Science.gov

Sample records for rapid cold hardening

  1. Rapid cold hardening of Thrips palmi (Thysanoptera: Thripidae).

    PubMed

    Park, Youngjin; Kim, Kwangho; Kim, Yonggyun

    2014-08-01

    Cold tolerance of the palm thrips, Thrips palmi Karny, was investigated to predict its survival in field during winter. Supercooling points of T. palmi were varied among the developmental stages and ranged from -26.4 to -18.4°C. However, the cold injuries occurred above supercooling points in terms of higher mortality. The exposure to subzero temperatures (-5° to -15°C) resulted in significant mortalities to all developmental stages of T. palmi. A preexposure to a low temperature (4°C) for 7 h significantly increased the cold tolerance of all stages of T. palmi with respect to survival at -10°C and supercooling capacity. The rapid cold hardening (RCH) was dependent on the duration of the preexposure period at 4°C in adult stage. Polyol and sugar analysis using an high-performance liquid chromatography analysis showed that 4°C preexposure caused accumulation of glycerol, trehalose, mannitol, and mannose in the adults. The increase in trehalose levels was more significant than the others. This study suggests that all stages of T. palmi are able to become cold-hardy by RCH, in which several polyols and sugars may play crucial roles as cryoprotectants. PMID:25182622

  2. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells.

    PubMed

    Lee, Richard E; Damodaran, Krishnan; Yi, Shu-Xia; Lorigan, Gary A

    2006-06-01

    The rapid cold-hardening (RCH) response not only confers dramatic protection against cold-shock (non-freezing) injury, but also "instantaneously" enhances organismal performance. Since cold-shock injury is associated with damage to the cell membrane, we investigated the relationship between RCH and changes in cold tolerance and membrane fluidity at the cellular level. None of the adult flies (Sarcophaga bullata) in the cold-shocked treatment group survived direct transfer to -8 degrees C for 2 h; in contrast, 64.5% of flies in the RCH group survived exposure to -8 degrees C. Differences between the treatment groups also were reflected at the cellular level; only 21.3% of fat body cells in the cold-shocked group survived compared to 68.5% in the RCH group. Using 31P solid-state NMR spectroscopy, we determined that membrane fluidity increased concurrently with rapid cold-hardening of fat body cells. This result suggests that membrane characteristics may be modified very rapidly to protect cells against cold-shock injury. PMID:16626678

  3. Rapid cold hardening response in the predatory mite Neoseiulus californicus.

    PubMed

    Ghazy, Noureldin Abuelfadl; Amano, Hiroshi

    2014-08-01

    We investigated the rapid cold hardening (RCH) response in the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). On direct exposure, ≤2 % of adult females survived -10 °C for 2 h. However, when acclimatized first at 5 °C for 1 h, 75 % of females survived. RCH could also be induced by acclimatization at 30 °C for 2 h or anoxia (oxygen-free nitrogen) for 1-2 h. All immature stages showed enhanced survival when acclimatized at 5 °C for 2 h before exposure to -10 °C. Acclimatization at 30 °C induced RCH only in eggs and deutonymphs, and anoxia was effective for eggs, larvae, and deutonymphs. The variability among immature stages may be attributed to the cost associated with the acclimatization treatments. Our findings suggest that RCH may promote the survival of N. californicus during unexpected changes in temperatures, and can be an important feature particularly when this natural enemy is introduced to non-native environments. PMID:24682616

  4. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.

    PubMed

    Cui, Feng; Wang, Hongsheng; Zhang, Hanying; Kang, Le

    2014-10-01

    Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments. PMID:25086202

  5. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    PubMed

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. PMID:24973793

  6. The rapid cold hardening response of Drosophila melanogaster: complex regulation across different levels of biological organization.

    PubMed

    Overgaard, Johannes; Srensen, Jesper Givskov; Com, Emmanuelle; Colinet, Herv

    2014-03-01

    Rapid cold hardening (RCH) is a form of thermal acclimation that allows ectotherms to fine-tune their physiological state to match rapid changes in thermal environment. Despite progress in recent years, there is still a considerable uncertainty regarding the physiological basis of RCH in insects. Here we investigated the physiological response of adult Drosophila melanogaster to a gradual reduction of temperature from 25 to 0C followed by 1h at 0C. As expected, this RCH treatment promoted cold tolerance, and so we hypothesized that this change could be detected at the proteomic level. Using 2D-DIGE, we found that only a few proteins significantly changed in abundance, and of these, we identified a set of four proteins of particular interest. These were identified as two different variants of glycogen phosphorylase (GlyP) of which three spots were up-regulated and another was down regulated. In subsequent experiments, we quantified upstream events by measuring the GlyP mRNA amount, but we found no marked effect of RCH. We also examined downstream events by measuring GlyP activity and the level of free sugars. We found no effect of RCH on GlyP activity. On the other hand, screening of whole animal sugar contents revealed a small increase in glucose levels following RCH while trehalose content was unaltered. This study highlights a complex regulation of GlyP in relation to RCH where we found associations between the cold tolerance, the protein abundance and the metabolite concentrations but no changes in mRNA expression and enzyme activity. These data stress the necessity of combining the hypothesis-generating power of an 'Omics' approach with subsequent targeted validations across several levels of the biological organization. We discuss reasons why different biological linked levels do not necessarily change stoichiometrically. PMID:24508557

  7. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis.

    PubMed

    Li, A; Denlinger, D L

    2008-09-01

    Rapid cold hardening (RCH) refers to the enhanced cold tolerance acquired by a brief exposure to a moderately low temperature. Although ecological aspects of this response have been well documented in insects, less is known about the physiological and biochemical mechanisms elicited by RCH. In this study we used two-dimensional electrophoresis to detect differences in brain protein abundance in pharate adults of the flesh fly Sarcophaga crassipalpis, in response to a 2 h RCH exposure at 0 degrees C. Fourteen high abundance proteins that responded to RCH were selected for mass spectrometric identification. Three proteins that increased in abundance during RCH included ATP synthase subunit alpha, a small heat shock protein (smHsp), and tropomyosin-1 isoforms 33/34. Eleven proteins that decreased in abundance or were missing following RCH included several proteins involved in energy metabolism, protein degradation, transcription, actin binding, and cytoskeleton organization. That several proteins increased in abundance during RCH underscores the dynamics of the RCH mechanism and suggests that more than one physiological response likely contribute to RCH. The increase in ATP synthase suggests an elevation of ATP during RCH, and the smHsp increase suggests that at least one of the Hsps is actually mobilized during RCH, rather than after RCH as previously assumed. PMID:18828842

  8. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae)

    PubMed Central

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions. PMID:26196923

  9. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae).

    PubMed

    Coleman, Paul C; Bale, Jeffrey S; Hayward, Scott A L

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions. PMID:26196923

  10. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae).

    PubMed

    Ju, Rui-Ting; Xiao, Yu-Yu; Li, Bo

    2011-11-01

    The sycamore lace bug, Corythucha ciliata is a new, invasive pest of Platanus trees in China. Although C. ciliata is often subjected to acute low temperatures in early winter and spring in northern and eastern China, the cold tolerance of C. ciliata has not been well studied. The objectives of this study were to determine whether adults of C. ciliata are capable of rapid cold hardening (RCH), and to compare the benefits of RCH vs. cold acclimation (ACC) in the laboratory. When the adult females incubated at 26°C were transferred directly to the discriminating temperature (-12°C) for 2 h, survival was only 22%. However, exposure to 0°C for 4 h before transfer to -12°C for 2 h induced RCH, i.e., increased survival to 68%. RCH could also be induced by gradual cooling of the insects at rates between 0.1 and 0.25°C min(-1). The protection against cold shock obtained through RCH at 0°C for 4 h was lost within 1h if the adults were returned to 26°C before exposure to -12°C. Survival at both -12 and -5°C was greater for RCH-treated than for ACC-treated adults (for ACC, adults were kept at 15°C for 5 days), and the lethal temperature (2 h exposure) was lower for RCH-treated than for ACC-treated adults. The results suggest that RCH may help C. ciliata survive the acute low temperatures that often occur in early winter and early spring in northern and eastern China. PMID:21872604

  11. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis.

    PubMed

    Michaud, M Robert; Denlinger, David L

    2006-10-01

    The integrity of cellular membranes is critical to the survival of insects at low temperatures, thus an advantage is conferred to insects that can adjust their composition of membrane fatty acids (FAs). Such changes contribute to homeoviscous adaption, a process that allows cellular membranes to maintain a liquid-crystalline state at temperatures that are potentially low enough to cause the membrane to enter the gel state and thereby lose its ability to maintain homeostasis. Flesh flies (Sarcophaga crassipalpis) were subjected to two experimental conditions that elicit low temperature tolerance: rapid cold-hardening and diapause. FAs were isolated and analyzed using gas chromatography-mass spectrometry. FAs changed in response to both rapid cold-hardening and diapause. In response to rapid cold-hardening (8 h at 4 degrees C), the proportion of oleic acid (18:1n-9) in pharate adults increased from 30% to 47% of the total FA pool. The proportion of almost every other FA was reduced. By entering diapause, pupae experienced an even greater increase in oleic acid proportion, to 58% of the total FA pool. Oleic acid not only promotes membrane fluidity at low temperature but also allows the cell membrane to maintain a liquid crystalline state if temperatures increase. PMID:16997319

  12. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.

    PubMed

    Benoit, J B; Lopez-Martinez, G; Teets, N M; Phillips, S A; Denlinger, D L

    2009-12-01

    This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately -20 degrees C, all were killed by a direct 1 h exposure to -16 degrees C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4 degrees C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1-h exposure to 0 degrees C improved their subsequent tolerance of -14 and -16 degrees C. In response to heat stress, fewer than 20% of the bugs survived a 1-h exposure to 46 degrees C, and nearly all were killed at 48 degrees C. Dehydration, heat acclimation at 30 degrees C for 2 weeks and rapid heat hardening at 37 degrees C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses. PMID:19941608

  13. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae.

    PubMed

    Gantz, J D; Lee, Richard E

    2015-02-01

    Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance. PMID:25545423

  14. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis.

    PubMed

    Fujiwara, Yoshihiro; Denlinger, David L

    2007-09-01

    Rapid cold hardening (RCH) is an adaptation enabling insects to quickly respond to low temperature, but little is known about the molecular events that trigger this response. In this study of the flesh fly Sarcophaga crassipalpis, we explore a possible role for mitogen-activated protein kinases (MAPKs) in the low temperature signaling that elicits RCH. We report that p38 MAPK from S. crassipalpis, which shows high cDNA sequence homology to p38 MAPKs from other insects and mammals, is rapidly activated at temperatures around 0 degrees C, temperatures that are most effective for inducing RCH. By contrast, low temperature does not activate either extracellular signal-regulated kinase (ERK) or Jun N-terminal kinase (JNK). An increase in phospho-p38 MAPK was observed within 10 min following exposure to 0 degrees C and reached its maximum level in 2 h. When flies were transferred from 0 to 25 degrees C, the level of phospho-p38 MAPK decreased immediately and reached trace levels by 3 h. Nondiapausing flies were much more responsive to p38 MAPK activation than cold-hardy diapausing pupae. Thus, p38 MAPK activation and RCH both show the same narrow ranges of temperature sensitivity, temporal profiles of activation and decay, and developmental specificity. These correlations suggest that p38 MAPK plays a potential role in regulating the induction of RCH. The p38 MAPK response was not dependent upon the brain, as evidenced by high activation in isolated abdomens exposed to low temperature. PMID:17766307

  15. The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster.

    PubMed

    Jensen, Dorthe; Overgaard, Johannes; Sørensen, Jesper G

    2007-02-01

    Thermal sensitivity and ability to rapidly cold- and heat-harden may change during ontogeny. This study reports how inherent cold tolerance and ability to rapidly cold-harden change across eight developmental stages in both genders of Drosophila melanogaster using a similar experimental approach for all stages. Inherent cold tolerance was estimated as LT50 by assaying cold shock survival over a wide range of temperatures (-16 to 5 degrees C). Rapid cold-hardening (RCH) was applied by cooling from 25 to 0 degrees C at -0.25 degrees C min(-1) followed by 1 h at 0 degrees C. Individuals were cold shocked either directly or after RCH to estimate the effect of RCH. We found large variation in cold tolerance among developmental stages and minor differences between genders. Eggs were most tolerant followed by adults, pupae and larvae. In the light of this and other studies it is suggested that there is a general pattern of stage specific thermal stress resistance in Drosophila. The capacity to rapidly cold-harden was found in both sexes of larval, pupal and adult stages, though some developmental stages showed negative or neutral effects of RCH which was probably due to the cost associated with the hardening treatment in these cold susceptible stages. The early presence of RCH indicates that the mechanisms behind hardening are not stage specific and that RCH may be an ecologically important trait in early stages of ontogeny. PMID:17234205

  16. Development at Cold-Hardening Temperatures 1

    PubMed Central

    Krupa, Zbigniew; Huner, Norman P. A.; Williams, John P.; Maissan, Ellen; James, Douglas R.

    1987-01-01

    Light harvesting complex II (LHCII) was purified from cold-hardened (RH) and nonhardened winter rye (RNH) (Secale cereale L. cv Puma) employing a modified procedure of JJ Burke, CL Ditto, CJ Arntzen (Arch Biochem Biophys 187: 252-263). Triton X-100 solubilization of thylakoid membranes followed by three successive precipitations with 100 mm KCl and 10 mm MgCl2 resulted in yields of up to 25% on a chlorophyll (Chl) basis and a purity of 90 to 95%, based on polypeptide analysis within 4 hours. Polypeptide and pigment analyses, 77 K fluorescence emission and room temperature absorption spectra indicate the LHCII obtained by this modified method is comparable to LHCII obtained by other published methods. Comparison of purified RH and RNH LHCII indicated no significant differences with respect to polypeptide, amino acid, Chl, and carotenoid compositions as well as no differences in lipid content. However, RH LHCII differed from RNH LHCII specifically with respect to the fatty acid composition of phosphatidyldiacylglycerol only. RH LHCII exhibited a 54% lower trans-Δ3-hexadecenoic acid level associated with PG and a 60% lower oligomeric LHCII:monomeric LHCII (LHCII1:LHCII3) than RNH LHCII. Both RH and RNH LHCII exhibited a 5-fold enrichment in PG specifically. Complete removal of PG by enzymic hydrolysis resulted in a significant reduction in the oligomeric content of both RH and RNH LHCII such that LHCII1:LHCII3 of RH and RNH LHCII preparations were the same. This confirms that this specific compositional change accounts for the structural differences between RH and RNH LCHII observed in situ and in vitro. Images Fig. 1 PMID:16665397

  17. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster.

    PubMed

    Sejerkilde, Margit; Srensen, Jesper G; Loeschcke, Volker

    2003-08-01

    The effects of cold- and heat hardening on resistance to both low and high temperature stress was examined in Drosophila melanogaster lines selected for resistance to either cold or heat. The hardening effect was positive when the hardening was of the same type as the stress in all selection regimes. The effect of cold hardening on survival after heat stress was further examined in the lines selected for cold resistance and corresponding controls. A cross-protection effect (increased heat resistance after cold hardening) was present and this effect was lower in the lines selected for resistance to cold than in the controls. The level of Hsp70 expression induced by a non-lethal cold hardening was examined, showing that cold hardening induced Hsp70 expression. The results suggest that the cross-protection effect is at least partly due to Hsp70 expression induced by cold exposure. PMID:12880651

  18. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana.

    PubMed

    Vesala, Laura; Hoikkala, Anneli

    2011-01-01

    Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets. PMID:20932841

  19. Magnetic age hardening of cold-deformed bulk equiatomic Fe-Pd intermetallics during isothermal annealing

    NASA Astrophysics Data System (ADS)

    Deshpande, A. R.; Wiezorek, J. M. K.

    2004-03-01

    The interplay between the ordering reaction with recovery and recrystallization of the as-deformed state leads to combined reactions (CRs) during annealing of cold-deformed disordered Fe-Pd intermetallics at temperatures below the critical ordering temperature. CRs can be exploited to control the scale and morphology of the Fe-Pd alloy microstructures in order to optimize alloy properties. Here, the magnetic age hardening behavior and microstructural evolution of cold-deformed (cold rolled to 97% reduction in thickness) binary equiatomic Fe-Pd has been studied for isothermal annealing at temperatures of 400°C, 500°C, and 600°C. The evolution of the microstructure during the annealing treatments has been characterized by a combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic age hardening behavior, the evolution of the coercivity as a function of annealing time, has been determined using a vibrating sample magnetometer (VSM). The microstructures of the transforming material have been characterized quantitatively using computer assisted image analysis methods. The CR transformed microstructures are morphologically equiaxed with average grain sizes in the sub-micron range and show coercivity up to five-fold larger than for conventionally processed equiatomic bulk Fe-Pd. During annealing the coercivity increases up to a maximum peak value and has been correlated with the increasing fraction of ordered material. The maximum coercivity obtains, as the ordering phase transformation is complete. With respect to conventionally processed material the ordering transformation in the cold-deformed material exhibits accelerated kinetics and is facilitated by a CR, which involves heterogeneous nucleation and growth processes akin to a 'massive ordering' reaction. Further annealing leads to decreasing coercivity, which has been attributed to the onset of grain growth in the population of CR-transformed grains. The characteristic magnetic age hardening response has been rationalized in terms of the microstructural observations.

  20. Investigation of the Influence Factors on Distortion in Induction-Hardened Steel Shafts Manufactured from Cold-Drawn Rod

    NASA Astrophysics Data System (ADS)

    Dong, Juan; Epp, Jeremy; Rocha, Alexandre da Silva; Nunes, Rafael Menezes; Zoch, Hans Werner

    2016-02-01

    In this study, the distortion of steel shafts was investigated before and after induction hardening. Several essential influencing factors in the manufacturing process chain regarding cold drawing, cutting method, notches on the shafts, and induction hardening were analyzed by design of experiment (DoE). Further necessary examinations of microstructures, hardness profile, segregation of chemical composition, and residual stress state were conducted for understanding the distortion behavior. The results of the statistical analysis of the DoE showed that the drawing process is the most important factor influencing distortion. The surface hardening depth of induction hardening is the second main factor. The relationship between inhomogeneities in the work pieces and the distortion was finally discussed.

  1. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  2. Spin-Probe Studies during Freezing of Cells Isolated from Cold-Hardened and Nonhardened Winter Rye 12

    PubMed Central

    Singh, Jas; Miller, Richard W.

    1982-01-01

    Mesophyll cells isolated from cold-hardened and nonhardened winter rye (Secale cereale L. cv. Puma) were spin-labeled with the fatty-acid spin probe N-oxyl-4,4-dimethyloxazolidine 5-ketostearic acid. The probe was intercalated within the cellular membranes and changes in probe motion were followed during extracellular freezing of the cells. A correlation was observed between the lethal freezing temperatures (LT50) of the cells and the maximum hyperfine splitting value achieved by the incorporated probe. Rigid limit spectra indicated that a more ordered average packing was attained by membranes of hardened cells which survived freezing to lower temperatures. Nonhardened cells fixed with osmic acid at lethal freezing temperatures, in the frozen state, showed both conversion of normal bilayered cellular membrane ultrastructure to an amorphous state and condensation of cellular membranes to form densely packed multibilayered vesicles. Taken together with the spin-labeling data, these results suggest that at least one molecular mechanism of extracellular freezing injury involves the irreversible conversion of planar membrane bilayers to structures having less ordered packing and increased surface curvatures. Images PMID:16662416

  3. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.

    PubMed

    Stinziano, Joseph R; Sové, Richard J; Rundle, Howard D; Sinclair, Brent J

    2015-02-01

    The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster. PMID:25460832

  4. THE EFFECT OF AGE AND COLD HARDENING ON RESISTANCE TO PINK SNOW MOULD (MICRODOCHIUM NIVALE) IN PERENNIAL RYEGRASS (LOLIUM PERENNE L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plant age and cold hardening on resistance to pink snow mould caused by Microdochium nivale was studied in perennial ryegrass. Resistance to M. nivale was estimated as relative regrowth after inoculation and incubation under artificial snow cover at 2C. Resistance increased with incre...

  5. Cold hardening processes in the Antarctic springtail, Cryptopygus antarcticus: clues from a microarray.

    PubMed

    Pura?, Jelena; Burns, Gavin; Thorne, Michael A S; Grubor-Lajsi?, Gordana; Worland, M Roger; Clark, Melody S

    2008-09-01

    The physiology of the Antarctic microarthropod, Cryptopygus antarcticus, has been well studied, particularly with regard to its ability to withstand low winter temperatures. However, the molecular mechanisms underlying this phenomenon are still poorly understood. 1180 sequences (Expressed Sequence Tags or ESTs) were generated and analysed, from populations of C. antarcticus. This represents the first publicly available sequence data for this species. A sub-set (672 clones) were used to generate a small microarray to examine the differences in gene expression between summer acclimated cold tolerant and non-cold tolerant springtails. Although 60% of the clones showed no sequence similarity to annotated genes in the datasets, of those where putative function could be inferred via database homology, there was a clear pattern of up-regulation of structural proteins being associated with the cold tolerant group. These structural proteins mainly comprised cuticle proteins and provide support for the recent theory that summer SCP variation within Collembola species could be a consequence of moulting, with moulting population having lowered SCPs. PMID:18703067

  6. Fatty acid modifications during autumnal cold-hardening in an obligatory ectoparasite, the deer ked (Lipoptena cervi).

    PubMed

    Nieminen, Petteri; Kkel, Reijo; Paakkonen, Tommi; Halonen, Toivo; Mustonen, Anne-Mari

    2013-06-01

    Poikilothermic organisms often modify their tissue fatty acids (FA) in response to cold exposure by increased unsaturation. In insects, this has been found to be accompanied by increases in the activities or mRNA expression of desaturase enzymes. In the present study, the FA composition of an obligatory ectoparasite, the deer ked (Lipoptena cervi), was analyzed in August-November. In addition to studying the general FA profile of the species, the possible contribution of FA to autumnal cold-hardening was examined. The FA composition of the deer ked imago was relatively similar to previously studied dipteran species, with high percentages of monounsaturated FA (especially 18:1n-9 and 16:1n-7) and 16:0. The individuals caught later in autumn had significantly higher values for the ratio of unsaturated to saturated FA and, regarding individual FA, the percentages of 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 were higher but those of 16:0 and 16:1n-7 lower than in August. Potential selective use of particular FA for energy could not account for the large increase in the levels of polyunsaturated FA (PUFA). The observed increased degree of FA unsaturation may have resulted from cold-induced desaturation, as observed previously in other species, or increased survival of the keds with relatively large PUFA contents. The PUFA with low melting points probably allow lipid membranes to maintain sufficient fluidity required to maintain protein functions at low ambient temperatures. PMID:23598052

  7. Surface hardening of steel by boriding in a cold rf plasma

    NASA Technical Reports Server (NTRS)

    Finberg, I.; Avni, R.; Grill, A.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    Scanning electron spectroscopy, X-ray diffractometry, Auger electron spectroscopy, and microhardness measurements, are used to study the surfaces of 4340-steel samples that have been borided in a cold RF plasma which had been initiated in a gas mixture of 2.7 percent diborane in Ar. As a result of the dislocation of the diborane in the plasma, boron is deposited on the surface of the steel substrate and two crystalline phases, tetragonal Fe2B and orthorhombic FeB, are formed. The formation of boride phases then increases the surface microhardness from 2650 MPa to a maximum value of 7740 MPa.

  8. Research on rapid-cooling press hardening process and its effect for formability of ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Ying, L.; Hu, P.; Zhao, X.; Shi, D. Y.; Dai, M. H.; Yu, H. Y.; Chang, Y.

    2013-05-01

    In this study, a new rapid-cooling process in press hardening based on theoretical analysis, experimental test and optimal formability simulation were investigated for improving formability and obdurability of 22MnB5 boron steel. A series of non-isothermal flow behaviors in different plastic strain rates from 0.001s-1 to 0.1s-1 was investigated by thermal-mechanical uniaxial tensile tests. Furthermore, martensite transformation measurement was also involved in the temperature range from 600° to 800°. According to an interrelated Norton-Hoff constitutive model was developed to describe the complicated thermal-mechanical-phase transformation couple model, a typical deep drawing box used to simulate formability so as to compare with actual press hardening experiments used by the self-developed multi-field coupled static-explicit FE software KMAS and dynamic-explicit commercial software LS-DYNA respectively. The results showed the rapid-cooling process indicate the validity and efficiency of meeting the forming performance characteristics and the optimal process which temperature range from 650°C˜700°C can contribute to improve formability of press hardening manufacture.

  9. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor.

    PubMed

    Hlaváčková, Iva; Vítámvás, Pavel; Santrůček, Jiří; Kosová, Klára; Zelenková, Sylva; Prášil, Ilja Tom; Ovesná, Jaroslava; Hynek, Radovan; Kodíček, Milan

    2013-01-01

    Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley. PMID:23584021

  10. Control of cold-hardening in the freeze-tolerant gall-fly larva, Eurosta solidaginis (Fitch) (tephrididae)

    SciTech Connect

    Rojas, R.R.

    1986-01-01

    Quantitative differences exist in cryoprotectant accumulation patterns and ice nucleating activity between latitudinally distinct populations of the gall fly Eurosta solidaginis. The objectives of this study were the determination of the following: (1) what are the quantitative effects of temperature on polyol synthesis in E. solidaginis larvae. (2) What quantitative differences exist in response to warm acclimation and reacclimation to cold between northern and southern populations of E. solidaginis larvae in polyol production. (3) What changes occur in carbon flow during low temperature acclimation in E. solidaginis larvae. (4) What is the role of gall plant water content in glycerol production in E. solidaginis larvae. (5) Where is the site of nucleation in E. solidaginis larvae. (6) What role does contact and surface moisture have in nucleation of E. solidaginis larvae. (7) Does the endocrine system play a role in the control of cold-hardening (ice nucleating agents) in E. solidaginis. Acute exposure to low temperature of local populations showed that sorbital synthesis was initiated at temperatures below +10/sup 0/C. The optimum for synthesis was around 0/sup 0/C. Glycerol levels increased linearly during the experimental period independent of temperature. Analysis of respirometric data of larvae injected with specifically labelled /sup 14/C-glucose (C/sub 1/, C/sub 3,4/ or C/sub 6/) indicated that changes in carbon flow distribution led to polyol synthesis at low temperatures. In light of the temperature independent accumulation of glycerol an attempt was made to determine the environmental trigger of its synthesis. Field data revealed a strong correlation between the water content of the plant gall and glycerol accumulation by the larvae.

  11. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    SciTech Connect

    Kim, J.S.; Kim, S.I.; Choi, S.-H.

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on the Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.

  12. Use of intraspecific variation in thermal responses for estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer.

    PubMed

    Ishizuka, W; Ono, K; Hara, T; Goto, S

    2015-01-01

    To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high-elevation populations developed cold hardiness earlier than low-elevation populations, representing significant genetic control. Because development occurred earlier at high-elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade-off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high-elevation population. These thermal responses may be one of the important factors driving the elevation-dependent adaptation of A. sachalinensis. PMID:24988996

  13. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  14. Tensile properties and conductivities of a precipitation hardened and cold-rolled Cu-0.3Cr-0.1Zr alloy at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Umezawa, O.

    2015-12-01

    Cu-0.3Cr-0.1Zr alloy (in mass%) is one of typical precipitation hardened copper- based alloys, and exhibited an excellent combination of high strength and high conductivities at the temperature range of 4 K to 300 K. The tensile properties, electrical resistivity, thermal conductivity and magnetization of precipitation hardened and cold-rolled Cu-0.3Cr-0.1Zr alloy were measures in comparison with oxygen free copper at cryogenic temperatures. The Cu- 0.3Cr-0.1Zr showed higher yield ratio (yield strength / tensile strength) and lower the ratio of yield strength to electrical resistivity at cryogenic temperature than oxygen free copper. It exhibited high electrical and thermal conductivities, excellent non-magnetic stability and very low magnetic permeability at 4.2 K.

