immunohistochemical staining, real-time PCR and Western blot. UUO induced an elevation in Scr, renal hypoxia, inflammation, interstitial fibrosis, TGF-β1, VEGF, Flk-1, and Flt-1 mRNA and protein expression levels (P < 0.05). Rapamycin alleviated the UUO-induced renal hypoxia, infiltration of inflammatory cells and tubulointerstitial fibrosis (at days 3 and 7). Rapamycin also down-regulated the UUO-induced elevated expression levels of TGF-β1 and Flt-1 mRNA and protein (P < 0.05). Rapamycin decreased VEGF mRNA and protein expression at day 3, and increased Flk-1 mRNA and protein expression at day 7, compared with the UUO group (P < 0.05). Rapamycin shows beneficial effects by reducing UUO-induced renal hypoxia, inflammation and tubulointerstitial fibrosis.

  4. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    PubMed

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant.

    PubMed

    Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B

    2004-11-05

    In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.

  6. The regulation of delta-opiate receptor density on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Moses, M. A.; Snell, C. R.

    1984-01-01

    The effect of exogenous substances on the expression of opiate receptors on 108CC15 neuroblastoma X glioma hybrid cells has been studied. Cell differentiation by culture in the presence of N6-O2-dibutyryl adenosine 3',5'-cyclic monophosphate induced a three fold increase in opiate receptor density. When the cells were grown in the presence of 10(-5) M morphine hydrochloride for up to 23 days, opiate receptor densities were reduced by only 30% when compared with matched controls. Culture in the presence of 10(-7) M D-Ala2-D-Leu5-enkephalin produced opiate receptor down regulation of 73% compared to controls after only 4 h of treatment. The down regulation process could be inhibited by continued exposure to D-Ala2 D-Leu5-enkephalin at concentrations greater than 4 nM; below this concentration down regulation was rapid and irreversible. A model to explain these observations is described. PMID:6322893

  7. Rapamycin Promotes the Survival and Adipogenesis of Ischemia-Challenged Adipose Derived Stem Cells by Improving Autophagy.

    PubMed

    Li, Chichi; Ye, Lechi; Yang, Li; Yu, Xiaofang; He, Yucang; Chen, Zhuojie; Li, Liqun; Zhang, Dan

    2017-01-01

    Ischemia is one of the main causes of the high rate of absorption of transplanted autologous fat. Autophagy allows cells to survive by providing energy under starvation. Rapamycin has been found to play a role in promoting autophagy. In this study, we investigated whether rapamycin participates in the survival and adipogenesis of ischemia-challenged adipose-derived stem cells (ADSCs) by regulating autophagy. Before the cells were exposed to oxygen-glucose deprivation (OGD), a simulated ischemic microenvironment, the level of autophagy was reduced or increased by lentiviral transfection with short hairpin RNA targeting microtubule-associated protein 1-light chain 3 gene (shRNA-LC3) or treatment with rapamycin, respectively. The level of autophagy was assessed by western blotting, transmission electron microscopythen the apoptosis ratio was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and flow cytometry. Adipogenesis was further evaluated by oil red O staining and the expressions level of some specific proteins for adipocytes. shRNA-LC3 and rapamycin treatment effectively decreased and improved the level of autophagy in cells with or without OGD challenge, respectively. In addition, autophagy inhibition increased the apoptosis rate and activated caspase-3 expression level in response to OGD, and these were markedly inhibited by rapamycin preconditioning. During adipogenesis, autophagy inhibition decreased not only oil droplet accumulation but also lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor gamma (PPARγ) expression in cells with or without OGD challenge. However, autophagy promotion by rapamycin increased oil droplet accumulation and LPL and PPARγ expression. Rapamycin may promote the survival and adipogenesis of ischemia-challenged ADSCs by upregulating autophagy. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  9. Krüppel-like factor 4 is induced by rapamycin and mediates the anti-proliferative effect of rapamycin in rat carotid arteries after balloon injury.

    PubMed

    Wang, Ying; Zhao, Beilei; Zhang, Yi; Tang, Zhihui; Shen, Qiang; Zhang, Youyi; Zhang, Weizhen; Du, Jie; Chien, Shu; Wang, Nanping

    2012-04-01

    The transcription factor, Krüppel-like factor 4 (KLF4), plays an important role in regulating the proliferation of vascular smooth muscle cells. This study aimed to examine the effect of rapamycin on the expression of KLF4 and the role of KLF4 in arterial neointimal formation. Expression of KLF4 was monitored using real-time PCR and immunoblotting in cultured vascular smooth muscle cells. and in rat carotid arteries in vivo after balloon injury. Adenovirus-mediated overexpression and siRNA-mediated knockdown of KLF4 were used to examine the role of KLF4 in mediating the anti-proliferative role of rapamycin . KLF4-regulated genes were identified using cDNA microarray. Rapamycin induced the expression of KLF4 in vitro and in vivo. Overexpression of KLF4 inhibited cell proliferation and the activity of mammalian target of rapamycin (mTOR) and its downstream pathways, including 4EBP-1 and p70S6K in vascular smooth muscle cells and prevented the neointimal formation in the balloon-injured arteries. KLF4 up-regulated the expression of GADD45β, p57(kip2) and p27(kip1) . Furthermore, knockdown of KLF4 attenuated the anti-proliferative effect of rapamycin both in vitro and in vivo. KLF4 plays an important role in mediating the anti-proliferative effect of rapamycin in VSMCs and balloon-injured arteries. Thus, it is a potential target for the treatment of proliferative vascular disorders such as restenosis after angioplasty. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Toll-like Receptor-mediated Down-regulation of the Deubiquitinase Cylindromatosis (CYLD) Protects Macrophages from Necroptosis in Wild-derived Mice*

    PubMed Central

    Schworer, Stephen A.; Smirnova, Irina I.; Kurbatova, Irina; Bagina, Uliana; Churova, Maria; Fowler, Trent; Roy, Ananda L.; Degterev, Alexei; Poltorak, Alexander

    2014-01-01

    Pathogen recognition by the innate immune system initiates the production of proinflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to the host defense against pathogens or cause damage to host tissues. Receptor-interacting protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate the mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen on the basis of RIP1-mediated necroptosis in wild-derived MOLF/EiJ mice, which diverged from classical laboratory mice over a million years ago. When compared with C57BL/6, MOLF/EiJ macrophages were resistant to RIP1-mediated necroptosis induced by Toll-like receptors. Using a forward genetic approach in a backcross panel of mice, we identified cylindromatosis (CYLD), a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNF receptor signaling, as the gene conferring the trait. We demonstrate that CYLD is required for Toll-like receptor-induced necroptosis and describe a novel mechanism by which CYLD is down-regulated at the transcriptional level in MOLF/EiJ macrophages to confer protection from necroptosis. PMID:24706750

  11. Synergistic antitumor activity of the combination of salubrinal and rapamycin against human cholangiocarcinoma cells.

    PubMed

    Zhao, Xiaofang; Zhang, Chunyan; Zhou, Hong; Xiao, Bin; Cheng, Ying; Wang, Jinju; Yao, Fuli; Duan, Chunyan; Chen, Run; Liu, Youping; Feng, Chunhong; Li, Hong; Li, Jing; Dai, Rongyang

    2016-12-20

    Less is known about the roles of eukaryotic initiation factor alpha (eIF2α) in cholangiocarcinoma (CCA). Here, we report that eIF2α inhibitor salubrinal inhibits the proliferation of human CCA cells. Clinical application of mammalian target of rapamycin (mTOR) inhibitors only has moderate antitumor efficacy. Therefore, combination approaches may be required for effective clinical use of mTOR inhibitors. Here, we investigated the efficacy of the combination of salubrinal and rapamycin in the treatment of CCA. Our data demonstrate a synergistic antitumor effect of the combination of salubrinal and rapamycin against CCA cells. Rapamycin significantly inhibits the proliferation of CCA cells. However, rapamycin initiates a negative feedback activation of Akt. Inhibition of Akt by salubrinal potentiates the efficacy of rapamycin both in vitro and in vivo. Additionally, rapamycin treatment results in the up-regulation of Bcl-xL in a xenograft mouse model. It is notable that salubrinal inhibits rapamycin-induced Bcl-xL up-regulation in vivo. Taken together, our data suggest that salubrinal and rapamycin combination might be a new and effective strategy for the treatment of CCA.

  12. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia).

    PubMed

    Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S

    1996-03-01

    In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.

  13. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function

    PubMed Central

    Romanino, Klaas; Mazelin, Laetitia; Albert, Verena; Conjard-Duplany, Agnès; Lin, Shuo; Bentzinger, C. Florian; Handschin, Christoph; Puigserver, Pere; Zorzato, Francesco; Schaeffer, Laurent; Gangloff, Yann-Gaël; Rüegg, Markus A.

    2011-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is central to the control of cell, organ, and body size. Skeletal muscle-specific inactivation of mTORC1 in mice results in smaller muscle fibers, fewer mitochondria, increased glycogen stores, and a progressive myopathy that causes premature death. In mTORC1-deficient muscles, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which regulates mitochondrial biogenesis and glucose homeostasis, is strongly down-regulated. Here we tested whether induction of mitochondrial biogenesis pharmacologically or by the overexpression of PGC-1α is sufficient to reverse the phenotype of mice deficient for mTORC1. We show that both approaches normalize mitochondrial function, such as oxidative capacity and expression of mitochondrial genes. However, they do not prevent or delay the progressive myopathy. In addition, we find that mTORC1 has a much stronger effect than PGC-1α on the glycogen content in muscle. This effect is based on the strong activation of PKB/Akt in mTORC1-deficient mice. We also show that activation of PKB/Akt not only affects glycogen synthesis but also diminishes glycogen degradation. Thus, our work provides strong functional evidence that mitochondrial dysfunction in mice with inactivated mTORC1 signaling is caused by the down-regulation of PGC-1α. However, our data also show that the impairment of mitochondria does not lead directly to the lethal myopathy. PMID:22143799

  14. IL-20 is epigenetically regulated in NSCLC and down regulates the expression of VEGF.

    PubMed

    Baird, Anne-Marie; Gray, Steven G; O'Byrne, Kenneth J

    2011-08-01

    IL-20 is a pleiotrophic member of the IL-10 family and plays a role in skin biology and the development of haematopoietic cells. Recently, IL-20 has been demonstrated to have potential anti-angiogenic effects in non-small cell lung cancer (NSCLC) by down regulating COX-2. The expression of IL-20 and its cognate receptors (IL-20RA/B and IL-22R1) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of this family was examined in normal bronchial epithelial and NSCLC cell lines. Furthermore, the effect of IL-20 on VEGF family members was examined. The expression of IL-20 and its receptors are frequently dysregulated in NSCLC. IL-20RB mRNA was significantly elevated in NSCLC tumours (p<0.01). Protein levels of the receptors, IL-20RB and IL-22R1, were significantly increased (p<0.01) in the tumours of NSCLC patients. IL-20 and its receptors were found to be epigenetically regulated through histone post-translational modifications and DNA CpG residue methylation. In addition, treatment with recombinant IL-20 resulted in decreased expression of the VEGF family members at the mRNA level. This family of genes are dysregulated in NSCLC and are subject to epigenetic regulation. Whilst the anti-angiogenic properties of IL-20 require further clarification, targeting this family via epigenetic means may be a viable therapeutic option in lung cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer

    DTIC Science & Technology

    2010-05-01

    TITLE: Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer PRINCIPAL INVESTIGATOR...May 2009 - 30 Apr 2010 4. TITLE AND SUBTITLE Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer...telomerase as a potential target of AR signaling suppression by selenium . We found that combination of selenium and bicalutamide produced a robust down

  16. Profiling of the fetal and adult rat liver transcriptome and translatome reveals discordant regulation by the mechanistic target of rapamycin (mTOR).

    PubMed

    Boylan, Joan M; Sanders, Jennifer A; Neretti, Nicola; Gruppuso, Philip A

    2015-07-01

    The mechanistic target of rapamycin (mTOR) integrates growth factor signaling, nutrient abundance, cell growth, and proliferation. On the basis of our interest in somatic growth in the late gestation fetus, we characterized the role of mTOR in the regulation of hepatic gene expression and translation initiation in fetal and adult rats. Our strategy was to manipulate mTOR signaling in vivo and then characterize the transcriptome and translating mRNA in liver tissue. In adult rats, we used the nonproliferative growth model of refeeding after a period of fasting and the proliferative model of liver regeneration following partial hepatectomy. We also studied livers from preterm fetal rats (embryonic day 19) in which fetal hepatocytes are asynchronously proliferating. All three models employed rapamycin to inhibit mTOR signaling. Analysis of the transcriptome in fasted-refed animals showed rapamycin-mediated induction of genes associated with oxidative phosphorylation. Genes associated with RNA processing were downregulated. In liver regeneration, rapamycin induced genes associated with lysosomal metabolism, steroid metabolism, and the acute phase response. In fetal animals, rapamycin inhibited expression of genes in several functional categories that were unrelated to effects in the adult animals. Translation control showed marked fetal-adult differences. In both adult models, rapamycin inhibited the translation of genes with complex 5' untranslated regions, including those encoding ribosomal proteins. Fetal translation was resistant to the effects of rapamycin. We conclude that the mTOR pathway in liver serves distinct physiological roles in the adult and fetus, with the latter representing a condition of rapamycin resistance. Copyright © 2015 the American Physiological Society.

  17. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases.

    PubMed

    Xiang, Shilong; Li, Meng; Xie, Xishao; Xie, Zhoutao; Zhou, Qin; Tian, Yuanshi; Lin, Weiqiang; Zhang, Xiaohui; Jiang, Hong; Shou, Zhangfei; Chen, Jianghua

    2016-06-01

    Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Rapamycin has been previously shown to inhibit EMT of PMCs and prevent peritoneal fibrosis. In this study, we investigated the undefined molecular mechanisms by which rapamycin inhibits EMT of PMCs. To define the protective effect of rapamycin, we initially used a rat PD model which was daily infused with 20 mL of 4.25% high glucose (HG) dialysis solution for 6 weeks to induce fibrosis. The HG rats showed decreased ultrafiltration volume and obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1. Rapamycin significantly ameliorated those pathological changes. Next, we treated rat PMCs with HG to induce EMT and/or rapamycin for indicated time. Rapamycin significantly inhibited HG-induced EMT, which manifests as increased expression of α-SMA, fibronectin, and collagen I, decreased expression of E-cadherin, and increased mobility. HG increased the phosphorylation of PI3K, Akt, and mTOR. Importantly, rapamycin inhibits the RhoA, Rac1, and Cdc42 activated by HG. Moreover, rapamycin repaired the pattern of F-actin distribution induced by HG, reducing the formation of stress fiber, focal adhesion, lamellipodia, and filopodia. Thus, rapamycin shows an obvious protective effect on HG-induced EMT, by inhibiting the activation of Rho GTPases (RhoA, Rac1, and Cdc42). © 2016 Federation of European Biochemical Societies.

  19. Human LDL Structural Diversity Studied by IR Spectroscopy

    PubMed Central

    Fernández-Higuero, José A.; Salvador, Ana M.; Martín, Cesar; Milicua, José Carlos G.; Arrondo, José L. R.

    2014-01-01

    Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor. PMID:24642788

  20. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  1. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  2. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1

    PubMed Central

    Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756

  3. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fenxi; Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003; Wang, Congrui

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs andmore » which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.« less

  4. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    PubMed

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. Copyright © 2016 by The American Society for Pharmacology and Experimental

  5. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    PubMed

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  6. Proteomic Plasma Membrane Profiling Reveals an Essential Role for gp96 in the Cell Surface Expression of LDLR Family Members, Including the LDL Receptor and LRP6

    PubMed Central

    2012-01-01

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497

  7. Rapamycin inhibits oxidative and angiogenic mediators in diabetic retinopathy.

    PubMed

    Ozdemir, Gökhan; Kılınç, Metin; Ergün, Yusuf; Sahin, Elif

    2014-10-01

    To evaluate the role of rapamycin in the prevention of diabetic oxidative stress and the regulation of angiogenic factors. Experimental animal study. Diabetes was induced in 20 adult male Wistar rats by a single intraperitoneal administration of streptozotocin (60 mg/kg). Rats were randomly assigned into diabetic and rapamycin groups (n = 10). Ten healthy normal adult male rats of same age formed the control group. All groups were followed for 3 months. Rapamycin group received 1 mg/kg rapamycin via orogastric gavage during the last 4 weeks. At the end of 12 weeks, rats were sacrificed and biochemical oxidative stress markers (malondialdehyde and nitrotyrosine), together with vascular endothelial growth factor, hypoxia-inducible factor-1α, and pigment epithelium-derived factor, were measured in the retina. Blood biochemical analyses were also done. In the diabetic group, retinal malondialdehyde and nitrotyrosine levels were increased in comparison with control and rapamycin groups (p < 0.05). Rapamycin suppressed oxidative stress and showed a beneficial effect. It also decreased all angiomodulator cytokines compared with the diabetic group (p < 0.05). Correspondingly, rapamycin also decreased plasma malondialdehyde levels compared with the diabetic group (p = 0.037). Rapamycin may have a protective role against diabetes-induced oxidative retinal injury and may decrease angiomodulator cytokines. Copyright © 2014 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  8. Long-term treatment of bile duct-ligated rats with rapamycin (sirolimus) significantly attenuates liver fibrosis: analysis of the underlying mechanisms.

    PubMed

    Biecker, Erwin; De Gottardi, Andrea; Neef, Markus; Unternährer, Matthias; Schneider, Vreni; Ledermann, Monika; Sägesser, Hans; Shaw, Sidney; Reichen, Jürg

    2005-06-01

    Rapamycin is an immunosuppressant with antiproliferative properties. We investigated whether rapamycin treatment of bile duct-ligated (BDL) rats is capable of inhibiting liver fibrosis and thereby affecting hemodynamics. Following BDL, rats were treated for 28 days with rapamycin (BDL SIR). BDL animals without drug treatment (BDL CTR) and sham-operated animals served as controls. After 28 days, hemodynamics were measured, and livers were harvested for histology/immunohistochemistry. Liver mRNA levels of transforming growth factor (TGF)-beta1, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF)-beta, cyclin-dependent kinase inhibitor p27(kip) (p27), and cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) were quantified by real-time polymerase chain reaction. Liver protein levels of p27, p21, p70 S6 kinase (p70(s6k)), phosphorylated p70(s6k) (p-p70(s6k)), eukaryotic initiation factor 4E-binding protein (4E-BP1), p-4E-BP1 (Thr37/46), and p-4E-BP1 (Ser65/Thr70) were determined by Western blotting. Portal vein pressure was lower in BDL SIR than in BDL CTR animals. Volume fractions of connective tissue, bile duct epithelial, and desmin- and actin-positive cells were lower in BDL SIR than in BDL CTR rats. On the mRNA level, TGF-beta1, CTGF, and PDGF were decreased by rapamycin. p27 and p21 mRNA did not differ. On the protein level, rapamycin increased p27 and decreased p21 levels. Levels of nonphosphorylated p70(s6k) and 4E-BP1 did not vary between groups, but levels of p-p70(s6k) were decreased by rapamycin. Rapamycin had no effect on p-4E-BP1 (Thr37/46) and p-4E-BP1 (Ser65/Thr70) levels. In BDL rats, rapamycin inhibits liver fibrosis and ameliorates portal hypertension. This is paralleled by decreased levels of TGF-beta1, CTGF, and PDGF. Rapamycin influences the cell cycle by up-regulation of p27, down-regulation of p21, and inhibition of p70(s6k) phosphorylation.

  9. The LDL Receptor-Related Protein 1 (LRP1) Regulates the PDGF Signaling Pathway by Binding the Protein Phosphatase SHP-2 and Modulating SHP-2- Mediated PDGF Signaling Events

    PubMed Central

    Craig, Julie; Mikhailenko, Irina; Noyes, Nathaniel; Migliorini, Mary; Strickland, Dudley K.

    2013-01-01

    Background The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule. Methodology/Principal Findings To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis. Conclusions/Significance Our data demonstrate that phosphorylated forms of LRP1 and

  10. Transcriptional regulation of human Paraoxonase 1 by nuclear receptors.

    PubMed

    Ponce-Ruiz, N; Murillo-González, F E; Rojas-García, A E; Mackness, Mike; Bernal-Hernández, Y Y; Barrón-Vivanco, B S; González-Arias, C A; Medina-Díaz, I M

    2017-04-25

    Paraoxonase 1 (PON1) is a calcium-dependent lactonase synthesized primarily in the liver and secreted into the plasma, where it is associates with high density lipoproteins (HDL). PON1 acts as antioxidant preventing low-density lipoprotein (LDL) oxidation, a process considered critical in the initiation and progression of atherosclerosis. Additionally, PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs). Thus, PON1 activity and expression levels are important for determining susceptibility to OPs intoxication and risk of developing diseases related to inflammation and oxidative stress. Increasing evidence has demonstrated the modulation of PON1 expression by many factors is due to interaction with nuclear receptors (NRs). Here, we briefly review the studies in this area and discuss the role of nuclear receptors in the regulation of PON1 expression, as well as how understanding these mechanisms may allow us to manipulate PON1 levels to improve drug efficacy and treat disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2.

    PubMed

    Yang, Mengfei; Qi, Weiwei; Sun, Fan; Zha, Xiaojun; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Yang, Jinshui; Luo, Xiaojin

    2013-01-01

    Rice (Oryza sativa) has the potential to undergo rapid internodal elongation which determines plant height. Gibberellin is involved in internode elongation. Leucine-rich repeat receptor-like kinases (LRR-RLKs) are the largest subfamily of transmembrane receptor-like kinases in plants. LRR-RLKs play important functions in mediating a variety of cellular processes and regulating responses to environmental signals. LRK1, a PSK receptor homolog, is a member of the LRR-RLK family. In the present study, differences in ectopic expression of LRK1 were consistent with extent of rice internode elongation. Analyses of gene expression demonstrated that LRK1 restricts gibberellin biosynthesis during the internode elongation process by down-regulation of the gibberellin biosynthetic gene coding for ent-kaurene oxidase.

  12. mTOR kinase structure, mechanism and regulation by the rapamycin-binding domain

    PubMed Central

    Yang, Haijuan; Rudge, Derek G.; Koos, Joseph D.; Vaidialingam, Bhamini; Yang, Hyo J.; Pavletich, Nikola P.

    2015-01-01

    The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a truncated mTOR-mLST8 complex with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and mechanism remarkably similar to canonical protein kinases. The active site is highly recessed due to the FKBP12-Rapamycin binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR activating mutations map to the structural framework that holds these elements in place, indicating the kinase is controlled by restricted access. In vitro biochemistry indicates that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. FKBP12-rapamycin inhibits by directly blocking substrate recruitment and by further restricting active site access. The structures also reveal active site residues and conformational changes that underlie inhibitor potency and specificity. PMID:23636326

  13. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.

    PubMed

    Bartuzi, Paulina; Billadeau, Daniel D; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K; Elliott, Alison M; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D; Burstein, Ezra; Hofker, Marten H; van de Sluis, Bart

    2016-03-11

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking.

  14. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.

    PubMed

    Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W

    1998-12-01

    Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.

  15. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

    PubMed

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-07-10

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Large Impact of Low Concentration Oxidized LDL on Angiogenic Potential of Human Endothelial Cells: A Microarray Study

    PubMed Central

    Khaidakov, Magomed; Mitra, Sona; Wang, Xianwei; Ding, Zufeng; Bora, Nalini; Lyzogubov, Valery; Romeo, Francesco; Schichman, Steven A.; Mehta, Jawahar L.

    2012-01-01

    Oxidized LDL (ox-LDL) is a key factor in atherogenesis. It is taken up by endothelial cells primarily by ox-LDL receptor-1 (LOX-1). To elucidate transcriptional responses, we performed microarray analysis on human coronary artery endothelial cells (HCAECs) exposed to small physiologic concentration of ox-LDL- 5 µg/ml for 2 and 12 hours. At 12 hours, cultures treated with ox-LDL exhibited broad shifts in transcriptional activity involving almost 1500 genes (>1.5 fold difference, p<0.05). Resulting transcriptome was enriched for genes associated with cell adhesion (p<0.002), angiogenesis (p<0.0002) and migration (p<0.006). Quantitative PCR analysis revealed that LOX-1 expression in HCAECs is at least an order of magnitude greater than the expression of other major ox-LDL specific receptors CD36 and MSR1. In keeping with the data on LOX-1 expression, pre-treatment of HCAECs with LOX-1 neutralizing antibody resulted in across-the-board inhibition of cellular response to ox-LDL. Ox-LDL upregulated a number of pro-angiogenic genes including multiple receptors, ligands and transcription factors and altered the expression of a number of genes implicated in both stimulation and inhibition of apoptosis. From a functional standpoint, physiologic concentrations of ox-LDL stimulated tube formation and inhibited susceptibility to apoptosis in HCAECs. In addition, ox-LDL exposure resulted in upregulation of miR-1974, miR-1978 and miR-21 accompanied with significant over-presentation of their target genes in the downregulated portion of ox-LDL transcriptome. Our observations indicate that ox-LDL at physiologic concentrations induces broad transcriptional responses which are mediated by LOX-1, and are, in part, shaped by ox-LDL-dependent miRNAs. We also suggest that angiogenic effects of ox-LDL are partially based on upregulation of several receptors that render cells hypersensitive to angiogenic stimuli. PMID:23115646

  17. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV β-chemokines: An approach to suppress R5 strains of HIV-1

    PubMed Central

    Heredia, A.; Amoroso, A.; Davis, C.; Le, N.; Reardon, E.; Dominique, J. K.; Klingebiel, E.; Gallo, R. C.; Redfield, R. R.

    2003-01-01

    Propagation of R5 strains of HIV-1 on CD4 lymphocytes and macrophages requires expression of the CCR5 coreceptor on the cell surface. Individuals lacking CCR5 (CCR5Δ32 homozygous genotype) are phenotypically normal and resistant to infection with HIV-1. CCR5 expression on lymphocytes depends on signaling through the IL-2 receptor. By FACS analysis we demonstrate that rapamycin (RAPA), a drug that disrupts IL-2 receptor signaling, reduces CCR5 surface expression on T cells at concentrations as low as 1 nM. In addition, lower concentrations of RAPA (0.01 nM) were sufficient to reduce CCR5 surface expression on maturing monocytes. PCR analysis on peripheral blood mononuclear cells (PBMCs) showed that RAPA interfered with CCR5 expression at the transcriptional level. Reduced expression of CCR5 on PBMCs cultured in the presence of RAPA was associated with increased extracellular levels of macrophage inflammatory protein (MIP)-1α and MIP-1β. In infectivity assays, RAPA suppressed the replication of R5 strains of HIV-1 both in PBMC and macrophage cultures. In total PBMC cultures, RAPA-mediated inhibition of CCR5-using strains of HIV-1 occurred at 0.01 nM, a concentration of drug that is ∼103 times lower than therapeutic through levels of drug in renal transplant recipients. In addition, RAPA enhanced the antiviral activity of the CCR5 antagonist TAK-779. These results suggest that low concentrations of RAPA may have a role in both the treatment and prevention of HIV-1 infection. PMID:12915736

  18. Gender disparity in LDL-induced cardiovascular damage and the protective role of estrogens against electronegative LDL

    PubMed Central

    2014-01-01

    Background Increased levels of the most electronegative type of LDL, L5, have been observed in the plasma of patients with metabolic syndrome (MetS) and ST-segment elevation myocardial infarction and can induce endothelial dysfunction. Because men have a higher predisposition to developing coronary artery disease than do premenopausal women, we hypothesized that LDL electronegativity is increased in men and promotes endothelial damage. Methods L5 levels were compared between middle-aged men and age-matched, premenopausal women with or without MetS. We further studied the effects of gender-influenced LDL electronegativity on aortic cellular senescence and DNA damage in leptin receptor–deficient (db/db) mice by using senescence-associated–β-galactosidase and γH2AX staining, respectively. We also studied the protective effects of 17β-estradiol and genistein against electronegative LDL–induced senescence in cultured bovine aortic endothelial cells (BAECs). Results L5 levels were higher in MetS patients than in healthy subjects (P < 0.001), particularly in men (P = 0.001). LDL isolated from male db/db mice was more electronegative than that from male or female wild-type mice. In addition, LDL from male db/db mice contained abundantly more apolipoprotein CIII and induced more BAEC senescence than did female db/db or wild-type LDL. In the aortas of db/db mice but not wild-type mice, we observed cellular senescence and DNA damage, and the effect was more significant in male than in female db/db mice. Pretreatment with 17β-estradiol or genistein inhibited BAEC senescence induced by male or female db/db LDL and downregulated the expression of lectin-like oxidized LDL receptor-1 and tumor necrosis factor-alpha protein. Conclusion The gender dichotomy of LDL-induced cardiovascular damage may underlie the increased propensity to coronary artery disease in men. PMID:24666525

  19. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators

    PubMed Central

    Ramírez-López, María T.; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner. PMID:28082878

  20. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators.

    PubMed

    Ramírez-López, María T; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes ( Faah, Dagl α , Dagl β , Mgll ) and several key regulators of fatty-acid β-oxidation ( Cpt1b, Acox1 ), mitochondrial respiration ( Cox4i1 ), and lipid flux ( Ppar γ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Ppar α, Ppar γ, the eCBs-degrading enzymes Faah and Mgll , the de novo lipogenic enzymes Acaca and Fasn , and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr . Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.

  1. Electronegative LDL induces priming and inflammasome activation leading to IL-1β release in human monocytes and macrophages.

    PubMed

    Estruch, M; Rajamäki, K; Sanchez-Quesada, J L; Kovanen, P T; Öörni, K; Benitez, S; Ordoñez-Llanos, J

    2015-11-01

    Electronegative LDL (LDL(−)), a modified LDL fraction found in blood, induces the release of inflammatory mediators in endothelial cells and leukocytes. However, the inflammatory pathways activated by LDL(−) have not been fully defined. We aim to study whether LDL(−) induced release of the first-wave proinflammatory IL-1β in monocytes and monocyte-derived macrophages (MDM) and the mechanisms involved. LDL(−) was isolated from total LDL by anion exchange chromatography. Monocytes and MDM were isolated from healthy donors and stimulated with LDL(+) and LDL(−) (100 mg apoB/L). In monocytes, LDL(−) promoted IL-1β release in a time-dependent manner, obtaining at 20 h-incubation the double of IL-1β release induced by LDL(−) than by native LDL. LDL(−)-induced IL-1β release involved activation of the CD14-TLR4 receptor complex. LDL(−) induced priming, the first step of IL-1β release, since it increased the transcription of pro-IL-1β (8-fold) and NLRP3 (3-fold) compared to native LDL. Several findings show that LDL(−) induced inflammasome activation, the second step necessary for IL-1β release. Preincubation of monocytes with K+ channel inhibitors decreased LDL(−)-induced IL-1β release. LDL(−) induced formation of the NLRP3-ASC complex. LDL(−) triggered 2-fold caspase-1 activation compared to native LDL and IL-1β release was strongly diminished in the presence of the caspase-1 inhibitor Z-YVAD. In MDM, LDL(−) promoted IL-1β release, which was also associated with caspase-1 activation. LDL(−) promotes release of biologically active IL-1β in monocytes and MDM by induction of the two steps involved: priming and NLRP3 inflammasome activation. By IL-1β release, LDL(−) could regulate inflammation in atherosclerosis.

  2. The regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity, cholesterol esterification and the expression of low-density lipoprotein receptors in cultured monocyte-derived macrophages.

    PubMed Central

    Knight, B L; Patel, D D; Soutar, A K

    1983-01-01

    Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the

  3. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    PubMed

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  4. Insulin receptor substrate-2 regulates aerobic glycolysis in mouse mammary tumor cells via glucose transporter 1.

    PubMed

    Pankratz, Shannon L; Tan, Ernest Y; Fine, Yumiko; Mercurio, Arthur M; Shaw, Leslie M

    2009-01-23

    The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor molecules that function as signaling intermediates downstream of activated cell surface receptors. Based on data implicating IRS-2 but not IRS-1 in breast cancer invasion, survival, and metastasis, we assessed the contribution of IRS-1 and IRS-2 to aerobic glycolysis, which is known to impact tumor growth and progression. For this purpose, we used tumor cell lines derived from transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and that are wild-type (WT) or null for either Irs-1 (Irs-1-/-) or Irs-2 (Irs-2-/-). Aerobic glycolysis, as assessed by the rate of lactic acid production and glucose consumption, was diminished significantly in Irs-2-/- cells when compared with WT and Irs-1-/- cells. Expression of exogenous Irs-2 in Irs-2-/- cells restored the rate of glycolysis to that observed in WT cells. The transcription factor FoxO1 does not appear to be involved in Irs-2-mediated glycolysis. However, Irs-2 does regulate the surface expression of glucose transporter 1 (Glut1) as assessed by flow cytometry using a Glut1-specific ligand. Suppression of Glut1 expression inhibits Irs-2-dependent invasion, which links glycolysis to mammary tumor progression. Irs-2 was shown to be important for mammalian target of rapamycin (mTor) activation, and Irs-2-dependent regulation of Glut1 surface expression is rapamycin-sensitive. Collectively, our data indicate that Irs-2, but not Irs-1, promotes invasion by sustaining the aerobic glycolysis of mouse mammary tumor cells and that it does so by regulating the mTor-dependent surface expression of Glut1.

  5. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xiang; Li Ming; Sun Weiping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosteronemore » level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.« less

  6. An N-terminal fragment of substance P, substance P(1-7), down-regulates neurokinin-1 binding in the mouse spinal cord.

    PubMed

    Yukhananov RYu; Larson, A A

    1994-08-29

    Injected intrathecally, substance P (SP) down-regulates neurokinin-1 (NK-1) binding in the spinal cord and desensitizes rats to the behavioral effect of SP. N-terminal fragments of SP, such as SP(1-7), induce antinociception and play a role in desensitization to SP in mice. The goal of this study was to assess the abilities of N- and C-terminal fragments of SP to down-regulate NK-1 binding. Binding of [3H]SP to mouse spinal cord membranes was inhibited by SP, CP-96,345, and to a lesser extent by SP(5-11), but not SP(1-7), consistent with these binding sites being NK-1 receptors. Injection of SP(5-11) intrathecally did not affect the affinity (Kd) or concentration (Bmax) of [3H]SP binding. However, injection of 1 nmol of SP(1-7) decreased the Bmax of [3H]SP binding in the spinal cord at 6 h after its injection just as this dose of SP decreased the Bmax at 24 h. These data suggest that the N-terminus of SP is responsible for down-regulation of NK-1 binding. As SP(5-11) did not down-regulate NK-1 binding, activation of NK-1 sites does not appear necessary or sufficient for down-regulation of SP binding. In contrast, SP(1-7), in spite of its inability to interact with NK-1 sites, did down-regulate SP binding, suggesting an indirect mechanism dissociated from NK-1 receptors.

  7. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development.

    PubMed

    Schratt, Gerhard M; Nigh, Elizabeth A; Chen, Wen G; Hu, Linda; Greenberg, Michael E

    2004-08-18

    Local regulation of mRNA translation plays an important role in axon guidance, synaptic development, and neuronal plasticity. Little is known, however, regarding the mechanisms that control translation in neurons, and only a few mRNAs have been identified that are locally translated within axon and dendrites. Using Affymetrix gene arrays to identify mRNAs that are newly associated with polysomes after exposure to BDNF, we identified subsets of mRNAs for which translation is enhanced in neurons at different developmental stages. In mature neurons, many of these mRNAs encode proteins that are known to function at synapses, including CamKIIalpha, NMDA receptor subunits, and the postsynaptic density (PSD) scaffolding protein Homer2. BDNF regulates the translation of Homer2 locally in the synaptodendritic compartment by activating translational initiation via a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway. These findings suggest that BDNF likely regulates synaptic function by inducing the local synthesis of numerous synaptic proteins. The local translation of the cytoskeleton-associated protein Homer2 in particular might have important implications for growth cone dynamics and dendritic spine development.

  8. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis.

    PubMed

    Li, Chen-Ye; Ma, Lan; Yu, Bo

    2017-11-01

    Circular RNAs (circRNAs) are a novel class of RNAs generated from back-splicing and characterized by covalently closed continuous loops. Recently, circRNAs have recently shown large regulation on cardiovascular system, including atherosclerosis. The present study aims to investigate the circRNA expression profile and identify their roles on vascular endothelial cells induced by oxLDL. Human circRNA microarray analysis revealed that total 943 differently expressed circRNAs were screened with 2 fold change. Hsa_circ_0003575 was validated to be significantly up-regulated in oxLDL induced HUVECs. Loss-of-function experiments indicated that hsa_circ_0003575 silencing promoted the proliferation and angiogenesis ability of HUVECs. Bioinformatics online programs predicted the potential circRNA-miRNA-mRNA network for hsa_circ_0003575. In summary, circRNA microarray analysis reveals the expression profiles of HUVECs and verifies the role of hsa_circ_0003575 on HUVECs, providing a therapeutic strategy for vascular endothelial cell injury of atherosclerosis. Copyright © 2017. Published by Elsevier Masson SAS.

