Science.gov

Sample records for rapid cold hardening

  1. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.

    PubMed

    Cui, Feng; Wang, Hongsheng; Zhang, Hanying; Kang, Le

    2014-10-01

    Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments. PMID:25086202

  2. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    PubMed

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. PMID:24973793

  3. The rapid cold hardening response of Drosophila melanogaster: complex regulation across different levels of biological organization.

    PubMed

    Overgaard, Johannes; Srensen, Jesper Givskov; Com, Emmanuelle; Colinet, Herv

    2014-03-01

    Rapid cold hardening (RCH) is a form of thermal acclimation that allows ectotherms to fine-tune their physiological state to match rapid changes in thermal environment. Despite progress in recent years, there is still a considerable uncertainty regarding the physiological basis of RCH in insects. Here we investigated the physiological response of adult Drosophila melanogaster to a gradual reduction of temperature from 25 to 0C followed by 1h at 0C. As expected, this RCH treatment promoted cold tolerance, and so we hypothesized that this change could be detected at the proteomic level. Using 2D-DIGE, we found that only a few proteins significantly changed in abundance, and of these, we identified a set of four proteins of particular interest. These were identified as two different variants of glycogen phosphorylase (GlyP) of which three spots were up-regulated and another was down regulated. In subsequent experiments, we quantified upstream events by measuring the GlyP mRNA amount, but we found no marked effect of RCH. We also examined downstream events by measuring GlyP activity and the level of free sugars. We found no effect of RCH on GlyP activity. On the other hand, screening of whole animal sugar contents revealed a small increase in glucose levels following RCH while trehalose content was unaltered. This study highlights a complex regulation of GlyP in relation to RCH where we found associations between the cold tolerance, the protein abundance and the metabolite concentrations but no changes in mRNA expression and enzyme activity. These data stress the necessity of combining the hypothesis-generating power of an 'Omics' approach with subsequent targeted validations across several levels of the biological organization. We discuss reasons why different biological linked levels do not necessarily change stoichiometrically. PMID:24508557

  4. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis.

    PubMed

    Li, A; Denlinger, D L

    2008-09-01

    Rapid cold hardening (RCH) refers to the enhanced cold tolerance acquired by a brief exposure to a moderately low temperature. Although ecological aspects of this response have been well documented in insects, less is known about the physiological and biochemical mechanisms elicited by RCH. In this study we used two-dimensional electrophoresis to detect differences in brain protein abundance in pharate adults of the flesh fly Sarcophaga crassipalpis, in response to a 2 h RCH exposure at 0 degrees C. Fourteen high abundance proteins that responded to RCH were selected for mass spectrometric identification. Three proteins that increased in abundance during RCH included ATP synthase subunit alpha, a small heat shock protein (smHsp), and tropomyosin-1 isoforms 33/34. Eleven proteins that decreased in abundance or were missing following RCH included several proteins involved in energy metabolism, protein degradation, transcription, actin binding, and cytoskeleton organization. That several proteins increased in abundance during RCH underscores the dynamics of the RCH mechanism and suggests that more than one physiological response likely contribute to RCH. The increase in ATP synthase suggests an elevation of ATP during RCH, and the smHsp increase suggests that at least one of the Hsps is actually mobilized during RCH, rather than after RCH as previously assumed. PMID:18828842

  5. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis.

    PubMed

    Terblanche, John S; Marais, Elrike; Chown, Steven L

    2007-05-01

    The environmental predictability (EP) hypothesis proposes that rapid cold hardening (RCH) might be common in temperate species incapable of surviving freezing events and which also dwell in unpredictable environments. The kelp fly Paractora dreuxi serves as a useful model organism to test this prediction at an intra-specific level because larvae and adults show different responses to low temperature despite occupying a similar unpredictable thermal environment. Here, using acclimation temperatures, which simulated seasonal temperature variation, we find little evidence for RCH in the freeze-intolerant adults but a limited RCH response in freeze-tolerant larvae. In the relatively short-lived adults, survival of -11 degrees C generally did not improve after 2h pre-treatments at -4, -2, 0, 10, 20 or 25 degrees C either in summer- (10 degrees C) or winter (0 degrees C)-acclimated individuals. By contrast, survival of summer-acclimated larvae to -7.6 degrees C was significantly improved by approximately 37% and 30% with -2 and 0 degrees C pre-treatments, respectively. The finding that summer-acclimated larvae showed RCH whereas this was not the case in the winter-acclimated larvae partially supports the predictions of the EP hypothesis. However, the EP hypothesis also predicts that the adults should have demonstrated an RCH response, yet they did not do so. Rather, it seems likely that they avoid stressful environments by behavioural thermoregulation. Differences in responses among the adults and larvae are therefore to some extent predictable from differences in their feeding requirements and behaviour. These results show that further studies of RCH should take into account the way in which differences among life stages influence the interaction between phenotypic plasticity and environmental variability and predictability. PMID:17368475

  6. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae).

    PubMed

    Coleman, Paul C; Bale, Jeffrey S; Hayward, Scott A L

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10C, but was strongest following 3h at 0C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 0.5C and -4.9 0.5C, respectively) was significantly higher than for SW females (-3.2 0.8C and -8.5 0.6C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions. PMID:26196923

  7. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae)

    PubMed Central

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions. PMID:26196923

  8. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.

    PubMed

    Benoit, J B; Lopez-Martinez, G; Teets, N M; Phillips, S A; Denlinger, D L

    2009-12-01

    This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately -20 degrees C, all were killed by a direct 1 h exposure to -16 degrees C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4 degrees C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1-h exposure to 0 degrees C improved their subsequent tolerance of -14 and -16 degrees C. In response to heat stress, fewer than 20% of the bugs survived a 1-h exposure to 46 degrees C, and nearly all were killed at 48 degrees C. Dehydration, heat acclimation at 30 degrees C for 2 weeks and rapid heat hardening at 37 degrees C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses. PMID:19941608

  9. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae.

    PubMed

    Gantz, J D; Lee, Richard E

    2015-02-01

    Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance. PMID:25545423

  10. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis.

    PubMed

    Fujiwara, Yoshihiro; Denlinger, David L

    2007-09-01

    Rapid cold hardening (RCH) is an adaptation enabling insects to quickly respond to low temperature, but little is known about the molecular events that trigger this response. In this study of the flesh fly Sarcophaga crassipalpis, we explore a possible role for mitogen-activated protein kinases (MAPKs) in the low temperature signaling that elicits RCH. We report that p38 MAPK from S. crassipalpis, which shows high cDNA sequence homology to p38 MAPKs from other insects and mammals, is rapidly activated at temperatures around 0 degrees C, temperatures that are most effective for inducing RCH. By contrast, low temperature does not activate either extracellular signal-regulated kinase (ERK) or Jun N-terminal kinase (JNK). An increase in phospho-p38 MAPK was observed within 10 min following exposure to 0 degrees C and reached its maximum level in 2 h. When flies were transferred from 0 to 25 degrees C, the level of phospho-p38 MAPK decreased immediately and reached trace levels by 3 h. Nondiapausing flies were much more responsive to p38 MAPK activation than cold-hardy diapausing pupae. Thus, p38 MAPK activation and RCH both show the same narrow ranges of temperature sensitivity, temporal profiles of activation and decay, and developmental specificity. These correlations suggest that p38 MAPK plays a potential role in regulating the induction of RCH. The p38 MAPK response was not dependent upon the brain, as evidenced by high activation in isolated abdomens exposed to low temperature. PMID:17766307

  11. Short term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae

    PubMed Central

    Rajamohan, Arun; Sinclair, Brent J.

    2008-01-01

    We quantified the variation and plasticity in cold tolerance among four larval stages of four laboratory strains of Drosophila melanogaster in response to both acute (<2 hours of cold exposure) and chronic (?7 hours of cold exposure) cold exposure. We observed significant differences in basal cold tolerance between the strains and among larval stages. Early larval instars were generally more tolerant of acute cold exposures than 3rd instar larvae. However, wandering larvae were more tolerant of chronic cold exposures than the other stages. Early stages also displayed a more pronounced rapid cold-hardening response than the later stages. Heat pre-treatment did not confer a significant increase in cold tolerance to any of the strains at any stage, pointing to different mechanisms being involved in resolving heat- and cold-elicited damage. However, when heat pre-treatment was combined with rapid cold-hardening as sequential pre-treatments, both positive (heat first) and negative (heat second) effects on cold tolerance were observed. We discuss possible mechanisms underlying cold-hardening and the effects of acute and chronic cold exposures. PMID:18342328

  12. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster.

    PubMed

    Sejerkilde, Margit; Srensen, Jesper G; Loeschcke, Volker

    2003-08-01

    The effects of cold- and heat hardening on resistance to both low and high temperature stress was examined in Drosophila melanogaster lines selected for resistance to either cold or heat. The hardening effect was positive when the hardening was of the same type as the stress in all selection regimes. The effect of cold hardening on survival after heat stress was further examined in the lines selected for cold resistance and corresponding controls. A cross-protection effect (increased heat resistance after cold hardening) was present and this effect was lower in the lines selected for resistance to cold than in the controls. The level of Hsp70 expression induced by a non-lethal cold hardening was examined, showing that cold hardening induced Hsp70 expression. The results suggest that the cross-protection effect is at least partly due to Hsp70 expression induced by cold exposure. PMID:12880651

  13. Accumulation of Free Proline in Citrus Leaves during Cold Hardening of Young Trees in Controlled Temperature Regimes

    PubMed Central

    Yelenosky, George

    1979-01-01

    Free proline increased in leaves of orange (Citrus sinensis [L.] Osb. cv. Valencia) and grapefruit (Citrus paradisi Macfad. cv. Star Ruby) trees on a wide range of citrus rootstocks during cold hardening. Increases in sugars accompanied proline accumulation. During cold hardening, the rate of proline accumulation was greater in old than in young leaves. In leaves of grapefruit trees kept in the dark during cold hardening, neither proline nor sugars increased and the degree of cold hardiness was less than in trees exposed to light. Like sugar accumulations, proline accumulation does not reflect specific degrees of cold hardiness in citrus cultivars. PMID:16660980

  14. Effects of induction hardening and prior cold work on a microalloyed medium carbon steel

    SciTech Connect

    Cunningham, J.L. ); Medlin, D.J. ); Krauss, G. )

    1999-08-01

    The torsional strength and microstructural response to induction hardening of a 10V45 steel with prior cold work was evaluated. The vanadium-microalloyed 1045 (10V45) steel was characterized in three conditions: as-hot-rolled, 18% cold-reduced, and 29% cold-reduced. Two of these evaluations, 10V45 as-hot-rolled and 10V45-18%, were subjected to stationary and progressive induction hardening to three nominal case depths: 2, 4, and 6 mm. All specimens were subsequently furnace tempered at 190 C for 1 h. The martensitic case microstructures contained residual lamellar carbides due to incomplete dissolution of the pearlitic carbides in the prior microstructure. Torsional overload strength, as measured by maximum torque capacity, is greatly increased by increasing case depth, and to a lesser extent by increasing prior cold work level. Maximum torque capacity ranges from 2520 to 3170 N[center dot]m, depending upon induction hardening processing. Changing induction hardening processing from stationary (single-shot) to progressive (scan) had little effect on torque capacity.

  15. Characterizing Hardening on Annealing of Cold-Rolled Aluminum AA3103 Strips

    NASA Astrophysics Data System (ADS)

    Govindaraj, Nagaraj Vinayagam; Bjrge, Ruben; Holmedal, Bjrn

    2013-10-01

    AA3103 aluminum strips were cold rolled to various von Mises strains up to 4.7. In addition, two severely deformed conditions were obtained by one and four cycles of cold accumulated roll bonding subsequent to cold rolling to a strain of 4.2. For cases of subsequent annealing at 498 K (225 C) for 10 minutes, an increase in the ultimate tensile strength was observed at the rolling strains of 1.7 and higher. Similar hardening is observed for a wide range of temperature-time combinations for temperatures greater than 423 K (150 C). The yield stress is also increased by a few per cent during further cold rolling. The magnitude of the increase in strength on annealing increased with the increasing strain. Electron backscattered diffraction and transmission electron microscopy studies showed no significant changes in the high- or low-angle grain boundary spacings by this annealing. A systematic investigation on the roles played by Si and Mn was made with different homogenization treatments of AA3103 and of an AlSi alloy. Based on tensile tests, and differential scanning calorimetry and electrical conductivity measurements, it is concluded that Mn plays a major role. The exact mechanisms causing hardening on annealing are not identified, but through elimination of other explanations, it is suggested that some sort of clustering or precipitation mechanism is involved.

  16. Influence of cold rolling degree and ageing treatments on the precipitation hardening of 2024 and 7075 alloys

    NASA Astrophysics Data System (ADS)

    Naimi, A.; Yousfi, H.; Trari, M.

    2013-08-01

    In the present work, the precipitation hardening of 2024 and 7075 aluminum alloys is investigated as a function of cold rolling degree, ageing time and temperature using Vickers microhardness measurements and differential scanning calorimetry (DSC). It is found that a variation in such parameters can improve the hardness and plays an important role in the precipitation hardening process. At specific ageing temperature, the large cold rolled 7075 alloy exhibits two peaks of hardness. Moreover, for both alloys, the increment of hardness during ageing decreases with increasing the cold rolling degree. While in some cases microhardness measurements give impression that the precipitation reaction is slowed down by deformation, DSC analysis indicates that the precipitation is much accelerated since only a slight deformation decreases strongly the temperatures of reactions. However, the degree of cold rolling does not play a crucial role.

  17. Investigation of the Influence Factors on Distortion in Induction-Hardened Steel Shafts Manufactured from Cold-Drawn Rod

    NASA Astrophysics Data System (ADS)

    Dong, Juan; Epp, Jeremy; Rocha, Alexandre da Silva; Nunes, Rafael Menezes; Zoch, Hans Werner

    2016-02-01

    In this study, the distortion of steel shafts was investigated before and after induction hardening. Several essential influencing factors in the manufacturing process chain regarding cold drawing, cutting method, notches on the shafts, and induction hardening were analyzed by design of experiment (DoE). Further necessary examinations of microstructures, hardness profile, segregation of chemical composition, and residual stress state were conducted for understanding the distortion behavior. The results of the statistical analysis of the DoE showed that the drawing process is the most important factor influencing distortion. The surface hardening depth of induction hardening is the second main factor. The relationship between inhomogeneities in the work pieces and the distortion was finally discussed.

  18. Investigation of the Influence Factors on Distortion in Induction-Hardened Steel Shafts Manufactured from Cold-Drawn Rod

    NASA Astrophysics Data System (ADS)

    Dong, Juan; Epp, Jeremy; Rocha, Alexandre da Silva; Nunes, Rafael Menezes; Zoch, Hans Werner

    2015-11-01

    In this study, the distortion of steel shafts was investigated before and after induction hardening. Several essential influencing factors in the manufacturing process chain regarding cold drawing, cutting method, notches on the shafts, and induction hardening were analyzed by design of experiment (DoE). Further necessary examinations of microstructures, hardness profile, segregation of chemical composition, and residual stress state were conducted for understanding the distortion behavior. The results of the statistical analysis of the DoE showed that the drawing process is the most important factor influencing distortion. The surface hardening depth of induction hardening is the second main factor. The relationship between inhomogeneities in the work pieces and the distortion was finally discussed.

  19. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  20. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.

    PubMed

    Stinziano, Joseph R; Sov, Richard J; Rundle, Howard D; Sinclair, Brent J

    2015-02-01

    The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster. PMID:25460832

  1. THE EFFECT OF AGE AND COLD HARDENING ON RESISTANCE TO PINK SNOW MOULD (MICRODOCHIUM NIVALE) IN PERENNIAL RYEGRASS (LOLIUM PERENNE L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plant age and cold hardening on resistance to pink snow mould caused by Microdochium nivale was studied in perennial ryegrass. Resistance to M. nivale was estimated as relative regrowth after inoculation and incubation under artificial snow cover at 2C. Resistance increased with incre...

  2. Fatty acid modifications during autumnal cold-hardening in an obligatory ectoparasite, the deer ked (Lipoptena cervi).

    PubMed

    Nieminen, Petteri; Kkel, Reijo; Paakkonen, Tommi; Halonen, Toivo; Mustonen, Anne-Mari

    2013-06-01

    Poikilothermic organisms often modify their tissue fatty acids (FA) in response to cold exposure by increased unsaturation. In insects, this has been found to be accompanied by increases in the activities or mRNA expression of desaturase enzymes. In the present study, the FA composition of an obligatory ectoparasite, the deer ked (Lipoptena cervi), was analyzed in August-November. In addition to studying the general FA profile of the species, the possible contribution of FA to autumnal cold-hardening was examined. The FA composition of the deer ked imago was relatively similar to previously studied dipteran species, with high percentages of monounsaturated FA (especially 18:1n-9 and 16:1n-7) and 16:0. The individuals caught later in autumn had significantly higher values for the ratio of unsaturated to saturated FA and, regarding individual FA, the percentages of 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 were higher but those of 16:0 and 16:1n-7 lower than in August. Potential selective use of particular FA for energy could not account for the large increase in the levels of polyunsaturated FA (PUFA). The observed increased degree of FA unsaturation may have resulted from cold-induced desaturation, as observed previously in other species, or increased survival of the keds with relatively large PUFA contents. The PUFA with low melting points probably allow lipid membranes to maintain sufficient fluidity required to maintain protein functions at low ambient temperatures. PMID:23598052

  3. Cold hardening processes in the Antarctic springtail, Cryptopygus antarcticus: clues from a microarray.

    PubMed

    Pura?, Jelena; Burns, Gavin; Thorne, Michael A S; Grubor-Lajsi?, Gordana; Worland, M Roger; Clark, Melody S

    2008-09-01

    The physiology of the Antarctic microarthropod, Cryptopygus antarcticus, has been well studied, particularly with regard to its ability to withstand low winter temperatures. However, the molecular mechanisms underlying this phenomenon are still poorly understood. 1180 sequences (Expressed Sequence Tags or ESTs) were generated and analysed, from populations of C. antarcticus. This represents the first publicly available sequence data for this species. A sub-set (672 clones) were used to generate a small microarray to examine the differences in gene expression between summer acclimated cold tolerant and non-cold tolerant springtails. Although 60% of the clones showed no sequence similarity to annotated genes in the datasets, of those where putative function could be inferred via database homology, there was a clear pattern of up-regulation of structural proteins being associated with the cold tolerant group. These structural proteins mainly comprised cuticle proteins and provide support for the recent theory that summer SCP variation within Collembola species could be a consequence of moulting, with moulting population having lowered SCPs. PMID:18703067

  4. Surface hardening of steel by boriding in a cold rf plasma

    NASA Technical Reports Server (NTRS)

    Finberg, I.; Avni, R.; Grill, A.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    Scanning electron spectroscopy, X-ray diffractometry, Auger electron spectroscopy, and microhardness measurements, are used to study the surfaces of 4340-steel samples that have been borided in a cold RF plasma which had been initiated in a gas mixture of 2.7 percent diborane in Ar. As a result of the dislocation of the diborane in the plasma, boron is deposited on the surface of the steel substrate and two crystalline phases, tetragonal Fe2B and orthorhombic FeB, are formed. The formation of boride phases then increases the surface microhardness from 2650 MPa to a maximum value of 7740 MPa.

  5. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor.

    PubMed

    Hlav?kov, Iva; Vtmvs, Pavel; Santr??ek, Ji?; Kosov, Klra; Zelenkov, Sylva; Pril, Ilja Tom; Ovesn, Jaroslava; Hynek, Radovan; Kod?ek, Milan

    2013-01-01

    Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley. PMID:23584021

  6. Proteins Involved in Distinct Phases of Cold Hardening Process in Frost Resistant Winter Barley (Hordeum vulgare L.) cv Luxor

    PubMed Central

    Hlav?kov, Iva; Vtmvs, Pavel; antr??ek, Ji?; Kosov, Klra; Zelenkov, Sylva; Pril, Ilja Tom; Ovesn, Jaroslava; Hynek, Radovan; Kod?ek, Milan

    2013-01-01

    Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and enhanced disease susceptibility 1 in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley. PMID:23584021

  7. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    SciTech Connect

    Kim, J.S.; Kim, S.I.; Choi, S.-H.

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on the Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.

  8. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  9. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  10. Tensile properties and conductivities of a precipitation hardened and cold-rolled Cu-0.3Cr-0.1Zr alloy at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Umezawa, O.

    2015-12-01

    Cu-0.3Cr-0.1Zr alloy (in mass%) is one of typical precipitation hardened copper- based alloys, and exhibited an excellent combination of high strength and high conductivities at the temperature range of 4 K to 300 K. The tensile properties, electrical resistivity, thermal conductivity and magnetization of precipitation hardened and cold-rolled Cu-0.3Cr-0.1Zr alloy were measures in comparison with oxygen free copper at cryogenic temperatures. The Cu- 0.3Cr-0.1Zr showed higher yield ratio (yield strength / tensile strength) and lower the ratio of yield strength to electrical resistivity at cryogenic temperature than oxygen free copper. It exhibited high electrical and thermal conductivities, excellent non-magnetic stability and very low magnetic permeability at 4.2 K.

  11. An Extended Age-Hardening Model for Al-Mg-Si Alloys Incorporating the Room-Temperature Storage and Cold Deformation Process Stages

    NASA Astrophysics Data System (ADS)

    Myhr, Ole Runar; Grong, ystein; Schfer, Carmen

    2015-12-01

    In this article, a new age-hardening model for Al-Mg-Si alloys is presented (named NaMo-Version 2), which takes into account the combined effect of cold deformation and prolonged room-temperature storage on the subsequent response to artificial aging. As a starting point, the original physical framework of NaMo-Version 1 is revived and used as a basis for the extension. This is permissible, since a more in-depth analysis of the underlying particle-dislocation interactions confirms previous expectations that the simplifying assumption of spherical precipitates is not crucial for the final outcome of the calculations, provided that the yield strength model is calibrated against experimental data. At the same time, the implementation of the Kampmann-Wagner formalism means that the different microstructure models can be linked together in a manner that enforces solute partitioning and competition between the different hardening phases which form during aging ( e.g., clusters, ?? and ?'). In a calibrated form, NaMo-Version 2 exhibits a high degree of predictive power, as documented by comparison with experiments, using both dedicated nanostructure and yield strength data as a basis for the validation. Hence, the model is deemed to be well-suited for simulation of thermomechanical processing of Al-Mg-Si alloys involving cold-working operations like sheet forming and stretch bending in combination with heat treatment and welding.

  12. Cold Hardening of Spring and Winter Wheat and Rape Results in Differential Effects on Growth, Carbon Metabolism, and Carbohydrate Content.

    PubMed

    Hurry, V. M.; Strand, A.; Tobiaeson, M.; Gardestrom, P.; Oquist, G.

    1995-10-01

    The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring. PMID:12228623

  13. Rapid remobilization of magmatic crystals kept in cold storage.

    PubMed

    Cooper, Kari M; Kent, Adam J R

    2014-02-27

    The processes involved in the formation and storage of magma within the Earth's upper crust are of fundamental importance to volcanology. Many volcanic eruptions, including some of the largest, result from the eruption of components stored for tens to hundreds of thousands of years before eruption. Although the physical conditions of magma storage and remobilization are of paramount importance for understanding volcanic processes, they remain relatively poorly known. Eruptions of crystal-rich magma are often suggested to require the mobilization of magma stored at near-solidus conditions; however, accumulation of significant eruptible magma volumes has also been argued to require extended storage of magma at higher temperatures. What has been lacking in this debate is clear observational evidence linking the thermal (and therefore physical) conditions within a magma reservoir to timescales of storage-that is, thermal histories. Here we present a method of constraining such thermal histories by combining timescales derived from uranium-series disequilibria, crystal sizes and trace-element zoning in crystals. At Mount Hood (Oregon, USA), only a small fraction of the total magma storage duration (at most 12 per cent and probably much less than 1 per cent) has been spent at temperatures above the critical crystallinity (40-50 per cent) at which magma is easily mobilized. Partial data sets for other volcanoes also suggest that similar conditions of magma storage are widespread and therefore that rapid mobilization of magmas stored at near-solidus temperatures is common. Magma storage at low temperatures indicates that, although thermobarometry calculations based on mineral compositions may record the conditions of crystallization, they are unlikely to reflect the conditions of most of the time that the magma is stored. Our results also suggest that largely liquid magma bodies that can be imaged geophysically will be ephemeral features and therefore their detection could indicate imminent eruption. PMID:24531766

  14. RAPID AND SENSITIVE FAME ANALYSIS OF BACTERIA BY COLD TRAP INJECTION GAS CHROMATOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid analysis is commonly used to identify bacteria. A cold trap is used to focus peaks at the head of the GC column. When combined with a rapid sample processing method that uses smaller volumes of solvents, it becomes possible to correctly identify bacteria from 1-2 mg of biomass....

  15. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-contamination of fresh produce and other foods from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a rapid, waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its abili...

  16. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella.

    PubMed

    Yi, Shu-Xia; Lee, Richard E

    2016-01-01

    The banded woolly bear caterpillar, Pyrrharctia isabella (Lepidoptera: Erebidae), overwinters in leaf litter and survives freezing under natural conditions. Following 18?weeks of cold acclimation at 5C, all caterpillars could survive 1week of continuous freezing at -20C or seven cycles of freezing-thawing at -20C, but none survived freezing at -80C. Field-collected caterpillars had a temperature of crystallization of -7.70.5C that decreased significantly to -9.50.6C after 12?weeks of acclimation at 5C. Hemolymph levels of free proline, total amino acids and proteins reached a peak during the first 4weeks of acclimation; concomitantly, hemolymph osmolality increased markedly during this interval (from 364 to 1282?mosmol?kg(-1)). In contrast, hemolymph pH decreased during the first 4weeks of acclimation before this trend reversed and pH values gradually returned to initial values. However, pH reached its peak value following 1week at -20C, but decreased after longer periods of freezing. During cold acclimation, cholesterol levels decreased in the hemolymph and the membrane fraction of fat body but not in other tissues. Lethal freezing at -80C reduced cell survival in foregut tissue and caused leakage of free proline, total amino acids and proteins from tissues into the hemolymph. The addition of glycerol to the bathing medium reduced freezing injury in fat body cells, as evidenced by reduced leakage of amino acids and proteins. PMID:26643089

  17. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  18. Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Wang, Zhao-Ying; Xu, Ao-Peng; Wang, Qi-Yu; Lin, Qiang

    2015-11-01

    Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the Ministry of Science and Technology of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2015FZA3002).

  19. Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy

    NASA Astrophysics Data System (ADS)

    Walker, Nan D.; Leben, Robert R.; Pilley, Chet T.; Shannon, Michael; Herndon, Derrick C.; Pun, Iam-Fei; Lin, I.-I.; Gentemann, Chelle L.

    2014-11-01

    Category 4 Hurricane Kenneth (HK) experienced unpredicted rapid weakening when it stalled over a cold core eddy (CCE) on 19-20 September 2005, 2800 km SE of Hawaii. Maximum sea surface temperature (SST) cooling of 8-9C and a minimum aerially averaged SST of 18.3C (over 8750 km2) characterized its cool wake. A 3-D mixed-layer model enabled estimation of enthalpy fluxes (latent and sensible heat), as well as the relative importance of slow translation speed (Uh) compared with the preexisting CCE. As Uh dropped below 1.5 m s-1, enthalpy fluxes became negative, cutting off direct ocean energy flux to HK. Although HK's weakening was attributed to wind shear, our results indicate that slow Uh and consequent intense SST cooling were the main causes. The tropical cyclone-intensified CCE experienced rapid growth in magnitude (-6 to -40 cm), increased diameter (60 to 350 km), elevated chlorophyll a for 4 months, and 12 month longevity.

  20. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  1. The rapid assembly of synaptic sites in photoreceptor terminals of the fly's optic lobe recovering from cold shock.

    PubMed Central

    Brandsttter, J H; Meinertzhagen, I A

    1995-01-01

    When a housefly, Musca domestica, is subject to cold exposure (0 degrees C for 24 hr), a number of obvious changes are seen in the first optic neuropil, or lamina, beneath the compound eye. In particular, the number of afferent photoreceptor synapses declines by about 30%. This loss is dramatically restored after warm recovery at 23 degrees C for 24 hr. Synapses disappear at an average rate of 2-3/hr during cold exposure and reappear at a maximal rate of more than 20/hr during the first 2 hr of warm recovery. Thereafter their number temporarily overshoots control values, to increase at 6 hr of warm recovery to 60% above their cold-exposed minimum. The number subsequently returns more or less to normal. These changes demonstrate the lability of synaptic sites under these conditions, with individual sites forming and disappearing rapidly. The changes also interrupt the close correlation between synaptic number and the surface area of the receptor terminal, a correlation that normally conserves synaptic spacing density. The density is preserved during cold exposure but increases during warm recovery at a time when the addition of newly formed synapses exceeds the slower increase in receptor terminal size. Images Fig. 1 Fig. 2 PMID:7708704

  2. Rapid toluene mineralization by aquifer microorganisms at Adak, Alaska: Implications for intrinsic bioremediation in cold environments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    Sediments from a relatively cold (5??C), petroleum hydrocarbon-contaminated aquifer in Adak, AK, mineralized [14C]toluene at an aerobic rate (16.3% day-1 at 5??C) comparable to that (5.1% day-1 at 20??C) of sediments from a more temperate aquifer at Hanahan, SC. In addition, rates of overall microbial metabolism in sediments from the two aquifers, as estimated by [1 -14C]acetate mineralization, were similar (???10.6% h-1) at their respective in situ temperatures. These results are not consistent with the common assumption that biodegradation rates in cold ground-water systems are depressed relative to more temperate systems. Furthermore, these results suggest that intrinsic bioremediation of petroleum hydrocarbon contaminants in cold groundwater systems may be technically feasible, in some cases.

  3. Rapid changes in anterior pituitary cell phenotypes in male and female mice after acute cold stress.

    PubMed

    Senovilla, Laura; Nez, Luca; Villalobos, Carlos; Garca-Sancho, Javier

    2008-05-01

    The anterior pituitary (AP) is made of five different cell types. The relative abundance and phenotype of AP cells may change in different physiological situations as an expression of pituitary plasticity. Here, we analyze in detail the phenotype of mouse corticotropes and the effects of acute cold stress on AP cell populations. The hormone content and the expression of hypothalamic-releasing hormone (HRH) receptors in all the five AP cell types were studied in the male and female mice at rest and after a 30-min cold stress. Expression of HRH receptors was evidenced by imaging the single-cell cytosolic Ca(2+) responses in fura-2-loaded cells. Hormone contents were studied by multiple, simultaneous immunofluorescence of all the five hormones. Corticotropes displayed a striking sexual dimorphism, even in the resting condition. Male corticotropes showed the orthodox phenotype. They were monohormonal, storing only ACTH, and monoreceptorial, responding only to CRH. In contrast, female corticotropes were made of about equal parts of orthodox cells and multifunctional cells, which co-stored additional AP hormones and expressed additional HRH receptors. Cold stress did not modify the number of ACTH containing cells, but, according to immunostaining, it increased the relative abundance of other AP cell types at the expense of the pool of cells storing no hormones. Cold stress also modified the response to CRH and other HRHs. Most of these phenotypical changes presented a strong sexual dimorphism. These results indicate that pituitary plasticity is even larger than previously thought. PMID:18202140

  4. [Rapid identification 15 effective components of anti common cold medicine with MRM by LC-MS/MS].

    PubMed

    Jiang, Jian-Guo; Zhang, Xi-Ru; Zhang, Yi-Hua; Song, Geng-Shen

    2013-01-01

    This paper reports the establishment of a method for rapid identification 15 effective components of anti common cold medicine (paracetamol, aminophenazone, pseudoephedrine hydrochloride, methylephedrine hydrochloride, caffeine, amantadine hydrochloride, phenazone, guaifenesin, chlorphenamine maleate, dextromethorphen hydrobromide, diphenhydramine hydrochloride, promethazine hydrochloride, propyphenazone, benorilate and diclofenac sodium) with MRM by LC-MS/MS. The samples were extracted by methanol and were separated from a Altantis T3 column within 15 min with a gradient of acetonitrile-ammonium acetate (containing 0.25% glacial acetic acid), a tandem quadrupole mass spectrometer equipped with electrospray ionization source (ESI) was used in positive ion mode, and multiple reaction monitoring (MRM) was performed for qualitative analysis of these compounds. The minimum detectable quantity were 0.33-2.5 microg x kg(-1) of the 15 compounds. The method is simple, accurate and with good reproducibility for rapid identification many components in the same chromatographic condition, and provides a reference for qualitative analysis illegally added chemicals in anti common cold medicine. PMID:23600148

  5. Rapid Quench Cold-Seal Apparatus with Computer-Controlled Pressure and Temperature Cycling

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Senkovich, D.