  15. An Extended Age-Hardening Model for Al-Mg-Si Alloys Incorporating the Room-Temperature Storage and Cold Deformation Process Stages

    NASA Astrophysics Data System (ADS)

    Myhr, Ole Runar; Grong, Øystein; Schäfer, Carmen

    2015-12-01

    In this article, a new age-hardening model for Al-Mg-Si alloys is presented (named NaMo-Version 2), which takes into account the combined effect of cold deformation and prolonged room-temperature storage on the subsequent response to artificial aging. As a starting point, the original physical framework of NaMo-Version 1 is revived and used as a basis for the extension. This is permissible, since a more in-depth analysis of the underlying particle-dislocation interactions confirms previous expectations that the simplifying assumption of spherical precipitates is not crucial for the final outcome of the calculations, provided that the yield strength model is calibrated against experimental data. At the same time, the implementation of the Kampmann-Wagner formalism means that the different microstructure models can be linked together in a manner that enforces solute partitioning and competition between the different hardening phases which form during aging ( e.g., clusters, β″ and β'). In a calibrated form, NaMo-Version 2 exhibits a high degree of predictive power, as documented by comparison with experiments, using both dedicated nanostructure and yield strength data as a basis for the validation. Hence, the model is deemed to be well-suited for simulation of thermomechanical processing of Al-Mg-Si alloys involving cold-working operations like sheet forming and stretch bending in combination with heat treatment and welding.

  16. Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.

    2015-07-01

    A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.

  17. Intra-arrest Hypothermia: Both Cold Liquid Ventilation with Perfluorocarbons and Cold Intravenous Saline Rapidly Achieve Hypothermia, but Only Cold Liquid Ventilation Improves Resumption of Spontaneous Circulation

    PubMed Central

    Riter, Henry G.; Brooks, Leonard A.; Pretorius, Andrew M.; Ackermann, Laynez W.; Kerber, Richard E.

    2009-01-01

    Background Rapid intra-arrest induction of hypothermia using total liquid ventilation (TLV) with cold perfluorocarbons improves resuscitation outcome from ventricular fibrillation (VF). Cold saline intravenous infusion during cardiopulmonary resuscitation (CPR) is a simpler method of inducing hypothermia. We compared these 2 methods of rapid hypothermia induction for cardiac resuscitation. Methods Three groups of swine were studied: cold preoxygenated TLV (TLV, n=8), cold intravenous saline infusion (S, n=8), and control (C, n=8). VF was electrically induced. Beginning at 8 minutes of VF, TLV and S animals received 3 minutes of cold TLV or rapid cold saline infusion. After 11 minutes of VF, all groups received standard air ventilation and closed chest massage. Defibrillation was attempted after 3 minutes of CPR (14 minutes of VF). The end point was resumption of spontaneous circulation (ROSC). Results Pulmonary arterial (PA) temperature decreased after 1 minute of CPR from 37.2°C to 32.2°C in S and from 37.1°C to 34.8°C in TLV (S or TLV vs. C p<0.0001). Coronary perfusion pressure (CPP) was higher in TLV than S animals during the initial 3 minutes of CPR. Arterial pO2 was higher in the preoxygenated TLV animals. ROSC was achieved in 7 of 8 TLV, 2 of 8 S, and 1 of 8 C (TLV vs. C, p=0.03). Conclusions Moderate hypothermia was achieved rapidly during VF and CPR using both cold saline infusion and cold TLV, but ROSC was higher than control only in cold TLV animals, probably due to better CPP and pO2. The method by which hypothermia is achieved influences ROSC. PMID:19249149

  18. Cytoskeleton-induced alterations of the lectin activity in winter wheat under cold hardening and abscisic acid (ABA).

    PubMed

    Timofeeva, O; Khokhlova, L; Belyaeva, N; Chulkova, Y; Garaeva, L

    2000-01-01

    The roots and leaves of 7-day seedlings of three winter wheat cultivars differing in frost resistant were used to study changes in lectin activity under cytoskeleton modifiers (DMSO-7%; colchicine-1 m m; oryzalin-15 microm; cytochalasin B-15 microm) of non-hardened (23 degrees C) and hardened (2-3 degrees C, 3-7 day) plants. Plants were grown with ABA (30 microm) or without ABA. Pretreatment with colchicine, oryzalin [inhibitors of microtubules (MT) polymerization], cytochalasin B [inhibitor of microfilament (MF) polymerization] increased the activity of cell wall lectins, although pretreatment with DMSO (stabilizer of microtubules) decreased the activity. Both hardening and ABA decreased the effect of the cytoskeletal modifiers. These results could be explained by the appearance of tolerant MTs with less affinity. It is probable that increase in the activity of cell wall lectins may be the compensatory mechanism which stabilizes the cytoskeleton structure in conditions tending to disrupt it. The genotype with low resistance had higher sensitivity of lectin activity to cytoskeleton modifiers than the frost resistant genotype. The results suggest that leaves have more stable MTs and MFs and stronger MT-MF binding than roots. PMID:10860573

  19. Rapid Growth Reduces Cold Resistance: Evidence from Latitudinal Variation in Growth Rate, Cold Resistance and Stress Proteins

    PubMed Central

    Stoks, Robby; De Block, Marjan

    2011-01-01

    Background Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Methodology/Principal Finding Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. Conclusions/Significance We provide evidence for a novel cost of rapid growth: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales. PMID:21390210

  20. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  1. Cold Hardening of Spring and Winter Wheat and Rape Results in Differential Effects on Growth, Carbon Metabolism, and Carbohydrate Content.

    PubMed

    Hurry, V. M.; Strand, A.; Tobiaeson, M.; Gardestrom, P.; Oquist, G.

    1995-10-01

    The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring. PMID:12228623

  2. Rapid remobilization of magmatic crystals kept in cold storage.

    PubMed

    Cooper, Kari M; Kent, Adam J R

    2014-02-27

    The processes involved in the formation and storage of magma within the Earth's upper crust are of fundamental importance to volcanology. Many volcanic eruptions, including some of the largest, result from the eruption of components stored for tens to hundreds of thousands of years before eruption. Although the physical conditions of magma storage and remobilization are of paramount importance for understanding volcanic processes, they remain relatively poorly known. Eruptions of crystal-rich magma are often suggested to require the mobilization of magma stored at near-solidus conditions; however, accumulation of significant eruptible magma volumes has also been argued to require extended storage of magma at higher temperatures. What has been lacking in this debate is clear observational evidence linking the thermal (and therefore physical) conditions within a magma reservoir to timescales of storage-that is, thermal histories. Here we present a method of constraining such thermal histories by combining timescales derived from uranium-series disequilibria, crystal sizes and trace-element zoning in crystals. At Mount Hood (Oregon, USA), only a small fraction of the total magma storage duration (at most 12 per cent and probably much less than 1 per cent) has been spent at temperatures above the critical crystallinity (40-50 per cent) at which magma is easily mobilized. Partial data sets for other volcanoes also suggest that similar conditions of magma storage are widespread and therefore that rapid mobilization of magmas stored at near-solidus temperatures is common. Magma storage at low temperatures indicates that, although thermobarometry calculations based on mineral compositions may record the conditions of crystallization, they are unlikely to reflect the conditions of most of the time that the magma is stored. Our results also suggest that largely liquid magma bodies that can be imaged geophysically will be ephemeral features and therefore their detection could indicate imminent eruption. PMID:24531766

  3. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella.

    PubMed

    Yi, Shu-Xia; Lee, Richard E

    2016-01-01

    The banded woolly bear caterpillar, Pyrrharctia isabella (Lepidoptera: Erebidae), overwinters in leaf litter and survives freezing under natural conditions. Following 18 weeks of cold acclimation at 5°C, all caterpillars could survive 1 week of continuous freezing at -20°C or seven cycles of freezing-thawing at -20°C, but none survived freezing at -80°C. Field-collected caterpillars had a temperature of crystallization of -7.7±0.5°C that decreased significantly to -9.5±0.6°C after 12 weeks of acclimation at 5°C. Hemolymph levels of free proline, total amino acids and proteins reached a peak during the first 4 weeks of acclimation; concomitantly, hemolymph osmolality increased markedly during this interval (from 364 to 1282 mosmol kg(-1)). In contrast, hemolymph pH decreased during the first 4 weeks of acclimation before this trend reversed and pH values gradually returned to initial values. However, pH reached its peak value following 1 week at -20°C, but decreased after longer periods of freezing. During cold acclimation, cholesterol levels decreased in the hemolymph and the membrane fraction of fat body but not in other tissues. Lethal freezing at -80°C reduced cell survival in foregut tissue and caused leakage of free proline, total amino acids and proteins from tissues into the hemolymph. The addition of glycerol to the bathing medium reduced freezing injury in fat body cells, as evidenced by reduced leakage of amino acids and proteins. PMID:26643089

  4. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-contamination of fresh produce and other foods from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a rapid, waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its abili...

  5. Survivability of the hardened mobile launcher when attacked by a hypothetical rapidly retargetable ICBM system. Master's thesis

    SciTech Connect

    Gearhart, D.J.; Merrow, S.F.

    1986-03-01

    This thesis evaluates the survivability of the hardened mobile launcher system (HML) against a hypothetical enemy ICBM system. The hypothetical system has two key capabilities: it can obtain near real-time intelligence information regarding the HML's location, and it can be retargeted in flight (as necessary) according to the intelligence information. Thus, the hypothetical ICBM threat systems can attack individual HMLs directly rather than rely on a barrage attack against HML bases. Monte Carlo simulation is used to approach the problem. The model is an MBASIC computer program, written and runs on an Apple Macintosh computer. The model simulates the flight of the attacking ICBMs (there may be as few as one or as many as 14 warheads directed at each HML) and the random dispersal tactics of a single HML. The model determines the locations of the detonations and the location of the HML at time of detonation. Based on these locations, probability of kill due to peak-blast overpressure is calculated. A key parameter in the model is intelligence / retargeting cycle time -- the time required to obtain intelligence and retarget accordingly. This time is varied from 1-30 minutes. The model also allows variations in HML speed and hardness and threat system CEP. A subroutine for examining the effects of neutron fratricide on the attacking warheads is included (although the effects were found to be negligible). The thesis concludes that very small intelligence/retargeting cycle times are required for this to be an effective weapon system against the HML. Thus, with today's (or near future) technology, the HML can be considered a very survivable system.

  6. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  7. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  8. Rapid extraction of the phase shift of the cold-atom interferometer via phase demodulation

    NASA Astrophysics Data System (ADS)

    Cheng, Bing; Wang, Zhao-Ying; Xu, Ao-Peng; Wang, Qi-Yu; Lin, Qiang

    2015-11-01

    Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If mapping the phase shift for each T with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when doing fine mapping with a small step of T. Here we present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. We demonstrate experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the Ministry of Science and Technology of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2015FZA3002).

  9. Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe

    NASA Astrophysics Data System (ADS)

    Purvis, R. M.; Lewis, A. C.; Carney, R. A.; McQuaid, J. B.; Arnold, S. R.; Methven, J.; Barjat, H.; Dewey, K.; Kent, J.; Monks, P. S.; Carpenter, L. J.; Brough, N.; Penkett, S. A.; Reeves, C. E.

    2003-04-01

    The vertical distribution of 21 C2-C7 nonmethane hydrocarbons (NMHCs) has been determined in planetary boundary layer (PBL) and free tropospheric (FT) air over central Europe under a range of meteorological conditions. High-frequency whole air sampling was conducted on board the U.K. Meteorological Office C-130 Hercules aircraft during the European Export of Precursors and Ozone by Long-Range Transport (EXPORT) experiment in August 2000. When vertical transport by large-scale flow or convection was weak, the expected large concentration gradient between the PBL and FT was observed for all short and medium lifetime hydrocarbons (e.g., average iso-butane, PBL 100 pptV, FT 6 pptV). During periods of strong convective activity associated with the passage of a cold front, a rapid uplift of reactive carbon from the boundary layer to the mid free troposphere was observed. Using changing ratios of hydrocarbons with different atmospheric lifetimes, a timescale for transport during this event was determined. Hydrocarbon lifetime measurements suggest that in certain regions of the system, it is convective transport embedded within the cold front rather than larger-scale advection along the warm conveyor belt that is dominant in transporting ozone precursors into the free troposphere.

  10. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  11. Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy

    NASA Astrophysics Data System (ADS)

    Walker, Nan D.; Leben, Robert R.; Pilley, Chet T.; Shannon, Michael; Herndon, Derrick C.; Pun, Iam-Fei; Lin, I.-I.; Gentemann, Chelle L.

    2014-11-01

    Category 4 Hurricane Kenneth (HK) experienced unpredicted rapid weakening when it stalled over a cold core eddy (CCE) on 19-20 September 2005, 2800 km SE of Hawaii. Maximum sea surface temperature (SST) cooling of 8-9°C and a minimum aerially averaged SST of 18.3°C (over 8750 km2) characterized its cool wake. A 3-D mixed-layer model enabled estimation of enthalpy fluxes (latent and sensible heat), as well as the relative importance of slow translation speed (Uh) compared with the preexisting CCE. As Uh dropped below 1.5 m s-1, enthalpy fluxes became negative, cutting off direct ocean energy flux to HK. Although HK's weakening was attributed to wind shear, our results indicate that slow Uh and consequent intense SST cooling were the main causes. The tropical cyclone-intensified CCE experienced rapid growth in magnitude (-6 to -40 cm), increased diameter (60 to 350 km), elevated chlorophyll a for 4 months, and 12 month longevity.

  12. A hardenability test proposal

    SciTech Connect

    Murthy, N.V.S.N.

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  13. The rapid assembly of synaptic sites in photoreceptor terminals of the fly's optic lobe recovering from cold shock.

    PubMed

    Brandstätter, J H; Meinertzhagen, I A

    1995-03-28

    When a housefly, Musca domestica, is subject to cold exposure (0 degrees C for 24 hr), a number of obvious changes are seen in the first optic neuropil, or lamina, beneath the compound eye. In particular, the number of afferent photoreceptor synapses declines by about 30%. This loss is dramatically restored after warm recovery at 23 degrees C for 24 hr. Synapses disappear at an average rate of 2-3/hr during cold exposure and reappear at a maximal rate of more than 20/hr during the first 2 hr of warm recovery. Thereafter their number temporarily overshoots control values, to increase at 6 hr of warm recovery to 60% above their cold-exposed minimum. The number subsequently returns more or less to normal. These changes demonstrate the lability of synaptic sites under these conditions, with individual sites forming and disappearing rapidly. The changes also interrupt the close correlation between synaptic number and the surface area of the receptor terminal, a correlation that normally conserves synaptic spacing density. The density is preserved during cold exposure but increases during warm recovery at a time when the addition of newly formed synapses exceeds the slower increase in receptor terminal size. PMID:7708704

  14. Rapid toluene mineralization by aquifer microorganisms at Adak, Alaska: Implications for intrinsic bioremediation in cold environments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    Sediments from a relatively cold (5??C), petroleum hydrocarbon-contaminated aquifer in Adak, AK, mineralized [14C]toluene at an aerobic rate (16.3% day-1 at 5??C) comparable to that (5.1% day-1 at 20??C) of sediments from a more temperate aquifer at Hanahan, SC. In addition, rates of overall microbial metabolism in sediments from the two aquifers, as estimated by [1 -14C]acetate mineralization, were similar (???10.6% h-1) at their respective in situ temperatures. These results are not consistent with the common assumption that biodegradation rates in cold ground-water systems are depressed relative to more temperate systems. Furthermore, these results suggest that intrinsic bioremediation of petroleum hydrocarbon contaminants in cold groundwater systems may be technically feasible, in some cases.

  15. Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size

    PubMed Central

    Götberg, Matthias; Olivecrona, Goran K; Engblom, Henrik; Ugander, Martin; van der Pals, Jesper; Heiberg, Einar; Arheden, Håkan; Erlinge, David

    2008-01-01

    Background The aim of this study was to evaluate the combination of a rapid intravenous infusion of cold saline and endovascular hypothermia in a closed chest pig infarct model. Methods Pigs were randomized to pre-reperfusion hypothermia (n = 7), post-reperfusion hypothermia (n = 7) or normothermia (n = 5). A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min. Hypothermia was started after 25 min of ischemia or immediately after reperfusion by infusion of 1000 ml of 4°C saline and endovascular hypothermia. Area at risk was evaluated by in vivo SPECT. Infarct size was evaluated by ex vivo MRI. Results Pre-reperfusion hypothermia reduced infarct size/area at risk by 43% (46 ± 8%) compared to post-reperfusion hypothermia (80 ± 6%, p < 0.05) and by 39% compared to normothermia (75 ± 5%, p < 0.05). Pre-reperfusion hypothermia infarctions were patchier in appearance with scattered islands of viable myocardium. Pre-reperfusion hypothermia abolished (0%, p < 0.001), and post-reperfusion hypothermia significantly reduced microvascular obstruction (10.3 ± 5%; p < 0.05), compared to normothermia: (30.2 ± 5%). Conclusion Rapid hypothermia with cold saline and endovascular cooling before reperfusion reduces myocardial infarct size and microvascular obstruction. A novel finding is that hypothermia at the onset of reperfusion reduces microvascular obstruction without reducing myocardial infarct size. Intravenous administration of cold saline combined with endovascular hypothermia provides a method for a rapid induction of hypothermia suggesting a potential clinical application. PMID:18402663

  16. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  17. Rapid determination of immunoglobulin G concentration in cold ethanol precipitation process of raw plasma with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Aihua; Zang, Hengchang; Li, Hu; Jiang, Wei; Li, Lian; Wang, Jinfeng

    2013-12-01

    Near-infrared spectroscopy (NIRS) is known to be a powerful analytical tool in process monitoring. The feasibility of NIRS was investigated for determination of immunoglobulin G (IgG) in raw plasma cold ethanol precipitation process. Partial least squares (PLS) was used to develop regression model for 63 samples between spectra and reference data measured with a UV spectrophotometer. Three different variable selection methods, including correlation coefficient method, interval partial least squares (iPLS) and successive projection algorithm (SPA), were performed and compared with models based on all the variables. The values of Rc and root mean square error of cross validation (RMSECV) produced by the best model for the calibration set were 0.9599 and 0.6135 g/L, respectively. While for the validation set, the values of Rp and root mean square error of prediction (RMSEP) were 0.9577 and 0.4913 g/L, respectively. The results of this paper demonstrated that NIRS could be a feasible alternative approach for rapid determination of IgG in the cold ethanol precipitation process and can be used as a PAT tool in the future.

  18. Cold tolerance and proline metabolic gene expression in Drosophila melanogaster.

    PubMed

    Misener, S R.; Chen, C -P.; Walker, V K.

    2001-04-01

    Treatment of Drosophila melanogaster adults with an inhibitor of protein synthesis led to a decrease in intrinsic cold-shock tolerance, but no difference in the rapid cold hardening response, which is apparent only if a period at 4 degrees C precedes the cold stress. Increases in energy reserves, including proline, were found in lines of flies selected for resistance to chilling injury. Since an increase in proline levels has been associated with overwintering in insects, and for salt and cold tolerance in plants, an RNase protection assay was developed to assess changes in transcript abundance for two genes encoding enzymes important for proline metabolism, pyrroline 5-carboxylate reductase and proline oxidase. The mRNA levels did not change in response to low temperature, but the high level of pyrroline 5-carboxylate reductase transcript is consistent with the interpretation that a large proline pool is important for Drosophila metabolism and survival during cold stress. PMID:11166304

  19. Rapid Quench Cold-Seal Apparatus with Computer-Controlled Pressure and Temperature Cycling

    NASA Astrophysics Data System (ADS)

    Johnston, A.; Senkovich, D.

    2007-12-01

    We have constructed two computer-controlled, rapid quench, hydrothermal apparatuses that are ideal for experimentation on volcanological, geothermal, and ore deposit research problems. The devices can achieve maximum pressures of about 2 kbar and temperatures to 1100C, have the ability for experiments to be quenched very rapidly in a water-cooled environment, and are interfaced with computers which can control any regimen of pressure and/or temperature cycling that may be desired, accomplished via Lab-View software and data acquisition and motion control boards from National Instruments. The rapid quench aspects of the design were developed originally by Dr. Phil Ihinger and have subsequently been adopted by many labs around the world; a good summary description of these aspects of the equipment, and the use of filler-rods for controlling redox conditions in such equipment, are provided by Matthews et al. (2004, Am. Mineral., 88: 701-707). Our design has fixed Rene 41 pressure vessels, furnaces that are raised and lowered by computer controlled pneumatic cylinders and water cooling systems that are controlled by computer operated solenoid valves. The novel feature of our design is the pressure generation and control systems. We coupled the seal-ends of commercially available (HIP) pressure generators to shop-built linear actuators consisting of nearly frictionless ball lead screws within thick walled stainless steel housings. These in turn are driven by NEMA size 23 stepper motors coupled to 100:1 gear reduction units. The actuators require 21 revolutions to achieve their full stroke of 12.7 cm which displaces about 10 cc of fluid. Operating the motors at the relatively low resolution of 800 steps per revolution leads to about 132,000 steps per cm of travel of the pressure-generating piston, providing exceptionally high precision and excellent pressure control. Instantaneous decompression can be achieved by simply opening a valve while motor-controlled decompression from 2 kbar to 1 bar can occur over time spans ranging from about one minute to months. This equipment will find immediate use in studies of decompression- induced magmatic vesiculation and crystallization in sub-volcanic and volcanic conduit environments and decompression-induced precipitation of fracture-filling ore and silicate minerals in crustal hydrothermal environments.

  20. Role of HSF activation for resistance to heat, cold and high-temperature knock-down.

    PubMed

    Nielsen, Morten Muhlig; Overgaard, Johannes; Srensen, Jesper Givskov; Holmstrup, Martin; Justesen, Just; Loeschcke, Volker

    2005-12-01

    Regulation of heat shock proteins (Hsps) by the heat shock factor (HSF) and the importance of these proteins for resistance to heat stress is well documented. Less characterized is the importance of Hsps for cold stress resistance although Hsp70 is known to be induced following long-term cold exposure in Drosophila melanogaster. In this study, a temperature-sensitive HSF mutant line was used to investigate the role of HSF activation following heat hardening, rapid cold hardening (RCH) and long-term cold acclimation (LTCA) on heat and cold resistance, and this was correlated with Hsp70 expression. In addition, the effect of HSF activation on high-temperature knock-down resistance was evaluated. We found a significantly decreased HSF activation in the mutant line as compared to a corresponding control line following heat hardening, and this was correlated with decreased heat resistance of the mutant line. However, we did not find this difference in HSF activity to be important for resistance to cold stress or high-temperature knock-down. The findings indicate that induction of stress genes regulated by HSF, such as Hsps, although occurring following LTCA, are not of major importance for cold stress resistance and neither for RCH nor high-temperature knock-down resistance in D. melanogaster. PMID:16169555

  1. Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties 1

    PubMed Central

    Cloutier, Yves; Siminovitch, David

    1982-01-01

    Exposure of six wheat (Triticum aestivum L.) and one rye (Secale cereale L.) cultivar to 40% relative humidity for 24 hours induced the same degree of freezing tolerance in seedling epicotyls as did cold conditioning for 4 weeks at 2°C. Frost hardiness varietal relationships were the same in desiccation-stressed and cold-hardened seedlings. Drought stress could, therefore, be used as a rapid and simple method for inducing frost hardiness in seedling shoots in replacement of cold conditioning. Images PMID:16662170

  2. The evolution of cold tolerance in Drosophila larvae.

    PubMed

    Strachan, Lauren A; Tarnowski-Garner, Heather E; Marshall, Katie E; Sinclair, Brent J

    2011-01-01

    Temperature is a primary determinant of insect and other ectotherm distribution and activity. Physiological and behavioral adaptations allow many insects to survive at subzero temperatures, yet the evolutionary influences on insect cold tolerance are unclear. Supercooling points, basal cold tolerance, cold-tolerance strategy, and inducible cold tolerance from rapid cold-hardening or acclimation were measured in a phylogenetically independent context in larvae of 27 phylogenetically diverse Drosophila species acquired from stock collections. Supercooling capacity is attributed primarily to physical factors, such as dry mass and water mass. Species of the obscura group were more resistant to acute cold tolerance than species of other groups within the genus, and plasticity in cold tolerance is constrained by phylogeny rather than by basal cold tolerance. The more cold-tolerant freeze-avoiding species appear to have arisen multiple times in Drosophila and are distinct from chill-susceptible species, which likely indicate the ancestral state. A phylogenetic influence is apparent on several measures of cold tolerance, which show considerable interspecific variation and indicate varying physiological mechanisms among Drosophila species when temperature limits are met. PMID:21050129

  3. Calcium signaling mediates cold sensing in insect tissues.

    PubMed

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  4. Calcium signaling mediates cold sensing in insect tissues

    PubMed Central

    Teets, Nicholas M.; Yi, Shu-Xia; Lee, Richard E.; Denlinger, David L.

    2013-01-01

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  5. Quality of chilled and cold-stored (5 °C) canine spermatozoa submitted to different rapid cooling rates.

    PubMed

    Rodenas, C; Parrilla, I; Roca, J; Martinez, E A; Lucas, X

    2014-09-01

    The aim of this study was to evaluate the sperm quality in chilled canine semen using different cooling rates from room temperature (23 °C) to 5 °C and subsequently cold-stored at 5 °C for up to 96 hours. In experiment 1, semen samples from five dogs were pooled, diluted in Tris-fructose-citrate extender with 20% egg yolk and split into four aliquots that were chilled to 5 °C using different cooling rates of 2.25, 0.9, 0.45, and 0.2 (control) °C/min. In experiment 2, semen from five dogs was processed individually as described above and split into two aliquots that were chilled to 5 °C using rates of either 2.25 °C/min or 0.2 °C/min. In both experiments, the sperm quality (i.e., sperm motility and viability) was evaluated before cooling and after 0, 24, 48, 72, and 96 hours of storage at 5 °C. The total motility, progressive motility, and quality of movement parameters were assessed using computer-assisted analysis system, and the percentage of viable spermatozoa was determined using flow cytometry (H-42/PI//FITC-PNA). The cooling rate did not influence the sperm quality parameters at any of the evaluation times. All evaluated males showed the same response to chilling semen at a rapid cooling rate. Storage time negatively influenced (P < 0.05) sperm motility, regardless of the cooling rate used. In conclusion, canine sperm could be chilled and stored for 96 hours at 5 °C in a Tris-fructose extender with 20% egg yolk using rapid cooling rates, with values for sperm quality similar to those from a conventional protocol. PMID:24985357

  6. Increased abundance of frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster.

    PubMed

    Udaka, H; Percival-Smith, A; Sinclair, B J

    2013-10-01

    Frost (Fst) is a candidate gene associated with the response to cold in Drosophila melanogaster because Fst mRNA accumulation increases during recovery from low temperature exposure. We investigated the contribution of Fst expression to chill-coma recovery time, acute cold tolerance and rapid cold hardening (RCH) in adult D.?melanogaster by knocking down Fst?mRNA expression using GAL4/UAS-mediated RNA interference. In this experiment, four UAS-Fst and one tubulin-GAL4 lines were used. We predicted that if Fst is essential for cold tolerance phenotypes, flies with low Fst?mRNA levels should be less cold tolerant than flies with normal levels of cold-induced Fst?mRNA. Cold-induced Fst abundance and recovery time from chill-coma were not negatively correlated in male or female flies. Survival of 2?h exposures to sub-zero temperatures in Fst knockdown lines was not lower than that in a control line. Moreover, a low temperature pretreatment increased survival of severe cold exposure in flies regardless of Fst abundance level during recovery from cold stress, suggesting that Fst expression is not essential for RCH. Thus, cold-induced Fst accumulation is not essential for cold tolerance measured as chill-coma recovery time, survival to acute cold stress and RCH response in adult D.?melanogaster. PMID:23901849

  7. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  8. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  9. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  10. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  11. Strain hardening of steel EP836

    SciTech Connect

    Lyadskaya, A.A.; Lappa, R.M.; Spuskanyuk, V.Z.