  9. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.

    PubMed

    Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J

    1997-01-21

    The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.

  10. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  11. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system.

    PubMed

    Arriola Apelo, Sebastian I; Neuman, Joshua C; Baar, Emma L; Syed, Faizan A; Cummings, Nicole E; Brar, Harpreet K; Pumper, Cassidy P; Kimple, Michelle E; Lamming, Dudley W

    2016-02-01

    Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Combination of Rapamycin and Resveratrol for Treatment of Bladder Cancer.

    PubMed

    Alayev, Anya; Salamon, Rachel S; Schwartz, Naomi S; Berman, Adi Y; Wiener, Sara L; Holz, Marina K

    2017-02-01

    Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1 -/- MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

    PubMed Central

    Podrez, Eugene A.; Schmitt, David; Hoff, Henry F.; Hazen, Stanley L.

    1999-01-01

    Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2– system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2–)— a major end-product of NO metabolism—resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte–derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2–, occurred at physiological levels of Cl–, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form. PMID:10359564

  14. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression

    PubMed Central

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2017-01-01

    Background: Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). Objective: To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. Materials and Methods: The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. Results: We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Conclusion: Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. SUMMARY Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet

  15. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    PubMed

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  16. Acute systemic rapamycin induces neurobehavioral alterations in rats.

    PubMed

    Hadamitzky, Martin; Herring, Arne; Keyvani, Kathy; Doenlen, Raphael; Krügel, Ute; Bösche, Katharina; Orlowski, Kathrin; Engler, Harald; Schedlowski, Manfred

    2014-10-15

    Rapamycin is a drug with antiproliferative and immunosuppressive properties, widely used for prevention of acute graft rejection and cancer therapy. It specifically inhibits the activity of the mammalian target of rapamycin (mTOR), a protein kinase known to play an important role in cell growth, proliferation and antibody production. Clinical observations show that patients undergoing therapy with immunosuppressive drugs frequently suffer from affective disorders such as anxiety or depression. However, whether these symptoms are attributed to the action of the distinct compounds remains rather elusive. The present study investigated in rats neurobehavioral consequences of acute rapamycin treatment. Systemic administration of a single low dose rapamycin (3mg/kg) led to enhanced neuronal activity in the amygdala analyzed by intracerebral electroencephalography and FOS protein expression 90min after drug injection. Moreover, behavioral investigations revealed a rapamycin-induced increase in anxiety-related behaviors in the elevated plus-maze and in the open-field. The behavioral alterations correlated to enhanced amygdaloid expression of KLK8 and FKBP51, proteins that have been implicated in the development of anxiety and depression. Together, these results demonstrate that acute blockade of mTOR signaling by acute rapamycin administration not only causes changes in neuronal activity, but also leads to elevated protein expression in protein kinase pathways others than mTOR, contributing to the development of anxiety-like behavior. Given the pivotal role of the amygdala in mood regulation, associative learning, and modulation of cognitive functions, our findings raise the question whether therapy with rapamycin may induce alterations in patients neuropsychological functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Nogo receptor 1 regulates formation of lasting memories.

    PubMed

    Karlén, Alexandra; Karlsson, Tobias E; Mattsson, Anna; Lundströmer, Karin; Codeluppi, Simone; Pham, Therese M; Bäckman, Cristina M; Ogren, Sven Ove; Aberg, Elin; Hoffman, Alexander F; Sherling, Michael A; Lupica, Carl R; Hoffer, Barry J; Spenger, Christian; Josephson, Anna; Brené, Stefan; Olson, Lars

    2009-12-01

    Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction.

  18. Nogo receptor 1 regulates formation of lasting memories

    PubMed Central

    Karlén, Alexandra; Karlsson, Tobias E.; Mattsson, Anna; Lundströmer, Karin; Codeluppi, Simone; Pham, Therese M.; Bäckman, Cristina M.; Ögren, Sven Ove; Åberg, Elin; Hoffman, Alexander F.; Sherling, Michael A.; Lupica, Carl R.; Hoffer, Barry J.; Spenger, Christian; Josephson, Anna; Brené, Stefan; Olson, Lars

    2009-01-01

    Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction. PMID:19915139

  19. Deletion of the COOH-Terminal Domain of CXC Chemokine Receptor 4 Leads to the Down-regulation of Cell-to-Cell Contact, Enhanced Motility and Proliferation in Breast Carcinoma Cells

    PubMed Central

    Ueda, Yukiko; Neel, Nicole F.; Schutyser, Evemie; Raman, Dayanidhi; Richmond, Ann

    2009-01-01

    The CXC chemokine receptor 4 (CXCR4) contributes to the metastasis of human breast cancer cells. The CXCR4 COOH-terminal domain (CTD) seems to play a major role in regulating receptor desensitization and down-regulation. We expressed either wild-type CXCR4 (CXCR4-WT) or CTD-truncated CXCR4 (CXCR4-ΔCTD) in MCF-7 human mammary carcinoma cells to determine whether the CTD is involved in CXCR4-modulated proliferation of mammary carcinoma cells. CXCR4-WT-transduced MCF-7 cells (MCF-7/CXCR4-WT cells) do not differ from vector-transduced MCF-7 control cells in morphology or growth rate. However, CXCR4-ΔCTD-transduced MCF-7 cells (MCF-7/CXCR4-ΔCTD cells) exhibit a higher growth rate and altered morphology, potentially indicating an epithelial-to-mesenchymal transition. Furthermore, extracellular signal-regulated kinase (ERK) activation and cell motility are increased in these cells. Ligand induces receptor association with β-arrestin for both CXCR4-WT and CXCR4-ΔCTD in these MCF-7 cells. Overexpressed CXCR4-WT localizes predominantly to the cell surface in unstimulated cells, whereas a significant portion of overexpressed CXCR4-ΔCTD resides intracellularly in recycling endosomes. Analysis with human oligomicroarray, Western blot, and immunohistochemistry showed that E-cadherin and Zonula occludens are down-regulated in MCF-7/CXCR4-ΔCTD cells. The array analysis also indicates that mesenchymal marker proteins and certain growth factor receptors are up-regulated in MCF-7/CXCR4-ΔCTD cells. These observations suggest that (a) the overexpression of CXCR4-ΔCTD leads to a gain-of-function of CXCR4-mediated signaling and (b) the CTD of CXCR4-WT may perform a feedback repressor function in this signaling pathway. These data will contribute to our understanding of how CXCR4-ΔCTD may promote progression of breast tumors to metastatic lesions. PMID:16740704

  20. Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions.

    PubMed

    Kruth, Howar S

    2013-01-01

    Circulating low-density lipoprotein (LDL) that enters the blood vessel wall is the main source of cholesterol that accumulates within atherosclerotic plaques. Much of the deposited cholesterol accumulates within plaque macrophages converting these macrophages into cholesterol-rich foamy looking cells. Cholesterol accumulation in macrophages contributes to cholesterol retention within the vessel wall, and promotes vessel wall inflammation and thrombogenicity. Thus, how macrophages accumulate cholesterol and become foam cells has been the subject of intense investigation. It is generally believed that macrophages accumulate cholesterol only through scavenger receptor-mediated uptake of modified LDL. However, an alternative mechanism for macrophage foam cell formation that does not depend on LDL modification or macrophage receptors has been elucidated. By this alternative mechanism, macrophages show receptor-independent uptake of unmodified native LDL that is mediated by fluid-phase pinocytosis. In receptor-independent, fluid-phase pinocytosis, macrophages take up LDL as part of the fluid that they ingest during micropinocytosis within small vesicles called micropinosomes, and by macropinocytosis within larger vacuoles called macropinosomes. This produces cholesterol accumulation in macrophages to levels characteristic of macrophage foam cells in atherosclerotic plaques. Fluid-phase pinocytosis of LDL is a plausible mechanism that can explain how macrophages accumulate cholesterol and become disease-causing foam cells. Fluid-phase pinocytosis of LDL is a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis. Recent studies show that phosphoinositide 3-kinase (PI3K), liver X receptors (LXRs), the macrophage colony-stimulating factor (M-CSF) receptor, and protein kinase C (PKC) mediate macrophage macropinocytosis of LDL, and thus, these may be relevant targets to inhibit macrophage cholesterol accumulation in atherosclerosis.

  1. Retinoic Acid-inducible Gene I-inducible miR-23b Inhibits Infections by Minor Group Rhinoviruses through Down-regulation of the Very Low Density Lipoprotein Receptor*

    PubMed Central

    Ouda, Ryota; Onomoto, Koji; Takahasi, Kiyohiro; Edwards, Michael R.; Kato, Hiroki; Yoneyama, Mitsutoshi; Fujita, Takashi

    2011-01-01

    In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR. PMID:21642441

  2. Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through down-regulation of the very low density lipoprotein receptor.

    PubMed

    Ouda, Ryota; Onomoto, Koji; Takahasi, Kiyohiro; Edwards, Michael R; Kato, Hiroki; Yoneyama, Mitsutoshi; Fujita, Takashi

    2011-07-22

    In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.

  3. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation.

    PubMed

    Mollace, Vincenzo; Ragusa, Salvatore; Sacco, Iolanda; Muscoli, Carolina; Sculco, Francesca; Visalli, Valeria; Palma, Ernesto; Muscoli, Saverio; Mondello, Luigi; Dugo, Paola; Rotiroti, Domenicantonio; Romeo, Francesco

    2008-06-01

    Lectin-like oxyLDL receptor-1 (LOX-1) has recently been suggested to be involved in smooth muscle cell (SMC) proliferation and neointima formation in injured blood vessels. This study evaluates the effect of the nonvolatile fraction (NVF), the antioxidant component of bergamot essential oil (BEO), on LOX-1 expression and free radical generation in a model of rat angioplasty. Common carotid arteries injured by balloon angioplasty were removed after 14 days for histopathological, biochemical, and immunohistochemical studies. Balloon injury led to a significant restenosis with SMC proliferation and neointima formation, accompanied by increased expression of LOX-1 receptor, malondialdehyde and superoxide formation, and nitrotyrosine staining. Pretreatment of rats with BEO-NVF reduced the neointima proliferation together with free radical formation and LOX-1 expression in a dose-dependent manner. These results suggest that natural antioxidants may be relevant in the treatment of vascular disorders in which proliferation of SMCs and oxyLDL-related endothelial cell dysfunction are involved.

  4. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    PubMed Central

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. PMID:26965651

  5. Antagonist-mediated down-regulation of toll-like receptors increases the prevalence of human papillomavirus infection in systemic lupus erythematosus

    PubMed Central

    2012-01-01

    Introduction Prevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence. Methods Protein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA. Results For subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed

  6. Thematic review series: patient-oriented research. What we have learned about VLDL and LDL metabolism from human kinetics studies.

    PubMed

    Parhofer, Klaus G; Barrett, P Hugh R

    2006-08-01

    Lipoprotein metabolism is the result of a complex network of many individual components. Abnormal lipoprotein concentrations can result from changes in the production, conversion, or catabolism of lipoprotein particles. Studies in hypolipoproteinemia and hyperlipoproteinemia have elucidated the processes that control VLDL secretion as well as VLDL and LDL catabolism. Here, we review the current knowledge regarding apolipoprotein B (apoB) metabolism, focusing on selected clinically relevant conditions. In hypobetalipoproteinemia attributable to truncations in apoB, the rate of secretion is closely linked to the length of apoB. On the other hand, in patients with the metabolic syndrome, it appears that substrate, in the form of free fatty acids, coupled to the state of insulin resistance can induce hypersecretion of VLDL-apoB. Studies in patients with familial hypercholesterolemia, familial defective apoB, and mutant forms of proprotein convertase subtilisin/kexin type 9 show that mutations in the LDL receptor, the ligand for the receptor, or an intracellular chaperone for the receptor are the most important determinants in regulating LDL catabolism. This review also demonstrates the variance of results within similar, or even the same, phenotypic conditions. This underscores the sensitivity of metabolic studies to methodological aspects and thus the importance of the inclusion of adequate controls in studies.

  7. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine.

    PubMed

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-04-16

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.

  8. Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise

    PubMed Central

    Philp, Andrew; Schenk, Simon; Perez-Schindler, Joaquin; Hamilton, D Lee; Breen, Leigh; Laverone, Erin; Jeromson, Stewart; Phillips, Stuart M; Baar, Keith

    2015-01-01

    Abstract The present study aimed to investigate the role of the mechanistic target of rapamycin complex 1 (mTORC1) in the regulation of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis following endurance exercise. Forty-two female C57BL/6 mice performed 1 h of treadmill running (18 m min−1; 5° grade), 1 h after i.p. administration of rapamycin (1.5 mg · kg−1) or vehicle. To quantify skeletal muscle protein fractional synthesis rates, a flooding dose (50 mg · kg−1) of l-[ring-13C6]phenylalanine was administered via i.p. injection. Blood and gastrocnemius muscle were collected in non-exercised control mice, as well as at 0.5, 3 and 6 h after completing exercise (n = 4 per time point). Skeletal muscle MyoPS and MitoPS were determined by measuring isotope incorporation in their respective protein pools. Activation of the mTORC1-signalling cascade was measured via direct kinase activity assay and immunoblotting, whereas genes related to mitochondrial biogenesis were measured via a quantitative RT-PCR. MyoPS increased rapidly in the vehicle group post-exercise and remained elevated for 6 h, whereas this response was transiently blunted (30 min post-exercise) by rapamycin. By contrast, MitoPS was unaffected by rapamycin, and was increased over the entire post-exercise recovery period in both groups (P < 0.05). Despite rapid increases in both MyoPS and MitoPS, mTORC1 activation was suppressed in both groups post-exercise for the entire 6 h recovery period. Peroxisome proliferator activated receptor-γ coactivator-1α, pyruvate dehydrogenase kinase 4 and mitochondrial transcription factor A mRNA increased post-exercise (P < 0.05) and this response was augmented by rapamycin (P < 0.05). Collectively, these data suggest that endurance exercise stimulates MyoPS and MitoPS in skeletal muscle independently of mTORC1 activation. Key points Previous studies have shown that endurance exercise increases myofibrillar (MyoPS) and

  9. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway.

    PubMed

    Wang, Jianhua; Lu, Yi; Wang, Jingchen; Koch, Alisa E; Zhang, Jian; Taichman, Russell S

    2008-12-15

    Previous studies show that the chemokine CXCL16 and its receptor CXCR6 are likely to contribute to prostate cancer (PCa). In this investigation, the role of the CXCR6 receptor in PCa was further explored. CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 showed strong epithelial staining that correlated with Gleason score. In vitro and in vivo studies in PCa cell lines suggested that alterations in CXCR6 expression were associated with invasive activities and tumor growth. In addition, CXCR6 expression was able to regulate expression of the proangiogenic factors interleukin (IL)-8 or vascular endothelial growth factor (VEGF), which are likely to participate in the regulation of tumor angiogenesis. Finally, we found that CXCL16 signaling induced the activation of Akt, p70S6K, and eukaryotic initiation factor 4E binding protein 1 included in mammalian target of rapamycin (mTOR) pathways, which are located downstream of Akt. Furthermore, rapamycin not only drastically inhibited CXCL16-induced PCa cell invasion and growth but reduced secretion of IL-8 or VEGF levels and inhibited expression of other CXCR6 targets including CD44 and matrix metalloproteinase 3 in PCa cells. Together, our data shows for the first time that the CXCR6/AKT/mTOR pathway plays a central role in the development of PCa. Blocking the CXCR6/AKT/mTOR signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for PCa.

  10. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production via down-regulation of MyD88 expression.

    PubMed

    Noman, Abu Shadat M; Koide, Naoki; Hassan, Ferdaus; I-E-Khuda, Imtiaz; Dagvadorj, Jargalsaikhan; Tumurkhuu, Gantsetseg; Islam, Shamima; Naiki, Yoshikazu; Yoshida, Tomoaki; Yokochi, Takashi

    2009-02-01

    The effect of thalidomide on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production was studied by using RAW 264.7 murine macrophage-like cells. Thalidomide significantly inhibited LPS-induced TNF-alpha production. Thalidomide prevented the activation of nuclear factor (NF)-KB by down-regulating phosphorylation of inhibitory KB factor (IKB), and IKB kinase (IKK)-alpha and IKK-beta Moreover, thalidomide inhibited LPS-induced phosphorylation of AKT, p38 and stress-activated protein kinase (SAPK)/JNK. The expression of myeloid differentiation factor 88 (MyD88) protein and mRNA was markedly reduced in thalidomide-treated RAW 264.7 cells but there was no significant alteration in the expression of interleukin-1 receptor-associated kinase (IRAK) 1 and TNF receptor-associated factor (TRAF) 6 in the cells. Thalidomide did not affect the cell surface expression of Toll-like receptor (TLR) 4 and CD14, suggesting the impairment of intracellular LPS signalling in thalidomide-treated RAW 264.7 cells. Thalidomide significantly inhibited the TNF-alpha production in response to palmitoyl-Cys(RS)-2,3-di(palmitoyloxy) propyl)-Ala-Gly-OH (Pam(3)Cys) as a MyD88-dependent TLR2 ligand. Therefore, it is suggested that thalidomide might impair LPS signalling via down-regulation of MyD88 protein and mRNA and inhibit LPS-induced TNF-alpha production. The putative mechanism of thalidomide-induced MyD88 down-regulation is discussed.

  11. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production

    PubMed Central

    Gillespie, Zoe E; MacKay, Kimberly; Sander, Michelle; Trost, Brett; Dawicki, Wojciech; Wickramarathna, Aruna; Gordon, John; Eramian, Mark; Kill, Ian R; Bridger, Joanna M; Kusalik, Anthony; Mitchell, Jennifer A; Eskiw, Christopher H

    2015-01-01

    Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines. PMID:26652669

  12. Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M.

    PubMed

    Kawabata, Shigeru; Mercado-Matos, José R; Hollander, M Christine; Donahue, Danielle; Wilson, Willie; Regales, Lucia; Butaney, Mohit; Pao, William; Wong, Kwok-Kin; Jänne, Pasi A; Dennis, Phillip A

    2014-06-26

    Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    PubMed

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer MDA-MB-231 cells by regulating expression of Atg7 and DAPK

    PubMed Central

    Liu, Qiujun; Zhou, Xianyao; Li, Chuan; Zhang, Xuemei; Li, Chang Long

    2018-01-01

    There is limited knowledge regarding the influence of autophagy on the anticancer effect of dihydroartemisinin (DHA). The present study aimed to investigate this influence within human breast cancer cells. Changes in cell viability, cell cycle distribution, apoptosis and associated genes were analyzed in MDA-MB-231 cells subjected to DHA following alteration in autophagy levels; the autophagy level was decreased following autophagy-related 7 (Atg7) knockdown or increased using rapamycin. The data indicated that rapamycin had the ability to notably enhance the anticancer effect of DHA on MDA-MB-231 cells. Autophagy induction may be key in mediating the anticancer effects of DHA, and rapamycin may regulate the death-associated protein kinase via the alteration of Atg7 expression, which would influence cell apoptosis. The present study presented a novel insight into enhancing the effectiveness of future treatment regimens for breast cancer using DHA. PMID:29545903

  15. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2-Dependent Bladder Cancer Cell Migration and Invasion.

    PubMed

    Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E

    2016-05-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.

  16. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanata, Sohya; Akagi, Masao; Nishimura, Shunji

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662more » suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.« less

  17. Rapamycin Protects against Myocardial Ischemia-Reperfusion Injury through JAK2-STAT3 Signaling Pathway

    PubMed Central

    Das, Anindita; Salloum, Fadi N.; Durrant, David; Ockaili, Ramzi; Kukreja, Rakesh C

    2012-01-01

    Rapamycin (Sirolimus®) is used to prevent rejection of transplanted organs and coronary restenosis. We reported that rapamycin induced cardioprotection against ischemia-reperfusion (I/R) injury through opening of mitochondrial KATP channels. However, signaling mechanisms in rapamycin-induced cardioprotection are currently unknown. Considering that STAT3 is protective in the heart, we investigated the potential role of this transcription factor in rapamycin-induced protection against (I/R) injury. Adult male ICR mice were treated with rapamycin (0.25 mg/kg, i.p.) or vehicle (DMSO) with/without inhibitor of JAK2 (AG-490) or STAT3 (stattic). One hour later, the hearts were subjected to I/R either in Langendorf mode or in situ ligation of left coronary artery. Additionally, primary murine cardiomyocytes were subjected to simulated ischemia/reoxygenation (SI-RO) injury in vitro. For in situ targeted knockdown of STAT3, lentiviral vector containing short hairpin RNA was injected into left ventricle 3 weeks prior to initiating I/R injury. Infarct size, cardiac function, cardiomyocyte necrosis and apoptosis were assessed. Rapamycin reduced infarct size, improved cardiac function following I/R, limited cardiomyocytes necrosis as well as apoptosis following SI-RO which were blocked by AG-490 and stattic. In situ knock-down of STAT3 attenuated rapamycin-induced protection against I/R injury. Rapamycin triggered unique cardioprotecive signaling including phosphorylation of ERK, STAT3, eNOS and glycogen synthase kinase-3β in concert with increased prosurvival Bcl-2 to Bax ratio. Our data suggest that JAK2-STAT3 signaling plays an essential role in rapamycin-induced cardioprotection. We propose that rapamycin is a novel and clinically relevant pharmacological strategy to target STAT3 activation for treatment of myocardial infarction. PMID:22999860

  18. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D., E-mail: jheem.medh@csun.edu

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted inmore » a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.« less

  19. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.

    PubMed

    Edwards, Sarah R; Wandless, Thomas J

    2007-05-04

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C-16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to 10-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retained the ability to inhibit mTOR, although with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wild-type FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems.

  20. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2–Dependent Bladder Cancer Cell Migration and Invasion

    PubMed Central

    Gupta, Sounak; Hau, Andrew M.; Al-Ahmadie, Hikmat A.; Harwalkar, Jyoti; Shoskes, Aaron C.; Elson, Paul; Beach, Jordan R.; Hussey, George S.; Schiemann, William P.; Egelhoff, Thomas T.; Howe, Philip H.; Hansel, Donna E.

    2017-01-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β–induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. PMID:26988652

  1. Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction.

    PubMed

    Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang

    2015-07-01

    Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1more » (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.« less

  3. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    PubMed

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  4. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha.

    PubMed

    Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe

    2007-10-30

    Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.

  5. Down-modulation of receptors for phorbol ester tumor promoter in primary epidermal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solanki, V.; Slaga, T.J.

    1982-01-01

    The specific (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDBu) binding to intact epidermal cells displayed the phenomenon of down-modulation, i.e., the specific binding of (/sup 3/H)PDBu to its receptors on primary epidermal cells reached a maximum within 1 h and steadily declined thereafter. The apparent down-modulation of radiolabel resulted from a partial loss in the total number of receptors; the affinity of receptors for the ligand was essentially unchanged. A number of agents such as chloroquine, methylamine, or arginine which are known to prevent clustering, down-modulation, and/or internalization of several hormone receptors did not affect the down-modulation of phorbol ester receptors. Furthermore,more » cycloheximide had no effect either on down-modulation or on the binding capacity of cells. The surface binding capacity of down-modulated cells following a 90-min incubation with unlabeled ligand was almost returned to normal within 1 h. The effect of the antidepressant drug chlorpromazine, which is known to interact with calmodulin, on (/sup 3/H)PDBu binding was also investigated. Our data indicate that the effect of chlorpromazine on (/sup 3/H)PDBu binding is probably unrelated to its calmodulin-binding activity.« less

  6. INCREASED OXIDATIVE STRESS AND DOWN REGULATION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE (ENOS) IN THE KIDNEY ATTEN- UATE THE RESPONSIVENESS OF (XlB ADRENERGIC RECEPTORS IN THE KIDNEY OF RATS WITH LEFT VENTRICULAR HYPERTROPHY.

    PubMed

    Ahmad, Ashfaq; Sattar, Munavvar; Khan, Safia Akhtar; Abdullah, Nor A; Johns, Edward J; Afzal, Samina

    2017-03-01

    Present study explored endothelial nitric oxide synthase/nitric oxide (eNOS/NO) pathway in the kidney and role of αIB adrenergic receptor in the regulation of renal vasculature in the rats with left ventricular hypertrophy (LVH). LVH was induced by administering isoprenaline 5 mg/kg (s.c. 72 h. apart) and caffeine (62 mg/L in drinking water) for 14 days. Quantification of molecular expression of eNOS in kidney was performed by quantitative Real Time Polymerase Chain Reaction (qPCR). Renal vasoconstrictor responses were measured by administering noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) in pre-drug phase, low dose and high dose phases of chloroethylelonidine (CEC), a selective of (αIB adrenergic receptor antagonist. In the kidney of LVH male Wistar Kyoto (WKY) rats eNOS was significantly down regulated (p < 0.05) by 74% relative to Control WKY (taken as 100%). The high dose 5 CEC attenuated the vasoconstrictor responses to NA by 41%, PE by 43% and ME by 33% in the LVH-WKY when compared to the same dose phase in Control WKY group. In LVH, increased oxidative stress in kidney and increased ACE activity in the plasma resulted in down regulation of eNOS/NO in the kidney. The renal vasoconstrictor responses to adrenergic agonist are blunted in LVH and (αIB adrenergic receptor is functional subtype in renal vasculature in LVH.

  7. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    PubMed

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  8. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages

    PubMed Central

    Lanuti, Mirko; Talamonti, Emanuela; Maccarrone, Mauro; Chiurchiù, Valerio

    2015-01-01

    The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. PMID:25970609

  9. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.

    PubMed

    Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun

    2015-11-01

    Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. © 2015 International Federation for Cell Biology.

  10. Selective uptake and efflux of cholesteryl linoleate in LDL by macrophages expressing 12/15-lipoxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yoshitaka; Zhu, Hong; Xu, Wanpeng

    Oxidation of low density lipoprotein (LDL) is a critical step for airtightness, and the role of the 12/15-lipoxygenase (12/15-Lox) as well as LDL receptor-related protein (Lp) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like Joe.1 cells over expressing 12/15-Lox was inhibited by an anti-Lp antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [{sup 3}H]cholesteryl linoleate and [{sup 125}I]apo B, association with the cells of [{sup 3}H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [{sup 125}I]apo B, indicating selectivemore » uptake of [{sup 3}H]cholesteryl linoleate from LDL to these cells. An anti-Lp antibody inhibited the selective uptake of [{sup 3}H]cholesteryl ester by 62% and 81% with the 12/15-Lox-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [{sup 3}H]cholesteryl linoleate-labeled 12/15-Lox-expressing cells increased the release of [{sup 3}H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [{sup 3}H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-Lp antibody by 75%. These results strongly suggest that Lp contributes to the LDL oxidation by 12/15-Lox in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.« less

  11. Regulation of gonadotropin receptors on cultured porcine Leydig and Sertoli cells: effect of potassium depletion.

    PubMed

    Bernier, M; Laferrere, B; Jaillard, C; Clerget, M; Saez, J M

    1986-06-01

    We have examined the role of the NaK-ATPase pump activity on the ligand-induced down-regulation of gonadotropin receptors in cultured porcine Leydig and Sertoli cells. In both cells, inhibition of the NaK pump by ouabain produced a depletion of intracellular K+ levels (ID50, 10(-7) M) after a lag period of about 8 h. In the absence of ligand, the number of FSH receptors in ouabain-treated Sertoli cells was unaffected or slightly reduced, whereas a 2-fold increase in the number of human CG (hCG)/LH receptors with small changes in the binding affinity was observed in Leydig cells treated by ouabain. The effect of ouabain was dose dependent. Differences were also observed in the down-regulation process of gonadotropin receptors in ouabain-treated cells. The hCG-induced receptor loss in Leydig cells was completely reversed by ouabain whereas the drug had no effect on ligand-induced loss of FSH receptors in Sertoli cells. Similar results were observed when the cells were incubated in K+-free medium. Kinetics studies with labeled hCG have shown that ouabain treatment slows down significantly the rate of [125I]iodo-hCG internalization (t 1/2, 18 h; control cells, t 1/2, 6 h), but had no effect on the degradation of internalized hormone. The internalization of receptor-bound [125I]iodo-hCG was also reduced when Leydig cells were incubated in K+-free medium, but was restored when this medium was supplemented with rubidium. The influence of the NaK pump on the receptor regulation of a ligand common to both types of cells, such as epidermal growth factor, was studied under the same experimental conditions. Neither ouabain nor K+-free medium were able to prevent the epidermal growth factor-induced reduction of receptor levels in Leydig and Sertoli cells. Thus, it appears that modulation of ligand-induced receptor loss by depletion of cellular K+ levels is not dependent on the cell type, but on the ligand-receptor complex. The data also show a striking difference in the

  12. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model.

    PubMed

    Chung, Eun Joo; Sowers, Anastasia; Thetford, Angela; McKay-Corkum, Grace; Chung, Su I; Mitchell, James B; Citrin, Deborah E

    2016-11-15

    Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes. Published by Elsevier Inc.

  13. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Joo; Sowers, Anastasia; Thetford, Angela

    Purpose: Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. Methods and Materials: C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-timemore » polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Results: Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Conclusions: Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.« less

  14. mTORC1 inhibitors rapamycin and metformin affect cardiovascular markers differentially in ZDF rats.

    PubMed

    Nistala, Ravi; Raja, Ahmad; Pulakat, Lakshmi

    2017-03-01

    Mammalian target for rapamycin complex 1 (mTORC1) is a common target for the action of immunosuppressant macrolide rapamycin and glucose-lowering metformin. Inhibition of mTORC1 can exert both beneficial and detrimental effects in different pathologies. Here, we investigated the differential effects of rapamycin (1.2 mg/kg per day delivered subcutaneously for 6 weeks) and metformin (300 mg/kg per day delivered orally for 11 weeks) treatments on male Zucker diabetic fatty (ZDF) rats that mimic the cardiorenal pathology of type 2 diabetic patients and progress to insulin insufficiency. Rapamycin and metformin improved proteinuria, and rapamycin also reduced urinary gamma glutamyl transferase (GGT) indicating improvement of tubular health. Metformin reduced food and water intake, and urinary sodium and potassium, whereas rapamycin increased urinary sodium. Metformin reduced plasma alkaline phosphatase, but induced transaminitis as evidenced by significant increases in plasma AST and ALT. Metformin also induced hyperinsulinemia, but did not suppress fasting plasma glucose after ZDF rats reached 17 weeks of age, and worsened lipid profile. Rapamycin also induced mild transaminitis. Additionally, both rapamycin and metformin increased plasma uric acid and creatinine, biomarkers for cardiovascular and renal disease. These observations define how rapamycin and metformin differentially modulate metabolic profiles that regulate cardiorenal pathology in conditions of severe type 2 diabetes.

  15. Wild-type phosphatase and tensin homolog deleted on chromosome 10 improved the sensitivity of cells to rapamycin through regulating phosphorylation of Akt in esophageal squamous cell carcinoma.

    PubMed

    Lu, Z; Wang, J; Zheng, Y; Yang, S; Liu, M; Chen, X; Wang, C; Hou, G

    2017-02-01

    Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in China, but the etiology and mode of carcinogenesis of this disease remain poorly understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), as a negative regulator of Akt/mTOR pathway, frequently mutates or is inactive in many cancers. Although mTOR has been thought a promising cancer therapeutic target, the sensitivity of tumor cells to rapamycin was still to be revaluated. In this study, we measured the effects of rapamycin on cell proliferation and phosphorylation of Akt in ESCC cells with varying degrees of differentiation. And then, the relationship between PTEN status and the sensitivity of cells to rapamycin was investigated in EC9706 cells with or without wild-type PTEN in vitro and in vivo. The results demonstrated ESCC cells with poor differentiation were insensitive to rapamycin of high concentration and rapamycin obviously promoted the phosphorylation of Akt in these cells, but it had no obvious effects on p-Akt in cells with well differentiation. Also, we showed that wild-type PTEN improved the sensitivity of poor differentiation cells to rapamycin through inhibiting phosphorylation of Akt in vitro and in vivo. This study explored the possible molecular mechanism of some ESCC cells insensitive to rapamycin and provided a measure for treating ESCC patients with PTEN inactivation using mTOR inhibitors. © 2015 International Society for Diseases of the Esophagus.

  16. Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells

    PubMed Central

    Liu, Tongrui; Yacoub, Rami; Taliaferro-Smith, LaTonia D.; Sun, Shi-Yong; Graham, Tisheeka R.; Dolan, Ryan; Lobo, Christine; Tighiouart, Mourad; Yang, Lily; Adams, Amy; O'Regan, Ruth M.

    2016-01-01

    Triple-negative breast cancers, which lack estrogen receptor, progesterone receptor, and HER2/neu overexpression, account for approximately 15% of breast cancers, but occur more commonly in African Americans. The poor survival outcomes seen with triple-negative breast cancers patients are, in part, due to a lack of therapeutic targets. Epidermal growth factor receptor (EGFR) is overexpressed in 50% of triple-negative breast cancers, but EGFR inhibitors have not been effective in patients with metastatic breast cancers. However, mTOR inhibition has been shown to reverse resistance to EGFR inhibitors. We examined the combination effects of mTOR inhibition with EGFR inhibition in triple-negative breast cancer in vitro and in vivo. The combination of EGFR inhibition by using lapatinib and mTOR inhibition with rapamycin resulted in significantly greater cytotoxicity than the single agents alone and these effects were synergistic in vitro. The combination of rapamycin and lapatinib significantly decreased growth of triple-negative breast cancers in vivo compared with either agent alone. EGFR inhibition abrogated the expression of rapamycin-induced activated Akt in triple-negative breast cancer cells in vitro. The combination of EGFR and mTOR inhibition resulted in increased apoptosis in some, but not all, triple-negative cell lines, and these apoptotic effects correlated with a decrease in activated eukaryotic translation initiation factor (eIF4E). These results suggest that mTOR inhibitors could sensitize a subset of triple-negative breast cancers to EGFR inhibitors. Given the paucity of effective targeted agents in triple-negative breast cancers, these results warrant further evaluation. PMID:21690228

  17. Oxygen-glucose deprivation regulates BACE1 expression through induction of autophagy in Neuro-2a/APP695 cells

    PubMed Central

    Chen, Rong-fu; Zhang, Ting; Sun, Yin-yi; Sun, Ya-meng; Chen, Wen-qi; Shi, Nan; Shen, Fang; Zhang, Yan; Liu, Kang-yong; Sun, Xiao-jiang

    2015-01-01

    Our previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aβ) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-cleaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aβ, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral ischemia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1. Either oxygen-glucose deprivation or Rapamycin down-regulated the expression of BACE1 while 3-methyladenine up-regulated BACE1 expression. These results confirm that oxygen-glucose deprivation down-regulates BACE1 expression in Neuro-2a/APP695 cells through the introduction of autophagy. PMID:26604904

  18. Delayed reendothelialization with rapamycin is rescued by the addition of nicorandil in balloon-injured rat carotid arteries.

    PubMed

    Zhang, Ying Qian; Tian, Feng; Chen, Jin Song; Chen, Yun Dai; Zhou, Ying; Li, Bo; Ma, Qiang; Zhang, Ying

    2016-11-15

    Rapamycin is an immunosuppressive agent that is added to drug eluting stents. It prevents restenosis, but it also impairs reendothelialization. Nicorandil is a hybrid agent with adenosine triphosphated (ATP)-sensitive K+ (KATP) channel opener and nitrate properties. It prevents oxidative stress and cell apoptosis induced by rapamycin in endothelial cells in vitro. However, whether nicorandil promotes reendothelialization after angioplasty delayed by rapamycin remains to be determined. Balloon injury model was established in SD rats. Nicorandil increased reendothelialization impaired by rapamycin, and it decreased xanthine oxidase (XO)-generated reactive oxygen species (ROS) induced by rapamycin. In addition, eNOS expression inhibited by rapamycin was increased by nicorandil in vivo. In vitro, rapamycin-impeded cardiac microvascular endothelial cells (CMECs) migration, proliferation and rapamycin-induced ROS production were reversed by nicorandil. Knockdown of XO partially inhibited rapamycin-induced ROS production and cell apoptosis in CMECs, and it promoted CMECs migration and proliferation suppressed by rapamycin. Knockdown of Akt partially prevents eNOS upregulation promoted by nicorandil. The beneficial effect of nicorandil is exhibited by inhibiting XO and up-regulating Akt pathway. Nicorandil combined with rapamycin in effect rescue the deficiencies of rapamycin alone in arterial healing after angioplasty.