    2007-12-01

    We have constructed two computer-controlled, rapid quench, hydrothermal apparatuses that are ideal for experimentation on volcanological, geothermal, and ore deposit research problems. The devices can achieve maximum pressures of about 2 kbar and temperatures to 1100C, have the ability for experiments to be quenched very rapidly in a water-cooled environment, and are interfaced with computers which can control any regimen of pressure and/or temperature cycling that may be desired, accomplished via Lab-View software and data acquisition and motion control boards from National Instruments. The rapid quench aspects of the design were developed originally by Dr. Phil Ihinger and have subsequently been adopted by many labs around the world; a good summary description of these aspects of the equipment, and the use of filler-rods for controlling redox conditions in such equipment, are provided by Matthews et al. (2004, Am. Mineral., 88: 701-707). Our design has fixed Rene 41 pressure vessels, furnaces that are raised and lowered by computer controlled pneumatic cylinders and water cooling systems that are controlled by computer operated solenoid valves. The novel feature of our design is the pressure generation and control systems. We coupled the seal-ends of commercially available (HIP) pressure generators to shop-built linear actuators consisting of nearly frictionless ball lead screws within thick walled stainless steel housings. These in turn are driven by NEMA size 23 stepper motors coupled to 100:1 gear reduction units. The actuators require 21 revolutions to achieve their full stroke of 12.7 cm which displaces about 10 cc of fluid. Operating the motors at the relatively low resolution of 800 steps per revolution leads to about 132,000 steps per cm of travel of the pressure-generating piston, providing exceptionally high precision and excellent pressure control. Instantaneous decompression can be achieved by simply opening a valve while motor-controlled decompression from 2 kbar to 1 bar can occur over time spans ranging from about one minute to months. This equipment will find immediate use in studies of decompression- induced magmatic vesiculation and crystallization in sub-volcanic and volcanic conduit environments and decompression-induced precipitation of fracture-filling ore and silicate minerals in crustal hydrothermal environments.

  6. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  7. Cold tolerance and proline metabolic gene expression in Drosophila melanogaster.

    PubMed

    Misener, S R.; Chen, C -P.; Walker, V K.

    2001-04-01

    Treatment of Drosophila melanogaster adults with an inhibitor of protein synthesis led to a decrease in intrinsic cold-shock tolerance, but no difference in the rapid cold hardening response, which is apparent only if a period at 4 degrees C precedes the cold stress. Increases in energy reserves, including proline, were found in lines of flies selected for resistance to chilling injury. Since an increase in proline levels has been associated with overwintering in insects, and for salt and cold tolerance in plants, an RNase protection assay was developed to assess changes in transcript abundance for two genes encoding enzymes important for proline metabolism, pyrroline 5-carboxylate reductase and proline oxidase. The mRNA levels did not change in response to low temperature, but the high level of pyrroline 5-carboxylate reductase transcript is consistent with the interpretation that a large proline pool is important for Drosophila metabolism and survival during cold stress. PMID:11166304

  8. Role of HSF activation for resistance to heat, cold and high-temperature knock-down.

    PubMed

    Nielsen, Morten Muhlig; Overgaard, Johannes; Srensen, Jesper Givskov; Holmstrup, Martin; Justesen, Just; Loeschcke, Volker

    2005-12-01

    Regulation of heat shock proteins (Hsps) by the heat shock factor (HSF) and the importance of these proteins for resistance to heat stress is well documented. Less characterized is the importance of Hsps for cold stress resistance although Hsp70 is known to be induced following long-term cold exposure in Drosophila melanogaster. In this study, a temperature-sensitive HSF mutant line was used to investigate the role of HSF activation following heat hardening, rapid cold hardening (RCH) and long-term cold acclimation (LTCA) on heat and cold resistance, and this was correlated with Hsp70 expression. In addition, the effect of HSF activation on high-temperature knock-down resistance was evaluated. We found a significantly decreased HSF activation in the mutant line as compared to a corresponding control line following heat hardening, and this was correlated with decreased heat resistance of the mutant line. However, we did not find this difference in HSF activity to be important for resistance to cold stress or high-temperature knock-down. The findings indicate that induction of stress genes regulated by HSF, such as Hsps, although occurring following LTCA, are not of major importance for cold stress resistance and neither for RCH nor high-temperature knock-down resistance in D. melanogaster. PMID:16169555

  9. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION... container it shall be placed in a hardening tunnel or hardening room to continue the freezing process. Rapid freezing to 0 to ?15 F is desirable to produce a good textured product....

  10. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION... container it shall be placed in a hardening tunnel or hardening room to continue the freezing process. Rapid freezing to 0 to ?15 F is desirable to produce a good textured product....

  11. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION... container it shall be placed in a hardening tunnel or hardening room to continue the freezing process. Rapid freezing to 0 to ?15 F is desirable to produce a good textured product....

  12. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION... container it shall be placed in a hardening tunnel or hardening room to continue the freezing process. Rapid freezing to 0 to ?15 F is desirable to produce a good textured product....

  13. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION... container it shall be placed in a hardening tunnel or hardening room to continue the freezing process. Rapid freezing to 0 to ?15 F is desirable to produce a good textured product....

  14. Calcium signaling mediates cold sensing in insect tissues.

    PubMed

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  15. Calcium signaling mediates cold sensing in insect tissues

    PubMed Central

    Teets, Nicholas M.; Yi, Shu-Xia; Lee, Richard E.; Denlinger, David L.

    2013-01-01

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  16. Increased abundance of frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster.

    PubMed

    Udaka, H; Percival-Smith, A; Sinclair, B J

    2013-10-01

    Frost (Fst) is a candidate gene associated with the response to cold in Drosophila melanogaster because Fst mRNA accumulation increases during recovery from low temperature exposure. We investigated the contribution of Fst expression to chill-coma recovery time, acute cold tolerance and rapid cold hardening (RCH) in adult D.?melanogaster by knocking down Fst?mRNA expression using GAL4/UAS-mediated RNA interference. In this experiment, four UAS-Fst and one tubulin-GAL4 lines were used. We predicted that if Fst is essential for cold tolerance phenotypes, flies with low Fst?mRNA levels should be less cold tolerant than flies with normal levels of cold-induced Fst?mRNA. Cold-induced Fst abundance and recovery time from chill-coma were not negatively correlated in male or female flies. Survival of 2?h exposures to sub-zero temperatures in Fst knockdown lines was not lower than that in a control line. Moreover, a low temperature pretreatment increased survival of severe cold exposure in flies regardless of Fst abundance level during recovery from cold stress, suggesting that Fst expression is not essential for RCH. Thus, cold-induced Fst accumulation is not essential for cold tolerance measured as chill-coma recovery time, survival to acute cold stress and RCH response in adult D.?melanogaster. PMID:23901849

  17. An Anisotropic Hardening Model for Springback Prediction

    SciTech Connect

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-05

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  18. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  19. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K. (Wexford, PA)

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  20. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  1. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella and Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-contamination of fresh produce from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its ability to remove biofilms f...

  2. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  3. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  4. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  5. Nuclear effects hardened shelters

    NASA Astrophysics Data System (ADS)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  6. Precipitation, strength and work hardening of age hardened aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ryen, .; Holmedal, B.; Marthinsen, K.; Furu, T.

    2015-08-01

    The strength and work hardening of age hardened AA6063 and AA6082 alloys have been investigated in terms of a detailed characterization of precipitate and dislocation structures obtained by TEM and SEM. Tensile and compression tests were performed at as quenched, peak aged and severely aged conditions. A strong work hardening in the as quenched condition was found, similar to AlMg alloys with twice as much alloying elements in solid solution. It was found that the initial work hardening rate and the critical failure strain are both smallest at the peak aged condition. During large deformations the needle-shaped precipitates are sheared uniformly by dislocations altering their <001> orientations, which indicates extensive cross slip. In the overaged condition the early initial work hardening is larger than at the peak aged condition, but followed by a weak linear work hardening, apparently directly entering stage IV at a low strain. Cracked, needle-shaped precipitates were seen at larger strains.

  7. Acute exposure to cold rapidly increases the number of nucleotide binding sites, but not proton conductance, in BAT mitochondria

    SciTech Connect

    Swick, A.G.; Swick, R.W.

    1986-03-01

    Studies on the effect of acute cold exposure of rats on brown adipose tissue (BAT) thermogenic activity have produced equivocal results. Therefore, the authors have reexamined the response of BAT mitochondria to abrupt changes in environmental temperature. /sup 3/H-GDP binding to BAT mitochondria increased more than 2-fold in 20 min when rats were moved from 27/sup 0/C to 4/sup 0/C. When rats housed at 4/sup 0/C for 2 h were returned to 27/sup 0/C, GDP binding decreased sharply in 20 min and returned to control levels in 2 h. On the other hand, GDP-inhibitable proton conductance, as measured by passive swelling in isotonic K-acetate of KCl buffers, was unaffected by brief cold exposure but more than doubled in rats kept at 4/sup 0/C for 10 days. The authors conclude that GDP-inhibitable swelling may be more indicative of uncoupling protein concentration whereas thermogenic activity is more appropriately indicated by GDP binding. GDP binding to BAT mitochondria from warm and acutely cold treated rats was not altered by prior swelling of the mitochondria nor by freeze-thawing the mitochondria before assay. Therefore, alterations of the number of GDP binding sites may not be a result of conformational changes of the mitochondril membrane.

  8. Simple and rapid determination of phthalates using microextraction by packed sorbent and gas chromatography with mass spectrometry quantification in cold drink and cosmetic samples.

    PubMed

    Kaur, Ramandeep; Heena; Kaur, Ripneel; Rani, Susheela; Malik, Ashok Kumar

    2016-03-01

    A simple and rapid method using microextraction by packed sorbent coupled with gas chromatography and mass spectrometry has been developed for the analysis of five phthalates, namely, diethyl phthalate, benzyl-n-butyl phthalate, dicyclohexyl phthalate, di-n-butyl phthalate, and di-n-propyl phthalate, in cold drink and cosmetic samples. The various parameters that influence the microextraction by packed sorbent performance such as extraction cycle (extract-discard), type and amount of solvent, washing solvent, and pH have been studied. The optimal conditions of microextraction using C18 as the packed sorbent were 15 extraction cycles with water as washing solvent and 3 × 10 μL of ethyl acetate as the eluting solvent. Chromatographic separation was also optimized for injection temperature, flow rate, ion source, interface temperature, column temperature gradient and mass spectrometry was evaluated using the scan and selected ion monitoring data acquisition mode. Satisfactory results were obtained in terms of linearity with R(2) >0.9992 within the established concentration range. The limit of detection was 0.003-0.015 ng/mL, and the limit of quantification was 0.009-0.049 ng/mL. The recoveries were in the range of 92.35-98.90% for cold drink, 88.23-169.20% for perfume, and 88.90-184.40% for cream. Analysis by microextraction by packed sorbent promises to be a rapid method for the determination of these phthalates in cold drink and cosmetic samples, reducing the amount of sample, solvent, time and cost. PMID:26683135

  9. Modeling of Strain Hardening in the Aluminum Alloy AA6061

    NASA Astrophysics Data System (ADS)

    Bahrami, Abbas; Miroux, Alexis; Sietsma, Jilt

    2013-05-01

    In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( ? - ? y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress-strain curves. All curves show an initial very rapid decrease in slope of the ?-? curve, which is associated with the elastic-plastic transition. After the elastic-plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as ( ? - ? y ) increases. However, for overaged alloys after elastic-plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks-Mecking-Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.

  10. Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d + Au collisions at ?sNN = 200??GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csand, M; Csrg?, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Krl, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Lika, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rui?ka, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slune?ka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomek, L; Tomek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vrtesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M

    2014-06-27

    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6??GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at ?sNN = 200??GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter. PMID:25014805

  11. Cold-Nuclear-Matter Effects on Heavy-Quark Production at Forward and Backward Rapidity in d +Au Collisions at √sNN =200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2014-06-01

    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1rapidity (1.4<|y|<2.0) in d +Au and p+p collisions at √sNN =200 GeV. In central d +Au collisions, relative to the yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-pT broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d +Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter.

  12. Induction Hardening vs Conventional Hardening of a Heat Treatable Steel

    NASA Astrophysics Data System (ADS)

    Sackl, Stephanie; Leitner, Harald; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2014-11-01

    This study focuses on the comparison of mechanical and microstructural properties of induction and conventionally heat-treated steels in the as-quenched state. The investigated steel is a heat treatable 42CrMo4 steel. In order to characterize the mechanical properties, tensile tests and Vickers hardness tests are performed. The yield strength and hardness of the induction hardened condition turn out to be slightly lower compared to the conventionally hardened one. Light optical and scanning electron microscopy show no differences in the martensitic structure of the induction and conventionally hardened condition. However, electron back scatter diffraction investigations reveal a smaller block size within the conventionally hardened specimen. Carbon mappings by electron probe micro analysis show a homogenous carbon concentration in the conventionally hardened and a non-uniform distribution in the induction-hardened case. The segregation of the carbon exhibits line-type features in the induction hardened condition, lowering the total amount of carbon in the matrix. Therefore, the carbon content in the matrix of the conventionally hardened condition is slightly higher, which causes a smaller block size. The smaller block size is believed to be the reason for the higher hardness and yield strength.

  13. A One-Dimensional Flow Model with Adiabatic Friction for Rapid Estimation of Cold Spray Flow Conditions

    NASA Astrophysics Data System (ADS)

    Ye, Hezhou; Yin, Yanhua; Wang, Jianfeng

    2015-08-01

    While commercially available computational fluid dynamic packages are employed nowadays to analyze the spraying behavior of the cold spray (CS) system and optimize the nozzle geometry design, using these packages is often prohibitive because of complex computational resource requirements and expensive copyright licenses. This paper proposes a quick and economical method for predicting the performance of the CS system, while asking for minimal computational resource. A one-dimensional adiabatic friction model with the consideration of friction was developed to calculate the critical pressure of nozzles under different expansion ratios and the gas/particle velocity at different spraying conditions. The accuracy of the critical pressure calculation was evidenced by polymeric nozzle destructive tests. The particle velocities achieved from the nozzles with different expansion ratios were measured and compared with the velocity values calculated by the model. The suggested adiabatic friction model is validated by the well-matched values between the calculated results and the experimental data.

  14. Pulsed power discharge for producing an ultra-thin hardened layer

    NASA Astrophysics Data System (ADS)

    Voronov, A.; Berg, M.; Weise, Th; Schlenkert, G.

    2000-02-01

    The hardening of steel involves a combination of heating above the austenitizing temperature followed by rapid cooling to achieve martensite. Some methods of surface hardening, like laser or inductive hardening provide hardened layer thicknesses in range of 0.3-1.0 mm. The production of an ultra-thin hardened layer, under 50 m, on the steel surface is described. The technology of hardening is based on a pulsed heating of the steel surface due to the light emission of a pulsed power arc and a subsequent cooling due to dissipation of heat into the underlying steel substrate. The duration and power of heating define the thickness of a hardened layer to a great degree. The thickness of a layer can be varied from tens to hundreds of microns. The structure of steel underneath the hardened layer remains unchanged. It is possible to harden the surface of a steel work-piece that is prone to mechanical deformations like a spring or thin blade. The hardened layer can be elastically deformed because it is extremely thin. The work-piece retains its spring properties while the surface is independently hardened. The process can be applied to an uneven surface. The experimental data and simulations presented are in good agreement.

  15. Multipurpose hardened spacecraft insulation

    NASA Technical Reports Server (NTRS)

    Steimer, Carlos H.

    1990-01-01

    A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).

  16. Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: Field experiments and modeling

    NASA Astrophysics Data System (ADS)

    Kvitsand, Hanne M. L.; Ilyas, Aamir; Østerhus, Stein W.

    2015-12-01

    Virus removal during rapid transport in an unconfined, low-temperature (6°C) sand and gravel aquifer was investigated at a riverbank field site, 25 km south of Trondheim in central Norway. The data from bacteriophage MS2 inactivation and transport experiments were applied in a two-site kinetic transport model using HYDRUS-1D, to evaluate the mechanisms of virus removal and whether these mechanisms were sufficient to protect the groundwater supplies. The results demonstrated that inactivation was negligible to the overall removal and that irreversible MS2 attachment to aquifer grains, coated with iron precipitates, played a dominant role in the removal of MS2; 4.1 log units of MS2 were removed by attachment during 38 m travel distance and less than 2 days residence time. Although the total removal was high, pathways capable of allowing virus migration at rapid velocities were present in the aquifer. The risk of rapid transport of viable viruses should be recognized, particularly for water supplies without permanent disinfection.

  17. Solute Enhanced Strain Hardening of Aluminum Alloys to Achieve Improved Combinations of Strength and Toughness

    NASA Astrophysics Data System (ADS)

    Hovanec, Christopher James

    2011-12-01

    The feasibility of achieving improved combinations of strength and toughness in aluminum alloy 2524 through solute enhanced strain hardening (SESH) has been explored in this study and shown to be viable. The effectiveness of SESH is directly dependent on the strain hardening rate (SHR) of the material being processed. Aluminum alloy 2524 naturally ages to the T4-temper after solution heat treating and quenching. The SHR of strain free and post cold rolled material as a function of natural aging time has been measured by means of simple compression. It has been determined that the SHR of AA2524 is more effective with solute in solution rather than clustered into GP zones. It has also been shown that the typical rapid formation of GP zones at room temperature (natural aging) is inhibited by moderate cold rolling strains (?CR ? 0.2) through dislocation aided vacancy annihilation. The practical limitations of quenching rate have been determined using hardness and eddy current electrical conductivity measurements. It has been shown that too slow of a quench rate results in solute being lost to both the formation of GP zones and embrittling precipitates during the quench, while too rapid of a quench rate results in mid-plane cracking of the work piece during the SESH processing. The mid-plane cracking was overcome by using an uphill quenching procedure to relieve residual stresses within the work piece. Aluminum alloy 2524 strengthened through SESH to a yield strength 11% greater than that in the T6-Temper exhibits: equivalent toughness, 5% greater UTS, 1% greater elongation, 7% greater R.A., and absorbs 15% more energy during tensile testing. At yield strengths comparable to published data for 2x24 alloys, the SESH 2524 exhibited up to a 60% increase in fracture toughness. The fractured surfaces of the SESH material exhibited transgranular dimpled rupture as opposed to the grain boundary ductile fracture (GBPF) observed in the artificially aged material.

  18. The influence of microstructure on work hardening in aluminum

    SciTech Connect

    Chu, D.; Morris, J.W. Jr. |

    1996-07-01

    The influence of microstructure on the work hardening behavior of pure aluminum was studied by means of tensile tests at 77K on samples that had been treated to introduce or eliminate subgrains. A recrystallized or well-annealed microstructure, free of subgrains, develops well-defined dislocation cells when deformed, and has a work hardening rate that decreases rapidly with increasing stress. In contrast, when the test sample is recovered, subgrains form which hinder the formation of dislocation cells. As an apparent consequence, a high rate of work hardening is retained at high stress, which leads to an improved combination of strength and elongation. Both the recrystallized and recovered microstructures obey constitutive relations of the Kocks-Mecking form: A = {Theta}{sub 0} {minus}K{sigma}, where {Theta} is the work hardening rate and {sigma} is the flow stress. However, the values of the initial work hardening rate, {Theta}{sub 0}, and slope, K, depend on the microstructure. The values determined for the recrystallized microstructure are reasonably close to those previously found for aluminum. In comparison, the values of {Theta}{sub 0} and K for the recovered microstructure are significantly lower, but are, interestingly, compatible with the Kocks-Mecking model if it is assumed that approximately 60% of the total dislocation density is used to maintain geometric compatibility and is unavailable for hardening. This interpretation is at least quantitatively consistent with TEM observations, which show significant localized dislocation activity along the subgrain boundaries.

  19. A study of latent hardening behavior in aluminum single crystals

    SciTech Connect

    Wang Mingzhang; Lin Shi; Li Chenghua; Xiao Jimei; Wang Zhongguang

    1996-11-15

    In order to obtain a better understanding or a complete description of plastic properties of polycrystals, especially in polycrystal modelling viewpoint, investigations on latent hardening behavior of single crystals have been performed in a great number. Recently, however, Wu et al. have pointed out that the definition of the yield stress of latent system using the conventional back extrapolation is ambiguous in terms of determining the latent hardening moduli because the initial rapid work-hardening of the transient zone is neglected. They proposed a more precise measure of the yield stress of latent system based on the decrease of the tangent modulus from the linear elastic modulus, and showed that the latent hardening, which would not plus the initial work-hardening of the transient zone, is actually lower than that obtained from the backward extrapolation. Thus, in their opinion, it is considered that the hardening behavior of latent system (such as the directionality, the effects of relative orientation and prestrain) need be newly or further studied in detail. Single crystals of aluminum have been grown with high purity to investigate this behavior.

  20. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  1. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana.

    PubMed

    Chowanski, Szymon; Lubawy, Jan; Spochacz, Marta; Ewelina, Paluch; Grzegorz, Smykalla; Rosinski, Grzegorz; Slocinska, Malgorzata

    2015-05-01

    Insects cope with thermal stressors using mechanisms such as rapid cold hardening and acclimation. These mechanisms have been studied in temperate insects, but little is known about their use by tropical insects in response to cold stress. Here, we investigated whether cold stress (18 h and 38 h at 4C) triggers a metabolic response in the Madagascar cockroach Gromphadorhina coquereliana. We examined the effects of cold on the levels of selected metabolites in the fat body tissue of G. coquereliana. After cold exposure, we found that the quantity of total protein increased significantly in the insect fat body, whereas glycogen decreased slightly. Using antibodies, we observed upregulation of AQP-like proteins and changes in the HSP70 levels in the fat body of G. coquereliana when exposed to cold. We also examined the content and nature of the free sugars in the G. coquereliana hemolymph and discovered an increase in the levels of polyols and glucose in response to cold stress. These results suggest an important role of the fat body tissue of tropical insects upon cold exposure. PMID:25624163

  2. Case hardenability at high carbon levels

    SciTech Connect

    Walton, H.W.

    1995-02-01

    Loss of hardenability in the case was thought to be responsible for a lower than specified hardness found on a large carburized bushing. Pseudo Jominy testing on several high hardenability carburizing grades confirmed that hardenability fade was present at carbon levels above 0.65% and particularly for those steels containing molybdenum. Analysis of previous work provided a formula for calculating Jominy hardenability at various carbon levels. Again the results confirmed that the loss of hardenability was more severe in steels containing molybdenum.

  3. The Use of a Simple Enzyme Assay in 'Seed-Hardening' Studies

    ERIC Educational Resources Information Center

    Ead, J.; Devonald, V. G.

    1975-01-01

    Describes a single technique for an enzyme assay of catalase. The method shows that vegetable seeds submitted to pre-sowing 'hardening' cycles of imbition and drying have greater catalase activity and more rapid germination than do the controls. (LS)

  4. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Lesk, Kornlia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light. PMID:17537468

  5. Life on the Hardened Border

    ERIC Educational Resources Information Center

    Miller, Bruce Granville

    2012-01-01

    The many Coast Salish groups distributed on both sides of the United States-Canada border on the Pacific coast today face significant obstacles to cross the international border, and in some cases are denied passage or intimidated into not attempting to cross. The current situation regarding travel by Aboriginal people reflects the "hardening" of…

  6. Life on the Hardened Border

    ERIC Educational Resources Information Center

    Miller, Bruce Granville

    2012-01-01

    The many Coast Salish groups distributed on both sides of the United States-Canada border on the Pacific coast today face significant obstacles to cross the international border, and in some cases are denied passage or intimidated into not attempting to cross. The current situation regarding travel by Aboriginal people reflects the "hardening" of

  7. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats.

    PubMed

    Sotelo-Rivera, I; Jaimes-Hoy, L; Cote-Vlez, A; Espinoza-Ayala, C; Charli, J-L; Joseph-Bravo, P

    2014-12-01

    The activity of the hypothalamic-pituitary-thyroid (HPT) axis is rapidly adjusted by energy balance alterations. Glucocorticoids can interfere with this activity, although the timing of this interaction is unknown. In vitro studies indicate that, albeit incubation with either glucocorticoid receptor (GR) agonists or protein kinase A (PKA) activators enhances pro-thyrotrophin-releasing hormone (pro-TRH) transcription, co-incubation with both stimuli reduces this enhancement. In the present study, we used primary cultures of hypothalamic cells to test whether the order of these stimuli alters the cross-talk. We observed that a simultaneous or 1-h prior (but not later) activation of GR is necessary to inhibit the stimulatory effect of PKA activation on pro-TRH expression. We tested these in vitro results in the context of a physiological stimulus on the HPT axis in adult male rats. Cold exposure for 1 h enhanced pro-TRH mRNA expression in neurones of the hypophysiotrophic and rostral subdivisions of the paraventricular nucleus (PVN) of the hypothalamus, thyrotrophin (TSH) serum levels and deiodinase 2 (D2) activity in brown adipose tissue (BAT). An i.p. injection of corticosterone stimulated pro-TRH expression in the PVN of rats kept at ambient temperature, more pronouncedly in hypophysiotrophic neurones that no longer responded to cold exposure. In corticosterone-pretreated rats, the cold-induced increase in pro-TRH expression was detected only in the rostral PVN. Corticosterone blunted the increase in serum TSH levels and D2 activity in BAT produced by cold in vehicle-injected animals. Thus, increased serum corticosterone levels rapidly restrain cold stress-induced activation of TRH hypophysiotrophic neurones, which may contribute to changing energy expenditure. Interestingly, TRH neurones of the rostral PVN responded to both corticosterone and cold exposure with an amplified expression of pro-TRH mRNA, suggesting that these neurones integrate stress and temperature distinctly from the hypophysiotrophic neurones. PMID:25283355

  8. Hardened planar nitride based cold cathode electron emitter

    NASA Astrophysics Data System (ADS)

    Pillai, R.; Starikov, D.; Boney, C.; Bensaoula, A.

    2012-03-01

    Low threshold electron emission from planar AlN/Silicon heterostructures is reported. The surface emitting ballistic electron structure consisted of an undoped AlN layer grown on Silicon by Molecular Beam Epitaxy, a Ti/Au Ohmic contact, and a thin Pt Schottky contact fabricated by e-beam deposition. Tunnel-transparent Pt Schottky contact was deposited on a 1 ?m thick Silicon Dioxide (SiO2) layer and covered a 4 x 4 matrix of 50 ?m diameter via produced in the SiO2 layer using photolithography The measurements were performed in vacuum (~10-8 Torr) using a metal grid separated from the structure by a 60 micron thick Kapton polyimide film having an opening aligned with the via. Bias voltages in the range of 0-130 V were applied across the Schottky diode, while currents were recorded across the structure for grid voltages ranging from 0 to 50 V. The field emission nature of the measured currents was confirmed by plotting the Fowler-Nordheim dependence. Current density of at least 2.5x10-4A/cm2 was achieved for a grid voltage of 50 V and a bias of 130 V. Degradation of the structure performance was observed at bias voltages exceeding 90 V as a result of Schottky barrier modification under the elevated temperature and high electric field operation. The solid-state electron emitting structure indicated a threshold field as low as 0.2 V/?m under applied grid voltage of 12 V.

  9. Mechanism of work hardening in Hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Dastur, Y. N.; Leslie, W. C.

    1981-05-01

    When Hadfield manganese steel in the single-phase austenitic condition was strained in tension, in the temperature range - 25 to 300 C, it exhibited jerky (serrated) flow, a negative (inverse) strain-rate dependence of flow stress and high work hardening, characteristic of dynamic strain aging. The strain rate-temperature regime of jerky flow was determined and the apparent activation energies for the appearance and disappearance of serrations were found to be 104 kJ/mol and 146 kJ/mol, respectively. The high work hardening cannot be a result of mechanical twinning because at -50 C numerous twins were produced, but the work hardening was low and no twins were formed above 225 C even though work hardening was high. The work hardening decreased above 300 C because of the cessation of dynamic strain aging and increased again above 400 C because of precipitation of carbides. An apparent activation energy of 138 kJ/mol was measured for static strain aging between 300 and 400 C, corresponding closely to the activation energies for the disapperance of serrations and for the volume diffusion of carbon in Hadfield steel. Evidence from the present study, together with the known effect of manganese on the activity of carbon in austenite and previous internal friction studies of high-manganese steels, lead to the conclusion that dynamic strain aging, brought about by the reorientation of carbon members of C-Mn couples in the cores of dislocations, is the principal cause of rapid work hardening in Hadfield steel.

  10. Solution hardening and strain hardening at elevated temperatures

    SciTech Connect

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures.

  11. Cold intolerance

    MedlinePLUS

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... often very thin women) do not tolerate cold environments because they have very little body fat and are unable to keep warm.

  12. Common Cold

    MedlinePLUS

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  13. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Shoji, Tetsuo; Xue, He; Meng, Fanjiang; Fu, Chaoyang; Takeda, Yoichi; Negishi, Koji

    2012-04-01

    Stress corrosion cracking growth during long-term test in high temperature water was monitored in two 316NG weld heat-affected zones representing highly hardened and medially hardened regions. Cracking near the weld fusion line exhibited both macroscopic bifurcation and extensive microscopic branching, which was faster than that in the medially hardened region where crack kinking was observed. There is an interaction between material hardening and dissolved oxygen on crack growth. The effect of a single overloading on crack growth in 316NG heat-affected zones is less significant than that in a cold worked 316NG stainless steel.

  14. Cold adaptations.

    PubMed

    Launay, Jean-Claude; Savourey, Gustave

    2009-07-01

    Nowdays, occupational and recreational activities in cold environments are common. Exposure to cold induces thermoregulatory responses like changes of behaviour and physiological adjustments to maintain thermal balance either by increasing metabolic heat production by shivering and/or by decreasing heat losses consecutive to peripheral cutaneous vasoconstriction. Those physiological responses present a great variability among individuals and depend mainly on biometrical characteristics, age, and general cold adaptation. During severe cold exposure, medical disorders may occur such as accidental hypothermia and/or freezing or non-freezing cold injuries. General cold adaptations have been qualitatively classified by Hammel and quantitatively by Savourey. This last classification takes into account the quantitative changes of the main cold reactions: higher or lower metabolic heat production, higher or lesser heat losses and finally the level of the core temperature observed at the end of a standardized exposure to cold. General cold adaptations observed previously in natives could also be developed in laboratory conditions by continuous or intermittent cold exposures. Beside general cold adaptation, local cold adaptation exists and is characterized by a lesser decrease of skin temperature, a more pronounced cold induced vasodilation, less pain and a higher manual dexterity. Adaptations to cold may reduce the occurrence of accidents and improve human performance as surviving in the cold. The present review describes both general and local cold adaptations in humans and how they are of interest for cold workers. PMID:19531907

  15. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  16. Cell-Wall Changes and Cell Tension in Response to Cold Acclimation and Exogenous Abscisic Acid in Leaves and Cell Cultures.

    PubMed Central

    Rajashekar, C. B.; Lafta, A.

    1996-01-01

    Freeze-induced cell tensions were determined by cell water relations in leaves of broadleaf evergreen species and cell cultures of grapes (Vitis spp.) and apple (Malus domestica). Cell tensions increased in response to cold acclimation in leaves of broadleaf evergreen species during extracellular freezing, indicating a higher resistance to cell volume changes during freezing in cold-hardened leaves than in unhardened leaves. Unhardened leaves, typically, did not develop tension greater than 3.67 MPa, whereas cold-hardened leaves attained tensions up to 12 MPa. With further freezing there was a rapid decline and a loss of tension in unhardened leaves of all the broadleaf evergreen species studied. Also, similar results were observed in cold-hardened leaves of all of the species except in those of inkberry (Ilex glabra) and Euonymus fortunei, in which negative pressures persisted below -40[deg]C. Abscisic acid treatment of inkberry and Euonymus kiautschovica resulted in increases in freeze-induced tensions in leaves, suggesting that both cold acclimation and abscisic acid have similar effects on freezing behavior[mdash] specifically on the ability of cell walls to undergo deformation. Decreases in peak tensions were generally associated with lethal freezing injury and may suggest cavitation of cellular water. However, in suspension-cultured cells of grapes and apple, no cell tension was observed during freezing. Cold acclimation of these cells resulted in an increase in the cell-wall strength and a decrease in the limiting cell-wall pore size from 35 to 22 A in grape cells and from 29 to 22 A in apple cells. PMID:12226314

  17. Precipitation hardening of an Al-4.2 wt% Mg-0.6 wt% Cu alloy

    SciTech Connect

    Ratchev, P.; Verlinden, B.; Houtte, P. van; Smet, P. de

    1998-06-12

    The precipitation hardening of an experimental Al-4.2 wt % Mg-0.6 wt % Cu alloy has been studied. After a first initial jump, the yield strength increases almost linearly with the logarithm of the ageing time and a peak of hardness is reached after 11 days at 180 C. Special attention is given to the precipitation hardening during the early stage of ageing. It has been shown that S{double_prime} phase can be formed heterogeneously on dislocation loops and helices and a new mechanism of precipitation hardening due to this S{double_prime} phase precipitation is proposed. The precipitation of S{double_prime} on dislocations is the predominant cause of strengthening during the initial stage of precipitation hardening (up to 30 min at 180 C). Guinier-Preston-Bagaryatsky (GPB) zones (or better, the recently introduced Cu/Mg clusters) also appear in the initial stage, but their contribution to the hardness, which up to now as considered to be predominant, is shown to be smaller than the one of the S{double_prime} precipitates. Since the density of the S{double_prime} nucleation sites is related to the amount of dislocations, this mechanism is important in the case of a bake hardening treatment when ageing is preceded by cold deformation. Uniform S{double_prime} precipitation has also been found at the later ageing stage, which suggests that the contribution of S{double_prime} to the precipitation hardening at that stage is not less important.

  18. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  19. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  20. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  1. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  2. Organics, polymers and nanotechnology for radiation hardening and shielding applications

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.