    1986-03-01

    The authors investigate the effect of different combinations of cold hydraulic pressing and heat treatment on the physical and mechanical properties of steel EP836 (03N17K10V10MT), containing 0.03% C, 16-17% Ni, 10-11.5% Co, 9.5-11.5% W, 1% Ti, 1% Mo, and 0.15% A1. Deformation of the unaged steel resulted in insignificant hardening without a decrease in plasticity; this agrees with the results of investigations of other steels of this class.

  12. Precipitation, strength and work hardening of age hardened aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ryen, Ø.; Holmedal, B.; Marthinsen, K.; Furu, T.

    2015-08-01

    The strength and work hardening of age hardened AA6063 and AA6082 alloys have been investigated in terms of a detailed characterization of precipitate and dislocation structures obtained by TEM and SEM. Tensile and compression tests were performed at as quenched, peak aged and severely aged conditions. A strong work hardening in the as quenched condition was found, similar to AlMg alloys with twice as much alloying elements in solid solution. It was found that the initial work hardening rate and the critical failure strain are both smallest at the peak aged condition. During large deformations the needle-shaped precipitates are sheared uniformly by dislocations altering their <001> orientations, which indicates extensive cross slip. In the overaged condition the early initial work hardening is larger than at the peak aged condition, but followed by a weak linear work hardening, apparently directly entering stage IV at a low strain. Cracked, needle-shaped precipitates were seen at larger strains.

  13. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella and Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-contamination of fresh produce from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its ability to remove biofilms f...

  14. Cold stress causes rapid but differential changes in properties of plasma membrane H(+)-ATPase of camelina and rapeseed.

    PubMed

    Kim, Hyun-Sung; Oh, Jung-Min; Luan, Sheng; Carlson, John E; Ahn, Sung-Ju

    2013-06-15

    Camelina (Camelina sativa) and rapeseed (Brassica napus) are well-established oil-seed crops with great promise also for biofuels. Both are cold-tolerant, and camelina is regarded to be especially appropriate for production on marginal lands. We examined physiological and biochemical alterations in both species during cold stress treatment for 3 days and subsequent recovery at the temperature of 25°C for 0, 0.25, 0.5, 1, 2, 6, and 24h, with particular emphasis on the post-translational regulation of the plasma membrane (PM) H(+)-ATPase (EC3.6.3.14). The activity and translation of the PM H(+)-ATPase, as well as 14-3-3 proteins, increased after 3 days of cold stress in both species but recovery under normal conditions proceeded differently. The increase in H(+)-ATPase activity was the most dramatic in camelina roots after recovery for 2h at 25°C, followed by decay to background levels within 24h. In rapeseed, the change in H(+)-ATPase activity during the recovery period was less pronounced. Furthermore, H(+)-pumping increased in both species after 15min recovery, but to twice the level in camelina roots compared to rapeseed. Protein gel blot analysis with phospho-threonine anti-bodies showed that an increase in phosphorylation levels paralleled the increase in H(+)-transport rate. Thus our results suggest that cold stress and recovery in camelina and rapeseed are associated with PM H(+)-fluxes that may be regulated by specific translational and post-translational modifications. PMID:23399403

  15. Acute exposure to cold rapidly increases the number of nucleotide binding sites, but not proton conductance, in BAT mitochondria

    SciTech Connect

    Swick, A.G.; Swick, R.W.

    1986-03-01

    Studies on the effect of acute cold exposure of rats on brown adipose tissue (BAT) thermogenic activity have produced equivocal results. Therefore, the authors have reexamined the response of BAT mitochondria to abrupt changes in environmental temperature. /sup 3/H-GDP binding to BAT mitochondria increased more than 2-fold in 20 min when rats were moved from 27/sup 0/C to 4/sup 0/C. When rats housed at 4/sup 0/C for 2 h were returned to 27/sup 0/C, GDP binding decreased sharply in 20 min and returned to control levels in 2 h. On the other hand, GDP-inhibitable proton conductance, as measured by passive swelling in isotonic K-acetate of KCl buffers, was unaffected by brief cold exposure but more than doubled in rats kept at 4/sup 0/C for 10 days. The authors conclude that GDP-inhibitable swelling may be more indicative of uncoupling protein concentration whereas thermogenic activity is more appropriately indicated by GDP binding. GDP binding to BAT mitochondria from warm and acutely cold treated rats was not altered by prior swelling of the mitochondria nor by freeze-thawing the mitochondria before assay. Therefore, alterations of the number of GDP binding sites may not be a result of conformational changes of the mitochondril membrane.

  16. Simple and rapid determination of phthalates using microextraction by packed sorbent and gas chromatography with mass spectrometry quantification in cold drink and cosmetic samples.

    PubMed

    Kaur, Ramandeep; Heena; Kaur, Ripneel; Rani, Susheela; Malik, Ashok Kumar

    2016-03-01

    A simple and rapid method using microextraction by packed sorbent coupled with gas chromatography and mass spectrometry has been developed for the analysis of five phthalates, namely, diethyl phthalate, benzyl-n-butyl phthalate, dicyclohexyl phthalate, di-n-butyl phthalate, and di-n-propyl phthalate, in cold drink and cosmetic samples. The various parameters that influence the microextraction by packed sorbent performance such as extraction cycle (extract-discard), type and amount of solvent, washing solvent, and pH have been studied. The optimal conditions of microextraction using C18 as the packed sorbent were 15 extraction cycles with water as washing solvent and 3 × 10 μL of ethyl acetate as the eluting solvent. Chromatographic separation was also optimized for injection temperature, flow rate, ion source, interface temperature, column temperature gradient and mass spectrometry was evaluated using the scan and selected ion monitoring data acquisition mode. Satisfactory results were obtained in terms of linearity with R(2) >0.9992 within the established concentration range. The limit of detection was 0.003-0.015 ng/mL, and the limit of quantification was 0.009-0.049 ng/mL. The recoveries were in the range of 92.35-98.90% for cold drink, 88.23-169.20% for perfume, and 88.90-184.40% for cream. Analysis by microextraction by packed sorbent promises to be a rapid method for the determination of these phthalates in cold drink and cosmetic samples, reducing the amount of sample, solvent, time and cost. PMID:26683135

  17. Multipurpose hardened spacecraft insulation

    NASA Technical Reports Server (NTRS)

    Steimer, Carlos H.

    1990-01-01

    A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).

  18. Cold-Nuclear-Matter Effects on Heavy-Quark Production at Forward and Backward Rapidity in d +Au Collisions at √sNN =200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2014-06-01

    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1rapidity (1.4<|y|<2.0) in d +Au and p+p collisions at √sNN =200 GeV. In central d +Au collisions, relative to the yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-pT broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d +Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter.

  19. Radiation-hardened asphaltite composites

    SciTech Connect

    Persinen, A.A.; Trubyatchinskaya, V.N.; Tolmacheva, T.P.

    1981-07-20

    A method is proposed for the production of an asphaltite block material with good physical and mechanical properties. The composite contains epoxide resin, acrylic acid, and asphaltite and radiation or radiation - thermal hardening was used. ED-16 epoxide resin with 490 molecular weight and 17.6% epoxide groups or EBF-23 epoxide resin produced from water-soluble shale phenols with 750 to 800 molecular weight and 21 to 22% epoxide groups was used as the epoxide resin. Analysis of the IR spectra showed that a rapid reaction of acrylic acid with epoxide resin occurs upon the action of ionizing radiation. The mechanical testing showed that the uniform samples obtained had rather high strength and hardness; high heat resistance and low water absorption was noted. The composites are chemically resistant towards concentrated HCl, water, acetone, and benzene. The studies indicated cross-linking occurs as a consequence of the reaction of the epoxide ring with acrylic acid. Asphaltite adds by means of the short alkyl substituents and guinoid structures. 4 tables. (DP)

  20. A One-Dimensional Flow Model with Adiabatic Friction for Rapid Estimation of Cold Spray Flow Conditions

    NASA Astrophysics Data System (ADS)

    Ye, Hezhou; Yin, Yanhua; Wang, Jianfeng

    2015-08-01

    While commercially available computational fluid dynamic packages are employed nowadays to analyze the spraying behavior of the cold spray (CS) system and optimize the nozzle geometry design, using these packages is often prohibitive because of complex computational resource requirements and expensive copyright licenses. This paper proposes a quick and economical method for predicting the performance of the CS system, while asking for minimal computational resource. A one-dimensional adiabatic friction model with the consideration of friction was developed to calculate the critical pressure of nozzles under different expansion ratios and the gas/particle velocity at different spraying conditions. The accuracy of the critical pressure calculation was evidenced by polymeric nozzle destructive tests. The particle velocities achieved from the nozzles with different expansion ratios were measured and compared with the velocity values calculated by the model. The suggested adiabatic friction model is validated by the well-matched values between the calculated results and the experimental data.

  1. Fire vehicle hardening

    SciTech Connect

    Horner, L.G.

    1988-11-01

    After attack, the wartime fire fighter faces a harsh environment in which he must operate to perform his mission. Debris, unexploded bombs, and munitions pose hazards that must be overcome. Without modification to the fire-fighting vehicles, there is little assurance that the fire fighter would even be able to reach the locations necessary for performing his mission. Adding armor to the vehicle to protect both the operator and the vehicle from these hazards is the proposed solution. Through a study performed by the BDM Corporation under a subcontract to Martin Marietta Energy Systems, Inc., the recommended types, thicknesses, and locations of material necessary to allow the P-19 crash-rescue fire vehicle to survive, with 95% probability, 100 random events using the NATO Standard Fragment Threat Criteria was determined. Using this information, a preliminary design for a prototype hardening kit for the P-19 was developed. In conjunction with this effort, a P-19 was modified by installing attachment points, and mock-up armor was fabricated and fitted to the vehicle to refine the design. The kit design consisted of (1) various mild steel panels that varied in thickness from 0.125 to 0.375 in., (2) Lexan panels for areas that had to be transparent, (3) flexible Kevlar 49 for areas requiring flexibility, and (4) foam-filled tires. The factors considered in the design were the effects on the vehicle, fragment-stopping ability, weight, cost, ability to fabricate, and ease of installation. 40 figs.

  2. Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: Field experiments and modeling

    NASA Astrophysics Data System (ADS)

    Kvitsand, Hanne M. L.; Ilyas, Aamir; Østerhus, Stein W.

    2015-12-01

    Virus removal during rapid transport in an unconfined, low-temperature (6°C) sand and gravel aquifer was investigated at a riverbank field site, 25 km south of Trondheim in central Norway. The data from bacteriophage MS2 inactivation and transport experiments were applied in a two-site kinetic transport model using HYDRUS-1D, to evaluate the mechanisms of virus removal and whether these mechanisms were sufficient to protect the groundwater supplies. The results demonstrated that inactivation was negligible to the overall removal and that irreversible MS2 attachment to aquifer grains, coated with iron precipitates, played a dominant role in the removal of MS2; 4.1 log units of MS2 were removed by attachment during 38 m travel distance and less than 2 days residence time. Although the total removal was high, pathways capable of allowing virus migration at rapid velocities were present in the aquifer. The risk of rapid transport of viable viruses should be recognized, particularly for water supplies without permanent disinfection.

  3. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  4. Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials

    NASA Astrophysics Data System (ADS)

    Bérubé, G.; Yandouzi, M.; Zúñiga, A.; Ajdelsztajn, L.; Villafuerte, J.; Jodoin, B.

    2012-03-01

    In this study, aluminum alloy Al-5Fe-V-Si (in wt.%) feedstock powder, produced by rapid solidification (RS) using the gas atomization process, was selected to produce high-temperature resistant Al-alloy coatings using the cold gas dynamic spraying process (CGDS). The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal-combustion (IC) engines. The CGDS spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original phases of the feedstock powder to be preserved within the coatings. The microstructure and phases stability was investigated by means of Scanning Electron Microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetery techniques. The coatings mechanical properties were evaluated through bond strength and microhardness testing. The study revealed the conservation of the complex microstructure of the rapid solidified powder during the spray process. Four distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si) x (Fe,V) Micro-quasicrystalline Icosahedral (MI) phase. Aging of the coating samples was performed and confirmed that the phase transformation of the metastable phases and coarsening of the nanosized precipitates will occurs at around 400 °C. The metastable MI phase was determined to be thermally stable up to 390 °C, after which a phase transformation to silicide starts to occur.

  5. Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana.

    PubMed

    Chowanski, Szymon; Lubawy, Jan; Spochacz, Marta; Ewelina, Paluch; Grzegorz, Smykalla; Rosinski, Grzegorz; Slocinska, Malgorzata

    2015-05-01

    Insects cope with thermal stressors using mechanisms such as rapid cold hardening and acclimation. These mechanisms have been studied in temperate insects, but little is known about their use by tropical insects in response to cold stress. Here, we investigated whether cold stress (18 h and 38 h at 4C) triggers a metabolic response in the Madagascar cockroach Gromphadorhina coquereliana. We examined the effects of cold on the levels of selected metabolites in the fat body tissue of G. coquereliana. After cold exposure, we found that the quantity of total protein increased significantly in the insect fat body, whereas glycogen decreased slightly. Using antibodies, we observed upregulation of AQP-like proteins and changes in the HSP70 levels in the fat body of G. coquereliana when exposed to cold. We also examined the content and nature of the free sugars in the G. coquereliana hemolymph and discovered an increase in the levels of polyols and glucose in response to cold stress. These results suggest an important role of the fat body tissue of tropical insects upon cold exposure. PMID:25624163

  6. The Use of a Simple Enzyme Assay in 'Seed-Hardening' Studies

    ERIC Educational Resources Information Center

    Ead, J.; Devonald, V. G.

    1975-01-01

    Describes a single technique for an enzyme assay of catalase. The method shows that vegetable seeds submitted to pre-sowing 'hardening' cycles of imbition and drying have greater catalase activity and more rapid germination than do the controls. (LS)

  7. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly.

    PubMed

    Teets, Nicholas M; Peyton, Justin T; Ragland, Gregory J; Colinet, Herve; Renault, David; Hahn, Daniel A; Denlinger, David L

    2012-08-01

    The ability to respond rapidly to changes in temperature is critical for insects and other ectotherms living in variable environments. In a physiological process termed rapid cold-hardening (RCH), exposure to nonlethal low temperature allows many insects to significantly increase their cold tolerance in a matter of minutes to hours. Additionally, there are rapid changes in gene expression and cell physiology during recovery from cold injury, and we hypothesize that RCH may modulate some of these processes during recovery. In this study, we used a combination of transcriptomics and metabolomics to examine the molecular mechanisms of RCH and cold shock recovery in the flesh fly, Sarcophaga bullata. Surprisingly, out of ∼15,000 expressed sequence tags (ESTs) measured, no transcripts were upregulated during RCH, and likewise RCH had a minimal effect on the transcript signature during recovery from cold shock. However, during recovery from cold shock, we observed differential expression of ∼1,400 ESTs, including a number of heat shock proteins, cytoskeletal components, and genes from several cell signaling pathways. In the metabolome, RCH had a slight yet significant effect on several metabolic pathways, while cold shock resulted in dramatic increases in gluconeogenesis, amino acid synthesis, and cryoprotective polyol synthesis. Several biochemical pathways showed congruence at both the transcript and metabolite levels, indicating that coordinated changes in gene expression and metabolism contribute to recovery from cold shock. Thus, while RCH had very minor effects on gene expression, recovery from cold shock elicits sweeping changes in gene expression and metabolism along numerous cell signaling and biochemical pathways. PMID:22735925

  8. Efficiency of Cold Hardiness Induction by Desiccation Stress in Four Winter Cereals 1

    PubMed Central

    Cloutier, Yves; Andrews, Christopher J.

    1984-01-01

    A number of defined desiccation treatments without low temperature exposure were able to induce freezing tolerance in 20 cultivars of winter cereals. A maximal degree of freezing tolerance was induced in epicotyls at 24°C in 24 hours at 40% relative humidity in rye and wheat, 7 days at 54% RH in barley, and 4 days at 70% RH in oats. Freezing tolerance was not correlated to water content of the plants after desiccation treatment but was related to the genetic capacity of the cultivars to frost harden. Levels of freezing tolerance induced by desiccation were similar to those induced by cold acclimation in rye and wheat, but considerably less in barley and oats. This is associated with a more rapid desiccation injury in barley and oats, precluding the completion of the hardening process. PMID:16663889

  9. Life on the Hardened Border

    ERIC Educational Resources Information Center

    Miller, Bruce Granville

    2012-01-01

    The many Coast Salish groups distributed on both sides of the United States-Canada border on the Pacific coast today face significant obstacles to cross the international border, and in some cases are denied passage or intimidated into not attempting to cross. The current situation regarding travel by Aboriginal people reflects the "hardening" of…

  10. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Lesk, Kornlia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light. PMID:17537468

  11. Forming an age hardenable aluminum alloy with intermediate annealing

    NASA Astrophysics Data System (ADS)

    Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan

    2013-12-01

    A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.

  12. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  13. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats.

    PubMed

    Sotelo-Rivera, I; Jaimes-Hoy, L; Cote-Vélez, A; Espinoza-Ayala, C; Charli, J-L; Joseph-Bravo, P

    2014-12-01

    The activity of the hypothalamic-pituitary-thyroid (HPT) axis is rapidly adjusted by energy balance alterations. Glucocorticoids can interfere with this activity, although the timing of this interaction is unknown. In vitro studies indicate that, albeit incubation with either glucocorticoid receptor (GR) agonists or protein kinase A (PKA) activators enhances pro-thyrotrophin-releasing hormone (pro-TRH) transcription, co-incubation with both stimuli reduces this enhancement. In the present study, we used primary cultures of hypothalamic cells to test whether the order of these stimuli alters the cross-talk. We observed that a simultaneous or 1-h prior (but not later) activation of GR is necessary to inhibit the stimulatory effect of PKA activation on pro-TRH expression. We tested these in vitro results in the context of a physiological stimulus on the HPT axis in adult male rats. Cold exposure for 1 h enhanced pro-TRH mRNA expression in neurones of the hypophysiotrophic and rostral subdivisions of the paraventricular nucleus (PVN) of the hypothalamus, thyrotrophin (TSH) serum levels and deiodinase 2 (D2) activity in brown adipose tissue (BAT). An i.p. injection of corticosterone stimulated pro-TRH expression in the PVN of rats kept at ambient temperature, more pronouncedly in hypophysiotrophic neurones that no longer responded to cold exposure. In corticosterone-pretreated rats, the cold-induced increase in pro-TRH expression was detected only in the rostral PVN. Corticosterone blunted the increase in serum TSH levels and D2 activity in BAT produced by cold in vehicle-injected animals. Thus, increased serum corticosterone levels rapidly restrain cold stress-induced activation of TRH hypophysiotrophic neurones, which may contribute to changing energy expenditure. Interestingly, TRH neurones of the rostral PVN responded to both corticosterone and cold exposure with an amplified expression of pro-TRH mRNA, suggesting that these neurones integrate stress and temperature distinctly from the hypophysiotrophic neurones. PMID:25283355

  14. Age-hardening of grid alloys and its effect on battery manufacturing processes

    NASA Astrophysics Data System (ADS)

    Gillian, Warren F.; Rice, David M.

    The age-hardening behaviour of three generic classes of lead—antimony grid alloys commonly used in the lead/acid battery manufacturing industry were studied. The effects on age-hardening behaviour of several heat treatments devised to simulate downstream processing of battery grids in the manufacturing process were investigated together with the effect of varying cooling rate following casting. Rapid cooling (water quenching) resulted in a general acceleration and enhancement of the age-hardening behaviour of all alloys, whilst heat treatment following casting generally gave rise to a reduction in peak hardness.

  15. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  16. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Shoji, Tetsuo; Xue, He; Meng, Fanjiang; Fu, Chaoyang; Takeda, Yoichi; Negishi, Koji

    2012-04-01

    Stress corrosion cracking growth during long-term test in high temperature water was monitored in two 316NG weld heat-affected zones representing highly hardened and medially hardened regions. Cracking near the weld fusion line exhibited both macroscopic bifurcation and extensive microscopic branching, which was faster than that in the medially hardened region where crack kinking was observed. There is an interaction between material hardening and dissolved oxygen on crack growth. The effect of a single overloading on crack growth in 316NG heat-affected zones is less significant than that in a cold worked 316NG stainless steel.

  17. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-03-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  18. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  19. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-06-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  20. Cold adaptations.

    PubMed

    Launay, Jean-Claude; Savourey, Gustave

    2009-07-01

    Nowdays, occupational and recreational activities in cold environments are common. Exposure to cold induces thermoregulatory responses like changes of behaviour and physiological adjustments to maintain thermal balance either by increasing metabolic heat production by shivering and/or by decreasing heat losses consecutive to peripheral cutaneous vasoconstriction. Those physiological responses present a great variability among individuals and depend mainly on biometrical characteristics, age, and general cold adaptation. During severe cold exposure, medical disorders may occur such as accidental hypothermia and/or freezing or non-freezing cold injuries. General cold adaptations have been qualitatively classified by Hammel and quantitatively by Savourey. This last classification takes into account the quantitative changes of the main cold reactions: higher or lower metabolic heat production, higher or lesser heat losses and finally the level of the core temperature observed at the end of a standardized exposure to cold. General cold adaptations observed previously in natives could also be developed in laboratory conditions by continuous or intermittent cold exposures. Beside general cold adaptation, local cold adaptation exists and is characterized by a lesser decrease of skin temperature, a more pronounced cold induced vasodilation, less pain and a higher manual dexterity. Adaptations to cold may reduce the occurrence of accidents and improve human performance as surviving in the cold. The present review describes both general and local cold adaptations in humans and how they are of interest for cold workers. PMID:19531907

  1. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  2. Cell-Wall Changes and Cell Tension in Response to Cold Acclimation and Exogenous Abscisic Acid in Leaves and Cell Cultures.

    PubMed Central

    Rajashekar, C. B.; Lafta, A.

    1996-01-01

    Freeze-induced cell tensions were determined by cell water relations in leaves of broadleaf evergreen species and cell cultures of grapes (Vitis spp.) and apple (Malus domestica). Cell tensions increased in response to cold acclimation in leaves of broadleaf evergreen species during extracellular freezing, indicating a higher resistance to cell volume changes during freezing in cold-hardened leaves than in unhardened leaves. Unhardened leaves, typically, did not develop tension greater than 3.67 MPa, whereas cold-hardened leaves attained tensions up to 12 MPa. With further freezing there was a rapid decline and a loss of tension in unhardened leaves of all the broadleaf evergreen species studied. Also, similar results were observed in cold-hardened leaves of all of the species except in those of inkberry (Ilex glabra) and Euonymus fortunei, in which negative pressures persisted below -40[deg]C. Abscisic acid treatment of inkberry and Euonymus kiautschovica resulted in increases in freeze-induced tensions in leaves, suggesting that both cold acclimation and abscisic acid have similar effects on freezing behavior[mdash] specifically on the ability of cell walls to undergo deformation. Decreases in peak tensions were generally associated with lethal freezing injury and may suggest cavitation of cellular water. However, in suspension-cultured cells of grapes and apple, no cell tension was observed during freezing. Cold acclimation of these cells resulted in an increase in the cell-wall strength and a decrease in the limiting cell-wall pore size from 35 to 22 A in grape cells and from 29 to 22 A in apple cells. PMID:12226314

  3. Rapid Low Temperature-Induced Stomatal Closure Occurs in Cold-Tolerant Commelina communis Leaves But Not in Cold-Sensitive Tobacco Leaves, via a Mechanism That Involves Apoplastic Calcium But Not Abscisic Acid1

    PubMed Central

    Wilkinson, Sally; Clephan, Alison Lee; Davies, William John

    2001-01-01

    Commelina communis stomata closed within 1 h of transferring intact plants from 27°C to 7°C, whereas tobacco (Nicotiana rustica) stomata did not until the leaves wilted. Abscisic acid (ABA) did not mediate cold-induced C. communis stomatal closure: At low temperatures, bulk leaf ABA did not increase; ABA did not preferentially accumulate in the epidermis; its flux into detached leaves was lower; its release from isolated epidermis was not greater; and stomata in epidermal strips were less sensitive to exogenous ABA. Stomata of both species in epidermal strips on large volumes of cold KCl failed to close unless calcium was supplied. Therefore, the following cannot be triggers for cold-induced stomatal closure in C. communis: direct effects of temperature on guard or epidermal cells, long-distance signals, and effects of temperature on photosynthesis. Low temperature increased stomatal sensitivity to external CaCl2 by 50% in C. communis but only by 20% in tobacco. C. communis stomata were 300- to 1,000-fold more sensitive to calcium at low temperature than tobacco stomata, but tobacco epidermis only released 13.6-fold more calcium into bathing solutions than C. communis. Stomata in C. communis epidermis incubated on ever-decreasing volumes of cold calcium-free KCl closed on the lowest volume (0.2 cm3) because the epidermal apoplast contained enough calcium to mediate closure if this was not over diluted. We propose that the basis of cold-induced stomatal closure exhibited by intact C. communis leaves is increased apoplastic calcium uptake by guard cells. Such responses do not occur in chill-sensitive tobacco leaves. PMID:11500555

  4. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  5. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  6. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  7. Organics, polymers and nanotechnology for radiation hardening and shielding applications

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.

    2007-09-01

    Recent studies have indicated that polymers integrated with nanoparticles and nanostructures have a high potential for increasing the space radiation resistance and hardening of photonic and electronic components. Discussed within this paper are recent data which support the premise that certain nanotechnology may improve the radiation resistance of organics, polymers, biopolymers and hybrid polymer-inorganic materials and devices to ionizing and displacement radiations. These materials are also being investigated for their ability to provide protective radiation shielding to a wide spectrum of radionuclide and galactic cosmic ray emissions such as alpha particles, protons, electrons, gamma-rays, beta rays, x-rays and neutrons. The appeal for advancing nanotechnology based materials and devices in many cases centers on the rapid development of hardened, economical and lightweight technologies that surpass the performance of current photonic, biotronic and microelectronic device and material technologies.

  8. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    SciTech Connect

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  9. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  10. Transmission and scanning electron microscope study on the secondary cyclic hardening behavior of interstitial-free steel

    SciTech Connect

    Shih, Chia-Chang; Ho, New-Jin; Huang, Hsing-Lu

    2009-11-15

    Strain controlled fatigue experiment was employed to evaluate automotive grade interstitial-free ferrite steel. Hundreds of grains were examined by scanning electron microscope under electron channeling contrast image technique of backscattered electron image mode for comprehensive comparison of micrographs with those taken under transmission electron microscope. The cyclic stress responses clearly revealed that rapid hardening occurs at the early stage of cycling as a result of multiplication of dislocations to develop loop patches, dipolar walls and dislocation cells at various total strain amplitudes. After primary rapid hardening, stress responses varied from being saturated to further hardening according to dislocation structure evolution at various strain amplitudes. The fatigue failure was always accompanied with further hardening including secondary hardening. The corresponding dislocation structures with the three types of hardening behaviors are discussed. Once the secondary hardening starts, dislocation cells began to develop along grain boundaries in the low strain region and then extended into grain interiors as strain amplitudes increased and cycling went on. The secondary hardening rates were found to be directly proportional to their strain amplitudes.