  19. Delayed reendothelialization with rapamycin is rescued by the addition of nicorandil in balloon-injured rat carotid arteries

    PubMed Central

    Zhang, Ying Qian; Tian, Feng; Chen, Jin Song; Chen, Yun Dai; Zhou, Ying; Li, Bo; Ma, Qiang; Zhang, Ying

    2016-01-01

    Rapamycin is an immunosuppressive agent that is added to drug eluting stents. It prevents restenosis, but it also impairs reendothelialization. Nicorandil is a hybrid agent with adenosine triphosphated (ATP)-sensitive K+ (KATP) channel opener and nitrate properties. It prevents oxidative stress and cell apoptosis induced by rapamycin in endothelial cells in vitro. However, whether nicorandil promotes reendothelialization after angioplasty delayed by rapamycin remains to be determined. Balloon injury model was established in SD rats. Nicorandil increased reendothelialization impaired by rapamycin, and it decreased xanthine oxidase (XO)-generated reactive oxygen species (ROS) induced by rapamycin. In addition, eNOS expression inhibited by rapamycin was increased by nicorandil in vivo. In vitro, rapamycin-impeded cardiac microvascular endothelial cells (CMECs) migration, proliferation and rapamycin-induced ROS production were reversed by nicorandil. Knockdown of XO partially inhibited rapamycin-induced ROS production and cell apoptosis in CMECs, and it promoted CMECs migration and proliferation suppressed by rapamycin. Knockdown of Akt partially prevents eNOS upregulation promoted by nicorandil. The beneficial effect of nicorandil is exhibited by inhibiting XO and up-regulating Akt pathway. Nicorandil combined with rapamycin in effect rescue the deficiencies of rapamycin alone in arterial healing after angioplasty. PMID:27713157

  20. In vitro study of LDL transport under pressurized (convective) conditions.

    PubMed

    Cancel, Limary M; Fitting, Andrew; Tarbell, John M

    2007-07-01

    It is difficult to assess the transport pathways that carry low-density lipoprotein (LDL) into the artery wall in vivo, and there has been no previous in vitro study that has examined transendothelial transport under physiologically relevant pressurized (convective) conditions. Therefore, we measured water, albumin, and LDL fluxes across bovine aortic endothelial cell (BAEC) monolayers in vitro and determined the relative contributions of vesicles, paracellular transport through "breaks" in the tight junction, and "leaky" junctions associated with dying or dividing cells. Our results show that leaky junctions are the dominant pathway for LDL transport (>90%) under convective conditions and that albumin also has a significant component of transport through leaky junctions (44%). Transcellular transport of LDL by receptor-mediated processes makes a minor contribution (<10%) to overall transport under convective conditions.

  1. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells.

    PubMed

    Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas

    2004-09-24

    Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in

  2. Pull-down Assay to Characterize Ca2+/Calmodulin Binding to Plant Receptor Kinases.

    PubMed

    Kaufmann, Christine; Sauter, Margret

    2017-01-01

    Plant receptor-like kinases (RLKs) are regulated by posttranscriptional modification and by interaction with regulatory proteins. A common modification of RLKs is (auto)phosphorylation, and a common regulatory protein is the calcium sensor calmodulin (CaM). We have developed protocols to detect the interaction of an RLK with CaM. The interaction with CaM was shown by bimolecular fluorescence complementation (BiFC) (see Chapter 14) and pull-down assay (this chapter). Both methods offer unique advantages. BiFC is useful in showing interaction of soluble as well as of membrane-bound proteins in planta. Pull-down assays are restricted to soluble proteins and provide in vitro data. The pull-down assay provides the advantage that proteins can be modified prior to binding and that experimental conditions such as the concentration of Ca 2+ or other divalent cations can be controlled. This chapter provides a pull-down protocol to study RLK-CaM interaction with optional steps to investigate the impact of RLK phosphorylation or of Ca 2+ .

  3. The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes

    PubMed Central

    2011-01-01

    Background Reactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO). High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS). The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR) kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes. Methods Primary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β) or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included. Results In this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly, reduced levels of i

  4. Optimal Down Regulation of mRNA Translation

    NASA Astrophysics Data System (ADS)

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results.

  5. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  6. Refolding and characterization of the functional ligand-binding domain of human lectin-like oxidized LDL receptor.

    PubMed

    Xie, Qiuhong; Matsunaga, Shigeru; Shi, Xiaohua; Ogawa, Setsuko; Niimi, Setsuko; Wen, Zhesheng; Tokuyasu, Ken; Machida, Sachiko

    2003-11-01

    Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a type II membrane protein that can recognize a variety of structurally unrelated macromolecules, plays an important role in host defense and is implicated in atherogenesis. To understand the interaction between human LOX-1 and its ligands, in this study the functional C-type lectin-like domain (CTLD) of LOX-1 was reconstituted at high efficiency from inactive aggregates in Escherichia coli using a refolding technique based on an artificial chaperone. The CD spectra of the purified domain suggested that the domain has alpha-helical structure and the blue shift of Trp residues was observed on refolding of the domain. Like wild-type hLOX-1, the refolded CTLD domain was able to bind modified LDL. Thus, even though CTLD contains six Cys residues that form disulfide bonds, it recovered its specific binding ability on refolding. This suggests that the correct disulfide bonds in CTLD were formed by the artificial chaperone technique. Although the domain lacked N-glycosylation, it showed high affinity for its ligand in surface plasmon resonance experiments. Thus, unglycosylated CTLD is sufficient for binding modified LDL.

  7. Preventive and therapeutic effects of rapamycin, a mammalian target of rapamycin inhibitor, on food allergy in mice.

    PubMed

    Yamaki, K; Yoshino, S

    2012-10-01

    Because few curative treatments are available for food allergy, we investigated the therapeutic potential of rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, on mouse food allergy. The preventive and therapeutic effects of oral rapamycin on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in food allergy mice were investigated. Mast cell functions in response to rapamycin were also measured in the passive systemic anaphylaxis model and bone marrow-derived mast cells (BMMCs). Daily rapamycin from the first challenge (preventive protocol) attenuated food allergy symptoms including diarrhea, anaphylactic reactions, and hypothermia in mice. The treatment decreased the challenge-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. Notably, the mice that already showed food allergy symptoms by previous challenges recovered from the disease with daily administration of rapamycin (therapeutic protocol). Anti-OVA IgG1 and IgE levels in serum, as well as IFN-γ, IL-4, IL-13, IL-9, IL-10, and IL-17 secretion from splenocytes, were decreased by the treatments. In contrast, a single dose of rapamycin failed to affect passive systemic anaphylaxis. Spontaneous and IL-9-dependent survival and IgE-induced IL-13 secretion, but not degranulation, of BMMCs were reduced by rapamycin. Our data show that mouse food allergy was attenuated by rapamycin through an immunosuppressive effect and inhibition of intestinal mast cell hyperplasia. Inhibition of the IL-9 production-mast cell survival axis is one of the mechanisms of the therapeutic effect of rapamycin. Rapamycin and other mTOR inhibitors might be good candidates for therapeutic drugs for food allergy. © 2012 John Wiley & Sons A/S.

  8. Bile Acids Down-Regulate Caveolin-1 in Esophageal Epithelial Cells through Sterol Responsive Element-Binding Protein

    PubMed Central

    Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M.; Ebert, Matthias P.A.

    2012-01-01

    Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus

  9. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells.

    PubMed

    Molina-Molina, M; Machahua-Huamani, C; Vicens-Zygmunt, V; Llatjós, R; Escobar, I; Sala-Llinas, E; Luburich-Hernaiz, P; Dorca, J; Montes-Worboys, A

    2018-04-27

    Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.

  10. Activation of mTOR controls the loss of TCRζ in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation

    PubMed Central

    Fernandez, David R.; Telarico, Tiffany; Bonilla, Eduardo; Li, Qing; Banerjee, Sanjay; Middleton, Frank A.; Phillips, Paul E.; Crow, Mary K.; Oess, Stefanie; Muller-Esterl, Werner; Perl, Andras

    2008-01-01

    Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T-cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. Here, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. Activation of mTOR causes the over-expression of the Rab5A and HRES-1/Rab4 small GTPases that regulate endocytic recycling of surface receptors. Pull-down studies revealed a direct interaction of HRES-1/Rab4 with the T-cell receptor/CD3ζ chain (TCRζ). Importantly, the deficiency of the TCRζ chain and Lck and compensatory upregulation of the Fcε receptor type I γ chain (FcεRIγ) and Syk, which mediate enhanced calcium fluxing in lupus T cells, was reversed in patients treated with rapamcyin in vivo. Knockdown of HRES-1/Rab4 by siRNA and inhibitors of lysosomal function augmented TCRζ protein levels. The results suggest that activation of mTOR causes the loss of TCRζ in lupus T cells through HRES-1/Rab4-dependent lysosomal degradation. PMID:19201859

  11. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers

    NASA Astrophysics Data System (ADS)

    Buzova, Diana; Huntosova, Veronika; Kasak, Peter; Petrovajova, Dana; Joniova, Jaroslava; Dzurova, Lenka; Nadova, Zuzana; Sureau, Franck; Midkovsky, Pavol; Jancura, Daniel

    2012-10-01

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic photosensitizers (pts) to tumor cells in photodynamic therapy (PDT) of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by polyethylene glycol (PEG) and dextran. Fluorescence spectroscopy and confocal fluorescence imaging were used to characterize redistribution of hypericin (Hyp), a natural potent pts, loaded in LDL/PEG and LDL/dextran complexes to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It was shown than the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. On the other hand, PEG does not significantly influence this process. The modification of LDL molecules by the polymers does not inhibit their recognition by cellular LDL receptors. U-87 MG cellular uptake of Hyp loaded in LDL/PEG and LDL/dextran complexes appears to be similar to that one observed for Hyp transported by unmodified LDL particles. It is proposed that by polymers modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic drugs to cancer cells expressing high level of LDL receptors.

  12. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  13. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells.

    PubMed

    Kraehling, Jan R; Chidlow, John H; Rajagopal, Chitra; Sugiyama, Michael G; Fowler, Joseph W; Lee, Monica Y; Zhang, Xinbo; Ramírez, Cristina M; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L; Fernández-Hernando, Carlos; Sessa, William C

    2016-11-21

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.

  14. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    PubMed

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Down-regulation of Homer1b/c protects against chemically induced seizures through inhibition of mTOR signaling.

    PubMed

    Cao, Lei; Tian, Ye; Jiang, Yi; Zhang, Ge-Juan; Lei, Hui; Di, Zheng-Li

    2015-01-01

    Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. Reducing Homer1b/c expression has been shown in previous studies to be protective against excitotoxic insults, implicating Homer1b/c in the physiological regulation of aberrant neuronal excitability. To test the efficacy of a Homer1b/c reducing therapy for disorders with a detrimental hyperexcitability profile in mice, we used small interfere RNA (siRNA) to decrease endogenous Homer1b/c expression in mouse hippocampus. The baseline motor and cognitive behavior was measured by sensorimotor tests, Morris water maze and elevated plus maze tasks. The anti-epileptic effects of Homer1b/c knockdown were determined in two chemically induced seizure models induced by Picrotoxin (PTX) or pentylenetetrazole (PTZ) administration. The results of sensorimotor tests, Morris water maze and elevated plus maze tasks showed that Homer1b/c reduction had no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced Homerb/c protein had less severe seizures than control mice. Total Homer1b/c protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of Homer1b/c. In addition, the phosphorylation of mammalian target of rapamycin (mTOR) and its target protein S6 was significantly inhibited in Homer1b/c down-regulated mice. Homer1b/c knockdown-induced inhibition of mTOR pathway was partially ablated by the metabotropic glutamate receptor 5 (mGluR5) agonist CHPG. Our results demonstrate that endogenous Homer1b/c is integral for regulating neuronal hyperexcitability in adult animals and suggest that reduction of Homer1b/c could protect against chemically induced seizures through inhibition mTOR pathway. © 2015 S. Karger AG, Basel.

  16. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans.

    PubMed

    Honda, Yoko; Higashibata, Akira; Matsunaga, Yohei; Yonezawa, Yukiko; Kawano, Tsuyoshi; Higashitani, Atsushi; Kuriyama, Kana; Shimazu, Toru; Tanaka, Masashi; Szewczyk, Nathaniel J; Ishioka, Noriaki; Honda, Shuji

    2012-01-01

    How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues.

  17. Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans

    PubMed Central

    Honda, Yoko; Higashibata, Akira; Matsunaga, Yohei; Yonezawa, Yukiko; Kawano, Tsuyoshi; Higashitani, Atsushi; Kuriyama, Kana; Shimazu, Toru; Tanaka, Masashi; Szewczyk, Nathaniel J.; Ishioka, Noriaki; Honda, Shuji

    2012-01-01

    How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues. PMID:22768380

  18. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-03

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy.

    PubMed

    Yu, Ruichao; Bo, Hong; Villani, Vincenzo; Spencer, Philip J; Fu, Ping

    2016-01-01

    There is increasing evidence showing that innate immune responses and inflammatory processes play an important role in the development and progression of diabetic nephropathy (DN). The potential effect of innate immunity in the early stage of DN is still unclear. Toll-Like-Receptor 4 (TLR4) is vigorously involved in the progress of kidney diseases in a sterile environment. The activation of the interleukin 17 (IL-17) pathway produces inflammatory cytokines, appearing in various kidney diseases. Unfortunately the relationship between TLR4 and IL-17 has not been investigated in diabetic nephropathy to date. The aim of this study is to investigate whether mammalian target of rapamycin (mTOR) inhibition may be dependent on TLR4 signaling and the pro-inflammatory factor IL-17 to delay the progression of DN. Streptozotocin (STZ)-induced diabetic rats were randomly assigned to 3 experimental groups: a diabetic nephropathy group (DN, n = 6); and a diabetic nephropathy treated with rapamycin group (Rapa, n = 6) and a control group (Control, n =6). Body weight, fasting blood sugar, and 24h urine albumin were assessed at week 2, week 4 and week 8. Renal tissues were harvested for H&E, PAS staining, as well as an immunohistochemistry assay for TLR4 and IL-17. TLR4 quantitative expression was measured by Western-Blot analysis and RT-PCR. Our results demonstrated that the expression of both TLR4 and IL-17 were upregulated in early stage DN and reduced by rapamycin. TLR4 and IL-17 both increased and positively related to 24h urinary albumin and kidney/weight ratio. However, neither TLR4 nor IL-17 made a significant difference on fasting blood sugar. Taken together, our results confirm and extend previous studies identifying the significance of the TLR4 and Th17 pathways in development of early stage DN. Furthermore, we suggest this overexpression of TLR4 might be involved in the immunopathogenesis of DN through activation of Th17 cells. Rapamycin may attenuate DN via

  20. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment

    PubMed Central

    Song, Liping; Li, Hui; Sunar, Ulas; Chen, Juan; Corbin, Ian; Yodh, Arjun G; Zheng, Gang

    2007-01-01

    Low density lipoproteins (LDLs) are naturally occurring nanoparticles that are biocompatible, biodegradable and non-immunogenic. Moreover, the size of LDL particle is precisely controlled (~22 nm) by its apoB-100 component, setting them apart from liposomes and lipid micelles. LDL particles have long been proposed as a nanocarrier for targeted delivery of diagnostics and therapeutics to LDL receptor (LDLR)-positive cancers. Here, we report the design and synthesis of a novel naphthalocyanine (Nc)-based photodynamic therapy (PDT) agent, SiNcBOA, and describe its efficient reconstitution into LDL core (100:1 payload). Possessing a near-infrared (NIR) absorption wavelength (>800 nm) and extremely high extinction coefficient (>105 M–1cm–1), SiNcBOA holds the promise of treating deeply seated tumors. Reconstituted LDL particles (r-Nc-LDL) maintain the size and shape of native LDL as determined by transmission electron microscopy, and also retain their LDLR-mediated uptake by cancer cells as demonstrated by confocal microscopy. Its preferential uptake by tumor vs normal tissue was confirmed in vivo by noninvasive optical imaging technique, demonstrating the feasibility of using this nanoparticle for NIR imaging-guided PDT of cancer. PMID:18203443

  1. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  2. Rapamycin Effectively Impedes Melamine-Induced Impairments of Cognition and Synaptic Plasticity in Wistar Rats.

    PubMed

    Fu, Jingxuan; Wang, Hui; Gao, Jing; Yu, Mei; Wang, Rubin; Yang, Zhuo; Zhang, Tao

    2017-03-01

    Our previous investigation demonstrated that autophagy significantly reduced melamine-induced cell death in PC12 cells via inhibiting the excessive generation of ROS. In the present study, we further examine if rapamycin, used as an autophagy activator, can play a significant role in protecting neurons and alleviating the impairment of spatial cognition and hippocampal synaptic plasticity in melamine-treated rats. Male Wistar rats were divided into three groups: control, melamine-treated, and melamine-treated + rapamycin. The animal model was established by administering melamine at a dose of 300 mg/kg/day for 4 weeks. Rapamycin was intraperitoneally given at a dose of 1 mg/kg/day for 28 consecutive days. The Morris water maze test showed that spatial learning and reversal learning in melamine-treated rats were considerably damaged, whereas rapamycin significantly impeded the cognitive function impairment. Rapamycin efficiently alleviated the melamine-induced impairments of both long-term potentiation (LTP) and depotentiation, which were damaged in melamine rats. Rapamycin further increased the expression level of autophagy markers, which were significantly enhanced in melamine rats. Moreover, rapamycin noticeably decreased the reactive oxygen species level, while the superoxide dismutase activity was remarkably increased by rapamycin in melamine rats. Malondialdehyde assay exhibited that rapamycin prominently reduced the malondialdehyde (MDA) level of hippocampal neurons in melamine-treated rats. In addition, rapamycin significantly decreased the caspase-3 activity, which was elevated by melamine. Consequently, our results suggest that regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine.

  3. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory.

    PubMed

    Lana, D; Di Russo, J; Mello, T; Wenk, G L; Giovannini, M G

    2017-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object-place learning and recall. Furthermore, our results are in accordance with previous reports that selective

  4. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory

    PubMed Central

    Lana, D.; Di Russo, J.; Mello, T.; Wenk, G.L.; Giovannini, M.G.

    2016-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30 min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object–place learning and recall. Furthermore, our results are in accordance with previous reports that selective

  5. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qin; Han, Fei; Peng, Shi

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL inducedmore » Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. - Highlights: • oxLDL could

  7. The vitamin D analogue paricalcitol attenuates hepatic ischemia/reperfusion injury through down-regulation of Toll-like receptor 4 signaling in rats

    PubMed Central

    Kim, Min Sung; Lee, Soyoung; Jung, Namhee; Lee, Kiho; Choi, Jinwoo; Kim, Sang-Hoon; Jun, Jinhyun; Lee, Won-Mee; Chang, Yeonsoo

    2016-01-01

    Introduction Recent studies have revealed that vitamin D and its synthetic analogues have a protective effect on experimental ischemia/reperfusion (I/R) models in several organs, but little is known about its effect on the liver. The aim of this study was to evaluate the beneficial effects of vitamin D in a model of liver I/R in rats, focusing on Toll-like receptor (TLR) 4 signaling, which has been shown to be involved in I/R injury. Material and methods Twenty-four male Wistar rats were randomized into four groups: Saline + Sham, Saline + I/R, Paricalcitol + Sham, and Paricalcitol + I/R. A synthetic vitamin D2 analogue, paricalcitol, was intraperitoneally injected 24 h prior to surgery. The animals were subjected to 60 min of partial warm ischemia (70%), followed by reperfusion for 6 h on the same day. The ischemic lobe of the liver and blood were collected for molecular biochemical analyses. Results Liver damage following I/R was diminished by pretreatment with paricalcitol. Pretreatment with paricalcitol decreased the levels of pro-inflammatory mediators, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and macrophage migration inhibitory factor (MIF), in both plasma and liver tissue. In addition, pretreatment with paricalcitol markedly down-regulated the expression of TLR4, HMGB1, TNF-α and NF-κB. Conclusions The vitamin D analogue paricalcitol attenuates hepatic I/R injury through down-regulation of the TLR4 signaling pathway and might be considered to be a potential nutritional therapeutic agent against I/R injury in the liver. PMID:28261302

  8. β-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking

    PubMed Central

    Kohout, Trudy A.; Lin, Fang-Tsyr; Perry, Stephen J.; Conner, David A.; Lefkowitz, Robert J.

    2001-01-01

    The two widely coexpressed isoforms of β-arrestin (termed βarrestin 1 and 2) are highly similar in amino acid sequence. The β-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of β-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the β-arrestins (βarr1-KO and βarr2-KO) or both (βarr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the β2-adrenergic receptor (β2-AR) and the angiotensin II type 1A receptor (AT1A-R). Both βarr1-KO and βarr2-KO cells showed similar impairment in agonist-stimulated β2-AR and AT1A-R desensitization, when compared with their WT control cells, and the βarr1/2-KO cells were even further impaired. Sequestration of the β2-AR in the βarr2-KO cells was compromised significantly (87% reduction), whereas in the βarr1-KO cells it was not. Agonist-stimulated internalization of the AT1A-R was only slightly reduced in the βarr1-KO but was unaffected in the βarr2-KO cells. In the βarr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two β-arrestins to sequester the β2-AR revealed β-arrestin 2 to be 100-fold more potent than β-arrestin 1. Down-regulation of the β2-AR was also prevented in the βarr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two β-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation. PMID:11171997

  9. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.

    PubMed

    Hennig, Maria; Fiedler, Saskia; Jux, Christian; Thierfelder, Ludwig; Drenckhahn, Jörg-Detlef

    2017-08-04

    Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  11. Chronic Rapamycin Treatment Causes Glucose Intolerance and Hyperlipidemia by Upregulating Hepatic Gluconeogenesis and Impairing Lipid Deposition in Adipose Tissue

    PubMed Central

    Houde, Vanessa P.; Brûlé, Sophie; Festuccia, William T.; Blanchard, Pierre-Gilles; Bellmann, Kerstin; Deshaies, Yves; Marette, André

    2010-01-01

    OBJECTIVE The mammalian target of rapamycin (mTOR)/p70 S6 kinase 1 (S6K1) pathway is a critical signaling component in the development of obesity-linked insulin resistance and operates a nutrient-sensing negative feedback loop toward the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Whereas acute treatment of insulin target cells with the mTOR complex 1 (mTORC1) inhibitor rapamycin prevents nutrient-induced insulin resistance, the chronic effect of rapamycin on insulin sensitivity and glucose metabolism in vivo remains elusive. RESEARCH DESIGN AND METHODS To assess the metabolic effects of chronic inhibition of the mTORC1/S6K1 pathway, rats were treated with rapamycin (2 mg/kg/day) or vehicle for 15 days before metabolic phenotyping. RESULTS Chronic rapamycin treatment reduced adiposity and fat cell number, which was associated with a coordinated downregulation of genes involved in both lipid uptake and output. Rapamycin treatment also promoted insulin resistance, severe glucose intolerance, and increased gluconeogenesis. The latter was associated with elevated expression of hepatic gluconeogenic master genes, PEPCK and G6Pase, and increased expression of the transcriptional coactivator peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) as well as enhanced nuclear recruitment of FoxO1, CRTC2, and CREB. These changes were observed despite normal activation of the insulin receptor substrate/PI 3-kinase/Akt axis in liver of rapamycin-treated rats, as expected from the blockade of the mTORC1/S6K1 negative feedback loop. CONCLUSIONS These findings unravel a novel mechanism by which mTORC1/S6K1 controls gluconeogenesis through modulation of several key transcriptional factors. The robust induction of the gluconeogenic program in liver of rapamycin-treated rats underlies the development of severe glucose intolerance even in the face of preserved hepatic insulin signaling to Akt and despite a modest reduction in adiposity. PMID:20299475

  12. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)

    PubMed Central

    Lamming, Dudley W.; Demirkan, Gokhan; Boylan, Joan M.; Mihaylova, Maria M.; Peng, Tao; Ferreira, Jonathan; Neretti, Nicola; Salomon, Arthur; Sabatini, David M.; Gruppuso, Philip A.

    2014-01-01

    The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.—Lamming, D. W., Demirkan, G., Boylan, J. M., Mihaylova, M. M., Peng, T., Ferreira, J., Neretti, N., Salomon, A., Sabatini, D. M., Gruppuso, P. A. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). PMID:24072782

  13. Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein.

    PubMed

    Repicky, Sarah; Broadie, Kendal

    2009-02-01

    Loss of the mRNA-binding protein FMRP results in the most common inherited form of both mental retardation and autism spectrum disorders: fragile X syndrome (FXS). The leading FXS hypothesis proposes that metabotropic glutamate receptor (mGluR) signaling at the synapse controls FMRP function in the regulation of local protein translation to modulate synaptic transmission strength. In this study, we use the Drosophila FXS disease model to test the relationship between Drosophila FMRP (dFMRP) and the sole Drosophila mGluR (dmGluRA) in regulation of synaptic function, using two-electrode voltage-clamp recording at the glutamatergic neuromuscular junction (NMJ). Null dmGluRA mutants show minimal changes in basal synapse properties but pronounced defects during sustained high-frequency stimulation (HFS). The double null dfmr1;dmGluRA mutant shows repression of enhanced augmentation and delayed onset of premature long-term facilitation (LTF) and strongly reduces grossly elevated post-tetanic potentiation (PTP) phenotypes present in dmGluRA-null animals. Null dfmr1 mutants show features of synaptic hyperexcitability, including multiple transmission events in response to a single stimulus and cyclic modulation of transmission amplitude during prolonged HFS. The double null dfmr1;dmGluRA mutant shows amelioration of these defects but does not fully restore wildtype properties in dfmr1-null animals. These data suggest that dmGluRA functions in a negative feedback loop in which excess glutamate released during high-frequency transmission binds the glutamate receptor to dampen synaptic excitability, and dFMRP functions to suppress the translation of proteins regulating this synaptic excitability. Removal of the translational regulator partially compensates for loss of the receptor and, similarly, loss of the receptor weakly compensates for loss of the translational regulator.

  14. Developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice: a novel study suggesting an involvement of LDL-receptor.

    PubMed

    Chechi, Kanta; McGuire, John J; Cheema, Sukhinder K

    2009-04-01

    We have previously shown that a maternal high-fat diet, rich in saturated fatty acids (SFA), alters the lipid metabolism of their adult offspring. The present study was designed to investigate 1) whether alterations in hepatic LDL-receptor (LDL-r) expression may serve as a potential mechanism of developmental programming behind the altered lipid metabolism of the offspring, 2) whether altered lipid metabolism leads to aortic vascular dysfunction in the offspring, 3) whether deleterious effects of SFA exposure preweaning are influenced by postweaning diet, and 4) whether gender-specific programming effects are observed. Female C57Bl/6 mice were fed a high-SFA diet or regular chow during gestation and lactation while their pups, both male and female, received either SFA or a chow diet after weaning. Male offspring obtained from mothers fed an SFA diet and those who continued on chow postweaning had higher plasma triglycerides and total cholesterol, whereas female offspring had higher plasma total and LDL cholesterol levels, lower hepatic LDL-r mRNA expression, and reduced aortic contractile responses compared with the offspring that were fed chow throughout the study. A comparison of the postweaning diet revealed significantly lower hepatic LDL-r expression along with significantly higher plasma LDL-cholesterol concentration in the female offspring that were obtained from mothers fed an SFA diet and who continued on an SFA diet postweaning, compared with the female offspring that were obtained from mothers fed an SFA diet but who continued on chow postweaning. In conclusion, we report a novel observation of hepatic LDL-r-mediated programming of altered lipid metabolism, along with aortic vascular dysfunction, in the female offspring of mothers fed a high-SFA diet. Male offspring only exhibited dyslipidemia, suggesting gender-mediated programming. This study further highlighted the role of postweaning diets in overriding the effects of maternal programming.

  15. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases.

    PubMed

    Perl, Andras

    2016-03-01

    Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.

  16. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters.

    PubMed

    Rosario, Fredrick J; Jansson, Nina; Kanai, Yoshikatsu; Prasad, Puttur D; Powell, Theresa L; Jansson, Thomas

    2011-03-01

    The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid transporters. Pregnant rats were fed either an isocaloric low protein (LP, 4% protein) or control diet (18% protein) and studied at gestational day (GD)15, GD19, or GD21 (term 23). At GD19 and GD21, placental expression of phosphorylated eukaryotic initiation factor 4E binding protein 1 (Thr-36/46 or Thr-70) and phosphorylated S6 ribosomal protein (Ser-235/236) was decreased in the LP group. In addition, placental expression of phosphorylated S6 kinase 1 (Thr-389), phosphorylated Akt (Thr-308), and phosphorylated signal transducer and activator of transcription 3 (Tyr-705) was reduced at GD21. In microvillous plasma membranes (MVM) isolated from placentas of LP animals, protein expression of the sodium-coupled neutral amino acid transporter (SNAT)2 and the large neutral amino acid transporters 1 and 2 was reduced at GD19 and GD21. MVM SNAT1 protein expression was reduced at GD21 in LP rats. SNAT4 and 4F2 heavy chain expression in MVM was unaltered. System A and L amino acid transporter activity was decreased in MVM from LP animals at GD19 and GD21. In conclusion, maternal protein restriction inhibits placental insulin, mammalian target of rapamycin signaling, and signal transducer and activator of transcription 3 signaling, which is associated with a down-regulation of placental amino acid transporters. We speculate that maternal endocrine and metabolic control of placental nutrient transport reduces fetal growth in response to protein restriction.

  17. Toll-like Receptor 3 (TLR3) Induces Apoptosis via Death Receptors and Mitochondria by Up-regulating the Transactivating p63 Isoform α (TAP63α)*

    PubMed Central

    Sun, Ruili; Zhang, Yu; Lv, Qingshan; Liu, Bei; Jin, Miao; Zhang, Weijia; He, Qing; Deng, Minjie; Liu, Xueting; Li, Guancheng; Li, Yuehui; Zhou, Guohua; Xie, Pingli; Xie, Xiumei; Hu, Jinyue; Duan, Zhaojun

    2011-01-01

    Toll-like receptor 3 (TLR3), a member of the pathogen recognition receptors, is widely expressed in various cells and has been shown to activate immune signaling pathways by recognizing viral double-stranded RNA. Recently, it was reported that the activation of TLR3 induced apoptosis in some cells, but the detailed molecular mechanism is not fully understood. In this study, we found that in endothelial cells polyinosinic-polycytidylic acid (poly(I-C)) induced dose- and time-dependent cell apoptosis, which was elicited by TLR3 activation, as TLR3 neutralization and down-regulation repressed the apoptosis. Poly(I-C) induced the activation of both caspases 8 and 9, indicating that TLR3 triggered the signaling of both the extrinsic and intrinsic apoptotic pathways. Poly(I-C) up-regulated tumor necrosis factor-related apoptosis-inducing ligand and its receptors, death receptors 4/5, resulting in initiating the extrinsic pathway. Furthermore, poly(I-C) down-regulated anti-apoptotic protein, B cell lymphoma 2 (Bcl-2), and up-regulated Noxa, a key Bcl-2 homology 3-only antagonist of Bcl-2, leading to the priming of the intrinsic pathway. A p53-related protein, the transactivating p63 isoform α (TAp63α), was induced by TLR3 activation and contributed to the activation of both the intrinsic and extrinsic apoptotic pathways. Both the cells deficient in p63 gene expression by RNA interference and cells that overexpressed the N-terminally truncated p63 isoform α (ΔNp63α), a dominant-negative variant of TAp63α, by gene transfection, survived TLR3 activation. Taken together, TAp63α is a crucial regulator downstream of TLR3 to induce cell death via death receptors and mitochondria. PMID:21367858

  18. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis.

    PubMed

    Kendall, Ryan T; Lee, Mi-Hye; Pleasant, Dorea L; Robinson, Katherine; Kuppuswamy, Dhandapani; McDermott, Paul J; Luttrell, Louis M

    2014-09-19

    Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar(1)-Ile(4)-Ile(8)]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Chronic rapamycin treatment causes diabetes in male mice

    PubMed Central

    Schindler, Christine E.; Partap, Uttara; Patchen, Bonnie K.

    2014-01-01

    Current evidence indicates that the mammalian target of rapamycin inhibitor rapamycin both increases longevity and, seemingly contradictorily, impairs glucose homeostasis. Most studies exploring the dimensions of this paradox have been based on rapamycin treatment in mice for up to 20 wk. We sought to better understand the metabolic effects of oral rapamycin over a substantially longer period of time in HET3 mice. We observed that treatment with rapamycin for 52 wk induced diabetes in male mice, characterized by hyperglycemia, significant urine glucose levels, and severe glucose and pyruvate intolerance. Glucose intolerance occurred in male mice by 4 wk on rapamycin and could be only partially reversed with cessation of rapamycin treatment. Female mice developed moderate glucose intolerance over 1 yr of rapamycin treatment, but not diabetes. The role of sex hormones in the differential development of diabetic symptoms in male and female mice was further explored. HET3 mice treated with rapamycin for 52 wk were gonadectomized and monitored over 10 wk. Castrated male mice remained glucose intolerant, while ovariectomized females developed significant glucose intolerance over the same time period. Subsequent replacement of 17β-estradiol (E2) in ovariectomized females promoted a recovery of glucose tolerance over a 4-wk period, suggesting the protective role of E2 against rapamycin-induced diabetes. These results indicate that 1) oral rapamycin treatment causes diabetes in male mice, 2) the diabetes is partially reversible with cessation of treatment, and 3) E2 plays a protective role against the development of rapamycin-induced diabetes. PMID:24965794

  20. FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling.

    PubMed

    MacMillan, Debbi

    2013-01-30

    In many cell types the intracellular Ca(2+) store performs a central role in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)), the elevation of which triggers diverse and fundamental activities from reproduction to apoptosis, as well as being the major trigger for contraction. Two distinct classes of Ca(2+) release channels, which mobilize Ca(2+) from the store, exist; the inositol 1,4,5-trisphosphate (IP(3)) receptor and the ryanodine receptor. Considerable attention has been directed towards the importance of modulatory proteins that interact with these channels including, FK506 binding proteins (FKBPs), FKBP12 and its isoform, FKBP12.6. Although FKBP12 was first identified as the principal intracellular target for the immunosuppressive drugs, FK506 and rapamycin, new insights into the role of FKBPs have since emerged. These regulatory proteins are reportedly important modulators of intracellular Ca(2+) release. FKBPs may regulate ryanodine and IP(3) receptors either directly, by binding to the cytoplasmic aspect of the channel, or indirectly via modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR). Dissociation of FKBP12 or FKBP12.6 from either Ca(2+) release channel may increase, decrease or have no effect on ryanodine receptor- or IP(3) receptor-mediated Ca(2+) release. These important controversies may be attributed to FKBPs' ability to regulate the receptor indirectly via the kinase and phosphatase pathways modulated by the accessory proteins. This brief review discusses the regulation of intracellular ryanodine and IP(3) receptor Ca(2+) release channels by accessory FKBPs, with important implications for the role of FKBPs in the pathophysiology of a number of diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility.

    PubMed

    Sormani, Rodnay; Yao, Lei; Menand, Benoît; Ennar, Najla; Lecampion, Cécile; Meyer, Christian; Robaglia, Christophe

    2007-06-01

    The eukaryotic TOR pathway controls translation, growth and the cell cycle in response to environmental signals such as nutrients or growth-stimulating factors. The TOR protein kinase can be inactivated by the antibiotic rapamycin following the formation of a ternary complex between TOR, rapamycin and FKBP12 proteins. The TOR protein is also found in higher plants despite the fact that they are rapamycin insensitive. Previous findings using the yeast two hybrid system suggest that the FKBP12 plant homolog is unable to form a complex with rapamycin and TOR, while the FRB domain of plant TOR is still able to bind to heterologous FKBP12 in the presence of rapamycin. The resistance to rapamycin is therefore limiting the molecular dissection of the TOR pathway in higher plants. Here we show that none of the FKBPs from the model plant Arabidopsis (AtFKBPs) is able to form a ternary complex with the FRB domain of AtTOR in the presence of rapamycin in a two hybrid system. An antibody has been raised against the AtTOR protein and binding of recombinant yeast ScFKBP12 to native Arabidopsis TOR in the presence of rapamycin was demonstrated in pull-down experiments. Transgenic lines expressing ScFKBP12 were produced and were found to display a rapamycin-dependent reduction of the primary root growth and a lowered accumulation of high molecular weight polysomes. These results further strengthen the idea that plant resistance to rapamycin evolved as a consequence of mutations in plant FKBP proteins. The production of rapamycin-sensitive plants through the expression of the ScFKBP12 protein illustrates the conservation of the TOR pathway in eukaryotes. Since AtTOR null mutants were found to be embryo lethal 1, transgenic ScFKBP12 plants will provide an useful tool for the post-embryonic study of plant TOR functions. This work also establish for the first time a link between TOR activity and translation in plant cells.

  2. PCSK9: Regulation and Target for Drug Development for Dyslipidemia.

    PubMed

    Burke, Amy C; Dron, Jacqueline S; Hegele, Robert A; Huff, Murray W

    2017-01-06

    Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted zymogen expressed primarily in the liver. PCSK9 circulates in plasma, binds to cell surface low-density lipoprotein (LDL) receptors, is internalized, and then targets the receptors to lysosomal degradation. Studies of naturally occurring PCSK9 gene variants that caused extreme plasma LDL cholesterol (LDL-C) deviations and altered atherosclerosis risk unleashed a torrent of biological and pharmacological research. Rapid progress in understanding the physiological regulation of PCSK9 was soon translated into commercially available biological inhibitors of PCSK9 that reduced LDL-C levels and likely also cardiovascular outcomes. Here we review the swift evolution of PCSK9 from novel gene to drug target, to animal and human testing, and finally to outcome trials and clinical applications. In addition, we explore how the genetics-guided path to PCSK9 inhibitor development exemplifies a new paradigm in pharmacology. Finally, we consider some potential challenges as PCSK9 inhibition becomes established in the clinic.