    2007-09-01

    Recent studies have indicated that polymers integrated with nanoparticles and nanostructures have a high potential for increasing the space radiation resistance and hardening of photonic and electronic components. Discussed within this paper are recent data which support the premise that certain nanotechnology may improve the radiation resistance of organics, polymers, biopolymers and hybrid polymer-inorganic materials and devices to ionizing and displacement radiations. These materials are also being investigated for their ability to provide protective radiation shielding to a wide spectrum of radionuclide and galactic cosmic ray emissions such as alpha particles, protons, electrons, gamma-rays, beta rays, x-rays and neutrons. The appeal for advancing nanotechnology based materials and devices in many cases centers on the rapid development of hardened, economical and lightweight technologies that surpass the performance of current photonic, biotronic and microelectronic device and material technologies.

  3. Transmission and scanning electron microscope study on the secondary cyclic hardening behavior of interstitial-free steel

    SciTech Connect

    Shih, Chia-Chang; Ho, New-Jin; Huang, Hsing-Lu

    2009-11-15

    Strain controlled fatigue experiment was employed to evaluate automotive grade interstitial-free ferrite steel. Hundreds of grains were examined by scanning electron microscope under electron channeling contrast image technique of backscattered electron image mode for comprehensive comparison of micrographs with those taken under transmission electron microscope. The cyclic stress responses clearly revealed that rapid hardening occurs at the early stage of cycling as a result of multiplication of dislocations to develop loop patches, dipolar walls and dislocation cells at various total strain amplitudes. After primary rapid hardening, stress responses varied from being saturated to further hardening according to dislocation structure evolution at various strain amplitudes. The fatigue failure was always accompanied with further hardening including secondary hardening. The corresponding dislocation structures with the three types of hardening behaviors are discussed. Once the secondary hardening starts, dislocation cells began to develop along grain boundaries in the low strain region and then extended into grain interiors as strain amplitudes increased and cycling went on. The secondary hardening rates were found to be directly proportional to their strain amplitudes.

  4. Design of a radiation-hardened microcomputer for robots and teleoperated systems

    SciTech Connect

    Sias, F.R.; Williams, D.A. )

    1992-01-01

    Radiation-tolerant microcomputers have a number of potential applications in robots and teleoperated systems. Radioactive hazardous waste cleanup, reactor emergencies, and nuclear accidents are scenarios where computer-controlled systems may be used to minimize human exposure to ionizing radiation. Metal-oxide semiconductor (MOS) technology is the basis of the rapid increase in the application of microcomputers. The MOS microcomputer components are known to be sensitive to damage by ionizing radiation. Radiation-resistant or hardened semiconductor components and microprocessors are very expensive and will be used only in highly radioactive environments. Commercially available microcomputers are generally designed with a complement of integrated circuits that include components that are not available in radiation-hardened versions; thus, commercial systems cannot be simply hardened when the application requires increased radiation tolerance. The design described in this paper is a bus-based microcmputer system that may be populated with integrated circuits that are available in either commercial or radiation-hardened versions.

  5. Cold Stress

    MedlinePLUS

    ... beacon, whistles, flares, waterproof radio) and having a means of being retrieved from the water. Below you will find links with information about cold water survival and cold water rescue. NIOSH Commercial Fishing Safety ...

  6. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP.

    PubMed

    Balk, P A; de Boer, A D

    1999-09-01

    Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515-520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (gammaTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the gammaTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and gammaTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells. PMID:10502102

  7. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  8. Common cold

    MedlinePLUS

    The common cold most often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, ... It is called the common cold for good reason. There are over one billion colds in the United States each year. You and your children will ...

  9. Challenges in hardening technologies using shallow-trench isolation

    SciTech Connect

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide.

  10. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  11. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  12. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae).

    PubMed

    Sinclair, Brent J; Chown, Steven L

    2003-01-01

    A broad definition of rapid cold hardening (RCH) is that it is the process whereby insects increase their survival of a sub-zero temperature after a brief (h) pre-exposure to a less severe low temperature. The effects of various pre-treatments on survival of two h at -7.9 degrees C were investigated in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera: Tineidae), the first time RCH has been investigated in a freeze tolerant arthropod. All caterpillars froze when exposed to -7.9 degrees C, and none of the low temperature pre-treatments (-5, 0, 5 and 15 degrees C, as well as -5 degrees C and 0 degrees C with a delay before freezing) nor slow cooling (0.1 degrees C/min) elicited any improvement in survival of -7.9 degrees C as compared to controls. However, high temperature treatments (25, 30 and 35 degrees C), desiccation and acclimation for 5 days at 0 degrees C did result in significant increases in survival of the test temperature, possibly as a result of heat shock protein production. Haemolymph osmolality was elevated only by the 35 degrees C pre-treatment. It is suggested that the unpredictable environment of Marion Island means that P. marioni must always be physiologically prepared to survive cold snaps, and that this year-round cold hardiness therefore supersedes a rapid cold hardening response. PMID:12770015

  13. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  14. Application of plastic anisotropy and non-isotropic hardening to springback prediction

    NASA Astrophysics Data System (ADS)

    Geng, Lumin

    2000-10-01

    Springback is sensitive to the stress/moment distribution following a forming operation. To assess the sensitivity of springback to plastic hardening laws, special draw/bend tests were analyzed and compared to existing measurements. Systematic discrepancies were noted. Uniaxial tension-compression results were utilized to construct reverse hardening rules for three sheet materials: drawing-quality silicon-killed steel (DQSK), high-strength low-alloy steel (HSLA), and 6022-T4 aluminum alloy (6022-T4). A two-surface plasticity model was constructed, consisting of an active yield surface and a bounding surface. Initial yield was of the von Mises type. The active surface is of the Armstrong-Frederick type, with extra terms added to allow for the translation of the active yield to be influenced by the translation of the bounding surface (or limiting surface). To model the permanent softening observed in the tension-compression tests, the bounding surface was allowed to translate and expand according to a mixed hardening rule. This model effectively reproduces the two main features of the measured reverse hardening behavior of metal sheets: (1) low yield stress and rapid initial work hardening, and (2) persistent offset of long-strain hardening relative to isotropic hardening. Application of the new hardening model to simulations of springback with the draw/bend test improves the quality of agreement by a factor of two, compared to the results from the conventional isotropic hardening model. The hardening model is further extended to incorporate several forms of initial plastic anisotropy: Hill's quadric yield function, Barlat's three-parameter yield function, and Barlat's 1996 yield function. In addition to modeling the transient hardening and permanent softening of the uniaxial reverse loading curve, the new laws thus also take into account variations of R-value and yield stress with direction. These constitutive equations were implemented in ABAQUS via the UMAT option. Depending on the choice of yield function, the springback prediction of the draw/bend test for aluminum alloys is shown to improve, especially at lower back forces. The planar anisotropy has a strong influence on the loaded and unloaded anticlastic curvatures generated from the bending and unbending deformation in the draw/bend test. The combination of Barlat's 1996 yield function and the hardening model incorporating the Bauschinger effect give improved predictions of springback angles and anticlastic curvature.

  15. Glass transition and physical hardening of asphalts

    NASA Astrophysics Data System (ADS)

    Kriz, Pavel

    Glass transition and physical hardening was studied in straight-run paving asphalt binders. Two methods, modulated differential scanning calorimetry and dynamic mechanical analysis, were utilized in this study. Kinetic nature of the glass transition was observed in studied asphalts. The glass transition temperature, which represents the transition, was found to be a quantity dependent on observation time and thus meaningless without observation time being specified. The glass transition of asphalts was found to be very broad on the temperature scale due to complexity of the chemical composition. Asphalts were found to be multiphase systems, with glassy amorphous, non-glassy amorphous and crystalline domains existing between approximately 10 and -45C. Physical hardening was observed in asphalts at broad range of temperatures. Physical aging, i.e. structural relaxation of the glass, was identified as a major process contributing to physical hardening. Direct effect of crystallization was rather insignificant in the temperature range of glass transition. However, the presence of crystals was suggested to affect the molecular mobility of the amorphous phase and thus increase the hardening rate and also extent the phenomenon to higher temperatures outside the normal glass transition range. The concept of rigid amorphous phase was offered. The effect of the physical hardening could generally be reversed upon heating to higher temperature. Although for semi-crystalline asphalt, temperature higher by 50C than the isothermal storage temperature, was found not to be sufficient to successfully reverse the hardening. Effect of thermal stress on the hardening rate was studied. It was found that the imposed stress was either not significant factor affecting the asphalt hardening or the imposed stress was too low to affect hardening rate significantly. Rheological model able to capture the dependence of relaxation times on the isothermal storage time, reference temperature and temperature was derived from Williams-Landel-Ferry equation and successfully applied to studied asphalts.

  16. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, D.

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line {Theta} = {Theta}{sub 0} {minus} K{sub 2}{sigma}, where {Theta}{sub 0} is theoretical work hardening rate at zero stress and K{sub 2} is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of {Theta}{sub 0} and K{sub 2} and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The {Theta}{sub 0} and K{sub 2} associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of {Theta}{sub 0} and K{sub 2}. The actual value of K{sub 2} in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K{sub 2} than microstructures that remain partially or fully unrecrystallized. The higher K{sub 2} value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  17. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  18. Age-hardening behavior of a low-gold dental alloy.

    PubMed

    G Pan, L; Wang, J N

    2007-01-01

    The age-hardening behaviors of a low gold dental alloy were studied by means of differential scanning calorimetry, hardness testing, X-ray diffraction, optical microscopy and transmission election microscopy. Two distinct hardening behaviors were found at two different aging temperatures. Age-hardening at 290 degrees C was attributed to the formation of the metastable AuCuI' ordered phase, and the gradual softening in the overaging stage resulted from the slow growth of this phase. The rapid increase in hardness in the early stage at 495 degrees C was due to the precipitation of the metastable AuCuI' or/and AuCuII' ordered phases, and the rapid decrease in hardness in the overaging stage was a consequence of the growth of these phases and the loss of the coherency strain at the interface between the spindal-like AuCuI platelets and the matrix. PMID:17200829

  19. Ferroelectric memories - A possible answer to the hardened nonvolatile question

    NASA Astrophysics Data System (ADS)

    Messenger, George C.; Coppage, Floyd N.

    1988-12-01

    Ferroelectric memory cells were fabricated using a process compatible with semiconductor VLSI manufacturing techniques that are basically nonvolatile and radiation-hard. The memory can be made NDRO (nondestructive readout) for strategic systems using several techniques, the most practical being a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power, and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems.

  20. Ferroelectric memories: A possible answer to the hardened nonvolatile question

    SciTech Connect

    Messenger, G.C.; Coppage, F.N.

    1988-12-01

    Ferroelectric memory cells have been fabricated using a process compatible with semiconductor VLSI (Very Large-Scale Integration) manufacturing techniques which are basically nonvolatile and radiation hard. The memory can be made NDRO (Nondestructive Readout) for strategic systems using several techniques; the most practical is probably a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems.

  1. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii.

    PubMed

    Jakobs, Ruth; Gariepy, Tara D; Sinclair, Brent J

    2015-08-01

    Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21C; control) and induced plasticity by rapid cold-hardening (RCH, 1h at 0C followed by 1h recovery), cold acclimation (CA, 5 days at 6C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between -16 and -23C, and were chill-susceptible. 80% of control flies were killed after 1h at -7.2C (males) or -7.5C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately -1.7C, which was ca. 0.5C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0C for 8h took 30-40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity. PMID:25982520

  2. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  3. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K. (105 Timbercrest Dr., Clinton, TN 37716); Lee, Eal H. (189 Outer Dr., Oak Ridge, TN 37830)

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  4. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation.

    PubMed

    Koike, Michiya; Okamoto, Takashi; Tsuda, Sakae; Imai, Ryozo

    2002-10-18

    A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening. PMID:12379218

  5. Work hardening behavior in aluminum alloy 2090

    SciTech Connect

    Tseng, C. |

    1993-12-01

    An investigation into the work hardening behavior of an aluminum alloy 2090-T81 Al-3.05Cu-2.16Li-0.12Zr at various test temperatures, heat treatment conditions and microstructures was conducted. One microstructure consisted of unrecrystallized, highly textured grains, and the other microstructure was composed of recrystallized grains. Microstructural effects on work hardening were divided into two levels of contribution: the grain structure level, which consisted of the grain size and shape, subgrains and texture, and the microconsistent level, which included the precipitates and solutes. Two heat treatments were studied: the as-received, peak-aged condition, and the solution heat treated condition where the as-received plate was resolutionized. Observations of the deformed surface of both as-received grain structures at various prestrains indicated that there was no correlation between an increase in slip homogeneity and an increase in work hardening. The increase in out-of-plane grain rotation at lower temperatures was not primarily responsible for the increase in work hardening. In addition, the fully plastic deformation microstructure for the unrecrystallized microstructure appeared very inhomogeneous as the grains deformed in bands; there were also bands of grains that had very little to no deformation. From the work hardening plots it was found that an unrecrystallized, (110)<112> textured grain structure with a homogeneous distribution of subgrains produced the highest rate of work hardening between 300 K and 77 K. When the microconstituents are added to both grain structures, both the work hardening rate in the elastic-plastic and fully plastic regimes and the level of work hardening at which the elastic-plastic to fully plastic transition occurred were affected.

  6. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  7. Laser Surface Hardening of AISI 1045 Steel

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Jin, Yajuan; Li, Zhuguo; Qi, Kai

    2014-09-01

    The study investigates laser surface hardening in the AISI 1045 steel using two different types of industrial laser: a high-power diode laser (HPDL) and a CO2 laser, respectively. The effect of process parameters such as beam power, travel speed on structure, case depth, and microhardness was examined. In most cases, a heat-affected zone (HAZ) formed below the surface; a substantial increase in surface hardness was achieved. In addition, big differences were found between the hardened specimens after HPDL surface hardening and CO2 laser surface hardening. For HPDL, depths of the HAZ were almost equal in total HAZ o, without surface melting. For CO2 laser, the depths changed a lot in the HAZ, with surface melting in the center. To better understand the difference of laser hardening results when use these two types of laser, numerical (ANSYS) analysis of the heat conduction involved in the process was also studied. For HPDL method, a rectangular beam spot and uniform energy distribution across the spot were assumed, while for CO2 laser, a circular beam spot and Gaussian energy distribution were assumed. The results showed that the energy distribution variety altered the thermal cycles of the HAZ dramatically. The rectangular HPDL laser beam spot with uniform energy distribution is much more feasible for laser surface hardening.

  8. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    NASA Astrophysics Data System (ADS)

    Sabatier, P.; Reyss, J.-L.; Hall-Spencer, J. M.; Colin, C.; Frank, N.; Tisnrat-Laborde, N.; Bordier, L.; Douville, E.

    2012-03-01

    Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Rst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 1.1 mm yr-1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr-1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr-1, with high uncertainty (~1 polyp every two to three years). We are less certain of this 210Pb growth rate estimate which is within the lowermost ranges of previous growth rate estimates. We show that 210Pb-226Ra dating can be successfully applied to determine the age and growth rate of framework-forming cold-water corals if Mn-Fe oxide deposits can be removed. Where metal oxides can be removed, large M. oculata and L. pertusa skeletons provide archives for studies of intermediate water masses with an up to annual time resolution and spanning over many decades.

  9. How insects survive the cold: molecular mechanisms-a review.

    PubMed

    Clark, Melody S; Worland, M Roger

    2008-11-01

    Insects vary considerably in their ability to survive low temperatures. The tractability of these organisms to experimentation has lead to considerable physiology-based work investigating both the variability between species and the actual mechanisms themselves. This has highlighted a range of strategies including freeze tolerance, freeze avoidance, protective dehydration and rapid cold hardening, which are often associated with the production of specific chemicals such as antifreezes and polyol cryoprotectants. But we are still far from identifying the critical elements behind over-wintering success and how some species can regularly survive temperatures below -20 degrees C. Molecular biology is the most recent tool to be added to the insect physiologist's armoury. With the public availability of the genome sequence of model insects such as Drosophila and the production of custom-made molecular resources, such as EST libraries and microarrays, we are now in a position to start dissecting the molecular mechanisms behind some of these well-characterised physiological responses. This review aims to provide a state-of-the-art snapshot of the molecular work currently being conducted into insect cold tolerance and the very interesting preliminary results from such studies, which provide great promise for the future. PMID:18584182

  10. Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals

    NASA Astrophysics Data System (ADS)

    Uçar, N.

    1997-03-01

    The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.

  11. Long-Term Cold Acclimation Extends Survival Time at 0C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    PubMed Central

    Kotl, Vladimr; Korbelov, Jaroslava; Rozsypal, Jan; Zahradn?kov, Helena; Cimlov, Jana; Tom?ala, Ale; imek, Petr

    2011-01-01

    Background Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately ?5C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. Principal Findings We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25C with those acclimated at constant 15C followed by constant 6C for 2 d (15C?6C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt50) during exposure to constant 0C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. Conclusion Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring. PMID:21957472

  12. Strain Hardening of Hadfield Manganese Steel

    NASA Astrophysics Data System (ADS)

    Adler, P. H.; Olson, G. B.; Owen, W. S.

    1986-10-01

    The plastic flow behavior of Hadfield manganese steel in uniaxial tension and compression is shown to be greatly influenced by transformation plasticity phenomena. Changes in the stress-strain (?-?) curves with temperature correlate with the observed extent of deformation twinning, consistent with a softening effect of twinning as a deformation mechanism and a hardening effect of the twinned microstructure. The combined effects give upward curvature to the ?-? curve over extensive ranges of plastic strain. A higher strain hardening in compression compared with tension appears to be consistent with the observed texture development. The composition dependence of stacking fault energy computed using a thermodynamic model suggests that the Hadfield composition is optimum for a maximum rate of deformation twinning. Comparisons of the Hadfield steel with a Co-33Ni alloy exhibiting similar twinning kinetics, and an Fe-21Ni-lC alloy deforming by slip indicate no unusual strain hardening at low strains where deformation is controlled by slip, but an unusual amount of structural hardening associated with the twin formation in the Hadfield steel. A possible mechanism of anomalous twin hardening is discussed in terms of modified twinning behavior (pseudotwinning) in nonrandom solid solutions.

  13. Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter Effects on J/Psi Production in D Au, Cu Cu And Au Au Collisions at S(NN)**(1/2)

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2011-11-11

    We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/{Psi} = production in dAu, CuCu and AuAu collisions at {radical}s{sub NN} = 200 GeV. We have studied the effects of three different gluon-shadowing parameterizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/{Psi} is neglected as well as an exact kinematics for a 2 {yields} 2 process, namely g + g {yields} J/{psi} + g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 {yields} 2 kinematics, irrespective of which shadowing parameterization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of a 2 {yields} 2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of RCP in dAu collisions by the PHENIX collaboration.

  14. Centrality, rapidity, and transverse-momentum dependence of cold nuclear matter effects on J/psi production in dAu, CuCu, and AuAu collisions at sq root(s{sub NN})=200 GeV

    SciTech Connect

    Ferreiro, E. G.; Fleuret, F.; Rakotozafindrabe, A.

    2010-06-15

    We have carried out a wide study of cold nuclear matter (CNM) effects on J/psi production in dAu, CuCu and AuAu collisions at sq root(s{sub NN})=200 GeV. We have studied the effects of three different gluon-shadowing parametrizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/psi is neglected as well as an exact kinematics for a 2->2 process; namely g+g->J/psi+g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its antishadowing peak, is systematically shifted toward larger rapidities in the 2->2 kinematics, irrespective of which shadowing parametrization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of 2->2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of R{sub CP} in dAu collisions by the PHENIX collaboration.

  15. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  16. 27. LAEMPE AUTOMATED COLD BOX CORE MAKING MACHINES IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LAEMPE AUTOMATED COLD BOX CORE MAKING MACHINES IN THE GREY IRON FOUNDRY USED PRESSURE TO SET RESINS IN CORE SAND. THE ONLY EFFORT REQUIRED OF WORKERS IS TO CHANGE CORE BOXES AND REMOVE HARDENED CORE. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  17. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  18. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  19. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  20. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    SciTech Connect

    Martinez, S.; Ukar, E.; Lamikiz, A.

    2011-01-17

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink.The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part.The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  1. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  2. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  3. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood vessels in the feet, is observed in shipwreck survivors or in soldiers whose feet have been wet, but not freezing, for long periods. Patients with frostbite frequently present with multisystem injuries (e.g., systemic hypothermia, blunt trauma, substance abuse). The freezing of the corneas has been reported to occur in individuals who keep their eyes open in high wind-chill situations without protective goggles (e.g., snowmobilers, cross-country skiers). PMID:15715518

  4. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  5. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    PubMed

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 C-34% RH and 37 C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening. PMID:26817383

  6. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  7. The influence of texture on strain hardening

    SciTech Connect

    Kocks, U.F.; Stout, M.G.; Rollett, A.D.

    1988-01-01

    It is well known that the strain hardening behavior of metals is not the same in tension, compression, torsion and rolling, for example. We report on a new set of experiments, comprising wire-drawing interrupted by tensile tests, free compression, channel-die compression, and short-tube torsion in aluminum, an Al-Mg alloy, copper, silver, and 70:30 brass. The texture was measured before straining and at vonMises strain levels of roughly 1.0 and 2.0. Computer simulations of the deformation starting from a set of random grains weighted by observed initial texture, predicted deformation textures in qualitative agreement with the observed ones in most cases. Quantitatively the simulations yielded the Taylor factors as a function of strain for all paths and, with an assumed hardening law for the representative grain, the macroscopic stress/strain curves. The grain hardening rate as a function of resolved shear stress was described in tabular form such as to match one of the macroscopic curves, and then used to predict the others. The eventual fit was quite good; we will describe what judgments needed to be made to achieve this result. The conclusion is that the strain-path dependence of work hardening can be explained simply as a consequence of texture development. 13 refs., 5 figs., 1 tab.

  8. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  9. Depth dependence of radiation hardening in 10 MeV 4He +-ION bombarded molybdenum

    NASA Astrophysics Data System (ADS)

    Abe, Katunori; Hasegawa, Akira; Kikuchi, Michio; Morozumi, Shotaro

    By applying the technique of local dosimetry and micro-indentation, the micro-hardness depth profile is directly determined for molybdenum specimens, which are bombarded by 10 MeV 4He +-ions at about 300C to fluences of 1 10 20 7 10 21 ion/m 2. The depth profile is similar to the damage energy profile and has a sharp peak with a front plateau. The degree of radiation hardening at peak and plateau regions differs in fluence dependence and in post-irradiation annealing behavior. This may be attributed to the role of implanted helium. The influence on radiation hardening of material purity, cold work and alloying with zirconium is also studied.

  10. Deformation in metals after low temperature irradiation: Part II - Irradiation hardening, strain hardening, and stress ratios

    SciTech Connect

    Byun, Thak Sang; Li, Meimei

    2008-03-01

    Effects of irradiation at temperatures 200oC on tensile stress parameters are analyzed for dozens of bcc, fcc, and hcp pure metals and alloys, focusing on irradiation hardening, strain hardening, and relationships between the true stress parameters. Similar irradiation-hardening rates are observed for all the metals irrespective of crystal type; typically, the irradiation-hardening rates are large, in the range 100 - 1000 GPa/dpa, at the lowest dose of <0.0001 dpa and decrease with dose to a few tens of MPa/dpa or less at about 10 dpa. However, average irradiation-hardening rates over the dose range of 0 dpa ? (the dose to plastic instability at yield) are considerably lower for stainless steels due to their high uniform ductility. It is shown that whereas low temperature irradiation increases the yield stress, it does not significantly change the strain-hardening rate of metallic materials; it decreases the fracture stress only when non-ductile failure occurs. Such dose independence in strain hardening behavior results in strong linear relationships between the true stress parameters. Average ratios of plastic instability stress to unirradiated yield stress are about 1.4, 3.9, and 1.3 for bcc metals (and precipitation hardened IN718 alloy), annealed fcc metals (and pure Zr), and Zr-4 alloy, respectively. Ratios of fracture stress to plastic instability stress are calculated to be 2.2, 1.7, and 2.1, respectively. Comparison of these values confirms that the annealed fcc metals and other soft metals have larger uniform ductility but smaller necking ductility when compared to other materials.

  11. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  12. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  13. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  14. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  15. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  16. Cold Sores

    MedlinePLUS

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area ... Protecting your lips from the sun with sunblock lip balm can also help.

  17. High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals.

    PubMed

    Baldi, P; Grossi, M; Pecchioni, N; Val, G; Cattivelli, L

    1999-09-01

    A cold-regulated gene (cor tmc-ap3) coding for a putative chloroplastic amino acid selective channel protein was isolated from cold-treated barley leaves combining the differential display and the 5'-RACE techniques. Cor tmc-ap3 is expressed at low level under normal growing temperature, and its expression is strongly enhanced after cold treatment. A positive correlation between the expression of cor tmc-ap3 and frost tolerance was found both among barley cultivars and among cereal species. The COR TMC-AP3 protein was expressed in vitro, purified and used to raise a polyclonal antibody. Western analysis showed that the cor tmc-ap3 gene product is localized to the chloroplastic outer envelope fraction, supporting its putative function. The frost-resistant winter cultivar Onice accumulated COR TMC-AP3 more rapidly and at a higher level than the frost-susceptible spring cultivar Gitane. After 28 days of cold acclimation the winter cultivar had about 2-fold more protein than the spring genotype. All these results suggest that an increased amount of a chloroplastic amino acid selective channel protein could be required for cold acclimation in cereals. Hypotheses about the role of COR TMC-AP3 during the hardening process are discussed. PMID:10579490

  18. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive

  19. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  20. Strain hardening in underaged INCONEL 718

    SciTech Connect

    Sundararaman, M.; Kishore, R.; Mukhopadhyay, P. )

    1994-03-01

    INCONEL 718 is a commercial, precipitation-hardenable nickel iron-base superalloy, strengthened primarily by precipitates of the metastable [gamma][double prime] phase which is based on the composition Ni[sub 3]Nb and has an ordered body-centered tetragonal (DO[sub 22]) structure. An earlier investigation on the deformation mechanisms in this alloy has shown that [gamma][double prime] precipitates are sheared by the passage of true crystallographic twins (which do not destroy the ordered atomic arrangements within precipitate crystals) when the [gamma][double prime] particle size is larger than about 10 nm. In a situation where the precipitate size is smaller than about 10 nm, the deformation occurs by the passage of quadruplets or pairs of dislocations which shear the [gamma][double prime] particles. The change in the deformation mechanism from dislocation cutting to twinning with increasing [gamma][double prime] particle size is reflected in a drop in the value of the Croussard-Jaoul work-hardening exponent (from 0.8 to 0.5) which has been attributed to the easy propagation of deformation twins within the particles. The present communication reports the results of a study carried out on the characterization of the deformation microstructure of underaged INCONEL 718. An attempt has been made to explain the work-hardening behavior of the alloy in the light of transmission electron microscopic (TEM) observations on its deformation microstructures in the underaged condition.

  1. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  2. Stage IV work hardening in cubic metals

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  3. The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.

    1987-09-01

    A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfields composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.

  4. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.

  5. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  6. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  7. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  8. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  9. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  10. Radiation hardening of diagnostics for fusion reactors

    SciTech Connect

    Baur, J.F.; Engholm, B.A.; Hacker, M.P.; Maya, I.; Miller, P.H.; Toffolo, W.E.; Wojtowicz, S.S.

    1981-12-01

    A list of the diagnostic systems presently used in magnetic confinement fusion experiments is compiled herein. The radiation-sensitive components are identified, and their locations in zones around the machine are indicated. A table of radiation sensitivities of components is included to indicate the data available from previous work in fission reactor, space probe, and defense-related programs. Extrapolation and application to hardening of fusion diagnostic systems requires additional data that are more specific to the fusion radiation environment and fusion components. A list is also given of present radiation-producing facilities where near-term screening tests of materials and components can be performed.

  11. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    SciTech Connect

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550{degree}C, with peak swelling occurring at {approximately}320{degree}C for irradiation at a damage rate of 2 {times} 10{sup {minus}7} dpa/s. The post-transient swelling rate has been measured to be {approximately}0.5%/dpa at temperatures near 400{degree}C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400{degree}C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of {alpha} {approx} 0.2. The radiation hardening apparently saturates for fluences greater than {approximately}10{sup 24} n/m{sup 2} during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300{degree}C.

  12. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  13. Beam hardening and partial beam hardening of the bowtie filter: Effects on dosimetric applications in CT

    NASA Astrophysics Data System (ADS)

    Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.

    2014-03-01

    Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.

  14. Comparison of elasticplastic fracture toughness of irradiated and cold-worked JPCA using miniaturized DCT specimens

    NASA Astrophysics Data System (ADS)

    Jitsukawa, Shiro; Shiba, Kiyoyuki; Hishinuma, Akimichi; Alexander, David J.; Pawel, Janet E.

    1996-10-01

    JR curves of an austenitic stainless steel in solution annealed and cold worked conditions were obtained using miniaturized fracture toughness specimens and standard compact tension specimens. Results indicate that the specimen size effect for the cold worked steel was small. JQ values of irradiated miniaturized specimens agreed well with those of cold worked specimens with similar yield stress levels. This suggests that the irradiation induced degradation of the fracture toughness is mainly dependent upon the irradiation hardening.

  15. Effect of work hardening on dynamic friction

    NASA Astrophysics Data System (ADS)

    Winter, Ron; Stirk, S. M.; Collinson, Mark Alistair

    2012-03-01

    We have studied dynamic friction by impacting a copper plate onto a target consisting of a tapered, annealed, aluminium alloy plug mounted into a matching hole in a stainless steel outer sheath. The velocity of the back surface of the plug was measured using velocity interferometry. Unfortunately it was found that apparently identical configurations gave significantly different velocity profiles. Therefore a series of experiments were conducted in which the manufacturing tolerances were tightened and the assembly procedure was more carefully controlled than previously. Five experiments have been performed at the same impact velocity, (300m/s). Comparing the recent results with those fired previously it has become apparent that work hardening processes in the aluminium alloy near the sliding interface play an important role in the development of frictional forces. It is thought that work hardening generated at those regions of the cone surface in contact with the outer steel component during the assembly process leads to localised shear and, therefore, low friction when the system is loaded dynamically. By contrast those regions of the aluminium surface which remain soft give high friction following dynamic loading. We believe these effects explain the variability in the observed velocity traces.

  16. Hardened Client Platforms for Secure Internet Banking

    NASA Astrophysics Data System (ADS)

    Ronchi, C.; Zakhidov, S.

    We review the security of e-banking platforms with particular attention to the exploitable attack vectors of three main attack categories: Man-in-the-Middle, Man-in-the-PC and Man-in-the-Browser. It will be shown that the most serious threats come from combination attacks capable of hacking any transaction without the need to control the authentication process. Using this approach, the security of any authentication system can be bypassed, including those using SecureID Tokens, OTP Tokens, Biometric Sensors and Smart Cards. We will describe and compare two recently proposed e-banking platforms, the ZTIC and the USPD, both of which are based on the use of dedicated client devices, but with diverging approaches with respect to the need of hardening the Web client application. It will be shown that the use of a Hardened Browser (or H-Browser) component is critical to force attackers to employ complex and expensive techniques and to reduce the strength and variety of social engineering attacks down to physiological fraud levels.

  17. Hardness variability in commercial and hardened technologies

    NASA Astrophysics Data System (ADS)

    Shaneyfelt, M. R.; Winokur, P. S.; Meisenheimer, T. L.; Sexton, F. W.; Roeske, S. B.; Knoll, M. G.

    1994-01-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is 'built-in' through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  18. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, N.; Bufford, D.; Lee, J. H.; Wang, J.; Wang, H.; Zhang, X.

    2016-01-01

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. In this article, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). In nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Twin boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.

  19. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, N.; Bufford, D.; Lee, J. H.; Wang, J.; Wang, H.; Zhang, X.

    2015-07-01

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. In this article, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). In nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Twin boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.

  20. Induced cold-tolerance mechanisms depend on duration of acclimation in the chill-sensitive Folsomia candida (Collembola).

    PubMed

    Waagner, Dorthe; Holmstrup, Martin; Bayley, Mark; Srensen, Jesper G

    2013-06-01

    During cold periods ectotherms may improve low temperature tolerance via rapid cold hardening (RCH) over a period of hours and/or long-term cold acclimation (LTCA) during days, weeks or months. However, the effect of duration and the major underlying mechanisms of these processes are still not fully understood. In the present study, the molecular and biochemical responses to RCH (1-3 h) and LTCA (1-3 days) and the corresponding benefits to survival were investigated using the chill-sensitive collembolan Folsomia candida. We investigated osmolyte accumulation, membrane restructuring and transcription of candidate genes as well as survival benefits in response to RCH and LTCA. RCH induced significant upregulation of targeted genes encoding enzymes related to carbohydrate metabolic pathways and genes encoding small and constitutively expressed heat shock proteins (Hsps), indicating that the animals rely on protein protection from a subset of Hsps during RCH and probably also LTCA. The upregulation of genes involved in carbohydrate metabolic processes initiated during RCH was likely responsible for a transient accumulation of myoinositol during LTCA, which may support the protection of protein and membrane function and structure. Membrane restructuring, composed especially of a significantly increased ratio of unsaturated to saturated phospholipid fatty acids seems to be a mechanism supplementary to activation of Hsps and myoinositol accumulation in LTCA. Thus, the moderate increase in cold shock tolerance conferred by RCH seems to be dominated by effects of Hsps, whereas the substantially better cold tolerance achieved after LTCA is dominated by post-transcriptional processes increasing membrane fluidity and cryoprotectant concentration. PMID:23393277

  1. Cough & Cold Medicine Abuse

    MedlinePLUS

    ... How Can I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold ... Someone Quit? Avoiding DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ...