  11. Challenges in hardening technologies using shallow-trench isolation

    SciTech Connect

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide.

  12. Recovery of AlMg alloys: Flow stress and strain-hardening properties

    SciTech Connect

    Verdier, M.; Brechet, Y.; Guyot, P.

    1998-12-11

    The recovery of Al-2.5wt% Mg alloys cold-rolled to several strains between 0.1 and 3 has been studied essentially using tensile tests. The yield stress and strain-hardening properties are studied as a function of the initial prestrain, and of the temperature and the duration of annealing treatments. A theoretical model based on the dislocation structure is proposed. The kinetic evolution of the yield stress is related to the variation of the total dislocation density as a single structural parameter. The pseudo-logarithmic time decay is explained on the basis of a relaxation of the internal stresses by thermally activated dislocation motion. A strain-hardening model is proposed based on Kocks` constitutive law of plasticity, where the dislocation storage and dislocation annihilation parameters are adapted to a heterogeneous cell/subgrain dislocation structure. The adjustment of the model to the work-hardening behavior is in agreement with TEM observations.

  13. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 °C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 °C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  14. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  15. Common cold

    MedlinePlus

    The common cold most often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, ... It is called the common cold for good reason. There are over one billion colds in the United States each year. You and your children will ...

  16. Cold intolerance

    MedlinePlus

    ... abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and are unable to keep warm.

  17. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  18. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae).

    PubMed

    Sinclair, Brent J; Chown, Steven L

    2003-01-01

    A broad definition of rapid cold hardening (RCH) is that it is the process whereby insects increase their survival of a sub-zero temperature after a brief (h) pre-exposure to a less severe low temperature. The effects of various pre-treatments on survival of two h at -7.9 degrees C were investigated in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera: Tineidae), the first time RCH has been investigated in a freeze tolerant arthropod. All caterpillars froze when exposed to -7.9 degrees C, and none of the low temperature pre-treatments (-5, 0, 5 and 15 degrees C, as well as -5 degrees C and 0 degrees C with a delay before freezing) nor slow cooling (0.1 degrees C/min) elicited any improvement in survival of -7.9 degrees C as compared to controls. However, high temperature treatments (25, 30 and 35 degrees C), desiccation and acclimation for 5 days at 0 degrees C did result in significant increases in survival of the test temperature, possibly as a result of heat shock protein production. Haemolymph osmolality was elevated only by the 35 degrees C pre-treatment. It is suggested that the unpredictable environment of Marion Island means that P. marioni must always be physiologically prepared to survive cold snaps, and that this year-round cold hardiness therefore supersedes a rapid cold hardening response. PMID:12770015

  19. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, D.

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line {Theta} = {Theta}{sub 0} {minus} K{sub 2}{sigma}, where {Theta}{sub 0} is theoretical work hardening rate at zero stress and K{sub 2} is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of {Theta}{sub 0} and K{sub 2} and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The {Theta}{sub 0} and K{sub 2} associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of {Theta}{sub 0} and K{sub 2}. The actual value of K{sub 2} in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K{sub 2} than microstructures that remain partially or fully unrecrystallized. The higher K{sub 2} value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  20. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  1. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding.

    PubMed

    Owen, Emily L; Bale, Jeffrey S; Hayward, Scott A L

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  2. Ferroelectric memories - A possible answer to the hardened nonvolatile question

    NASA Astrophysics Data System (ADS)

    Messenger, George C.; Coppage, Floyd N.

    1988-12-01

    Ferroelectric memory cells were fabricated using a process compatible with semiconductor VLSI manufacturing techniques that are basically nonvolatile and radiation-hard. The memory can be made NDRO (nondestructive readout) for strategic systems using several techniques, the most practical being a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power, and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems.

  3. Ferroelectric memories: A possible answer to the hardened nonvolatile question

    SciTech Connect

    Messenger, G.C.; Coppage, F.N.

    1988-12-01

    Ferroelectric memory cells have been fabricated using a process compatible with semiconductor VLSI (Very Large-Scale Integration) manufacturing techniques which are basically nonvolatile and radiation hard. The memory can be made NDRO (Nondestructive Readout) for strategic systems using several techniques; the most practical is probably a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems.

  4. Plastic hardening in cubic semiconductors by nanoscratching

    NASA Astrophysics Data System (ADS)

    Caldas, P. G.; Prioli, R.; Almeida, C. M.; Huang, J. Y.; Ponce, F. A.

    2011-01-01

    The effect of scratch proximity on the resistance to plastic deformation in InP (100) crystals under low normal loads has been studied using atomic force microscopy (AFM) and transmission electron microscopy. Plastic flow has been observed for scratches performed with an atomic force microscope along ⟨110⟩ and ⟨100⟩ crystallographic directions. Plastic hardening has been determined from AFM measurements of the scratch depth and width, as a function of the distance between parallel scratches. For relatively low loads, hardening is found to be independent of the crystallographic direction of the scratch. Significant hardening takes place for scratch separations of less than ˜80 nm. Analysis of the microstructure indicates that hardening occurs due to the interaction of dislocations generated at adjacent scratches and acting on different slip planes.

  5. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  6. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  7. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  8. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  9. Work hardening behavior in aluminum alloy 2090

    SciTech Connect

    Tseng, C

    1993-12-01

    An investigation into the work hardening behavior of an aluminum alloy 2090-T81 Al-3.05Cu-2.16Li-0.12Zr at various test temperatures, heat treatment conditions and microstructures was conducted. One microstructure consisted of unrecrystallized, highly textured grains, and the other microstructure was composed of recrystallized grains. Microstructural effects on work hardening were divided into two levels of contribution: the grain structure level, which consisted of the grain size and shape, subgrains and texture, and the microconsistent level, which included the precipitates and solutes. Two heat treatments were studied: the as-received, peak-aged condition, and the solution heat treated condition where the as-received plate was resolutionized. Observations of the deformed surface of both as-received grain structures at various prestrains indicated that there was no correlation between an increase in slip homogeneity and an increase in work hardening. The increase in out-of-plane grain rotation at lower temperatures was not primarily responsible for the increase in work hardening. In addition, the fully plastic deformation microstructure for the unrecrystallized microstructure appeared very inhomogeneous as the grains deformed in bands; there were also bands of grains that had very little to no deformation. From the work hardening plots it was found that an unrecrystallized, (110)<112> textured grain structure with a homogeneous distribution of subgrains produced the highest rate of work hardening between 300 K and 77 K. When the microconstituents are added to both grain structures, both the work hardening rate in the elastic-plastic and fully plastic regimes and the level of work hardening at which the elastic-plastic to fully plastic transition occurred were affected.

  10. Soluble Proteins in Alfalfa Roots as Related to Cold Hardiness 12

    PubMed Central

    Gerloff, Eldean D.; Stahmann, Mark A.; Smith, Dale

    1967-01-01

    Soluble proteins extracted from alfalfa roots of hardy and nonhardy varieties were studied in relation to cold hardiness with polyacrylamide gel electrophoresis and quantitative enzyme analysis. Soluble protein content of alfalfa roots increased during hardening in all varieties. Two new isoenzymes with peroxidase activities were found in the fully hardened samples but no large shifts in the electrophoretic pattern were detected with polyacrylamide gel electrophoresis. Peroxidase and catalase activities increased during hardening in all varieties, but only small differences among hardy and nonhardy varieties were detectable. The studies indicated that protein metabolism was altered during the hardening process. Images PMID:16656593

  11. Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d + Au collisions at √sNN = 200  GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S

    2014-06-27

    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6  GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200  GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter. PMID:25014805

  12. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  13. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  14. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  15. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  16. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  17. Laser Surface Hardening of AISI 1045 Steel

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Jin, Yajuan; Li, Zhuguo; Qi, Kai

    2014-09-01

    The study investigates laser surface hardening in the AISI 1045 steel using two different types of industrial laser: a high-power diode laser (HPDL) and a CO2 laser, respectively. The effect of process parameters such as beam power, travel speed on structure, case depth, and microhardness was examined. In most cases, a heat-affected zone (HAZ) formed below the surface; a substantial increase in surface hardness was achieved. In addition, big differences were found between the hardened specimens after HPDL surface hardening and CO2 laser surface hardening. For HPDL, depths of the HAZ were almost equal in total HAZ o, without surface melting. For CO2 laser, the depths changed a lot in the HAZ, with surface melting in the center. To better understand the difference of laser hardening results when use these two types of laser, numerical (ANSYS) analysis of the heat conduction involved in the process was also studied. For HPDL method, a rectangular beam spot and uniform energy distribution across the spot were assumed, while for CO2 laser, a circular beam spot and Gaussian energy distribution were assumed. The results showed that the energy distribution variety altered the thermal cycles of the HAZ dramatically. The rectangular HPDL laser beam spot with uniform energy distribution is much more feasible for laser surface hardening.

  18. Experimental hypothermia and cold perception.

    PubMed

    Hoffman, R G; Pozos, R S

    1989-10-01

    Twelve subjects clothed in flotation suits were immersed in 10 degrees C cold water and their surface temperatures at the back and groin, as well as core temperatures, were continuously monitored. Subjects were unable to reliably assess how cold they were, with the highest correlation observed between perceived temperature and actual temperature reaching only 0.51. This was felt to be partially due to the uneven distribution of surface temperatures seen in this experiment and in most cold water immersions. Rapid cooling in cold water also produced the perceptual phenomenon of "overshooting" previously observed in cold air studies, characterized by sudden temperature drops being perceived as cold sensations of greater magnitude. The results suggest that subjects who are rapidly cooled in water may have considerable difficulty separating feelings of cold from feelings of pain and discomfort, which can have serious implications in survival situations and highlights the subjective and highly variable nature of cold perception. Perceived cold sensation may be a very poor, and possibly dangerous, predictor in cold water immersion situations. PMID:2803163

  19. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii.

    PubMed

    Jakobs, Ruth; Gariepy, Tara D; Sinclair, Brent J

    2015-08-01

    Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21°C; control) and induced plasticity by rapid cold-hardening (RCH, 1h at 0°C followed by 1h recovery), cold acclimation (CA, 5 days at 6°C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between -16 and -23°C, and were chill-susceptible. 80% of control flies were killed after 1h at -7.2°C (males) or -7.5°C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0°C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately -1.7°C, which was ca. 0.5°C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0°C for 8h took 30-40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity. PMID:25982520

  20. Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals

    NASA Astrophysics Data System (ADS)

    Uçar, N.

    1997-03-01

    The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.

  1. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation.

    PubMed

    Koike, Michiya; Okamoto, Takashi; Tsuda, Sakae; Imai, Ryozo

    2002-10-18

    A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening. PMID:12379218

  2. How insects survive the cold: molecular mechanisms-a review.

    PubMed

    Clark, Melody S; Worland, M Roger

    2008-11-01

    Insects vary considerably in their ability to survive low temperatures. The tractability of these organisms to experimentation has lead to considerable physiology-based work investigating both the variability between species and the actual mechanisms themselves. This has highlighted a range of strategies including freeze tolerance, freeze avoidance, protective dehydration and rapid cold hardening, which are often associated with the production of specific chemicals such as antifreezes and polyol cryoprotectants. But we are still far from identifying the critical elements behind over-wintering success and how some species can regularly survive temperatures below -20 degrees C. Molecular biology is the most recent tool to be added to the insect physiologist's armoury. With the public availability of the genome sequence of model insects such as Drosophila and the production of custom-made molecular resources, such as EST libraries and microarrays, we are now in a position to start dissecting the molecular mechanisms behind some of these well-characterised physiological responses. This review aims to provide a state-of-the-art snapshot of the molecular work currently being conducted into insect cold tolerance and the very interesting preliminary results from such studies, which provide great promise for the future. PMID:18584182

  3. Thermoelastoplastic and Residual Stress Analysis during Induction Hardening of Steel

    NASA Astrophysics Data System (ADS)

    Jahanian, S.

    1995-12-01

    A theoretical model was developed to predict the thermoelastoplastic and residual stresses developed in a round steel bar during induction hardening. For numerical analysis, a quasi- static, uncoupled thermoelastoplastic solution based on the hyperbolic sine law of Tien and Richmond was formulated. The properties of the material were assumed to be temperature dependent. The phase transformation was considered in the numerical calculation, and the results were compared with the case where phase transformation is avoided. The cylinder was heated rapidly; once the temperature of the outer surface exceeded the transformation temperature, the cylinder was rapidly cooled. Accordingly, in the numerical calculation, only the area at the vicinity of the outer surface was assumed to transform to martensite. The results showed that the compressive residual stresses at the vicinity of the outer surface were considerably higher than the tensile stresses at the center.

  4. Long-Term Cold Acclimation Extends Survival Time at 0C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    PubMed Central

    Kotl, Vladimr; Korbelov, Jaroslava; Rozsypal, Jan; Zahradn?kov, Helena; Cimlov, Jana; Tom?ala, Ale; imek, Petr

    2011-01-01

    Background Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately ?5C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. Principal Findings We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25C with those acclimated at constant 15C followed by constant 6C for 2 d (15C?6C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt50) during exposure to constant 0C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. Conclusion Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring. PMID:21957472

  5. Modeling of anisotropic hardening of sheet metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-12-01

    To describe the evolution of anisotropy of sheet metals, in terms of both r-values and stresses, the present paper proposes anisotropic hardening models, where the shape of yield surface changes with increasing plastic strain. In this framework of modeling, any types of yield functions are able to be used. The evolution of anisotropy is expressed by updating the yield function as an interpolation between two yield functions defined at two different effective plastic strains. In this paper, two types of interpolation models, i.e., nonlinear interpolation model and piecewise interpolation model are presented. These models are validated by comparing the experimental data on 3003-O aluminum sheet (after Hu, Int J Plasticity 23, 620-639, 2007). To describe the Bauschinger effect, the combined anisotropic-kinematic hardening model is formulated based on Yoshida-Uemori kinematic hardening model.

  6. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  7. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  8. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  9. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  10. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  11. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  12. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  13. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    SciTech Connect

    Martinez, S.; Ukar, E.; Lamikiz, A.

    2011-01-17

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink.The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part.The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  14. Cold Sores

    MedlinePlus

    ... and Overal Health Oral Warning Signs Can Indicate Serious Medical Conditions Serious diseases, including diabetes, cancer, and ... Cold Sore? Mouth Sores: Caused By Student Stress? games Home | InfoBites | Find a Dentist | Your Family's Oral ...

  15. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis.

    PubMed

    Huang, Li-Hua; Chen, Bing; Kang, Le

    2007-12-01

    The pea leafminer, Liriomyza huidobrensis, is one of the most important economic insect pests around the world. Its population fluctuates greatly with seasonal change in China, and temperature was thought to be one of the important reasons. In attempt to further explore the impact of disadvantageous temperature on L. huidobrensis, 1-day-old adults were shocked at various temperatures (10, 25, 32, and 35 degrees C, respectively) for 4h, and the effects on thermotolerance, feeding, and fecundity were studied. Meanwhile the expression of five heat shock genes (hsp90, 70, 60, 40, and 20) was examined by real-time quantitative PCR. Our results showed that both 32 and 35 degrees C hardenings remarkably increased adult heat resistance, whereas cold tolerance was not improved accordingly. No cross resistance in response to cold and heat stresses was observed. Both adult feeding and fecundity were dramatically reduced, but no effect was observed on egg hatching, larval survival, pupal eclosion, or sex ratio. The results indicate that the deleterious effect on fecundity is the result of direct cessation of oviposition during the period of stress. Simultaneously, the mRNA levels of hsp70 and hsp20 significantly increased upon thermal hardening. Taken together, our results suggest that mild heat hardening improves thermotolerance of L. huidobrensis at the cost of impairment on fecundity, and the induced expression of hsp70 and hsp20 may play an important role in balancing the functional tradeoff. PMID:17651748

  16. 27. LAEMPE AUTOMATED COLD BOX CORE MAKING MACHINES IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LAEMPE AUTOMATED COLD BOX CORE MAKING MACHINES IN THE GREY IRON FOUNDRY USED PRESSURE TO SET RESINS IN CORE SAND. THE ONLY EFFORT REQUIRED OF WORKERS IS TO CHANGE CORE BOXES AND REMOVE HARDENED CORE. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  17. Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter Effects on J/Psi Production in D Au, Cu Cu And Au Au Collisions at S(NN)**(1/2)

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2011-11-11

    We have carried out a wide study of Cold Nuclear Matter (CNM) effects on J/{Psi} = production in dAu, CuCu and AuAu collisions at {radical}s{sub NN} = 200 GeV. We have studied the effects of three different gluon-shadowing parameterizations, using the usual simplified kinematics for which the momentum of the gluon recoiling against the J/{Psi} is neglected as well as an exact kinematics for a 2 {yields} 2 process, namely g + g {yields} J/{psi} + g as expected from LO pQCD. We have shown that the rapidity distribution of the nuclear modification factor R{sub dAu}, and particularly its anti-shadowing peak, is systematically shifted toward larger rapidities in the 2 {yields} 2 kinematics, irrespective of which shadowing parameterization is used. In turn, we have noted differences in the effective final-state nuclear absorption needed to fit the PHENIX dAu data. Taking advantage of our implementation of a 2 {yields} 2 kinematics, we have also computed the transverse momentum dependence of the nuclear modification factor, which cannot be predicted with the usual simplified kinematics. All the corresponding observables have been computed for CuCu and AuAu collisions and compared to the PHENIX and STAR data. Finally, we have extracted the effective nuclear absorption from the recent measurements of RCP in dAu collisions by the PHENIX collaboration.

  18. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  19. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    PubMed

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening. PMID:26817383

  20. The influence of texture on strain hardening

    SciTech Connect

    Kocks, U.F.; Stout, M.G.; Rollett, A.D.

    1988-01-01

    It is well known that the strain hardening behavior of metals is not the same in tension, compression, torsion and rolling, for example. We report on a new set of experiments, comprising wire-drawing interrupted by tensile tests, free compression, channel-die compression, and short-tube torsion in aluminum, an Al-Mg alloy, copper, silver, and 70:30 brass. The texture was measured before straining and at vonMises strain levels of roughly 1.0 and 2.0. Computer simulations of the deformation starting from a set of random grains weighted by observed initial texture, predicted deformation textures in qualitative agreement with the observed ones in most cases. Quantitatively the simulations yielded the Taylor factors as a function of strain for all paths and, with an assumed hardening law for the representative grain, the macroscopic stress/strain curves. The grain hardening rate as a function of resolved shear stress was described in tabular form such as to match one of the macroscopic curves, and then used to predict the others. The eventual fit was quite good; we will describe what judgments needed to be made to achieve this result. The conclusion is that the strain-path dependence of work hardening can be explained simply as a consequence of texture development. 13 refs., 5 figs., 1 tab.

  1. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  2. On the Optimization of Compressibility and Hardenability of Sinter-Hardenable PM Steels

    NASA Astrophysics Data System (ADS)

    Giguère, Nicolas; Blais, Carl

    2013-10-01

    Sinter-hardenable steel powders eliminate the extra steps normally required for heat treating since they allow for direct quenching of components at the end of the sintering cycle with a forced convection cooling unit. The current article presents the results of the effect of the alloying method on the optimization of compressibility and sinter-hardenability of sinter-hardenable PM steels. Water-atomized steel powders were produced. Two successive designs of experiments were used to optimize the chemical composition with prealloyed (nickel, chromium, molybdenum, and manganese) and admixed elements (nickel, chromium, manganese, and copper). Static mechanical properties were also characterized. Results show that among all of the combinations of chemical elements and within the range of concentrations studied, the optimum sinter-hardenable powder had the following prealloyed chemistry: 1.5 wt pct Ni, 1 to 1.25 wt pct Mo, and 0.40 to 0.55 wt pct Cr.

  3. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  4. Deformation in metals after low temperature irradiation: Part II - Irradiation hardening, strain hardening, and stress ratios

    SciTech Connect

    Byun, Thak Sang; Li, Meimei

    2008-03-01

    Effects of irradiation at temperatures 200oC on tensile stress parameters are analyzed for dozens of bcc, fcc, and hcp pure metals and alloys, focusing on irradiation hardening, strain hardening, and relationships between the true stress parameters. Similar irradiation-hardening rates are observed for all the metals irrespective of crystal type; typically, the irradiation-hardening rates are large, in the range 100 - 1000 GPa/dpa, at the lowest dose of <0.0001 dpa and decrease with dose to a few tens of MPa/dpa or less at about 10 dpa. However, average irradiation-hardening rates over the dose range of 0 dpa − (the dose to plastic instability at yield) are considerably lower for stainless steels due to their high uniform ductility. It is shown that whereas low temperature irradiation increases the yield stress, it does not significantly change the strain-hardening rate of metallic materials; it decreases the fracture stress only when non-ductile failure occurs. Such dose independence in strain hardening behavior results in strong linear relationships between the true stress parameters. Average ratios of plastic instability stress to unirradiated yield stress are about 1.4, 3.9, and 1.3 for bcc metals (and precipitation hardened IN718 alloy), annealed fcc metals (and pure Zr), and Zr-4 alloy, respectively. Ratios of fracture stress to plastic instability stress are calculated to be 2.2, 1.7, and 2.1, respectively. Comparison of these values confirms that the annealed fcc metals and other soft metals have larger uniform ductility but smaller necking ductility when compared to other materials.

  5. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood vessels in the feet, is observed in shipwreck survivors or in soldiers whose feet have been wet, but not freezing, for long periods. Patients with frostbite frequently present with multisystem injuries (e.g., systemic hypothermia, blunt trauma, substance abuse). The freezing of the corneas has been reported to occur in individuals who keep their eyes open in high wind-chill situations without protective goggles (e.g., snowmobilers, cross-country skiers). PMID:15715518

  6. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  7. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  8. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  9. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  10. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  11. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  12. High expression level of a gene coding for a chloroplastic amino acid selective channel protein is correlated to cold acclimation in cereals.

    PubMed

    Baldi, P; Grossi, M; Pecchioni, N; Val, G; Cattivelli, L

    1999-09-01

    A cold-regulated gene (cor tmc-ap3) coding for a putative chloroplastic amino acid selective channel protein was isolated from cold-treated barley leaves combining the differential display and the 5'-RACE techniques. Cor tmc-ap3 is expressed at low level under normal growing temperature, and its expression is strongly enhanced after cold treatment. A positive correlation between the expression of cor tmc-ap3 and frost tolerance was found both among barley cultivars and among cereal species. The COR TMC-AP3 protein was expressed in vitro, purified and used to raise a polyclonal antibody. Western analysis showed that the cor tmc-ap3 gene product is localized to the chloroplastic outer envelope fraction, supporting its putative function. The frost-resistant winter cultivar Onice accumulated COR TMC-AP3 more rapidly and at a higher level than the frost-susceptible spring cultivar Gitane. After 28 days of cold acclimation the winter cultivar had about 2-fold more protein than the spring genotype. All these results suggest that an increased amount of a chloroplastic amino acid selective channel protein could be required for cold acclimation in cereals. Hypotheses about the role of COR TMC-AP3 during the hardening process are discussed. PMID:10579490

  13. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area ... Protecting your lips from the sun with sunblock lip balm can also help.

  14. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  15. Modeling the Case Hardening of Automotive Components

    NASA Astrophysics Data System (ADS)

    Munikamal, Tiruttani; Sundarraj, Suresh

    2013-04-01

    A generalized framework has been developed within ABAQUS to model the surface hardening heat treatment processes for automotive steel components. The macro-scale heat transfer and stress calculations during the heating and quenching are coupled with the microstructural phase calculations, defined through a user routine, to estimate key process parameters such as case depth and surface hardness. This model has been applied to predict these parameters in two key industrial processes, i.e., case hardening of crankshafts and case carburization of gears. The results of the case depth and hardness calculations have been validated with the literature and in-house plant data. The effect of varying quench conditions on the overall stress distribution changes within the component has been outlined.

  16. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  17. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  18. Strain hardening in underaged INCONEL 718

    SciTech Connect

    Sundararaman, M.; Kishore, R.; Mukhopadhyay, P. )

    1994-03-01

    INCONEL 718 is a commercial, precipitation-hardenable nickel iron-base superalloy, strengthened primarily by precipitates of the metastable [gamma][double prime] phase which is based on the composition Ni[sub 3]Nb and has an ordered body-centered tetragonal (DO[sub 22]) structure. An earlier investigation on the deformation mechanisms in this alloy has shown that [gamma][double prime] precipitates are sheared by the passage of true crystallographic twins (which do not destroy the ordered atomic arrangements within precipitate crystals) when the [gamma][double prime] particle size is larger than about 10 nm. In a situation where the precipitate size is smaller than about 10 nm, the deformation occurs by the passage of quadruplets or pairs of dislocations which shear the [gamma][double prime] particles. The change in the deformation mechanism from dislocation cutting to twinning with increasing [gamma][double prime] particle size is reflected in a drop in the value of the Croussard-Jaoul work-hardening exponent (from 0.8 to 0.5) which has been attributed to the easy propagation of deformation twins within the particles. The present communication reports the results of a study carried out on the characterization of the deformation microstructure of underaged INCONEL 718. An attempt has been made to explain the work-hardening behavior of the alloy in the light of transmission electron microscopic (TEM) observations on its deformation microstructures in the underaged condition.

  19. Stage IV work hardening in cubic metals

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  20. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  1. [Fitness by cold stimulation of various intensity: effects on metabolism of purines and free radicals].

    PubMed

    Brenke, R; Siems, W; Maass, R

    1994-01-01

    Whole-body cold stimuli lead to a dosage-depended decrease of uric acid level in blood plasma. This could be observed in own studies on winter-swimming and cold shower application and in studies on patients treated by cold-chamber-therapy. This uric acid decrease is due to an accelerated oxygen radical formation during cold exposition rather than to an inhibition of purine metabolism. The acute oxidative loading due to cold exposure and the long-term antioxidative adaptation may be interpreted as a new molecular mechanism resulting in body hardening. PMID:8017070

  2. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern C-arm CT scanner (Axiom Artis dTA, Siemens Healthcare, Forchheim, Germany). A large variety of phantom, small animal, and patient data were used to demonstrate the data and system independence of EBHC. Results: Although no physics apart from the initial segmentation procedure enter the correction process, beam hardening artifacts were significantly reduced by EBHC. The image quality for clinical CT, micro-CT, and C-arm CT was highly improved. Only in the case of C-arm CT, where high scatter levels and calibration errors occur, the relative improvement was smaller. Conclusions: The empirical beam hardening correction is an interesting alternative to conventional iterative higher order beam hardening correction algorithms. It does not tend to over- or undercorrect the data. Apart from the segmentation step, EBHC does not require assumptions on the spectra or on the type of material involved. Potentially, it can therefore be applied to any CT image.

  3. Coping with Cold Sores

    MedlinePlus

    ... Snowboarding, Skating Crushes What's a Booger? Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  4. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  5. Radiation hardening of diagnostics for fusion reactors

    SciTech Connect

    Baur, J.F.; Engholm, B.A.; Hacker, M.P.; Maya, I.; Miller, P.H.; Toffolo, W.E.; Wojtowicz, S.S.

    1981-12-01

    A list of the diagnostic systems presently used in magnetic confinement fusion experiments is compiled herein. The radiation-sensitive components are identified, and their locations in zones around the machine are indicated. A table of radiation sensitivities of components is included to indicate the data available from previous work in fission reactor, space probe, and defense-related programs. Extrapolation and application to hardening of fusion diagnostic systems requires additional data that are more specific to the fusion radiation environment and fusion components. A list is also given of present radiation-producing facilities where near-term screening tests of materials and components can be performed.

  6. Expecting the Unexpected: Radiation Hardened Software

    NASA Technical Reports Server (NTRS)

    Penix, John; Mehlitz, Peter C.