  3. Absence of ligand-induced regulation of kinin receptor expression in the rabbit

    PubMed Central

    Sabourin, Thierry; Guay, Katline; Houle, Steeve; Bouthillier, Johanne; Bachvarov, Dimcho R; Adam, Albert; Marceau, François

    2001-01-01

    The induction of B1 receptors (B1Rs) and desensitization or down-regulation of B2 receptors (B2Rs) as a consequence of the production of endogenous kinins has been termed the autoregulation hypothesis. The latter was investigated using two models based on the rabbit: kinin stimulation of cultured vascular smooth muscle cells (SMCs) and in vivo contact system activation (dextran sulphate intravenous injection, 2 mg kg−1, 5 h).Rabbit aortic SMCs express a baseline population of B1Rs that was up-regulated upon interleukin-1β treatment ([3H]-Lys-des-Arg9-BK binding or mRNA concentration evaluated by RT–PCR; 4 or 3 h, respectively). Treatment with B1R or B2R agonists failed to alter B1R expression under the same conditions.Despite consuming endogenous kininogen (assessed using the kinetics of immunoreactive kinin formation in the plasma exposed to glass beads ex vivo) and producing hypotension mediated by B2Rs in anaesthetized rabbits, dextran sulphate treatment failed to induce B1Rs in conscious animals (RT–PCR in several organs, aortic contractility). By contrast, lipopolysaccharide (LPS, 50 μg kg−1, 5 h) was an effective B1R inducer (kidney, duodenum, aorta) but did not reduce kininogen reserve.We tested the alternate hypothesis that endogenous kinin participate in LPS induction of B1Rs. Kinin receptor antagonists (icatibant combined to B-9858, 50 μg kg−1 of each) failed to prevent or reduce the effect of LPS on B1R expression. Dextran sulphate or LPS treatments did not persistently down-regulate vascular B2Rs (jugular vein contractility assessed ex vivo).The kinin receptor autoregulation hypothesis is not applicable to primary cell cultures derived from a tissue known to express B1Rs in a regulated manner (aorta). The activation of the endogenous kallikrein-kinin system is ineffective to induce B1Rs in vivo in an experimental time frame sufficient for B1R induction by LPS. PMID:11487527

  4. Losartan protects liver against ischaemia/reperfusion injury through PPAR-γ activation and receptor for advanced glycation end-products down-regulation

    PubMed Central

    Koh, Eun-Ji; Yoon, Seong-Jin; Lee, Sun-Mee

    2013-01-01

    Background and Purpose PPAR-γ has been reported to be a protective regulator in ischaemia/reperfusion (I/R) injury. The receptor for advanced glycation end-products (RAGE) plays a major role in the innate immune response, and its expression is associated with PPAR-γ activation. Several angiotensin receptor blockers possess partial agonist activities towards PPAR-γ. Therefore, this study investigated the action of losartan, particularly with regard to PPAR-γ activation and RAGE signalling pathways during hepatic I/R. Experimental Approach Mice were subjected to 60 min of ischaemia followed by 6 h of reperfusion. Losartan (0.1, 1, 3 and 10 mg·kg−1) was administered 1 h prior to ischaemia and immediately before reperfusion. GW9662, a PPAR-γ antagonist, was administered 30 min prior to first pretreatment with losartan. Key Results Losartan enhanced the DNA-binding activity of PPAR-γ in I/R. Losartan attenuated the increased serum alanine aminotransferase activity, TNF-α and IL-6 levels, and nuclear concentrations of NF-κB in I/R. GW9662 reversed these beneficial effects. Losartan caused a decrease in apoptosis as assessed by TUNEL assay, in release of cytochrome c and in cleavage of caspase-3, and these effects were abolished by GW9662 administration. Losartan attenuated not only I/R-induced RAGE overexpression, but also its downstream early growth response protein-1-dependent macrophage inflammatory protein 2 level; phosphorylation of p38, ERK and JNK; and subsequent c-Jun phosphorylation. GW9662 reversed these effects of losartan administration. Conclusions and Implications Our findings suggest that losartan ameliorates I/R-induced liver damage through PPAR-γ activation and down-regulation of the RAGE signalling pathway. PMID:23647130

  5. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    PubMed

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  6. [Effect of rapamycin on proliferation of rat heart valve interstitial cells in vitro].

    PubMed

    Tan, Yan; Wang, Ji-Ye; Yi, Ren-Liang; Qiu, Jian

    2016-04-01

    To investigate the effect of rapamycin on the proliferation of rat valvular interstitial cells in primary culture. The interstitial cells isolated from rat aortic valves were cultured and treated with rapamycin, and the cell growth and cell cycle changes were analyzed using MTT assay and flow cytometry, respectively. RT-PCR was used to detect mRNA expression levels of S6 and P70S6K in cells, and the protein expressions level of S6, P70S6K, P-S6, and P-P70S6K were detected using Western blotting. Rat aortic valvular interstitial cells was isolated successfully. The rapamycin-treated cells showed a suppressed proliferative activity (P<0.05), but the cell cycle distribution remained unaffected. Rapamycin treatment resulted in significantly decreased S6 and P70S6K protein phosphorylation level in the cells (P<0.05). The mechanism by which rapamycin inhibits the proliferation of valvular interstitial cells probably involves suppression of mTOR to lower S6 and P70S6K phosphorylation level but not direct regulation of the cell cycle.

  7. Rapamycin prevents, but does not reverse, aberrant migration in Pten knockout neurons.

    PubMed

    Getz, Stephanie A; DeSpenza, Tyrone; Li, Meijie; Luikart, Bryan W

    2016-09-01

    Phosphatase and tensin homolog (PTEN) is a major negative regulator of the Akt/mammalian target of rapamycin (MTOR) pathway. Mutations in PTEN have been found in a subset of individuals with autism and macrocephaly. Further, focal cortical dysplasia (FCD) has been observed in patients with PTEN mutations prompting us to examine the role of Pten in neuronal migration. The dentate gyrus of Pten(Flox/Flox) mice was injected with Cre- and non-Cre-expressing retroviral particles, which integrate into the dividing genome to birthdate cells. Control and Pten knockout (KO) cell position in the granule cell layer was quantified over time to reveal that Pten KO neurons exhibit an aberrant migratory phenotype beginning at 7.5days-post retroviral injection (DPI). We then assessed whether rapamycin, a mTor inhibitor, could prevent or reverse aberrant migration of granule cells. The preventative group received daily intraperitoneal (IP) injections of rapamycin from 3 to 14 DPI, before discrepancies in cell position have been established, while the reversal group received rapamycin afterward, from 14 to 24 DPI. We found that rapamycin prevented and reversed somal hypertrophy. However, rapamycin prevented, but did not reverse aberrant migration in Pten KO cells. We also find that altered migration occurs through mTorC1 and not mTorC2 activity. Together, these findings suggest a temporal window by which rapamycin can treat aberrant migration, and may have implications for the use of rapamycin to treat PTEN-mutation associated disorders. Mutations in phosphatase and tensin homolog (PTEN) have been linked to a subset of individuals with autism and macrocephaly, as well as Cowden Syndrome and focal cortical dysplasia. Pten loss leads to neuronal hypertrophy, but the role of Pten in neuronal migration is unclear. Here we have shown that loss of Pten leads to aberrant migration, which can be prevented but not reversed by treatment with rapamycin, a mTor inhibitor. These results are

  8. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    PubMed

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  9. Enhanced down regulation of cortical +-propranolol sensitive ( sup 3 H)-DHA binding sites by co-administration of DMI and 5-HT sub 1A partial agonist gepirone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geissler, M.A.; Yocca, F.D.

    1990-02-26

    The putative interrelationship between the noradrenergic and serotonergic systems has been supported by numerous studies. Recently, Dudley et al. (1989) demonstrated significant down regulation of cortical {beta}-adrenergic receptors by co-administration of desipramine (DMI), a norepinephrine uptake inhibitor, and the full 5-HT{sub 1A} agonist 8-OH-DPAT. To this end, the effects of acute and chronic (4 and 14 day) administration of DMI, gepirone, a selective 5-HT{sub 1A} post-synaptic partial agonist, as well as a combination of the two, on cortical ({plus minus})-propranolol sensitive ({sup 3}H)-DHA binding sites were examined in rats. Down regulation was apparent after 4 and 14 day treatment withmore » DMI. However, this was not the case with gepirone. Of particular importance is the demonstration of a greater magnitude of down regulation with co-administration of a greater magnitude of down regulation with co-administration of DMI and gepirone. These results suggests that alteration in rat cortical ({plus minus})-propranolol sensitive ({sup 3}H)-DHA binding sites by noradrenergic uptake inhibitors can be further modulated by selective partial agonist activity at central 5-HT{sub 1A} postsynaptic receptors. Further data on the co-administration of DMI and BMY 7378 (7,9-dioxo-8-(2-(4-{und o}-methoxyphenylpiperazinyl)ethyl)-8-azaspiro(4,5)decane dihydrochloride), a weak partial agonist at postsynaptic 5-HT{sub 1A} receptors, are also presented.« less

  10. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less

  11. Mammalian target of rapamycin (mTOR): a central regulator of male fertility?

    PubMed

    Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G

    2017-06-01

    Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.

  12. Mammalian target of rapamycin (mTOR): a central regulator of male fertility?

    PubMed Central

    Jesus, Tito T.; Oliveira, Pedro F.; Sousa, M ario; Cheng, C. Yan; Alves, Marco G.

    2017-01-01

    Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermato-genesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system. PMID:28124577

  13. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin

    PubMed Central

    2017-01-01

    Abstract Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others. PMID:29085896

  14. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    PubMed

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  15. Rapamycin Reverses Status Epilepticus-Induced Memory Deficits and Dendritic Damage

    PubMed Central

    Brewster, Amy L.; Lugo, Joaquin N.; Patil, Vinit V.; Lee, Wai L.; Qian, Yan; Vanegas, Fabiola; Anderson, Anne E.

    2013-01-01

    Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE. PMID:23536771

  16. Transforming Growth Factor β1-induced Apoptosis in Podocytes via the Extracellular Signal-regulated Kinase-Mammalian Target of Rapamycin Complex 1-NADPH Oxidase 4 Axis.

    PubMed

    Das, Ranjan; Xu, Shanhua; Nguyen, Tuyet Thi; Quan, Xianglan; Choi, Seong-Kyung; Kim, Soo-Jin; Lee, Eun Young; Cha, Seung-Kuy; Park, Kyu-Sang

    2015-12-25

    TGF-β is a pleiotropic cytokine that accumulates during kidney injuries, resulting in various renal diseases. We have reported previously that TGF-β1 induces the selective up-regulation of mitochondrial Nox4, playing critical roles in podocyte apoptosis. Here we investigated the regulatory mechanism of Nox4 up-regulation by mTORC1 activation on TGF-β1-induced apoptosis in immortalized podocytes. TGF-β1 treatment markedly increased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream targets p70S6K and 4EBP1. Blocking TGF-β receptor I with SB431542 completely blunted the phosphorylation of mTOR, p70S6K, and 4EBP1. Transient adenoviral overexpression of mTOR-WT and constitutively active mTORΔ augmented TGF-β1-treated Nox4 expression, reactive oxygen species (ROS) generation, and apoptosis, whereas mTOR kinase-dead suppressed the above changes. In addition, knockdown of mTOR mimicked the effect of mTOR-KD. Inhibition of mTORC1 by low-dose rapamycin or knockdown of p70S6K protected podocytes through attenuation of Nox4 expression and subsequent oxidative stress-induced apoptosis by TGF-β1. Pharmacological inhibition of the MEK-ERK cascade, but not the PI3K-Akt-TSC2 pathway, abolished TGF-β1-induced mTOR activation. Inhibition of either ERK1/2 or mTORC1 did not reduce the TGF-β1-stimulated increase in Nox4 mRNA level but significantly inhibited total Nox4 expression, ROS generation, and apoptosis induced by TGF-β1. Moreover, double knockdown of Smad2 and 3 or only Smad4 completely suppressed TGF-β1-induced ERK1/2-mTORactivation. Our data suggest that TGF-β1 increases translation of Nox4 through the Smad-ERK1/2-mTORC1 axis, which is independent of transcriptional regulation. Activation of this pathway plays a crucial role in ROS generation and mitochondrial dysfunction, leading to podocyte apoptosis. Therefore, inhibition of the ERK1/2-mTORC1 pathway could be a potential therapeutic and preventive target in proteinuric and chronic

  17. Down-Regulation of Vitamin D Receptor in Mammospheres: Implications for Vitamin D Resistance in Breast Cancer and Potential for Combination Therapy

    PubMed Central

    Pervin, Shehla; Hewison, Martin; Braga, Melissa; Tran, Lac; Chun, Rene; Karam, Amer; Chaudhuri, Gautam; Norris, Keith; Singh, Rajan

    2013-01-01

    Vitamin D signaling in mammary cancer stem cells (MCSCs), which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH+) had increased ability to form mammospheres compared to ALDH− cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR) was significantly down-regulated in mammospheres, as well as in ALDH+ breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D), the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLEHRas cells with DETA NONOate, a nitric oxide (NO)-donor led to induction of MAP-kinase phosphatase -1 (MKP-1) and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in prospective clinical

  18. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    PubMed

    Pervin, Shehla; Hewison, Martin; Braga, Melissa; Tran, Lac; Chun, Rene; Karam, Amer; Chaudhuri, Gautam; Norris, Keith; Singh, Rajan

    2013-01-01

    Vitamin D signaling in mammary cancer stem cells (MCSCs), which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+)) had increased ability to form mammospheres compared to ALDH(-) cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR) was significantly down-regulated in mammospheres, as well as in ALDH(+) breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D), the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas) cells with DETA NONOate, a nitric oxide (NO)-donor led to induction of MAP-kinase phosphatase -1 (MKP-1) and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in prospective

  19. Therapeutic potential of target of rapamycin inhibitors.

    PubMed

    Easton, John B; Houghton, Peter J

    2004-12-01

    Target of rapamycin (TOR) functions within the cell as a transducer of information from various sources, including growth factors, energy sensors, and hypoxia sensors, as well as components of the cell regulating growth and division. Blocking TOR function mimics amino acid, and to some extent, growth factor deprivation and has a cytostatic effect on proliferating cells in vivo. Inhibition of TOR in vivo, utilising its namesake rapamycin, leads to immunosuppression. This property has been exploited successfully with the use of rapamycin and its derivatives as a therapeutic agent in the prevention of organ rejection after transplantation with relatively mild side effects when compared to other immunosuppressive agents. The cytostatic effect of TOR on vascular smooth muscle cell proliferation has also recently been exploited in the therapeutic application of rapamycin to drug eluting stents for angioplasty. These stents significantly reduce the amount of arterial reblockage that results from proliferating vascular smooth muscle cells. In cancer, the effect of blocking TOR function on tumour growth and disease progression is currently of major interest and is the basis for a number of ongoing clinical trials. However, different cell types and tumours respond differently to TOR inhibition, and TOR is clearly not cytostatic for all types of cancer cells in vitro or in vivo. As the molecular details of how TOR functions and the targets of TOR activity are further elucidated, tumour and tissue specific functions are being identified that implicate TOR in angiogenesis, apoptosis, and the reversal of some forms of cellular transformation. This review will describe our current understanding of TOR function, describe the current strategies for employing TOR inhibitors in clinical and preclinical development, and outline future strategies for appropriate targets of TOR inhibitors in the treatment of disease.

  20. Rapamycin has paradoxical effects on S6 phosphorylation in rats with and without seizures.

    PubMed

    Chen, Linglin; Hu, Lin; Dong, Jing-Yin; Ye, Qing; Hua, Nan; Wong, Michael; Zeng, Ling-Hui

    2012-11-01

    reversed by pretreatment of perifosine, an Akt inhibitor.   These data indicate the complexity of S6 regulation and its effect on epilepsy. Paradoxical effects of rapamycin need to be considered in clinical applications, such as for potential treatment for epilepsy and other neurologic disorders. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  1. Rapamycin has Paradoxical Effects on S6 Phosphorylation in Rats With and Without Seizures

    PubMed Central

    Chen, Linglin; Hu, Lin; Dong, Jing-Yin; Ye, Qing; Hua, Nan; Wong, Michael; Zeng, Ling-Hui

    2012-01-01

    TOR signaling and was reversed by pre-treatment of perifosine, an Akt inhibitor. Significance These data indicate the complexity of S6 regulation and its effect on epilepsy. Paradoxical effects of rapamycin need to be considered in clinical applications, such as for potential treatment for epilepsy and other neurological disorders. PMID:23145776

  2. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    PubMed Central

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.

    2012-01-01

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099

  3. Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells.

    PubMed

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X

    2012-11-27

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.

  4. Decoy receptor 3 suppresses RANKL-induced osteoclastogenesis via down-regulating NFATc1 and enhancing cell apoptosis.

    PubMed

    Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming

    2013-04-01

    Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.

  5. Down-regulation of microRNA-146a is associated with high-risk human papillomavirus infection and epidermal growth factor receptor overexpression in penile squamous cell carcinoma.

    PubMed

    Peta, Elektra; Cappellesso, Rocco; Masi, Giulia; Sinigaglia, Alessandro; Trevisan, Marta; Grassi, Angela; Di Camillo, Barbara; Vassarotto, Elisa; Fassina, Ambrogio; Palù, Giorgio; Barzon, Luisa

    2017-03-01

    Dysregulation of host microRNA expression has been involved in the development and progression of human papillomavirus (HPV)-related tumors. Analysis of miR-146a expression in a series of 59 penile squamous cell carcinomas (PSCCs) showed that its levels were lower in high-risk HPV-positive than in HPV-negative PSCCs and inversely correlated with expression of epidermal growth factor receptor (EGFR), a known target for miR-146a. Analysis of genotype distribution for rs2910164, a common functional polymorphism of miR-146a, did not identify correlations with miR-146a levels and EGFR expression in PSCCs. In vitro experiments demonstrated that E6 of HPV type 16, but not low-risk HPV-6, down-regulated miR-146a in human foreskin keratinocytes and up-regulated EGFR. Ectopic expression of miR-146a decreased expression of EGFR and inhibited proliferation of keratinocytes and cervical carcinoma cells. EGFR is commonly overexpressed in penile cancer and in other squamous cell carcinomas. Molecular mechanisms leading to EGFR overexpression and activation are known for HPV-negative cancers and include amplification or mutations of the EGFR gene. The results of this study indicate that down-regulation of miR-146a may represent another mechanism of EGFR overexpression in PSCCs, which can be mediated by high-risk HPV E6 in HPV-related tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats.

    PubMed

    Lu, Zhenya; Liu, Furong; Chen, Linglin; Zhang, Huadan; Ding, Yuemin; Liu, Jianxiang; Wong, Michael; Zeng, Ling-Hui

    2015-01-01

    Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats

  7. Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats

    PubMed Central

    Lu, Zhenya; Liu, Furong; Chen, Linglin; Zhang, Huadan; Ding, Yuemin; Liu, Jianxiang; Wong, Michael; Zeng, Ling-Hui

    2015-01-01

    Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats

  8. Regulation of PCSK9 by nutraceuticals.

    PubMed

    Momtazi, Amir Abbas; Banach, Maciej; Pirro, Matteo; Katsiki, Niki; Sahebkar, Amirhossein

    2017-06-01

    PCSK9 (proprotein convertase subtilisin kexin type 9) is a liver secretory enzyme that regulates plasma low-density lipoprotein (LDL) cholesterol (LDL-C) levels through modulation of LDL receptor (LDLR) density on the surface of hepatocytes. Inhibition of PCSK9 using monoclonal antibodies can efficiently lower plasma LDL-C, non-high-density lipoprotein cholesterol and lipoprotein (a). PCSK9 inhibition is also an effective adjunct to statin therapy; however, the cost-effectiveness of currently available PCSK9 inhibitors is under question. Nutraceuticals offer a safe and cost-effective option for PCSK9 inhibition. Several nutraceuticals have been reported to modulate PCSK9 levels and exert LDL-lowering activity. Mechanistically, those nutraceuticals that inhibit PCSK9 through a SREBP (sterol-responsive element binding protein)-independent pathway can be more effective in lowering plasma LDL-C levels compared with those inhibiting PCSK9 through the SREBP pathway. The present review aims to collect available data on the nutraceuticals with PCSK9-inhibitory effect and the underlying mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Rapamycin inhibits spermatogenesis by changing the autophagy status through suppressing mechanistic target of rapamycin-p70S6 kinase in male rats

    PubMed Central

    Liu, Shangjing; Huang, Longxian; Geng, Yanqing; He, Junlin; Chen, Xuemei; Xu, Hao; Li, Rong; Wang, Yingxiong; Ding, Yubin; Liu, Xueqing

    2017-01-01

    Rapamycin (sirolimus) is an antiproliferative drug that has been widely used in the clinic as an immunosuppressant and a potential anticancer agent. Certain reports have indicated that rapamycin may induce male infertility through impairing sperm quality. The present study investigated the mechanism of male infertility caused by rapamycin and examined whether withdrawal of rapamycin could recover the number of sperm in rats. Male Sprague-Dawley rats (n=100) were divided randomly into 5 groups: 3 rapamycin-treated groups (2, 4 and 6 mg/kg) and 2 control groups [Blank and dimethyl sulfoxide (DMSO)]. Organ coefficients of the testes, number of sperm and hematoxylin-eosin staining analyses demonstrated that rapamycin treatment markedly damaged the structure of the seminiferous tubule and reduced the number of sperm. Immunohistochemistry of mechanistic target of rapamycin (mTOR) and Ki67 in testes tissue, and western blotting of phosphorylated-p70S6K and p70S6K, supported the hypothesis that rapamycin causes sperm reduction through inhibiting proliferation of spermatogonia. Unfortunately, 24 weeks after cessation of rapamycin treatment, only the number of sperm in 2 mg/kg group was restored back to the normal level. In addition, to the best of our knowledge, the present study was the first to demonstrate that low doses rapamycin leads to activation of autophagy in rat testes. This may be a self-protective mechanism of the cell in response to external stress. Thus, spermatogenesis can be recovered in the testes from rats in the low dose group. High doses of rapamycin resulted in excessive consumption of autophagy proteins, and the damage could not be compensated. In addition, it was revealed that cell apoptosis increased after treatment with rapamycin. In conclusion, the present study demonstrated that rapamycin inhibits spermatogenesis through suppressing phosphorylation of p70S6K and changing the autophagy status, ultimately reducing the number of sperm. These findings

  10. Rapamycin treatment augments both protein ubiquitination and Akt activation in pressure-overloaded rat myocardium

    PubMed Central

    Harston, Rebecca K.; McKillop, John C.; Moschella, Phillip C.; Van Laer, An; Quinones, Lakeya S.; Baicu, Catalin F.; Balasubramanian, Sundaravadivel; Zile, Michael R.

    2011-01-01

    Ubiquitin-mediated protein degradation is necessary for both increased ventricular mass and survival signaling for compensated hypertrophy in pressure-overloaded (PO) myocardium. Another molecular keystone involved in the hypertrophic growth process is the mammalian target of rapamycin (mTOR), which forms two distinct functional complexes: mTORC1 that activates p70S6 kinase-1 to enhance protein synthesis and mTORC2 that activates Akt to promote cell survival. Independent studies in animal models show that rapamycin treatment that alters mTOR complexes also reduces hypertrophic growth and increases lifespan by an unknown mechanism. We tested whether the ubiquitin-mediated regulation of growth and survival in hypertrophic myocardium is linked to the mTOR pathway. For in vivo studies, right ventricle PO in rats was conducted by pulmonary artery banding; the normally loaded left ventricle served as an internal control. Rapamycin (0.75 mg/kg per day) or vehicle alone was administered intraperitoneally for 3 days or 2 wk. Immunoblot and immunofluorescence imaging showed that the level of ubiquitylated proteins in cardiomyocytes that increased following 48 h of PO was enhanced by rapamycin. Rapamycin pretreatment also significantly increased PO-induced Akt phosphorylation at S473, a finding confirmed in cardiomyocytes in vitro to be downstream of mTORC2. Analysis of prosurvival signaling in vivo showed that rapamycin increased PO-induced degradation of phosphorylated inhibitor of κB, enhanced expression of cellular inhibitor of apoptosis protein 1, and decreased active caspase-3. Long-term rapamycin treatment in 2-wk PO myocardium blunted hypertrophy, improved contractile function, and reduced caspase-3 and calpain activation. These data indicate potential cardioprotective benefits of rapamycin in PO hypertrophy. PMID:21357504

  11. Emotion Regulation in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Smith, Maureen C.; Walden, Tedra A.

    This study presents a preliminary exploration of emotion regulation in a sample of 20 children (ages 3-18 years) with Down Syndrome. Three aspects of emotion regulation (modulation, organization, flexibility) were predicted from emotion variables (affect intensity, affective expression, and autonomy-curiosity and motivation) in backward regression…

  12. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    PubMed

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Antiatherosclerotic effects of Artemisia princeps Pampanini cv. Sajabal in LDL receptor deficient mice.

    PubMed

    Han, Jong-Min; Kim, Min-Jung; Baek, Seung-Hwa; An, Sojin; Jin, Yue-Yan; Chung, Hae-Gon; Baek, Nam-In; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook

    2009-02-25

    Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.

  14. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion.

    PubMed

    Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A

    2011-05-17

    Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non

  15. Down-regulation of muscarinic receptors and the m3 subtype in white-footed mice by dietary exposure to parathion

    USGS Publications Warehouse

    Jett, David A.; Hill, E.F.; Fernando, J.C.; Eldefrawi, M.E.; Eldefrawi, A.T.

    1993-01-01

    The effect of ad libitum dietary exposure (as occurs in the field) to parathion for 14 d was investigated on the muscarinic acetylcholine receptor (mAChR) in brains and submaxillary glands of adults of a field species, the white-footed mouse Peromyscus leucopus. Immunoprecipitation using subtype selective antibodies revealed that the relative ratios of the m1-m5 mAChR subtypes in Peromyscus brain were similar to those in rat brain. There was little variability in acetylcholinesterase (AChE) activity in control mice brains but large variability in 39 exposed mice, resulting from differences in food ingestion and parathion metabolism. Accordingly, data on radioligand binding to mAChRs in each mouse brain were correlated with brain AChE activity in the same mouse, and AChE inhibition served as a biomarker of exposure reflecting in situ paraoxon concentrations. Exposure to parathion for 14 d reduced maximal binding (Bmax) of [3H]quinuclidinyl benzilate ([3H]QNB), [3H]-N-methylscopolamine ([3H]NMS), and [3H]-4-diphenylacetoxy-N-methylpiperidine methiodide ([3H]-4-DAMP) by up to approximately 58% without affecting receptor affinities for these ligands. Maximal reduction in Bmax of [3H]QNB and [3H]-4-DAMP binding occurred in mice with highest AChE inhibition, while equivalent maximal reduction in Bmax of [3H]NMS occurred in mice with only approximately 10% AChE inhibition, without further change at higher parathion doses. This is believed to be due to the hydrophilicity of [3H]NMS, which limits its accessibility to internalized desensitized receptors. In submaxillary glands (mAChRs are predominantly m3 subtype), there were significant dose-dependent reductions in [3H]QNB binding and m3 mRNA levels in exposed mice, revealed by Northern blot analyses. The reduction in m3 receptors is suggested to result mostly from reduced synthesis at the transcription level, rather than from translational or posttranslational events. The data suggest that down-regulation of mAChRs occurs

  16. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  17. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice.

    PubMed

    Hollie, Norris I; Konaniah, Eddy S; Goodin, Colleen; Hui, David Y

    2014-06-01

    Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Novel lipid modifying drugs to lower LDL cholesterol.

    PubMed

    Cupido, Arjen J; Reeskamp, Laurens F; Kastelein, John J P

    2017-08-01

    Statins have long been the cornerstone for the prevention of cardiovascular disease (CVD). However, because of perceived adverse effects and insufficient efficacy in certain groups of patients, considerable interest exists in the search for alternatives to lower LDL-cholesterol (LDL-C), and the recent approvals of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors underlines the success of this quest. Here, we give an updated overview on the most recent developments in the area of LDL-C lowering agents. The clinical effects of the PCSK9 inhibitors are promising, especially now that the FOURIER and SPIRE programmes are published. Most cholesterylester-transfer protein inhibitors, however, except anacetrapib, have been discontinued because of either toxicity or lack of efficacy in large cardiovascular outcome trials. Other agents - like mipomersen, lomitapide, ETC-1002, and gemcabene - aim to lower LDL-C in different ways than solely through the LDL receptor, opening up possibilities for treating patients not responding to conventional therapies. New discoveries are also being made at the DNA and RNA level, with mipomersen being the first approved therapy based on RNA intervention in the United States for homozygous familial hypercholesterolemia. Recent years have witnessed a new beginning for cholesterol-lowering compounds. With increased knowledge of lipid metabolism a score of new therapeutic targets has been identified. Mechanisms for modulation of those targets are also becoming more diverse while statins remain the backbone of CVD prevention, the new alternatives, such as PCSK9 monoclonals will probably play an important additional role in treatment of patients at risk for CVD.

  19. Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon.

    PubMed

    Kavitha, Jovita V; Rosario, Fredrick J; Nijland, Mark J; McDonald, Thomas J; Wu, Guoyao; Kanai, Yoshikatsu; Powell, Theresa L; Nathanielsz, Peter W; Jansson, Thomas

    2014-03-01

    The mechanisms by which maternal nutrient restriction (MNR) causes reduced fetal growth are poorly understood. We hypothesized that MNR inhibits placental mechanistic target of rapamycin (mTOR) and insulin/IGF-I signaling, down-regulates placental nutrient transporters, and decreases fetal amino acid levels. Pregnant baboons were fed control (ad libitum, n=11) or an MNR diet (70% of controls, n=11) from gestational day (GD) 30. Placenta and umbilical blood were collected at GD 165. Western blot was used to determine the phosphorylation of proteins in the mTOR, insulin/IGF-I, ERK1/2, and GSK-3 signaling pathways in placental homogenates and expression of glucose transporter 1 (GLUT-1), taurine transporter (TAUT), sodium-dependent neutral amino acid transporter (SNAT), and large neutral amino acid transporter (LAT) isoforms in syncytiotrophoblast microvillous membranes (MVMs). MNR reduced fetal weights by 13%, lowered fetal plasma concentrations of essential amino acids, and decreased the phosphorylation of placental S6K, S6 ribosomal protein, 4E-BP1, IRS-1, Akt, ERK-1/2, and GSK-3. MVM protein expression of GLUT-1, TAUT, SNAT-2 and LAT-1/2 was reduced in MNR. This is the first study in primates exploring placental responses to maternal undernutrition. Inhibition of placental mTOR and insulin/IGF-I signaling resulting in down-regulation of placental nutrient transporters may link maternal undernutrition to restricted fetal growth.

  20. Ezetimibe increases intestinal expression of the LDL receptor gene in dyslipidaemic men with insulin resistance.

    PubMed

    Drouin-Chartier, Jean-Philippe; Tremblay, André J; Lemelin, Valéry; Lépine, Marie-Claude; Lamarche, Benoît; Couture, Patrick

    2016-12-01

    To gain further insight into intestinal cholesterol homeostasis in dyslipidaemic men with insulin resistance (IR) by examining the impact of treatment with ezetimibe on the expression of key genes involved in cholesterol synthesis and LDL receptor (R)-mediated uptake of lipoproteins. A total of 25 men with dyslipidaemia and IR were recruited to participate in this double-blind, randomized, crossover, placebo-controlled trial. Participants received 10 mg/day ezetimibe or placebo for periods of 12 weeks each. Intestinal gene expression was measured by quantitative PCR in duodenal biopsy samples collected by gastroduodenoscopy at the end of each treatment. A total of 20 participants completed the protocol. Treatment with ezetimibe significantly increased intestinal LDLR (+16.2%; P = .01), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoAR; +14.0%; P = .04) and acetyl-Coenzyme A acetyltransferase 2 (ACAT-2) mRNA expression (+12.5%; P = .03). Changes in sterol regulatory element-binding transcription factor 2 (SREBP-2) expression were significantly correlated with changes in HMG-CoAR (r = 0.55; P < .05), ACAT-2 (r = 0.69; P < .001) and proprotein convertase substilisin/kexin type 9 (PCSK9) expression (r = 0.45; P < .05). These results show that inhibition of intestinal cholesterol absorption by ezetimibe increases expression of the LDLR gene, supporting the concept that increased LDL clearance with ezetimibe treatment occurs not only in the liver but also in the small intestine. © 2016 John Wiley & Sons Ltd.

  1. Desensitization and Down Regulation of Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1988-06-22

    function, in vitro. This technique offers an easy method to obtain intact differentiated brain cells with minimal diffusion barriers. Preincubation of...neuroblastoma cells (clone NIE- 115 ). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one...mouse neuroblastoma NlE- 115 cells, and in other tissues, mediated an increase in phosphoinositide hydrolysis. Diacylglycerol is one of the important

  2. Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia

    PubMed Central

    Bilheimer, David W.; Watanabe, Yoshio; Kita, Toru

    1982-01-01

    The homozygous WHHL (Watanabe heritable hyperlipidemic) rabbit displays either no or only minimal low density lipoprotein (LDL) receptor activity on cultured fibroblasts and liver membranes and has therefore been proposed as an animal model for human familial hypercholesterolemia. To assess the impact of this mutation on LDL metabolism in vivo, we performed lipoprotein turnover studies in normal and WHHL rabbits using both native rabbit LDL and chemically modified LDL (i.e., methyl-LDL) that does not bind to LDL receptors. The total fractional catabolic rate (FCR) for LDL in the normal rabbit was 3.5-fold greater than in the WHHL rabbit. Sixty-seven percent of the total FCR for LDL in the normal rabbit was due to LDL receptor-mediated clearance and 33% was attributable to receptor-independent processes; in the WHHL rabbit, essentially all of the LDL was catabolized via receptor-independent processes. Despite a 17.5-fold elevated plasma pool size of LDL apoprotein (apo-LDL) in WHHL as compared to normal rabbits, the receptor-independent FCR—as judged by the turnover of methyl-LDL—was similar in the two strains. Thus, the receptor-independent catabolic processes are not influenced by the mutation affecting the LDL receptor. The WHHL rabbits also exhibited a 5.6-fold increase in the absolute rate of apo-LDL synthesis and catabolism. In absolute terms, the WHHL rabbit cleared 19-fold more apo-LDL via receptor-independent processes than did the normal rabbit and cleared virtually none by the receptor-dependent pathway. These results indicate that the homozygous WHHL rabbit shares a number of metabolic features in common with human familial hypercholesterolemia and should serve as a useful model for the study of altered lipoprotein metabolism associated with receptor abnormalities. We also noted that the in vivo metabolic behavior of human and rabbit LDL in the normal rabbit differed such that the mean total FCR for human LDL was only 64% of the mean total FCR for

  3. Expression and regulation of CNTF receptor-alpha in the in situ and in oculo grafted adult rat adrenal medulla.

    PubMed

    Förander, P; Brené, S; Strömberg, I

    2000-02-28

    Cultured and transplanted adrenal medullary cells respond to ciliary neurotrophic factor (CNTF) with neurite formation and improved cell survival although the presence of the CNTF receptor-alpha (CNTFRalpha) has been unclear. This study show that CNTFRalpha mRNA was expressed in the postnatal day 1 as well as in the adult rat adrenal medulla. The highest CNTFRalpha mRNA signal was found in the ganglion cells of the adrenal medulla. After transplantation of adrenal medullary tissue the CNTFRalpha mRNA levels were down-regulated in the chromaffin cells. CNTF treatment of grafts did not normalize the receptor levels, but treatment with nerve growth factor (NGF) did. Thus, we demonstrate that CNTFRalpha mRNA is expressed in adrenal medulla, the levels becomes down-regulated after transplantation, but normalized after treatment with NGF.

  4. Rapamycin inhibits spermatogenesis by changing the autophagy status through suppressing mechanistic target of rapamycin-p70S6 kinase in male rats.