  2. Cold symptoms (image)

    MedlinePLUS

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  3. Cough & Cold Medicine Abuse

    MedlinePLUS

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  4. Coping with Cold Sores

    MedlinePLUS

    ... Getting Cold Sores? Treating Cold Sores en español Herpes labial Adam's lip had been feeling itchy all ... Cold sores are caused by a virus called herpes (say: HUR-peez). Herpes is one of the ...

  5. Cold confusion

    SciTech Connect

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  6. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  7. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  8. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  9. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images. PMID:26609685

  10. A review of the stages of work hardening

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.

    1993-07-01

    Stages of work hardening are reviewed with emphasis on links between each stage. Simple quantitative descriptions are given for each stage. Similarities between stage I, easy glide, and stage IV, large strain hardening, are pointed out both in terms of magnitude of the hardening rate and of the underlying mechanism of dislocation debris accumulation. Stage II is described as an athermal hardening stage that occurs when statistical variations in the dislocation ``forest`` lead to geometrical storage of dislocations. The steadily decreasing hardening rate observed in stage III is characterized by the increasing rate of loss of dislocation density due to dynamic recovery. Stage III appears to have an asymptote to a saturation stress which is determined by the characteristics of the dislocation tangles, or cell walls. The imperfect nature of the dynamic recovery process, however, leads to the accumulation of dislocation debris and this, by analogy with stage 1, causes the apparent saturation stress to rise, thus causing stage IV.

  11. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  12. Superfunctionalities in nanodispersive precipitation-hardened alloys.

    PubMed

    Rao, Wei-Feng; Khachaturyan, Armen G

    2012-09-14

    Although nanodispersive precipitation-hardened alloys have been intensively studied over decades as important structural materials, the possibility that these alloys may have superfunctional properties has been completely overlooked. As shown in this Letter, they may have giant low-hysteretic strain responses to external stimuli if the nanosized single-domain precipitates can switch their orientation variants under applied fields. We demonstrate that the misfit-generated coherency stress can significantly reduce the variant switching barriers and may drastically decrease or even eliminate the hysteresis of the strain super responses to external stress and/or magnetic fields. These alloys can thus be functionalized as shape memory, superelastic, and/or supermagnetostrictive materials. The conditions of such functionalization are established by the interpretation-transparent analytical calculations, and confirmed by computer prototyping. In particular, the obtained results pave the way for the engineering of rare-earth free alloys with excellent magnetomechanical and good mechanical properties. PMID:23005648

  13. Iron piston having selectively hardened ring groove

    SciTech Connect

    Brann, D.E.; Lindsay, J.E.

    1987-02-17

    This patent describes a long-lasting cast iron piston body for an internal combustion engine, the piston body comprising a generally cylindrical sidewall and having an annular groove in the wall encircling the body for receiving a piston ring. The groove is defined by opposed faces that intersect the wall, the piston body being composed predominantly of gray iron characterized by an as-cast pearlitic microstructure, the groove face comprising an integrally cast, selectively hardened iron band adjacent the piston sidewall and encircling the piston body. The band is characterized by a martensitic microstructure substantially harder than the pearlitic microstructure and is effective to reduce wear resulting from a piston ring seated within the groove.

  14. Laser hardening process simulation for mechanical parts

    NASA Astrophysics Data System (ADS)

    Tani, G.; Orazi, L.; Fortunato, A.; Campana, G.; Cuccolini, G.

    2007-02-01

    In this paper a numerical simulation of laser hardening process is presented. The Finite Difference Method (FDM) was used to solve the heat transfer and the carbon diffusion equations for a defined workpiece geometry. The model is able to predict the thermal cycle into the target material, the phase transformations and the resulting micro-structures according to the laser parameters, the workpiece dimensions and the physical properties of the workpiece. The effects of the overlapping tracks of the laser beam on the resulting micro-structures is also considered. The initial workpiece micro-structure is taken into account in the simulation by a digitized photomicrograph of the ferrite perlite distribution before the thermal cycle. Experimental tests were realized on a C43 plate and the good agreement between the theoretical and experimental results is shown.

  15. Jerky loads on surface-hardened gears

    NASA Technical Reports Server (NTRS)

    Rettig, H.; Wirth, X.

    1978-01-01

    Damage occurs again and again in practice in the form of transmissions with surface hardened gears which break after a very long operating time (explained by seldom occurring jerky loads). Gear drives are frequently exposed to jerky stresses which are greater than their fatigue limit. These stresses are considered in gear calculations, first, by shock factors when the transmission is to be designed as high endurance with regard to overloads and, second, in the form of operating ratios when the design is to be time enduring with regard to overloads. The size of the operating ratio depends not only on torque characteristics, drive and processing machine, but also on the material and heat treatment.

  16. Precipitation hardening in 350 grade maraging steel

    SciTech Connect

    Viswanathan, U.K. . Radiometallurgy Div.); Dey, G.K. . Metallurgy Division); Asundi, M.K. )

    1993-11-01

    Evolution of microstructure in 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni[sub 3] (Ti, Mo) and Fe[sub 2]Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  17. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breimans random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a users familiarity to components of a credential set can non-trivially impact error rates.

  18. Evaluation of Microstructure and Toughness of AISI D2 Steel by Bright Hardening in Comparison with Oil Quenching

    NASA Astrophysics Data System (ADS)

    Torkamani, H.; Raygan, Sh.; Rassizadehghani, J.

    2011-12-01

    AISI D2 is used widely in the manufacture of blanking and cold-forming dies, on account of its excellent hardness and wear behavior. Increasing toughness at a fixed high level of hardness is growing requirement for this kind of tool steel. Improving microstructure characteristics, especially refinement of coarse carbides, is an appropriate way to meet such requirement. In this study, morphology and size of carbides in martensite matrix were compared between two kinds of samples, which were bright hardened (quenching in hot alkaline salt bath consisting of 60% KOH and 40% NaOH) at 230 C and quenched in oil bath at 60 C. Results showed that morphology and distribution of carbides in samples performed by bright hardening were finer and almost spherical compared to that of oil quenched. This microstructure resulted in an improvement in toughness and tensile properties of alloy.

  19. Investigation of Secondary Hardening in Co-35Ni--20Cr--10Mo Alloy Using Analytical Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Sorensen, Daniel David

    The mechanism of secondary hardening in MP35N (Co--35Ni--20Cr--10Mo) alloy due to exposures at elevated temperatures has been studied. It was observed that short exposure to elevated temperatures increased the ultimate tensile strength and yield stress while decreasing the elongation of MP35N wires. Upon aging at temperatures from 300 to 900C the elastic modulus increased although no changes in crystallographic orientation or microstructure were observed. No proposed model for this apparent increase in elastic modulus is suggested as yet. The grain size and major texture components were unchanged following aging. Analytical scanning transmission electron microscope investigation showed that MP35N is hardened by preferential segregation of molybdenum to stacking faults and deformation twins. It also revealed that the concentration of molybdenum segregation was proportional to the amount of initial cold work before aging.

  20. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    2009-01-22

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  1. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  2. Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste

    SciTech Connect

    Haga, Kazuko . E-mail: Kazuko_Haga@grp.taiheiyo-cement.co.jp; Sutou, Shunkichi; Hironaga, Michihiko; Tanaka, Satoru; Nagasaki, Shinya

    2005-09-01

    Aiming at evaluating the effects of porosity in hardened cement paste on dissolution phenomena, we prepared hardened ordinary Portland cement (OPC), with variation in pore volume, and then leached them in deionized water. It was found that the bulk density and pore volume were affected by the dissolution of portlandite. The larger the pore volume of the sample, the more rapidly portlandite is dissolved. An electron probe microanalysis (EPMA) performed on the cross-section of the solid phase showed the 'portlandite (CH) dissolution front'. As the leaching period became longer, the CH dissolution front shifted towards the inner part. In addition, the movement of the CH dissolution front was described by the diffusion model, with consideration of the dissolution of portlandite. It was concluded that the transport of leached constituents is diffusion controlled, and the major leached constituents of hardened OPC are portlandite and C-S-H gel. Large pore, which was generated associated with the leaching of portlandite, was considered significantly to affect the diffusion of leached constituents.

  3. (The Radiation-Hardened Integrated Circuit (RHIC) Laboratory: Pursuit of Class 1

    SciTech Connect

    DeWitte, M.

    1988-01-01

    The Radiation-Hardened Integrated Circuit (RHIC) Laboratory is a research and development facility operated by Sandia National Laboratories for the Department of Energy. This report describes the features of the laboratory in detail. The facility is operated by the Center for Radiation-Hardened Microelectronics (CRM) and supports government clients with the rapid development and pilot production of radiation-hardened ULSI microelectronics. More than 25 years after Sandia's Willis Whitfield invented the first vertical laminar flow clean room, Sandia National Laboratories has once again taken the lead in clean room technology with the design and construction of the RHIC facility. The building was designed to support wafer fabrication of ULSI integrated circuits through the 1990's. The facility consists of 12,000 s.f. (net) Ultra-Clean Room in a bay and chase configuration. The 174,000 s.f. building houses the majority of the Sandia CRM with 62,000 s.f. dedicated to office and light laboratory, 46,000 s.f. allocated for the clean room bay, chase and equipment repair/service area with the remaining 66,000 s.f. required for central plant and process support space. 4 figs., 1 tab.

  4. CT image correction for beam hardening using simulated projection data

    SciTech Connect

    Meagher, J.M. ); Mote, C.D. Jr. ); Skinner, H.B. )

    1990-08-01

    A general beam-hardening correction technique is presented. This postreconstruction method does not require the original projection data. Simulated projections through an uncorrected reconstructed image are used to correct for beam hardening. Errors in the mean linear attenuation coefficient are decreased from 30% to 5% with virtual elimination of the visual streaking artifact. The theoretical image improvement equals that of projection linearization postreconstruction methods using the original projection data. The correction is limited to cases where the material causing the beam hardening is contained within the reconstruction space.

  5. Properties of modified anhydride hardener and its cured resin

    NASA Astrophysics Data System (ADS)

    Qiang, Chen; Bingjun, Gao; Jinglin, Chen; Tongzhao, Xu

    2000-01-01

    Methyl-nadic-tetrahydric-methylanhydride (MNA), nadic-tetrahydric-methylanhydride (NA), anhydride hardener was modified by solid diol molecule to improve the impregnation resin fracture toughness in cryogenic temperature. The lap-shear strength, transverse tension as well as the thermal shock test showed that the resin cured by the modified anhydride hardener had higher bond strength and more toughness at 77 K. After the experiment of vacuum pressure impregnation (VPI) processing, it was found that this resin had a longer usable life, better impregnating properties, but higher initial viscosity than the resin hybrid HY925 as hardener.

  6. Cold Signaling and Cold Response in Plants

    PubMed Central

    Miura, Kenji; Furumoto, Tsuyoshi

    2013-01-01

    Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted. PMID:23466881

  7. Physiology of cold tolerance in insects.

    PubMed

    Zachariassen, K E

    1985-10-01

    From the available experimental data a relatively clear picture can be established with regard to the physiological importance of some of the mechanisms involved in insect cold hardening. In freeze-avoiding insects, all potent ice-nucleating agents are removed or inactivated, leading to a depression of the supercooling points to about 20 degrees C. Accumulation of polyols causes a further depression with a magnitude of about twice the corresponding melting-point depression. Production of thermal hysteresis factors causes a stabilization of the supercooled state. In freeze-tolerant insects, potent ice-nucleating agents are produced in the extracellular body fluid, ensuring a protective extracellular freezing at a few degrees below zero. Accumulation of polyols causes a steep drop in the lethal temperature, due to a reduction of the amount of ice by a colligative mechanism. However, there is still much to be learned about the mechanisms by which ice-nucleating agents, polyols, and thermal hysteresis agents are acting. Furthermore, the regulatory mechanisms involved in the production and elimination of these components from the body fluid of the insects are not understood. Also, when it comes to the influence of environmental factors, like photoperiod and temperature, there is much to be learned. In addition to giving attention to these topics, future research should be focused on the possible role of other factors in cold hardening such as bound water, dehydration, low-molecular-weight solutes other than polyols, and the biochemical mechanisms forming the basis of the seasonal changes in the cold hardiness of insects. PMID:3903795

  8. Mechanical properties of zona pellucida hardening.

    PubMed

    Papi, Massimiliano; Brunelli, Roberto; Sylla, Lakamy; Parasassi, Tiziana; Monaci, Maurizio; Maulucci, Giuseppe; Missori, Mauro; Arcovito, Giuseppe; Ursini, Fulvio; De Spirito, Marco

    2010-05-01

    We have investigated the changes in the mechanical properties of the zona pellucida (ZP), a multilayer glycoprotein coat that surrounds mammalian eggs, that occur after the maturation and fertilization process of the bovine oocyte by using atomic force spectroscopy. The response of the ZP to mechanical stress has been recovered according to a modified Hertz model. ZP of immature oocytes shows a pure elastic behavior. However, for ZPs of matured and fertilized oocyte, a transition from a purely elastic behavior, which occurs when low stress forces are applied, towards a plastic behavior has been observed. The high critical force necessary to induce deformations, which supports the noncovalent long interaction lifetimes of polymers, increases after the cortical reaction. Atomic force microscopy (AFM) images show that oocyte ZP surface appears to be composed mainly of a dense, random meshwork of nonuniformly arranged fibril bundles. More wrinkled surface characterizes matured oocytes compared with immature and fertilized oocytes. From a mechanical point of view, the transition of the matured ZP membrane toward fertilized ZP, through the hardening process, consists of the recovery of the elasticity of the immature ZP while maintaining a plastic transition that, however, occurs with a much higher force compared with that required in matured ZP. PMID:19471918

  9. Radiation-induced segregation, hardening, and IASCC

    SciTech Connect

    Eason, E.D.; Nelson, E.E.

    1995-12-31

    Intergranular cracking has been discovered after extended radiation exposure in several boiling water reactor (BWR) internal components made of austenitic stainless steel and nickel-based alloys. There are fewer field observations of intergranular cracking in pressurized water reactors (PWR), but failures have occurred in bolts, springs, and fuel cladding. There is concern for other PWR components, some of which will receive greater radiation doses than BWR components during the plant lifetime. This paper presents the results of an investigation on the connection between radiation induced segregation, hardening and irradiation-assisted stress corrosion cracking (IASCC). A data base was developed containing the available data on austenitic stainless steel where the grain boundary composition was measured by Field Emission Gun-Scanning Transmission Election Microscopy (FEG-STEM), the stress corrosion susceptibility was measured by constant extension rate tests (CERT) in light water reactor environments, some estimate of irradiated strength was available and the irradiation was conducted in a power reactor. The data base was analyzed using advanced data analysis techniques, including tree-structured pattern recognition and transformation analysis codes. The most sensitive variables and optimal modeling forms were identified using these techniques, then preliminary models were calibrated using nonlinear least squares. The results suggest that more than one mechanism causes IASCC.

  10. Design concepts for hardened communications structures

    NASA Astrophysics Data System (ADS)

    Flathau, William J.; Smith, William G.

    1990-03-01

    An important component of any hardened command and control structure is the antenna system that provides communication with the outside world. Two types of antennae were considered; i.e., the whip type and the directional. The whip type is for short range communication and the directional is for use primarily with satellites. In the super high frequency range, the use of directional antennae having parabolic dishes greater than 8 feet in diameter are common. In the very extra high frequency range, dishes that are 2 to 3 feet in diameter are used. The whip type antenna should extend up to, say, 60 feet in the air. Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from a 1-MT device for ground surface overpressure ranging from 15,000 to 500 psi. As the antennae, transmitters, receivers, power supplies, and lifting mechanisms will be located within such structures, appropriate shock spectra plots were developed to determine if the fragility level of pertinent equipment will be exceeded and for use in designing shock isolation systems. Button up periods of 1 and 4 weeks were considered.

  11. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  12. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  13. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  14. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  15. Latent hardening behavior of monocrystalline Al-Mg solid solution

    SciTech Connect

    Wu, H.M.; Przystupa, M.A.; Ardell, A.J.

    1997-11-01

    The latent hardening behavior of dilute Al-Mg single crystal was investigated in this study. The authors performed the latent hardening tests on five systems, one in each of the five system groups. The latent hardening ratios (LHR) and the hardening rates were calculated. The LHR of systems that form attractive junctions is highest in this investigation. The LHRs of systems that form Lomer-Cottrell sessile locks, Hirth locks, or cross-slip systems are in the middle range. The coplanar system has the lowest LHR, which is in agreement with the theoretical prediction. An equation was developed that correlates the LHR with the dislocation densities at various prestrain values. The secondary deformation curve is predicted qualitatively in accordance with the interaction strength of the latent system with the primary system. Based on such a model, a prediction of the shapes of the secondary deformation curves in the strongest and weakest latent systems can be made.

  16. Work hardening characteristics and recovery of gamma base titanium aluminides

    SciTech Connect

    Appel, F.; Sparka, U.; Muellauer, J.

    1999-07-01

    The work hardening behavior of gamma base titanium aluminides was investigated by mechanical testing, electron microscope observations and recovery experiments. The main objectives of the paper are: (1) to ascertain the nature of work hardening at room temperature, (2) to identify deformation induced glide obstacles which can be overcome with the aid of thermal activation, (3) to assess the thermal stability of deformation induced defect structures.

  17. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 ?m to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  18. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This

  19. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  20. Cold head maintenance with minimal service interruption

    NASA Astrophysics Data System (ADS)

    Radovinsky, A. L.; Michael, P. C.; Zhukovsky, A.; Forton, E.; Paradis, Y.; Nuttens, V.; Minervini, J. V.

    2015-12-01

    Turn-key superconducting magnet systems are increasingly conduction-cooled by cryogenerators. Gifford-McMahon systems are reliable and cost effective, but require annual maintenance. A usual method of servicing is replacing the cold head of the cryocooler. It requires a complicated design with a vacuum chamber separate from the main vacuum of the cryostat, as well as detachable thermal contacts, which add to the thermal resistance of the cooling heat path and reduce the reliability of the system. We present a rapid warm-up scheme to bring the cold head body, which remains rigidly affixed to the cold mass, to room temperature, while the cold mass remains at cryogenic temperature. Electric heaters thermally attached to the cold head stations are used to warm them up, which permits conventional cold head maintenance with no danger of contaminating the inside of the cold head body. This scheme increases the efficiency of the cooling system, facilitates annual maintenance of the cold head and returning the magnet to operation in a short time.

  1. Zinc coated sheet steel for press hardening

    NASA Astrophysics Data System (ADS)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time maintained the highest ductility when compared to the uncoated sample processed under the sample conditions. Fractography of the hot-ductility samples showed features associated with increased ductility with increased soak time for all soak temperatures. Heat treatments (without elevated temperature deformation) and subsequent room temperature deformation were conducted to investigate the "in-service" behavior of 22MnB5. The uncoated and coated specimens deformed at room temperature showed similar ultimate tensile strength and ductility values. The only notable differences in the room temperature mechanical behavior of uncoated and coated samples processed under the same conditions were a result of differences in the substrate microstructure. All samples appeared to have ductile fracture features; features characteristic of liquid metal embrittlement were not observed.

  2. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes," J. Mech.Phys. Solids, 59, pp. 2227--2237, Erratum 60, 1753-1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like 1) The initial linear elastic response. 2) One or more nonlinear instabilities, yielding, and hardening. The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.

  3. The effect of cold spray impact velocity on deposit hardness

    NASA Astrophysics Data System (ADS)

    Champagne, Victor K.; Helfritch, Dennis J.; Trexler, Matthew D.; Gabriel, Brian M.

    2010-09-01

    The deposition and consolidation of metal powders by means of cold spray is a method where powder particles are accelerated to high velocity through entrainment in a gas undergoing expansion in a de Laval nozzle and are subsequently impacted upon a surface. The impacted powder particles form a consolidated structure which can be several centimeters thick. The characteristics of this structure depend on the initial characteristics of the metal powder and upon impact velocity. Initially soft particles are strain hardened during impact, resulting in a structure that can have a hardness value greater than that which can be achieved by conventional cold working. A materials model is proposed for these phenomena, and model calculation is compared with experimental data from cold sprayed copper and aluminum.

  4. Cold knife cone biopsy

    MedlinePLUS

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  5. Cold and Cough Medicines

    MedlinePLUS

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  6. Vitamin C and colds

    MedlinePLUS

    ... popular belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;1:CD000980. DOI: ...

  7. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  8. Chilling Out with Colds

    MedlinePLUS

    ... these droplets can spread a cold from one person to another. You also can catch a cold if you touch your eyes, nose, or mouth after handling something with cold viruses on it. Video games, the doors at the mall, and your school ...

  9. Exercising in Cold Weather

    MedlinePLUS

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  10. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ?CDM paradigm, the remaining 95 per cent consists of dark energy (?) and cold dark matter. ?CDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities. PMID:24522596

  11. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  12. Cough and Cold Medicine Abuse

    MedlinePLUS

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  13. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  14. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  15. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  16. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  17. Cold nuclear matter effects on J/? yields as a function of rapidity and nuclear geometry in d+A collisions at sqrt[s(NN)]=200??GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Bickley, A A; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Caringi, A; Chang, B S; Chang, W C; Charvet, J-L; Chen, C-H; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Constantin, P; Csand, M; Csrgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-; Hadj Henni, A; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, ; Kistenev, E; Klay, J; Klein-Boesing, C; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kozlov, A; Krl, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Lika, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Maek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Mike, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Niita, T; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rui?ka, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slune?ka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarjn, P; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomek, L; Tomita, Y; Torii, H; Towell, R S

    2011-09-30

    We present measurements of J/? yields in d+Au collisions at sqrt[s(NN)]=200??GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/? rapidity (-2.2rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state. PMID:22107186

  18. Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at sqrt(s_NN)=200 GeV

    SciTech Connect

    Adare, A.; PHENIX Collaboration

    2011-09-30

    We present measurements of J/{psi} yields in d+Au collisions at {radical}s{sub NN} = 200 GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/{psi} rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.

  19. Cold Nuclear Matter Effects on J/{psi} Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at {radical}(s{sub NN})=200 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kinney, E.; Kiriluk, K.; Linden Levy, L. A.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Datta, A.; Ajitanand, N. N.

    2011-09-30

    We present measurements of J/{psi} yields in d+Au collisions at {radical}(s{sub NN})=200 GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/{psi} rapidity (-2.2rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.

  20. Cold Nuclear Matter Effects on J/ψ Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at sNN=200GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'Yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M., Jr.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hadj Henni, A.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Haruna, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E. J.; Kim, S. H.; Kim, Y.-J.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Means, N.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, M.; Mitchell, J. T.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Niita, T.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Samsonov, V.; Sano, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Tomita, Y.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zolin, L.

    2011-09-01

    We present measurements of J/ψ yields in d+Au collisions at sNN=200GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/ψ rapidity (-2.2rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.

  1. Fructan metabolism and expression of genes coding fructan metabolic enzymes during cold acclimation and overwintering in timothy (Phleum pratense).

    PubMed

    Tamura, Ken-ichi; Sanada, Yasuharu; Tase, Kazuhiro; Yoshida, Midori

    2014-07-01

    Metabolism of fructans in temperate grasses dynamically fluctuates before and during winter and is involved in the overwintering activity of plants. We monitored three candidate factors that may be involved in seasonal fructan metabolism in timothy (Phleum pratense): transcription levels of two fructosyltransferase (PpFT1 and PpFT2) genes and one fructan exohydrolase (Pp6-FEH1) gene during fall and winter and under artificially cold conditions. Functional analysis using a recombinant enzyme for PpFT2, a novel fructosyltransferase cDNA, revealed that it encoded sucrose:fructan 6-fructosyltransferase, with enzymatic properties different from previously characterized PpFT1. PpFT1 transcripts decreased from September to December as the amount of fructans increased, whereas PpFT2 transcripts increased in timothy crowns. PpFT2 was transcriptionally more induced than PpFT1 in response to cold and sucrose in timothy seedlings. A rapid increase in Pp6-FEH1 transcripts and increased monosaccharide content were observed in timothy crowns when air temperature was continuously below 0C and plants were not covered by snow. Transcriptional induction of Pp6-FEH1 by exposure to -3C was also observed in seedlings. These findings suggest Pp6-FEH1 involvement in the second phase of hardening. PpFT1 and PpFT2 transcription levels decreased under snow cover, whereas Pp6-FEH1 transcription levels were constant, which corresponded with the fluctuation of fructosyltransferase and fructan exohydrolase activities. Inoculation with snow mold fungi (Typhula ishikariensis) increased Pp6-FEH1 transcription levels and accelerated hydrolysis of fructans. These results suggest that transcriptional regulation of genes coding fructan metabolizing enzymes is partially involved in the fluctuation of fructan metabolism during cold acclimation and overwintering. PMID:24913052

  2. Hardenability of austenite in a dual-phase steel

    SciTech Connect

    Sarwar, M.; Priestner, R.

    1999-06-01

    A low-carbon, low-alloy steel was intercritically heat treated and thermomechanically processed to study the martensitic hardenability of austenite present. Rolling of the two-phase ({alpha} + {gamma}) microstructure elongated austenite particles and reduced their martensitic hardenability because the {alpha}/{gamma} interface where new ferrite forms during cooling was increased by the particle elongation. The martensite particles obtained in rolled material were also elongated or fibered in the rolling direction. Therefore, the thermomechanical processing of a two-phase ({alpha} + {gamma}) mixture has the detrimental effect of increasing the quenching power needed to yield a specific amount of martensite.

  3. Statistical thermodynamics of strain hardening in polycrystalline solids.

    PubMed

    Langer, J S

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials. PMID:26465444

  4. Statistical thermodynamics of strain hardening in polycrystalline solids

    SciTech Connect

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  5. Why semiconductors must be hardened when used in space

    SciTech Connect

    Winokur, P.S.

    2000-01-04

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest.

  6. Statistical thermodynamics of strain hardening in polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010), 10.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  7. Work softening and annealing hardening of deformed nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Liu, Q.; Wu, X. L.; Zhu, A. W.

    2008-12-01

    We reported that work softening takes place during room-temperature rolling of nanocrystalline Ni at an equivalent strain of around 0.30. The work softening corresponds to a strain-induced phase transformation from a face-centered cubic (fcc) to a body-centered cubic (bcc) lattice. The hardness decreases with increasing volume fraction of the bcc phase. When the deformed samples are annealed at 423 K, a hardening of the samples takes place. This hardening by annealing can be attributed to a variety of factors including the recovery transformation from the bcc to the fcc phase, grain boundary relaxation, and retardation of dislocation gliding by microtwins.

  8. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  9. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  10. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  11. The systemic inhibition of nitric oxide production rapidly regulates TRH mRNA concentration in the paraventricular nucleus of the hypothalamus and serum TSH concentration. Studies in control and cold-stressed rats.

    PubMed

    Uribe, Rosa Maria; Cisneros, Miguel; Vargas, Miguel Angel; Lezama, Leticia; Cote-Vlez, Antonieta; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2011-01-01

    Neurons of the paraventricular nuclei of the hypothalamus (PVN) that synthesize the peptide thyrotropin releasing hormone (TRH) control energy homeostasis. Identifying the circuits which regulate these neurons is critical to fully understand integration of metabolic information and the mechanisms that set thyroid hormone levels. We tested the hypothesis that nitric oxide (NO) acutely controls PVN TRH expression and thyrotropin (TSH) secretion by the anterior pituitary. The subcutaneous treatment of rats with N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthases, enhanced PVN TRH mRNA and medio-basal hypothalamic TRH levels, and reduced serum TSH concentration. Analysis of the effect of a NO donor in primary cultures of hypothalamic or anterior pituitary cells suggested that the effect of NO includes a direct action on hypothalamic neurons. The cold stress-induced increase in TSH release was inhibited by sc L-NAME. Therefore, production of NO may control the activity of the hypothalamus-pituitary-thyroid axis. PMID:20940002

  12. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  13. Cold end additive compositions

    SciTech Connect

    Sujdak, R.J.

    1980-09-23

    The present invention is drawn to ethylene polyamines in combination with certain alkanolamines as cold-end additives. More specifically, it has been discovered that if these additives are fed to the moving combustion gases of a combustion system which uses sulfur containing fuel and upstream of cold-end surfaces to be treated, the additive will travel along with the gases as vapor and/or liquid droplets and deposit on the cold-end surfaces. As a result, the amount of sulfuric acid corrosion of metallic cold-end surfaces is reduced.

  14. Cold fusion: Alchemist's dream

    NASA Astrophysics Data System (ADS)

    Clayton, E. D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalyzed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalyzed cold fusion; vibrational mechanisms in excited states of D2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D2 fusion at low energies; fusion of deuterons into He-4; secondary D+T fusion within the hydrogenated metal lattice; helium-3 to helium-4 ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of helium-3/helium-4.

  15. Febrile/cold agglutinins

    MedlinePLUS

    ... tularemia Inflammatory bowel disease Lymphoma Systemic lupus erythematosus Use of certain medicines, including methyldopa, penicillin, and quinidine Cold agglutinins may occur with: Infections, ...

  16. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsugamenziesii): environmental and genetic considerations.

    PubMed

    Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J

    2015-10-01

    The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (GנE), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var.menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness insitu are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate. PMID:25920066

  17. Iterative Beam Hardening Correction for Multi-Material Objects

    PubMed Central

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  18. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  19. Performance comparison of radiation-hardened layout techniques

    NASA Astrophysics Data System (ADS)

    Lingjuan, Lü; Ruping, Liu; Min, Lin; Zehua, Sang; Shichang, Zou; Genqing, Yang

    2014-06-01

    Total ionizing dose (TID) effect and single event effect (SEE) from space may cause serious effects on bulk silicon and silicon on insulator (SOI) devices, so designers must pay much attention to these bad effects to achieve better performance. This paper presents different radiation-hardened layout techniques to mitigate TID and SEE effect on bulk silicon and SOI device and their corresponding advantages and disadvantages are studied in detail. Under 0.13 μm bulk silicon and SOI process technology, performance comparisons of two different kinds of DFF circuit are made, of which one kind is only hardened in layout (protection ring for bulk silicon DFF, T-gate for SOI DFF), while the other kind is also hardened in schematic such as DICE structure. The result shows that static power and leakage of SOI DFF is lower than that of bulk silicon DFF, while SOI DFF with T-gate is a little slower than bulk silicon DFF with protection ring, which will provide useful guidance for radiation-hardened circuit and layout design.

  20. Hardening digital systems with distributed functionality: robust networks

    NASA Astrophysics Data System (ADS)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; Lpez-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  1. Beam hardening correction for sparse-view CT reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2015-03-01

    Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.

  2. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  3. Improved sperm cryopreservation using cold cryoprotectant.

    PubMed

    Clarke, G N; Liu, D Y; Baker, H W G

    2003-01-01

    It has generally been assumed that very rapid cooling above freezing point would be deleterious to human sperm because it would result in cold shock. Consequently, most routine cryopreservation protocols involve the use of warm (20-30 degrees C) cryoprotectant and slow cooling above the freezing point in order to minimise the risk of cold shock. In order to test this assumption, we added an equal volume of cold (4 degrees C) cryoprotectant in a single aliquot to warm (20, 30 or 37 degrees C) semen to induce rapid cooling. The results of this procedure were compared with those obtained using warm cryoprotectant or with the routine cryopreservation protocol used in this laboratory. The use of cold cryoprotectant resulted in a significant (P = 0.016) improvement (mean 63%, range 42%-79%) in post-thaw motility recovery compared with a standard procedure(mean 47%, range 35%-67%) and a significant (P = 0.016) improvement in post-thaw sperm velocity. A cold glycerol/egg yolk/citrate (GEYC) mixture also gave significantly higher motility recovery than GEYC equilibrated to either room temperature (20 degrees C) or body temperature (37 degrees C). Sperm frozen using the cold cryoprotectant protocol were as efficient at binding to and penetrating the human zona pellucida as sperm frozen with a standard protocol. The modified cryopreservation procedure may lead to improved pregnancy rates in donor insemination and in vitro fertilisation. Further investigation is required to determine how the cold cryoprotectant improves the cryopreservation outcome. PMID:14984694

  4. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  5. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida

    PubMed Central

    Boccaccio, Antonio; Frassanito, Maria Cristina; Lamberti, Luciano; Brunelli, Roberto; Maulucci, Giuseppe; Monaci, Maurizio; Papi, Massimiliano; Pappalettere, Carmine; Parasassi, Tiziana; Sylla, Lakamy; Ursini, Fulvio; De Spirito, Marco

    2012-01-01

    The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the ArrudaBoyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side. PMID:22675161

  6. Cold waves in Serbia

    NASA Astrophysics Data System (ADS)

    Unkasevic, Miroslava; Tosic, Ivana

    2013-04-01

    Climate extreme indices allow the assessment of changes in extreme climate events. The cold Spell Duration Indice (CSDI), from which the duration and severity of the cold waves are estimated, was applied to the seasonal series of the daily minimum temperatures at 15 meteorological stations in Serbia during the period 1949 to 2012. An analysis of the daily minimum temperatures during the winter season revealed that the longest (up to 20-22 days) and most severe cold waves were recorded in 1954, 1956, 1963 and 1983. In the transient seasons, the cooling episodes were observed in 1983 and 1988 (autumn season) and in 1987 (spring season) followed with a great reduction in duration and severity of cold waves. During the summer season, only in 1962, the longest (from 6 to 8 days) and most intense cold wave was registered almost over the whole territory of Serbia.