    2005-01-01

    Radiation induced Single Event Effects (SEEs) are a serious problem for spacecraft flight software, potentially leading to a complete loss of mission. Conventional risk mitigation has been focused on hardware, leading to slow, expensive and outdated on-board computing devices, increased power consumption and launch mass. Our approach is to look at SEEs from a software perspective, and to explicitly design flight software so that it can detect and correct the majority of SEES. Radiation hardened flight software will reduce the significant residual residual risk for critical missions and flight phases, and enable more use of inexpensive and fast COTS hardware.

  7. Hologram formation in hardened dichromated gelatin films.

    PubMed

    Lin, L H

    1969-05-01

    Hardened gelatin films sensitized with ammonium dichromate can be utilized to record high quality holograms. The maximum diffraction efficiency of the hologram approaches 90%. The light scattering from the hologram is so low that under ordinary light the hologram plate appears almost indistinguishable from a clear glass plate. Either a transmission or a reflection hologram can be recorded. Linear recording range of light amplitude is large. A practical method of preparing and processing the film is described, and the exposure characteristics are presented. PMID:20072355

  8. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  9. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  10. Beam hardening and partial beam hardening of the bowtie filter: Effects on dosimetric applications in CT

    NASA Astrophysics Data System (ADS)

    Lopez-Rendon, X.; Zhang, G.; Bosmans, H.; Oyen, R.; Zanca, F.

    2014-03-01

    Purpose: To estimate the consequences on dosimetric applications when a CT bowtie filter is modeled by means of full beam hardening versus partial beam hardening. Method: A model of source and filtration for a CT scanner as developed by Turner et. al. [1] was implemented. Specific exposures were measured with the stationary CT X-ray tube in order to assess the equivalent thickness of Al of the bowtie filter as a function of the fan angle. Using these thicknesses, the primary beam attenuation factors were calculated from the energy dependent photon mass attenuation coefficients and used to include beam hardening in the spectrum. This was compared to a potentially less computationally intensive approach, which accounts only partially for beam hardening, by giving the photon spectrum a global (energy independent) fan angle specific weighting factor. Percentage differences between the two methods were quantified by calculating the dose in air after passing several water equivalent thicknesses representative for patients having different BMI. Specifically, the maximum water equivalent thickness of the lateral and anterior-posterior dimension and of the corresponding (half) effective diameter were assessed. Results: The largest percentage differences were found for the thickest part of the bowtie filter and they increased with patient size. For a normal size patient they ranged from 5.5% at half effective diameter to 16.1% for the lateral dimension; for the most obese patient they ranged from 7.7% to 19.3%, respectively. For a complete simulation of one rotation of the x-ray tube, the proposed method was 12% faster than the complete simulation of the bowtie filter. Conclusion: The need for simulating the beam hardening of the bow tie filter in Monte Carlo platforms for CT dosimetry will depend on the required accuracy.

  11. Hardness variability in commercial and hardened technologies

    SciTech Connect

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  12. Hardness variability in commercial and hardened technologies

    NASA Astrophysics Data System (ADS)

    Shaneyfelt, M. R.; Winokur, P. S.; Meisenheimer, T. L.; Sexton, F. W.; Roeske, S. B.; Knoll, M. G.

    1994-01-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is 'built-in' through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  13. Plastic substrate hardening by PE-CVD

    NASA Astrophysics Data System (ADS)

    Menichella, Stefania; Misiano, Carlo; Simonetti, Enrico; De Carlo, L.

    1994-09-01

    The usage of plastic substrates has known a big enhancement driven by ophthalmic applications, but a further spreading can be foreseen in higher technological fields too. As known, two drawbacks are outlined when using these substrate: low scratching resistance; high thermal expansion coefficient, thus bad compatibility with the optical coatings made of inorganic layers. The most widespread solution up to now is a hardening and mechanical matching lacquer coating by dipping, which is well accepted in ophthalmics, but cannot be utilized in precision optics due to its intrinsic thickness disuniformity. Recently similar layers have been realized by Plasma Enhanced Chemical Vapor Deposition. This paper describes Ce.Te.V.'s activities and results in setting up this coating by RF PE-CVD, aimed to both ophthalmics and precision optics. The two different functions (hardening and mechanical matching) and the performances of the coating-with special attention to scratch and thermal shock resistance-are examined. The experimental equipment and the optical and environmental characteristics are described.

  14. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  15. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  16. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, N.; Bufford, D.; Lee, J. H.; Wang, J.; Wang, H.; Zhang, X.

    2016-01-01

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. In this article, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). In nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Twin boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.

  17. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  18. Hardening treatment of friction surfaces of ball journal bearings

    NASA Astrophysics Data System (ADS)

    Gorlenko, A. O.; Davidov, S. V.

    2016-04-01

    The article presents the technology of finishing plasma hardening by the application of the multi-layer nanocoating Si-O-C-N system to harden the friction surfaces of the ball journal bearings. The authors of the paper have studied the applied wear-resistant anti-friction coating tribological characteristics, which determine the increase in wear resistance of the ball journal bearings.

  19. Induced cold-tolerance mechanisms depend on duration of acclimation in the chill-sensitive Folsomia candida (Collembola).

    PubMed

    Waagner, Dorthe; Holmstrup, Martin; Bayley, Mark; Srensen, Jesper G

    2013-06-01

    During cold periods ectotherms may improve low temperature tolerance via rapid cold hardening (RCH) over a period of hours and/or long-term cold acclimation (LTCA) during days, weeks or months. However, the effect of duration and the major underlying mechanisms of these processes are still not fully understood. In the present study, the molecular and biochemical responses to RCH (1-3 h) and LTCA (1-3 days) and the corresponding benefits to survival were investigated using the chill-sensitive collembolan Folsomia candida. We investigated osmolyte accumulation, membrane restructuring and transcription of candidate genes as well as survival benefits in response to RCH and LTCA. RCH induced significant upregulation of targeted genes encoding enzymes related to carbohydrate metabolic pathways and genes encoding small and constitutively expressed heat shock proteins (Hsps), indicating that the animals rely on protein protection from a subset of Hsps during RCH and probably also LTCA. The upregulation of genes involved in carbohydrate metabolic processes initiated during RCH was likely responsible for a transient accumulation of myoinositol during LTCA, which may support the protection of protein and membrane function and structure. Membrane restructuring, composed especially of a significantly increased ratio of unsaturated to saturated phospholipid fatty acids seems to be a mechanism supplementary to activation of Hsps and myoinositol accumulation in LTCA. Thus, the moderate increase in cold shock tolerance conferred by RCH seems to be dominated by effects of Hsps, whereas the substantially better cold tolerance achieved after LTCA is dominated by post-transcriptional processes increasing membrane fluidity and cryoprotectant concentration. PMID:23393277

  20. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images. PMID:26609685

  1. Keystroke Dynamics-Based Credential Hardening Systems

    NASA Astrophysics Data System (ADS)

    Bartlow, Nick; Cukic, Bojan

    abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.

  2. Dilatant hardening of fluid-saturated sandstone

    NASA Astrophysics Data System (ADS)

    Makhnenko, Roman Y.; Labuz, Joseph F.

    2015-02-01

    The presence of pore fluid in rock affects both the elastic and inelastic deformation processes, yet laboratory testing is typically performed on dry material even though in situ the rock is often saturated. Techniques were developed for testing fluid-saturated porous rock under the limiting conditions of drained, undrained, and unjacketed response. Confined compression experiments, both conventional triaxial and plane strain, were performed on water-saturated Berea sandstone to investigate poroelastic and inelastic behavior. Measured drained response was used to calibrate an elasto-plastic constitutive model that predicts undrained inelastic deformation. The experimental data show good agreement with the model: dilatant hardening in undrained triaxial and plane strain compression tests under constant mean stress was predicted and observed.

  3. Laser hardening process simulation for mechanical parts

    NASA Astrophysics Data System (ADS)

    Tani, G.; Orazi, L.; Fortunato, A.; Campana, G.; Cuccolini, G.

    2007-02-01

    In this paper a numerical simulation of laser hardening process is presented. The Finite Difference Method (FDM) was used to solve the heat transfer and the carbon diffusion equations for a defined workpiece geometry. The model is able to predict the thermal cycle into the target material, the phase transformations and the resulting micro-structures according to the laser parameters, the workpiece dimensions and the physical properties of the workpiece. The effects of the overlapping tracks of the laser beam on the resulting micro-structures is also considered. The initial workpiece micro-structure is taken into account in the simulation by a digitized photomicrograph of the ferrite perlite distribution before the thermal cycle. Experimental tests were realized on a C43 plate and the good agreement between the theoretical and experimental results is shown.

  4. Jerky loads on surface-hardened gears

    NASA Technical Reports Server (NTRS)

    Rettig, H.; Wirth, X.

    1978-01-01

    Damage occurs again and again in practice in the form of transmissions with surface hardened gears which break after a very long operating time (explained by seldom occurring jerky loads). Gear drives are frequently exposed to jerky stresses which are greater than their fatigue limit. These stresses are considered in gear calculations, first, by shock factors when the transmission is to be designed as high endurance with regard to overloads and, second, in the form of operating ratios when the design is to be time enduring with regard to overloads. The size of the operating ratio depends not only on torque characteristics, drive and processing machine, but also on the material and heat treatment.

  5. Precipitation hardening in 350 grade maraging steel

    SciTech Connect

    Viswanathan, U.K. . Radiometallurgy Div.); Dey, G.K. . Metallurgy Division); Asundi, M.K. )

    1993-11-01

    Evolution of microstructure in 350 grade commercial maraging steel has been examined. In the earlier stages of aging, the strengthening phases are formed by the heterogeneous precipitation, and these phases have been identified as intermetallic compounds of the Ni[sub 3] (Ti, Mo) and Fe[sub 2]Mo types. The kinetics of precipitation are studied in terms of the activation energy by carrying out isothermal hardness measurements of aged material. The mechanical properties in the peak-aged and overaged conditions were evaluated and the flow behavior examined. The overaging behavior of the steel has been studied and the formation of austenite of different morphologies identified. The crystallography of the austenite has been examined in detail. From the microstructural examination of peak-aged and deformed samples, it could be inferred that the dislocation-precipitate interaction is by precipitate shearing. Increased work hardening of the material in the overaged condition was suggestive of looping of precipitates by dislocations.

  6. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  7. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... vitamin C may help reduce how long a cold lasts, but they do not appear to protect ...

  8. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  9. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  10. Cold fusion

    SciTech Connect

    Bush, R.T. )

    1991-03-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of {approximately}1 kW/cm{sup 3} Pd, as compared to 50 W/cm{sup 3} of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given.

  11. Cold confusion

    SciTech Connect

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  12. Effect of crystallographic texture and dislocation hardening on limit strain in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Wen, Xiyu

    2000-10-01

    In the metal industry, sheet metals are widely used to produce packaging materials for consumer goods, for structures such as automobilse, and for building construction and transportation. The desired shape of the products is imparted by plastic deformation in either the cold or hot state. Traditionally, the prediction of the forming limit of sheet metals is based on tensile tests, simulation tests and continuum mathematical models. Continuum models used in the prediction of the plastic behavior of sheet metals are based on average values of mechanical properties such as elongation, yield strength, work hardening and work-hardening rate, which are usually derived from tensile tests. Although attempts have been made to abandon the phenomenological description of the yield function by applying the theory of crystal plasticity to calculate the yield surface of texture polycrystals and hence the limit strains, only the average properties of the microstructure (e.g., the crystallographic texture of the bulk sheet) have been taken into account. So far, there has been no model for the prediction of the strain path and the limit strain of sheet metals that takes into account the effect of individual grain orientation and the dislocation property. In this thesis, different approaches in the study of plastic deformation are reviewed from the view-point of both macroplasticity and microplasticity. Instead of relying on a unique flow rule to describe the stress and strain relationship, the role of work hardening in the instability process of sheet metal and hence the flow localization phenomenon is explored from a study of the changes in the orientation of the constituent crystallites and from the changes in the dislocation density associated with different grain orientations during the course of large biaxial deformation. The changes in the crystallographic textures of an aluminium sheet sample deformed under various stress states from plane-strain tension to equi-biaxial tension have been followed. From X-ray diffraction and ODF(orientation distribution function) data, the orientation hardening characteristics as well as the dislocation hardening characteristics of the sheet samples as well as the major texture components have also been determined. (Abstract shortened by UMI.)

  13. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  14. Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste

    SciTech Connect

    Haga, Kazuko . E-mail: Kazuko_Haga@grp.taiheiyo-cement.co.jp; Sutou, Shunkichi; Hironaga, Michihiko; Tanaka, Satoru; Nagasaki, Shinya

    2005-09-01

    Aiming at evaluating the effects of porosity in hardened cement paste on dissolution phenomena, we prepared hardened ordinary Portland cement (OPC), with variation in pore volume, and then leached them in deionized water. It was found that the bulk density and pore volume were affected by the dissolution of portlandite. The larger the pore volume of the sample, the more rapidly portlandite is dissolved. An electron probe microanalysis (EPMA) performed on the cross-section of the solid phase showed the 'portlandite (CH) dissolution front'. As the leaching period became longer, the CH dissolution front shifted towards the inner part. In addition, the movement of the CH dissolution front was described by the diffusion model, with consideration of the dissolution of portlandite. It was concluded that the transport of leached constituents is diffusion controlled, and the major leached constituents of hardened OPC are portlandite and C-S-H gel. Large pore, which was generated associated with the leaching of portlandite, was considered significantly to affect the diffusion of leached constituents.

  15. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    2009-01-22

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  16. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  17. Mechanical properties of zona pellucida hardening.

    PubMed

    Papi, Massimiliano; Brunelli, Roberto; Sylla, Lakamy; Parasassi, Tiziana; Monaci, Maurizio; Maulucci, Giuseppe; Missori, Mauro; Arcovito, Giuseppe; Ursini, Fulvio; De Spirito, Marco

    2010-05-01

    We have investigated the changes in the mechanical properties of the zona pellucida (ZP), a multilayer glycoprotein coat that surrounds mammalian eggs, that occur after the maturation and fertilization process of the bovine oocyte by using atomic force spectroscopy. The response of the ZP to mechanical stress has been recovered according to a modified Hertz model. ZP of immature oocytes shows a pure elastic behavior. However, for ZPs of matured and fertilized oocyte, a transition from a purely elastic behavior, which occurs when low stress forces are applied, towards a plastic behavior has been observed. The high critical force necessary to induce deformations, which supports the noncovalent long interaction lifetimes of polymers, increases after the cortical reaction. Atomic force microscopy (AFM) images show that oocyte ZP surface appears to be composed mainly of a dense, random meshwork of nonuniformly arranged fibril bundles. More wrinkled surface characterizes matured oocytes compared with immature and fertilized oocytes. From a mechanical point of view, the transition of the matured ZP membrane toward fertilized ZP, through the hardening process, consists of the recovery of the elasticity of the immature ZP while maintaining a plastic transition that, however, occurs with a much higher force compared with that required in matured ZP. PMID:19471918

  18. Design concepts for hardened communications structures

    NASA Astrophysics Data System (ADS)

    Flathau, William J.; Smith, William G.

    1990-03-01

    An important component of any hardened command and control structure is the antenna system that provides communication with the outside world. Two types of antennae were considered; i.e., the whip type and the directional. The whip type is for short range communication and the directional is for use primarily with satellites. In the super high frequency range, the use of directional antennae having parabolic dishes greater than 8 feet in diameter are common. In the very extra high frequency range, dishes that are 2 to 3 feet in diameter are used. The whip type antenna should extend up to, say, 60 feet in the air. Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from a 1-MT device for ground surface overpressure ranging from 15,000 to 500 psi. As the antennae, transmitters, receivers, power supplies, and lifting mechanisms will be located within such structures, appropriate shock spectra plots were developed to determine if the fragility level of pertinent equipment will be exceeded and for use in designing shock isolation systems. Button up periods of 1 and 4 weeks were considered.

  19. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  20. Possible correlation between work-hardening and fatigue-failure

    NASA Technical Reports Server (NTRS)

    Kettunen, P. O.; Kocks, U. F.

    1969-01-01

    Conceptual theory proposes that cyclic hardening due to non-uniform strain and stress amplitudes during testing, especially during the initial application of stress to a specimen, may correlate positively with the ultimate strength of the specimen under test.

  1. Microscopic Origin of Strain Hardening in Methane Hydrate.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  2. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  3. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  4. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  5. Ultimate bending capacity of strain hardening steel pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yan-fei; Zhang, Juan; Zhang, Hong; Li, Xin; Zhou, Jing; Cao, Jing

    2016-04-01

    Based on Hencky's total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.

  6. Strain hardening of fcc metal surfaces induced by microploughing

    SciTech Connect

    Day, R.D.; Dickerson, R.M.; Russell, P.E.

    1998-12-01

    Microploughing experiments were used as a method for better understanding the ploughing mechanism in gold and iridium single crystals. The plough depths ranged from 20 nm in iridium to 1,600 nm in gold. Yield stress profiles and TEM analyses indicate that both materials strain harden even when very small volumes of material are involved. Strain hardening theory, as applied to bulk material, is useful in analyzing the results.

  7. Work hardening characteristics and recovery of gamma base titanium aluminides

    SciTech Connect

    Appel, F.; Sparka, U.; Muellauer, J.

    1999-07-01

    The work hardening behavior of gamma base titanium aluminides was investigated by mechanical testing, electron microscope observations and recovery experiments. The main objectives of the paper are: (1) to ascertain the nature of work hardening at room temperature, (2) to identify deformation induced glide obstacles which can be overcome with the aid of thermal activation, (3) to assess the thermal stability of deformation induced defect structures.

  8. Physiology of cold tolerance in insects.

    PubMed

    Zachariassen, K E

    1985-10-01

    From the available experimental data a relatively clear picture can be established with regard to the physiological importance of some of the mechanisms involved in insect cold hardening. In freeze-avoiding insects, all potent ice-nucleating agents are removed or inactivated, leading to a depression of the supercooling points to about 20 degrees C. Accumulation of polyols causes a further depression with a magnitude of about twice the corresponding melting-point depression. Production of thermal hysteresis factors causes a stabilization of the supercooled state. In freeze-tolerant insects, potent ice-nucleating agents are produced in the extracellular body fluid, ensuring a protective extracellular freezing at a few degrees below zero. Accumulation of polyols causes a steep drop in the lethal temperature, due to a reduction of the amount of ice by a colligative mechanism. However, there is still much to be learned about the mechanisms by which ice-nucleating agents, polyols, and thermal hysteresis agents are acting. Furthermore, the regulatory mechanisms involved in the production and elimination of these components from the body fluid of the insects are not understood. Also, when it comes to the influence of environmental factors, like photoperiod and temperature, there is much to be learned. In addition to giving attention to these topics, future research should be focused on the possible role of other factors in cold hardening such as bound water, dehydration, low-molecular-weight solutes other than polyols, and the biochemical mechanisms forming the basis of the seasonal changes in the cold hardiness of insects. PMID:3903795

  9. Total dose hardening of SIMOX buried oxides for fully depleted devices in rad-tolerant applications

    SciTech Connect

    Brady, F.T.; Hughes, H.L.; Mrstik, B.; McMarr, P.J.

    1996-12-01

    A total dose hardening treatment is applied to SIMOX buried oxides. Total ionizing dose radiation testing is performed on fully-depleted transistors fabricated on both hardened and non-hardened substrates. At 200 krads x-ray dose, the front gate shift is reduced from {minus}0.7 to {minus}0.2 V for FETs built on the hardened wafers.

  10. Zinc coated sheet steel for press hardening

    NASA Astrophysics Data System (ADS)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time maintained the highest ductility when compared to the uncoated sample processed under the sample conditions. Fractography of the hot-ductility samples showed features associated with increased ductility with increased soak time for all soak temperatures. Heat treatments (without elevated temperature deformation) and subsequent room temperature deformation were conducted to investigate the "in-service" behavior of 22MnB5. The uncoated and coated specimens deformed at room temperature showed similar ultimate tensile strength and ductility values. The only notable differences in the room temperature mechanical behavior of uncoated and coated samples processed under the same conditions were a result of differences in the substrate microstructure. All samples appeared to have ductile fracture features; features characteristic of liquid metal embrittlement were not observed.

  11. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes," J. Mech.Phys. Solids, 59, pp. 2227--2237, Erratum 60, 1753-1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like 1) The initial linear elastic response. 2) One or more nonlinear instabilities, yielding, and hardening. The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.

  12. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  13. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  14. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This

  15. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  16. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  17. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  18. Cold head maintenance with minimal service interruption

    NASA Astrophysics Data System (ADS)

    Radovinsky, A. L.; Michael, P. C.; Zhukovsky, A.; Forton, E.; Paradis, Y.; Nuttens, V.; Minervini, J. V.

    2015-12-01

    Turn-key superconducting magnet systems are increasingly conduction-cooled by cryogenerators. Gifford-McMahon systems are reliable and cost effective, but require annual maintenance. A usual method of servicing is replacing the cold head of the cryocooler. It requires a complicated design with a vacuum chamber separate from the main vacuum of the cryostat, as well as detachable thermal contacts, which add to the thermal resistance of the cooling heat path and reduce the reliability of the system. We present a rapid warm-up scheme to bring the cold head body, which remains rigidly affixed to the cold mass, to room temperature, while the cold mass remains at cryogenic temperature. Electric heaters thermally attached to the cold head stations are used to warm them up, which permits conventional cold head maintenance with no danger of contaminating the inside of the cold head body. This scheme increases the efficiency of the cooling system, facilitates annual maintenance of the cold head and returning the magnet to operation in a short time.

  19. The effect of cold spray impact velocity on deposit hardness

    NASA Astrophysics Data System (ADS)

    Champagne, Victor K.; Helfritch, Dennis J.; Trexler, Matthew D.; Gabriel, Brian M.

    2010-09-01

    The deposition and consolidation of metal powders by means of cold spray is a method where powder particles are accelerated to high velocity through entrainment in a gas undergoing expansion in a de Laval nozzle and are subsequently impacted upon a surface. The impacted powder particles form a consolidated structure which can be several centimeters thick. The characteristics of this structure depend on the initial characteristics of the metal powder and upon impact velocity. Initially soft particles are strain hardened during impact, resulting in a structure that can have a hardness value greater than that which can be achieved by conventional cold working. A materials model is proposed for these phenomena, and model calculation is compared with experimental data from cold sprayed copper and aluminum.

  20. Assessment of the microstructure and torsional fatigue performance of an induction hardened vanadium microalloyed medium-carbon steel

    NASA Astrophysics Data System (ADS)

    Rothleutner, Lee M.

    Vanadium microalloying of medium-carbon bar steels is a common practice in industry for a number of hot rolled as well as forged and controlled-cooled components. However, use of vanadium microalloyed steels has expanded into applications beyond their originally designed controlled-cooled processing scheme. Applications such as transmission shafts often require additional heat-treatments such as quench and tempering and/or induction hardening to meet packaging or performance requirements. As a result, there is uncertainty regarding the influence of vanadium on the properties of heat-treated components, specifically the effect of rapid heat-treating such as induction hardening. In the current study, the microstructural evolution and torsional fatigue behavior of induction hardened 1045 and 10V45 (0.08 wt pct V) steels were examined. Torsional fatigue specimens specifically designed for this research were machined from the as-received, hot rolled bars and induction hardened using both scanning (96 kHz/72 kW) and single-shot (31 kHz/128 kW) methods. Four conditions were evaluated, three scan hardened to 25, 32, and 44 pct nominal effective case depths and one single-shot hardened to 44 pct. Torsional fatigue tests were conducted at a stress ratio of 0.1 and shear stress amplitudes of 550, 600, and 650 MPa. Physical simulations using the thermal profiles from select induction hardened conditions were conducted in the GleebleRTM 3500 to augment microstructural analysis of torsional fatigue specimens. Thermal profiles were calculated by a collaborating private company using electro-thermal finite element analysis. Residual stresses were evaluated for all conditions using a strain gage hole drilling technique. The results showed that vanadium microalloying has an influence on the microstructure in the highest hardness region of the induction-hardened case as well as the total case region. Vanadium microalloyed conditions consistently exhibited a greater amount of non-martensitic transformation products in the induction-hardened case. In the total case region, vanadium reduced the total case depth by inhibiting austenite formation at low austenitizing temperatures; however, the non-martensitic constituents in the case microstructure and the reduced total case depth of the vanadium microalloyed steel did not translate directly to a degradation of torsional fatigue properties. In general, vanadium microalloying was not found to affect torsional fatigue performance significantly with one exception. In the 25 pct effective case depth condition, the 10V45 steel had a ~75 pct increase in fatigue life at all shear stress amplitudes when compared to the 1045 steel. The improved fatigue performance is likely a result of the significantly higher case hardness this condition exhibited compared to all other conditions. The direct influence of vanadium on the improved fatigue life of the 25 pct effective case depth condition is confounded with the slightly higher carbon content of the 10V45 steel. In addition, the 10V45 conditions showed a consistently higher case hardness than the in 1045 conditions. The increased hardness of the 10V45 steel did not increase the compressive residual stresses at the surface. Induction hardening parameters were more closely related to changes in residual stress than vanadium microalloying additions. Torsional fatigue data from the current study as well as from literature were used to develop an empirical multiple linear regression model that accounts for case depth as well as carbon content when predicting torsional fatigue life of induction hardened medium-carbon steels.

  1. Cold knife cone biopsy

    MedlinePlus

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  2. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  3. Cold Weather Pet Safety

    MedlinePlus

    ... accordingly. You will probably need to shorten your dog’s walks in very cold weather to protect you ... slipping and falling. Long-haired or thick-coated dogs tend to be more cold-tolerant, but are ...

  4. Coping with Colds

    MedlinePlus

    ... cold feel better. previous continue When Should I Go to the Doctor? Teens who catch colds usually ... you start feeling better — the infection may not go away and you can develop other problems. Can ...

  5. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  6. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  7. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  8. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities. PMID:24522596

  9. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  10. Oxide dispersion hardened mechanically alloyed materials for high temperatures

    NASA Technical Reports Server (NTRS)

    Benjamin, J. S.; Strassburg, F. W.

    1982-01-01

    The procedure of mechanical alloying makes it possible to obtain, with the aid of powder-metallurgy techniques, alloys that consist of a metallic matrix in which very fine oxide particles are dispersed. Mechanically alloyed compound powders can be used for making either forged or hot-rolled semifinished products. For these products, dispersion strengthening and precipitation hardening has been combined. At high temperatures, the strength characteristics of the alloy are determined by both dispersion hardening and by precipitation hardening processes. The effect produced by each process is independent of that due to the other. Attention is given to the principle of mechanical alloying developed by Benjamin (1970, 1976), the strength characteristics of mechanically alloyed materials, the corrosion resistance of mechanically alloyed material at high temperatures, and the preparation and characteristics of the alloy MA 6000 E.

  11. Facts about the Common Cold

    MedlinePlus

    ... Lung Disease Lookup > Influenza Facts About The Common Cold What Is a Cold? Colds are minor infections of the nose and ... by touch. These droplets may also be inhaled. Cold Symptoms Between one and three days after a ...

  12. Cough and Cold Medicine Abuse

    MedlinePlus

    ... Publications » DrugFacts » Cough and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised ... syrup is sometimes diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines ...

  13. Statistical thermodynamics of strain hardening in polycrystalline solids.

    PubMed

    Langer, J S

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials. PMID:26465444

  14. Electrically induced temperature difference and deformation in hardened cement pastes

    SciTech Connect

    Sun Mingqing . E-mail: sunmingqing@yahoo.com; Wang Xiaoying; Zhao Kairui; Li Zhuoqiu

    2006-12-15

    Electromechanical effect of hardened cement paste beam is investigated in this paper. When an external electrical current is applied to the electrodes attached to opposite surfaces of a cement beam, it is found that temperature on the positive electrode is always higher than that on the negative electrode. The sign of electrically induced temperature difference is determined by the direction of applied electrical current. Electrically induced temperature difference makes the beam bend towards the surface with a higher temperature. Both electrically induced temperature difference and electroosmosis lead to electromechanical effect of hardened cement paste. Finally, electromechanical effect becomes more obvious by adding NaCl to cement paste.