    PubMed

    Liu, Shangjing; Huang, Longxian; Geng, Yanqing; He, Junlin; Chen, Xuemei; Xu, Hao; Li, Rong; Wang, Yingxiong; Ding, Yubin; Liu, Xueqing

    2017-10-01

    Rapamycin (sirolimus) is an antiproliferative drug that has been widely used in the clinic as an immunosuppressant and a potential anticancer agent. Certain reports have indicated that rapamycin may induce male infertility through impairing sperm quality. The present study investigated the mechanism of male infertility caused by rapamycin and examined whether withdrawal of rapamycin could recover the number of sperm in rats. Male Sprague‑Dawley rats (n=100) were divided randomly into 5 groups: 3 rapamycin‑treated groups (2, 4 and 6 mg/kg) and 2 control groups [Blank and dimethyl sulfoxide (DMSO)]. Organ coefficients of the testes, number of sperm and hematoxylin‑eosin staining analyses demonstrated that rapamycin treatment markedly damaged the structure of the seminiferous tubule and reduced the number of sperm. Immunohistochemistry of mechanistic target of rapamycin (mTOR) and Ki67 in testes tissue, and western blotting of phosphorylated‑p70S6K and p70S6K, supported the hypothesis that rapamycin causes sperm reduction through inhibiting proliferation of spermatogonia. Unfortunately, 24 weeks after cessation of rapamycin treatment, only the number of sperm in 2 mg/kg group was restored back to the normal level. In addition, to the best of our knowledge, the present study was the first to demonstrate that low doses rapamycin leads to activation of autophagy in rat testes. This may be a self‑protective mechanism of the cell in response to external stress. Thus, spermatogenesis can be recovered in the testes from rats in the low dose group. High doses of rapamycin resulted in excessive consumption of autophagy proteins, and the damage could not be compensated. In addition, it was revealed that cell apoptosis increased after treatment with rapamycin. In conclusion, the present study demonstrated that rapamycin inhibits spermatogenesis through suppressing phosphorylation of p70S6K and changing the autophagy status, ultimately reducing the number of sperm

  5. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viabilitymore » was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.« less

  6. Spatial intensity distribution analysis quantifies the extent and regulation of homodimerization of the secretin receptor

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Harikumar, Kaleeckal G.; Miller, Laurence J.

    2017-01-01

    Previous studies have indicated that the G-protein-coupled secretin receptor is present as a homodimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high-potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and spatial intensity distribution analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed us to demonstrate that the epidermal growth factor receptor is predominantly monomeric in the absence of ligand and while wild-type receptor was rapidly converted into a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that, at moderate expression levels, the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate-induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. In contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G-protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein–protein interactions between copies of the receptor polypeptide, while short-term treatment with secretin had no effect on organization of the wild-type receptor but increased the dimeric proportion of the mutated receptor variant. PMID:28424368

  7. Therapeutic targeting of angiotensin II receptor type 1 to regulate androgen receptor in prostate cancer.

    PubMed

    Takahashi, Satoru; Uemura, Hiroji; Seeni, Azman; Tang, Mingxi; Komiya, Masami; Long, Ne; Ishiguro, Hitoshi; Kubota, Yoshinobu; Shirai, Tomoyuki

    2012-10-01

    With the limited strategies for curative treatment of castration-resistant prostate cancer (CRPC), public interest has focused on the potential prevention of prostate cancer. Recent studies have demonstrated that an angiotensin II receptor blocker (ARB) has the potential to decrease serum prostate-specific antigen (PSA) level and improve performance status in CRPC patients. These facts prompted us to investigate the direct effects of ARBs on prostate cancer growth and progression. Transgenic rat for adenocarcinoma of prostate (TRAP) model established in our laboratory was used. TRAP rats of 3 weeks of age received ARB (telmisartan or candesartan) at the concentration of 2 or 10 mg/kg/day in drinking water for 12 weeks. In vitro analyses for cell growth, ubiquitylation or reporter gene assay were performed using LNCaP cells. We found that both telmisartan and candesartan attenuated prostate carcinogenesis in TRAP rats by augmentation of apoptosis resulting from activation of caspases, inactivation of p38 MAPK and down-regulation of the androgen receptor (AR). Further, microarray analysis demonstrated up-regulation of estrogen receptor β (ERβ) by ARB treatment. In both parental and androgen-independent LNCaP cells, ARB inhibited both cell growth and AR-mediated transcriptional activity. ARB also exerted a mild additional effect on AR-mediated transcriptional activation by the ERβ up-regulation. An intervention study revealed that PSA progression was prolonged in prostate cancer patients given an ARB compared with placebo control. These data provide a new concept that ARBs are promising potential chemopreventive and chemotherapeutic agents for prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  8. Tyrosine Kinase Inhibitors Induce Down-Regulation of c-Kit by Targeting the ATP Pocket

    PubMed Central

    Descarpentries, Clotilde; Frisan, Emilie; Adam, Kevin; Verdier, Frederique; Floquet, Célia; Dubreuil, Patrice; Lacombe, Catherine; Fontenay, Michaela; Mayeux, Patrick; Kosmider, Olivier

    2013-01-01

    The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket. PMID:23637779

  9. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.

    PubMed

    Wang, Rong; Yu, Zhen; Sunchu, Bharath; Shoaf, James; Dang, Ivana; Zhao, Stephanie; Caples, Kelsey; Bradley, Lynda; Beaver, Laura M; Ho, Emily; Löhr, Christiane V; Perez, Viviana I

    2017-06-01

    Senescent cells contribute to age-related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild-type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA-β-galactosidase (β-gal) staining, senescence-associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β-gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β-gal staining and pro-inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation.

    PubMed

    Bieghs, Veerle; Walenbergh, Sofie M A; Hendrikx, Tim; van Gorp, Patrick J; Verheyen, Fons; Olde Damink, Steven W; Masclee, Ad A; Koek, Ger H; Hofker, Marten H; Binder, Christoph J; Shiri-Sverdlov, Ronit

    2013-08-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation. The transition from steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Under normal conditions, lipoproteins that are endocytosed by Kupffer cells (KCs) are easily transferred from the lysosomes into the cytoplasm. Oxidized LDL (oxLDL) that is taken up by the macrophages in vitro is trapped within the lysosomes, while acetylated LDL (acLDL) is leading to normal lysosomal hydrolysis, resulting in cytoplasmic storage. We have recently demonstrated that hepatic inflammation is correlated with lysosomal trapping of lipids. So far, a link between lysosomal trapping of oxLDL and inflammation was not established. We hypothesized that lysosomal trapping of oxLDL in KCs will lead to hepatic inflammation. Ldlr(-/-) mice were injected with LDL, acLDL and oxLDL and sacrificed after 2, 6 and 24 h. Electron microscopy of KCs demonstrated that after oxLDL injection, small lipid inclusions were present inside the lysosomes after all time points and were mostly pronounced after 6 and 24 h. In contrast, no lipid inclusions were present inside KCs after LDL or acLDL injection. Hepatic expression of several inflammatory genes and scavenger receptors was higher after oxLDL injections compared with LDL or acLDL. These data suggest that trapping of oxLDL inside lysosomes of KCs in vivo is causally linked to increased hepatic inflammatory gene expression. Our novel observations provide new bases for prevention and treatment of NASH. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    PubMed

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  12. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  13. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  14. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  15. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation.

    PubMed

    Xie, Yuan-Bin; Lee, Ok-Hee; Nedumaran, Balachandar; Seong, Hyun-A; Lee, Kyeong-Min; Ha, Hyunjung; Lee, In-Kyu; Yun, Yungdae; Choi, Hueng-Sik

    2008-12-15

    SHP (small heterodimer partner) is a well-known NR (nuclear receptor) co-regulator. In the present study, we have identified a new SHP-interacting protein, termed SMILE (SHP-interacting leucine zipper protein), which was previously designated as ZF (Zhangfei) via a yeast two-hybrid system. We have determined that the SMILE gene generates two isoforms [SMILE-L (long isoform of SMILE) and SMILE-S (short isoform of SMILE)]. Mutational analysis has demonstrated that the SMILE isoforms arise from the alternative usage of initiation codons. We have confirmed the in vivo interaction and co-localization of the SMILE isoforms and SHP. Domain-mapping analysis indicates that the entire N-terminus of SHP and the middle region of SMILE-L are involved in this interaction. Interestingly, the SMILE isoforms counteract the SHP repressive effect on the transactivation of ERs (estrogen receptors) in HEK-293T cells (human embryonic kidney cells expressing the large T-antigen of simian virus 40), but enhance the SHP-repressive effect in MCF-7, T47D and MDA-MB-435 cells. Knockdown of SMILE gene expression using siRNA (small interfering RNA) in MCF-7 cells increases ER-mediated transcriptional activity. Moreover, adenovirus-mediated overexpression of SMILE and SHP down-regulates estrogen-induced mRNA expression of the critical cell-cycle regulator E2F1. Collectively, these results indicate that SMILE isoforms regulate the inhibition of ER transactivation by SHP in a cell-type-specific manner and act as a novel transcriptional co-regulator in ER signalling.

  16. ATVB Council Statement: Non-statin LDL-lowering Therapy and Cardiovascular Risk Reduction

    PubMed Central

    Hegele, Robert A.; Gidding, Samuel S.; Ginsberg, Henry N.; McPherson, Ruth; Raal, Frederick J.; Rader, Daniel J.; Robinson, Jennifer G.; Welty, Francine K.

    2015-01-01

    Pharmacologic reduction of low-density lipoprotein (LDL) cholesterol using statin drugs is foundational therapy to reduce cardiovascular disease (CVD) risk. Here we consider the place of non-statin therapies that also reduce LDL cholesterol in prevention of CVD. Among conventional non-statins, placebo-controlled randomized clinical trials showed that bile acid sequestrants, niacin and fibrates given as monotherapy each reduce CVD end points. From trials in which patients’ LDL cholesterol was already well-controlled on a statin, adding ezetimibe incrementally reduced CVD end points, while adding a fibrate or niacin showed no incremental benefit. Among emerging non-statins, monoclonal antibodies against proprotein convertase subtilisin kexin type 9 (PCSK9) added to a statin and given for up to 78 weeks showed preliminary evidence of reductions in CVD outcomes. While these promising early findings contributed to the recent approval of these agents in Europe and the US, much larger and longer duration outcomes studies are ongoing for definitive proof of CVD benefits. Other non-statin agents recently approved in the US include lomitapide and mipomersen, which both act via distinctive LDL-receptor independent mechanisms to substantially reduce LDL cholesterol in homozygous familial hypercholesterolemia. We also address some unanswered questions, including measuring alternative biochemical variables to LDL cholesterol, evidence for treating children with monitoring of subclinical atherosclerosis, and potential risks of extremely low LDL cholesterol. As evidence for benefit in CVD prevention accumulates, we anticipate that clinical practice will shift towards more assertive LDL-lowering treatment, using both statins and non-statins initiated earlier in appropriately selected patients. PMID:26376908

  17. Dan-Lou Prescription Inhibits Foam Cell Formation Induced by ox-LDL via the TLR4/NF-κB and PPARγ Signaling Pathways.

    PubMed

    Gao, Li-Na; Zhou, Xin; Lu, Yu-Ren; Li, Kefeng; Gao, Shan; Yu, Chun-Quan; Cui, Yuan-Lu

    2018-01-01

    Atherosclerosis is the major worldwide cause of mortality for patients with coronary heart disease. Many traditional Chinese medicine compound prescriptions for atherosclerosis treatment have been tried in patients. Dan-Lou prescription, which is improved from Gualou-Xiebai-Banxia decoction, has been used to treat chest discomfort (coronary atherosclerosis) for approximately 2,000 years in China. Although the anti-inflammatory activities of Dan-Lou prescription have been proposed previously, the mechanism remains to be explored. Based on the interaction between inflammation and atherosclerosis, we further investigated the effect of Dan-Lou prescription on macrophage-derived foam cell formation and disclosed the underlying mechanisms. In the oxidative low-density lipoprotein (ox-LDL) induced foam cells model using murine macrophage RAW 264.7 cells, the ethanol extract from Dan-Lou prescription (EEDL) reduced ox-LDL uptake and lipid deposition by inhibiting the protein and mRNA expression of Toll-like receptor (TLR)4 and scavenger receptor (SR)B1. After stimulation with ox-LDL, the metabolic profile of macrophages was also changed, while the intervention of the EEDL mainly regulated the metabolism of isovalerylcarnitine, arachidonic acid, cholesterol, aspartic acid, arginine, lysine, L-glutamine and phosphatidylethanolamine (36:3), which participated in the regulation of the inflammatory response, lipid accumulation and cell apoptosis. In total, 27 inflammation-related gene targets were screened, and the biological mechanisms, pathways and biological functions of the EEDL on macrophage-derived foam cells were systemically analyzed by Ingenuity Pathway Analysis system (IPA). After verification, we found that EEDL alleviated ox-LDL induced macrophage foam cell formation by antagonizing the mRNA and protein over-expression of PPARγ, blocking the phosphorylation of IKKα/β, IκBα and NF-κB p65 and maintaining the expression balance between Bax and Bcl-2. In

  18. Regulation of Ketone Body Metabolism and the Role of PPARα

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Dean, Matthew; Reiss, Krzysztof

    2016-01-01

    Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα) is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK), PPARγ coactivator 1α (PGC-1α), and mammalian (mechanistic) target of rapamycin (mTOR) and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21). This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions. PMID:27983603

  19. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  20. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  1. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-κB and ERK2 activation.

    PubMed

    Yang, Tzu-Ching; Chang, Po-Yuan; Kuo, Tzu-Ling; Lu, Shao-Chun

    2017-12-01

    Circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) are associated with the severity of acute myocardial infarction (AMI). However, what causes increases in G-CSF and GM-CSF is unclear. In this study, we investigated whether L5-low-density lipoprotein (LDL), a mildly oxidized LDL from AMI, can induce G-CSF and GM-CSF production in human macrophages. L1-LDL and L5-LDL were isolated through anion-exchange chromatography from AMI plasma. Human macrophages derived from THP-1 and peripheral blood mononuclear cells were treated with L1-LDL, L5-LDL, or copper-oxidized LDL (Cu-oxLDL) and G-CSF and GM-CSF protein levels in the medium were determined. In addition, the effects of L5-LDL on G-CSF and GM-CSF production were tested in lectin-type oxidized LDL receptor-1 (LOX-1), CD36, extracellular signal-regulated kinase (ERK) 1, and ERK2 knockdown THP-1 macrophages. L5-LDL but not L1-LDL or Cu-oxLDL significantly induced production of G-CSF and GM-CSF in macrophages. In vitro oxidation of L1-LDL and L5-LDL altered their ability to induce G-CSF and GM-CSF, suggesting that the degree of oxidation is critical for the effects. Knockdown and antibody neutralization experiments suggested that the effects were caused by LOX-1. In addition, nuclear factor (NF)-κB and ERK1/2 inhibition resulted in marked reductions of L5-LDL-induced G-CSF and GM-CSF production. Moreover, knockdown of ERK2, but not ERK1, hindered L5-LDL-induced G-CSF and GM-CSF production. The results indicate that L5-LDL, a naturally occurring mild oxidized LDL, induced G-CSF and GM-CSF production in human macrophages through LOX-1, ERK2, and NF-κB dependent pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Towards natural mimetics of metformin and rapamycin.

    PubMed

    Aliper, Alexander; Jellen, Leslie; Cortese, Franco; Artemov, Artem; Karpinsky-Semper, Darla; Moskalev, Alexey; Swick, Andrew G; Zhavoronkov, Alex

    2017-11-15

    Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer and anti-aging properties beyond their current clinical applications. However, each faces issues with approval for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals-safer, naturally-occurring compounds-that mimic the anti-aging effects of metformin and rapamycin without adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin. This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.

  3. Phospholipid Regulation of the Nuclear Receptor Superfamily

    PubMed Central

    Crowder, Mark K.; Seacrist, Corey D.; Blind, Raymond D.

    2016-01-01

    Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can “present” a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid / nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors. PMID:27838257

  4. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages.

    PubMed

    Lara-Guzmán, Oscar J; Gil-Izquierdo, Ángel; Medina, Sonia; Osorio, Edison; Álvarez-Quintero, Rafael; Zuluaga, Natalia; Oger, Camille; Galano, Jean-Marie; Durand, Thierry; Muñoz-Durango, Katalina

    2018-05-01

    Oxidized low-density lipoprotein (oxLDL) is a well-recognized proatherogenic particle that functions in atherosclerosis. In this study, we established conditions to generate human oxLDL, characterized according to the grade of lipid and protein oxidation, particle size and oxylipin content. The induction effect of the cellular proatherogenic response was assessed in foam cells by using an oxLDL-macrophage interaction model. Uptake of oxLDL, reactive oxygen species production and expression of oxLDL receptors (CD36, SR-A and LOX-1) were significantly increased in THP-1 macrophages. Analyses of 35 oxylipins revealed that isoprostanes (IsoP) and prostaglandins (PGs) derived from the oxidation of arachidonic, dihomo gamma-linolenic and eicosapentaenoic acids were strongly and significantly induced in macrophages stimulated with oxLDL. Importantly, the main metabolites responsible for the THP1-macrophage response to oxLDL exposure were the oxidative stress markers 5-epi-5-F 2t -IsoP, 15-E 1t -IsoP, 8-F 3t -IsoP and 15-keto-15-F 2t -IsoP as well as inflammatory markers PGDM, 17-trans-PGF 3α , and 11β-PGF 2α , all of which are reported here, for the first time, to function in the interaction of oxLDL with THP-1 macrophages. By contrast, a salvage pathway mediated by anti-inflammatory PGs (PGE 1 and 17-trans-PGF 3α ) was also identified, suggesting a response to oxLDL-induced injury. In conclusion, when THP-1 macrophages were treated with oxLDL, a specific induction of biomarkers related to oxidative stress and inflammation was triggered. This work contributes to our understanding of initial atherogenic events mediated by oxLDL-macrophage interactions and helps to generate new approaches for their modulation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  6. Rapamycin efficiently promotes cardiac differentiation of mouse embryonic stem cells.

    PubMed

    Lu, Qin; Liu, Yinan; Wang, Yang; Wang, Weiping; Yang, Zhe; Li, Tao; Tian, Yuyao; Chen, Ping; Ma, Kangtao; Jia, Zhuqing; Zhou, Chunyan

    2017-06-30

    To investigate the effects of rapamycin on cardiac differentiation, murine embryonic stem cells (ESCs) were induced into cardiomyocytes by 10 -4 M ascorbic acid (AA), 20 nM rapamycin alone or 0.01% solvent DMSO. We found that rapamycin alone was insufficient to initiate cardiomyogenesis. Then, the ESCs were treated with AA and rapamycin (20 nM) or AA and DMSO (0.01%) as a control. Compared with control, mouse ESCs (mESCs) treated with rapamycin (20 nM) and AA yielded a significantly higher percentage of cardiomyocytes, as confirmed by the percentage of beating embryonic bodies (EBs), the immunofluorescence and FACS analysis. Rapamycin significantly increased the expression of a panel of cardiac markers including Gata 4, α- Mhc , β- Mhc , and Tnnt 2. Additionally, rapamycin enhanced the expression of mesodermal and cardiac transcription factors such as Mesp 1, Brachyury T, Eomes, Isl 1 , Gata 4 , Nkx 2.5 , Tbx 5, and Mef2c. Mechanistic studies showed that rapamycin inhibits Wnt/β-catenin and Notch signaling but promotes the expression of fibroblast growth factor ( Fgf 8), Fgf 10, and Nodal at early stage, and bone morphogenetic protein 2 ( Bmp 2) at later stages. Sequential treatment of rapamycin showed that rapamycin promotes cardiac differentiation at the early and later stages. Interestingly, another mammalian target of rapamycin (mTOR) inhibitor Ku0063794 (1 µM) had similar effects on cardiomyogenesis. In conclusion, our results highlight a practical approach to generate cardiomyocytes from mESCs by rapamycin. © 2017 The Author(s).

  7. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes

    PubMed Central

    Marriott, Andrew S.; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A.; McLennan, Alexander G.; Jones, Nigel J.

    2016-01-01

    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting

  8. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes.

    PubMed

    Marriott, Andrew S; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A; McLennan, Alexander G; Jones, Nigel J

    2016-01-01

    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting

  9. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    PubMed

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  10. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  11. Down-regulation of chicken interleukin-17 receptor A in Eimeria infection

    USDA-ARS?s Scientific Manuscript database

    Both IL-17A and IL-17F are proinflammatory cytokines, which play an important role in intestinal homeostasis through their receptor signaling. In chickens, these two cytokines have been recently characterized, but to date, very little is known about their receptors and their functional activity. Th...

  12. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    PubMed

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  13. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR

    PubMed Central

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640

  14. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator.

    PubMed

    Jiang, Huajun; Zhang, Jin; Du, Yu; Jia, Xiaojian; Yang, Fan; Si, Shuyi; Wang, Li; Hong, Bin

    2015-12-01

    Low-density lipoprotein receptor (LDLR) mediates endocytosis of LDL particles and is important in maintaining plasma cholesterol levels, thus its expression is under extensive regulation at multiple levels, including transcriptional and posttranscriptional regulation by transcription factors (TFs) and RNA-binding proteins (RBPs). Here, we identified microRNA-185 (miR-185) as a novel direct posttranscriptional regulator of LDLR and an indirect LDLR modulator through KSRP in hepatic cells. Using quantitative real-time PCR (qPCR), we detected the effect of predicted LDLR-targeting miRNAs and found that overexpression of miR-185 repressed LDLR expression and LDL uptake in HepG2 cells by 62.4 ± 6.0% (p = 7.0 × 10(-5)) and 32.5 ± 6.0% (p = 7.7 × 10(-4)) respectively, through directly targeting LDLR 3'UTR. Unexpectedly, the antisense inhibitor of miR-185 had similar repression effect on LDLR although it reduced the association of endogenous miR-185 with LDLR mRNA. Further experiments revealed that KH-type splicing regulatory protein (KSRP), one of the LDLR-destabilizing RBPs, is also a target of miR-185. KSRP silencing reversed the repression effects of miR-185-inhibitor on LDLR. Thus miR-185 regulates LDLR expression not only through directly targeting but also by a RBP-involved indirect pathway. Finally, the in vivo results showed that miR-185-inhibitor upregulated hepatic LDLR expression and correlated with a decrease in plasma cholesterol level and arterial plaque area in ApoE KO mice. These findings reveal that miR-185 controls cholesterol homeostasis as a key posttranscriptional LDLR modulator in hepatic cells, providing novel insight into the regulatory mechanism for LDLR expression and the anti-atherosclerosis effect of miR-185-inhibitor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of coumarate 3-hydroxylase down-regulation on lignin structure

    Treesearch

    John Ralph; Takuya Akiyama; Hoon Kim; Fachuang Lu; Paul F. Schatz; Jane M. Marita; Sally A. Ralph; M.S. Srinivasa Reddy; Fang Chen; Richard A. Dixon

    2006-01-01

    Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in alfalfa massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to thenormally dominant guaiacyl (G) and syringyl (S) units Stem levels of up to ~65% P (from wild-type levels of ~1%) resulting from down-regulation of C3H were measured by traditional degradative...

  16. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway.

    PubMed

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-02-01

    To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.

  17. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Suárez-Pozos, Edna; Melgarejo, Yaaziel; González-Mejia, Elba; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2009-09-01

    Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.

  18. Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4

    PubMed Central

    Venkatesh, Madhukumar; Mukherjee, Subhajit; Wang, Hongwei; Li, Hao; Sun, Katherine; Benechet, Alaxandre P.; Qiu, Zhijuan; Maher, Leigh; Redinbo, Matthew R.; Phillips, Robert S.; Fleet, James C.; Kortagere, Sandhya; Mukherjee, Paromita; Fasano, Alessio; Le Ven, Jessica; Nicholson, Jeremy K.; Dumas, Marc E.; Khanna, Kamal M.; Mani, Sridhar

    2014-01-01

    SUMMARY Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is as a ligand for PXR in vivo, and IPA down-regulated enterocyte TNF–α while up-regulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2−/−) mice showed a distinctly “leaky” gut physiology coupled with up-regulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2−/−Tlr4−/− mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway which involves luminal sensing and signaling by TLR4. PMID:25065623

  19. Rapamycin prevents N-methyl-D-aspartate-induced retinal damage through an ERK-dependent mechanism in rats.

    PubMed

    Ichikawa, Atsuko; Nakahara, Tsutomu; Kurauchi, Yuki; Mori, Asami; Sakamoto, Kenji; Ishii, Kunio

    2014-06-01

    Recent studies have demonstrated that inhibition of the mammalian target of rapamycin (mTOR) protects against neuronal injury, but the mechanisms underlying this protection are not fully understood. The present study investigates whether rapamycin, an inhibitor of the mTOR pathway, protects against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity and whether the extracellular signal-regulated kinase (ERK) pathway contributes to this protective effect in rats. Significant cell loss in the ganglion cell layer and a reduction in thickness of the inner plexiform layer were observed 7 days after a single intravitreal injection of NMDA (200 nmol/eye). These NMDA-induced morphological changes were significantly reduced by rapamycin (20 nmol/eye). The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells had increased 6 hr after NMDA injection, an effect that was significantly attenuated by rapamycin. The ERK inhibitor U0126 (1 nmol/eye) almost completely abolished rapamycin's inhibition of NMDA-induced apoptosis. Immunohistochemical studies showed that NMDA caused a time-dependent increase in levels of the phosphorylated form of the ribosomal protein S6 (pS6), a downstream indicator of mTOR activity. The increased pS6 levels were markedly decreased by rapamycin. Both NMDA and rapamycin increased the level of phosphorylated ERK (pERK) in Müller cells, and coinjection of both agents further increased pERK levels. These results suggest that rapamycin has a neuroprotective effect against NMDA-induced retinal neurotoxicity and that this effect could be patially mediated by activation of the ERK pathway in retinal Müller cells. Copyright © 2014 Wiley Periodicals, Inc.

  20. DNA methylation down-regulates EGFR expression in chicken

    USDA-ARS?s Scientific Manuscript database

    The epidermal growth factor receptor (EGFR), a growth-factor-receptor tyrosine kinase, was found up-regulated in numerous tumors, which provides a good target for cancer therapy. Although it was documented that oncoviruses are responsible for the activation of EGFR in tumors, the impact of Marek’s d...

  1. Alpha-Lipoic Acid Reduces LDL-Particle Number and PCSK9 Concentrations in High-Fat Fed Obese Zucker Rats

    PubMed Central

    Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W.; Li, Zhuyun; Patel, Mulchand S.; Williamson, David L.; Rideout, Todd C.

    2014-01-01

    We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

  2. Chemoresistance induces enhanced adhesion and transendothelial penetration of neuroblastoma cells by down-regulating NCAM surface expression

    PubMed Central

    Blaheta, Roman A; Daher, Frederick H; Michaelis, Martin; Hasenberg, Christoph; Weich, Eva M; Jonas, Dietger; Kotchetkov, Rouslan; Doerr, Hans Willhelm; Cinatl, Jindrich

    2006-01-01

    Background Drug resistance to chemotherapy is often associated with increased malignancy in neuroblastoma (NB). One explanation for the link between resistance and malignancy might be that resistance facilitates cancer progression and invasion. To investigate this hypothesis, adhesion, transendothelial penetration and NCAM (CD56) adhesion receptor expression of drug-resistant versus drug-sensitive NB tumor cells were evaluated. Methods Acquired drug resistance was mimicked by exposing parental UKF-NB-2, UKF-NB-3 or IMR-32 tumor cells to increasing concentrations of vincristine- (VCR) or doxorubicin (DOX) to establish the resistant tumor cell sublines UKF-NB-2VCR, UKF-NB-2DOX, UKF-NB-3VCR, UKF-NB-3DOX, IMR-32VCR and IMR-32DOX. Additionally, the malignant behaviour of UKF-NB-4, which already possessed the intrinsic multidrug resistance (MDR) phenotype, was analyzed. UKF-NB-4 exposed to VCR or DOX were designated UKF-NB-4VCR or UKF-NB-4DOX. Combined phase contrast – reflection interference contrast microscopy was used to separately evaluate NB cell adhesion and penetration. NCAM was analyzed by flow cytometry, western blot and RT-PCR. Results VCR and DOX resistant tumor sublines showed enhanced adhesion and penetration capacity, compared to their drug naïve controls. Strongest effects were seen with UKF-NB-2VCR, UKF-NB-3VCR and IMR-32DOX. DOX or VCR treatment also evoked increased invasive behaviour of UKF-NB-4. The process of accelerated tumor invasion was accompanied by decreased NCAM surface and protein expression, and down-regulation of NCAM coding mRNA. Transfection of UKF-NB-4VCR cells with NCAM cDNA led to a significant receptor up-regulation, paralleled by diminished adhesion to an endothelial cell monolayer. Conclusion It is concluded that NB cells resistant to anticancer drugs acquire increased invasive capacity relative to non-resistant parental cells, and that enhanced invasion is caused by strong down-regulation of NCAM adhesion receptors. PMID

  3. Rapamycin Prolongs Cardiac Allograft Survival in a Mouse Model by Inducing Myeloid-Derived Suppressor Cells.

    PubMed

    Nakamura, T; Nakao, T; Yoshimura, N; Ashihara, E

    2015-09-01

    Mammalian target of rapamycin (mTOR) inhibitors are the main immunosuppressive drugs for organ transplant recipients. Nevertheless, the mechanisms by which mTOR inhibitors induce immunosuppression is not fully understood. Myeloid-derived suppressor cells (MDSCs) maintain host immunity; however, the relationship between mTOR inhibitors and MDSCs is unclear. Here, the results from a murine cardiac transplantation model revealed that rapamycin treatment (3 mg/kg, intraperitoneally on postoperative days 0, 2, 4, and 6) led to the recruitment of MDSCs and increased their expression of inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed that rapamycin induced the migration of iNOS-expressing MDSCs into the subintimal space within the allograft vessels, resulting in a significant prolongation of graft survival compared with that in the untreated group (67 days vs. 7 days, respectively). These effects were counterbalanced by the administration of an anti-Gr-1, which reduced allograft survival to 21 days. Moreover, adoptive transcoronary arterial transfer of MDSCs from rapamycin-treated recipients prolonged allograft survival; this increase was reversed by the anti-Gr-1 antibody. Finally, co-administration of rapamycin and a mitogen-activated protein kinase kinase (MEK) inhibitor trametinib reversed rapamycin-mediated MDSC recruitment. Thus, the mTOR and Raf/MEK/extracellular signal regulated kinase (ERK) signaling pathways appear to play an important role in MDSC expansion. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Kimchi methanol extract and the kimchi active compound, 3'-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, downregulate CD36 in THP-1 macrophages stimulated by oxLDL.

    PubMed

    Yun, Ye-Rang; Kim, Hyun-Ju; Song, Yeong-Ok

    2014-08-01

    Macrophage foam cell formation by oxidized low-density lipoprotein (oxLDL) is a key step in the progression of atherosclerosis, which is involved in cholesterol influx and efflux in macrophages mediated by related proteins such as peroxisome proliferator-activated receptor γ (PPARγ), CD36, PPARα, liver-X receptor α (LXRα), and ATP-binding cassette transporter A1 (ABCA1). The aim of this study was to investigate the beneficial effects of kimchi methanol extract (KME) and a kimchi active compound, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA) on cholesterol flux in THP-1-derived macrophages treated with oxLDL. The effects of KME and HDMPPA on cell viability and lipid peroxidation were determined. Furthermore, the protein expression of PPARγ, CD36, PPARα, LXRα, and ABCA1 was examined. OxLDL strongly induced cell death and lipid peroxidation in THP-1-derived macrophages. However, KME and HDMPPA significantly improved cell viability and inhibited lipid peroxidation induced by oxLDL in THP-1-derived macrophages (P<.05). Moreover, KME and HDMPPA suppressed CD36 and PPARγ expressions, both of which participate in cholesterol influx. In contrast, KME and HDMPPA augmented LXRα, PPARα, and ABCA1 expression, which are associated with cholesterol efflux. Consequently, KME and HDMPPA suppressed lipid accumulation. These results indicate that KME and HDMPPA may inhibit lipid accumulation, in part, by regulating cholesterol influx- and efflux-related proteins. These findings will thus be useful for future prevention strategies against atherosclerosis.

  5. Bottom-up and top-down emotion generation: implications for emotion regulation

    PubMed Central

    Misra, Supriya; Prasad, Aditya K.; Pereira, Sean C.; Gross, James J.

    2012-01-01

    Emotion regulation plays a crucial role in adaptive functioning and mounting evidence suggests that some emotion regulation strategies are often more effective than others. However, little attention has been paid to the different ways emotions can be generated: from the ‘bottom-up’ (in response to inherently emotional perceptual properties of the stimulus) or ‘top-down’ (in response to cognitive evaluations). Based on a process priming principle, we hypothesized that mode of emotion generation would interact with subsequent emotion regulation. Specifically, we predicted that top-down emotions would be more successfully regulated by a top-down regulation strategy than bottom-up emotions. To test this hypothesis, we induced bottom-up and top-down emotions, and asked participants to decrease the negative impact of these emotions using cognitive reappraisal. We observed the predicted interaction between generation and regulation in two measures of emotional responding. As measured by self-reported affect, cognitive reappraisal was more successful on top-down generated emotions than bottom-up generated emotions. Neurally, reappraisal of bottom-up generated emotions resulted in a paradoxical increase of amygdala activity. This interaction between mode of emotion generation and subsequent regulation should be taken into account when comparing of the efficacy of different types of emotion regulation, as well as when reappraisal is used to treat different types of clinical disorders. PMID:21296865

  6. Thiols decrease cytokine levels and down-regulate the expression of CD30 on human allergen-specific T helper (Th) 0 and Th2 cells

    PubMed Central

    Bengtsson, Å; Lundberg, M; Avila-Cariño, J; Jacobsson, G; Holmgren, A; Scheynius, A

    2001-01-01

    The thiol antioxidant N-acetyl-l-cysteine (NAC), known as a precursor of glutathione (GSH), is used in AIDS treatment trials, as a chemoprotectant in cancer chemotherapy and in treatment of chronic bronchitis. In vitro, GSH and NAC are known to enhance T cell proliferation, production of IL-2 and up-regulation of the IL-2 receptor. The 120-kD CD30 surface antigen belongs to the tumour necrosis factor (TNF) receptor superfamily. It is expressed by activated T helper (Th) cells and its expression is sustained in Th2 cells. We have analysed the effect of GSH and NAC on the cytokine profile and CD30 expression on human allergen-specific T cell clones (TCC). TCC were stimulated with anti-CD3 antibodies in the presence of different concentrations of GSH and NAC. Both thiols caused a dose dependent down-regulation of IL-4, IL-5 and IFN-γ levels in Th0 and Th2 clones, with the most pronounced decrease of IL-4. Furthermore, they down-regulated the surface expression of CD30, and the levels of soluble CD30 (sCD30) in the culture supernatants were decreased. In contrast, the surface expression of CD28 or CD40 ligand (CD40L) was not significantly changed after treatment with 20 mm NAC. These results indicate that GSH and NAC favour a Th1 response by a preferential down-regulation of IL-4. In addition, the expression of CD30 was down regulated by GSH and NAC, suggesting that CD30 expression is dependent on IL-4, or modified by NAC. In the likely event that CD30 and its soluble counterpart prove to contribute to the pathogenesis in Th2 related diseases such as allergy, NAC may be considered as a future therapeutic agent in the treatment of these diseases. PMID:11298119

  7. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia.

    PubMed

    Tong, Chao; Feng, Xiang; Chen, Jun; Qi, Xingchen; Zhou, Liyuan; Shi, Shuming; Kc, Kamana; Stanley, Joanna L; Baker, Philip N; Zhang, Hua

    2016-04-01

    Preeclampsia is known to be associated with reduced circulating levels of estrogen. The effects of estrogen in preeclampsia are normally mediated by the classical estrogen receptors. Intriguingly, a novel estrogen receptor, G protein-coupled receptor 30 (GPR30), has been recently found to play an important role in several estrogenic effects. However, the mechanisms by which GPR30 may mediate the development of preeclampsia remain unknown. We observed that the expression of GPR30 in placental trophoblast cells is lower in preeclamptic placentas compared with normotensive controls. We then investigated the role of GPR30 in trophoblast cell invasion by utilizing placental explants and the immortalized human trophoblast cell line (HTR8/SVneo). The selective GPR30 agonist G1 and a general estrogen receptors agonist 17-β-estradiol (E2) both improved trophoblast cells invasion by upregulating MMP9 expression and the PI3K-Akt signaling pathway. This effect was abolished by a selective GPR30 inhibitor G15, implying that GPR30 may be involved in regulating trophoblast invasion, and that down-regulation of this receptor may result in the development of preeclampsia. The present study suggests that GPR30 is a critical regulator of trophoblast cell invasion, and as such may be a potential therapeutic interventional target for preeclampsia and other pregnancy complications resulting from impaired trophoblast invasion.

  8. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  9. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats

    PubMed Central

    Kolosova, Nataliya G.; Vitovtov, Anton O.; Muraleva, Natalia A; Akulov, Andrey E.; Stefanova, Natalia A.; Blagosklonny, Mikhail V.