  7. Microstructural and bulk property changes in hardened cement paste during the first drying process

    SciTech Connect

    Maruyama, Ippei; Nishioka, Yukiko; Igarashi, Go; Matsui, Kunio

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreased for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and CSH globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.

  8. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring

    NASA Astrophysics Data System (ADS)

    Astrath, F. B. G.; Astrath, N. G. C.; Baesso, M. L.; Bento, A. C.; Moraes, J. C. S.; Santos, A. D.

    2012-01-01

    Thermal diffusivity and conductivity of dental cements have been studied using open photoacoustic cell (OPC). The samples consisted of fast hardening cement named CER, developed to be a root-end filling material. Thermal characterization was performed in samples with different gel/powder ratio and particle sizes and the results were compared to the ones from commercial cements. Complementary measurements of specific heat and mass density were also performed. The results showed that the thermal diffusivity of CER tends to increase smoothly with gel volume and rapidly against particle size. This behavior was linked to the pores size and their distribution in the samples. The OPC method was shown to be a valuable way in deriving thermal properties of porous material.

  9. Effects of Plastic Anisotropy and Hardening on Indentation Modulus of Thin Films

    NASA Astrophysics Data System (ADS)

    Kalkhoran, Salmon M.; Chollacoop, Nuwong; Gouldstone, Andrew

    In this study we have modeled the Berkovich indentation response of elastic-plastic thin films on elastic-plastic substrates, the modulus of film and substrate being equivalent, using FEM. The stimulus for this investigation was experimental indentation data of rapidly quenched nickel thin films on stainless steel substrates, for which depth-dependent, significantly low (>50% decrease) moduli were extracted via the Oliver-Pharr method. This was notable because both film and substrate had the same elastic modulus. Previous studies showed that differences in plastic behavior could elicit such a modulus drop, for extremely hard films on substrates. In this study, we performed further FEM models to explore the modulus decrease, using aspects of continuum plastic behavior that could be hypothesized from microstructural observations. Specifically, we used plastic anisotropy and significant delayed hardening that would be expected from the nano-scale, highly columnar grain structure as input, and results showed a significant modulus decrease for reasonable values of hardness.

  10. Hypothermia: A Cold Weather Hazard

    MedlinePLUS

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  11. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    SciTech Connect

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-07-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition.

  12. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    PubMed

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects. PMID:25965858

  13. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  14. Cold Sores (HSV-1)

    MedlinePLUS

    ... Are Cold Sores Diagnosed and Treated? en espaol Herpes labial Neal knew something weird was going on. ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don' ...

  15. Chilling Out with Colds

    MedlinePLUS

    ... moist, which loosens mucus. Practice healthy habits. Your immune system will be ready to fight colds if you eat a balanced diet , get plenty of sleep , and keep your body fit through regular exercise. ...

  16. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  17. Colds and the Flu

    MedlinePLUS

    ... with green- or yellow-colored discharge) Sore throat Cough Sneezing Fatigue Muscle aches Headache Watery eyes Cold ... aches, especially in your back, arms and legs Cough Headache Loss of appetite What is H1N1 flu? ...

  18. Colds and flus - antibiotics

    MedlinePLUS

    ... J, Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ... gov/pubmed/24364554 . Melio FR, Berge LR. Upper respiratory tract infection. In: Marx JA, Hockberger RS, Walls RM, et ...

  19. Cold Sores (HSV-1)

    MedlinePLUS

    ... Are Cold Sores Diagnosed and Treated? en español Herpes labial Neal knew something weird was going on. ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don' ...

  20. Cold Sores (Orofacial Herpes)

    MedlinePLUS

    ... clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A A Grouped, crusted ... on the lips and chin are typical of herpes simplex infection. Overview Herpes simplex infection of the ...

  1. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  2. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  3. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. Results: All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. Conclusions: sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  4. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  5. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  6. Precipitation hardening in a dental low-gold alloy.

    PubMed

    Kim, Hyung-Il; Park, Young-Hwan; Lee, Hee-Kyung; Seol, Hyo-Joung; Shiraishi, Takanobu; Hisatsune, Kunihiro

    2003-03-01

    Age-hardening characteristics in a dental low-gold alloy composed of 40.0 wt% Au-35.0 wt% Ag-7.9 wt% Pd-7.0 wt% Cu-5.0 wt% In-3.5 wt% Zn-1.5 wt% Sn, were investigated by means of the hardness test, XRD study, SEM observations and EPMA. The following results were obtained. The age-hardening was characterized by a precipitation of Cu-rich alpha2 phase in the a phase. The softening that occurred following prolonged ageing was due to the heterogeneous formation of the fine nodular precipitates composed of the Ag-rich alpha1 phase and the Cu-rich alpha2 phase at the grain boundaries of the a phase. PMID:12790292

  7. Irradiation hardening of V-4Cr-4Ti

    NASA Astrophysics Data System (ADS)

    van Osch, E. V.; de Vries, M. I.

    In the framework of the European Long Term Fusion Technology Program, Advanced Materials Field, ECN has been working on the assessment of low temperature irradiation hardening and embrittlement of vanadium alloys, as being developed for fusion application. Tensile, miniaturized Charpy impact (KLST) and Compact Tension specimens have been irradiated in the High Flux Reactor (HFR) in Petten up to approximately 6 dpa at 600 K. Three alloys were included; V-4Cr-4Ti from the 500 kg IEA reference heat provided by Argonne National Laboratory, and minor amounts of V-3Cr-3Ti and V-6Cr-6Ti, provided by Oak Ridge National Laboratory. The paper presents the results of tensile tests after irradiation. These tensile tests show strong hardening and reduction of ductility.

  8. CMOS inverter design-hardened to the total dose effect

    SciTech Connect

    Roche, F.M.; Salager, L.

    1996-12-01

    This paper reports and discusses the experimental behavior of two inverter structures Rad-Hardened by Design to {sup 60}Co irradiation. The authors use the results on a set of basic circuits and transistors exposed to the same total doses as these structures to establish the effective formation conditions of the parasitic channel. Then this leakage evolution is related to the gate voltage history under irradiation. Finally, they take advantage of this intrinsic degradation property to propose a new Design Rad Hardened (DRH) cell. This structure considerably limits the Low Noise Margin degradation, helps to maintain the logic functionality with a High Output level and improves both the rad-tolerance and the static power consumption.

  9. The design of radiation-hardened ICs for space

    SciTech Connect

    Kerns, S.E.; Shafer, B.D.

    1988-11-01

    The approaches to designing radiation-hardened integrated circuits for space applications are reviewed in this paper. Several technologies are covered, including bulk and epi CMOS, CMOS/SOL-SOS, CML,ECL, analog bipolar (JI, single-poly DI, and SOI) and GaAsE/D Heterojunction MESFET. Sections of the paper cover the direct effects of space radiation on microelectronic materials and devices, how these effects are evidenced in circuit and device design parameter variations, the particular effects of most significance to each functional class of circuit, specific techniques for hardening high-speed circuits, design examples for integrated systems, including operational amplifiers and A/D converters, and the computer simulation of radiation effects on microelectronic ICs.

  10. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  11. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    SciTech Connect

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  12. An advanced, radiation hardened bulk CMOS/LSI technology

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.; Lichtel, R. L.; Gingerich, B. L.

    1981-01-01

    An advanced, second generation, bulk, Si-gate CMOS process is described. This process is capable of producing LSI and VLSI parts that are latch-up free and hardened to total dose levels in excess of 2 x 10 to the 5th rad-Si for applications in space and weapons radiation environments. Two memories designed to use this process are also described. Both circuits are 4096-bit, static CMOS RAMs.

  13. Mechanism and technological particular features of thermomagnetic hardening

    NASA Astrophysics Data System (ADS)

    Borovskij, S. M.; Mukhin, V. S.

    1993-10-01

    The particular features of mechanism associated with piece hardening of gas-turbine engines are analyzed. This mechanism is connected with the change of conditions for phase equilibrium and kinetics of transformations. It is important to estimate the nature of the formation of new ferromagnetic centers at phase transitions, when permanent, pulsed, or periodic magnetic fields act. Two factors should be taken into account: the power effect of the magnetic field and the increase of 'magnetic segregation' of a source nonferromagnetic matrix.

  14. Work-hardening and effective viscosity in solid beryllium

    SciTech Connect

    Steinberg, D.; Breithaupt, D.; Honodel, C.

    1985-06-01

    Results from Hopkinson split-bar, plate-impact, and cylinder deceleration experiments on beryllium are compared with hydrodynamic computer code simulations. By substantially increasing the beryllium work-hardening in the Steinberg-Guinan constitutive model, excellent agreement between the experiments and the calculations is achieved. A model to estimate effective viscosity is also proposed and the resultant calculations are in reasonable agreement with those derived from another model advanced by Asay, Chhabildas and Wise. 12 refs., 5 figs.

  15. Elastic constant versus temperature behavior of three hardened maraging steels

    NASA Technical Reports Server (NTRS)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  16. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  17. Large-strain hardening curves corrected for texture development

    NASA Astrophysics Data System (ADS)

    Kopacz, I.; Tth, L. S.; Zehetbauer, M.; Stwe, H. P.

    1999-09-01

    The paper is concerned with the problem of constructing equivalent stress-equivalent strain curves at large strains. For the equivalent strain, the average accumulated crystallographic shear is used, while for the equivalent stress, the resolved shear stress is employed. The latter is obtained from the work conjugacy condition. In such a construction of the hardening curve, the Taylor factor appears to be the major factor that can be calculated from polycrystal deformation texture models. In this paper, the viscoplastic Taylor and self-consistent approaches are employed to calculate the Taylor factors. The self-consistent model was calibrated on the torsion texture development which is the most sensitive to the polycrystal model parameters at large strains. The obtained Taylor factors show important variations in torsion, compression and rolling. They have been used to convert experimentally measured work hardening data on copper into resolved shear stress-resolved shear strain curves. The effect of the Taylor factor on the absolute hardening rate was found to be significant at a large strain range of deformation. The simulation textures were markedly different from the measured textures at very large strains where both polycrystal texture deformation models fail to predict the correct texture evolution. For this reason, the textures were measured at increasing strains at 11 points in rolling, at 12 points in compression and at four points in torsion from where the Taylor factors were calculated by both of the models in order to construct the equivalent stress-equivalent strain curves.

  18. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2010-12-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  19. Kinematic hardening plasticity formulation of small strain behaviour of soils

    NASA Astrophysics Data System (ADS)

    Puzrin, A. M.; Burland, J. B.

    2000-08-01

    An objective of this paper is to demonstrate that the small strain model developed by the authors can be incorporated into the conventional kinematic hardening plasticity framework to predict pre-failure defor mations. The constitutive model described in this paper is constituted by three elliptical yield surfaces in triaxial stress space. Two inner surfaces are rotated ellipses of the same shape, representing the boundaries of the linear elastic and small strain regions, while the third surface is the modified Cam clay large-scale yield surface. Within the linear elastic region, the soil behaviour is elastic with cross-coupling between the shear and volumetric stress-strain components. Within the small strain region, the soil behaviour is elasto-plastic, described by the kinematic hardening rule with an infinite number of loading surfaces defined by the incremental energy criterion. Within the large-scale yield surface, the soil behaviour is elasto-plastic, described by kinematic and isotropic hardening of the small strain region boundary. Since the yield surfaces have different shapes, the uniqueness of the plastic loading condition imposes a restriction on the ratio between their semi-diameters. The model requires 12 parameters, which can be determined from a single consolidated undrained triaxial compression test.

  20. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  1. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    The key to a successful program in a cold environment lies in dealing with the cold while still accomplishing program goals and objectives. Teachers and students must be aware of physiological and psychological reactions to the cold, cold injuries and their treatment, and techniques for staying warm. (SB)

  2. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  3. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  4. Performance of radiation hardening techniques under voltage and temperature variations

    NASA Astrophysics Data System (ADS)

    Veeravalli, Varadan Savulimedu; Steininger, Andreas

    The effectiveness of the techniques to mitigate radiation particle hits in digital CMOS circuits has been mainly studied under a given set of environmental conditions. This paper will explicitly analyze, how the performance of two selected radiation hardening techniques, namely transistor sizing and stack separation, varies with temperature and supply voltage. Our target is an inverter circuit in UMC90 bulk CMOS technology, instances of which have been hardened against charges of 300fC and 450fC using either of the two techniques under investigation. In a Spice simulation we apply particle hits to these circuits through double-exponential current pulses of the respective charge. We study the effect of these pulses in a temperature range from - 55 C to +175 C and a supply voltage of 0.65 to 1.2V (nominal 1V) at the output of a (unhardened) buffer that has been connected as a load. For the hardening by sizing we observe proper operation in the range from 1.2V to 900mV, while for lower supply we observe full swing pulses of increasing magnitude when the respective maximum charge is applied. The influence of temperature turns out to be minor. For the stack separation approach the observation is similar, however, the circuit starts glitching only at 750mV. Our study allows the following conclusions: (i) The effectiveness of the hardening approaches strongly depends on the supply voltage, and moderately on temperature. (ii) As expected, low voltage and high temperature represent the worst case for rad-hard sizing. Stack separation, on the other hand, unexpectedly shows a stronger and more complicated temperature dependence. (ii) For voltages below approx. 90% of nominal the hardening by sizing fails, when designed for nominal voltage and room temperature. The approach can be enhanced to survive this worst case by increasing the sizing factor further by more than 3 times. (iv) The stack separation only fails for voltages below approx. 75% of nominal, but there is n- simple remedy to make it reliable for a larger range. This must be considered when judging the appropriateness of this method for a given purpose. Also it turned out that once it fails, the resulting SET pulse has considerable length.

  5. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  6. Age hardening characteristics and mechanical behavior of Al-Cu-Li-Zr-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.

    1989-01-01

    An investigation was conducted to determine the age-hardening response and cryogenic mechanical properties of superplastic Al-Cu-Li-Zr-In alloys. Two alloys with compositions Al-2.65Cu-2.17Li-O.13Zr (baseline) and Al-2.60Cu-2.34Li-0.16Zr-0.17In were scaled-up from 30 lb permanent mold ingots to 350 lb DC (direct chill) ingots and thermomechanically processed to 3.2 mm thick sheet. The microstructure of material which contained the indium addition was partially recrystallized compared to the baseline suggesting that indium may influence recrystallization behavior. The indium-modified alloy exhibited superior hardness and strength compared to the baseline alloy when solution-heat-treated at 555 C and aged at 160 C or 190 C. For each alloy, strength increased and toughness was unchanged or decreased when tested at - 185 C compared to ambient temperature. By using optimized heat treatments, the indium-modified alloy exhibited strength levels approaching those of the baseline alloy without deformation prior to aging. The increase in strength of these alloys in the T6 condition make them particularly attractive for superplastic forming applications where post-SPF parts cannot be cold deformed to increase strength.

  7. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio ? were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and ?. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  8. Environmental hardening of equipment operating in an automated test bed enclosure. Special Isotope Separation Program (SIS)

    SciTech Connect

    Hayward, M.L.

    1990-12-01

    Lawrence Livermore National Laboratory`s Plutonium Systems Engineering plans to demonstrate a materials handling system in an automated test bed located in the cold test facility, in FY91. The equipment operating in the automated glove box test bed consists of a modified, bridge mounted robot that is electrically driven, robot tooling, a tilt-pour furnace, mechanisms for loading and unloading the furnace, mechanisms for loading and unloading the crucible, and mechanisms for button breakout and can opening. Each of the pieces of equipment mentioned have components such as motors (with or without brushes), bearings, resolvers, encoders, sliding surfaces, cabling, and electrical connectors that must function in the harsh environment of the test bed enclosure, and each of the components described must be hardened to the enclosure environment. The automated test bed is to provide a representation of a weapons-grade plutonium enclosure. Although the decision to operate the enclosure in a nitrogen or argon atmosphere has not been made, this report considers the dry argon atmosphere as the more difficult case. Other environmental requirements on the equipment operating in the test bed enclosure are: Low moisture and low oxygen atmosphere, and some abrasive dust resulting from the process. A surrogate material will provide flow and dusting characteristics of weapons-grade plutonium oxide. Weapons-grade plutonium will not be introduced into the test bed enclosure. However, for future reference, radiation effects on materials are addressed.

  9. Influence of hardening and surface modification of endourological wires on corrosion resistance.

    PubMed

    Walke, Witold; Przondziono, Joanna

    2012-01-01

    Guide wires with suitable functional characteristics are of crucial importance for proper urological treatment. This study presents an analysis of the effect of work hardening taking place in the process of wire cold drawing and the effect of surface modification by means of electrochemical polishing and chemical passivation on the resistance of wires made of X10CrNi18-8 steel used in urology. Corrosion resistance was evaluated on the grounds of the registered anodic polarisation curves by means of potentiodynamic method. The tests were made in solution simulating human urine. Anodic polarisation curves were presented for selected wire diameters. Mechanical properties were tested in a static uniaxial tensile test. The course of flow curve as well as mathematical form of flow stress function were determined. Curves presenting the relation of polarisation resistance as a function of strain applied in the drawing process are given. The tests carried out show that surface modification by means of electrochemical polishing and then chemical passivation of wires used in endourological treatment is fundamental. PMID:23140197

  10. A multidisciplinary approach to the identification and evaluation of novel concepts for deeply buried hardened target defeat

    NASA Astrophysics Data System (ADS)

    Branscome, Ewell Caleb

    During the Cold War, Deeply Buried Hardened Targets (DBHTs) and the assets they protected were of great strategic and tactical concern to the Department of Defense. Megaton-class nuclear warheads were the only viable means of attacking many of these facilities, and even so, a small subset of DBHTs was anticipated to be robust even in the face of such an attack. Post Cold War, the threat posed by DBHTs has not disappeared. Rather, the conventional warfare advantages of the United States have led to an increasing emphasis by potential adversaries on the construction and use of hardened facilities such as DBHTs for protection of both conventional and unconventional assets. Further, the shift in perceived relative risk to the United States' national security from large scale all-out nuclear attack towards very limited attack by Weapons of Mass Destruction (WMD) has led some to hypothesize that "self-deterrence" may diminish the strategic value of current inventory nuclear weapons. The objective of the work described was to identify and explore a paradigm shifting solution that could offer leap-ahead capabilities to counter current and future DBHT threats while mitigating or eliminating the "self-deterrence" issue. Systematic evaluation of DHBT defeat alternatives lead to the selection of a thermal subterrene as a hypothetical means of providing such a capability. A number of possible implementation alternatives for a thermal subterrene were investigated, resulting in the identification of the RadioIsotope Powered Thermal Penetrator (RIPTP) concept for providing an effectively unlimited hard rock penetration capability using near-term technologies. However, the proposed approach was novel and thus required formulation and application of a physics based multidisciplinary analysis code to enable evaluation of lv design alternatives and analysis of performance. Technical considerations identified as important to the feasibility of a RIPTP for DBHT defeat included: packing of RIPTP components in available volume; close-contact melting in a medium with nonlinear thermodynamic properties; radiation shielding; radiation health physics; point source plume dispersal calculations; alternative technologies for production of radioisotopes; chemical and physical properties of isotope compounds; nuclear reactor characteristics; high temperature material stability and inter-material compatibility; weapon and delivery system integration; a variety of heat transfer regimes including radiation, conduction, convection, nucleate boiling, and film boiling; thermal/mechanical stress analysis (steady-state and transient); rock physical and thermodynamic properties as a function of temperature; detection/mapping of deeply buried facility spaces; and more. The following disciplinary analyses were composed into a multidisciplinary analysis code for a RIPTP: packing of RIPTP components in available volume; close-contact melting analysis; transmutation of isotope species by neutron activation; reactor neutron economy; radioisotope power generation through decay; metamodelled radiation shielding calculations for a RIPTP; and steady state thermal analyses for a RIPTP in various scenarios. Filtering of radioisotopes for potential suitability, their possible production mechanisms, state of technological development, and multidisciplinary analysis code predicted performance lead to the identification of Thulium-170 as the best isotope for powering a RIPTP using present-day technology and technical data. Ytterbium-169 was identified as an alternative isotope offering the potential for significant potential improvements over Thulium-170 in radiological safety as well as RIPTP performance and producibility. Production, however, was determined to require identification of a cost effective technology for highly enriching Ytterbium-168 from its low natural abundance. Performance analysis of the identified baseline Thulium-170 RIPTP suggested that the predicted low penetration rate of about 10 meters/day could be a significant negative factor with regards to possible viability of the concept. Consequently, a survey for potentially enabling technologies was performed using an adaptation of the Technology Impact Forecasting (TIF) approach. It was found that the greatest potential for improving performance of the baseline Thulium-170 RIPTP resulted from increasing overall power density of the penetrator. Several possible technology approaches to achieving significantly increased penetration rates (approximately 50 meters/day expected penetration rate vs. original 13 meters/day) were proposed. However, it was determined that the hypothetical technology having the greatest potential impact on thermal subterrene viability for DHBT defeat with respect to penetration rate was cost-effective enrichment for Ytterbium-168. Development of such a technology would eliminate or enormously reduce the impact of all identified RIPTP performance and producibility concerns. Alternatively, relaxation of the requirement for no radiological hazard to enemy combatants would enable selection of a fissile powered thermal subterrene to provide required power densities consistent with rapid penetration.

  11. Understanding Colds: Anatomy of the Nose

    MedlinePLUS

    ... Colds Prevention Treatment Children Complications Special Features References Common Cold Understanding Colds Anatomy of the Nose The nose ... cm (3/8 inch) per minute. What a Common Cold Is A common cold is an illness caused ...

  12. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jones, Jennifer L.; Koul, Michelle G.; Schubbe, Joel J.

    2014-06-01

    A surface hardening technique called "interstitial hardening" is commercially available, whereby interstitial carbon atoms are introduced into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or fasteners would improve performance regarding cavitation and galling resistance, and has intensified interest in this process. However, there remains a need to characterize and validate the specific performance characteristics of the hardened materials. This paper describes experimental testing conducted on 316L stainless steel that has been surface hardened using available commercial techniques, using carbon as the interstitial atom. The corrosion performance of the hardened surface is assessed using electrochemical potentiodynamic testing to determine the breakdown potential in 3.5 wt.% NaCl solution to identify the most promising method. The hardness and thickness of the surface-hardened layer is characterized and compared using metallography and microhardness profiling. Corrosion fatigue and slow strain rate testing of untreated, hardened, and damaged, hardened surfaces exposed to ASTM seawater is conducted. Finally, critical galling stresses are determined and compared. Post-test examination of damage attempts to identify mechanisms of material failure and characterize how corrosion-assisted cracks initiate and grow in surface-hardened materials.

  13. Progress toward cold antihydrogen

    SciTech Connect

    Gabrielse, G.; Estrada, J.; Peil, S.; Roach, T.; Tan, J. N.; Yesley, P.

    1999-12-10

    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature.

  14. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  15. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  16. Chamaeleon's Cold Cloud Cores

    NASA Astrophysics Data System (ADS)

    Hotzel, Stephan; Lemke, Dietrich; Krause, Oliver; Stickel, Manfred; Toth, L. Viktor

    ISOPHOT Serendipity Survey (ISOSS) observations of the nearby interstellar medium towards Chamaeleon have revealed a number of cold cloud cores. Far-infrared colours have been studied using ISOSS and IRAS data. 10 very cold cores with colour temperatures Tdust 13 K have been found in an 11 8 sized region. Comparing the FIR data with radio measurements, all of the very cold cores have high gas column densities, N(H2) > 1021 cm-2, and 7 out of 10 have low gas temperatures as indicated by Tex(C18O) ~~ 8 K.Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London.

  17. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  18. Endolithic microbial life in hot and cold deserts

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1980-01-01

    Endolithic microorganisms (those living inside rocks) occur in hot and cold deserts and exist under extreme environmental conditions. These conditions are discussed on a comparative basis. Quantitative estimates of biomass are comparable in hot and cold deserts. Despite the obvious differences between the hot and cold desert environment, survival strategies show some common features. These endolithic organisms are able to 'switch' rapidly their metabolic activities on and off in response to changes in the environment. Conditions in hot deserts impose a more severe environmental stress on the organisms than in the cold Antarctic desert. This is reflected in the composition of the microbial flora which in hot desert rocks consist entirely of prokaryotic microorganisms, while under cold desert conditions eukaryotes predominate.

  19. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.

  20. Acral coldness in migraineurs.

    PubMed

    Zaproudina, Nina; Lipponen, Jukka A; Karjalainen, Pasi A; Kamshilin, Alexei A; Giniatullin, Rashid; Nrhi, Matti

    2014-02-01

    In search for new biomarkers of vascular disturbances accompanying migraine, we compared the facial and hand skin temperatures in 41 women, including 12 migraine patients during the headache-free period and 29 healthy controls. Compared to the controls, the acral skin temperatures were lower in migraineurs, especially in those with right-sided headache. Our findings suggest that migraine is associated with a peripheral coldness possibly due to abnormal autonomic vascular control. The cold nose and hands may represent easily assessable biomarkers of these disorders. PMID:24080404

  1. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2004-06-01

    In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have shown in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  2. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  3. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  4. Case depth verification of hardened samples with Barkhausen noise sweeps

    NASA Astrophysics Data System (ADS)

    Santa-aho, Suvi; Hakanen, Merja; Sorsa, Aki; Vippola, Minnamari; Leivisk, Kauko; Lepist, Toivo

    2014-02-01

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  5. Case depth verification of hardened samples with Barkhausen noise sweeps

    SciTech Connect

    Santa-aho, Suvi; Vippola, Minnamari; Lepist, Toivo; Hakanen, Merja; Sorsa, Aki; Leivisk, Kauko

    2014-02-18

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  6. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  7. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  8. Ductility and work hardening in nano-sized metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-01

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of 18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and 3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  9. Determination of quenching and tempering conditions using hardenability prediction

    SciTech Connect

    Oviedo, J.

    1996-12-31

    Experimental prediction of Jominy hardenability using Just`s equations often result in significant errors when compared to experimental data. In this paper, the development of an alternative Jominy predictor which provides excellent agreement with experimental data will be described. This new relationship can be written as: J(x) = Jo + F(x), where Jo is exclusively a function of the concentration of the alloying elements. This equation has been experimentally validated and a relationship with the tempering temperature was found: Tempering = F(Jo) The development of these equations and their successful application to the selection of quenching and tempering conditions in the heat treat shop will be discussed.

  10. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  11. Energy savings and efficiency in design of continuous hardening furnace

    SciTech Connect

    Willett, G.H.

    1984-08-01

    To understand how to maximize energy efficiency in industrial furnaces, one first must have a working knowledge of energy consumers. This knowledge can be ascertained by heat balance calculations. Then methods can be applied to furnace design and constructions to minimize non-productive heat input, recycle waste heat and reduce overall heat input. This energy conservation approach may be applied to all fuel-fired continuous heat treating furnaces. The specific example presented in this article is a 400 lb/hr direct fired continuous cast link belt hardening furnace. Operating parameters and refractories are shown in Tables I and II.

  12. Hardening communication ports for survival in electrical overstress environments

    NASA Technical Reports Server (NTRS)

    Clark, O. Melville

    1991-01-01

    Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.

  13. Surface hardening of cutting elements agricultural machinery vibro arc plasma

    NASA Astrophysics Data System (ADS)

    Sharifullin, S. N.; Adigamov, N. R.; Adigamov, N. N.; Solovev, R. Y.; Arakcheeva, K. S.

    2016-01-01

    At present, the state technical policy aimed at the modernization of worn equipment, including agriculture, based on the use of high-performance technology called nanotechnology. By upgrading worn-out equipment meant restoring it with the achievement of the above parameters passport. The existing traditional technologies are not suitable for the repair of worn-out equipment modernization. This is especially true of imported equipment. Out here alone - is the use of high-performance technologies. In this paper, we consider the use of vibro arc plasma for surface hardening of cutting elements of agricultural machinery.

  14. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  15. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership

  16. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D. (Stuart, FL); Sanders, Stuart A. (Palm Beach Gardens, FL)

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  17. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  18. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  19. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become

  20. Breeding Cold Hardy Begonias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hardy begonia cultivars have potential as a new crop for Southern nurseries. Current begonia breeding efforts are focused on sections Begonia and Pritzelia. Diverse begonia germplasm has been collected to study fertility and hardiness.To date cold hardy germplasm which has produced viable seeds inc...

  1. Laser surface hardening of gray cast iron used for piston ring

    NASA Astrophysics Data System (ADS)

    Hwang, Jong-Hyun; Kim, Dae-Young; Youn, Joong-Geun; Lee, Yun-Sig

    2002-06-01

    The process parameters for laser surface-hardening has been experimentally established for improving the wear life of piston rings used for marine diesel engines by the formation of a proper hardened layer on it. The parameters of interest were the laser power and travel speed. Various hardened layers of gray cast iron were analyzed with respect to microstructure, hardness value, hardening depth, surface roughness, and wear resistance. The hardness of the laser-hardened layer was in a range between 840 and 950 Hv0.1, regardless of the laser power and travel speed range studied. Both the surface roughness and hardening depth increased in an almost linear manner with the increase in the heat input applied. Thus, the hardened layers formed with heat input ranges between 30 and 45 J/mm satisfied the piston ring application requirements for surface roughness (<6.3 m in Ra) and the minimum effective hardening depth of 0.3 mm (>450 in Vickers number). Wear-test results obtained using a pin-on-disk-type wear-test machine showed that the wear life of the laser-hardened layer was almost twice that of the untreated one. This was directly attributed to the formation of the martensitic microstructure.

  2. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  3. Formulating the strength factor α for improved predictability of radiation hardening

    NASA Astrophysics Data System (ADS)

    Tan, L.; Busby, J. T.

    2015-10-01

    Analytical equations were developed to calculate the strength factors of precipitates, Frank loops, and cavities in austenitic alloys, which strongly depend on barrier type, size, geometry and density, as well as temperature. Calculated strength factors were successfully used to estimate radiation hardening using the broadly employed dispersed barrier-hardening model, leading to good agreement with experimentally measured hardening in neutron-irradiated type 304 and 316 stainless steel variants. The formulated strength factor provides a route for more reliable hardening predictions and can be easily incorporated into component simulations and design.

  4. Undrained heating and anomalous pore-fluid pressurization of a hardened cement paste

    NASA Astrophysics Data System (ADS)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    Temperature increase in a fluid-saturated porous material in undrained condition leads to volume change and pore pressure increase due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the pore volume. This increase of the pore fluid pressure induces a reduction of the effective mean stress, and can lead to shear failure or hydraulic fracturing. This phenomenon is important is important in environmental engineering for radioactive (exothermal) waste disposal in deep clay geological formations as well as in geophysics in the studies of rapid fault slip events when shear heating tends to increase the pore pressure and to decrease the effective compressive stress and the shearing resistance of the fault material (Sulem et al. 2007). This is also important in petroleum engineering where the reservoir rock and the well cement lining undergo sudden temperature changes for example when extracting heavy oils by steam injection methods. This rapid increase of temperature could damage cement sheath integrity of wells and lead to loss of zonal isolation. The values of the thermal pressurization coefficient, defined as the pore pressure increase due to a unit temperature increase in undrained condition, is largely dependent upon the nature of the material, the state of stress, the range of temperature change, the induced damage. The large variability of the thermal pressurization coefficient reported in the literature for different porous materials with values from 0.01MPa/C to 1.5MPa/C highlights the necessity of laboratory studies. This phenomenon of thermal pressurization is studied experimentally for a fluid-saturated hardened cement paste in an undrained heating test. Careful analysis of the effect of the dead volume of the drainage system of the triaxial cell has been performed based on a simple correction method proposed by Ghabezloo and Sulem (2008, 2009). The drained and undrained thermal expansion coefficients of the hardened cement paste are also measured in the heating tests. The measured value of the thermal pressurization coefficient is found equal to 0.6MPa/C and the test results unexpectedly show that it does not change with temperature between 20C and 55C. In most geomaterials, as shown experimentally by Ghabezloo and Sulem (2008), the temperature dependency of the thermal expansion of the pore fluid results in temperature dependency of the thermal pressurization coefficient. The observed anomalous thermal pressurization phenomenon is attributed to the anomalous thermal behaviour of cement paste pore fluid. The anomalous thermal behaviour of cement pore fluid is back analysed from the results of the undrained heating test and it is shown that the thermal expansion of the cement paste pore fluid is higher than the one of pure bulk water and is much less sensitive to temperature changes. This anomalous thermal behaviour is due to the confinement of the pore fluid in the very small pores of the microstructure of the cement paste, and also to the presence of dissolved ions in the pore fluid. References: 1.Sulem J., Lazar P., Vardoulakis I. (2007) Thermo-Poro-Mechanical Properties of Clayey Gouge and Application to Rapid Fault Shearing, Int. J. Num. Anal. Meth. Geomechanics, 31(3), 523-540 2.Ghabezloo S., Sulem J. (2008) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mechanics and Rock Engineering, in press, DOI 10.1007/s00603-008-0165-z. 3.Ghabezloo S., Sulem J., Saint-Marc, J. (2009) The effect of undrained heating on a fluid-saturated hardened cement paste. Cement and Concrete Research, 39(1), 54-64. 4.Ghabezloo S., Sulem J. (2009) Evaluation of the undrained thermo-poro-elastic parameters in a conventional triaxial cell: the effect of the dead volume of the drainage system. Submitted to Int J Rock Mech Min Sci.