  15. Atomistic mechanisms of cyclic hardening in metallic glass

    NASA Astrophysics Data System (ADS)

    Deng, Chuang; Schuh, Christopher A.

    2012-06-01

    Molecular dynamics with an embedded-atom method potential is used to simulate the nanoindentation of Cu63.5Zr36.5 metallic glasses. In particular, the effects of cyclic loading within the nominal elastic range on the overall strength and plasticity of metallic glass are studied. The simulated results are in line with the characteristics of experimentally observed hardening effects. In addition, analysis based on local von Mises strain suggests that the hardening is induced by confined microplasticity and stiffening in regions of the originally preferred yielding path, requiring a higher applied load to trigger a secondary one.

  16. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  17. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  18. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGESBeta

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  19. Why semiconductors must be hardened when used in space

    SciTech Connect

    Winokur, P.S.

    2000-01-04

    The natural space radiation environment presents a great challenge to present and future satellite systems with significant assets in space. Defining requirements for such systems demands knowledge about the space radiation environment and its effects on electronics and optoelectronics technologies, as well as suitable risk assessment of the uncertainties involved. For mission of high radiation levels, radiation-hardened integrated circuits will be required to preform critical mission functions. The most successful systems in space will be those that are best able to blend standard commercial electronics with custom radiation-hardened electronics in a mix that is suitable for the system of interest.

  20. Impact of Scaled Technology on Radiation Testing and Hardening

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2005-01-01

    This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.

  1. Statistical thermodynamics of strain hardening in polycrystalline solids

    SciTech Connect

    Langer, James S.

    2015-01-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  2. Statistical thermodynamics of strain hardening in polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010), 10.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  3. Temperature influence on water transport in hardened cement pastes

    SciTech Connect

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  4. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  5. Fructan metabolism and expression of genes coding fructan metabolic enzymes during cold acclimation and overwintering in timothy (Phleum pratense).

    PubMed

    Tamura, Ken-ichi; Sanada, Yasuharu; Tase, Kazuhiro; Yoshida, Midori

    2014-07-01

    Metabolism of fructans in temperate grasses dynamically fluctuates before and during winter and is involved in the overwintering activity of plants. We monitored three candidate factors that may be involved in seasonal fructan metabolism in timothy (Phleum pratense): transcription levels of two fructosyltransferase (PpFT1 and PpFT2) genes and one fructan exohydrolase (Pp6-FEH1) gene during fall and winter and under artificially cold conditions. Functional analysis using a recombinant enzyme for PpFT2, a novel fructosyltransferase cDNA, revealed that it encoded sucrose:fructan 6-fructosyltransferase, with enzymatic properties different from previously characterized PpFT1. PpFT1 transcripts decreased from September to December as the amount of fructans increased, whereas PpFT2 transcripts increased in timothy crowns. PpFT2 was transcriptionally more induced than PpFT1 in response to cold and sucrose in timothy seedlings. A rapid increase in Pp6-FEH1 transcripts and increased monosaccharide content were observed in timothy crowns when air temperature was continuously below 0C and plants were not covered by snow. Transcriptional induction of Pp6-FEH1 by exposure to -3C was also observed in seedlings. These findings suggest Pp6-FEH1 involvement in the second phase of hardening. PpFT1 and PpFT2 transcription levels decreased under snow cover, whereas Pp6-FEH1 transcription levels were constant, which corresponded with the fluctuation of fructosyltransferase and fructan exohydrolase activities. Inoculation with snow mold fungi (Typhula ishikariensis) increased Pp6-FEH1 transcription levels and accelerated hydrolysis of fructans. These results suggest that transcriptional regulation of genes coding fructan metabolizing enzymes is partially involved in the fluctuation of fructan metabolism during cold acclimation and overwintering. PMID:24913052

  6. Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at sqrt(s_NN)=200 GeV

    SciTech Connect

    Adare, A.; PHENIX Collaboration

    2011-09-30

    We present measurements of J/{psi} yields in d+Au collisions at {radical}s{sub NN} = 200 GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/{psi} rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.

  7. Cold nuclear matter effects on J/ψ yields as a function of rapidity and nuclear geometry in d+A collisions at sqrt[s(NN)]=200  GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Bickley, A A; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Caringi, A; Chang, B S; Chang, W C; Charvet, J-L; Chen, C-H; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Hadj Henni, A; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Klay, J; Klein-Boesing, C; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Mašek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Niita, T; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomita, Y; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zolin, L

    2011-09-30

    We present measurements of J/ψ yields in d+Au collisions at sqrt[s(NN)]=200  GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/ψ rapidity (-2.2rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state. PMID:22107186

  8. Cold Nuclear Matter Effects on J/ψ Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at sNN=200GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'Yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M., Jr.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hadj Henni, A.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Haruna, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E. J.; Kim, S. H.; Kim, Y.-J.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Means, N.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, M.; Mitchell, J. T.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Niita, T.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Samsonov, V.; Sano, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Tomita, Y.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zolin, L.

    2011-09-01

    We present measurements of J/ψ yields in d+Au collisions at sNN=200GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/ψ rapidity (-2.2rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.

  9. Cold Nuclear Matter Effects on J/{psi} Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at {radical}(s{sub NN})=200 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kinney, E.; Kiriluk, K.; Linden Levy, L. A.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Datta, A.; Ajitanand, N. N.

    2011-09-30

    We present measurements of J/{psi} yields in d+Au collisions at {radical}(s{sub NN})=200 GeV recorded by the PHENIX experiment and compare them with yields in p+p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/{psi} rapidity (-2.2rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.

  10. Beam hardening correction for sparse-view CT reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2015-03-01

    Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.

  11. Iterative Beam Hardening Correction for Multi-Material Objects.

    PubMed

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  12. Strain hardening of polymer glasses: Entanglements, energetics, and plasticity

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Robbins, Mark O.

    2008-03-01

    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic network models, many other results are fundamentally inconsistent with the physical picture underlying these models. Stresses are too large to be entropic and have the wrong trend with temperature. The most dramatic hardening at large strains reflects increases in energy as chains are pulled taut between entanglements rather than a change in entropy. A weak entropic stress is only observed in shape recovery of deformed samples when heated above the glass transition. While short chains do not form an entangled network, they exhibit partial shape recovery, orientation, and strain hardening. Stresses for all chain lengths collapse when plotted against a microscopic measure of chain stretching rather than the macroscopic stretch. The thermal contribution to the stress is directly proportional to the rate of plasticity as measured by breaking and reforming of interchain bonds. These observations suggest that the correct microscopic theory of strain hardening should be based on glassy state physics rather than rubber elasticity.

  13. Performance comparison of radiation-hardened layout techniques

    NASA Astrophysics Data System (ADS)

    Lingjuan, Lü; Ruping, Liu; Min, Lin; Zehua, Sang; Shichang, Zou; Genqing, Yang

    2014-06-01

    Total ionizing dose (TID) effect and single event effect (SEE) from space may cause serious effects on bulk silicon and silicon on insulator (SOI) devices, so designers must pay much attention to these bad effects to achieve better performance. This paper presents different radiation-hardened layout techniques to mitigate TID and SEE effect on bulk silicon and SOI device and their corresponding advantages and disadvantages are studied in detail. Under 0.13 μm bulk silicon and SOI process technology, performance comparisons of two different kinds of DFF circuit are made, of which one kind is only hardened in layout (protection ring for bulk silicon DFF, T-gate for SOI DFF), while the other kind is also hardened in schematic such as DICE structure. The result shows that static power and leakage of SOI DFF is lower than that of bulk silicon DFF, while SOI DFF with T-gate is a little slower than bulk silicon DFF with protection ring, which will provide useful guidance for radiation-hardened circuit and layout design.

  14. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  15. Hardening digital systems with distributed functionality: robust networks

    NASA Astrophysics Data System (ADS)

    Vaskova, Anna; Portela-Garcia, Marta; Garcia-Valderas, Mario; López-Ongil, Celia; Portilla, Jorge; Valverde, Juan; de la Torre, Eduardo; Riesgo, Teresa

    2013-05-01

    Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1

  16. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  17. Iterative Beam Hardening Correction for Multi-Material Objects

    PubMed Central

    Zhao, Yunsong; Li, Mengfei

    2015-01-01

    In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum. PMID:26659554

  18. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  19. [Cold-induced urticaria].

    PubMed

    Delorme, N; Drouet, M; Thibaudeau, A; Verret, J L

    2002-09-01

    Cold urticaria is characterized by the development of urticaria, usually superficial and/or angioedematous reaction after cold contact. It was found predominantly in young women. The diagnosis is based on the history and ice cube test. Patients with a negative ice cube test may have represented systemic cold urticaria (atypical acquired cold urticaria) induced by general body cooling. The pathogenesis is poorly understood. Cold urticaria can be classified into acquired and familial disorders, with an autosomal dominant inheritance. Idiopathic cold urticaria is most common type but the research of a cryopathy is necessary. Therapy is often difficult. It is essential that the patient be warned of the dangers of swimming in cold water because systemic hypotension can occur. H1 antihistamines can be used for treatment of cold urticaria but the clinical responses are highly variable. The combination with an H2 antagonists is more effective. Doxepin may be useful in the treatment. Leukotriene receptor antagonists may be a novel, promising drug entity. In patients who do not respond to previous treatments, induction of cold tolerance may be tried. PMID:12389450

  20. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  1. Cold end additive compositions

    SciTech Connect

    Sujdak, R.J.

    1980-09-23

    The present invention is drawn to ethylene polyamines in combination with certain alkanolamines as cold-end additives. More specifically, it has been discovered that if these additives are fed to the moving combustion gases of a combustion system which uses sulfur containing fuel and upstream of cold-end surfaces to be treated, the additive will travel along with the gases as vapor and/or liquid droplets and deposit on the cold-end surfaces. As a result, the amount of sulfuric acid corrosion of metallic cold-end surfaces is reduced.

  2. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.

    PubMed

    Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J

    2015-10-01

    The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate. PMID:25920066

  3. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis. PMID:23471256

  4. Microstructural and bulk property changes in hardened cement paste during the first drying process

    SciTech Connect

    Maruyama, Ippei; Nishioka, Yukiko; Igarashi, Go; Matsui, Kunio

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreased for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.

  5. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring

    NASA Astrophysics Data System (ADS)

    Astrath, F. B. G.; Astrath, N. G. C.; Baesso, M. L.; Bento, A. C.; Moraes, J. C. S.; Santos, A. D.

    2012-01-01

    Thermal diffusivity and conductivity of dental cements have been studied using open photoacoustic cell (OPC). The samples consisted of fast hardening cement named CER, developed to be a root-end filling material. Thermal characterization was performed in samples with different gel/powder ratio and particle sizes and the results were compared to the ones from commercial cements. Complementary measurements of specific heat and mass density were also performed. The results showed that the thermal diffusivity of CER tends to increase smoothly with gel volume and rapidly against particle size. This behavior was linked to the pores size and their distribution in the samples. The OPC method was shown to be a valuable way in deriving thermal properties of porous material.

  6. Improved sperm cryopreservation using cold cryoprotectant.

    PubMed

    Clarke, G N; Liu, D Y; Baker, H W G

    2003-01-01

    It has generally been assumed that very rapid cooling above freezing point would be deleterious to human sperm because it would result in cold shock. Consequently, most routine cryopreservation protocols involve the use of warm (20-30 degrees C) cryoprotectant and slow cooling above the freezing point in order to minimise the risk of cold shock. In order to test this assumption, we added an equal volume of cold (4 degrees C) cryoprotectant in a single aliquot to warm (20, 30 or 37 degrees C) semen to induce rapid cooling. The results of this procedure were compared with those obtained using warm cryoprotectant or with the routine cryopreservation protocol used in this laboratory. The use of cold cryoprotectant resulted in a significant (P = 0.016) improvement (mean 63%, range 42%-79%) in post-thaw motility recovery compared with a standard procedure(mean 47%, range 35%-67%) and a significant (P = 0.016) improvement in post-thaw sperm velocity. A cold glycerol/egg yolk/citrate (GEYC) mixture also gave significantly higher motility recovery than GEYC equilibrated to either room temperature (20 degrees C) or body temperature (37 degrees C). Sperm frozen using the cold cryoprotectant protocol were as efficient at binding to and penetrating the human zona pellucida as sperm frozen with a standard protocol. The modified cryopreservation procedure may lead to improved pregnancy rates in donor insemination and in vitro fertilisation. Further investigation is required to determine how the cold cryoprotectant improves the cryopreservation outcome. PMID:14984694

  7. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  8. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. Results: All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. Conclusions: sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  9. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  10. Irradiation hardening of V-4Cr-4Ti

    NASA Astrophysics Data System (ADS)

    van Osch, E. V.; de Vries, M. I.

    In the framework of the European Long Term Fusion Technology Program, Advanced Materials Field, ECN has been working on the assessment of low temperature irradiation hardening and embrittlement of vanadium alloys, as being developed for fusion application. Tensile, miniaturized Charpy impact (KLST) and Compact Tension specimens have been irradiated in the High Flux Reactor (HFR) in Petten up to approximately 6 dpa at 600 K. Three alloys were included; V-4Cr-4Ti from the 500 kg IEA reference heat provided by Argonne National Laboratory, and minor amounts of V-3Cr-3Ti and V-6Cr-6Ti, provided by Oak Ridge National Laboratory. The paper presents the results of tensile tests after irradiation. These tensile tests show strong hardening and reduction of ductility.

  11. CMOS inverter design-hardened to the total dose effect

    SciTech Connect

    Roche, F.M.; Salager, L.

    1996-12-01

    This paper reports and discusses the experimental behavior of two inverter structures Rad-Hardened by Design to {sup 60}Co irradiation. The authors use the results on a set of basic circuits and transistors exposed to the same total doses as these structures to establish the effective formation conditions of the parasitic channel. Then this leakage evolution is related to the gate voltage history under irradiation. Finally, they take advantage of this intrinsic degradation property to propose a new Design Rad Hardened (DRH) cell. This structure considerably limits the Low Noise Margin degradation, helps to maintain the logic functionality with a High Output level and improves both the rad-tolerance and the static power consumption.

  12. The design of radiation-hardened ICs for space

    SciTech Connect

    Kerns, S.E.; Shafer, B.D.

    1988-11-01

    The approaches to designing radiation-hardened integrated circuits for space applications are reviewed in this paper. Several technologies are covered, including bulk and epi CMOS, CMOS/SOL-SOS, CML,ECL, analog bipolar (JI, single-poly DI, and SOI) and GaAsE/D Heterojunction MESFET. Sections of the paper cover the direct effects of space radiation on microelectronic materials and devices, how these effects are evidenced in circuit and device design parameter variations, the particular effects of most significance to each functional class of circuit, specific techniques for hardening high-speed circuits, design examples for integrated systems, including operational amplifiers and A/D converters, and the computer simulation of radiation effects on microelectronic ICs.

  13. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  14. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  15. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  16. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.

    PubMed

    Narayanan, Sankar; Cheng, Guangming; Zeng, Zhi; Zhu, Yong; Zhu, Ting

    2015-06-10

    Metallic nanowires usually exhibit ultrahigh strength but low tensile ductility owing to their limited strain hardening capability. Here we study the unique strain hardening behavior of the five-fold twinned Ag nanowires by nanomechanical testing and atomistic modeling. In situ tensile tests within a scanning electron microscope revealed strong strain hardening behavior of the five-fold twinned Ag nanowires. Molecular dynamics simulations showed that such strain hardening was critically controlled by twin boundaries and pre-existing defects. Strain hardening was size dependent; thinner nanowires achieved more hardening and higher ductility. The size-dependent strain hardening was found to be caused by the obstruction of surface-nucleated dislocations by twin boundaries. Our work provides mechanistic insights into enhancing the tensile ductility of metallic nanostructures by engineering the internal interfaces and defects. PMID:25965858

  17. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOEpatents

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  18. Antihistamines, Decongestants, and Cold Remedies

    MedlinePlus

    ... an ENT Doctor Near You Antihistamines, Decongestants, and Cold Remedies Antihistamines, Decongestants, and Cold Remedies Patient Health ... Trinalin®. What should I look for in a “cold” remedy? Decongestants and/or antihistamines are the principal ...

  19. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  20. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  1. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    DOEpatents

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  2. Mechanism and technological particular features of thermomagnetic hardening

    NASA Astrophysics Data System (ADS)

    Borovskij, S. M.; Mukhin, V. S.

    1993-10-01

    The particular features of mechanism associated with piece hardening of gas-turbine engines are analyzed. This mechanism is connected with the change of conditions for phase equilibrium and kinetics of transformations. It is important to estimate the nature of the formation of new ferromagnetic centers at phase transitions, when permanent, pulsed, or periodic magnetic fields act. Two factors should be taken into account: the power effect of the magnetic field and the increase of 'magnetic segregation' of a source nonferromagnetic matrix.

  3. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  4. Elastic constant versus temperature behavior of three hardened maraging steels

    NASA Technical Reports Server (NTRS)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  5. An advanced, radiation hardened bulk CMOS/LSI technology

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.; Lichtel, R. L.; Gingerich, B. L.

    1981-01-01

    An advanced, second generation, bulk, Si-gate CMOS process is described. This process is capable of producing LSI and VLSI parts that are latch-up free and hardened to total dose levels in excess of 2 x 10 to the 5th rad-Si for applications in space and weapons radiation environments. Two memories designed to use this process are also described. Both circuits are 4096-bit, static CMOS RAMs.

  6. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2010-12-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  7. Helium and hydrogen induced hardening in 316LN stainless steel

    NASA Astrophysics Data System (ADS)

    Hunn, J. D.; Lee, E. H.; Byun, T. S.; Mansur, L. K.

    2000-12-01

    In certain radiation environments, such as the spallation neutron source (SNS) presently in design and construction, the high transmutation production rate for helium and hydrogen, concomitant with displacement damage, may affect the mechanical properties of structural materials. To better understand this effect, we have studied type 316LN stainless steel specimens implanted with medium energy Fe-, He-, and H-ions, alone and in combination. In this report, we present nanoindentation measurements of the incremental increase in hardness caused by 360 keV He-ions implanted at 200°C to concentrations from 2 to 200 000 appm. The He-induced hardening was found to saturate at twice the level measured for Fe-induced displacement damage alone. The additional hardening at high helium concentrations was associated with the presence of helium filled cavities (bubbles), observed by transmission electron microscopy (TEM). We also found that co-injection of helium and hydrogen resulted in more hardening than was observed for He-implantation alone.

  8. Obtaining strong zirconia ceramic by hardening and tempering

    SciTech Connect

    Pliner, S.Y.; Dabizha, A.A.; Komolikov, Y.I.; Rutman, D.S.; Toropov, Y.S.

    1985-07-01

    To determine whether it is possible to strengthen ceramics by means of hardening and tempering, the authors selected a solid solution pf 3.4% of Y/sub 2/O/sub 3/ (molar fraction) in ZrO/sub 2/. The solution was synthesized by combined precipitation of the compounds from an aqueous solution of chlorides. The filtered residue of hydroxides was dried and calcined at about 900/sup 0/C. The calcined material was milled for 80 h in an iron ball mill by the wet method with a ratio of materials: balls: water of 1:2:1. The material was then purified to remove tramp iron by treatment with HC1 with an addition of hydrogen peroxide, followed by decantation with distilled water. The specimens were heated to 2250-2300/sup 0/C in a furnace with a straight-through vertical channel of diameter 20 mm, a heating element made of stabilized zirconia, and high-temperature heat insulation made of porous ceramic-concrete based on ZrO/sub 2/. The hardening of the specimens at this temperature was done at a rate ensuring practically complete preservation of the cubic phase of ZrO/sub 2/. The tempering of the hardened specimens was done by the furnace with a silit heaters at 1400/sup 0/C over different times (0-85 h).

  9. Performance of radiation hardening techniques under voltage and temperature variations

    NASA Astrophysics Data System (ADS)

    Veeravalli, Varadan Savulimedu; Steininger, Andreas

    The effectiveness of the techniques to mitigate radiation particle hits in digital CMOS circuits has been mainly studied under a given set of environmental conditions. This paper will explicitly analyze, how the performance of two selected radiation hardening techniques, namely transistor sizing and stack separation, varies with temperature and supply voltage. Our target is an inverter circuit in UMC90 bulk CMOS technology, instances of which have been hardened against charges of 300fC and 450fC using either of the two techniques under investigation. In a Spice simulation we apply particle hits to these circuits through double-exponential current pulses of the respective charge. We study the effect of these pulses in a temperature range from - 55 C to +175 C and a supply voltage of 0.65 to 1.2V (nominal 1V) at the output of a (unhardened) buffer that has been connected as a load. For the hardening by sizing we observe proper operation in the range from 1.2V to 900mV, while for lower supply we observe full swing pulses of increasing magnitude when the respective maximum charge is applied. The influence of temperature turns out to be minor. For the stack separation approach the observation is similar, however, the circuit starts glitching only at 750mV. Our study allows the following conclusions: (i) The effectiveness of the hardening approaches strongly depends on the supply voltage, and moderately on temperature. (ii) As expected, low voltage and high temperature represent the worst case for rad-hard sizing. Stack separation, on the other hand, unexpectedly shows a stronger and more complicated temperature dependence. (ii) For voltages below approx. 90% of nominal the hardening by sizing fails, when designed for nominal voltage and room temperature. The approach can be enhanced to survive this worst case by increasing the sizing factor further by more than 3 times. (iv) The stack separation only fails for voltages below approx. 75% of nominal, but there is n- simple remedy to make it reliable for a larger range. This must be considered when judging the appropriateness of this method for a given purpose. Also it turned out that once it fails, the resulting SET pulse has considerable length.

  10. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  11. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... pregnancy Stress Trauma, such as that caused by dental work or cuts from shaving Surgery Self-Care Guidelines Acetaminophen or ibuprofen may help reduce fever, muscle aches, and pain caused by cold sores. Try to drink as ...

  12. Colds and the Flu

    MedlinePlus

    ... with green- or yellow-colored discharge) Sore throat Cough Sneezing Fatigue Muscle aches Headache Watery eyes Cold ... aches, especially in your back, arms and legs Cough Headache Loss of appetite What is H1N1 flu? ...

  13. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  14. Environmental hardening of equipment operating in an automated test bed enclosure. Special Isotope Separation Program (SIS)

    SciTech Connect

    Hayward, M.L.

    1990-12-01

    Lawrence Livermore National Laboratory`s Plutonium Systems Engineering plans to demonstrate a materials handling system in an automated test bed located in the cold test facility, in FY91. The equipment operating in the automated glove box test bed consists of a modified, bridge mounted robot that is electrically driven, robot tooling, a tilt-pour furnace, mechanisms for loading and unloading the furnace, mechanisms for loading and unloading the crucible, and mechanisms for button breakout and can opening. Each of the pieces of equipment mentioned have components such as motors (with or without brushes), bearings, resolvers, encoders, sliding surfaces, cabling, and electrical connectors that must function in the harsh environment of the test bed enclosure, and each of the components described must be hardened to the enclosure environment. The automated test bed is to provide a representation of a weapons-grade plutonium enclosure. Although the decision to operate the enclosure in a nitrogen or argon atmosphere has not been made, this report considers the dry argon atmosphere as the more difficult case. Other environmental requirements on the equipment operating in the test bed enclosure are: Low moisture and low oxygen atmosphere, and some abrasive dust resulting from the process. A surrogate material will provide flow and dusting characteristics of weapons-grade plutonium oxide. Weapons-grade plutonium will not be introduced into the test bed enclosure. However, for future reference, radiation effects on materials are addressed.

  15. Influence of hardening and surface modification of endourological wires on corrosion resistance.

    PubMed

    Walke, Witold; Przondziono, Joanna

    2012-01-01

    Guide wires with suitable functional characteristics are of crucial importance for proper urological treatment. This study presents an analysis of the effect of work hardening taking place in the process of wire cold drawing and the effect of surface modification by means of electrochemical polishing and chemical passivation on the resistance of wires made of X10CrNi18-8 steel used in urology. Corrosion resistance was evaluated on the grounds of the registered anodic polarisation curves by means of potentiodynamic method. The tests were made in solution simulating human urine. Anodic polarisation curves were presented for selected wire diameters. Mechanical properties were tested in a static uniaxial tensile test. The course of flow curve as well as mathematical form of flow stress function were determined. Curves presenting the relation of polarisation resistance as a function of strain applied in the drawing process are given. The tests carried out show that surface modification by means of electrochemical polishing and then chemical passivation of wires used in endourological treatment is fundamental. PMID:23140197

  16. Age hardening characteristics and mechanical behavior of Al-Cu-Li-Zr-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.

    1989-01-01

    An investigation was conducted to determine the age-hardening response and cryogenic mechanical properties of superplastic Al-Cu-Li-Zr-In alloys. Two alloys with compositions Al-2.65Cu-2.17Li-O.13Zr (baseline) and Al-2.60Cu-2.34Li-0.16Zr-0.17In were scaled-up from 30 lb permanent mold ingots to 350 lb DC (direct chill) ingots and thermomechanically processed to 3.2 mm thick sheet. The microstructure of material which contained the indium addition was partially recrystallized compared to the baseline suggesting that indium may influence recrystallization behavior. The indium-modified alloy exhibited superior hardness and strength compared to the baseline alloy when solution-heat-treated at 555 C and aged at 160 C or 190 C. For each alloy, strength increased and toughness was unchanged or decreased when tested at - 185 C compared to ambient temperature. By using optimized heat treatments, the indium-modified alloy exhibited strength levels approaching those of the baseline alloy without deformation prior to aging. The increase in strength of these alloys in the T6 condition make them particularly attractive for superplastic forming applications where post-SPF parts cannot be cold deformed to increase strength.

  17. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jones, Jennifer L.; Koul, Michelle G.; Schubbe, Joel J.

    2014-06-01

    A surface hardening technique called "interstitial hardening" is commercially available, whereby interstitial carbon atoms are introduced into stainless steel surfaces without the formation of carbides. Surface hardening of machine elements such as impellors or fasteners would improve performance regarding cavitation and galling resistance, and has intensified interest in this process. However, there remains a need to characterize and validate the specific performance characteristics of the hardened materials. This paper describes experimental testing conducted on 316L stainless steel that has been surface hardened using available commercial techniques, using carbon as the interstitial atom. The corrosion performance of the hardened surface is assessed using electrochemical potentiodynamic testing to determine the breakdown potential in 3.5 wt.% NaCl solution to identify the most promising method. The hardness and thickness of the surface-hardened layer is characterized and compared using metallography and microhardness profiling. Corrosion fatigue and slow strain rate testing of untreated, hardened, and damaged, hardened surfaces exposed to ASTM seawater is conducted. Finally, critical galling stresses are determined and compared. Post-test examination of damage attempts to identify mechanisms of material failure and characterize how corrosion-assisted cracks initiate and grow in surface-hardened materials.