    2013-01-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span in C elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wistar rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging. PMID:23817674

  10. Oxidized LDL but not total LDL is associated with HbA1c in individuals without diabetes.

    PubMed

    Spessatto, Débora; Brum, Liz Marina Bueno Dos Passos; Camargo, Joíza Lins

    2017-08-01

    This study investigates the association between HbA1c, LDL and oxi-LDL in individuals without diabetes (DM). One hundred and ninety-six individuals, without DM, were enrolled and divided into three groups according to HbA1c and fasting plasma glucose values. HbA1c, oxi-LDL, LDL, and other biochemical measurements of lipid profile were also carried out. oxi-LDL levels showed significant differences among all groups and group 3 presented higher values [34U/L (27-46); 44U/L (37-70); and 86U/L (49-136); p<0.001; for groups 1, 2 and 3, respectively]. There was also a significant difference in oxi-LDL/HDL and oxi-LDL/LDL ratios among all groups (p<0.001). There was no significant difference in total cholesterol (TC), triglycerides and LDL values among groups. HbA1c showed moderate positive associations with oxi-LDL (r=0.431; p<0.001), oxi-LDL/HDL ratio (r=0.423, p<0.001), and oxi-LDL/LDL ratio (r=0.359, p<0.001). There were lower associations between HbA1c and TC (r=0.142; p=0.048), triglycerides (r=0.155; p=0.030), LDL (r=0.148; p=0.039), non-HDL (r=0.192; p=0.007) and Apo B (r=0.171, p<0.001). The positive associations between HbA1c and oxi-LDL, oxi-LDL/HDL and oxi-LDL/LDL ratios remained significant even after adjustment by multiple linear regression analysis for the variables alcohol consumption, use of medicine, BMI, and age. oxi-LDL levels are significantly associated with HbA1c in non-diabetic individuals. However, the levels of traditional atherogenic lipids only showed a weak association with HbA1c levels. Those at high risk of developing DM or cardiovascular disease have higher levels of oxi-LDL. These data favor to the use of HbA1c as a biomarker to identify individuals at risk of developing complications even in non-diabetic glycemic levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Christian; Madshus, Inger Helene; Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and inducedmore » ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.« less

  12. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells

    PubMed Central

    Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco

    2017-01-01

    Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration. PMID:28418837

  13. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells.

    PubMed

    Ferrucci, Michela; Biagioni, Francesca; Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco

    2017-05-02

    Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.

  14. Tempol improves lipid profile and prevents left ventricular hypertrophy in LDL receptor gene knockout (LDLr-/-) mice on a high-fat diet.

    PubMed

    Viana Gonçalves, Igor Cândido; Cerdeira, Cláudio Daniel; Poletti Camara, Eduardo; Dias Garcia, José Antônio; Ribeiro Pereira Lima Brigagão, Maísa; Bessa Veloso Silva, Roberta; Bitencourt Dos Santos, Gérsika

    2017-09-01

    Dyslipidemia is associated with increased risk of cardiovascular disease and atherosclerosis, and hence with high morbidity and mortality. This study investigated the effects of the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) on lipid profile and cardiac morphology in low-density lipoprotein (LDL) receptor gene knockout (LDLr-/-) mice. Male LDLr-/- mice (three months old, approximately 22 g weight) were divided into the following groups: controls, including (1) standard chow (SC, n=8) and (2) high-fat diet (HFD, n=8); and treatment, including (3) standard chow + Tempol (SC+T, n=8) (30 mg/kg administered by gavage, once daily) and (4) high-fat diet + Tempol (HFD+T, n=8) (30 mg/kg). After 30 days of the diet/treatment, whole blood was collected for analysis of biochemical parameters (total cholesterol, triglycerides [TG], high-density lipoprotein [HDL], LDL, and very low-density lipoprotein [VLDL]). The heart was removed through thoracotomy and histological analysis of the left ventricle was performed. A significant increase in TG, LDL, and VLDL and marked left ventricular hypertrophy (LVH) were demonstrated in the HFD group relative to the SC group (p<0.05), while Tempol treatment (HFD+T group) significantly (p<0.05) prevented increases in the levels of these lipid profile markers and attenuated LVH compared with the HFD group. In this study, Tempol showed potential for the prevention of events related to serious diseases of the cardiovascular system. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition

    PubMed Central

    Salazar, Gloria; González, Alfonso

    2002-01-01

    Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function

  16. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.

    PubMed

    Rojas, Asheebo; Dingledine, Raymond

    2013-04-01

    The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.

  17. Lp-PLA2 silencing protects against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages.

    PubMed

    Zheng, HuaDong; Cui, DaJiang; Quan, XiaoJuan; Yang, WeiLin; Li, YingNa; Zhang, Lin; Liu, EnQi

    2016-09-02

    Atherosclerosis is a disease of the large- and medium-size arteries that is characterized by the formation of atherosclerotic plaques, in which foam cells are the characteristic pathological cells. However, the key underlying pathomechanisms are still not fully elucidated. In this study, we investigated the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in ox-LDL-induced oxidative stress and cell apoptosis, and further, elucidated the potential machanisms in human THP1 macrophages. Flow cytometry and western blot analyses showed that both cell apoptosis and Lp-PLA2 expression were dose-dependently elevated after ox-LDL treatment for 24 h and also time-dependently increased after 50 mg/L ox-LDL incubation in THP1 macrophages. In addition, Lp-PLA2 silencing decreased ox-LDL-induced Lp-PLA2 and CD36 expression in THP1 macrophages. We also found that the levels of oil red O-staining, triglyceride (TG) and total cholesterol (TC) were significantly upregulated in ox-LDL-treated THP1 cells, but inhibited by Lp-PLA2 silencing. Furthermore, ox-LDL treatment resulted in significant increases of ROS and MDA but a marked decrease of SOD, effects that were reversed by Lp-PLA2 silencing in THP1 cells. Lp-PLA2 silencing reduced ox-LDL-induced cell apoptosis and caspase-3 expression in THP1 cells. Moreover, Lp-PLA2 siRNA transfection dramatically lowered the elevated levels of p-Akt and p-mTOR proteins in ox-LDL-treated THP1 cells. Both PI3K inhibitor LY294002 and mTOR inhibitor rapamycin decreased the augmented caspase-3 expression and TC content induced by ox-LDL, respectively. Taken together, these results revealed that Lp-PLA2 silencing protected against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway

    PubMed Central

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-01-01

    Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838

  19. Treatment patterns and low-density lipoprotein cholesterol (LDL-C) goal attainment among patients receiving high- or moderate-intensity statins.

    PubMed

    Fox, Kathleen M; Tai, Ming-Hui; Kostev, Karel; Hatz, Maximilian; Qian, Yi; Laufs, Ulrich

    2018-05-01

    European clinical guidelines recommend a low-density lipoprotein cholesterol (LDL-C) goal of < 70 mg/dL. Statin use varies and past studies suggest low rates of real-world goal attainment. This study describes LDL-C goal attainment among atherosclerotic CV disease (ASCVD) patients with various utilization patterns of moderate- or high-intensity statins in routine care. This retrospective cohort study used electronic medical records data from the QuintilesIMS® Disease Analyzer (> 2 million individuals annually) to identify ASCVD (coronary atherosclerosis, stable/unstable angina, myocardial infarction, ischemic stroke, transient ischemic attack, aneurysm, peripheral artery disease) patients on moderate-/high-intensity statin in Germany. Proportion of patients with LDL-C < 70 mg/dL was determined using the lowest LDL-C value for each patient (index) in 2012, 2013, and 2014, while on statin. Treatment patterns were assessed for patients with at least 1 year of post-index follow-up. Results were stratified by year and treatment pattern [no change, switch, dose up-/down-titration, discontinuation (≥ 90 day gap)]. In > 14,000 patients assessed in each year (mean age 71 years, 35% female, 8-12% taking high-intensity statins), approximately 80% had LDL-C ≥ 70 mg/dL. Treatment patterns were assessed for most (88-93%) patients. Approximately 79-81% of patients made no change to statin regimens, 1% switched statins, 14-16% discontinued; 1% of moderate-intensity patients up-titrated, and 3% of all patients down-titrated. LDL-C goal attainment in these treatment pattern groups was 20, 16-24, 17, 11-14, and 17-19%, respectively. Majority of ASCVD patients had LDL-C ≥ 70 mg/dL while on moderate-/high-intensity statins. Despite low LDL-C goal attainment, few patients changed their treatment regimens.

  20. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase.

    PubMed

    Hou, Xiaoying; Arvisais, Edward W; Davis, John S

    2010-06-01

    LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.

  1. Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα

    PubMed Central

    Jensen-Urstad, Anne P. L.; Song, Haowei; Lodhi, Irfan J.; Funai, Katsuhiko; Yin, Li; Coleman, Trey; Semenkovich, Clay F.

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status. PMID:23585690

  2. Rapamycin protects against neuronal death and improves neurological function with modulation of microglia after experimental intracerebral hemorrhage in rats.

    PubMed

    Li, D; Liu, F; Yang, T; Jin, T; Zhang, H; Luo, X; Wang, M

    2016-09-30

    Intracerebral hemorrhage (ICH) results in a devastating brain disorder with high mortality and poor prognosis and effective therapeutic intervention for the disease remains a challenge at present. The present study investigated the neuroprotective effects of rapamycin on ICH-induced brain damage and the possible involvement of activated microglia. ICH was induced in rats by injection of type IV collagenase into striatum. Different dose of rapamycin was systemically administrated by intraperitoneal injection beginning at 1 h after ICH induction. Western blot analysis showed that ICH led to a long-lasting increase of phosphorylated mTOR and this hyperactivation of mTOR was reduced by systemic administration of rapamycin. Rapamycin treatment significantly improved the sensorimotor deficits induced by ICH, and attenuated ICH-induced brain edema formation as well as lesion volume. Nissl and Fluoro-Jade C staining demonstrated that administration with rapamycin remarkably decreased neuronal death surrounding the hematoma at 7 d after ICH insult. ELISA and real-time quantitative PCR demonstrated that rapamycin inhibited ICH-induced excessive expression of TNF-α and IL-1β in ipsilateral hemisphere. Furthermore, activation of microglia induced by ICH was significantly suppressed by rapamycin administration. These data indicated that treatment of rapamycin following ICH decreased the brain injuries and neuronal death at the peri-hematoma striatum, and increased neurological function, which associated with reduced the levels of proinflammatory cytokines and activated microglia. The results provide novel insight into the neuroprotective therapeutic strategy of rapamycin for ICH insult, which possibly involving the regulation of microglial activation.

  3. Down-regulation of TGF-b1, TGF-b receptor 2, and TGF-b-associated microRNAs, miR-20a and miR-21, in skin lesions of sulfur mustard-exposed Iranian war veterans.

    PubMed

    Valizadeh, Mohadeseh; Mirzaei, Behnaz; Tavallaei, Mahmood; Noorani, Mohammad Reza; Amiri, Mojtaba; Soroush, Mohammad Reza; Mowla, Seyed Javad

    2015-01-01

    Sulfur mustard (SM) affects divergent cellular pathways including cell cycle, apoptosis, necrosis, and inflammatory responses. SM-induced lesions in skin include late-onset hyper-pigmentation, xerosis, and atrophy. It seems that TGF-b signaling pathway is a major player for SM pathogenesis. Here, we have employed a real-time polymerase chain reaction (PCR) approach to evaluate the expression alterations of all TGF-b variants and their receptors in skin biopsies obtained from 10 Iran-Iraq war veterans. Using specific LNA primers, the expression alteration of a TGF-bR2 regulator, miR-20a, and TGF-b downstream target, miR-21, was also assessed in the same samples Our real-time PCR data revealed a significant down-regulation of TGF-b1 and TGF-bR2, the major mediators of TGF-b signaling pathway, in skin biopsies of SM-exposed patients (p = 0.0015 and p = 0.0115, respectively). Down-regulation of TGF-b signaling pathway seems to contribute in severe inflammation observed in SM-exposed patients' tissues. MiR-20a and miR-21, as two important TGF-b associated microRNAs (miRNAs), were also down-regulated in SM-exposed skin lesions, compared to those of control group (p = 0.0003). Based on our findings, these miRNAs could be directly or indirectly involve in the pathogenesis of SM. Altogether, our data suggest the suitability of TGF-b1, TGF-bR2, as well as miR-20a and miR-21 as potential biomarkers for diagnosis and treatment of SM-exposed patients.

  4. Sirtuin 1 Mediates the Actions of Peroxisome Proliferator-Activated Receptor δ on the Oxidized Low-Density Lipoprotein-Triggered Migration and Proliferation of Vascular Smooth Muscle Cells.

    PubMed

    Hwang, Jung Seok; Ham, Sun Ah; Yoo, Taesik; Lee, Won Jin; Paek, Kyung Shin; Lee, Chi-Ho; Seo, Han Geuk

    2016-11-01

    Peroxisome proliferator-activated receptor δ (PPARδ) has been implicated in vascular pathophysiology. However, its functions in atherogenic changes of the vascular wall have not been fully elucidated. PPARδ activated by GW501516 (2-[2-methyl-4-[[4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methylsulfanyl]phenoxy]acetic acid) significantly inhibited the migration and proliferation of vascular smooth muscle cells (VSMCs) triggered by oxidized low-density lipoprotein (oxLDL). These GW501516-mediated effects were significantly reversed by PPARδ-targeting small-interfering RNA (siRNA), indicating that PPARδ is involved in the action of GW501516. The antiproliferative effect of GW501516 was directly linked to cell cycle arrest at the G 0 /G 1 to S phase transition, which was followed by the down-regulation of cyclin-dependent kinase 4 along with increased levels of p21 and p53. In VSMCs treated with GW501516, the expression of sirtuin 1 (SIRT1) mRNA and protein was time-dependently increased. This GW501516-mediated up-regulation of SIRT1 expression was also demonstrated even in the presence of oxLDL. In addition, GW501516-dependent inhibition of oxLDL-triggered migration and proliferation of VSMCs was almost completely abolished in the presence of SIRT1-targeting siRNA. These effects of GW501516 on oxLDL-triggered phenotypic changes of VSMCs were also demonstrated via activation or inhibition of SIRT1 activity by resveratrol or sirtinol, respectively. Finally, gain or loss of SIRT1 function imitated the action of PPARδ on oxLDL-triggered migration and proliferation of VSMCs. Taken together, these observations indicate that PPARδ-dependent up-regulation of SIRT1 contributes to the antiatherogenic activities of PPARδ by suppressing the migration and proliferation of VSMCs linked to vascular diseases such as restenosis and atherosclerosis. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease.

    PubMed

    Cao, Guoqing; Qian, Yue-Wei; Kowala, Mark C; Konrad, Robert J

    2008-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein convertase family. PCSK9 is synthesized as a zymogen and its prodomain is cleaved by its own catalytic activity. The cleaved prodomain forms a protein complex with the rest of the PCSK9 carboxyl terminus within the endoplasmic reticulum and is secreted. Secreted PCSK9 has been shown to be able to reduce low-density lipoprotein receptor (LDLR) levels in vitro and in vivo. Thus PCSK9 has emerged as an important player modulating LDLR levels and plasma LDL cholesterol. Furthermore, PCSK9 deficiency leads to significantly lowered LDL cholesterol levels in humans and provides dramatic protection against coronary heart disease. We review here the current understanding of PCSK9 and its potential as a therapeutic target through which to reduce LDL cholesterol for prevention and treatment of coronary heart disease.

  6. Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats.

    PubMed

    Kolosova, Nataliya G; Muraleva, Natalia A; Zhdankina, Anna A; Stefanova, Natalia A; Fursova, Anzhela Z; Blagosklonny, Mikhail V

    2012-08-01

    Age-related macular degeneration, a neurodegenerative and vascular retinal disease, is the most common cause of blindness in the Western countries. Evidence accumulates that target of rapamycin is involved in aging and age-related diseases, including neurodegeneration. The target of rapamycin inhibitor, rapamycin, suppresses the senescent cell phenotype and extends life span in diverse species, including mice. Rapamycin decreases senescence-associated phenotypes in retinal pigment epithelial cells in culture. Herein, we investigated the effect of rapamycin on spontaneous retinopathy in senescence-accelerated OXYS rats, an animal model of age-related macular degeneration. Rats were treated with either 0.1 or 0.5 mg/kg rapamycin, which was given orally as a food mixture. In a dose-dependent manner, rapamycin decreased the incidence and severity of retinopathy. Rapamycin improved some (but not all) histological abnormalities associated with retinopathy. Thus, in retinal pigment epithelial cell layers, rapamycin decreased nuclei heterogeneity and normalized intervals between nuclei. In photoreceptor cells, associated neurons, and radial glial cells, rapamycin prevented nuclear and cellular pyknosis. More important, rapamycin prevented destruction of ganglionar neurons in the retina. Rapamycin did not exert any adverse effects on the retina in control disease-free Wistar rats. Taken together, our data suggest the therapeutic potential of rapamycin for treatment and prevention of retinopathy. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-wei; Department of Cardiology, Kunming General Hospital of Chengdu Military Area; Guo, Rui-wei

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation,more » migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. - Highlights: • Suggesting a new mechanism of insulin-triggered VSMC functions. • Providing a new therapeutic strategies that target atherosclerosis in T2DM patients. • Providing a new strategies that target in-stent restenosis in T2DM patients.« less

  8. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi, E-mail: wangyi2004a@126.com; Wang, Xiang; Sun, Minghui

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kBmore » (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF

  9. Prostaglandin E2 Regulates Its Own Inactivating Enzyme, 15-PGDH, by EP2 Receptor-Mediated Cervical Cell-Specific Mechanisms

    PubMed Central

    Kishore, A. Hari; Owens, David

    2014-01-01

    Context: Prostaglandins play important roles in parturition and have been used to induce cervical ripening and labor. Prior to cervical ripening at term, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is highly expressed in the cervix and metabolizes cyclooxygenase-2-mediated increases in active prostaglandin E2 (PGE2) to inactive 15-keto PGE2. At term, 15-PGDH gene expression decreases and PGE2 accumulates, leading to cervical ripening and labor. Previously, we found that the cervical isoform of microphthalmia-associated transcription factor (MiTF-CX) serves as a progestational transcription factor that represses IL-8 and hypoxia-mediated increases in cyclooxygenase-2. Objective: We tested the hypothesis that PGE2 regulates its own inactivation through MiTF-CX. Design: We used human cervical stromal cells to investigate the regulation of 15-PGDH. Setting: This was a laboratory-based study using cells from clinical tissue samples. Main Outcome Measures: We evaluated the mechanisms by which PGE2 regulates 15-PGDH in human cervical stromal cells. Results: PGE2 repressed MiTF-CX and 15-PGDH, whereas ectopic overexpression of MiTF-CX induced 15-PGDH expression levels. Stabilization of HIF-1α by deferoxamine resulted in concomitant down-regulation of MiTF-CX and 15-PGDH. Ectopic overexpression of MiTF-CX abrogated PGE2- and deferoxamine-mediated loss of MiTF-CX and 15-PGDH. PGE2-induced loss of MiTF-CX and 15-PGDH was mediated through prostaglandin E2 receptor (EP2) receptors (PTGER2), but not cAMP. Conclusions: The 15-PGDH gene is a MiTF-CX target gene in cervical stromal cells and is down-regulated by PGE2 through EP2 receptors. The findings suggest that EP2 receptor-specific antagonists may be used as an adjunct to present clinical management for the prevention of preterm cervical ripening and preterm labor. PMID:24471568

  10. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues.

    PubMed

    van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B

    2015-07-03

    Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein

    PubMed Central

    Ricote, Mercedes; Huang, Jannet; Fajas, Luis; Li, Andrew; Welch, John; Najib, Jamila; Witztum, Joseph L.; Auwerx, Johan; Palinski, Wulf; Glass, Christopher K.

    1998-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis. PMID:9636198

  12. Clinical and Histologic Analysis of the Efficacy of Topical Rapamycin Therapy Against Hypomelanotic Macules in Tuberous Sclerosis Complex.

    PubMed

    Wataya-Kaneda, Mari; Tanaka, Mari; Yang, Lingli; Yang, Fei; Tsuruta, Daisuke; Nakamura, Ayumi; Matsumoto, Shoji; Hamasaki, Toshimitsu; Tanemura, Atushi; Katayama, Ichiro

    2015-07-01

    observed, and rapamycin was not detected in the blood of any patient. Electron microscopic analysis of hypomelanotic macules revealed that topical rapamycin treatment significantly improved the uniformity of the melanosome numbers in the TSC melanocytes (pretreatment macules: mean [SD], 25.71 [21.90] [range, 5-63]; posttreatment macules: 42.43 [3.60] [range, 38-49]; P < .001). Moreover, rapamycin treatment induced the recovery of melanosomes in TSC-knocked-down melanocytes from depleted amounts (mean [SD], 16.43 [11.84]) to normal levels (42.83 [14.39]; P < .001). Topical rapamycin treatment was effective and safe against hypomelanotic macules arising from TSC. This efficacy of rapamycin was corroborated as stemming from the improvement of impaired melanogenesis in TSC melanocytes.

  13. The PI3K p110delta is required for down-regulation of RAG expression in immature B cells.

    PubMed

    Llorian, Miriam; Stamataki, Zania; Hill, Susan; Turner, Martin; Mårtensson, Inga-Lill

    2007-02-15

    At the immature B cell stage the BCR signals the down-regulation of the RAG genes and Ig L chain (LC) allelic and isotype exclusion. The signaling pathway that regulates these events is poorly characterized. We demonstrate that immature B cells from mice deficient in the PI3K catalytic subunit p110delta fail to suppress RAG expression and inappropriately recombine kappa and lambda LC loci. In addition, in the presence of the autoantigen, clonal deletion and receptor editing still takes place, demonstrating that these processes are independent of p110delta. These results demonstrate a role for p110delta in the regulation of RAG gene expression and thereby LC allelic/isotype exclusion.

  14. The Combination of Rapamycin and Resveratrol Blocks Autophagy and Induces Apoptosis in Breast Cancer Cells

    PubMed Central

    Alayev, Anya; Berger, Sara Malka; Kramer, Melissa Y.; Schwartz, Naomi S.; Holz, Marina K.

    2015-01-01

    Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) is a frequent event in breast cancer and current efforts are aimed at targeting the mTORC1 signaling pathway in combination with other targeted therapies. However, patients often develop drug resistance in part due to activation of the oncogenic Akt signaling and upregulation of autophagy, which protects cancer cells from apoptosis. In the present study we investigated the effects of combination therapy of rapamycin (an allosteric mTORC1 inhibitor) together with resveratrol (a phytoestrogen that inhibits autophagy). Our results show that combination of these drugs maintains inhibition of mTORC1 signaling, while preventing upregulation of Akt activation and autophagy, causing apoptosis. Additionally, this combination was effective in estrogen receptor positive and negative breast cancer cells, underscoring its versatility. PMID:25336146

  15. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yonghuai; Institute of Hematology, Peking University, Beijing; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing

    Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reducedmore » the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.« less

  16. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    PubMed

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  17. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice.

    PubMed

    Yu, K C; Chen, W; Cooper, A D

    2001-06-01

    It has been proposed that in the liver, chylomicron remnants (lipoproteins carrying dietary lipid) may be sequestered before being internalized by hepatocytes. To study this, chylomicron remnants labeled with a fluorescent dye were perfused into isolated livers of LDL receptor-deficient (LDLR-deficient) mice (Ldlr(-/-)) and examined by confocal microscopy. In contrast to livers from normal mice, there was clustering of the chylomicron remnants on the cell surface in the space of DISSE: These remnant clusters colocalized with clusters of LDLR-related protein (LRP) and could be eliminated by low concentrations of receptor-associated protein, an inhibitor of LRP. When competed with ligands of heparan sulfate proteoglycans (HSPGs), the remnant clusters still appeared but were fewer in number, although syndecans (membrane HSPGs) colocalized with the remnant clusters. This suggests that the clustering of remnants is not dependent on syndecans but that the syndecans may modify the binding of remnants. These results establish that sequestration is a novel process, the clustering of remnants in the space of DISSE: The clustering involves remnants binding to the LRP, and this may be stabilized by binding with syndecans, eventually followed by endocytosis.

  18. Mitochondrial Quality Control via the PGC1α-TFEB Signaling Pathway Is Compromised by Parkin Q311X Mutation But Independently Restored by Rapamycin.

    PubMed

    Siddiqui, Almas; Bhaumik, Dipa; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Lieu, Christopher A; Lithgow, Gordon J; Andersen, Julie K

    2015-09-16

    Following its activation by PINK1, parkin is recruited to depolarized mitochondria where it ubiquitinates outer mitochondrial membrane proteins, initiating lysosomal-mediated degradation of these organelles. Mutations in the gene encoding parkin, PARK2, result in both familial and sporadic forms of Parkinson's disease (PD) in conjunction with reductions in removal of damaged mitochondria. In contrast to what has been reported for other PARK2 mutations, expression of the Q311X mutation in vivo in mice appears to involve a downstream step in the autophagic pathway at the level of lysosomal function. This coincides with increased PARIS expression and reduced expression of a reciprocal signaling pathway involving the master mitochondrial regulator peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) and the lysosomal regulator transcription factor EB (TFEB). Treatment with rapamycin was found to independently restore PGC1α-TFEB signaling in a manner not requiring parkin activity and to abrogate impairment of mitochondrial quality control and neurodegenerative features associated with this in vivo model. Losses in PGC1α-TFEB signaling in cultured rat DAergic cells expressing the Q311X mutation associated with reduced mitochondrial function and cell viability were found to be PARIS-dependent and to be independently restored by rapamycin in a manner requiring TFEB. Studies in human iPSC-derived neurons demonstrate that TFEB induction can restore mitochondrial function and cell viability in a mitochondrially compromised human cell model. Based on these data, we propose that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via upregulation of TFEB function. Mutations in PARK2 are generally associated with loss in ability to interact with PINK1, impacting on autophagic initiation. Our data suggest that, in the case of at least one parkin

  19. Lycium chinense Improves Post-Menopausal Obesity via Regulation of PPAR-γ and Estrogen Receptor-α/β Expressions.

    PubMed

    Kim, Mi Hye; Kim, Eun-Jung; Choi, You Yeon; Hong, Jongki; Yang, Woong Mo

    2017-01-01

    The fruit of Lycium chinense Miller (Solanaceae) is used as a functional food and a medicinal herb for treating many specific health concerns. Weight gain induced by estrogen deficiency is a problem for post-menopausal women around the globe. The present study investigates the effects of aqueous extract of L. chinense (LC) on post-menopausal obesity. Female C57BL/6 mice were ovariectomized and fed on high-fat diet (HFD) for 12 weeks to induce post-menopausal obesity. LC extract (1[Formula: see text]mg/kg and 10[Formula: see text]mg/kg) was orally administrated for 6 weeks with continuous HFD feeding. Ovarian adipose tissues and uterus were weighed. Serum triglyceride, cholesterol, LDL-cholesterol and fasting glucose levels were analyzed. The expressions of adipocyte-specific factors and estrogen receptors (ERs) were investigated. Additionally, lipid accumulation was confirmed in differentiated 3T3-L1 adipocytes. Increased body weight due to post-menopausal obesity was ameliorated about 14.7% and 17.76% by treatment of 1[Formula: see text]mg/kg and 10[Formula: see text]mg/kg LC, respectively. LC treatment reduced both of serum lipid and fasting blood glucose levels. Adipocyte hypertrophy and fatty liver were ameliorated in LC-treated groups. In LC-treated adipocyte cells, lipid accumulation was significantly inhibited. The expression of perilipin in adipose tissues was decreased by LC. In addition, expression of PPAR-[Formula: see text] protein was down-regulated in adipose tissues and differentiated adipocytes, while GLUT4 expression was increased in adipose tissues by LC treatment. Moreover, LC treatment up-regulated the expressions of ER-[Formula: see text]/[Formula: see text] accompanied with increased uterine weight. These results showed the ameliorative effects of LC on overweight after menopause. Post-menopausal obesity may be improved by LC treatment.

  20. Curcumin and Emodin Down-Regulate TGF-β Signaling Pathway in Human Cervical Cancer Cells

    PubMed Central

    Thacker, Pooja Chandrakant; Karunagaran, Devarajan

    2015-01-01

    Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer. PMID:25786122

  1. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    PubMed

    Thacker, Pooja Chandrakant; Karunagaran, Devarajan

    2015-01-01

    Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  2. Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model.

    PubMed

    Su, Wenru; Li, Zuohong; Jia, Yu; Zhuo, Yehong

    2014-01-01

    Glaucoma is a leading cause of irreversible blindness. Injury of retinal ganglion cells (RGCs) accounts for visual impairment of glaucoma. Here, we report rapamycin protects RGCs from death in experimental glaucoma model and the underlying mechanisms. Our results showed that treatment with rapamycin dramatically promote RGCs survival in a rat chronic ocular hypertension model. This protective action appears to be attributable to inhibition of neurotoxic mediators release and/or direct suppression of RGC apoptosis. In support of this mechanism, in vitro, rapamycin significantly inhibits the production of NO, TNF-α in BV2 microglials by modulating NF-κB signaling. In experimental animals, treatment with rapamycin also dramatically inhibited the activation of microglials. In primary RGCs, rapamycin was capable of direct suppression the apoptosis of primary RGCs induced by glutamate. Mechanistically, rapamycin-mediated suppression of RGCs apoptosis is by sparing phosphorylation of Akt at a site critical for maintenance of its survival-promoting activity in cell and animal model. These results demonstrate that rapamycin is neuroprotective in experimental glaucoma, possibly via decreasing neurotoxic releasing and suppressing directly apoptosis of RGCs.

  3. Receptor Complex Mediated Regulation of Symplastic Traffic.

    PubMed

    Stahl, Yvonne; Faulkner, Christine

    2016-05-01

    Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hydrogen Sulfide Suppresses Oxidized Low-density Lipoprotein (Ox-LDL)-stimulated Monocyte Chemoattractant Protein 1 generation from Macrophages via the Nuclear Factor κB (NF-κB) Pathway*

    PubMed Central

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391

  5. Long-Term Dexamethasone Exposure Down-Regulates Hepatic TFR1 and Reduces Liver Iron Concentration in Rats

    PubMed Central

    Li, Huifang; Jiang, Shuxia; Yang, Chun; Yang, Shu; He, Bin; Ma, Wenqiang; Zhao, Ruqian

    2017-01-01

    Exposure to stress is known to cause hepatic iron dysregulation, but the relationship between prolonged stress and liver iron metabolism is not yet fully understood. Thirty 13-week-old female Sprague–Dawley rats were randomly divided into two groups, as follows: the control group (saline-injection) and the dexamethasone group (Dexamethasone (Dex)-injection 0.1 mg/kg/day). After the 21-day stress trial, the results showed that chronic Dex administration not only impaired serum corticosterone (p = 0.00) and interleukin-6 (IL-6) (p = 0.01) levels, but also decreased white blood cell counts (p = 0.00), and reduced blood lymphocyte counts (p = 0.00). The daily Dex-injection also significantly reduced body weight (p < 0.01) by inhibiting food intake. Consecutive Dex administration resulted in decreased iron intake (p = 0.00), enhanced serum iron levels (p = 0.01), and increased the serum souble transferrin receptor (sTfR) content (p = 0.00) in rats. Meanwhile, long-term Dex exposure down-regulated duodenal cytochrome b (DCYTB) (p = 0.00) and the divalent metal transporter 1 (DMT1) (p = 0.04) protein expression, but up-regulated ferroportin (FPN) protein expression (p = 0.04). Chronic Dex administration reduced liver iron concentration (p = 0.02) in rats. Hepatic transferrin receptor 1 (TFR1) expression was lowered at the protein level (p = 0.03), yet with uncoupled mRNA abundance in Dex-treated rats. Enhanced iron-regulatory protein (IRP)/iron-responsive element (IRE) binding activity was observed, but did not line up with lowered hepatic TFR1 protein expression. This study indicates that long-term Dex exposure reduces liver iron content, which is closely associated with down-regulated hepatic TFR1 protein expression. PMID:28629118

  6. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor.

    PubMed

    Bose, Sudeep K; Gibson, Willietta; Giri, Shailendra; Nath, Narender; Donald, Carlton D

    2009-09-01

    Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.

  7. Targeting Rapamycin to Podocytes Using a Vascular Cell Adhesion Molecule-1 (VCAM-1)-Harnessed SAINT-Based Lipid Carrier System

    PubMed Central

    Visweswaran, Ganesh Ram R.; Gholizadeh, Shima; Ruiters, Marcel H. J.; Molema, Grietje; Kok, Robbert J.; Kamps, Jan. A. A. M.

    2015-01-01

    Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine. The pathophysiology of podocytopathies makes podocytes a potential and challenging target for nanomedicine development, though there is a lack of known molecular targets for cell selective drug delivery. To identify VCAM-1 as a cell-surface receptor that is suitable for binding and internalization of nanomedicine carrier systems by podocytes, we investigated its expression in the immortalized podocyte cell lines AB8/13 and MPC-5, and in primary podocytes. Gene and protein expression analyses revealed that VCAM-1 expression is increased by podocytes upon TNFα-activation for up to 24 h. This was paralleled by anti-VCAM-1 antibody binding to the TNFα-activated cells, which can be employed as a ligand to facilitate the uptake of nanocarriers under inflammatory conditions. Hence, we next explored the possibilities of using VCAM-1 as a cell-surface receptor to deliver the potent immunosuppressant rapamycin to TNFα-activated podocytes using the lipid-based nanocarrier system Saint-O-Somes. Anti-VCAM-1-rapamycin-SAINT-O-Somes more effectively inhibited the cell migration of AB8/13 cells than free rapamycin and non-targeted rapamycin-SAINT-O-Somes indicating the potential of VCAM-1 targeted drug delivery to podocytes. PMID:26407295

  8. ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy.

    PubMed

    Kundu, Mondira

    2011-05-15

    A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed.

  9. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling

    PubMed Central

    Findlay, Greg M.; Yan, Lijun; Procter, Julia; Mieulet, Virginie; Lamb, Richard F.

    2007-01-01

    The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3. PMID:17253963

  10. Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer's disease.

    PubMed Central

    Christie, R. H.; Freeman, M.; Hyman, B. T.

    1996-01-01

    The macrophage scavenger receptor is a multifunctional receptor whose ligands include oxidized low density lipoprotein (LDL), as well as several other polyanionic macromolecules. Although the capacity of the receptor to bind modified LDL has implicated it in the process of atherosclerosis, its physiological role remains uncertain. We have examined human brain for expression of macrophage scavenger receptor as part of ongoing studies of lipoprotein receptors in the central nervous system. The receptor is expressed on microglia, but not on astrocytes, neurons, or vessel-associated structures. In Alzheimer disease, there is strong expression of the scavenger receptor in association with senile plaques. Images Figure 2 Figure 3 Figure 4 PMID:8579103

  11. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells.

    PubMed

    Lodge, Robert; Gilmore, Julian C; Ferreira Barbosa, Jérémy A; Lombard-Vadnais, Félix; Cohen, Éric A

    2017-12-30

    Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4 R ) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4 R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.

  12. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells

    PubMed Central

    Gilmore, Julian C.; Ferreira Barbosa, Jérémy A.; Lombard-Vadnais, Félix

    2017-01-01

    Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary. PMID:29301198

  13. Activation of PI3K/AKT and MAPK Pathway through a PDGFRβ-Dependent Feedback Loop Is Involved in Rapamycin Resistance in Hepatocellular Carcinoma

    PubMed Central

    Yao, Li-Qing; Tan, Chang-Jun; Huang, Xiao-Yong; Ke, Ai-Wu; Dai, Zhi; Fan, Jia; Zhou, Jian

    2012-01-01

    Background Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest, supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and studies on rapamycin resistance in HCC are extremely limited. Methodology/Principal Findings The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRβ in a time and dose-dependent manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRβ, we confirmed that subsequent activation of AKT and ERK was PDGFRβ-dependent and compromised the anti-tumor activity of rapamycin. Then, blockade of this PDGFRβ-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in vitro and in an immunocompetent orthotopic rat model of HCC. Conclusions Activation of PI3K/AKT and MAPK pathway through a PDGFRβ-dependent feedback loop compromises the anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach to improve the anti-tumor effect of rapamycin, particularly in preventing or treating HCC recurrence after liver transplantation. PMID:22428038

  14. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    PubMed

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.

  15. The influence of emotion down-regulation on the expectation of sexual reward.

    PubMed

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Cousijn, Janna; Both, Stephanie

    2015-05-01

    Emotion regulation research has shown successful altering of unwanted aversive emotional reactions. Cognitive strategies can also regulate expectations of reward arising from conditioned stimuli. However, less is known about the efficacy of such strategies with expectations elicited by conditioned appetitive sexual stimuli, and possible sex differences therein. In the present study it was examined whether a cognitive strategy (attentional deployment) could successfully down-regulate sexual arousal elicited by sexual reward-conditioned cues in men and women. A differential conditioning paradigm was applied, with genital vibrostimulation as unconditioned stimulus (US) and sexually relevant pictures as conditional stimuli (CSs). Evidence was found for emotion down-regulation to effect extinction of conditioned sexual responding in men. In women, the emotion down-regulatory strategy resulted in attenuated conditioned approach tendencies towards the CSs. The findings support that top-down modulation may indeed influence conditioned sexual responses. This knowledge may have implications for treating disturbances in sexual appetitive responses. Copyright © 2015. Published by Elsevier Ltd.