  5. Characterization of cold spray titanium deposits by X-ray microscopy and microtomography.

    PubMed

    Zahiri, Saden H; Mayo, Sheridan C; Jahedi, Mahnaz

    2008-06-01

    Cold gas dynamic spray (cold spray) is a rapid deposition technology in which particles deposit at velocities above the speed of sound (approximately 340 ms-1). Generally, porosity forms in cold spray deposits due to insufficient deformation of particles. In this study, the unique capability of the X-ray microscopy and microtomography is utilized to visualize the internal structure of deposited material. The results show that this characterization technique successfully reveals porosities in the cold spray commercial purity (CP) titanium structure. Furthermore, microtomography images confirmed the experimental results for porosity measurements in which helium (compared with nitrogen) as carrier gas significantly decreases porosity in cold spray CP titanium. PMID:18482471

  6. Folding and faulting of strain-hardening sedimentary rocks

    USGS Publications Warehouse

    Johnson, A.M.

    1980-01-01

    The question of whether single- or multi-layers of sedimentary rocks will fault or fold when subjected to layer-parallel shortening is investigated by means of the theory of elastic-plastic, strain-hardening materials, which should closely describe the properties of sedimentary rocks at high levels in the Earth's crust. The most attractive feature of the theory is that folding and faulting, intimately related in nature, are different responses of the same idealized material to different conditions. When single-layers of sedimentary rock behave much as strain-hardening materials they are unlikely to fold, rather they tend to fault, because contrasts in elasticity and strength properties of sedimentary rocks are low. Amplifications of folds in such materials are negligible whether contacts between layer and media are bonded or free to slip for single layers of dolomite, limestone, sandstone, or siltstone in media of shale. Multilayers of these same rocks fault rather than fold if contacts are bonded, but they fold readily if contacts between layers are frictionless, or have low yield strengths, for example due to high pore-water pressure. Faults may accompany the folds, occurring where compression is increased in cores of folds. Where there is predominant reverse faulting in sedimentary sequences, there probably were few structural units. ?? 1980.

  7. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  8. a Phase-Field Theory of Dislocation Dynamics, Strain Hardening

    NASA Astrophysics Data System (ADS)

    Cuitino, Alberto; Koslowski, Marisol; Ortiz, Michael; Stainier, Laurent

    2001-03-01

    A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals is presented. We consider the motion of large numbers of dislocations within discrete slip planes through random arrays of point obstacles under the action of an applied shear stress. The theory rests on a variational framework for dissipative systems and accounts for energetic and kinetic effects. The energetics of the system is approximated by recourse to a screening assumption. The kinetics of the system stem from the assumed frictional interaction between dislocations and point obstacles. The phase-field representation enables the tracking of complex geometrical and topological transitions in the dislocation ensemble, including dislocation loop nucleation, bow-out, pinching, and the formation of Orowan loops. The theory predicts a range of behaviors which are in qualitative agreement with observation, including: hardening and dislocation multiplication in single slip under monotonic loading; Taylor scaling, both under monotonic loading and, in an appropriate rate form, under cyclic loading; the Bauschinger effect under reverse loading; the fading memory effect, whereby reverse yielding gradually eliminates the influence of previous loading; the evolution of the dislocation density under cycling loading, leading to characteristic `butterfly' curves; and others. The theory permits the coupling between slip systems; the consideration of obstacles of varying strengths; and dislocation line-energy anisotropy.

  9. Quantifying characters: polygenist anthropologists and the hardening of heredity.

    PubMed

    Hume, Brad D

    2008-01-01

    Scholars studying the history of heredity suggest that during the 19th-century biologists and anthropologists viewed characteristics as a collection of blended qualities passed on from the parents. Many argued that those characteristics could be very much affected by environmental circumstances, which scholars call the inheritance of acquired characteristics or "soft" heredity. According to these accounts, Gregor Mendel reconceived heredity--seeing distinct hereditary units that remain unchanged by the environment. This resulted in particular traits that breed true in succeeding generations, or "hard" heredity. The author argues that polygenist anthropology (an argument that humanity consisted of many species) and anthropometry in general should be seen as a hardening of heredity. Using a debate between Philadelphia anthropologist and physician, Samuel G. Morton, and Charleston naturalist and reverend, John Bachman, as a springboard, the author contends that polygenist anthropologists hardened heredity by conceiving of durable traits that might reappear even after a race has been eliminated. Polygenists saw anthropometry (the measurement of humans) as one method of quantifying hereditary qualities. These statistical ranges were ostensibly characteristics that bred true and that defined racial groups. Further, Morton's interest in hybridity and racial mixing demonstrates that the polygenists focused as much on the transmission and recognition of "amalgamations" of characters as they did on racial categories themselves. The author suggests that seeing race science as the study of heritable, statistical characteristics rather than broad categories helps explain why "race" is such a persistent cultural phenomenon. PMID:19048797

  10. A radiation-hardened, computer for satellite applications

    SciTech Connect

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`s Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.

  11. Prescription Drugs and Cold Medicines

    MedlinePLUS

    ... Abuse » Prescription Drugs & Cold Medicines Prescription Drugs & Cold Medicines Email Facebook Twitter What is Prescription Drug Abuse: ... treatment of addiction. Read more Safe Disposal of Medicines Disposal of Unused Medicines: What You Should Know ( ...

  12. Winter Storms and Extreme Cold

    MedlinePLUS

    ... Flow Pandemic Severe Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Winter Storms & Extreme Cold Space Weather Prepare ... Flow Pandemic Severe Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Winter Storms & Extreme Cold Space Weather Main ...

  13. Investigation into springback characteristics of two HSS sheets during cold v-bending

    SciTech Connect

    Fang, Gang; Gao, Wei-Ran

    2013-12-16

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45, 90 and 0 to the rolling direction of steel in turn.

  14. Radial cold trap

    DOEpatents

    Grundy, Brian R. (Greensburg, PA)

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  15. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  16. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  17. Cold neutron interferometry

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki

    2009-10-01

    Neutron interferometry is a powerful technique for studying fundamental physics. A large dimensional interferometer for long wavelength neutrons is extremely important in order to investigate problems of fundamental physics, including tests of quantum measurement theories and searches for non-Newtonian effects of gravitation, since the sensitivity of interferometer depends on the wavelength and the interaction length. Neutron multilayer mirrors enable us to develop the large scale interferometer for long wavelength neutrons. The multilayer mirror is one of the most useful devices in cold neutron optics. A multilayer of two materials with different potentials is understood as a one-dimensional crystal, which is suitable for Bragg reflection of long wavelength neutrons. Cold and very cold neutrons can be utilized for the interferometer by using the multilayer mirrors with the proper lattice constants. Jamin-type interferometer by using beam splitting etalons (BSEs) has shown the feasibility of the development of large scale interferometer, which enables us to align the four independent mirrors within required precision. The BSE contains two parallel multilayer mirrors. A couple of the BSEs in the Jamin-type interferometer separates and recombines the two paths spatially. Although the path separation was small at the first test, now we have already demonstrated the interferometer with perfectly separated paths. This has confirmed that the multilayer mirrors cause no serious distortion of wave front to compose a interferometer. Arranging such mirrors, we are capable of establishing even a Mach-Zehnder type with much larger size. The interferometer using supermirrors, which reflects the wide range of the wavelength of neutrons, can increase the neutron counts for high precision measurements. We are planning the experiments using the interferometer both for the very cold neutrons and for the pulsed neutrons including J-PARC.

  18. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  19. Strain hardening during mechanical twining and dislocation channeling in irradiated 316 stainless steels

    SciTech Connect

    Byun, Thak Sang; Hashimoto, Naoyuki

    2007-01-01

    Localized deformation mechanisms and strain-hardening behaviors in irradiated 316 and 316LN stainless steels were investigated, and a theoretical model was proposed to explain the linear strain-hardening behavior during the localized deformation. After low temperature irradiation to significant doses the deformation microstructure changed from dislocation tangles to channels or to mechanical twins. It was also observed that irradiation hardening straightened gliding dislocations and increased the tendency for forming pileups. Regardless of these microstructural changes, the strain-hardening behavior was relatively insensitive to the irradiation. This dose-independent strain-hardening rate resulted in dose independence of the true stress parameters such as the plastic instability stress and true fracture stress. In the proposed model, the long-range back stress was formulated as a function of the number of pileup dislocations per slip band and the number of slip bands in a grain. The calculation results confirmed the experimental observation that strain-hardening rate was insensitive to the change in deformation mechanism because the long-range back stress hardening became as high as the hardening by tangled dislocations.

  20. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial displacement). Thus SCC reaches higher average bond strength. Although the variation in bond strength at different elevations, due to top-bar effect, is also observed in SCC the extent is less significant than that of TC. Finally, tests show that water depth penetration under pressure is much lower for SCC than for TC.

  1. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-11-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain, deep cooling, and deliberate manipulation of the austenite stability. The nitrided/nitrocarburized case was investigated with reflected light microscopy, hardness-depth profiling, X-ray diffraction analysis, and glow discharge optical emission spectroscopy. The results demonstrate that a microstructure consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible for martensite because the precipitation hardening does not occur in an austenite matrix.

  2. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  3. Investigation of Thermal Hardening of the FCC Material Containing Strengthening Particles with an L12 Superstructure

    NASA Astrophysics Data System (ADS)

    Daneyko, O. I.; Kulaeva, N. A.; Kovalevskaya, C. A.; Kolupaeva, S. N.

    2015-07-01

    A mathematical model of plastic deformation of dispersion-hardened materials with an fcc matrix containing strengthening particles with an L12 superstructure having a coherent relationship with the matrix is presented. The model is based on the balance equations of deformation defects of different types with taking into account their transformation during plastic deformation. The influence of scale characteristics of the hardening phase, temperature, and deformation rate on the evolution of the dislocation subsystem and strain hardening of an alloy with an fcc matrix hardened by particles with an L12 super structure is studied. A temperature anomaly of mechanical properties is found for the materials with different fcc matrices (Al,Cu, Ni). It is shown that the temperature anomaly is more pronounced for the material with larger volume fraction of the hardening phase.

  4. New distortional hardening model capable of predicting eight ears for textured aluminum sheet

    SciTech Connect

    Yoon, J. H.; Cazacu, O.; Yoon, J. W.; Dick, R. E.

    2011-05-04

    The effects of the anisotropy evolution and of the directionality in hardening on the predictions of the earing profile of a strongly textured aluminum alloy are investigated using a new distortional hardening model that incorporates multiple hardening curves corresponding to uniaxial tension along several orientations with respect to the rolling direction, and to biaxial tension. Yielding is described using a form of CPB06ex2 yield function (Plunkett et al. (2008)) which is tailored for metals with no tension-compression asymmetry. It is shown that even if directional hardening and its evolution are neglected, this yield function predicts a cup with eight ears as was observed experimentally. However, directional hardening can be of considerable importance for improved accuracy in prediction of the non-uniformity of the cup height profile.

  5. A finite strain isotropic/kinematic hardening model for springback simulation of sheet metals

    SciTech Connect

    Vladimirov, Ivaylo N.; Reese, Stefanie

    2007-04-07

    Crucial for the accurate prediction of the blank springback is the use of an appropriate material model, which is capable of modelling the typical cyclic hardening behaviour of metals (e.g. Bauschinger effect, ratchetting). The proposed material model combines both nonlinear isotropic hardening and nonlinear kinematic hardening, and is defined in the finite strain regime. The kinematic hardening component represents a continuum extension of the classsical rheological model of Armstrong-Frederick kinematic hardening. The evolution equations of the model are integrated by a new form of the exponential map algorithm, which preserves the plastic volume and the symmetry of the internal variables. Finally, the applicability of the model for springback prediction has been demonstrated by performing simulations of the draw-bending process.

  6. Effect of numerical parameters on characterizing the hardening behavior of ductile uniaxial tension specimens.

    SciTech Connect

    Cordova, Theresa Elena; Dion, Kristin; Laing, John Robert; Corona, Edmundo; Breivik, Nicole L.; Wellman, Gerald William; Shelton, Timothy R.

    2010-11-01

    Many problems of practical importance involve ductile materials that undergo very large strains, in many cases to the point of failure. Examples include structures subjected to impact or blast loads, energy absorbing devices subjected to significant crushing, cold-forming manufacturing processes and others. One of the most fundamental pieces of data that is required in the analysis of this kind of problems is the fit of the uniaxial stress-strain curve of the material. A series of experiments where mild steel plates were punctured with a conical indenter provided a motivation to characterize the true stress-strain curve until the point of failure of this material, which displayed significant ductility. The hardening curve was obtained using a finite element model of the tensile specimens that included a geometric imperfection in the form of a small reduction in the specimen width to initiate necking. An automated procedure iteratively adjusted the true stress-strain curve fit used as input until the predicted engineering stress-strain curve matched experimental measurements. Whereas the fitting is relatively trivial prior to reaching the ultimate engineering stress, the fit of the softening part of the engineering stress-stain curve is highly dependent on the finite element parameters such as element formulation and initial geometry. Results by two hexahedral elements are compared. The first is a standard, under-integrated, uniform-strain element with hourglass control. The second is a modified selectively-reduced-integration element. In addition, the effects of element size, aspect ratio and hourglass control characteristics are investigated. The effect of adaptively refining the mesh based on the aspect ratio of the deformed elements is also considered. The results of the study indicate that for the plate puncture problem, characterizing the material with the same element formulation and size as used in the plate models is beneficial. On the other hand, using different element formulations, sizes or initial aspect ratios can lead to unreliable results.

  7. Protection performance evaluation regarding imaging sensors hardened against laser dazzling

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd

    2015-05-01

    Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.

  8. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  9. Method of forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J. (Iona, ID)

    2010-08-31

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  10. Analysis of fracture toughness of explosion-hardened martensitic steel

    NASA Astrophysics Data System (ADS)

    Moskvitina, L. V.

    2015-10-01

    In this work we study a shift of the following nonlinear states: tempering + abatement + 10 GPa shock loading + welding thermocycle. As a result the self-organized HAZ metal structure with elements of self-similarity on different scales is found. The fractal analysis shows how formed defects affect the HAZ metal hardness of 14H2GMR steel with the martensitic structure of static fracture. The statistical analysis of stereometric parameters of fracture shows a higher energy intensity of static fracture in specimens treated by explosion. The multifractal analysis reveals hardness of the grid dislocation structure induced by explosion in the air-hardening zone. The homogeneity of the dislocation structure related to carbides increases the resistance of HAZ metal of static fracture.

  11. Frictional hardening and softening of steel 52100 during sliding wear

    SciTech Connect

    You Wang; Tingquan Lei; Xinghua Zhang,

    1996-12-31

    The behavior of frictional hardening and softening of steel 52100 with different microstructures during dry sliding friction and wear and their effects on wear resistance of the steel were studied on the basis of dynamic metallographic analysis. The results indicate that the original structures and properties of steels should not be taken as the criterion for judge of the wear resistance of the steels. It must be considered that the influence of dynamic microstructural changes under concrete wear conditions on the wear resistance of the steels. Generally, anti-softening microstructure exhibits a rather better wear resistance. The results also indicate that the differences in wear resistance of the various microstructures were caused by the differences in energy consumption in surface layers during wear.

  12. Gamma prime hardened nickel-iron based superalloy

    DOEpatents

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  13. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    NASA Astrophysics Data System (ADS)

    Grrn, Patrick; Wagner, Sigurd

    2010-11-01

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  14. Effective mineral coatings for hardening the surface of metallic materials

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2015-07-01

    The structural changes that occur in the surface and surface layers of steel 20Kh13 and titanium alloy PT-3V (Russian designation) samples after each stage of hardening due to a formed mineral surface layer are studied by optical microscopy, transmission electron microscopy, and scanning electron microscopy. Electric spark alloying, pressing, and ultrasonic processing are used to reach the effect of volume compression of the base metal and the mineral in the plastic deformation zone. As a result, applied mineral particles concentrate in preliminarily created microvoids in a thin surface layer. The surface layer thus modified acquires a high hardness and wear resistance. Durometry shows that the hardness of the processed sample surfaces increases more than twofold. Therefore, the developed technology of creating a mineral coating can be used to increase the tribological properties of the surfaces of the parts, units, and mechanisms of turbine, pump, and mining equipment, which undergo intense wear during operation.

  15. Theoretical Study of the Oxidation Behavior of Precipitation Hardening Steel

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Chrissafis, K.; Psyllaki, P.

    2010-01-21

    The oxidation of precipitation hardening (PH) steels is a rather unexplored area. In the present work an attempt is made is made to estimate the kinetics of a PH steel. For this purpose specimens of the material under examination were isothermally heated at 850, 900 and 950 deg. C for 15 hr. Kinetics was based on TGA results. During heating a thick scale is formed on the substrate surface, which is composed by different oxides. The layer close to the substrate is compact and as a result it impedes corrosion. The mathematical analysis of the collected data shows that the change of the mass of the substrate per unit area versus time is described by a parabolic law.

  16. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    SciTech Connect

    Goerrn, Patrick; Wagner, Sigurd

    2010-11-15

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  17. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 ?s. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  18. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    NASA Astrophysics Data System (ADS)

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  19. Thermal creep model for CWSR zircaloy-4 cladding taking into account the annealing of the irradiation hardening

    SciTech Connect

    Cappelaere, Chantal; Limon, Roger; Duguay, Chrstelle; Pinte, Gerard; Le Breton, Michel; Bouffioux, Pol; Chabretou, Valerie; Miquet, Alain

    2012-02-15

    After irradiation and cooling in a pool, spent nuclear fuel assemblies are either transported for wet storage to a devoted site or loaded in casks for dry storage. During dry transportation or at the beginning of dry storage, the cladding is expected to be submitted to creep deformation under the hoop stress induced by the internal pressure of the fuel rod. The thermal creep is a potential mechanism that might lead to cladding failure. A new creep model was developed, based on a database of creep tests on as-received and irradiated cold-worked stress-relieved Zircaloy-4 cladding in a wide range of temperatures (310 degrees C to 470 degrees C) and hoop stress (80 to 260 MPa). Based on three laws-a flow law, a strain-hardening recovery law, and an annealing of irradiation hardening law this model allows the simulation of not only the transient creep and the steady-state creep, but also the early creep acceleration observed on irradiated samples tested in severe conditions, which was not taken into account in the previous models. The extrapolation of the creep model in the conditions of very long-term creep tests is reassuring, proving the robustness of the chosen formalism. The creep model has been assessed in progressively decreasing stress conditions, more representative of a transport. Set up to predict the cladding creep behavior under variable temperature and stress conditions, this model can easily be implemented into codes in order to simulate the thermomechanical behavior of spent fuel rods in various scenarios of postirradiation phases. (authors)

  20. The effects of cold rolling on the microstructural and spall response of 1100 aluminum

    NASA Astrophysics Data System (ADS)

    Williams, C. L.; Chen, C. Q.; Ramesh, K. T.; Dandekar, D. P.

    2013-09-01

    As received 1100-O aluminum was cold rolled (CR) to 30%, 70%, and 80% reduction, respectively, to study the effects of microstructural evolution on the spall response using plate impact experiments. Previous results show a sharp increase in pullback velocity for 1100-O aluminum with increase in peak shock stress between 4.0 and 8.3 GPa due to hardening, followed by a decrease for peak shock stresses up to 12.0 GPa possibly due to softening. This maximum was not observed for the 30% CR, which showed only an increase in pullback velocity over the shock stress range of 4.0-12.0 GPa due to hardening (net increase in dislocation density). For the 70% CR aluminum, no change was observed in the pullback velocity over the range tested (4.0-11.0 GPa) probably due to saturation in dislocation density. Similar observations were made for the 80% CR, that is, no change was observed in the spall response between 4.0 GPa and 11.0 GPa. However, variations were observed in the spall response for the 80% CR, and these variations are attributed to material inhomogeneity possibly caused by increased cold rolling beyond saturation. The results also show a significant increase in Hugoniot Elastic Limit with increase in percent cold rolling.

  1. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  2. Hardening effect on machined surface for precise hard cutting process with consideration of tool wear

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Liu, Xianli; Ma, Jing; Liu, Zhaojing; Liu, Fei; Yang, Yongheng

    2014-11-01

    During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.

  3. Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures.

    PubMed

    Vashegyi, Ildik; Marozsn-Tth, Zsuzsa; Galiba, Gbor; Dobrev, Petre I; Vankova, Radomira; Tth, Balzs

    2013-06-01

    In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF-COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals. PMID:22669585

  4. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  5. Paroxysmal cold hemoglobinuria.

    PubMed

    Shanbhag, Satish; Spivak, Jerry

    2015-06-01

    Paroxysmal cold hemoglobinuria is a rare cause of autoimmune hemolytic anemia predominantly seen as an acute form in young children after viral illnesses and in a chronic form in some hematological malignancies and tertiary syphilis. It is a complement mediated intravascular hemolytic anemia associated with a biphasic antibody against the P antigen on red cells. The antibody attaches to red cells at colder temperatures and causes red cell lysis when blood recirculates to warmer parts of the body. Treatment is mainly supportive and with red cell transfusion, but immunosuppressive therapy may be effective in severe cases. PMID:26043386

  6. Hot Talk, Cold Science

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.

    One of the hottest topics in climate science is understanding and evaluating the impacts of possible global warming caused by anthropogenic emissions of greenhouse gases. In Hot Talk, Cold Science, S. Fred Singer does not accept global warming. Singer says in his preface, The purpose of this book is to demonstrate that the evidence [for global warming] is neither settled, nor compelling, nor even convincing. On the contrary, scientists continue to discover new mechanisms for climate change and to put forth new theories to try to account for the fact that global temperature is not rising, even though greenhouse theory says it should.

  7. Cold fusion before Congress

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Stanley Pons and Martin Fleischmann took their cold fusion show to Capitol Hill last week, saying they were “as sure as sure can be” that the heat produced in their experiments at the University of Utah is the result of some form of nuclear fusion and vigorously defending themselves against charges that they have set the scientific world on its ear by creating a good battery.The two chemists asked for “tens of millions of dollars” in federal funds to move directly into commercial development of energy devices based on the new discovery, but provided no more than tantalizing hints at what is going on in their experiments.

  8. Tradeoffs in Flight Design Upset Mitigation in State of the Art FPGAs: Hardened by Design vs. Design Level Hardening

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Roosta, Ramin

    2004-01-01

    This presentation compares and contrasts the effectiveness and the system/designer impacts of the two main approaches to upset hardening: the Actel approach (RTSX-S and RTAX-S) of low-level (inside each flip-flop) triplication and the Xilinx approach (Virtex and Virtex2) of design-level triplication of both functional blocks and voters. The effectiveness of these approaches is compared using measurements made in conjunction with each of the FPGAs' manufacturer: for Actel, published data [1] and for Xilinx, recent results from the Xilinx SEE Test Consortium (note that the author is an active and founding member). The impacts involve Actel advantages in the areas of transistor-utilization efficiency and minimizing designer involvement in the triplication while the Xilinx advantages relate to the ability to custom tailor upset hardness and the flexibility of re-configurability. Additionally, there are currently clear Xilinx advantages in available features such as the number of I/O's, logic cells, and RAM blocks as well as speed. However, the advantage of the Actel anti-fuses for configuration over the Xilinx SRAM cells is that the latter need additional functionality and external circuitry (PROMs and, at least a watchdog timer) for configuration and configuration scrubbing. Further, although effectively mitigated if done correctly, the proton upset-ability of the Xilinx FPGAs is a concern in severe proton-rich environments. Ultimately, both manufacturers' upset hardening is limited by SEFI (single-event functional interrupt) rates where it appears the Actel results are better although the Xilinx Virtex2-family result of about one SEFI in 65 device-years in solar-min GCR (the more intense part of the galactic cosmic-ray background) should be acceptable to most missions

  9. Cold Lithium Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Cassella, Kayleigh; Copenhaver, Eric; Lai, Chen; Hamilton, Paul; Estey, Brian; Feng, Yanying; Mueller, Holger

    2015-05-01

    Atom interferometers often use heavy alkali atoms such as rubidium or cesium. In contrast, interferometry with light atoms offers a larger recoil velocity and recoil energy, yielding a larger interference signal. This would allow for sensitive measurements of the fine structure constant, gravity gradients and spatially varying potentials. We have built the first light-pulse cold-atom interferometer with lithium in a Mach-Zehnder geometry based on short (100 ns), intense (2.5 W/cm2) pulses. We initially capture approximately 107 lithium atoms at a temperature of about 300 ?K in a magneto-optical trap. To perform interferometry, we couple the F = 1 and F = 2 hyperfine levels of the ground state with a sequence of two-photon Raman transitions, red-detuned from lithium's unresolved 2P3/2 state. Cold lithium atoms offer a broad range of new possibilities for atom interferometry including a large recoil velocity and a fermionic and bosonic isotope. Lithium's isotopes also allow for independent measurements of gravity thus constraining the equivalence principle violations predicted by the Standard-Model Extension. In the near future, we plan to perform a recoil measurement using a Ramsey-Bord interferometer.

  10. Melt-spun precipitation-hardened Sm2(Co, Cu, Fe, Zr)17 magnets with abnormal temperature dependence of coercivity

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kleinschroth, I.; Sigle, W.; Kronmller, H.

    2000-02-01

    Rapidly quenched Sm(CobalCu0.08Fe0.22Zr0.02)8.5 (Cu-/Fe-rich) and Sm(CobalCu0.05Fe0.10Zr0.03)8.5 (Cu-/Fe-poor) ribbons have been prepared by means of the melt-spinning technique. By applying an appropriate annealing procedure a microstructure similar to that of sintered magnets can be obtained. The energy dispersive x-ray microanalysis of the compositional dependence near the cell boundaries suggests a model for the profile of the crystal anisotropy constants responsible for the magnetic hardening. The Cu-/Fe-rich alloy shows a normal temperature dependence of coercivity with a negative temperature coefficient, but the Cu-/Fe-poor ribbons show a positive temperature coefficient in the temperature range from 400-700 K. The different temperature coefficients are discussed in terms of a pinning model.

  11. Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.

    PubMed

    Mondjar, Irene; Martnez-Martnez, Irene; Avils, Manuel; Coy, Pilar

    2013-09-01

    Oviduct fluid increases the time required for digestion of the zona pellucida (ZP) by proteolytic enzymes (ZP hardening). This effect has been associated with levels of monospermy after in vitro fertilization (IVF) in the pig and cow, but the possible existence of a directly proportional relationship between hardening and monospermy remains unknown. To investigate whether variations in hardening of different oviductal fluids (OFs) are correlated with variations in levels of monospermy after IVF, porcine oocytes were incubated with three batches of OFs known to produce different ZP hardening effects (3, 7, and 25 min); after IVF, monospermy levels were 0%, 14.58% 5.14%, and 35.14% 7.95%, respectively. These results could partially explain the lack of polyspermy found during in vivo fertilization in pigs (with a hardened oviductal ZP) compared with levels found during IVF (with no hardened ZP). Using the bovine model, OF was fractionated by heparin affinity chromatography, and the hardening effect on the ZP was tested for each fraction obtained from a linear gradient of sodium chloride concentration. The highest effect was obtained with the fraction eluted with 0.4 M sodium chloride. Fractions with high-level or low-level effects were processed by on-chip electrophoresis and high-performance liquid chromatography-tandem mass spectrometry. A list of potential proteins responsible for this effect includes OVGP1 and members of the HSP and PDI families. PMID:23863406

  12. Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Bertin, Nicolas; Capolungo, Laurent

    2015-08-01

    Irradiation hardening in -iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.

  13. On the Mechanisms of Different Work-Hardening Stages in Twinning-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Huang, Ming Xin

    2015-11-01

    The detailed work-hardening behaviors of two twinning-induced plasticity (TWIP) steels with and without Al addition are investigated. The work-hardening rate curves of both TWIP steels can be divided into three stages. The dominant work-hardening mechanism is different at different stages. Dynamic strain aging (DSA) is responsible for the high work-hardening rate at the very beginning of the first stage for the TWIP steel without Al, but the DSA's contribution is not significant in the TWIP steel with Al. However, DSA may only play a dominant role at the early plastic deformation. For the strain higher than 3 pct in the first stage, the difference of work-hardening rate between the two TWIP steels becomes smaller. This suggests that the main work-hardening mechanism in the first stage changes to the multiplication of dislocations at strains higher than 3 pct in TWIP steel without Al. The increase of work-hardening rate in the second stage is mainly due to the formation of deformation twins in both TWIP steels. Nevertheless, comparing to the TWIP steel without Al, TWIP steel with Al shows a lower work-hardening rate at the second stage. This is due to the fact that the addition of Al increases the critical twinning stress, resulting in a lower twinning capability. Deformation twin plays a more and more important role on the work-hardening with the increase of strain in the second stage due to the increase of twin volume fraction with strain. It is found that, except being obstacles to the dislocation glide, deformation twins can also act as a new source of the emission of partial dislocations. Furthermore, it is also found that dislocations can transmit across the twin boundary and be stored in the twins, implying that deformation twins can also accommodate local strains.

  14. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset (SEU) and Single Event Latch-up (SEL) rates. Although less significant, spacecraft flying in the area around the poles experience similar upsets. Finally, powerful solar proton events in the range of 10MeV/10pfu to 100MeV/1pfu as are forecasted and tracked by NOAA's Space Environment Center in Colorado can result in Single Event Upset (SEU), Single Event Latch-up (SEL) and permanent failures such as Single Event Gate Rupture (SEGR) in some technologies. (Galactic Cosmic Rays (GCRs) are another source, especially for gate rupture) CALIPSO mitigates common radiation concerns in its data handling through the use of redundant processors, radiation-hardened Application Specific Integrated Circuits (ASIC), hardware-based Error Detection and Correction (EDAC), processor and memory scrubbing, redundant boot code and mirrored files. After presenting a system overview this paper will expand on each of these strategies. Where applicable, related on-orbit data collected since the CALIPSO initial boot on May 4, 2006 will be noted.

  15. Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.).

    PubMed

    Szechyńska-Hebda, Magdalena; Wąsek, Iwona; Gołębiowska-Pikania, Gabriela; Dubas, Ewa; Żur, Iwona; Wędzony, Maria

    2015-04-01

    The breeding for resistance against fungal pathogens in winter triticale (Triticosecale Wittm.) continues to be hindered by a complexity of the resistance mechanisms, strong interaction with environmental conditions, and dependence on the plant genotype. We showed, that temperature below 4 °C induced the plant genotype-dependent resistance against the fungal pathogen Microdochium nivale. The mechanism involved, at least, the adjustment of the reactions in the PSII proximity and photoprotection, followed by an improvement of the growth and development. The genotypes capable to develop the cold-induced resistance, showed a higher maximum quantum yield of PSII and a more efficient integration of the primary photochemistry of light reactions with the dark reactions. Moreover, induction of the photoprotective mechanism, involving at least the peroxidases scavenging hydrogen peroxide, was observed for such genotypes. Adjustment of the photosynthesis and stress acclimation has enabled fast plant growth and avoidance of the developmental stages sensitive to fungal infection. The same mechanisms allowed the quick regrow of plants during the post-disease period. In contrast, genotypes that were unable to develop resistance despite cold hardening had less flexible balancing of the photoprotection and photoinhibition processes. Traits related to: photosynthesis-dependent cold-acclimation and cold-induced resistance; biomass accumulation and growth; as well as protection system involving peroxidases; were integrated also at a genetic level. Analysing 95 lines of the mapping population SaKa3006×Modus we determined region on chromosomes 5B and 7R shared within all tested traits. Moreover, similar expression pattern of a set of the genes related to PSII was determined with the metaanalysis of the multiple microarray experiments. Comparable results for peroxidases, involving APXs and GPXs and followed by PRXs, indicated a similar function during cold acclimation and defense responses. These data provide a new insight into the cross talk between cold acclimation and cold-induced resistance in triticale, indicating a key role of photosynthesis-related processes. PMID:25666539

  16. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  17. Hardening/finishing treatment of compressor blades using a machine with planetary container motion

    NASA Astrophysics Data System (ADS)

    Shpatakovskii, A. F.

    A process for the hardening and finishing of high-pressure compressor blades for aircraft powerplants is described whereby the blades are placed in containers that move along a planetary path in a hardening medium consisting of steel balls. The extent of surface hardening, surface roughness, and residual stresses are determined for specimens of U8A steel and blades of EP718VD alloy treated under different conditions. The efficiency of the treatment in terms of increased blade durability and productivity is estimated.

  18. NINJA: a noninvasive framework for internal computer security hardening

    NASA Astrophysics Data System (ADS)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive scans with an adequate framework performed on a daily basis reduce the amount of security work load as well as the timeliness in performing remediation, as verified by the NINJA framework. A vulnerability assessment/auditing architecture based on mobile agent technology is proposed and examined at the end of the article as an enhancement to the current NINJA architecture.

  19. Cold isopressing method

    DOEpatents

    Chen, Jack C. (Getzville, NY); Stawisuck, Valerie M. (North Tonawanda, NY); Prasad, Ravi (East Amherst, NY)

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  20. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  1. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  2. Freezing cold injury.