  18. A multidisciplinary approach to the identification and evaluation of novel concepts for deeply buried hardened target defeat

    NASA Astrophysics Data System (ADS)

    Branscome, Ewell Caleb

    During the Cold War, Deeply Buried Hardened Targets (DBHTs) and the assets they protected were of great strategic and tactical concern to the Department of Defense. Megaton-class nuclear warheads were the only viable means of attacking many of these facilities, and even so, a small subset of DBHTs was anticipated to be robust even in the face of such an attack. Post Cold War, the threat posed by DBHTs has not disappeared. Rather, the conventional warfare advantages of the United States have led to an increasing emphasis by potential adversaries on the construction and use of hardened facilities such as DBHTs for protection of both conventional and unconventional assets. Further, the shift in perceived relative risk to the United States' national security from large scale all-out nuclear attack towards very limited attack by Weapons of Mass Destruction (WMD) has led some to hypothesize that "self-deterrence" may diminish the strategic value of current inventory nuclear weapons. The objective of the work described was to identify and explore a paradigm shifting solution that could offer leap-ahead capabilities to counter current and future DBHT threats while mitigating or eliminating the "self-deterrence" issue. Systematic evaluation of DHBT defeat alternatives lead to the selection of a thermal subterrene as a hypothetical means of providing such a capability. A number of possible implementation alternatives for a thermal subterrene were investigated, resulting in the identification of the RadioIsotope Powered Thermal Penetrator (RIPTP) concept for providing an effectively unlimited hard rock penetration capability using near-term technologies. However, the proposed approach was novel and thus required formulation and application of a physics based multidisciplinary analysis code to enable evaluation of lv design alternatives and analysis of performance. Technical considerations identified as important to the feasibility of a RIPTP for DBHT defeat included: packing of RIPTP components in available volume; close-contact melting in a medium with nonlinear thermodynamic properties; radiation shielding; radiation health physics; point source plume dispersal calculations; alternative technologies for production of radioisotopes; chemical and physical properties of isotope compounds; nuclear reactor characteristics; high temperature material stability and inter-material compatibility; weapon and delivery system integration; a variety of heat transfer regimes including radiation, conduction, convection, nucleate boiling, and film boiling; thermal/mechanical stress analysis (steady-state and transient); rock physical and thermodynamic properties as a function of temperature; detection/mapping of deeply buried facility spaces; and more. The following disciplinary analyses were composed into a multidisciplinary analysis code for a RIPTP: packing of RIPTP components in available volume; close-contact melting analysis; transmutation of isotope species by neutron activation; reactor neutron economy; radioisotope power generation through decay; metamodelled radiation shielding calculations for a RIPTP; and steady state thermal analyses for a RIPTP in various scenarios. Filtering of radioisotopes for potential suitability, their possible production mechanisms, state of technological development, and multidisciplinary analysis code predicted performance lead to the identification of Thulium-170 as the best isotope for powering a RIPTP using present-day technology and technical data. Ytterbium-169 was identified as an alternative isotope offering the potential for significant potential improvements over Thulium-170 in radiological safety as well as RIPTP performance and producibility. Production, however, was determined to require identification of a cost effective technology for highly enriching Ytterbium-168 from its low natural abundance. Performance analysis of the identified baseline Thulium-170 RIPTP suggested that the predicted low penetration rate of about 10 meters/day could be a significant negative factor with regards to possible viability of the concept. Consequently, a survey for potentially enabling technologies was performed using an adaptation of the Technology Impact Forecasting (TIF) approach. It was found that the greatest potential for improving performance of the baseline Thulium-170 RIPTP resulted from increasing overall power density of the penetrator. Several possible technology approaches to achieving significantly increased penetration rates (approximately 50 meters/day expected penetration rate vs. original 13 meters/day) were proposed. However, it was determined that the hypothetical technology having the greatest potential impact on thermal subterrene viability for DHBT defeat with respect to penetration rate was cost-effective enrichment for Ytterbium-168. Development of such a technology would eliminate or enormously reduce the impact of all identified RIPTP performance and producibility concerns. Alternatively, relaxation of the requirement for no radiological hazard to enemy combatants would enable selection of a fissile powered thermal subterrene to provide required power densities consistent with rapid penetration.

  19. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  20. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  1. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  2. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  3. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  4. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  5. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  6. Case depth verification of hardened samples with Barkhausen noise sweeps

    SciTech Connect

    Santa-aho, Suvi; Vippola, Minnamari; Lepistö, Toivo; Hakanen, Merja; Sorsa, Aki; Leiviskä, Kauko

    2014-02-18

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  7. Hardening communication ports for survival in electrical overstress environments

    NASA Technical Reports Server (NTRS)

    Clark, O. Melville

    1991-01-01

    Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.

  8. Surface hardening of cutting elements agricultural machinery vibro arc plasma

    NASA Astrophysics Data System (ADS)

    Sharifullin, S. N.; Adigamov, N. R.; Adigamov, N. N.; Solovev, R. Y.; Arakcheeva, K. S.

    2016-01-01

    At present, the state technical policy aimed at the modernization of worn equipment, including agriculture, based on the use of high-performance technology called nanotechnology. By upgrading worn-out equipment meant restoring it with the achievement of the above parameters passport. The existing traditional technologies are not suitable for the repair of worn-out equipment modernization. This is especially true of imported equipment. Out here alone - is the use of high-performance technologies. In this paper, we consider the use of vibro arc plasma for surface hardening of cutting elements of agricultural machinery.

  9. Substorm effects in auroral spectra. [electron spectrum hardening

    NASA Technical Reports Server (NTRS)

    Eather, R. H.; Mende, S. B.

    1973-01-01

    A substorm time parameter is defined and used to order a large body of photometric data obtained on aircraft expeditions at high latitudes. The statistical analysis demonstrates hardening of the electron spectrum at the time of substorm, and it is consistent with the accepted picture of poleward expansion of aurora at the time of substorm and curvature drift of substorm-injected electrons. These features are not evident from a similar analysis in terms of magnetic time. We conclude that the substorm time concept is a useful ordering parameter for auroral data.

  10. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  11. Progress toward cold antihydrogen

    SciTech Connect

    Gabrielse, G.; Estrada, J.; Peil, S.; Roach, T.; Tan, J. N.; Yesley, P.

    1999-12-10

    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature.

  12. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  13. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  14. Solid-solution hardening of a high-Entropy AlTiVCrNbMo alloy

    NASA Astrophysics Data System (ADS)

    Firstov, S. A.; Rogul', T. G.; Krapivka, N. A.; Ponomarev, S. S.; Tkach, V. N.; Kovylyaev, V. V.; Gorban', V. F.; Karpets, M. V.

    2014-04-01

    The nature of solid-solution hardening of high-entropy alloys is discussed using an equiatomic bcc AlTiVCrNbMo alloy as an example. The hardening of the alloy is found to be characterized by an increase in the temperature dependence of the component of the critical shear strength and by anomalously high athermic hardening due to the perpendicular slip plane of the Burgers vector component. A relatively simple expression is proposed to estimate the detected hardening Δ H(Δσ).

  15. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  16. Formulating the strength factor α for improved predictability of radiation hardening

    NASA Astrophysics Data System (ADS)

    Tan, L.; Busby, J. T.

    2015-10-01

    Analytical equations were developed to calculate the strength factors of precipitates, Frank loops, and cavities in austenitic alloys, which strongly depend on barrier type, size, geometry and density, as well as temperature. Calculated strength factors were successfully used to estimate radiation hardening using the broadly employed dispersed barrier-hardening model, leading to good agreement with experimentally measured hardening in neutron-irradiated type 304 and 316 stainless steel variants. The formulated strength factor provides a route for more reliable hardening predictions and can be easily incorporated into component simulations and design.

  17. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  18. Massive cold cloud clusters

    NASA Astrophysics Data System (ADS)

    Toth, L. Viktor; Marton, Gabor; Zahorecz, Sarolta

    2015-08-01

    The all-sky Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015) allows an almost unbiased study of the early phases of star-formation in our Galaxy. Several thousand of the clumps have also distance estimates allowing a mass, and density determination. The nature of Planck clumps varies from IRDCs to tiny nearby cold clouds with masses ranging from one to several tens of thousands solar masses. Some of the clumps are embedded in GMCs, others are isolated. Some are close or even very close to OB associations, while others lay far from any UV luminous objects.The small scale clustering of these objects was studied with the improved Minimum Spanning Tree method of Cartwright & Whitworth identifying groups in 3D space. As a result also massive cold cloud clusters were identified. We analyse the MST structures, and discuss their relation to ongoing and future massive star formation.

  19. Endolithic microbial life in hot and cold deserts

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1980-01-01

    Endolithic microorganisms (those living inside rocks) occur in hot and cold deserts and exist under extreme environmental conditions. These conditions are discussed on a comparative basis. Quantitative estimates of biomass are comparable in hot and cold deserts. Despite the obvious differences between the hot and cold desert environment, survival strategies show some common features. These endolithic organisms are able to 'switch' rapidly their metabolic activities on and off in response to changes in the environment. Conditions in hot deserts impose a more severe environmental stress on the organisms than in the cold Antarctic desert. This is reflected in the composition of the microbial flora which in hot desert rocks consist entirely of prokaryotic microorganisms, while under cold desert conditions eukaryotes predominate.

  20. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.

  1. Ferritic, martensitic, and precipitation hardening stainless steel laser weldings

    NASA Astrophysics Data System (ADS)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Panagopoulos, Christos N.; Tundo, Corrado

    1998-07-01

    Even if many steels and alloys have been welded on the last years, nowadays there are some other stainless steel alloys that need a further comprehension when they have to be welded. Typically these alloys are martensitic and precipitation hardening ones that still present some problems to be weld, i.e. hot cracks, fragile beads, an excessive grain size and other surface defects. In this work some martensitic stainless steels of which a AISI 420B, a AISI 440C and a AISI 630 have been studied. The last one is always with a martensitic structure but, in particular, some interesting mechanical properties are reached by a precipitation hardening process. This research has experimented and studied the mechanical and technological properties of the welds obtained on the above cited AISI 420B, AISI 440C and AISI 630, welded by 1.5 kW CO2 laser. The results have also been compared with the ones obtained on ferritic stainless steels AISI 430 and 430F. A technological characterization of the welds has followed as metallographic tests and evaluations, microhardness, tensile and fatigue tests.

  2. idRHa+ProMod - Rail Hardening Control System

    NASA Astrophysics Data System (ADS)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  3. A radiation-hardened, computer for satellite applications

    SciTech Connect

    Gaona, J.I. Jr.

    1996-08-01

    This paper describes high reliability radiation hardened computers built by Sandia for application aboard DOE satellite programs requiring 32 bit processing. The computers highlight a radiation hardened (10 kGy(Si)) R3000 executing up to 10 million reduced instruction set instructions (RISC) per second (MIPS), a dual purpose module control bus used for real-time default and power management which allows for extended mission operation on as little as 1.2 watts, and a local area network capable of 480 Mbits/s. The central processing unit (CPU) is the NASA Goddard R3000 nicknamed the ``Mongoose or Mongoose 1``. The Sandia Satellite Computer (SSC) uses Rational`s Ada compiler, debugger, operating system kernel, and enhanced floating point emulation library targeted at the Mongoose. The SSC gives Sandia the capability of processing complex types of spacecraft attitude determination and control algorithms and of modifying programmed control laws via ground command. And in general, SSC offers end users the ability to process data onboard the spacecraft that would normally have been sent to the ground which allows reconsideration of traditional space-grounded partitioning options.

  4. Folding and faulting of strain-hardening sedimentary rocks

    USGS Publications Warehouse

    Johnson, A.M.

    1980-01-01

    The question of whether single- or multi-layers of sedimentary rocks will fault or fold when subjected to layer-parallel shortening is investigated by means of the theory of elastic-plastic, strain-hardening materials, which should closely describe the properties of sedimentary rocks at high levels in the Earth's crust. The most attractive feature of the theory is that folding and faulting, intimately related in nature, are different responses of the same idealized material to different conditions. When single-layers of sedimentary rock behave much as strain-hardening materials they are unlikely to fold, rather they tend to fault, because contrasts in elasticity and strength properties of sedimentary rocks are low. Amplifications of folds in such materials are negligible whether contacts between layer and media are bonded or free to slip for single layers of dolomite, limestone, sandstone, or siltstone in media of shale. Multilayers of these same rocks fault rather than fold if contacts are bonded, but they fold readily if contacts between layers are frictionless, or have low yield strengths, for example due to high pore-water pressure. Faults may accompany the folds, occurring where compression is increased in cores of folds. Where there is predominant reverse faulting in sedimentary sequences, there probably were few structural units. ?? 1980.

  5. Discrepant Hardening Observed in Cosmic-ray Elemental Spectra

    NASA Astrophysics Data System (ADS)

    Ahn, H. S.; Allison, P.; Bagliesi, M. G.; Beatty, J. J.; Bigongiari, G.; Childers, J. T.; Conklin, N. B.; Coutu, S.; DuVernois, M. A.; Ganel, O.; Han, J. H.; Jeon, J. A.; Kim, K. C.; Lee, M. H.; Lutz, L.; Maestro, P.; Malinin, A.; Marrocchesi, P. S.; Minnick, S.; Mognet, S. I.; Nam, J.; Nam, S.; Nutter, S. L.; Park, I. H.; Park, N. H.; Seo, E. S.; Sina, R.; Wu, J.; Yang, J.; Yoon, Y. S.; Zei, R.; Zinn, S. Y.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of ~70 days, which indicate hardening of the elemental spectra above ~200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at ~1015 eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  6. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  7. Undrained heating and anomalous pore-fluid pressurization of a hardened cement paste

    NASA Astrophysics Data System (ADS)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    Temperature increase in a fluid-saturated porous material in undrained condition leads to volume change and pore pressure increase due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the pore volume. This increase of the pore fluid pressure induces a reduction of the effective mean stress, and can lead to shear failure or hydraulic fracturing. This phenomenon is important is important in environmental engineering for radioactive (exothermal) waste disposal in deep clay geological formations as well as in geophysics in the studies of rapid fault slip events when shear heating tends to increase the pore pressure and to decrease the effective compressive stress and the shearing resistance of the fault material (Sulem et al. 2007). This is also important in petroleum engineering where the reservoir rock and the well cement lining undergo sudden temperature changes for example when extracting heavy oils by steam injection methods. This rapid increase of temperature could damage cement sheath integrity of wells and lead to loss of zonal isolation. The values of the thermal pressurization coefficient, defined as the pore pressure increase due to a unit temperature increase in undrained condition, is largely dependent upon the nature of the material, the state of stress, the range of temperature change, the induced damage. The large variability of the thermal pressurization coefficient reported in the literature for different porous materials with values from 0.01MPa/°C to 1.5MPa/°C highlights the necessity of laboratory studies. This phenomenon of thermal pressurization is studied experimentally for a fluid-saturated hardened cement paste in an undrained heating test. Careful analysis of the effect of the dead volume of the drainage system of the triaxial cell has been performed based on a simple correction method proposed by Ghabezloo and Sulem (2008, 2009). The drained and undrained thermal expansion coefficients of the hardened cement paste are also measured in the heating tests. The measured value of the thermal pressurization coefficient is found equal to 0.6MPa/°C and the test results unexpectedly show that it does not change with temperature between 20°C and 55°C. In most geomaterials, as shown experimentally by Ghabezloo and Sulem (2008), the temperature dependency of the thermal expansion of the pore fluid results in temperature dependency of the thermal pressurization coefficient. The observed anomalous thermal pressurization phenomenon is attributed to the anomalous thermal behaviour of cement paste pore fluid. The anomalous thermal behaviour of cement pore fluid is back analysed from the results of the undrained heating test and it is shown that the thermal expansion of the cement paste pore fluid is higher than the one of pure bulk water and is much less sensitive to temperature changes. This anomalous thermal behaviour is due to the confinement of the pore fluid in the very small pores of the microstructure of the cement paste, and also to the presence of dissolved ions in the pore fluid. References: 1.Sulem J., Lazar P., Vardoulakis I. (2007) Thermo-Poro-Mechanical Properties of Clayey Gouge and Application to Rapid Fault Shearing, Int. J. Num. Anal. Meth. Geomechanics, 31(3), 523-540 2.Ghabezloo S., Sulem J. (2008) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mechanics and Rock Engineering, in press, DOI 10.1007/s00603-008-0165-z. 3.Ghabezloo S., Sulem J., Saint-Marc, J. (2009) The effect of undrained heating on a fluid-saturated hardened cement paste. Cement and Concrete Research, 39(1), 54-64. 4.Ghabezloo S., Sulem J. (2009) Evaluation of the undrained thermo-poro-elastic parameters in a conventional triaxial cell: the effect of the dead volume of the drainage system. Submitted to Int J Rock Mech Min Sci.

  8. Baby, it's cold outside....

    PubMed

    Kissane, Rhonda

    2012-01-01

    For officers and other employees stationed outdoors in parking areas or on perimeter patrol during cold weather the risks of hypothermia and frostbite may be very real. In this article, the author explains how these two serious medical conditions can be prevented and treated. PMID:22423532

  9. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  10. Disinfestation with Cold

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter by Neil Heather and Guy Hallman, in “Pest Management and Phytosanitary Trade Barriers,” CABI Press, reviews the history and current status of cold as a phytosanitary treatment and makes recommendations for future research. The recent problems with Mediterranean fruit fly in Clemen...

  11. Out in the cold.

    PubMed

    Bates, Jane

    2016-05-01

    Every now and then, you say something to a patient and wonder whether you should have kept quiet. On this occasion, a female patient and I were indulging in a moment of shared empathy over an annoying symptom we both experience - permanently cold feet. PMID:27154099

  12. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  13. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  14. Cold spray nozzle design

    SciTech Connect

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  15. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  16. Breeding Cold Hardy Begonias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hardy begonia cultivars have potential as a new crop for Southern nurseries. Current begonia breeding efforts are focused on sections Begonia and Pritzelia. Diverse begonia germplasm has been collected to study fertility and hardiness.To date cold hardy germplasm which has produced viable seeds inc...

  17. Cold wave lotion poisoning

    MedlinePlus

    ... and not for use in the treatment or management of an actual poison exposure. If you have an exposure, you should call ... forms that need to be diluted before use. Exposure to concentrated cold wave lotion will cause much more damage than over-the-counter lotion.

  18. ``Cold'' Leidenfrost effect

    NASA Astrophysics Data System (ADS)

    Bourrianne, Philippe; Clanet, Christophe; Quere, David

    2015-11-01

    An evaporating Leidenfrost drop placed on a hot substrate can levitate on its own vapor if the temperature of the substrate is high enough. We discuss the possibility to decrease this critical Leidenfrost temperature using a super-hydrophobic coating. Measuring adhesion and observing the liquid-solid interface, we suggest a possible explanation for this ``cold'' regime of levitation.

  19. Herpes Simplex Virus (Cold Sores)

    MedlinePlus

    ... Text Size Email Print Share Herpes Simplex Virus (Cold Sores) Page Content Article Body Herpes simplex viruses ( ... or inside the mouth, they are commonly called cold sores or fever blisters. In most cases, these ...

  20. Strain hardening during mechanical twining and dislocation channeling in irradiated 316 stainless steels

    SciTech Connect

    Byun, Thak Sang; Hashimoto, Naoyuki

    2007-01-01

    Localized deformation mechanisms and strain-hardening behaviors in irradiated 316 and 316LN stainless steels were investigated, and a theoretical model was proposed to explain the linear strain-hardening behavior during the localized deformation. After low temperature irradiation to significant doses the deformation microstructure changed from dislocation tangles to channels or to mechanical twins. It was also observed that irradiation hardening straightened gliding dislocations and increased the tendency for forming pileups. Regardless of these microstructural changes, the strain-hardening behavior was relatively insensitive to the irradiation. This dose-independent strain-hardening rate resulted in dose independence of the true stress parameters such as the plastic instability stress and true fracture stress. In the proposed model, the long-range back stress was formulated as a function of the number of pileup dislocations per slip band and the number of slip bands in a grain. The calculation results confirmed the experimental observation that strain-hardening rate was insensitive to the change in deformation mechanism because the long-range back stress hardening became as high as the hardening by tangled dislocations.

  1. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-11-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain, deep cooling, and deliberate manipulation of the austenite stability. The nitrided/nitrocarburized case was investigated with reflected light microscopy, hardness-depth profiling, X-ray diffraction analysis, and glow discharge optical emission spectroscopy. The results demonstrate that a microstructure consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible for martensite because the precipitation hardening does not occur in an austenite matrix.

  2. New distortional hardening model capable of predicting eight ears for textured aluminum sheet

    SciTech Connect

    Yoon, J. H.; Cazacu, O.; Yoon, J. W.; Dick, R. E.

    2011-05-04

    The effects of the anisotropy evolution and of the directionality in hardening on the predictions of the earing profile of a strongly textured aluminum alloy are investigated using a new distortional hardening model that incorporates multiple hardening curves corresponding to uniaxial tension along several orientations with respect to the rolling direction, and to biaxial tension. Yielding is described using a form of CPB06ex2 yield function (Plunkett et al. (2008)) which is tailored for metals with no tension-compression asymmetry. It is shown that even if directional hardening and its evolution are neglected, this yield function predicts a cup with eight ears as was observed experimentally. However, directional hardening can be of considerable importance for improved accuracy in prediction of the non-uniformity of the cup height profile.

  3. Effect of numerical parameters on characterizing the hardening behavior of ductile uniaxial tension specimens.

    SciTech Connect

    Cordova, Theresa Elena; Dion, Kristin; Laing, John Robert; Corona, Edmundo; Breivik, Nicole L.; Wellman, Gerald William; Shelton, Timothy R.

    2010-11-01

    Many problems of practical importance involve ductile materials that undergo very large strains, in many cases to the point of failure. Examples include structures subjected to impact or blast loads, energy absorbing devices subjected to significant crushing, cold-forming manufacturing processes and others. One of the most fundamental pieces of data that is required in the analysis of this kind of problems is the fit of the uniaxial stress-strain curve of the material. A series of experiments where mild steel plates were punctured with a conical indenter provided a motivation to characterize the true stress-strain curve until the point of failure of this material, which displayed significant ductility. The hardening curve was obtained using a finite element model of the tensile specimens that included a geometric imperfection in the form of a small reduction in the specimen width to initiate necking. An automated procedure iteratively adjusted the true stress-strain curve fit used as input until the predicted engineering stress-strain curve matched experimental measurements. Whereas the fitting is relatively trivial prior to reaching the ultimate engineering stress, the fit of the softening part of the engineering stress-stain curve is highly dependent on the finite element parameters such as element formulation and initial geometry. Results by two hexahedral elements are compared. The first is a standard, under-integrated, uniform-strain element with hourglass control. The second is a modified selectively-reduced-integration element. In addition, the effects of element size, aspect ratio and hourglass control characteristics are investigated. The effect of adaptively refining the mesh based on the aspect ratio of the deformed elements is also considered. The results of the study indicate that for the plate puncture problem, characterizing the material with the same element formulation and size as used in the plate models is beneficial. On the other hand, using different element formulations, sizes or initial aspect ratios can lead to unreliable results.

  4. Method of forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J.

    2010-08-31

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  5. Theoretical Study of the Oxidation Behavior of Precipitation Hardening Steel

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Chrissafis, K.; Psyllaki, P.

    2010-01-21

    The oxidation of precipitation hardening (PH) steels is a rather unexplored area. In the present work an attempt is made is made to estimate the kinetics of a PH steel. For this purpose specimens of the material under examination were isothermally heated at 850, 900 and 950 deg. C for 15 hr. Kinetics was based on TGA results. During heating a thick scale is formed on the substrate surface, which is composed by different oxides. The layer close to the substrate is compact and as a result it impedes corrosion. The mathematical analysis of the collected data shows that the change of the mass of the substrate per unit area versus time is described by a parabolic law.

  6. Protection performance evaluation regarding imaging sensors hardened against laser dazzling

    NASA Astrophysics Data System (ADS)

    Ritt, Gunnar; Koerber, Michael; Forster, Daniel; Eberle, Bernd

    2015-05-01

    Electro-optical imaging sensors are widely distributed and used for many different purposes, including civil security and military operations. However, laser irradiation can easily disturb their operational capability. Thus, an adequate protection mechanism for electro-optical sensors against dazzling and damaging is highly desirable. Different protection technologies exist now, but none of them satisfies the operational requirements without any constraints. In order to evaluate the performance of various laser protection measures, we present two different approaches based on triangle orientation discrimination on the one hand and structural similarity on the other hand. For both approaches, image analysis algorithms are applied to images taken of a standard test scene with triangular test patterns which is superimposed by dazzling laser light of various irradiance levels. The evaluation methods are applied to three different sensors: a standard complementary metal oxide semiconductor camera, a high dynamic range camera with a nonlinear response curve, and a sensor hardened against laser dazzling.

  7. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    SciTech Connect

    Goerrn, Patrick; Wagner, Sigurd

    2010-11-15

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  8. Analysis of fracture toughness of explosion-hardened martensitic steel

    NASA Astrophysics Data System (ADS)

    Moskvitina, L. V.

    2015-10-01

    In this work we study a shift of the following nonlinear states: tempering + abatement + 10 GPa shock loading + welding thermocycle. As a result the self-organized HAZ metal structure with elements of self-similarity on different scales is found. The fractal analysis shows how formed defects affect the HAZ metal hardness of 14H2GMR steel with the martensitic structure of static fracture. The statistical analysis of stereometric parameters of fracture shows a higher energy intensity of static fracture in specimens treated by explosion. The multifractal analysis reveals hardness of the grid dislocation structure induced by explosion in the air-hardening zone. The homogeneity of the dislocation structure related to carbides increases the resistance of HAZ metal of static fracture.

  9. Topographies of plasma-hardened surfaces of poly(dimethylsiloxane)

    NASA Astrophysics Data System (ADS)

    Görrn, Patrick; Wagner, Sigurd

    2010-11-01

    We studied the formation of surface layers hardened by plasma-enhanced oxidation of the silicone elastomer poly(dimethylsiloxane). We explored the largest parameter space surveyed to date. The surface layers may wrinkle, crack, or both, under conditions that at times are controlled by design, but more often have been discovered by trial-and-error. We find four distinct topographies: flat/wrinkled/cracked/cracked and wrinkled. Each topography is clearly separated in the space of plasma dose versus plasma pressure. We analyzed wrinkle amplitude and wavelength by atomic force microscopy in the tapping mode. From these dimensions we calculated the elastic modulus and thickness of the hard surface layer, and inferred a graded hardness, by employing a modified theoretical model. Our main result is the identification of the parameters under which the technologically important pure wrinkled, crack-free topography is obtained.

  10. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  11. Gamma prime hardened nickel-iron based superalloy

    DOEpatents

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  12. Effective mineral coatings for hardening the surface of metallic materials

    NASA Astrophysics Data System (ADS)

    Kislov, S. V.; Kislov, V. G.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2015-07-01

    The structural changes that occur in the surface and surface layers of steel 20Kh13 and titanium alloy PT-3V (Russian designation) samples after each stage of hardening due to a formed mineral surface layer are studied by optical microscopy, transmission electron microscopy, and scanning electron microscopy. Electric spark alloying, pressing, and ultrasonic processing are used to reach the effect of volume compression of the base metal and the mineral in the plastic deformation zone. As a result, applied mineral particles concentrate in preliminarily created microvoids in a thin surface layer. The surface layer thus modified acquires a high hardness and wear resistance. Durometry shows that the hardness of the processed sample surfaces increases more than twofold. Therefore, the developed technology of creating a mineral coating can be used to increase the tribological properties of the surfaces of the parts, units, and mechanisms of turbine, pump, and mining equipment, which undergo intense wear during operation.

  13. Investigation into springback characteristics of two HSS sheets during cold v-bending

    SciTech Connect

    Fang, Gang; Gao, Wei-Ran

    2013-12-16

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn.

  14. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  15. Cold hardiness of interspecific hybrids between Pinus strobus and P. wallichiana measured by post-freezing needle electrolyte leakage.