  16. Estrogen receptor α dependent regulation of estrogen related receptor β and its role in cell cycle in breast cancer.

    PubMed

    Madhu Krishna, B; Chaudhary, Sanjib; Mishra, Dipti Ranjan; Naik, Sanoj K; Suklabaidya, S; Adhya, A K; Mishra, Sandip K

    2018-05-30

    Breast cancer (BC) is highly heterogeneous with ~ 60-70% of estrogen receptor positive BC patient's response to anti-hormone therapy. Estrogen receptors (ERs) play an important role in breast cancer progression and treatment. Estrogen related receptors (ERRs) are a group of nuclear receptors which belong to orphan nuclear receptors, which have sequence homology with ERs and share target genes. Here, we investigated the possible role and clinicopathological importance of ERRβ in breast cancer. Estrogen related receptor β (ERRβ) expression was examined using tissue microarray slides (TMA) of Breast Carcinoma patients with adjacent normal by immunohistochemistry and in breast cancer cell lines. In order to investigate whether ERRβ is a direct target of ERα, we investigated the expression of ERRβ in short hairpin ribonucleic acid knockdown of ERα breast cancer cells by western blot, qRT-PCR and RT-PCR. We further confirmed the binding of ERα by electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), Re-ChIP and luciferase assays. Fluorescence-activated cell sorting analysis (FACS) was performed to elucidate the role of ERRβ in cell cycle regulation. A Kaplan-Meier Survival analysis of GEO dataset was performed to correlate the expression of ERRβ with survival in breast cancer patients. Tissue microarray (TMA) analysis showed that ERRβ is significantly down-regulated in breast carcinoma tissue samples compared to adjacent normal. ER + ve breast tumors and cell lines showed a significant expression of ERRβ compared to ER-ve tumors and cell lines. Estrogen treatment significantly induced the expression of ERRβ and it was ERα dependent. Mechanistic analyses indicate that ERα directly targets ERRβ through estrogen response element and ERRβ also mediates cell cycle regulation through p18, p21 cip and cyclin D1 in breast cancer cells. Our results also showed the up-regulation of ERRβ promoter activity in ectopically co

  17. Infarct size is increased in female post-MI rats treated with rapamycin.

    PubMed

    Lajoie, Claude; El-Helou, Viviane; Proulx, Cindy; Clément, Robert; Gosselin, Hugues; Calderone, Angelino

    2009-06-01

    Rapamycin represents a recognized drug-based therapeutic approach to treat cardiovascular disease. However, at least in the female heart, rapamycin may suppress the recruitment of putative signalling events conferring cardioprotection. The present study tested the hypothesis that rapamycin-sensitive signalling events contributed to the cardioprotective phenotype of the female rat heart after an ischemic insult. Rapamycin (1.5 mg/kg) was administered to adult female Sprague-Dawley rats 24 h after complete coronary artery ligation and continued for 6 days. Rapamycin abrogated p70S6K phosphorylation in the left ventricle of sham rats and the noninfarcted left ventricle (NILV) of 1-week postmyocardial-infarcted (MI) rats. Scar weight (MI 0.028 +/- 0.006, MI+rapamycin 0.064 +/- 0.004 g) and surface area (MI 0.37 +/- 0.08, MI+rapamycin 0.74 +/- 0.03 cm2) were significantly larger in rapamycin-treated post-MI rats. In the NILV of post-MI female rats, rapamycin inhibited the upregulation of eNOS. Furthermore, the increased expression of collagen and TGF-beta3 mRNAs in the NILV were attenuated in rapamycin-treated post-MI rats, whereas scar healing was unaffected. The present study has demonstrated that rapamycin-sensitive signalling events were implicated in scar formation and reactive fibrosis. Rapamycin-mediated suppression of eNOS and TGF-beta3 mRNA in post-MI female rats may have directly contributed to the larger infarct and attenuation of the reactive fibrotic response, respectively.

  18. Periadventitial Application of Rapamycin-Loaded Nanoparticles Produces Sustained Inhibition of Vascular Restenosis

    PubMed Central

    Guo, Lian-Wang; Si, Yi; Zhu, Men; Pilla, Srikanth; Liu, Bo; Gong, Shaoqin; Kent, K. Craig

    2014-01-01

    Open vascular reconstructions frequently fail due to the development of recurrent disease or intimal hyperplasia (IH). This paper reports a novel drug delivery method using a rapamycin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs)/pluronic gel system that can be applied periadventitially around the carotid artery immediately following the open surgery. In vitro studies revealed that rapamycin dispersed in pluronic gel was rapidly released over 3 days whereas release of rapamycin from rapamycin-loaded PLGA NPs embedded in pluronic gel was more gradual over 4 weeks. In cultured rat vascular smooth muscle cells (SMCs), rapamycin-loaded NPs produced durable (14 days versus 3 days for free rapamycin) inhibition of phosphorylation of S6 kinase (S6K1), a downstream target in the mTOR pathway. In a rat balloon injury model, periadventitial delivery of rapamycin-loaded NPs produced inhibition of phospho-S6K1 14 days after balloon injury. Immunostaining revealed that rapamycin-loaded NPs reduced SMC proliferation at both 14 and 28 days whereas rapamycin alone suppressed proliferation at day 14 only. Moreover, rapamycin-loaded NPs sustainably suppressed IH for at least 28 days following treatment, whereas rapamycin alone produced suppression on day 14 with rebound of IH by day 28. Since rapamycin, PLGA, and pluronic gel have all been approved by the FDA for other human therapies, this drug delivery method could potentially be translated into human use quickly to prevent failure of open vascular reconstructions. PMID:24586612

  19. Prevention of oxLDL uptake leads to decreased atherosclerosis in hematopoietic NPC1-deficient Ldlr-/- mice.

    PubMed

    Jeurissen, Mike L J; Walenbergh, Sofie M A; Houben, Tom; Gijbels, Marion J J; Li, Jieyi; Hendrikx, Tim; Oligschlaeger, Yvonne; van Gorp, Patrick J; Binder, Christoph J; Donners, Marjo M P C; Shiri-Sverdlov, Ronit

    2016-12-01

    Atherosclerosis is a chronic inflammatory disease of medium and large vessels and is typically characterized by the predominant accumulation of low-density lipoprotein (LDL)-cholesterol inside macrophages that reside in the vessel walls. Previous studies clearly demonstrated an association specifically between the oxidized type of LDL (oxLDL) and atherosclerotic lesion formation. Further observations revealed that these atherosclerotic lesions displayed enlarged, lipid-loaded lysosomes. By increasing natural antibodies against oxLDL, pneumococcal vaccination has been shown to reduce atherosclerosis in LDL receptor knockout (Ldlr -/- ) mice. Relevantly, loss of the lysosomal membrane protein Niemann-Pick Type C1 (NPC1) led to lysosomal accumulation of various lipids and promoted atherosclerosis. Yet, the importance of lysosomal oxLDL accumulation inside macrophages, compared to non-modified LDL, in atherosclerosis has never been established. By transplanting NPC1 bone marrow into lethally irradiated Ldlr -/- mice, a hematopoietic mouse model for lysosomal cholesterol accumulation was created. Through injections with heat-inactivated pneumococci, we aimed to demonstrate the specific contribution of lysosomal oxLDL accumulation inside macrophages in atherosclerosis development. While there were no differences in plaque morphology, a reduction in plaque size and plaque inflammation was found in immunized NPC1 mut -transplanted mice, compared to non-immunized NPC1 mut -transplanted mice. Lysosomal oxLDL accumulation within macrophages contributes to murine atherosclerosis. Future intervention strategies should focus specifically on preventing oxLDL, unlike non-modified LDL, from being internalized into lysosomes. Such an intervention can have an additive effect to current existing treatments against atherosclerosis. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  1. Rapamycin treatment causes developmental delay, pigmentation defects, and gastrointestinal malformation on Xenopus embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko

    Research highlights: {yields} Does famous anti-aging drug rapamycin work from the beginning of life? The answer is yes. {yields} This study shows that developmental speed of frog embryo was dose-dependently decreased by rapamycin treatment. {yields} In additions, morphogenetic effects such as less pigmentations and gut malformation are occurred by rapamycin. -- Abstract: Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood.more » Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period.« less

  2. Regulation of mTOR Activity in Snell Dwarf and GH Receptor Gene-Disrupted Mice

    PubMed Central

    Dominick, Graham; Berryman, Darlene E.; List, Edward O.; Kopchick, John J.; Li, Xinna; Miller, Richard A.

    2015-01-01

    The involvement of mammalian target of rapamycin (mTOR) in lifespan control in invertebrates, calorie-restricted rodents, and extension of mouse lifespan by rapamycin have prompted speculation that diminished mTOR function may contribute to mammalian longevity in several settings. We show here that mTOR complex-1 (mTORC1) activity is indeed lower in liver, muscle, heart, and kidney tissue of Snell dwarf and global GH receptor (GHR) gene-disrupted mice (GHR−/−), consistent with previous studies. Surprisingly, activity of mTORC2 is higher in fasted Snell and GHR−/− than in littermate controls in all 4 tissues tested. Resupply of food enhanced mTORC1 activity in both controls and long-lived mutant mice but diminished mTORC2 activity only in the long-lived mice. Mice in which GHR has been disrupted only in the liver do not show extended lifespan and also fail to show the decline in mTORC1 and increase in mTORC2 seen in mice with global loss of GHR. The data suggest that the antiaging effects in the Snell dwarf and GHR−/− mice are accompanied by both a decline in mTORC1 in multiple organs and an increase in fasting levels of mTORC2. Neither the lifespan nor mTOR effects appear to be mediated by direct GH effects on liver or by the decline in plasma IGF-I, a shared trait in both global and liver-specific GHR−/− mice. Our data suggest that a more complex pattern of hormonal effects and intertissue interactions may be responsible for regulating both lifespan and mTORC2 function in these mouse models of delayed aging. PMID:25456069

  3. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  4. Therapeutic Targeting of the IL-6 Trans-Signaling/Mechanistic Target of Rapamycin Complex 1 Axis in Pulmonary Emphysema.

    PubMed

    Ruwanpura, Saleela M; McLeod, Louise; Dousha, Lovisa F; Seow, Huei J; Alhayyani, Sultan; Tate, Michelle D; Deswaerte, Virginie; Brooks, Gavin D; Bozinovski, Steven; MacDonald, Martin; Garbers, Christoph; King, Paul T; Bardin, Philip G; Vlahos, Ross; Rose-John, Stefan; Anderson, Gary P; Jenkins, Brendan J

    2016-12-15

    The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. We used the gp130 F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.

  5. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs.

    PubMed

    Tardelli, Matteo; Claudel, Thierry; Bruschi, Francesca Virginia; Trauner, Michael

    2018-06-15

    Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.

  6. Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen: A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)γ-DEPENDENT MECHANISM.

    PubMed

    Yu, Miao; Jiang, Meixiu; Chen, Yuanli; Zhang, Shuang; Zhang, Wenwen; Yang, Xiaoxiao; Li, Xiaoju; Li, Yan; Duan, Shengzhong; Han, Jihong; Duan, Yajun

    2016-08-12

    Macrophage CD36 binds and internalizes oxidized low density lipoprotein (oxLDL) to facilitate foam cell formation. CD36 expression is activated by peroxisome proliferator-activated receptor γ (PPARγ). Tamoxifen, an anti-breast cancer medicine, has demonstrated pleiotropic functions including cardioprotection with unfully elucidated mechanisms. In this study, we determined that treatment of ApoE-deficient mice with tamoxifen reduced atherosclerosis, which was associated with decreased CD36 and PPARγ expression in lesion areas. At the cellular level, we observed that tamoxifen inhibited CD36 protein expression in human THP-1 monocytes, THP-1/PMA macrophages, and human blood monocyte-derived macrophages. Associated with decreased CD36 protein expression, tamoxifen reduced cellular oxLDL accumulation in a CD36-dependent manner. At the transcriptional level, tamoxifen decreased CD36 mRNA expression, promoter activity, and the binding of the PPARγ response element in CD36 promoter to PPARγ protein. Tamoxifen blocked ligand-induced PPARγ nuclear translocation and CD36 expression, but it increased PPARγ phosphorylation, which was due to that tamoxifen-activated ERK1/2. Furthermore, deficiency of PPARγ expression in macrophages abolished the inhibitory effect of tamoxifen on CD36 expression or cellular oxLDL accumulation both in vitro and in vivo Taken together, our study demonstrates that tamoxifen inhibits CD36 expression and cellular oxLDL accumulation by inactivating the PPARγ signaling pathway, and the inhibition of macrophage CD36 expression can be attributed to the anti-atherogenic properties of tamoxifen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Transcription of G-protein coupled receptors in corporal smooth muscle is regulated by sialorphin (an endogenous neutral endopeptidase inhibitor)

    PubMed Central

    Tong, Yuehong; Tiplitsky, Scott I.; Tar, Moses; Melman, Arnold; Davies, Kelvin P.

    2009-01-01

    Purpose Several reports have suggested the rat Vcsa1 gene is down-regulated in models of erectile dysfunction (ED). Vcsa’s protein product, sialorphin, is an endogenous neutral endopeptidase (NEP), and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated if down- regulation of Vcsa1 could result in adaptive change in the expression of G-protein coupled receptors (GPCR). Materials and Methods Gene expression in cultured rat corporal smooth muscle cells (CSM) following treatment with siRNA directed against Vcsa1 or the NEP gene was analyzed using microarray and quantitative RT-PCR. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernosal nerves. Using that animal model, we also investigated whether the down-regulation of Vcsa1 is accompanied by similar changes in gene expression observed in the CSM cells where Vcsa1 was knocked-down in vitro. Results Microarray analysis and quantitative RT-PCR demonstrated that CSM cells treated in vitro with siRNA against Vcsa1 resulted in up-regulation of GPCR as a functional group. In contrast, treatment of CSM cells that lowered NEP activity resulted in decreases in GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on NEP. In animals with bilaterally transected cavernous nerves the reduced expression of Vcsa1 is accompanied by increased GPCR expression in cavernosal tissue. Conclusions These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression. PMID:18554633

  8. Transcription of G-protein coupled receptors in corporeal smooth muscle is regulated by the endogenous neutral endopeptidase inhibitor sialorphin.

    PubMed

    Tong, Yuehong; Tiplitsky, Scott I; Tar, Moses; Melman, Arnold; Davies, Kelvin P

    2008-08-01

    Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.

  9. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Involvement of the VDE homing endonuclease and rapamycin in regulation of the Saccharomyces cerevisiae GSH11 gene encoding the high affinity glutathione transporter.

    PubMed

    Miyake, Tsuyoshi; Hiraishi, Hiroyuki; Sammoto, Hiroyuki; Ono, Bun-Ichiro

    2003-10-10

    The Saccharomyces cerevisiae gene HGT1/GSH11 encodes the high affinity glutathione transporter and is repressed by cysteine added to the culture medium. It has been found previously that a 5'-upstream cis-element, CCGCCACAC, is responsible for regulating GSH11 expression and that several proteins bind to this element (Miyake, T., Kanayama, M., Sammoto, H., and Ono, B. (2002) Mol. Genet. Genomics 266, 1004-1011). In this report we present evidence that the most prominent of these proteins is VDE, known previously as the homing endonuclease encoded by VMA1. We show also that GSH11 is not expressed in a VDE-deleted strain and that inability to express the GSH11 of this strain is overcome by introduction of the coding region of VDE or the entire VMA1 gene. It is also found that VDE does not cut DNA in the vicinity of the GSH11 cis-element. Rapamycin, an inhibitor of the target of rapamycin (TOR) signal-transduction system, is found to enhance expression of GSH11 in a VDE-dependent manner under conditions of sulfur starvation. These results indicate that GSH11 is regulated by a system sensitive to sulfur starvation (presumably via cysteine depletion) and a more general system involving the nutritional starvation signal mediated by the TOR system. Both systems need to be operational (inhibition of TOR and sulfur starvation) for full expression of GSH11.

  11. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    PubMed

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells.

    PubMed

    Aguilar, Edenil C; Santos, Lana Claudinez Dos; Leonel, Alda J; de Oliveira, Jamil Silvano; Santos, Elândia Aparecida; Navia-Pelaez, Juliana M; da Silva, Josiane Fernandes; Mendes, Bárbara Pinheiro; Capettini, Luciano S A; Teixeira, Lilian G; Lemos, Virginia S; Alvarez-Leite, Jacqueline I

    2016-08-01

    Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Interaction study between synthetic glycoconjugate ligands and endocytic receptors using flow cytometry.

    PubMed

    Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi

    2006-04-01

    Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.

  14. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway.

    PubMed

    Pende, A; Tremmel, K D; DeMaria, C T; Blaxall, B C; Minobe, W A; Sherman, J A; Bisognano, J D; Bristow, M R; Brewer, G; Port, J

    1996-04-05

    In both cell culture based model systems and in the failing human heart, beta-adrenergic receptors ( beta-AR) undergo agonist-mediated down-regulation. This decrease correlates closely with down-regulation of its mRNA, an effect regulated in part by changes in mRNA stability. Regulation of mRNA stability has been associated with mRNA-binding proteins that recognize A + U-rich elements within the 3'-untranslated regions of many mRNAs encoding proto-oncogene and cytokine mRNAs. We demonstrate here that the mRNA-binding protein, AUF1, is present in both human heart and in hamster DDT1-MF2 smooth muscle cells and that its abundance is regulated by beta-AR agonist stimulation. In human heart, AUF1 mRNA and protein was significantly increased in individuals with myocardial failure, a condition associated with increases in the beta-adrenergic receptor agonist norepinephrine. In the same hearts, there was a significant decrease (approximately 50%) in the abundance of beta1-AR mRNA and protein. In DDT1-MF2 cells, where agonist-mediated destabilization of beta2-AR mRNA was first described, exposure to beta-AR agonist resulted in a significant increase in AUF1 mRNA and protein (approximately 100%). Conversely, agonist exposure significantly decreased (approximately 40%) beta2-adrenergic receptor mRNA abundance. Last, we demonstrate that AUF1 can be immunoprecipitated from polysome-derived proteins following UV cross-linking to the 3'-untranslated region of the human beta1-AR mRNA and that purified, recombinant p37AUF1 protein also binds to beta1-AR 3'-untranslated region mRNA.

  15. Localization and regulation of glucagon receptors in the chick eye and preproglucagon and glucagon receptor expression in the mouse eye.

    PubMed

    Feldkaemper, Marita P; Burkhardt, Eva; Schaeffel, Frank

    2004-09-01

    Myopia is a condition in which the eye is too long for the focal length of cornea and lens. Analysis of the messengers that are released by the retina to control axial eye growth in the animal model of the chicken revealed that glucagon-immunoreactive amacrine cells are involved in the retinal image processing that controls the growth of the sclera. It was found that the amount of retinal glucagon mRNA increased during treatment with positive lenses and pharmacological studies supported the idea that glucagon may act as a stop signal for eye growth. Glucagon exerts its regulatory effects by binding to a single type of glucagon receptor. In this study, we have sequenced the chicken glucagon receptor and compared its DNA and amino acid sequence with the human and mouse homologues. After sequencing about 80% of the receptor, we found a homology between 79.4 and 75.6% on cDNA level. At the protein level, about 73% of the amino acids were identical. Moreover, the cellular localization and regulation of the glucagon receptor in the chick retina was studied. In situ hybridization studies showed that many cells in the ganglion cell layer and inner nuclear layer, and some cells in the outer nuclear layer, express the receptor mRNA. Injection of the glucagon agonist Lys17,18,Glu21-glucagon induced a down-regulation of glucagon receptor mRNA content. Since the mouse would be an attractive mammalian model to study the biochemical and genetic basis of myopia, and because recent studies have demonstrated that form deprivation myopia can be induced, the expression of preproglucagon and glucagon receptor genes were also studied in the mouse retina and were found to be expressed.

  16. Transcription factor REST negatively influences the protein kinase C-dependent up-regulation of human mu-opioid receptor gene transcription.

    PubMed

    Bedini, Andrea; Baiula, Monica; Carbonari, Gioia; Spampinato, Santi

    2010-01-01

    Mu-opioid receptor expression increases during neurogenesis, regulates the survival of maturing neurons and is implicated in ischemia-induced neuronal death. The repressor element 1 silencing transcription factor (REST), a regulator of a subset of genes in differentiating and post-mitotic neurons, is involved in its transcriptional repression. Extracellular signaling molecules and mechanisms that control the human mu-opioid receptor (hMOR) gene transcription are not clearly understood. We examined the role of protein kinase C (PKC) on hMOR transcription in a model of neuronal cells and in the context of the potential influence of REST. In native SH-SY5Y neuroblastoma cells, PKC activation with phorbol 12-myristate 13-acetate (PMA, 16 nM, 24h) down-regulated hMOR transcription and concomitantly elevated the REST binding activity to repressor element 1 of the hMOR promoter. In contrast, PMA activated hMOR gene transcription when REST expression was knocked down by an antisense strategy or by retinoic acid-induced cell differentiation. PMA acts through a PKC-dependent pathway requiring downstream MAP kinases and the transcription factor AP-1. In a series of hMOR-luciferase promoter/reporter constructs transfected into SH-SY5Y cells and PC12 cells, PMA up-regulated hMOR transcription in PC12 cells lacking REST, and in SH-SY5Y cells either transfected with constructs deficient in the REST DNA binding element or when REST was down-regulated in retinoic acid-differentiated cells. These findings help explain how hMOR transcription is regulated and may clarify its contribution to epigenetic modifications and reprogramming of differentiated neuronal cells exposed to PKC-activating agents. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    PubMed Central

    Wang, Congrui; Wang, Huaibin; Lu, Ming; Li, Yonghai; Feng, Huigen; Yuan, Zhiqing

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression. PMID:23956504

  18. Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer

    PubMed Central

    Li, Jie; Koike, Junichi; Kugoh, Hiroyuki; Arita, Michitsune; Ohhira, Takahito; Kikuchi, Yoshinori; Funahashi, Kimihiko; Takamatsu, Ken; Boland, C. Richard; Koi, Minoru; Hemmi, Hiromichi

    2013-01-01

    Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells. PMID:22343000

  19. Gene regulation of atrial natriuretic peptide A, B, and C receptors in rat glomeruli.

    PubMed

    Itoh, K; Nonoguchi, H; Shiraishi, N; Tomita, K

    1999-01-01

    Atrial natriuretic peptide (ANP) has three types of receptor. We investigated the gene regulation of three types of ANP receptors (ANPR-A, B, and C) in rat glomeruli using reverse transcription coupled with competitive polymerase chain reaction (PCR). Competitive PCR revealed that ANPR-C mRNA expression was most abundant (ANPR-C > A > B) in glomeruli from control rats among mRNA expressions of three receptors, which were 20- to 15,000-fold higher than those in inner medullary collecting ducts. Two days' dehydration caused reversible decreases of ANPR-A, B, and C mRNAs by 50-80%. To determine the mechanisms of down-regulation of mRNA expression, isolated glomeruli were incubated in isotonic or hypertonic solution. Hyperosmolality induced by NaCl, mannitol or raffinose caused significant increases of ANPR-A, B, and C mRNA expression. Hypertonicity by urea showed smaller effects. ANP stimulated the expression of ANPR-A, B, and C mRNA in vitro. These results indicate that dehydration caused reversible decreases of ANPR-A, B, and C mRNA expression in glomeruli, and these decreases were not caused by increased plasma osmolality but probably by lower circulating levels of ANP.

  20. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissuemore » sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  1. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons

    PubMed Central

    Yang, Shi-Bing; Tien, An-Chi; Boddupalli, Gayatri; Xu, Allison W.; Jan, Yuh Nung; Jan, Lily Yeh

    2012-01-01

    Summary The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for bodyweight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (KATP) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and bodyweight. Conversely, young mice lacking the mTOR negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity. PMID:22884327

  2. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chiu, Christopher W; Nozawa, Hiroaki; Hanahan, Douglas

    2010-10-10

    Pancreatic neuroendocrine tumors (PNETs), although rare, often metastasize, such that surgery, the only potentially curative therapy, is not possible. There is no effective systemic therapy for patients with advanced PNETs. Therefore, new strategies are needed. Toward that end, we investigated the potential benefit of dual therapeutic targeting of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) kinases, using a preclinical mouse model of PNET. Rapamycin and erlotinib, inhibitors of mTOR and EGFR, respectively, were used to treat RIP-Tag2 transgenic mice bearing advanced multifocal PNET. Tumor growth and survival were monitored, and tumors were surveyed for potential biomarkers of response to the therapeutics. Rapamycin monotherapy was notably efficacious, prolonging survival concomitant with tumor stasis (stable disease). However, the tumors developed resistance, as evidenced by eventual relapse to progressive tumor growth. Erlotinib monotherapy slowed tumor growth and elicited a marginal survival benefit. In combination, there was an unprecedented survival benefit in the face of this aggressive multifocal cancer and, in contrast to either monotherapy, the development of adaptive resistance was not apparent. Additionally, the antiapoptotic protein survivin was implicated as a biomarker of sensitivity and beneficial responses to the dual targeted therapy. Preclinical trials in a mouse model of endogenous PNET suggest that combined targeting of the mTOR and EGFR signaling pathways could have potential clinical benefit in treating PNET. These results have encouraged development of an ongoing phase II clinical trial aimed to evaluate the efficacy of this treatment regimen in human neuroendocrine tumors.

  3. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy.

    PubMed

    Luo, D; Ren, H; Li, T; Lian, K; Lin, D

    2016-03-01

    Osteocyte is the orchestrator of bone remolding and decline in osteocyte autophagy is involved in senile osteoporosis. Our results suggested that rapamycin, at least in part by activating osteocyte autophagy, reduced the severity of age-related bone changes in trabecular bone of old male rats. Previous literatures have showed that osteocyte is the orchestrator of bone remolding and age-related decline in osteocyte number is associated with senile osteoporosis. Autophagy is an important cellular protective mechanism which can preserve osteocyte viability and failure of autophagy in osteocyte with age has been linked to senile osteoporosis. The purpose of this study was to explore whether rapamycin, one activator of autophagy, has protective effects on senile osteoporosis through inducing osteocyte autophagy. Fifty-two 24-month-old male Sprague-Dawley (SD) rats were randomly divided into two groups. Rapamycin (1 mg/kg weight/day) or DMSO vehicle control was administered intraperitoneally for 12 weeks. BMD and bone microstructure were determined by Micro-CT. Fluorochrome labeling of the bones was performed to measure the mineral apposition rate (MAR). TRAP staining was performed to evaluate osteoclast number. The plasma levels of bone turnover markers were also analyzed. The effects of rapamycin on osteocyte autophagy were determined by immunohistochemistry, Western blot, and q-PCR. TUNEL was used to determine the prevalence of osteocyte apoptosis. Micro-CT evaluation demonstrated that rapamycin had a protective effect on age-related bone loss in trabecular bone. Besides, rapamycin resulted in an obvious increase of MAR and a decrease of osteoclast number in contrast to the control group. Furthermore, rapamycin also induced autophagy in osteocyte demonstrated by increased LC3-positive osteocyte and increased LC3 turnover. In addition, rats treated with rapamycin exhibited decreased apoptosis of osteocyte determined by TUNEL. These results suggested that rapamycin, at

  4. Rapamycin treatment causes developmental delay, pigmentation defects, and gastrointestinal malformation on Xenopus embryogenesis.

    PubMed

    Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko; Matsukawa, Shinya; Michiue, Tatsuo; Asashima, Makoto; Kuroda, Hiroki

    2011-01-28

    Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood. Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The cannabinoid receptor inverse agonist AM251 regulates the expression of the EGF receptor and its ligands via destabilization of oestrogen-related receptor α protein

    PubMed Central

    Fiori, JL; Sanghvi, M; O'Connell, MP; Krzysik-Walker, SM; Moaddel, R; Bernier, M

    2011-01-01

    BACKGROUND AND PURPOSE AM251 is an inverse agonist of the cannabinoid 1 receptor (CB1R) that can exert ‘off-target’ effects in vitro and in CB1R knock-out mice. AM251 is also potent at modulating tumour cell growth, suggesting that growth factor-mediated oncogenic signalling could be regulated by AM251. Since dysregulation of the EGF receptor has been associated with carcinogenesis, we examined AM251 regulation of EGF receptor (EGFR) expression and function. EXPERIMENTAL APPROACH The various biological functions of AM251 were measured in CB1R-negative human cancer cells. Pharmacological and genetic approaches were used to validate the data. KEY RESULTS The mRNA levels for EGFR and its associated ligands, including HB-EGF, were induced several fold in PANC-1 and HCT116 cells in response to AM251. This event was associated with enhanced expression of EGFR on the cell surface with concomitant increase in EGF-induced cellular responses in AM251-treated cells. Exposure to XCT790, a synthetic inverse agonist of the orphan nuclear oestrogen-related receptor α (ERRα), also induced EGFR and HB-EGF expression to the same extent as AM251, whereas pretreatment with the ERRα-selective agonist, biochanin A, blunted AM251 actions. AM251 promoted the degradation of ERRα protein without loss of the corresponding mRNA. Knock-down of ERRα by siRNA-based approach led to constitutive induction of EGFR and HB-EGF levels, and eliminated the biological responses of AM251 and XCT790. Finally, AM251 displaced diethylstilbestrol prebound to the ligand-binding domain of ERRα. CONCLUSIONS AND IMPLICATIONS AM251 up-regulates EGFR expression and signalling via a novel non-CB1R-mediated pathway involving destabilization of ERRα protein in selected cancer cell lines. PMID:21449913

  6. Inhibition of hemangioma growth using polymer-lipid hybrid nanoparticles for delivery of rapamycin.

    PubMed

    Li, Haitao; Teng, Yunfei; Sun, Jin; Liu, Jianyong

    2017-11-01

    Although infantile hemangiomas is benign, its rapid growth may induce serious complications. However, only one drug Hemangeol™ has been approved by US Food and Drug Administration (FDA) to treat infantile hemangiomas. Thus it is necessary to develop novel alternative drugs to treat infantile hemangiomas. Rapamycin is a well-know potent antiangiogenic agent, whereas the daily oral administration of rapamycin exerts undesired metabolic effects due to its inhibition of mechanistic target of rapamycin (mTOR) which is critical in cell metabolism. We hereby developed rapamycin-loaded polymer-lipid hybrid nanoparticles (Rapamycin-PLNPs) as a local controlled release system to realize local and sustained release of rapamycin, aiming to reduce the side effects and frequency of administration of rapamycin. Rapamycin-PLNPs are of a small size (129.1nm), desired drug encapsulation efficiency (63.7%), and sustained drug release for 5 days. Rapamycin-PLNPs were shown to be able to effectively bind to hemangioma endothelia cells (HemECs), induce significant proliferation inhibition and reduce expression of angiogenesis factors in HemECs. The therapeutic effect of Rapamycin-PLNPs against infantile hemangioma in vivo was superior to rapamycin, as reflected by reduced hemangioma volume, weight and microvessel density. Taken together, Rapamycin-PLNPs represent a very promising local approach in the treatment of infantile hemangiomas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island

    PubMed Central

    Arriola Apelo, Sebastian I.

    2016-01-01

    Rapamycin (sirolimus) is a macrolide immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in model organisms including mice. Although rapamycin is an FDA-approved drug for select indications, a diverse set of negative side effects may preclude its wide-scale deployment as an antiaging therapy. mTOR forms two different protein complexes, mTORC1 and mTORC2; the former is acutely sensitive to rapamycin whereas the latter is only chronically sensitive to rapamycin in vivo. Over the past decade, it has become clear that although genetic and pharmacological inhibition of mTORC1 extends lifespan and delays aging, inhibition of mTORC2 has negative effects on mammalian health and longevity and is responsible for many of the negative side effects of rapamycin. In this review, we discuss recent advances in understanding the molecular and physiological effects of rapamycin treatment, and we discuss how the use of alternative rapamycin treatment regimens or rapamycin analogs has the potential to mitigate the deleterious side effects of rapamycin treatment by more specifically targeting mTORC1. Although the side effects of rapamycin are still of significant concern, rapid progress is being made in realizing the revolutionary potential of rapamycin-based therapies for the treatment of diseases of aging. PMID:27208895

  8. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  10. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    PubMed

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  11. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast

    PubMed Central

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-01-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically this exploits temperature sensitive mutations, or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the Anchor Away technique, originally designed in budding yeast (Haruki et al., 2008a). This method relies on a rapamycin-mediated interaction between the FRB and FKBP12 binding domains, to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof-of-principle. PMID:24733494

  12. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  13. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.

    PubMed

    Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H

    1989-09-01

    Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene.

  14. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors.

    PubMed

    Wang, Wei; Chen, Zhao-Xia; Guo, Dong-Yu; Tao, Ya-Xiong

    2018-06-15

    Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized. Copyright © 2018. Published by Elsevier Inc.

  15. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging

    PubMed Central

    Zhang, Liang; Thurber, Greg M.

    2016-01-01

    Purpose Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type-1 diabetes. The glucagon like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. Procedures Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. Results Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. Conclusions Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, downregulation of the GLP-1 receptor and non-specific background uptake result in a higher TBR for fast-clearing agents. PMID:26194012

  16. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål)

    PubMed Central

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-01-01

    The “target of rapamycin” (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens. PMID:27043527

  17. Time-dependent effects of rapamycin on consolidation of predator stress-induced hyperarousal.

    PubMed

    Fifield, Kathleen; Hebert, Mark; Williams, Kimberly; Linehan, Victoria; Whiteman, Jesse D; Mac Callum, Phillip; Blundell, Jacqueline

    2015-06-01

    Previous studies have indicated that rapamycin, a potent inhibitor of the mammalian target of rapamycin (mTOR) pathway, blocks consolidation of shock-induced associative fear memories. Moreover, rapamycin's block of associative fear memories is time-dependent. It is unknown, however, if rapamycin blocks consolidation of predator stress-induced non-associative fear memories. Furthermore, the temporal pattern of mTOR activation following predator stress is unknown. Thus, the goal of the current studies was to determine if rapamycin blocks consolidation of predator stress-induced fear memories and if so, whether rapamycin's effect is time-dependent. Male rats were injected systemically with rapamycin at various time points following predator stress. Predator stress involves an acute, unprotected exposure of a rat to a cat, which causes long-lasting non-associative fear memories manifested as generalized hyperarousal and increased anxiety-like behaviour. We show that rapamycin injected immediately after predator stress blocked consolidation of stress-induced startle. However, rapamycin injected 9, 24 or 48h post predator stress potentiated stress-induced startle. Consistent with shock-induced associative fear memories, we show that mTOR signalling is essential for consolidation of predator stress-induced hyperarousal. However, unlike shock-induced fear memories, a second, persistent, late phase mTOR-dependent process following predator stress actually dampens startle. Consistent with previous findings, our data support the potential role for rapamycin in treatment of stress related disorders such as posttraumatic stress disorder. However, our data suggest timing of rapamycin administration is critical. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Novel Mechanisms in the Regulation of G Protein-coupled Receptor Trafficking to the Plasma Membrane*

    PubMed Central

    Tholanikunnel, Baby G.; Joseph, Kusumam; Kandasamy, Karthikeyan; Baldys, Aleksander; Raymond, John R.; Luttrell, Louis M.; McDermott, Paul J.; Fernandes, Daniel J.

    2010-01-01

    β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals. PMID:20739277

  19. ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy

    PubMed Central

    2011-01-01

    Abstract A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958. PMID:21235397

  20. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island.

    PubMed

    Arriola Apelo, Sebastian I; Lamming, Dudley W

    2016-07-01

    Rapamycin (sirolimus) is a macrolide immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in model organisms including mice. Although rapamycin is an FDA-approved drug for select indications, a diverse set of negative side effects may preclude its wide-scale deployment as an antiaging therapy. mTOR forms two different protein complexes, mTORC1 and mTORC2; the former is acutely sensitive to rapamycin whereas the latter is only chronically sensitive to rapamycin in vivo. Over the past decade, it has become clear that although genetic and pharmacological inhibition of mTORC1 extends lifespan and delays aging, inhibition of mTORC2 has negative effects on mammalian health and longevity and is responsible for many of the negative side effects of rapamycin. In this review, we discuss recent advances in understanding the molecular and physiological effects of rapamycin treatment, and we discuss how the use of alternative rapamycin treatment regimens or rapamycin analogs has the potential to mitigate the deleterious side effects of rapamycin treatment by more specifically targeting mTORC1. Although the side effects of rapamycin are still of significant concern, rapid progress is being made in realizing the revolutionary potential of rapamycin-based therapies for the treatment of diseases of aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Rapamycin inhibits anal carcinogenesis in two preclinical animal models.