    PubMed

    Granberg, P O

    1991-01-01

    The pathogenesis of freezing cold injuries (FCI) is not yet entirely understood. Two possible hypothesis emerge: 1) Injury is a direct result of cryogenic insult to the cells. 2) Injury is secondary to vascular stasis which leads to anoxia. In clinical congelatio ice crystallization takes place in the EC-space. When water is transformed into ice, the osmolality in this compartment will increase leading to a passive diffusion of water from the IC-space. Cell dehydration modifies protein structure, alters membrane lipids and cellular pH leading to destructions incompatible with cell survival. Cold induces vasoconstriction of both arterioles and venules, which enhances peripheral filtration and raises plasma viscosity. The stability of red corpuscle aggregates increases and showers of emboli course microvessels. Finally progressive thrombosis will end up in anoxia. The indirect vascular effect has earlier been interpreted similar to that found in non-freezing injuries. Recent studies have, however, shown, that endothelial cells are very sensitive to freezing. The rheologic part of the pathogenesis therefore also seems to depend on a direct injury to cells. The development of FCI does not always depend on ambient temperature and duration of exposure but more to the heat loss subjected to exposed skin. Wind chill, humidity and wetness are all of significance in this matter. From a clinical point of view FCI are best subdivided into superficial and deep injuries. The superficial frostbite is limited to the skin and nearest subcutaneous tissue. A stringing, pinching pain is often the first symptom. The affected area becomes pale or waxy-white and numb.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1811585

  3. Influence of grain structure and solute composition on the work hardening behavior of aluminium at cryogenic temperatures

    SciTech Connect

    Chu, D.; Morris, J.W. Jr.

    1993-07-01

    An unrecrystallized structure is found to significantly improve the work hardening characteristics by lowering the work hardening rate during early stages of deformation. This is in contrast to a recrystallized structure, which requires a higher work hardening rate to accommodate the greater degree of multiple slip necessary to maintain strain compatibility between the more randomly oriented grains. The stronger texture associated with the unrecrystallized structure allows deformation to occur more efficiently. Addition of magnesium also improves work hardening by increasing overall level of the work hardening rate. The improved characteristics of the work hardening behavior result in a parallel increase in both the strength and ductility at cryogenic temperatures. These findings are positive since they suggest a method by which improvements in the work hardening behavior and subsequent mechanical properties may be obtained through practical modifications of the microstructure and composition.

  4. Switchable hardening of a ferromagnet at fixed temperature

    PubMed Central

    Silevitch, D. M.; Aeppli, G.; Rosenbaum, T. F.

    2010-01-01

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above. PMID:20133728

  5. The structural dependence of work hardening in low carbon steels

    SciTech Connect

    Johnson, P.E.

    1991-12-01

    The influence of the dislocation cell structure on the work hardening behavior of low carbon steel sheets was investigated. Specimens were prestrained at low temperature to suppress cell formation and their subsequent behavior was compared with results of isothermal reference tests. It was found that the extent of cell development has little or no influence on the plastic behavior at room temperature and below. Interrupted temperature, tensile-shear tests demonstrated further that the transient behavior induced by loading path changes is also not strongly associated with the cell walls. In-situ straining studies indicate that the factor controlling the flow stress at room temperature is the limited mobility of screw dislocations moving the cell interiors, and not dislocation interactions with the cell walls. The unique properties of a/2<111> screw dislocations are known to dominate low temperature deformation behavior in bcc metals. The current work indicates that these dislocations may still control the flow stress at intermediate temperatures, even in the presence of a developed cell structure.

  6. The origins of high hardening and low ductility in magnesium.

    PubMed

    Wu, Zhaoxuan; Curtin, W A

    2015-10-01

    Magnesium is a lightweight structural metal but it exhibits low ductility-connected with unusual, mechanistically unexplained, dislocation and plasticity phenomena-which makes it difficult to form and use in energy-saving lightweight structures. We employ long-time molecular dynamics simulations utilizing a density-functional-theory-validated interatomic potential, and reveal the fundamental origins of the previously unexplained phenomena. Here we show that the key ?c + a? dislocation (where ?c + a? indicates the magnitude and direction of slip) is metastable on easy-glide pyramidal II planes; we find that it undergoes a thermally activated, stress-dependent transition to one of three lower-energy, basal-dissociated immobile dislocation structures, which cannot contribute to plastic straining and that serve as strong obstacles to the motion of all other dislocations. This transition is intrinsic to magnesium, driven by reduction in dislocation energy and predicted to occur at very high frequency at room temperature, thus eliminating all major dislocation slip systems able to contribute to c-axis strain and leading to the high hardening and low ductility of magnesium. Enhanced ductility can thus be achieved by increasing the time and temperature at which the transition from the easy-glide metastable dislocation to the immobile basal-dissociated structures occurs. Our results provide the underlying insights needed to guide the design of ductile magnesium alloys. PMID:26390153

  7. Radiation hardening of CMOS-based circuitry in SMART transmitters

    SciTech Connect

    Loescher, D.H. )

    1993-02-01

    Process control transmitters that incorporate digital signal processing could be used advantageously in nuclear power plants; however, because such transmitters are too sensitive to radiation, they are not used. The Electric Power Research Institute sponsored work at Sandia National Laboratories under EPRI contract RP2614-58 to determine why SMART transmitters fail when exposed to radiation and to design and demonstrate SMART transmitter circuits that could tolerate radiation. The term SMART'' denotes transmitters that contain digital logic. Tests showed that transmitter failure was caused by failure of the complementary metal oxide semiconductors (CMOS)-integrated circuits which are used extensively in commercial transmitters. Radiation-hardened replacements were not available for the radiation-sensitive CMOS circuits. A conceptual design showed that a radiation-tolerant transmitter could be constructed. A prototype for an analog-to-digital converter subsection worked satisfactorily after a total dose of 30 megarads(Si). Encouraging results were obtained from preliminary bench-top tests on a dc-to-dc converter for the power supply subsection.

  8. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  9. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  10. Magnetic hardening of Fe30Co70 nanowires.

    PubMed

    Viñas, Sara Liébana; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-16

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips. PMID:26404670

  11. Magnetic hardening of Fe30Co70 nanowires

    NASA Astrophysics Data System (ADS)

    Liébana Viñas, Sara; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M.; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-01

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

  12. Work Hardening Behavior in Steel with Multiple TRIP Mechanisms

    NASA Astrophysics Data System (ADS)

    McGrath, M. C.; Van Aken, D. C.; Medvedeva, N. I.; Medvedeva, J. E.

    2013-10-01

    Transformation-induced plasticity (TRIP) behavior was studied in steel with the composition Fe-0.07C-2.85Si-15.3Mn-2.4Al-0.017N that exhibited two TRIP mechanisms. The initial microstructure consisted of both ?- and ?-martensites with 27 pct retained austenite. TRIP behavior in the first 5 pct strain was predominately austenite transforming to ?-martensite (Stage I), but upon saturation of Stage I, the ?-martensite transformed to ?-martensite (Stage II). Alloy segregation also affected the TRIP behavior with alloy-rich regions producing TRIP just prior to necking. This behavior was explained by first-principles calculations which revealed that aluminum significantly affected the stacking fault energy in Fe-Mn-Al-C steels by decreasing the unstable stacking fault energy and promoting easy nucleation of ?-martensite. The addition of aluminum also raised the intrinsic stacking fault energy and caused the ?-martensite to be unstable and transform to ?-martensite under further deformation. The two-stage TRIP behavior produced a high strain hardening exponent of 1.4 and led to an ultimate tensile strength of 1165 MPa and elongation to failure of 35 pct.

  13. Hardening by bubbles in He-implanted Ni

    SciTech Connect

    Knapp, J. A.; Follstaedt, D. M.; Myers, S. M.

    2008-01-01

    Detailed finite-element modeling of nanoindentation data is used to obtain the mechanical properties of Ni implanted with 1-10 at. % He. The mechanical properties of this material elucidate the fundamental materials science of dislocation pinning by nanometer-size gas bubbles and also have implications for radiation damage of materials. Cross-section transmission electron microscopy showed that implantation of 1-5 at. % He at room temperature or at 200 deg. C produced a highly damaged layer extending to a depth of 700-800 nm and containing a fine dispersion of He bubbles with diameters of 1.1{+-}0.2 nm. Implantation at 500 deg. C enlarged the bubble sizes. By fitting the nanoindentation data with a finite-element model that includes the responses of both the implanted layer and the unimplanted substrate in the deformation, the Ni(He) layers are shown to have hardnesses as much as approximately seven times that of untreated Ni, up to 8.3{+-}0.6 GPa. Examination of the dependence of yield strength on He concentration, bubble size, and bubble density reveals that an Orowan hardening mechanism is likely to be in operation, indicating that the bubbles pin dislocation motion as strongly as hard second-phase precipitates do. This strong pinning of dislocations by bubbles is also supported by our numerical simulations, which show that substantial applied shear stress is required to move a dislocation through an empty cavity.

  14. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  15. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  16. The origins of high hardening and low ductility in magnesium

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoxuan; Curtin, W. A.

    2015-10-01

    Magnesium is a lightweight structural metal but it exhibits low ductility--connected with unusual, mechanistically unexplained, dislocation and plasticity phenomena--which makes it difficult to form and use in energy-saving lightweight structures. We employ long-time molecular dynamics simulations utilizing a density-functional-theory-validated interatomic potential, and reveal the fundamental origins of the previously unexplained phenomena. Here we show that the key dislocation (where indicates the magnitude and direction of slip) is metastable on easy-glide pyramidal II planes; we find that it undergoes a thermally activated, stress-dependent transition to one of three lower-energy, basal-dissociated immobile dislocation structures, which cannot contribute to plastic straining and that serve as strong obstacles to the motion of all other dislocations. This transition is intrinsic to magnesium, driven by reduction in dislocation energy and predicted to occur at very high frequency at room temperature, thus eliminating all major dislocation slip systems able to contribute to c-axis strain and leading to the high hardening and low ductility of magnesium. Enhanced ductility can thus be achieved by increasing the time and temperature at which the transition from the easy-glide metastable dislocation to the immobile basal-dissociated structures occurs. Our results provide the underlying insights needed to guide the design of ductile magnesium alloys.

  17. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  18. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  19. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  20. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  1. Analysis of structure and phase composition of rails subjected to differential hardening at different regimes

    SciTech Connect

    Gromov, V. E. Morozov, K. V. Konovalov, S. V.; Alsaraeva, K. V.; Semina, O. A.; Ivanov, Yu. F.; Volkov, K. V.

    2014-11-14

    Differential hardening of rails by compressed air in different regimes is accompanied by formation of morphologically different structure, being formed according to the diffusion mechanism of ??? transformation and consisting of grains of lamellar pearlite, free ferrite and grains of ferrite-carbide mixture. By methods of transmission electron microscopy the layer by layer analysis of differentially hardened rails has been carried out, the quantitative parameters of the structure, phase composition and dislocation substructure have been established and their comparison has been made for different regimes of hardening. It has been found that the structure-phase states being formed have gradient character, defined by the hardening regime, direction of study from the surface of rolling and by depth of location of layer under study.

  2. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    SciTech Connect

    Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.

    2005-08-05

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  3. Studies on SEE Characteristic and Hardening Techniques of CMOS SRAM with Sub-micro Feature Sizes

    NASA Astrophysics Data System (ADS)

    Xing-Hua, He; Cong, Zhang; Yong-Liang, Zhang; Huan-Zhang, Lu

    The single event effects (SEE) characteristic and hardening techniques of CMOS SRAM with sub-micron feature size are studied in the paper. After introducing the relationship SEE with the structure of memory cell, the rate of read-write, the feature sizes and the power supply, the SEE hardening techniques for the COMS SRAM are given from tow aspect: device-level hardening techniques and system-level hardening techniques. Finally, an error detection and correction (EDAC) design based on high reliability anti-fused FPGA is presented, this design has special real-time performance and high reliability, and has been adopted in a space-bone integrated processor platform, which works well in all kinds of environmental experiments.

  4. Beam-hardening correction method based on original sinogram for X-CT

    NASA Astrophysics Data System (ADS)

    Jian, Fu; Hongnian, Lu

    2006-01-01

    Beam hardening caused by the polychromatic spectrum is an important problem in X-ray computed tomography (X-CT). It leads to various artifacts in reconstruction images and reduces image quality. A correction method for beam hardening, involving simple operations of the original polychromatic projection sinogram, is here presented based on the analysis of three physics characteristics implied by beam hardening. Its correction principle has been deduced by two mathematical theorems. Excellent correction results have been obtained from computer simulations and CT scan experiments of two phantoms and aero-engine turbine blades. Beam-hardening artifacts are greatly reduced. This method has two outstanding advantages compared with the conventional method with the polynomial fit technique. First, it does not need a prior CT scan and the complex operations to create a correction model. Second, its validity is not limited by the composition of the scanned object and scan conditions.

  5. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    NASA Astrophysics Data System (ADS)

    Flores, P.; Duchne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  6. Cold agglutinin syndrome: nursing management.

    PubMed

    Donham, J A; Denning, V

    1985-01-01

    Although cold agglutinin syndrome rarely results in an acute hemolytic episode, consideration should be given to the potential problems that exist when cold agglutinins are present. This autoimmune response may be present in an acute or chronic form. Viral and bacterial infections, especially mycoplasma pneumonia, may precipitate acute CAS, whereas, chronic CAS may be idiopathic or associated with malignant lymphoma. Both acute and chronic CAS may result in RBC hemolysis as the IgM antibody reacts with the I-antigen on the RBC, setting the complement cascade into action. Therefore, screening for cold agglutinins should be done before any procedure that would introduce cold fluids into the body, e.g., blood transfusions and cold cardioplegia during coronary artery bypass surgery. PMID:3844005

  7. Hardening of the surface layers of a hollow billet formed by centrifugal casting

    NASA Astrophysics Data System (ADS)

    Chumanov, V. I.; Chumanov, I. V.; Anikeev, A. N.; Garifulin, R. R.

    2010-12-01

    One of the methods to increase the mechanical properties of steel is its hardening via the introduction of a refractory fine-grained phase into a melt. A method of fabrication of a tube blank by centrifugal casting accompanied by hardening with a refractory phase is considered. The introduction of fine tungsten and silicon carbides is shown to improve the structure of grade 15 steel and to increase the wear resistance of a tube blank made of this steel.

  8. Experimental and Numerical Investigation of Kinematic Hardening Behavior in Sheet Metals

    SciTech Connect

    Cheng, Hang Shawn; Lee, Wonoh; Cao Jian; Seniw, Mark; Wang Huiping; Chung, Kwansoo

    2007-04-07

    Characterization of material hardening behavior has been investigated by many researchers in the past decades. Experimental investigation of thin sheet metals under cyclic loading has become a challenging issue. A new test fixture has been developed to use with a regular tensile-compression machine (for example, MTS machine). Experimental results of tension-compression tests are presented followed by a review of existing testing methods. Numerical modeling of the tested data is presented using a new kinematic hardening model.

  9. Microstructural Peculiarities and Hardening of Nb After Mechanical Activation and Subsequent Consolidation by Torsion Under Pressure

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Denisov, K. I.; Tyumentsev, A. N.; Korchagin, M. A.; Korznikov, A. V.

    2014-11-01

    Results of investigation of the microstructural peculiarities and regularities of niobium hardening after combined deformation treatment including mechanical activation of the powder in a planetary ball mill and subsequent consolidation by torsion under pressure in Bridgman anvils are presented. The quantitative parameters of grain and defect structure of the examined material are determined in different deformation stages. The main factors determining the specifics of niobium hardening for the considered deformation treatment are discussed.

  10. Distinct Hardening Behavior of Ultrafine-Grained Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Kaka; Smith, Thale; Hu, Tao; Topping, Troy D.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-08-01

    The age-hardening response for ultrafine-grained, powder-metallurgy-consolidated aluminum 7091 was investigated for the first time. Peak hardening occurred after aging at 353 K (80 °C) for only 4 hours; further aging for up to 26 hours resulted in only slight fluctuations in hardness values. After the 4-hour aging, the precipitate population consists of a high density of nanoscale GP zones (diameter ~3 nm) and nanoscale η' phase (<30 nm); η phase is not present.

  11. Distinct Hardening Behavior of Ultrafine-Grained Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Kaka; Smith, Thale; Hu, Tao; Topping, Troy D.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-10-01

    The age-hardening response for ultrafine-grained, powder-metallurgy-consolidated aluminum 7091 was investigated for the first time. Peak hardening occurred after aging at 353 K (80 °C) for only 4 hours; further aging for up to 26 hours resulted in only slight fluctuations in hardness values. After the 4-hour aging, the precipitate population consists of a high density of nanoscale GP zones (diameter ~3 nm) and nanoscale η' phase (<30 nm); η phase is not present.

  12. Measuring the shrinkage of UV-hardenable composites based on acrylates and diacrylates

    NASA Astrophysics Data System (ADS)

    Smirnova, T. V.; Burunkova, Yu. É.; Denisyuk, I. Yu.

    2006-05-01

    This paper proposes a new method for the laboratory measurement of the shrinkage of UV-hardenable composites during polymerization. This method is used to investigate the shrinkage of UV-hardenable composites, as well as to study how the physical and chemical properties of polymers depend on the composition and ratio of the components in the composite. Recommendations are given for choosing the optimum formulations of composites for fabricating various optical elements based on them.

  13. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  14. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    NASA Astrophysics Data System (ADS)

    Nelyubova, V.; Pavlenko, N.; Netsvet, D.

    2015-11-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier.

  15. Exercise during intermittent cold exposure prevents acclimation to cold rats.

    PubMed Central

    Arnold, J; Richard, D

    1987-01-01

    1. Energy balance and brown adipose tissue growth were examined in four groups of male Wistar rats: (i) sedentary, living at 24 degrees C (warm), (ii) exercise-trained, 2 h daily, living at 24 degrees C, (iii) living at 24 degrees C but exposed to -5 degrees C, 2 h daily and (iv) living at 24 degrees C but exercise-trained while being exposed to -5 degrees C, 2 h daily. 2. Cold exposure during exercise training appeared to have little additional influence on body composition following 28 days of treatment; body mass gain, in addition to protein and fat gains, of exercised cold-exposed rats were similar to the gains observed in exercised warm-exposed control animals. However, in sedentary cold-exposed rats protein, fat and body mass gains were significantly lower than the gains measured in sedentary rats not exposed to cold. 3. Metabolizable energy intake, expressed mass-independently, was similar in sedentary warm-exposed rats and both groups of animals that were exercise-trained. Metabolizable energy intake was increased almost 15% in sedentary cold-exposed rats. 4. Energy expenditure (mass independent), excluding the net cost of exercise training, was not different in sedentary warm-exposed and exercised rats; energy expenditure was almost 20% higher in sedentary cold-exposed rats. 5. Total protein and deoxyribonucleic acid (DNA) contents of brown adipose tissue were more than doubled in sedentary rats exposed to cold; protein and DNA levels were similar among the other three groups of rats. 6. Treadmill running during daily, 2 h exposure at -5 degrees C appears to prevent the cold acclimation responses that occur in sedentary rats receiving similar cold exposure. PMID:3443942

  16. Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress

    SciTech Connect

    John Martin

    2002-02-19

    The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.

  17. Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments

    NASA Astrophysics Data System (ADS)

    Veerababu, R.; Balamuralikrishnan, R.; Muraleedharan, K.; Srinivas, M.

    2015-06-01

    Clusters, containing between 10 and 1000 atoms, have been investigated in a martensitic secondary hardening ultra-high-strength steel austenitized at 1173 K (900 C) for 1 hour and tempered at either 768 K or 783 K (495 C or 510 C) for 4 or 8 hours using 3D atom probe. The presence of clusters was unambiguously established by comparing the observed spatial distribution of the different alloying elements against the corresponding distribution expected for a random solid solution. Maximum separation envelope method has been used for delineating the clusters from the surrounding "matrix." Statistical analysis was used extensively for size and composition analyses of the clusters. The clusters were found to constitute a significant fraction accounting for between 1.14 and 2.53 vol pct of the microstructure. On the average, the clusters in the 783 K (510 C) tempered sample were coarser by ~65 pct, with an average diameter of 2.26 nm, relative to the other samples. In all samples, about 85 to 90 pct of the clusters have size less than 2 nm. The percentage frequency histograms for carbon content of the clusters in 768 K and 783 K (495 C and 510 C) tempered samples revealed that the distribution shifts toward higher carbon content when the tempering temperature is higher. It is likely that the presence of these clusters exerts considerable influence on the strength and fracture toughness of the steel.

  18. Studies on the Work-Hardening Behavior of AA2219 under Different Aging Treatments

    NASA Astrophysics Data System (ADS)

    Sharma, V. M. J.; Sree Kumar, K.; Nageswara Rao, B.; Pathak, S. D.

    2009-12-01

    Uniaxial tensile tests were performed to examine the influence of the precipitation state on the yield strength and work-hardening behavior of AA2219 for different aging treatments. The microstructural observations in four aging treatments ( viz. natural aging, underaging, peak aging, and overaging) were made through transmission electron microscopy (TEM) to understand the type of phase or intermediate stages of the phase present (Guinier-Preston (GP) zones, ??, ?', and ?). To characterize the work-hardening behavior, the analysis of the experimental results has focused on two parameters, viz. the initial work-hardening rate ?max (? d?/ d?) and the slope ( d?/ d?) of the ?- ? plot, which is related to the rate of dynamic recovery. The initial work-hardening rate (?max) first drops as aging proceeds and then increases significantly upon overaging. The large increase in ?max is also associated with a concomitant increase in the slope ( d?/ d?) of the ?- ? curve. The material constants in the differential equation for the dislocation density are evaluated and flow stress vs plastic strain curves are generated using the flow stress contributions from the solid-solution, dislocation, and precipitation hardening. The model predictions are found to be in excellent agreement with the experimental data for a range of precipitation states from underaged (UA) to overaged (OA) conditions. Curves of flow stress due to dislocation hardening with the plastic strain were also generated in the presence of shearable and nonshearable precipitates.

  19. Microstructural Evolution of the 55 Wt Pct Al-Zn Coating During Press Hardening

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; De Cooman, Bruno Charles

    2014-09-01

    Press hardening is increasingly being used to produce ultra-high strength steel parts for passenger cars. Al-Si, Zn, and Zn-alloy coatings have been used to provide corrosion protection to press hardening steel grades. The use of coatings has drawbacks such as coating delamination or liquid metal-induced embrittlement. In the present work, the microstructural evolution of Al-Zn coating during press hardening was studied. The 55 wt pct Al-Zn coating can in principle provide both Al barrier protection and Zn cathodic protection to press hardened steel. During the heat treatment associated with the press hardening, the 55 wt pct Al-Zn alloy coating is converted to an intermetallic surface layer of Fe2Al5 and a FeAl intermetallic diffusion layer. The Zn is separated from both intermetallic compounds and accumulates at grain boundaries and at the surface. This Zn separation process is beneficial in terms of providing cathodic protection to Al-Zn coated press hardening steel.

  20. Induction of a Hardening Phenomenon and Quantitative Changes of Ceramides in Stratum Corneum

    PubMed Central

    Park, Sook Young; Kim, Jin Hye; Cho, Soo Ick; Kim, Kyeong Il; Cho, Hee Jin; Park, Chun Wook; Lee, Cheol Heon

    2014-01-01

    Background Hardening phenomenon of human skin after repeated exposure to the irritants is well-known, but the precise mechanism remains elusive. Objective To modify the previous experimental model of hardening phenomenon by repeated applications of two different concentrations of sodium lauryl sulfate (SLS) solutions to Korean healthy volunteers and to investigate the quantitative changes of ceramides in stratum corneum before and after chronic repeated irritation. Methods Eight hundred microliters of distilled water containing 0.1% and 2% SLS was applied for 10 minutes on the forearm of 41 healthy volunteers for 3 weeks. After an intervening 3-week rest, 24-hour patch tests with 1% SLS were conducted on previously irritated sites. Transepidermal water loss (TEWL), erythema index and quantity of ceramide were measured in the stratum corneum before and after irritation. Results TEWL values on the sites preirritated with 2% SLS were lower than those with 0.1% SLS. Hardening phenomenon occurred in 24 volunteers at day 44. The changes in ceramide levels were not significantly higher in the hardened skin than in the non-hardened skin. Conclusion Repetitive stimulation with a higher concentration of SLS can more easily trigger skin hardening. PMID:24648684

  1. Deformation and strain hardening of different steels in impact dominated systems

    SciTech Connect

    Rojacz, H.; Mozdzen, G.; Winkelmann, H.

    2014-04-01

    Strain hardening is a common technique to exploit the full potential of materials in diverse applications. Single impact studies were performed to evaluate work hardening effects of different steels, correlated to their deformation at different energy and momentum levels. Three different steels were examined regarding their forming behavior and their tendency to strain harden in impact loading conditions, revealing different intensities of hardness increase, deformation and coinciding microstructural changes. Detailed studies in the deformed zone such as micro hardness mappings were performed to reveal the materials hardness increase in the deformed zones. Additionally high resolution scanning electron microscopy (HRSEM) supported by electron backscatter diffraction (EBSD) was used to determine microstructural changes. Results indicate, that the influence of different velocities/strain rates at constant energy levels cannot be neglected for the strain hardening behavior of steels and provide data for a better control of the hardness increase in impact dominated materials fabrication operations. - Highlights: • Deformation and strain hardening behaviour of three different steels. • Influence of impact energies and momenta on the strain hardening. • Hardness increase and depth controllable by momentum and energy.

  2. Study on the Influence of the Work Hardening Models Constitutive Parameters Identification in the Springback Prediction

    SciTech Connect

    Oliveira, M.C.; Menezes, L. F.; Alves, J.L.; Chaparro, B.M.

    2005-08-05

    The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the 'Benchmark 3' of the Numisheet'2005 Conference: the 'Channel Draw'. Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaitre and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of 'Deep Drawing 3-D IMPlicit code')

  3. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse simulations. Overall, the properties of CDM halos are broadly consistent with the properties of dark halos derived from the observations of galaxies.

  4. Precipitation of quasicrystalline phase in rapidly solidified Al-Mn-Zr alloys

    SciTech Connect

    Ohashi, T.; Dai, L.; Fukatsu, N.; Miwa, K.

    1986-09-01

    It is well known that the limiting equilibrium concentration of manganese in aluminum can be extended markedly by rapid solidification. Various metastable precipitates have been also found in this alloy, namely G (2), G', G'',. In addition to these phases, others have reported recently the presence of a less stable phase, designated T, in Al-5 wt% Mn foils following short annealing periods. T phase is now of interest because of the striking resemblance of electron diffraction patterns to those obtained from a quasicrystalline phase having icosahedral point group symmetry, which is formed in the rapidly solidified Al-15approx. =35 wt% Mn alloys. In recent work on the precipitation characteristics of rapidly solidified Al-7 wt% Mn- 1 wt% Zr alloys, it has been shown that appreciable precipitation hardening takes place during annealing at temperatures between 350approx. =450/sup 0/C. In these cases, the Mn enhanced the precipitation hardening since the increase in hardening was about two times as much as that of the Al-1 wt% Zr alloys under the optimum conditions of temperature and Mn content. The results of X-ray diffraction analyses and TEM observations suggested that principal precipitate attributing to the hardening was a pseudomorphous phase of the equilibrium Al/sub 6/Mn. However, there remain to be explored many problems including more exact structural information about the phase. In the present paper the authors report preliminary studies of the structure of the precipitate phase and propose the age hardening of the Al-7 wt% Mn-1 wt% Zr alloys to be induced by the precipitate similar to a quasicrystalline phase that appears in rapidly solidified Al-Mn alloys containing a large amount of Mn. The study was mainly performed using conventional transmission electron microscopy and selected area diffraction.

  5. Rapid weight loss

    MedlinePLUS

    ... loss-rapid weight loss; Overweight-rapid weight loss; Obesity-rapid weight loss; Diet-rapid weight loss ... for people who have health problems because of obesity. For these people, losing a lot of weight ...

  6. Cough and Cold Medicine Abuse (For Parents)

    MedlinePLUS

    ... cold medicine. Why Do Kids Abuse Cough and Cold Remedies? Before the U.S. Food and Drug Administration (FDA) ... out not only for traditional-looking cough and cold remedies in your teen's room, but also strange-looking ...

  7. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy. PMID:22149075

  8. Work hardening for a client with low back pain.

    PubMed

    Callahan, D K

    1993-07-01

    The rehabilitation of this client with chronic back pain was successful secondary to the efforts of her entire medical team. As demonstrated by the termination letter written by the employer when the client's medical leave exceeded 1 year, this client could not have returned to her former position without work hardening. With implementation of the Americans With Disabilities Act, changes in such employer policies might be forthcoming. The occupational therapy principles of activity analysis (Trombly & Scott, 1977) and the therapeutic acceptance of gradual gains in functional abilities contributed to her resumption of both work and nonwork tasks. Although enrolled in a work program, this client was not viewed as simply a worker. The examination and treatment of her life tasks as a parent and homemaker outside her worker role was a crucial aspect of her program (Kielhofner, 1985). It was obvious to her treatment team that the largest gains occurred when the client realized she was capable of performance despite back discomfort. The foundation for return to work was laid when the client set her own goal of working the third shift. The client did not acquiesce to a therapist's goal; she actively formulated her own. Typically, a client with chronic low back pain, a history of knee problems, and an absence from work of more than 1 year has a low probability of successful rehabilitation and return to work (Isernhagen, 1988). Yet this woman was able to overcome those obstacles to return to both work and a more active life-style.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8322886

  9. BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap

    NASA Technical Reports Server (NTRS)

    Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard

    2006-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.

  10. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  11. Nonfreezing cold-induced injuries.

    PubMed

    Imray, C H E; Richards, P; Greeves, J; Castellani, J W

    2011-03-01

    Non-freezing cold injury (NFCI) is the Cinderella of thermal injuries and is a clinical syndrome that occurs when tissues are exposed to cold temperatures close to freezing point for sustained periods. NFCI is insidious in onset, often difficult to recognize and problematic to treat, and yet the condition accounts for significant morbidity in both military and civilians who work in cold conditions. Consequently recognition of those at risk, limiting their exposure and the appropriate and timely use of suitable protective equipment are essential steps in trying to reduce the impact of the condition. This review addresses the issues surrounding NFCI. PMID:21465916

  12. Warm Occlusions, Cold Occlusions, and Forward-Tilting Cold Fronts.

    NASA Astrophysics Data System (ADS)

    Stoelinga, Mark T.; Locatelli, John D.; Hobbs, Peter V.

    2002-05-01

    a better understanding of forwardtilting cold fronts, including cold fronts aloft in the central United States.The static stability rule, and its implications for occluded and other frontal structures, suggests that greater emphasis be placed on the effects of horizontally nonuniform static stability in theoretical and modeling studies of frontogenesis, frontal interactions, and the occlusion process-an emphasis that has been largely absent from such studies in the past.

  13. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2015-02-01

    This investigation deals with the evaluation of structural and mechanical behavior of deformed (10% and 20% cold work) and annealed (at 1050C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs). The microstructure was observed by optical micrograph and the mechanical properties were determined by macrohardness and tensile tests. Both stress strain behavior and work hardening behavior were evaluated. HNSs have smaller grain size as compared to low nitrogen steels and no formation of martensite was observed after 20% cold working. Further, it was found that hardness; yield strength and ultimate tensile strength of the steels linearly increases and elongation decreased with nitrogen content and degree of cold working. The strength coefficient was observed to be higher for the high nitrogen steels; it decreased to some extent with degree of cold working. The work hardening exponent was also observed to decrease with degree of cold working. Influence of nitrogen on mechanical properties was mainly related to its effect on solid solution strengthening. X-ray diffraction analysis of annealed as well as deformed alloys further confirmed no evidence for formation of martensite or any other secondary phases. SEM fractography of the annealed and deformed samples after tensile tests indicates predominantly ductile fracture in all specimens. PMID:25492189

  14. Recognition and treatment of freezing and nonfreezing cold injuries.

    PubMed

    Ingram, Benjamin J; Raymond, Tyler J

    2013-01-01

    This article reviews recent medical literature to provide an overview of the recognition and treatment of the two broad categories of cold injuries, freezing and nonfreezing. Frostbite, a freezing cold injury, is treated traditionally with rapid rewarming followed by tissue care and surgical debridement of necrotic tissue. Recently, newer therapies aimed at prevention of tissue necrosis have shown improved outcomes compared with more traditional therapies. These newer treatment regimens for frostbite include the use of various drugs such as ibuprofen, aspirin, warfarin, tissue plasminogen activator, and prostacyclin. The use of Tc bone scans, magnetic resonance imaging arthrogram, or angiography may have prognostic value for early determination of the extent of tissue loss. The more common nonfreezing cold injuries, though less severe than frostbite, may lead to short- and long-term complications requiring treatment and are discussed also. PMID:23478565

  15. Photosynthetic microorganisms in cold environments

    NASA Astrophysics Data System (ADS)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    The polar regions are considered as a model of extraterrestrial ecosystems. Depending on the average temperature, temperature variation and water availability, these conditions could be used as a model of Mars or Europa (e.g. (Elster and Benson, 2004). Two cases are presented: 1) Stable temperature and water availability The environment of cryosestic communities, i.e. organisms living in snow, is characterized by very stable temperature; the diurnal variations do not exceed 1 -2 ° C (Kváderová, 2010) and a are not usually exposed to freeze/thaw. Water is not usually limiting since the water content could reach up to 54 % (Nedbalová et al., 2008). The windblown sediments are important a source of nutrient and could provide protection against the excess of radiation. The nutrient concentrations in the snow are low are depleted rapidly when massive algal blooms forms. Such environment could be found near Mars polar caps or in Europa ice cover. The snow algae are the most important primary producers in snow. Their adaptation strategy is dependent on the developmental stages; the motile stages avoid the harsh conditions (e.g. high light) and sessile stages acclimatize to actual conditions. The main genera Chlamydomonas and Chloromonas (both Chlorophyta) are psychrophilic. Their growth optimum temperature is lower than 15 ° C and their growth is inhibited at temperatures above 20 ° C. 2) Unstable temperature and water availability The deglaciated surfaces, inhabited by lichen communities, are typical by variation in temper-ature and moisture. The temperature could range several tens ° C within a short time and the water availability is usually very limited. Due to temperature variation, the lichens are subjected to many freeze/thaw cycles. Such environments could be found in Martian deserts. The lichens are symbotic organisms composed of a mycobiont (heterotrophic fungi) and photo-bionts (algae and/or cyanobacteria). Majority of lichens are dehydrated in the field and their physiological processes are inactive. If hydrated, they are physiologically active even at subzero temperatures (Kappen et al., 1996). Although living in cold environments, the growth optimum temperature of typical phycobiont Trebouxia (Chlorophyta) sp. is above 15 ° C, so these algae are considered to be rather psychrotolerant. Acknowledgement The work was supported from projects GA AS CR Nos. KJB 601630808 and KJ KJB600050708, CAREX and long-term institutional research plan of the Institute of Botany AS CR AV0Z600050516 and the Masaryk University. Prof. Martin Backor (Safarik University in Kosice) is kindly ac-knowledged for providing the strains Trebouxia erici and T. glomerata (Backor). References Elster, J. , Benson, E.E. Life in the polar terrestrial environment with a focus on algae and cyanobacteria, in Fuller, B.J., Lane, N. , Benson, E.E. (Eds), Life in the Frozen State. CRC Press, pp. 111-150, 2004. Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. , Hestmark, G. Cold resistance and metabolic activity of lichens below 0 ° C. Adv. Space Res. 18, 119-128, 1996. Kviderova, J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. accepted, 2010. Nedbalova, L., Kocianova, M. , Lukavsky, J. Ecology of snow algae in the Giant Mountains and their relation to cryoseston in Europe. Opera Corcontica 45, 59-68, 2008.

  16. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  17. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  18. Flu and Colds: In Depth

    MedlinePLUS

    ... may affect the safety of complementary approaches. Some Basics About Flu and Colds Each year, Americans get ... Hancke JL, Burgos RA, et al. Use of visual analogue scale measurements (VAS) to assess the effectiveness ...

  19. Herpes Simplex Virus (Cold Sores)

    MedlinePLUS

    ... Español Text Size Email Print Share Herpes Simplex Virus (Cold Sores) Page Content Article Body Herpes simplex ... 2 (HSV-2). However, both strains of the virus can cause sores in any part of the ...

  20. Plasma fusion and cold fusion

    SciTech Connect

    Hideo, Kozima

    1996-12-31

    Fundamental problems of plasma fusion (controlled thermonuclear fusion) due to the contradicting demands of the magnetic confinement of plasma and suppression of instabilities occurring on and in plasma are surveyed in contrast with problems of cold fusion. Problems in cold fusion due to the complicated constituents and types of force are explained. Typical cold fusion events are explained by a model based on the presence of trapped neutrons in cold fusion materials. The events include Pons-Fleishmann effect, tritium anomaly, helium 4 production, and nuclear transmutation. Fundamental hypothesis of the model is an effectiveness of a new concept--neutron affinity of elements. The neutron affinity is defined and some bases supporting it are explained. Possible justification of the concept by statistical approach is given.

  1. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-01-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 C/0.5 h/water quenching + 600 C/4 h/air cooling), 0.068 for FC (850 C/0.5 h/furnace cooling), 0.121 for AC (850 C/0.5 h/air cooling), and 0.412 for WQ (850 C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with ? + ? phases increases with the increase in the relative content of the retained ? phase but is independent of average thickness of ? plates. The increase in strain-hardening rate in WQ specimen depends on metastable ?? martensite and martensitic transition induced by tensile stress.

  2. Determination of Constant Parameters of Copper as Power-Law Hardening Material at Different Test Conditions

    NASA Astrophysics Data System (ADS)

    Kowser, Md. A.; Mahiuddin, Md.

    2014-11-01

    In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, ? . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, ? from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.

  3. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-02-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

  4. Direct observation of Lomer-Cottrell Locks during strain hardening in nanocrystalline nickel by in situ TEM

    PubMed Central

    Lee, Joon Hwan; Holland, Troy B.; Mukherjee, Amiya K.; Zhang, Xinghang; Wang, Haiyan

    2013-01-01

    Strain hardening capability is critical for metallic materials to achieve high ductility during plastic deformation. A majority of nanocrystalline metals, however, have inherently low work hardening capability with few exceptions. Interpretations on work hardening mechanisms in nanocrystalline metals are still controversial due to the lack of in situ experimental evidence. Here we report, by using an in situ transmission electron microscope nanoindentation tool, the direct observation of dynamic work hardening event in nanocrystalline nickel. During strain hardening stage, abundant Lomer-Cottrell (L-C) locks formed both within nanograins and against twin boundaries. Two major mechanisms were identified during interactions between L-C locks and twin boundaries. Quantitative nanoindentation experiments recorded show an increase of yield strength from 1.64 to 2.29?GPa during multiple loading-unloading cycles. This study provides both the evidence to explain the roots of work hardening at small length scales and the insight for future design of ductile nanocrystalline metals. PMID:23320142

  5. Simulation and research on a 4T-cell based duplication redundancy SRAM for SEU radiation hardening

    NASA Astrophysics Data System (ADS)

    Xinhong, Hong; Liyang, Pan; Wendi, Zhang; Dongmei, Ji; Dong, Wu; Chen, Shen; Jun, Xu

    2015-11-01

    A novel 4T-cell based duplication redundancy SRAM is proposed for SEU radiation hardening applications. The memory cell is designed with a 65-nm low leakage process; the operation principle and the SEU radiation hardening mechanism are discussed in detail. The SEE characteristics and failure mechanism are also studied with a 3-D device simulator. The results show that the proposed SRAM structure exhibits high SEU hardening performance with a small cell size.

  6. Cold Fusion at Hotspots

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2009-12-01

    Olivine-liquid FeO-MgO (OLFM) equilibria is often assumed and used to estimate eruptive (To) and melting (potential) temperatures (TP) of primitive magmas and their MgO contents at spreading ridges and linear volcanic chains. The technique involves incremental addition of melt calculated to be in equilibrium with successively more magnesian olivine until an olivine of “mantle” composition is reached. Incremental olivine addition depends on the assumption that that this olivine and the host liquid lie along a single liquid line of descent determined by crystallization of olivine and no other mineral; i.e., the parental liquid was formally picritic in composition. This assumption can be questioned on three grounds, which may vary in importance from place to place, but at least one of which always appears to be operative: 1) most picrites are hybrids between primitive and differentiated magmas, the latter expressing cotectic crystallization of olivine, plagioclase and/or clinopyroxene (e.g., Baffin-West Greenland, Hawaii, Samoa), and have higher Fe/Mg than primitive magma, making estimates of To and TP too high; 2) the rocks themselves contain phenocrysts of plagioclase (e.g., Iceland) and/or clinopyroxene (e.g., Samoa) as well as olivine; 3) not even the most primitive magmas, evidenced by mineral associations in accumulative magmatic xenoliths (dunite, wehrlite, olivine clinopyroxene; many examples) indicate stages of crystallization involving olivine by itself. An alternative approach that uses liquid compositions to estimate compositions of Cr-spinel (Poustovetov and Roeder, 2000) predicts no natural Cr-spinel that crystallized at temperature >1400C or pressure 1.5 GPa either in picrites or xenoliths at any of these localities; no parental liquid had MgO > 16%. Spinel predicted from high-MgO (>20%) parental liquids postulated by OLFM matches nothing in nature. Natural glass in Samoan harzburgite xenoliths is mainly differentiated basalt, hawaiite and mugearite with average melt temperature of ~1100C, the same temperature as given by Ca-in-orthopyroxene of the harzburgites. Cold ambient mantle draws heat from ascending magma, forcing differentiation at depth. Magma with TP greater by 200C than primitive basalt at spreading ridges does not exist at any of these places. TP does not constrain temperature of the mantle below the depth of melt extraction. High and variable 3He/4He at all these places may result from volatile incorporation from old harzburgite through which magmas must ascend. Poustovetov, A., and Roeder, P.L., 2000. Canad. Min. 39: 309-317.

  7. Diver performance: the effect of cold.

    PubMed

    Davis, F M; Baddeley, A D; Hancock, T R

    1975-09-01

    Fifteen divers performed five tasks in water of temperatures 20 degrees C and 5 degrees C, using standard scuba equipment. A significant deterioration of performance occurred under the colder condition in: simple arithmetic 13%; logical reasoning 17%; word recall 37%; word recognition 11%; and manual dexterity 17%. Throughout each dive, rectal and five skin temperatures were monitored. Average fall in rectal temperature was 0.5 degrees C during 20 degrees C dives and 1.1 degrees C during 5 degrees C dives. Average body surface temperature fell by 5 degrees C and 12.5 degrees C respectively. Average heat losses calculated from the data were 95 kcal.m(-2).hr(-1) (20 degrees C dives) and 245 kcal.m(-2).hr(-1) (5 degrees C dives). The impairment in word recognition was significantly correlated with the fall in rectal temperature for the 5 degrees C dives. For other tests, the deterioration did not appear to be correlated with body-temperature changes, but rather, occurred rapidly upon cold water immersion. The significance of these findings is discussed in relation to current understanding of the mechanisms by which cold is thought to influence performance underwater. PMID:15622739

  8. Aerodynamics inside a rapid compression machine

    SciTech Connect

    Mittal, Gaurav; Sung, Chih-Jen

    2006-04-15

    The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstrated to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)

  9. The Cold War is over. What now?

    SciTech Connect

    Hecker, S.S.

    1995-05-01

    As you might imagine, the end of the Cold War has elicited an intense reexamination of the roles and missions of institutions such as the Los Alamos National Laboratory. During the past few years, the entire defense establishment has undergone substantial consolidation, with a concomitant decrease in support for research and development, including in areas such as materials. The defense industry is down-sizing at a rapid pace. Even universities have experienced significant funding cutbacks from the defense community. I view this as a profound time in history, bringing changes encompassing much more than just the defense world. In fact, support for science and technology is being reexamined across the board more completely than at any other time since the end of World War II.

  10. The Cold War is Over. What Now?

    DOE R&D Accomplishments Database

    Hecker, S. S.

    1995-04-01

    As you might imagine, the end of the Cold War has elicited an intense reexamination of the roles and missions of institutions such as the Los Alamos National Laboratory. During the past few years, the entire defense establishment has undergone substantial consolidation, with a concomitant decrease in support for research and development, including in areas such as materials. The defense industry is down-sizing at a rapid pace. Even universities have experienced significant funding cutbacks from the defense community. I view this as a profound time in history, bringing changes encompassing much more than just the defense world. In fact, support for science and technology is being reexamined across the board more completely than at any other time since the end of World War II.

  11. Cold Spraying of Amorphous Cu50Zr50 Alloys

    NASA Astrophysics Data System (ADS)

    List, A.; Grtner, F.; Mori, T.; Schulze, M.; Assadi, H.; Kuroda, S.; Klassen, T.

    2015-01-01

    A new range of applications in cold spraying is expected for bulk metallic glass (BMG) coatings. For retaining amorphous structures in cast multi-component BMG parts, typically high purity raw material must be used. The present investigation explores an alternative approach, where cold spraying is used to deposit a technical-grade binary amorphous alloy. This approach is shown to be potentially cost-effective and suitable for rapid manufacturing. For this purpose, amorphous Cu50Zr50 was chosen as a model alloy system, and cold spraying was performed using nitrogen as process gas. By a systematic variation of the spray parameter sets, the critical velocities for coating formation were determined experimentally. Based on the current models of bonding of amorphous Cu50Zr50 powder in cold spraying, a new, more comprehensive concept of bonding and rebound is presented, which also considers the presence of liquefied interfaces and quenching rates for resolidification. Results concerning impact morphologies and coating formation demonstrate that under suitable choice of spray conditions, well-adhering coatings with amorphous structure of the Cu50Zr50 powders can be obtained by cold spraying.

  12. Cold start wear performance in methanol and gasoline engines

    SciTech Connect

    Nautiyal, P.C.; Goetz, W.A.; Goetz, L.H.

    1985-01-01

    Rapid engine wear is one of the most serious problems associated in the commercial exploitation of carburetted, straight methanol spark ignited engines. The existing lubricants are reported to be deficient in the control of cylinder bore and piston ring wear. Whereas, extensive efforts have been made to develop improved lubricants, the problem of increased wear of methanol has not, as yet, been satisfactorily addressed. The various mechanisms proposed for this increased wear have been examined in this paper. It was recognized that the conditions which aggravate the wear of methanol engines are encountered during cold start and warm-up due to the differences in the volatility characteristics of this fuel. In this study, cold start wear tests were conducted in a cold room with temperature control ranging from +25/sup 0/C to -40/sup 0/C. Wear data of methanol engines, under starting conditions typical of the Canadian environment, are compared with data of a gasoline counterpart. The analysis of these data so obtained suggests that a temperature dependent theory is valid to explain the cold start wear results. Further, the cold start wear can be a significant portion of the total wear and is attributed to the direct attack of methanol on the cylinder walls in the first few seconds of engine operation.

  13. Biochemical Changes in Tuber-bearing Solanum Species in Relation to Frost Hardiness during Cold Acclimation.

    PubMed

    Chen, H H; Li, P H

    1980-09-01

    Biochemical changes in potato leaves during cold acclimation have been examined and compared between a frost-tolerant S. acaule and a frost-susceptible S. tuberosum species. Changes were also examined in S. tuberosum, S. acaule, and S. commersonii species when they were hardened at different temperatures to varying hardiness levels.During three weeks of stepwise cold acclimation, S. acaule increased frost hardiness from -6.0 C (killing temperature) to -9.0 C, whereas frost hardiness of S. tuberosum remained unchanged at -3.0 C. Decreases in DNA content on a dry weight basis in both species suggest that matured leaf cells accumulated more dry matter during acclimation. The advantage of using DNA as a reference for comparing metabolite changes during cold acclimation is discussed.Under the stepwise acclimating conditions, both species showed the same trends for increasing total sugar and starch with an insignificant decrease in leaf water content. High levels of total RNA, rRNA, and total and soluble protein were observed in treated S. acaule plants as compared with controls, but not in S. tuberosum. Levels of total lipid and phospholipid also were high in treated S. acaule plants as compared with controls but decreased in S. tuberosum during acclimation.When S. tuberosum, S. acaule, and S. commersonii potatoes were cold-treated at constant day/night temperatures of 10, 5, and 2 C with 14-hour daylength, each species responds differently in terms of frost hardiness increase upon subjecting plants to a low temperature. For instance, after 20 days at 2 C, a net frost hardiness of 3 and 7 C was observed in S. acaule and S. commersonii, respectively, whereas the frost hardiness in S. tuberosum remained unchanged. Also, various levels of frost hardiness can be achieved in a species by subjecting plants to different low temperature treatments. Under a warm regime of 20/15 C day/night temperatures (14-hour light), both S. acaule and S. commersonii can survive at -4.5 C or colder, whereas S. tuberosum can survive only at -2.5 C.Biochemical changes in the leaf tissue of these species were investigated at 5-day intervals during low temperature treatments. Increases in total sugar and starch were found in all three species during hardening, although S. tuberosum failed to harden. Soluble protein contents were increased in both S. acaule and S. commersonii but decreased in S. tuberosum. RNA contents change in a pattern similar to the soluble protein. Net increases of the soluble proteins were positively and significantly correlated with net increases of frost hardiness in S. acaule and S. commersonii. PMID:16661447

  14. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-01-01

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions There is insufficient clinical trial evidence regarding the effects of garlic in preventing or treating the common cold. A single trial suggested that garlic may prevent occurrences of the common cold but more studies are needed to validate this finding. Claims of effectiveness appear to rely largely on poor-quality evidence. PMID:25386977

  15. [The physiological analysis of cross adaptation to regular cold exposure and physical activities].

    PubMed

    Son'kin, V D; Iakushkin, A V; Akimov, E B; Andreev, R S; Kalenov, Iu N; Kozlov, A V

    2014-01-01

    Research is devoted to the comparative analysis of results of cold adaptation and physical training. The adaptive shifts occurring in an organism under the influence of a hardening (douche by a cold shower 2 times a day 2 minutes long within 6 weeks) and running training on the treadmill (30 minutes at 70-80% of individual VO2max, 3 times a week, within 6 weeks) were compared at 6 the same subjects. The interval between the two cycles of training was no less than 3 months. The indicators registered during ramp test and standard cold exposure test before and after each cycle of trainings were compared. It is shown that patterns of adaptive shifts at adaptation to factors of various modality strongly differ. Shifts at adaptation to physical activities were as a whole more expressed, than at adaptation to regular cold exposition. An individual variety of adaptive reactions suggests the feasibility of developing new approaches to the theory of the adaptation, connected with studying of physiological individuality. PMID:25711113

  16. Increase of cold tolerance in cotton plant (Gossypium hirsutum L.) by mepiquat chloride

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R. (Principal Investigator); Huang, S. Y.; Rittig, F. R.

    1982-01-01

    Three mepiquat chloride (MC) concentrations - 40, 70, and 100 g a.i./ha - were used to spray cotton (Gossypium hirsutum L., cultival McNair 220) plants to determine whether or not MC would increase their cold tolerance. Seven to ten days after the spray, the plants were exposed to three different cold treatments. No important difference in cold damage was noticed between the control and the MC-treated plants when they were exposed repeatedly to 4.5 C. No plants died when exposed to 0.5 C for 12 h; however, 90% of the 1st and 2nd leaves of the control plants were damaged. This was three times more damage than those leaves of plants treated with 70 and 100 g a.i./ha MC concentrations; 60% f the control and 10-20% of the MC-treated plants died when the plants were subjected to a cold hardening process with 15.5 C day (12 h) and 1.7 C night (12 h) for 10 days, and then, held at -2.2 C for 24 hours. The electrolyte leakage and reflectance measurement data showed that the cell membranes of the MC-treated plants sustained much less damage than those of the control. Freezing injury was easily assessed by reflectance measurements at the 1.65 micrometer wavelength.

  17. The processing and properties of heavily cold worked directionally solidified Ni-W eutectic alloys

    NASA Astrophysics Data System (ADS)

    Kubisch, D. G.; Courtney, T. H.

    1986-07-01

    Certain two phase metallic alloys display impressive strengths following extensive deformation processing. Provided an appropriate phase morphology and/or texture is developed initially, somewhat surprising combinations of metals ( e.g., copper-chromium) can be so processed. Thus this scheme offers the possibility for developing high strength metal matrix composites at a comparatively low price. In the work described, we consider another material combinationthe Ni-W directionally solidified eutecticas a candidate for this interesting class of material. This alloy can be cold worked to true deformation strains of four. The tensile strengths of alloys so deformed are impressive (2470 MPa), but so are those of the cold worked nickel-tungsten solid solution which is a component of the eutectic. Based on the work-hardening behavior of tungsten and on a recently advanced model which qualitatively explains the strengths of heavily cold worked two phase metals, it is argued that further deformation processing of these alloys would lead to substantially higher strengths. Estimates on the fracture toughness of the cold worked eutectic are made from tensile properties. Estimated toughnesses are remarkably high and point to the possibility that this process can produce high strength-high toughness metallic materials to a degree not possible via conventional processing.

  18. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    NASA Astrophysics Data System (ADS)

    Economy, D. Ross; Mara, N. A.; Schoeppner, R. L.; Schultz, B. M.; Unocic, R. R.; Kennedy, M. S.

    2016-01-01

    In complex loading conditions (e.g., sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed regions (as-deposited). Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 m). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ? 0.018 and n ? 0.022, respectively) were less than that determined for 100 nm systems (n ? 0.041). These results suggest that single-dislocation-based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  19. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz

    2011-03-15

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  20. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  1. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    NASA Astrophysics Data System (ADS)

    Economy, D. Ross; Mara, N. A.; Schoeppner, R. L.; Schultz, B. M.; Unocic, R. R.; Kennedy, M. S.

    2016-03-01

    In complex loading conditions ( e.g., sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed regions (as-deposited). Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 µm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022, respectively) were less than that determined for 100 nm systems ( n ≈ 0.041). These results suggest that single-dislocation-based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  2. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  3. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  4. Alternating current potential drop for measuring the case depth of hardened steel

    NASA Astrophysics Data System (ADS)

    Quddes, Mohammad R.; Ji, Yuan; Bowler, John R.

    2015-03-01

    Multi-frequency alternate current potential drop measurements have been made to estimate the case depth of case hardened steels using four point probes. The probes have four parallel sprung loaded pins in a line with a 1.5 mm separation between the contact points. A printed circuit board has been used to ensure the electrical connections to the pins are close to the surface of the material. This has the effect of reducing the mutual induction between driver and pick-up pins. The case depth is estimated from measurements at frequencies typically from 10 Hz to 10 kHz. The real part of the voltage phasor representing the AC potential drop is used to evaluate the case depth. The imaginary part includes the contribution due to mutual induction. To estimate the case depth of the hardened samples, the measured potential drop has been fitted to theoretical predictions. The substrate material properties of the hardened samples are extracted from multi-frequency potential drop measurements on non-harden samples. The estimated case hardened depths, deduced from potential drop measurements, are similar to those found from destructive measurements.

  5. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  6. Age hardening by dendrite growth in a low-gold dental casting alloy.

    PubMed

    Lee, Hee-Kyung; Moon, Hi-Man; Seol, Hyo-Joung; Lee, Jung-Eun; Kim, Hyung-Il

    2004-08-01

    Commercial low-gold dental casting alloy composed of Ag-Pd-In-Au-Zn was studied to clarify the age-hardening mechanism and related microstructural changes. The hardness of solution-treated specimen began to increase and reached the maximum value with ageing time, and then the maximum hardness value decreased by further ageing. The changes of X-ray diffraction (XRD) pattern during isothermal ageing revealed that the age hardening was not caused by phase transformation. By comparing the age-hardening curve with the changes in full-width at half-maximum of the XRD peaks at each ageing time, it was revealed that the coherency strains were formed in the Ag-rich matrix, which contributed to the hardness increase during ageing. From scanning electron microscopic observation and electron probe microanalysis, it was clarified that fine particle-like structures composed of InPd containing small amount of Zn gathered by diffusion in the Ag-rich matrix, and the coherency strains which formed during that time caused the hardness increase in the early stage of age-hardening process. The coherency strains were released by the progress of coarsening of Zn-containing InPd dendrite during further ageing, which caused the overaging in the later stage of age-hardening process. PMID:15020163

  7. Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated ?-Fe

    NASA Astrophysics Data System (ADS)

    Dunn, Aaron; Dingreville, Rmi; Capolungo, Laurent

    2016-01-01

    A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline ?-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses. With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10?2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. The development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.

  8. Cold responsive gene transcription becomes more complex.

    PubMed

    Zhao, Chunzhao; Lang, Zhaobo; Zhu, Jian-Kang

    2015-08-01

    CBF transcription factors, which play important roles in cold acclimation, regulate the expression of approximately 170 cold-responsive genes, termed the CBF regulon. Recent work by Park et al. showed that CBF regulon genes and other cold-responsive genes are regulated by a complex network that involves many early cold-induced transcription factors. PMID:26072094

  9. Cold plasma reduction of Salmonella and Escherichia coli 0157:H7 on almonds using ambient pressure gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of raw nuts, including almonds, is a food safety concern. Cold plasma is a novel antimicrobial intervention that can eliminate foodborne pathogens. The objective of this work was to evaluate the efficacy of rapid cold plasma treatments in eliminating Salmonella and Escherichia coli O15...

  10. Structures and properties of a rapidly solidified Fe-19. 1Ni-1. 76Mn-0. 73Ti maraging alloy

    SciTech Connect

    Kim, Sung-Joon ); Wayman, C.M. )

    1993-09-01

    The hardening response, microstructural changes and mechanical properties of a rapidly solidified Fe-19.1Ni-1.76Mn-0.73Ti alloy have been studied and compared with those of conventionally processed alloys having similar compositions. Both alloys exhibited classical precipitation hardening behavior during aging. The strengthening precipitates are identified as needlelike, hexagonal Ni[sub 3]Ti. The prior austenite grain size of hot isostatic pressed powders is much smaller than that of conventionally processed alloys, and this enhances the homogeneity of the alloy. Preaging at above 525C for 10 minutes improves ductility dramatically without a severe loss of strength.

  11. Tailoring the strength and porosity of rapid-hardening magnesia phosphate paste via the pre-foaming method

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jie; Li, Jin-Hong; Wang, Xiang; Qian, Ting-Ting; Li, Xiao-Hui

    2015-08-01

    High-porosity magnesia phosphate paste (HPMPP) was prepared via the pre-foaming method. In the pre-foaming method, sintering treatment was not required. The bulk density and maximum compressive strength of the HPMPP prepared according to the ratio of water to solids (W/So) of 0.32 reached 464.00??5.00?Kg/m3 and 0.30??0.05?MPa, respectively. The compressive strength increased with the increases in the addition amounts of sodium silicate and polypropylene fibers. The bulk density of HPMPP increased with the increase in the addition of sodium silicate and decreased with the increase in the addition of polypropylene fibers. Besides, the porosity of the magnesia phosphate paste increased from 79.85% to 81.27% and from 80.31% to 83.75% after the addition of sodium silicate and polypropylene fibers respectively. The highest porosity (83.75%) of the prepared HPMPP was realized under the addition proportion (sodium silicate: polypropylene fibers: solids?=?0.06:0.0025:1). The average pore size of the prepared HPMPP is about 180??m and the pore distribution range is relatively narrow. The hydration product (struvite) is combined with MgO particle one by one and then coated on the surface of bubbles. With the decrease of the water content, after breaking bubbles, the porous structure can be achieved.

  12. Tailoring the strength and porosity of rapid-hardening magnesia phosphate paste via the pre-foaming method.

    PubMed

    Liu, Li-Jie; Li, Jin-Hong; Wang, Xiang; Qian, Ting-Ting; Li, Xiao-Hui

    2015-01-01

    High-porosity magnesia phosphate paste (HPMPP) was prepared via the pre-foaming method. In the pre-foaming method, sintering treatment was not required. The bulk density and maximum compressive strength of the HPMPP prepared according to the ratio of water to solids (W/So) of 0.32 reached 464.00??5.00?Kg/m(3) and 0.30??0.05?MPa, respectively. The compressive strength increased with the increases in the addition amounts of sodium silicate and polypropylene fibers. The bulk density of HPMPP increased with the increase in the addition of sodium silicate and decreased with the increase in the addition of polypropylene fibers. Besides, the porosity of the magnesia phosphate paste increased from 79.85% to 81.27% and from 80.31% to 83.75% after the addition of sodium silicate and polypropylene fibers respectively. The highest porosity (83.75%) of the prepared HPMPP was realized under the addition proportion (sodium silicate: polypropylene fibers: solids?=?0.06:0.0025:1). The average pore size of the prepared HPMPP is about 180??m and the pore distribution range is relatively narrow. The hydration product (struvite) is combined with MgO particle one by one and then coated on the surface of bubbles. With the decrease of the water content, after breaking bubbles, the porous structure can be achieved. PMID:26268675

  13. Dual-Phase Warming of the Cold Wake of Typhoon Fanapi, 2010

    NASA Astrophysics Data System (ADS)

    Mrvaljevic, R.

    2012-12-01

    Tens of thousands of temperature profiles were taken in and around the cold wake of category 3 Typhoon Fanapi between September and November 2010 as part of the Impact of Typhoons on the Ocean in the Pacific (ITOP) research program. This unprecedented data set presents outstanding opportunities for model verification as well as comparisons with remote sensing products. Fanapi's SST cold wake took under two weeks to disappear, however a subsurface cold wake signature was observed to persist for more than three weeks. Fanapi was a late-season typhoon, therefore the ocean affected by the cold wake never fully recovered to the pre-storm thermal structure. The cold wake warmed in two distinct phases; a rapid warming phase where the wake was capped by a shallow, warm mixed layer in 4-5 days, followed by a slower warming phase that gradually brought the cold wake to equilibrium with the surrounding ocean. One dimensional air-sea interaction modeling reveals that preferential warming took place over the cold wake, forming the warm cap, thereby isolating the subsurface cold wake from the atmosphere. After this, the warm cap slowly deepened and warmed as it interacted with the subsurface cold wake layer below and the atmosphere above.

  14. Effects of freezing and hardening on the sulfhydryl groups of protein fractions from cabbage leaves.

    PubMed

    Morton, W M

    1969-02-01

    Disc electrophoresis was used to separate water soluble proteins from hardy, non-hardy, and frost killed cabbage (Brassica oleracea var. capitata) leaves. Amidoschwarz staining failed to reveal any new bands as a result of hardening although the relative amounts of proteins in individual bands changed. Sulfhydryl groups in the protein bands were stained with 2,2-dihydroxy-6,6-dinaphthyl disulfide and labeled with (14)C p-chloromercuribenzoate. Significant decreases in the sulfhydryl content of the total water soluble protein were found during hardening and as a result of frost death. The decrease during hardening was paralleled by a significant increase in the water soluble protein. There was a significant increase in the sulfhydryl content per unit high molecular weight protein but a decrease in the sulfhydryl content per total protein as a result of frost death. This was interpreted as evidence for intermolecular disulfide bond formation during freezing. PMID:16657040

  15. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jgle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-01-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  16. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars.

    PubMed

    Li, L L; Zhang, Z J; Tan, J; Jiang, C B; Qu, R T; Zhang, P; Yang, J B; Zhang, Z F

    2015-01-01

    Vast experiments have demonstrated that the external specimen size makes a large difference in the deformation behavior of crystalline materials. However, as one important kind of internal planar defects, the role of grain boundary (GB) in small scales needs to be clarified in light of the scarce and inconsistent experimental results at present. Through compression of Cu bicrystal and its counterpart monocrystal micropillars, it is found that, in contrast to the monocrystals, the bicrystals are characterized by work hardening with discrete strain bursts. Interestingly, the stress rise between two adjacent strain bursts of the bicrystals increases with the decrease of specimen size. The results suggest that GBs play a critical role in the work hardening of materials in small scales, which may provide important implications to further understand the general work hardening behaviors of materials in the future. PMID:26490543

  17. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  18. Transient radiation hardened CMOS (complementary metal oxide semiconductor) operational amplifiers. Master's thesis

    SciTech Connect

    Trombley, G.J.

    1989-01-01

    General strategies are developed for designing radiation hardened bulk and silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) operational amplifiers. Comparisons are made between each technology concerning photocurrent mechanisms and the inherent advantages of SOI CMOS. Methods are presented for analysing circuit designs and minimizing the net photocurrent responses. Analysis is performed on standard operational amplifier circuits and subcircuits to demonstrate the usefulness of these methods. Radiation hardening topics discussed include superior radiation hardened topologies, photocurrent compensation and its limitations, and methods to ensure a preferred direction of photocurrent response. Several operational amplifier subcircuits are compared for their hardness characteristics. Folded cascode and three-stage operational amplifiers were fabricated on an SOI CMOS test chip supported by Texas Instruments, Incorporated. At the time of publication, the circuit operation was verified but radiation data were not yet available.

  19. A nonlinear kinematic hardening model for elastoplastic deformations in grey cast iron

    SciTech Connect

    Josefson, B.L.; Hjelm, H.E.; Stigh, U.

    1995-04-01

    A kinematic hardening model including an associated flow rule is proposed for elastoplastic deformations in graphitic grey cast iron. Quantitatively good results are obtained when comparing with previously performed biaxial experiments. Use of a nonassociated flow rule is found to result in an undesirable weakening behavior that can be explained as a deficiency with the combination of kinetic hardening and the present choice of yield potential. The model proposed is also extended to include multilinear kinematic hardening. With this model qualitatively good agreement with experimental cyclic results from the literature is obtained. A three-dimensional FE-analysis of a cylinder head for a heavy duty Diesel engine is performed as an application. To predict initiation of thermal fatigue cracks, it is essential to use an elastoplastic material model.

  20. Electron microscopy observations of twin-twin intersections in a particle hardened copper-titanium alloy

    SciTech Connect

    Radetic, T.; Soffa, W.A.; Radmilovic, V.

    1999-03-05

    The authors have recently reported electron microscopy (CTEM and HREM) observations of mechanical twinning in age hardened copper-titanium alloys containing a fine dispersion of the metastable Cu{sub 4}Ti ({beta}{prime}; D1{sub a}) phase ({approx}15 vol%). These particle hardened alloys are known to twin profusely and it has been suggested that single crystals of Cu-Ti-Al alloys containing coherent Cu{sub 4}Ti (D1{sub a}) particles yield by twinning at the onset of plastic flow. In this short paper conventional (CTEM) and high-resolution (HREM) electron microscopy observations of twin/twin intersections in the precipitation hardened two-phase copper-titanium alloys are reported. These results will suggest that the mechanisms governing shear accommodation in obstacle twins remain to be elucidated.