    PubMed

    Stelzer, Marie K; Pitot, Henry C; Liem, Amy; Lee, Denis; Kennedy, Gregory D; Lambert, Paul F

    2010-12-01

    The incidence of anal cancer is increasing especially among HIV-infected persons in the HAART era. Treatment of this cancer is based upon traditional chemoradiotherapeutic approaches, which are associated with high morbidity and of limited effectiveness for patients with high-grade disease. The mammalian target of rapamycin (mTOR) pathway has been implicated in several human cancers, and is being investigated as a potential therapeutic target. In archival human anal cancers, we observed mTOR pathway activation. To assess response of anal cancer to mTOR inhibition, we utilized two newly developed mouse models, one in which anal cancers are induced to arise in HPV16 transgenic mice and the second a human anal cancer xenograft model. Using the transgenic mouse model, we assessed the preventative effect of rapamycin on neoplastic disease. We saw significant changes in the overall incidence of tumors, and tumor growth rate was also reduced. Using both the transgenic mouse and human anal xenograft mouse models, we studied the therapeutic effect of rapamycin on preexisting anal cancer. Rapamycin was found to significantly slow, if not stop, the growth of both mouse and human anal cancers. As has been seen in other cancers, rapamycin treatment led to an activation of the MAPK pathway. These results provide us cause to pursue further the evaluation of rapamycin as a therapeutic agent in the control of anal cancer. ©2010 AACR.

  2. Rapamycin slows IgA nephropathy progression in the rat.

    PubMed

    Tian, Jihua; Wang, Yanhong; Zhou, Xiaoshuang; Li, Yanjiao; Wang, Chen; Li, Jiaming; Li, Rongshan

    2014-01-01

    IgA nephropathy (IgAN) is the most frequent glomerulonephritis worldwide. Different therapeutic approaches have been tested against IgAN. The present study was designed to explore the renoprotective potential of low-dose mammalian target of rapamycin (mTOR) inhibitor rapamycin in an IgAN rat model and the possible mechanism of action. After establishing an IgAN model, the rats were randomly divided into four groups: control, control with rapamycin treatment, IgAN model, and IgAN model with rapamycin treatment. Coomassie Brilliant Blue was utilized to measure 24-hour urinary protein levels. Hepatic and renal function was determined with an autoanalyzer. Proliferation was assayed via 5-bromo-2'-deoxyuridine incorporation. Real-time PCR and immunohistochemistry were utilized to detect the expression of α-SMA, collagen I, collagen III, TGF-β1 and platelet-derived growth factor. Western blotting and immunohistochemistry were performed to determine p-S6 protein levels. Low-dose mTOR inhibitor rapamycin prevented an additional increase in proteinuria and protected kidney function in a model of IgAN. Rapamycin directly or indirectly interfered with multiple key pathways in the progression of IgAN to end-stage renal disease: (1) reduced the deposition of IgA and inhibited cell proliferation; (2) decreased the expression of fibrosis markers α-SMA and type III collagen, and (3) downregulated the expression of the profibrotic growth factors platelet-derived growth factor and TGF-β1. The expression of p-S6 was significantly elevated in IgAN rats. The mTOR pathway was activated in IgAN rats and the early application of low-dose mTOR inhibitor rapamycin may slow the renal injury of IgAN in rats.

  3. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors

    PubMed Central

    Anton, Olga M.; Vielkind, Susina; Peterson, Mary E.; Tagaya, Yutaka; Long, Eric O.

    2015-01-01

    IL-15 bound to the IL-15 receptor α chain (IL-15Rα) is presented in trans to cells bearing the IL-2 receptor β and γc chains. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor–ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR–HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to down-regulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A+ cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Co-engagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15 dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. PMID:26453750

  4. Olive Oil Polyphenols Decrease LDL Concentrations and LDL Atherogenicity in Men in a Randomized Controlled Trial.

    PubMed

    Hernáez, Álvaro; Remaley, Alan T; Farràs, Marta; Fernández-Castillejo, Sara; Subirana, Isaac; Schröder, Helmut; Fernández-Mampel, Mireia; Muñoz-Aguayo, Daniel; Sampson, Maureen; Solà, Rosa; Farré, Magí; de la Torre, Rafael; López-Sabater, María-Carmen; Nyyssönen, Kristiina; Zunft, Hans-Joachim F; Covas, María-Isabel; Fitó, Montserrat

    2015-08-01

    Olive oil polyphenols have shown protective effects on cardiovascular risk factors. Their consumption decreased oxidative stress biomarkers and improved some features of the lipid profile. However, their effects on LDL concentrations in plasma and LDL atherogenicity have not yet been elucidated. Our objective was to assess whether the consumption of olive oil polyphenols could decrease LDL concentrations [measured as apolipoprotein B-100 (apo B-100) concentrations and the total number of LDL particles] and atherogenicity (the number of small LDL particles and LDL oxidizability) in humans. The study was a randomized, cross-over controlled trial in 25 healthy European men, aged 20-59 y, in the context of the EUROLIVE (Effect of Olive Oil Consumption on Oxidative Damage in European Populations) study. Volunteers ingested 25 mL/d raw low-polyphenol-content olive oil (LPCOO; 366 mg/kg) or high-polyphenol-content olive oil (HPCOO; 2.7 mg/kg) for 3 wk. Interventions were preceded by 2-wk washout periods. Effects of olive oil polyphenols on plasma LDL concentrations and atherogenicity were determined in the sample of 25 men. Effects on lipoprotein lipase (LPL) gene expression were assessed in another sample of 18 men from the EUROLIVE study. Plasma apo B-100 concentrations and the number of total and small LDL particles decreased (mean ± SD: by 5.94% ± 16.6%, 11.9% ± 12.0%, and 15.3% ± 35.1%, respectively) from baseline after the HPCOO intervention. These changes differed significantly from those after the LPCOO intervention, which resulted in significant increases of 6.39% ± 16.6%, 4.73% ± 22.0%, and 13.6% ± 36.4% from baseline (P < 0.03). LDL oxidation lag time increased by 5.0% ± 10.3% from baseline after the HPCOO intervention, which was significantly different only relative to preintervention values (P = 0.038). LPL gene expression tended to increase by 26% from baseline after the HPCOO intervention (P = 0.08) and did not change after the LPCOO intervention

  5. Prolonged exposure to WIN55,212-2 causes down-regulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy

    PubMed Central

    Blair, Robert E.; Deshpande, Laxmikant S.; Sombati, Sompong; Elphick, Maurice R.; Martin, Billy R.; DeLorenzo, Robert J.

    2009-01-01

    Summary Cannabinoids have been shown to cause CB1-receptor dependent anticonvulsant activity in both in vivo and in vitro models of status epilepticus (SE) and acquired epilepsy (AE). It has been further demonstrated in these models that the endocannabinoid system functions in a tonic manner to suppress seizure discharges through a CB1-receptor dependent pathway. Although acute cannabinoid treatment has anticonvulsant activity, little is known concerning the effects of prolonged exposure to CB1 agonists and development of tolerance on the epileptic phenotype. This study was carried out to evaluate the effects of prolonged exposure to the CB1 agonist WIN55,212-2 on seizure activity in a hippocampal neuronal culture model of low-Mg2+ induced spontaneous recurrent epileptiform discharges (SREDs). Following low-Mg2+ induced SREDs, cultures were returned to maintenance media containing 10, 100 or 1000 nM WIN55,212-2 from 4 to 24 hours. Whole-cell current-clamp analysis of WIN55,212-2 treated cultures revealed a concentration-dependent increase in SRED frequency. Immunocytochemical staining revealed that WIN55,212-2 treatment induced a concentration-dependent down-regulation of the CB1 receptor in neuronal processes and at both glutamatergic and GABAergic presynaptic terminals. Prolonged exposure to the inactive enantiomer WIN55,212-3 in low-Mg2+ treated cultures had no effect on the frequency of SREDs or CB1 receptor staining. The results from this study further substantiate a role for a tonic CB1 receptor-dependent endocannabinoid regulation of seizure discharge and suggest that prolonged exposure to cannabinoids results in the development of tolerance to the anticonvulsant effects of cannabinoids and an exacerbation of seizure activity in the epileptic phenotype. PMID:19540252

  6. Rho-associated Kinase Connects a Cell Cycle-controlling Anchorage Signal to the Mammalian Target of Rapamycin Pathway*

    PubMed Central

    Park, Jung-ha; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2011-01-01

    When deprived of anchorage to the extracellular matrix, fibroblasts arrest in G1 phase at least in part due to inactivation of G1 cyclin-dependent kinases. Despite great effort, how anchorage signals control the G1-S transition of fibroblasts remains highly elusive. We recently found that the mammalian target of rapamycin (mTOR) cascade might convey an anchorage signal that regulates S phase entry. Here, we show that Rho-associated kinase connects this signal to the TSC1/TSC2-RHEB-mTOR pathway. Expression of a constitutively active form of ROCK1 suppressed all of the anchorage deprivation effects suppressible by tsc2 mutation in rat embryonic fibroblasts. TSC2 contains one evolutionarily conserved ROCK target-like sequence, and an alanine substitution for Thr1203 in this sequence severely impaired the ability of ROCK1 to counteract the anchorage loss-imposed down-regulation of both G1 cell cycle factors and mTORC1 activity. Moreover, TSC2 Thr1203 underwent ROCK-dependent phosphorylation in vivo and could be phosphorylated by bacterially expressed active ROCK1 in vitro, providing biochemical evidence for a direct physical interaction between ROCK and TSC2. PMID:21561859

  7. Modulation of the immune response in rheumatoid arthritis with strategically released rapamycin.

    PubMed

    Shao, Ping; Ma, Linxiao; Ren, Yile; Liu, Huijie

    2017-10-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease, which is associated with symptoms, including synovial membrane inflammatory pain, joint synovitis and stiffness. However, there are no effective methods available to cure this disease. In the present study, rapamycin was used to modulate immunity in RA. To limit the cytotoxicity of rapamycin, rapamycin was loaded into well‑characterized biocompatible nanoparticles. In vitro, rapamycin particles downregulated the activation of dendritic cell surface markers, including CD80+ and CD40+, upon interacting with macrophages. The rapamycin particles reduced the secretion of inflammatory cytokines, including interleukin (IL)‑6, tumor necrosis factor (TNF) and IL‑1β, which are characteristic of RA. In vivo, the rapamycin particles decreased the symptoms of RA in mice, and the production of inflammatory cytokines was associated with the occurrence of RA. The present study partially revealed the interactions between rapamycin and two types of immune cell in RA disease, and may potentially offer a solution to improve the treatment of RA.

  8. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord.

    PubMed

    Feng, Tao; Yin, Qin; Weng, Ze-lin; Zhang, Jian-cheng; Wang, Kun-feng; Yuan, Shi-ying; Cheng, Wei

    2014-12-01

    Autophagy acts as an important homoeostatic mechanism by degradation of cytosolic constituents and plays roles in many physiological processes. Recent studies demonstrated that autophagy can also regulate the production and secretion of the proinflammatory cytokine interleukin-1β (IL-1β), which plays a critical role in the development and maintenance of neuropathic pain. In the present study, the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were significantly decreased after spinal nerve ligation (SNL), and the changes were accompanied by inhibited autophagy in the spinal microglia and increased mRNA and protein levels of IL-1β in the ipsilateral spinal cord. We then investigated the antinociceptive effect of rapamycin, a widely used autopahgy inducer, on SNL-induced neuropathic pain in rats and found that treatment with intrathecal rapamycin significantly attenuated the mechanical allodynia and thermal hyperalgesia. Moreover, rapamycin significantly enhanced autophagy in the spinal microglia, whereas it reduced the mRNA and protein levels of IL-1β in the ipsilateral spinal cord. Our results showed that rapamycin could ameliorate neuropathic pain by activating autophagy and inhibiting IL-1β in the spinal cord.

  9. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways*

    PubMed Central

    Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.

    2016-01-01

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  10. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    PubMed

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism.

    PubMed

    Shimodahira, Makiko; Fujimoto, Shimpei; Mukai, Eri; Nakamura, Yasuhiko; Nishi, Yuichi; Sasaki, Mayumi; Sato, Yuichi; Sato, Hiroki; Hosokawa, Masaya; Nagashima, Kazuaki; Seino, Yutaka; Inagaki, Nobuya

    2010-01-01

    Rapamycin, an immunosuppressant used in human transplantation, impairs beta-cell function, but the mechanism is unclear. Chronic (24 h) exposure to rapamycin concentration dependently suppressed 16.7 mM glucose-induced insulin release from islets (1.65+/-0.06, 30 nM rapamycin versus 2.35+/-0.11 ng/islet per 30 min, control, n=30, P<0.01) without affecting insulin and DNA contents. Rapamycin also decreased alpha-ketoisocaproate-induced insulin release, suggesting reduced mitochondrial carbohydrate metabolism. ATP content in the presence of 16.7 mM glucose was significantly reduced in rapamycin-treated islets (13.42+/-0.47, rapamycin versus 16.04+/-0.46 pmol/islet, control, n=30, P<0.01). Glucose oxidation, which indicates the velocity of metabolism in the Krebs cycle, was decreased by rapamycin in the presence of 16.7 mM glucose (30.1+/-2.7, rapamycin versus 42.2+/-3.3 pmol/islet per 90 min, control, n=9, P<0.01). Immunoblotting revealed that the expression of complex I, III, IV, and V was not affected by rapamycin. Mitochondrial ATP production indicated that the respiratory chain downstream of complex II was not affected, but that carbohydrate metabolism in the Krebs cycle was reduced by rapamycin. Analysis of enzymes in the Krebs cycle revealed that activity of alpha-ketoglutarate dehydrogenase (KGDH), which catalyzes one of the slowest reactions in the Krebs cycle, was reduced by rapamycin (10.08+/-0.82, rapamycin versus 13.82+/-0.84 nmol/mg mitochondrial protein per min, control, n=5, P<0.01). Considered together, these findings indicate that rapamycin suppresses high glucose-induced insulin secretion from pancreatic islets by reducing mitochondrial ATP production through suppression of carbohydrate metabolism in the Krebs cycle, together with reduced KGDH activity.

  12. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gu, Zhen; Garcia, Carlos A; Liang, Ruqiang; Alard, Pascale; Beurel, Eléonore; Jope, Richard S; Greenway, Terrance; Martin, Michael

    2011-05-01

    The PI3K pathway and its regulation of mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3 (GSK3) play pivotal roles in controlling inflammation. In this article, we show that mTORC1 and GSK3-β converge and that the capacity of mTORC1 to affect the inflammatory response is due to the inactivation of GSK3-β. Inhibition of mTORC1 attenuated GSK3 phosphorylation and increased its kinase activity. Immunoprecipitation and in vitro kinase assays demonstrated that GSK3-β associated with a downstream target of mTORC1, p85S6K, and phosphorylated GSK3-β. Inhibition of S6K1 abrogated the phosphorylation of GSK3-β while increasing and decreasing the levels of IL-12 and IL-10, respectively, in LPS-stimulated monocytes. In contrast, the direct inhibition of GSK3 attenuated the capacity of S6K1 inhibition to influence the levels of IL-10 and IL-12 produced by LPS-stimulated cells. At the transcriptional level, mTORC1 inhibition reduced the DNA binding of CREB and this effect was reversed by GSK3 inhibition. As a result, mTORC1 inhibition increased the levels of NF-κB p65 associated with CREB-binding protein. Inhibition of NF-κB p65 attenuated rapamycin's ability to influence the levels of pro- or anti-inflammatory cytokine production in monocytes stimulated with LPS. These studies identify the molecular mechanism by which mTORC1 affects GSK3 and show that mTORC1 inhibition regulates pro- and anti-inflammatory cytokine production via its capacity to inactivate GSK3.

  13. Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats.

    PubMed

    Lin, Jue; Liu, Lingqi; Wen, Quan; Zheng, Chunming; Gao, Yang; Peng, Shuxian; Tan, Yalun; Li, Yanqin

    2014-01-01

    The maladaptive drug memory developed between the drug-rewarding effect and environmental cues contributes to difficulty in preventing drug relapse. Established reward memories can be disrupted by pharmacologic interventions following their reactivation. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) kinase, has been proved to be involved in various memory consolidation. However, it is less well characterized in drug memory reconsolidation. Using a conditioned place preference (CPP) procedure, we examined the effects of systemically administered rapamycin on reconsolidation of drug memory in rats. We found that systemically administered rapamycin (0.1 or 10 mg/kg, i.p.) after re-exposure to drug-paired environment, dose dependently decreased the expression of CPP 1 d later, and the effect lasted for up to 14 d and could not be reversed by a priming injection of morphine. The effect of rapamycin on morphine-associated memory was specific to drug-paired context, and rapamycin had no effect on subsequent CPP expression when rats were exposed to saline-paired context or homecage. These results indicated that systemic administration of rapamycin after memory reactivation can persistently inhibit the drug seeking behaviour via disruption of morphine memory reconsolidation in rats. Additionally, the effect of rapamycin on memory reconsolidation was reproduced in cocaine CPP and alcohol CPP. Furthermore, rapamycin did not induce conditioned place aversion and had no effect on locomotor activity and anxiety behaviour. These findings suggest that rapamycin could erase the acquired drug CPP in rats, and that mTOR activity plays an important role in drug reconsolidation and is required for drug relapse.

  14. Koschei the immortal and anti-aging drugs.

    PubMed

    Blagosklonny, M V

    2014-12-04

    In Slavic folklore, Koschei the Immortal was bony, thin and lean. Was his condition caused by severe calorie restriction (CR)? CR deactivates the target of rapamycin pathway and slows down aging. But the life-extending effect of severe CR is limited by starvation. What if Koschei's anti-aging formula included rapamycin? And was rapamycin (or another rapalog) combined with commonly available drugs such as metformin, aspirin, propranolol, angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors.

  15. Koschei the immortal and anti-aging drugs

    PubMed Central

    Blagosklonny, M V

    2014-01-01

    In Slavic folklore, Koschei the Immortal was bony, thin and lean. Was his condition caused by severe calorie restriction (CR)? CR deactivates the target of rapamycin pathway and slows down aging. But the life-extending effect of severe CR is limited by starvation. What if Koschei's anti-aging formula included rapamycin? And was rapamycin (or another rapalog) combined with commonly available drugs such as metformin, aspirin, propranolol, angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors. PMID:25476900

  16. Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR)*

    PubMed Central

    Foster, David A.; Salloum, Darin; Menon, Deepak; Frias, Maria A.

    2014-01-01

    Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival. PMID:24990952

  17. CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models.

    PubMed

    Xue, Fuying; Wu, Yanping; Zhao, Xinghui; Zhao, Taoran; Meng, Ying; Zhao, Zhanzhong; Guo, Junwei; Chen, Wei

    2016-08-01

    Nucleobindin-1 (NUCB1), also known as Calnuc, is a highly conserved, multifunctional protein widely expressed in tissues and cells. It contains two EF-hand motifs which have been shown to play a crucial role in binding Ca(2+) ions. In this study, we applied comparative two-dimensional gel electrophoresis to characterize differentially expressed proteins in HA-CHIP over-expressed and endogenous CHIP depleted MC3T3-E1 stable cell lines, identifying NUCB1 as a novel CHIP/Stub1 targeted protein. NUCB1 interacts with and is down-regulated by CHIP by both proteasomal dependent and independent pathways, suggesting that CHIP-mediated down-regulation of nucleobindin-1 might play a role in osteoblast differentiation. The chaperone protein Hsp70 was found to be important for CHIP and NUCB1 interaction as well as CHIP-mediated NUCB1 down-regulation. Our findings provide new insights into understanding the stability regulation of NUCB1. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation inmore » CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.« less

  19. Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.

    PubMed Central

    Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H

    1989-01-01

    Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene. Images PMID:2569482

  20. Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation.

    PubMed

    Park, In-Hyun; Chen, Jie

    2005-09-09

    Skeletal myogenesis is a well orchestrated cascade of events regulated by multiple signaling pathways, one of which is recently characterized by its sensitivity to the bacterial macrolide rapamycin. Previously we reported that the mammalian target of rapamycin (mTOR) regulates the initiation of the differentiation program in mouse C2C12 myoblasts by controlling the expression of insulin-like growth factor-II in a kinase-independent manner. Here we provide experimental evidence suggesting that a different mode of mTOR signaling regulates skeletal myogenesis at a later stage. In the absence of endogenous mTOR function in C2C12 cells treated with rapamycin, a kinase-inactive mTOR fully supports myogenin expression, but causes a delay in contractile protein expression. Myoblasts fuse to form nascent myotubes in the absence of kinase-active mTOR, whereas the formation of mature myotubes by further fusion requires the catalytic activity of mTOR. Therefore, the two stages of myocyte fusion are molecularly separable at the level of mTOR signaling. In addition, our data suggest that a factor secreted into the culture medium is responsible for mediating the function of mTOR in regulating the late-stage fusion leading to mature myotubes. Furthermore, taking advantage of the unique features of cells stably expressing a mutant mTOR, we have performed cDNA microarray analysis to compare global gene expression profiles between mature and nascent myotubes, the results of which have implicated classes of genes and revealed candidate regulators in myotube maturation or functions of mature myotubes.

  1. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells.

    PubMed

    Zheng, Nan; Zhang, Ping; Huang, Huai; Liu, Weiwei; Hayashi, Toshihiko; Zang, Linghe; Zhang, Ye; Liu, Lu; Xia, Mingyu; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-07-01

    The estrogen receptor alpha (ERα) has been proven to be one of the most important therapeutic targets in breast cancer over the last 30 years. Previous studies pointed out that a natural flavonoid, silibinin, induced apoptosis in human breast cancer MCF-7 cells. In the present study we report that exposure of MCF-7 cells to silibinin led to cell death through the down-regulation of ERα expression. Silibinin-induced apoptosis of MCF-7 cells through up-regulation of caspase 6 due to ERα signalling repression was further boosted by ERα antagonist. Moreover, up-regulation of autophagy induced by silibinin accounted for apoptotic exacerbation, being further enhanced by ERα inhibition. Upon ERα activation, series of downstream signalling pathways can be activated. We found that silibinin reduced the expressions of Akt/mTOR and extracellular-signal-related kinase (ERK), which respectively accounted for the induction of autophagy and apoptosis. These effects were further augmented by co-treatment with ERα inhibitor. We conclude that the treatment with silibinin of ERα-positive MCF-7 cells down-regulates the expression of ERα, and subsequently mTOR and ERK signaling pathways, ERα downstream, finally resulting in induction of autophagy and apoptosis. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes.

    PubMed

    Reifsnyder, Peter C; Flurkey, Kevin; Te, Austen; Harrison, David E

    2016-11-30

    Numerous studies suggest that rapamycin treatment promotes insulin resistance, implying that rapamycin could have negative effects on patients with, or at risk for, type 2 diabetes (T2D). New evidence, however, indicates that rapamycin treatment produces some benefits to energy metabolism, even in the context of T2D. Here, we survey 5 mouse models of T2D (KK, KK-Ay, NONcNZO10, BKS- db/db , TALLYHO) to quantify effects of rapamycin on well-recognized markers of glucose homeostasis within a wide range of T2D environments. Interestingly, dietary rapamycin treatment did not exacerbate impaired glucose or insulin tolerance, or elevate circulating lipids as T2D progressed. In fact, rapamycin increased insulin sensitivity and reduced weight gain in 3 models, and decreased hyperinsulinemia in 2 models. A key covariate of this genetically-based, differential response was pancreatic insulin content (PIC): Models with low PIC exhibited more beneficial effects than models with high PIC. However, a minimal PIC threshold may exist, below which hypoinsulinemic hyperglycemia develops, as it did in TALLYHO. Our results, along with other studies, indicate that beneficial or detrimental metabolic effects of rapamycin treatment, in a diabetic or pre-diabetic context, are driven by the interaction of rapamycin with the individual model's pancreatic physiology.

  3. A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction.

    PubMed

    Saso, Wakana; Tsukuda, Senko; Ohashi, Hirofumi; Fukano, Kento; Morishita, Ryo; Matsunaga, Satoko; Ohki, Mio; Ryo, Akihide; Park, Sam-Yong; Suzuki, Ryosuke; Aizaki, Hideki; Muramatsu, Masamichi; Sureau, Camille; Wakita, Takaji; Matano, Tetsuro; Watashi, Koichi

    2018-06-22

    Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading.

    PubMed

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu 2+ -oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu 2+ -oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu 2+ -oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27 kip1 ). Both Cu 2+ -oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu 2+ - and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27 kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  5. Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK

    PubMed Central

    Filippone, Scott M.; Samidurai, Arun; Roh, Sean K.; Cain, Chad K.; He, Jun; Salloum, Fadi N.; Kukreja, Rakesh C.

    2017-01-01

    Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30 min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25 mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS: 28.63 ± 3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS: 17.4 ± 2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS: 26.2 ± 2.2%) and apoptosis (2.87 ± 0.64%) as compared to DMSO-treated mice (IS: 47.0 ± 2.3%; apoptosis: 7.39 ± 0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38. PMID:28373901

  6. Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles.

    PubMed

    Fan, Yan Liang; Hou, Han Wei; Tay, Hui Min; Guo, Wei Mei; Berggren, Per-Olof; Loo, Say Chye Joachim

    2017-10-01

    Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.

  7. Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK.

    PubMed

    Filippone, Scott M; Samidurai, Arun; Roh, Sean K; Cain, Chad K; He, Jun; Salloum, Fadi N; Kukreja, Rakesh C; Das, Anindita

    2017-01-01

    Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30 min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25 mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS: 28.63 ± 3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS: 17.4 ± 2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS: 26.2 ± 2.2%) and apoptosis (2.87 ± 0.64%) as compared to DMSO-treated mice (IS: 47.0 ± 2.3%; apoptosis: 7.39 ± 0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38.

  8. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs

    PubMed Central

    Norata, Giuseppe Danilo; Ballantyne, Christie M.; Catapano, Alberico Luigi

    2013-01-01

    Dyslipidaemias play a key role in determining cardiovascular risk; the discovery of statins has contributed a very effective approach. However, many patients do not achieve, at the maximal tolerated dose, the recommended goals for low-density lipoprotein-cholesterol (LDL-C), non-high-density lipoprotein-cholesterol, and apolipoprotein B (apoB). Available agents combined with statins can provide additional LDL-C reduction, and agents in development will increase therapeutic options impacting also other atherogenic lipoprotein classes. In fact, genetic insights into mechanisms underlying regulation of LDL-C levels has expanded potential targets of drug therapy and led to the development of novel agents. Among them are modulators of apoB containing lipoproteins production and proprotein convertase subtilisin/kexin type-9 inhibitors. Alternative targets such as lipoprotein(a) also require attention; however, until we have a better understanding of these issues, further LDL-C lowering in high and very high-risk patients will represent the most sound clinical approach. PMID:23509227

  9. Oestrogen receptor-mediated expression of Olfactomedin 4 regulates the progression of endometrial adenocarcinoma

    PubMed Central

    Duan, Chao; Liu, Xubin; Liang, Shuang; Yang, Zheng; Xia, Meng; Wang, Liantang; Chen, Shangwu; Yu, Li

    2014-01-01

    Endometrial adenocarcinoma is the most common tumour of the female genital tract in developed countries, and oestrogen receptor (ER) signalling plays a pivotal role in its pathogenesis. When we used bioinformatics tools to search for the genes contributing to gynecological cancers, the expression of Olfactomedin 4 (OLFM4) was found by digital differential display to be associated with differentiation of endometrial adenocarcinoma. Aberrant expression of OLFM4 has been primarily reported in tumours of the digestive system. The mechanism of OLFM4 in tumuorigenesis is elusive. We investigated OLFM4 expression in endometrium, analysed the association of OLFM4 with ER signalling in endometrial adenocarcinoma, and examined the roles of OLFM4 in endometrial adenocarcinoma. Expression of OLFM4 was increased during endometrial carcinogenesis, linked to the differentiation of endometrioid adenocarcinoma, and positively related to the expression of oestrogen receptor-α (ERα) and progesterone receptor. Moreover, ERα-mediated signalling regulated expression of OLFM4, and knockdown of OLFM4 enhanced proliferation, migration and invasion of endometrial carcinoma cells. Down-regulation of OLFM4 was associated with decreased cumulative survival rate of patients with endometrioid adenocarcinoma. Our data suggested that impairment of ERα signal-mediated OLFM4 expression promoted the malignant progression of endometrioid adenocarcinoma, which may have significance for the therapy of this carcinoma. PMID:24495253

  10. The small dense LDL particle/large buoyant LDL particle ratio is associated with glucose metabolic status in pregnancy.

    PubMed

    Chen, Yanmin; Du, Mengkai; Xu, Jianyun; Chen, Danqing

    2017-12-14

    The lipoprotein subfraction particle profile can be used to improve clinical assessments of cardiovascular disease risk and contribute to early detection of atherogenic dyslipidemia. Lipid alterations in gestational diabetes have been extensively studied, but the results have been inconsistent. Here, we investigated serum lipoprotein subfraction particle levels and their association with glucose metabolic status in pregnancy. Twenty-eight pregnant women with gestational diabetes and 56 pregnant women with normal glucose tolerance matched for body mass index were enrolled in this study. We assessed fasting serum lipid concentrations and lipoprotein subfraction particle levels in participants between 24 and 28 weeks of gestation. The level of low-density lipoprotein (LDL) cholesterol was significantly lower in women with gestational diabetes than in those with normal glucose tolerance, but the triglyceride and high-density lipoprotein (HDL) cholesterol levels of the two groups were similar. Lipoprotein particle analysis showed that very-low-density lipoprotein (VLDL) particle number and the small dense LDL particle/large buoyant LDL particle (sdLDL-P/lbLDL-P) ratio were significantly higher in women with gestational diabetes than in those with normal glucose tolerance (P = 0.013 and P = 0.015, respectively). In multivariate analysis, fasting glucose was independently and positively associated with sdLDL-P/lbLDL-P ratio even after adjustment for maternal age, gestational weight gain, BMI and LDL cholesterol (standardized Beta = 0.214, P = 0.029). The sdLDL-P/lbLDL-P ratio is higher in GDM compared with non-diabetic pregnant women, and positively and independently associated with fasting glucose in pregnant women.

  11. Ginkgolide B Reduces LOX-1 Expression by Inhibiting Akt Phosphorylation and Increasing Sirt1 Expression in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Chen, Beidong; Li, Xingguang; Qi, Ruomei

    2013-01-01

    Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345

  12. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    PubMed Central

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  13. MRAP2 regulates ghrelin receptor signaling and hunger sensing.

    PubMed

    Srisai, Dollada; Yin, Terry C; Lee, Abigail A; Rouault, Alix A J; Pearson, Nicole A; Grobe, Justin L; Sebag, Julien A

    2017-09-28

    Ghrelin is the only known circulating orexigenic hormone. It is primarily secreted by the stomach and acts at its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), in the hypothalamus to signal hunger and promote food intake. The melanocortin receptor accessory protein 2 (MRAP2) was previously shown to regulate energy homeostasis through the modulation of the activity of the melanocortin-4 receptor and prokineticin receptors. In this study we identify MRAP2 as a partner of ghrelin-GHSR1a signaling. We show that MRAP2 interacts with GHSR1a and potentiates ghrelin-stimulated signaling both in vitro and in vivo. We demonstrate that in the absence of MRAP2, fasting fails to activate agouti-related protein neurons. In addition, we show that the orexigenic effect of ghrelin is lost in mice lacking MRAP2. Our results suggest that MRAP2 is an important modulator of the energy homeostasis machinery that operates through the regulation of multiple GPCRs throughout the hypothalamus.Melanocortin receptor accessory protein 2 (MRAP2) is an adaptor protein that contributes to melanocortin-4 receptor and prokineticin receptor 1 signalling. Here the authors show that MRAP2 also regulates ghrelin receptor signalling in the hypothalamus and starvation sensing in mice.

  14. Regulation of B1 cell migration by signals through Toll-like receptors

    PubMed Central

    Ha, Seon-ah; Tsuji, Masayuki; Suzuki, Keiichiro; Meek, Bob; Yasuda, Nobutaka; Kaisho, Tsuneyasu; Fagarasan, Sidonia

    2006-01-01

    Peritoneal B1 cells are known to generate large amounts of antibodies outside their residential site. These antibodies play an important role in the early defense against bacteria and viruses, before the establishment of adaptive immune responses. Although many stimuli, including antigen, lipopolysaccharide, or cytokines, have been shown to activate B1 cells and induce their differentiation into plasma cells, the molecular signals required for their egress from the peritoneal cavity are not understood. We demonstrate here that direct signals through Toll-like receptors (TLRs) induce specific, rapid, and transient down-regulation of integrins and CD9 on B1 cells, which is required for detachment from local matrix and a high velocity movement of cells in response to chemokines. Thus, we revealed an unexpected role for TLRs in governing the interplay between integrins, tetraspanins, and chemokine receptors required for B1 cell egress and, as such, in facilitating appropriate transition from innate to adaptive immune responses. PMID:17060475

  15. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice.

    PubMed

    Yin, Lele; Ye, Shasha; Chen, Zhen; Zeng, Yaoying

    2012-12-01

    Rapamycin, an mTOR inhibitor and immunosuppressive agent in clinic, has protective effects on traumatic brain injury and neurodegenerative diseases. But, its effects on transient focal ischemia/reperfusion disease are not very clear. In this study, we examined the effects of rapamycin preconditioning on mice treated with middle cerebral artery occlusion/reperfusion operation (MCAO/R). We found that the rapamycin preconditioning by intrahippocampal injection 20 hr before MCAO/R significantly improved the survival rate and longevity of mice. It also decreased the neurological deficit score, infracted areas and brain edema. In addition, rapamycin preconditioning decreased the production of NF-κB, TNF-α, and Bax, but not Bcl-2, an antiapoptotic protein in the ischemic area. From these results, we may conclude that rapamycin preconditioning attenuate transient focal cerebral ischemia/reperfusion injury and inhibits apoptosis induced by MCAO/R in mice.

  16. ERβ up-regulation was involved in silibinin-induced growth inhibition of human breast cancer MCF-7 cells.

    PubMed

    Zheng, Nan; Liu, Lu; Liu, Weiwei; Zhang, Ping; Huang, Huai; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2016-02-01

    We previously reported that silibinin induced a loss of cell viability in breast cancer (MCF-7) cells by ERα down-regulation. But whether this cytotoxicity depends on another estrogen receptor, ERβ, has yet to be elucidated. Therefore, we sought to explore the effects of ERβ modulation on cell viability by using an ERβ-selective agonist (Diarylprepionitrile, DPN) and an antagonist (PHTPP). Our data demonstrated that ERβ served as a growth suppressor in MCF-7 cells, and the incubation of silibinin, elevated ERβ expression, resulting in the tumor growth inhibition. The cytotoxic effect of silibinin was diminished by PHTPP and enhanced by DPN. Silencing of ERβ by siRNA confirmed these results. Apoptotic cascades, including the sequential activation of caspase-9 and -6, and finally the cleavage of caspase substrates, PARP and ICAD, caused by treatment with silibinin, were all repressed by PHTPP pre-treatment but exacerbated by DPN. Unlike ERα, ERβ did not involve autophagic process in the regulation, since neither autophagic inhibitor (3-MA) nor the inducer (rapamycin) affected the cell survival rates regardless ERβ activity. Taken together, silibinin induced apoptosis through mitochondrial pathway by up-regulating ERβ pathways in MCF-7 cells without the involvement of autophagy. Copyright © 2016. Published by Elsevier Inc.

  17. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  18. Nurse-coordinated care improves the achievement of LDL cholesterol targets through more intensive medication titration.

    PubMed

    Snaterse, Marjolein; Jorstad, Harald T; Heiligenberg, Marlies; Ter Riet, Gerben; Boekholdt, S Matthijs; Scholte Op Reimer, Wilma; Peters, Ron J

    2017-01-01

    Nurse-coordinated care (NCC) improves the achievement of low-density lipoprotein-cholesterol (LDL-C) targets after an acute coronary syndrome (ACS). We hypothesised that NCC improves achievement of LDL-C targets through more intensive medication titration. We used data from Randomised Evaluation of Secondary Prevention by Outpatient Nurse Specialists (RESPONSE), a multicentre randomised trial on the efficacy of NCC in 754 ACS patients. Follow-up data were collected at 6 and 12 months. To enable comparison between the various types and dosages of statins, we used the average lipid-lowering potency (ALLP, % LDL-C lowering) as an indicator of lipid-lowering medication intensity. Most patients in NCC intervention and usual care groups (96%) had started lipid-lowering therapy during the index hospitalisation. At 6 months, titration activities (up or down) were applied in 45% of NCC patients compared with 24% of patients receiving usual care (p<0.001), and a difference was also seen at 12 months follow-up (52% vs 34%, p<0.001). In patients not on LDL-C target at baseline, titration activities at 6 months were recorded in 63% and 30% of NCC and usual care patients respectively (p<0.001), with increased titration activities in both groups at 12 months (69% vs 43%, p<0.001). NCC is associated with more frequent and intense lipid-lowering medication titration to reach LDL-C targets as compared with usual care alone. Further, merely starting the guideline-recommended dose is insufficient to reach the guideline-recommended LDL-C target level. TC1290 (Netherlands).

  19. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits

    PubMed Central

    Grey, James; Jones, Dominic; Wilson, Laura; Nakjang, Sirintra; Clayton, Jake; Temperley, Richard; Clark, Emma; Gaughan, Luke; Robson, Craig

    2018-01-01

    The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC. PMID:29423094

  20. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice

    PubMed Central

    Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan

    2009-01-01

    Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153