    PubMed

    Lu, Pengxin; Colombo, Stephen J; Sinclair, Robert W

    2007-02-01

    Interspecific hybrids between eastern white pine (Pinus strobus L.) and Himalayan blue pine (P. wallichiana A. B. Jacks.) were developed in Ontario, Canada, to introduce blister rust (Cronartium ribicola Fisch.) resistance genes to P. strobus. There is concern that introducing blister rust resistance has resulted in reduced cold hardiness of the progeny compared with non-hybridized eastern white pine. To test the efficacy of backcrossing with P. strobus to improve cold hardiness, 1-year-old seedlings from hybrid crosses differing in P. strobus genome composition were artificially freeze-tested. In Experiment 1, unhardened seedlings were allowed to acclimate to progressively lower temperatures in a growth room, whereas in Experiment 2, seedlings were hardened outdoors under natural weather conditions in Sault Ste Marie, Ontario. Needle cold injury was determined by calculating relative electrical conductivity based on post-freezing electrolyte leakage. Results indicated that needle fascicles from unhardened seedlings of all genotypes in the greenhouse tolerated -5 degrees C for 3 hours with little or no injury. Cold hardiness increased in parallel with declining growth room minimum temperature over the 7-week period of hardening. Cold hardiness was improved for hybrid crosses with increased Pinus strobus genome composition in Experiment 2, but the results were less conclusive in Experiment 1. PMID:17241966

  16. Effects of cold work and phosphorous on the ductile to brittle transition behavior of F82H steels

    NASA Astrophysics Data System (ADS)

    Kim, Byung Jun; Kasada, Ryuta; Kimura, Akihiko; Tanigawa, Hiroyasu

    2011-10-01

    The effects of cold work and phosphorous on ductile to brittle transition behavior were investigated in order to evaluate the effects of hardening and intergranular degradation on the ductile to brittle transition temperature (DBTT) of F82H steel. Yield strength and ultimate tensile strength are increased by increasing the level of cold work. Phosphorous additions resulted in a small increase in the strength of F82H. The DBTT after cold work is shifted to high temperature and upper shelf energy (USE) is decreased. The shift of DBTT and the reduction of USE increase with the cold work level. F82H as-received and cold worked steel fractured in a cleavage mode at temperatures of lower shelf energy (LSE) region. The DBTT is shifted to higher temperatures with increasing phosphorus additions accompanied by the reduction of the USE. Although the hardening is small, a significant embrittlement was observed in the steels added with phosphorus, which was accompanied by intergranular cracking at temperatures in LSE region.

  17. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    NASA Astrophysics Data System (ADS)

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  18. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  19. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  20. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    SciTech Connect

    Koeppel, B.J.; Subhash, G.

    1999-10-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed.

  1. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  2. Cold neutron interferometry

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki

    2009-10-01

    Neutron interferometry is a powerful technique for studying fundamental physics. A large dimensional interferometer for long wavelength neutrons is extremely important in order to investigate problems of fundamental physics, including tests of quantum measurement theories and searches for non-Newtonian effects of gravitation, since the sensitivity of interferometer depends on the wavelength and the interaction length. Neutron multilayer mirrors enable us to develop the large scale interferometer for long wavelength neutrons. The multilayer mirror is one of the most useful devices in cold neutron optics. A multilayer of two materials with different potentials is understood as a one-dimensional crystal, which is suitable for Bragg reflection of long wavelength neutrons. Cold and very cold neutrons can be utilized for the interferometer by using the multilayer mirrors with the proper lattice constants. Jamin-type interferometer by using beam splitting etalons (BSEs) has shown the feasibility of the development of large scale interferometer, which enables us to align the four independent mirrors within required precision. The BSE contains two parallel multilayer mirrors. A couple of the BSEs in the Jamin-type interferometer separates and recombines the two paths spatially. Although the path separation was small at the first test, now we have already demonstrated the interferometer with perfectly separated paths. This has confirmed that the multilayer mirrors cause no serious distortion of wave front to compose a interferometer. Arranging such mirrors, we are capable of establishing even a Mach-Zehnder type with much larger size. The interferometer using supermirrors, which reflects the wide range of the wavelength of neutrons, can increase the neutron counts for high precision measurements. We are planning the experiments using the interferometer both for the very cold neutrons and for the pulsed neutrons including J-PARC.

  3. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  4. Thermal creep model for CWSR zircaloy-4 cladding taking into account the annealing of the irradiation hardening

    SciTech Connect

    Cappelaere, Chantal; Limon, Roger; Duguay, Chrstelle; Pinte, Gerard; Le Breton, Michel; Bouffioux, Pol; Chabretou, Valerie; Miquet, Alain

    2012-02-15

    After irradiation and cooling in a pool, spent nuclear fuel assemblies are either transported for wet storage to a devoted site or loaded in casks for dry storage. During dry transportation or at the beginning of dry storage, the cladding is expected to be submitted to creep deformation under the hoop stress induced by the internal pressure of the fuel rod. The thermal creep is a potential mechanism that might lead to cladding failure. A new creep model was developed, based on a database of creep tests on as-received and irradiated cold-worked stress-relieved Zircaloy-4 cladding in a wide range of temperatures (310 degrees C to 470 degrees C) and hoop stress (80 to 260 MPa). Based on three laws-a flow law, a strain-hardening recovery law, and an annealing of irradiation hardening law this model allows the simulation of not only the transient creep and the steady-state creep, but also the early creep acceleration observed on irradiated samples tested in severe conditions, which was not taken into account in the previous models. The extrapolation of the creep model in the conditions of very long-term creep tests is reassuring, proving the robustness of the chosen formalism. The creep model has been assessed in progressively decreasing stress conditions, more representative of a transport. Set up to predict the cladding creep behavior under variable temperature and stress conditions, this model can easily be implemented into codes in order to simulate the thermomechanical behavior of spent fuel rods in various scenarios of postirradiation phases. (authors)

  5. [Case of a Plasmacytoid Urothelial Carcinoma Identified Due to the Hardening of the Abdominal Wall].

    PubMed

    Yanagisawa, Masahiro; Kawakami, Toshifumi; Suzuki, Kotaro; Nakayama, Takashi

    2016-02-01

    The patient was a 75 year-old male. Noticing areas of hardening in the lower abdomen, and consequently feelings of systemic fatigue and difficulty in walking, the patient visited a clinic and was diagnosed with kidney failure prior to the visit to our clinic. Computed tomography and magnetic resonance imaging showed thickness of the rectus abdominis muscle and the bladder wall, and bilateral hydronephrosis was also identified. As no explicit tumor was identified in the bladder, the patient underwent biopsies of the abdominal wall and bladder membrane mucous, and was diagnosed with a plasmacytoid urothelial carcinoma primarily developed in the bladder. The patient displayed a poor general state of health and died five months after the diagnosis. It is known that plasmacytoid urothelial carcinomas progress rapidly and the prognosis is poorer than for the micropapillary variant. It is important to obtain a tissue specimen in the early stage of this disease because there are cases in which no explicit tumor can be identified. Furthermore, the value of carbohydrate antigen (CA) 19-9 of the patient was much higher than would be expected as normal at the first visit. It kept rising during the follow-up and was useful as a marker to indicate the progress of the disease. PMID:27018411

  6. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  7. Understanding Colds: Anatomy of the Nose

    MedlinePlus

    ... Prevention Treatment Children Complications Special Features References Common Cold Understanding Colds Anatomy of the Nose The nose contains shelf- ... 3/8 inch) per minute. What a Common Cold Is A common cold is an illness caused ...

  8. Tradeoffs in Flight Design Upset Mitigation in State of the Art FPGAs: Hardened by Design vs. Design Level Hardening

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Roosta, Ramin

    2004-01-01

    This presentation compares and contrasts the effectiveness and the system/designer impacts of the two main approaches to upset hardening: the Actel approach (RTSX-S and RTAX-S) of low-level (inside each flip-flop) triplication and the Xilinx approach (Virtex and Virtex2) of design-level triplication of both functional blocks and voters. The effectiveness of these approaches is compared using measurements made in conjunction with each of the FPGAs' manufacturer: for Actel, published data [1] and for Xilinx, recent results from the Xilinx SEE Test Consortium (note that the author is an active and founding member). The impacts involve Actel advantages in the areas of transistor-utilization efficiency and minimizing designer involvement in the triplication while the Xilinx advantages relate to the ability to custom tailor upset hardness and the flexibility of re-configurability. Additionally, there are currently clear Xilinx advantages in available features such as the number of I/O's, logic cells, and RAM blocks as well as speed. However, the advantage of the Actel anti-fuses for configuration over the Xilinx SRAM cells is that the latter need additional functionality and external circuitry (PROMs and, at least a watchdog timer) for configuration and configuration scrubbing. Further, although effectively mitigated if done correctly, the proton upset-ability of the Xilinx FPGAs is a concern in severe proton-rich environments. Ultimately, both manufacturers' upset hardening is limited by SEFI (single-event functional interrupt) rates where it appears the Actel results are better although the Xilinx Virtex2-family result of about one SEFI in 65 device-years in solar-min GCR (the more intense part of the galactic cosmic-ray background) should be acceptable to most missions

  9. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  10. Effect of Hf on structure and age hardening of Ti–Al-N thin films

    PubMed Central

    Rachbauer, R.; Blutmager, A.; Holec, D.; Mayrhofer, P.H.

    2012-01-01

    Protective coatings for high temperature applications, as present e.g. during cutting and milling operations, require excellent mechanical and thermal properties during work load. The Ti1 − xAlxN system is industrially well acknowledged as it covers some of these requirements, and even exhibits increasing hardness with increasing temperature in its cubic modification, known as age hardening. The thermally activated diffusion at high temperatures however enables for the formation of wurtzite AlN, which causes a rapid reduction of mechanical properties in Ti1 − xAlxN coatings. The present work investigates the possibility to increase the formation temperature of w-AlN due to Hf alloying up to 10 at.% at the metal sublattice of Ti1 − xAlxN films. Ab initio predictions on the phase stability and decomposition products of quaternary Ti1 − x − yAlxHfyN alloys, as well as the ternary Ti1 − xAlxN, Hf1 − xAlxN and Ti1 − zHfzN systems, facilitate the interpretation of the experimental findings. Vacuum annealing treatments from 600 to 1100 °C indicate that the isostructural decomposition, which is responsible for age hardening, of the Ti1 − x − yAlxHfyN films starts at lower temperatures than the ternary Ti1 − xAlxN coating. However, the formation of a dual phase structure of c-Ti1 − zHfzN (with z = y/(1 − x)) and w-AlN is shifted to ~ 200 °C higher temperatures, thus retaining a film hardness of ~ 40 GPa up to ~ 1100 °C, while the Hf free films reach the respective hardness maximum of ~ 38 GPa already at ~ 900 °C. Additional annealing experiments at 850 and 950 °C for 20 h indicate a substantial improvement of the oxidation resistance with increasing amount of Hf in Ti1 − x − yAlxHfyN. PMID:22319223

  11. Cold response of dedifferentiated barley cells at the gene expression, hormone composition, and freezing tolerance levels: studies on callus cultures.

    PubMed

    Vashegyi, Ildikó; Marozsán-Tóth, Zsuzsa; Galiba, Gábor; Dobrev, Petre I; Vankova, Radomira; Tóth, Balázs

    2013-06-01

    In this study, data is presented how dark-grown, embryogenic barley callus cells respond to cold without any light-dependent, chloroplast-related mechanism, independently of the systemic signals. The expression of HvCBF9, HvCBF14, and HvCOR14b genes, members of one of the most important cold-inducible regulatory system, was measured by real-time PCR. Characteristic of the cold response was similar in the crowns of seedlings and in dark-grown callus cultures, however, gene expression levels were lower in calli. Endogenous concentration of auxins, abscisic acid, and salicylic acid did not change, but phaseic acid and neophaseic acid showed robust accumulation after cold acclimation. Freezing tolerance of the cultures was also higher after 7 days of cold-hardening. The results suggest the presence of a basal, light-independent, cold-responsive activation of the CBF-COR14b pathway in barley cultures. The effects of Dicamba, the exogenous auxin analog used for maintaining tissue cultures were also studied. Dicamba seems to be a general enhancer of the gene expression and physiological responses to cold stress, but has no specific effect on the activation. Our data along with previous findings show that this system might be a suitable model for studying certain basic cellular mechanisms involved in the cold acclimation process in cereals. PMID:22669585

  12. Analysis of Obstacle Hardening Models Using Dislocation Dynamics: Application to Irradiation-Induced Defects

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Bertin, Nicolas; Capolungo, Laurent

    2015-08-01

    Irradiation hardening in -iron represents a critical factor in nuclear reactor design and lifetime prediction. The dispersed barrier hardening, Friedel Kroupa Hirsch (FKH), and Bacon Kocks Scattergood (BKS) models have been proposed to predict hardening caused by dislocation obstacles in metals, but the limits of their applicability have never been investigated for varying defect types, sizes, and densities. In this work, dislocation dynamics calculations of irradiation-induced obstacle hardening in the athermal case were compared to these models for voids, self-interstitial atom (SIA) loops, and a combination of the two types. The BKS model was found to accurately predict hardening due to voids, whereas the FKH model was superior for SIA loops. For both loops and voids, the hardening from a normal distribution of defects was compared to that from the mean size, and was shown to have no statistically significant dependence on the distribution. A mean size approach was also shown to be valid for an asymmetric distribution of voids. A non-linear superposition principle was shown to predict the hardening from the simultaneous presence of voids and SIA loops.

  13. Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.

    PubMed

    Mondjar, Irene; Martnez-Martnez, Irene; Avils, Manuel; Coy, Pilar

    2013-09-01

    Oviduct fluid increases the time required for digestion of the zona pellucida (ZP) by proteolytic enzymes (ZP hardening). This effect has been associated with levels of monospermy after in vitro fertilization (IVF) in the pig and cow, but the possible existence of a directly proportional relationship between hardening and monospermy remains unknown. To investigate whether variations in hardening of different oviductal fluids (OFs) are correlated with variations in levels of monospermy after IVF, porcine oocytes were incubated with three batches of OFs known to produce different ZP hardening effects (3, 7, and 25 min); after IVF, monospermy levels were 0%, 14.58% 5.14%, and 35.14% 7.95%, respectively. These results could partially explain the lack of polyspermy found during in vivo fertilization in pigs (with a hardened oviductal ZP) compared with levels found during IVF (with no hardened ZP). Using the bovine model, OF was fractionated by heparin affinity chromatography, and the hardening effect on the ZP was tested for each fraction obtained from a linear gradient of sodium chloride concentration. The highest effect was obtained with the fraction eluted with 0.4 M sodium chloride. Fractions with high-level or low-level effects were processed by on-chip electrophoresis and high-performance liquid chromatography-tandem mass spectrometry. A list of potential proteins responsible for this effect includes OVGP1 and members of the HSP and PDI families. PMID:23863406

  14. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset (SEU) and Single Event Latch-up (SEL) rates. Although less significant, spacecraft flying in the area around the poles experience similar upsets. Finally, powerful solar proton events in the range of 10MeV/10pfu to 100MeV/1pfu as are forecasted and tracked by NOAA's Space Environment Center in Colorado can result in Single Event Upset (SEU), Single Event Latch-up (SEL) and permanent failures such as Single Event Gate Rupture (SEGR) in some technologies. (Galactic Cosmic Rays (GCRs) are another source, especially for gate rupture) CALIPSO mitigates common radiation concerns in its data handling through the use of redundant processors, radiation-hardened Application Specific Integrated Circuits (ASIC), hardware-based Error Detection and Correction (EDAC), processor and memory scrubbing, redundant boot code and mirrored files. After presenting a system overview this paper will expand on each of these strategies. Where applicable, related on-orbit data collected since the CALIPSO initial boot on May 4, 2006 will be noted.

  15. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    SciTech Connect

    Langelier, Brian Esmaeili, Shahrzad

    2015-03-15

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities.

  16. On the Mechanisms of Different Work-Hardening Stages in Twinning-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Huang, Ming Xin

    2015-11-01

    The detailed work-hardening behaviors of two twinning-induced plasticity (TWIP) steels with and without Al addition are investigated. The work-hardening rate curves of both TWIP steels can be divided into three stages. The dominant work-hardening mechanism is different at different stages. Dynamic strain aging (DSA) is responsible for the high work-hardening rate at the very beginning of the first stage for the TWIP steel without Al, but the DSA's contribution is not significant in the TWIP steel with Al. However, DSA may only play a dominant role at the early plastic deformation. For the strain higher than 3 pct in the first stage, the difference of work-hardening rate between the two TWIP steels becomes smaller. This suggests that the main work-hardening mechanism in the first stage changes to the multiplication of dislocations at strains higher than 3 pct in TWIP steel without Al. The increase of work-hardening rate in the second stage is mainly due to the formation of deformation twins in both TWIP steels. Nevertheless, comparing to the TWIP steel without Al, TWIP steel with Al shows a lower work-hardening rate at the second stage. This is due to the fact that the addition of Al increases the critical twinning stress, resulting in a lower twinning capability. Deformation twin plays a more and more important role on the work-hardening with the increase of strain in the second stage due to the increase of twin volume fraction with strain. It is found that, except being obstacles to the dislocation glide, deformation twins can also act as a new source of the emission of partial dislocations. Furthermore, it is also found that dislocations can transmit across the twin boundary and be stored in the twins, implying that deformation twins can also accommodate local strains.

  17. NINJA: a noninvasive framework for internal computer security hardening

    NASA Astrophysics Data System (ADS)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive scans with an adequate framework performed on a daily basis reduce the amount of security work load as well as the timeliness in performing remediation, as verified by the NINJA framework. A vulnerability assessment/auditing architecture based on mobile agent technology is proposed and examined at the end of the article as an enhancement to the current NINJA architecture.

  18. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  19. Cold fusion before Congress

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Stanley Pons and Martin Fleischmann took their cold fusion show to Capitol Hill last week, saying they were “as sure as sure can be” that the heat produced in their experiments at the University of Utah is the result of some form of nuclear fusion and vigorously defending themselves against charges that they have set the scientific world on its ear by creating a good battery.The two chemists asked for “tens of millions of dollars” in federal funds to move directly into commercial development of energy devices based on the new discovery, but provided no more than tantalizing hints at what is going on in their experiments.

  20. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  1. Cold Lithium Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Cassella, Kayleigh; Copenhaver, Eric; Lai, Chen; Hamilton, Paul; Estey, Brian; Feng, Yanying; Mueller, Holger

    2015-05-01

    Atom interferometers often use heavy alkali atoms such as rubidium or cesium. In contrast, interferometry with light atoms offers a larger recoil velocity and recoil energy, yielding a larger interference signal. This would allow for sensitive measurements of the fine structure constant, gravity gradients and spatially varying potentials. We have built the first light-pulse cold-atom interferometer with lithium in a Mach-Zehnder geometry based on short (100 ns), intense (2.5 W/cm2) pulses. We initially capture approximately 107 lithium atoms at a temperature of about 300 ?K in a magneto-optical trap. To perform interferometry, we couple the F = 1 and F = 2 hyperfine levels of the ground state with a sequence of two-photon Raman transitions, red-detuned from lithium's unresolved 2P3/2 state. Cold lithium atoms offer a broad range of new possibilities for atom interferometry including a large recoil velocity and a fermionic and bosonic isotope. Lithium's isotopes also allow for independent measurements of gravity thus constraining the equivalence principle violations predicted by the Standard-Model Extension. In the near future, we plan to perform a recoil measurement using a Ramsey-Bord interferometer.

  2. Cold denaturation of proteins.

    PubMed

    Privalov, P L

    1990-01-01

    This article summarizes all experimental facts concerning the cold denaturation of single-domain, multi-domain, and multimeric globular proteins in aqueous solutions with and without urea and guanidine hydrochloride. The facts obtained by various experimental techniques are analyzed thermodynamically and it is shown that the cold denaturation is a general phenomenon caused by the very specific and strongly temperature-dependent interaction of protein nonpolar groups with water. Hydration of these groups, in contrast to expectations, is favorable thermodynamically, i.e., the Gibbs energy of hydration is negative and increases in magnitude at a temperature decrease. As a result, the polypeptide chain, tightly packed in a compact native structure, unfolds at a sufficiently low temperature, exposing internal nonpolar groups to water. The reevaluation of the hydration effect on the base of direct calorimetric studies of protein denaturation and of transfer of non-polar compounds into water leads to revision of the conventional conception on the mechanism of hydrophobic interaction. The last appears to be a complex effect in which the positive contributor is van der Waals interactions between the nonpolar groups and not the hydration of these groups as it was usually supposed. PMID:2225910

  3. COLPEX - Cold Pool Experiment

    NASA Astrophysics Data System (ADS)

    Wells, H.; Price, J.; Horlacher, V.; Sheridan, P. F.; Vosper, S. B.; Brown, A. R.; Mobbs, S. D.; Ross, A. N.

    2009-04-01

    Planning has started towards designing a new field campaign aimed at studying the behaviour of the boundary layer over complex terrain. Of specific interest is the formation of cold-pools in valleys during stable night-time conditions. The field campaign will run continuously until the end of the winter in 2009/10. The experiment will make use of a wide variety of ground-based sensors including turbulence towers, automatic weather stations, Doppler lidar, radiation sensors and soil temperature probes. We also hope to deploy an instrumented car and a tethered balloon facility for limited periods. Data from the field campaign will be used for a number of purposes. Firstly, to increase our understanding of how the valley cold pools form and why, for instance, some valleys offer a more favourable environment for their formation than others. Secondly, to investigate the formation and dissipation of fog in complex terrain. Thirdly, the data set will also be used to help validate and develop the Met Office Unified Model at high resolution. An area for the experiment has been identified in the Shropshire/Powis area of the UK where a network of valleys and low hills exist with a typical valley width of ~1.5km and hill top to valley floor heights of 75-200m. 0m.

  4. Cardiovascular responses to cold exposure

    PubMed Central

    Sun, Zhongjie

    2010-01-01

    The prevalence of hypertension is increased in winter and in cold regions of the world. Cold temperatures make hypertension worse and trigger cardiovascular complications (stroke, myocardial infarction, heart failure, etc.). Chronic or intermittent exposure to cold causes hypertension and cardiac hypertrophy in animals. The purpose of this review is to provide the recent advances in the mechanistic investigation of cold-induced hypertension (CIH). Cold temperatures increase the activities of the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS). The SNS initiates CIH via the RAS. Cold exposure suppresses the expression of eNOS and formation of NO, increases the production of endothelin-1 (ET-1), up-regulates ETA receptors, but down-regulates ETB receptors. The roles of these factors and their relations in CIH will be reviewed. PMID:20036896

  5. Magnetic hardening of Fe30Co70 nanowires

    NASA Astrophysics Data System (ADS)

    Liébana Viñas, Sara; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M.; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-01

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

  6. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  7. Magnetic hardening of Fe30Co70 nanowires.

    PubMed

    Viñas, Sara Liébana; Salikhov, Ruslan; Bran, Cristina; Palmero, Ester M; Vazquez, Manuel; Arvan, Behnaz; Yao, Xiang; Toson, Peter; Fidler, Josef; Spasova, Marina; Wiedwald, Ulf; Farle, Michael

    2015-10-16

    3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 μm and 7.5 μm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips. PMID:26404670

  8. The structural dependence of work hardening in low carbon steels

    SciTech Connect

    Johnson, P.E.

    1991-12-01

    The influence of the dislocation cell structure on the work hardening behavior of low carbon steel sheets was investigated. Specimens were prestrained at low temperature to suppress cell formation and their subsequent behavior was compared with results of isothermal reference tests. It was found that the extent of cell development has little or no influence on the plastic behavior at room temperature and below. Interrupted temperature, tensile-shear tests demonstrated further that the transient behavior induced by loading path changes is also not strongly associated with the cell walls. In-situ straining studies indicate that the factor controlling the flow stress at room temperature is the limited mobility of screw dislocations moving the cell interiors, and not dislocation interactions with the cell walls. The unique properties of a/2<111> screw dislocations are known to dominate low temperature deformation behavior in bcc metals. The current work indicates that these dislocations may still control the flow stress at intermediate temperatures, even in the presence of a developed cell structure.

  9. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  10. Hardening by bubbles in He-implanted Ni

    SciTech Connect

    Knapp, J. A.; Follstaedt, D. M.; Myers, S. M.

    2008-01-01

    Detailed finite-element modeling of nanoindentation data is used to obtain the mechanical properties of Ni implanted with 1-10 at. % He. The mechanical properties of this material elucidate the fundamental materials science of dislocation pinning by nanometer-size gas bubbles and also have implications for radiation damage of materials. Cross-section transmission electron microscopy showed that implantation of 1-5 at. % He at room temperature or at 200 deg. C produced a highly damaged layer extending to a depth of 700-800 nm and containing a fine dispersion of He bubbles with diameters of 1.1{+-}0.2 nm. Implantation at 500 deg. C enlarged the bubble sizes. By fitting the nanoindentation data with a finite-element model that includes the responses of both the implanted layer and the unimplanted substrate in the deformation, the Ni(He) layers are shown to have hardnesses as much as approximately seven times that of untreated Ni, up to 8.3{+-}0.6 GPa. Examination of the dependence of yield strength on He concentration, bubble size, and bubble density reveals that an Orowan hardening mechanism is likely to be in operation, indicating that the bubbles pin dislocation motion as strongly as hard second-phase precipitates do. This strong pinning of dislocations by bubbles is also supported by our numerical simulations, which show that substantial applied shear stress is required to move a dislocation through an empty cavity.

  11. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  12. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  13. Switchable hardening of a ferromagnet at fixed temperature.

    PubMed

    Silevitch, D M; Aeppli, G; Rosenbaum, T F

    2010-02-16

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above. PMID:20133728

  14. Switchable hardening of a ferromagnet at fixed temperature

    PubMed Central

    Silevitch, D. M.; Aeppli, G.; Rosenbaum, T. F.

    2010-01-01

    The intended use of a magnetic material, from information storage to power conversion, depends crucially on its domain structure, traditionally crafted during materials synthesis. By contrast, we show that an external magnetic field, applied transverse to the preferred magnetization of a model disordered uniaxial ferromagnet, is an isothermal regulator of domain pinning. At elevated temperatures, near the transition into the paramagnet, modest transverse fields increase the pinning, stabilize the domain structure, and harden the magnet, until a point where the field induces quantum tunneling of the domain walls and softens the magnet. At low temperatures, tunneling completely dominates the domain dynamics and provides an interpretation of the quantum phase transition in highly disordered magnets as a localization/delocalization transition for domain walls. While the energy scales of the rare earth ferromagnet studied here restrict the effects to cryogenic temperatures, the principles discovered are general and should be applicable to existing classes of highly anisotropic ferromagnets with ordering at room temperature or above. PMID:20133728

  15. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  16. Influence of grain structure and solute composition on the work hardening behavior of aluminium at cryogenic temperatures

    SciTech Connect

    Chu, D.; Morris, J.W. Jr.

    1993-07-01

    An unrecrystallized structure is found to significantly improve the work hardening characteristics by lowering the work hardening rate during early stages of deformation. This is in contrast to a recrystallized structure, which requires a higher work hardening rate to accommodate the greater degree of multiple slip necessary to maintain strain compatibility between the more randomly oriented grains. The stronger texture associated with the unrecrystallized structure allows deformation to occur more efficiently. Addition of magnesium also improves work hardening by increasing overall level of the work hardening rate. The improved characteristics of the work hardening behavior result in a parallel increase in both the strength and ductility at cryogenic temperatures. These findings are positive since they suggest a method by which improvements in the work hardening behavior and subsequent mechanical properties may be obtained through practical modifications of the microstructure and composition.

  17. COLD FLOWS AND THE FIRST QUASARS

    SciTech Connect

    Di Matteo, T.; Khandai, N.; DeGraf, C.; Feng, Y.; Croft, R. A. C.; Lopez, J.; Springel, V.

    2012-02-15

    Observations of the most distant bright quasars imply that billion solar mass supermassive black holes (SMBHs) have to be assembled within the first 800 million years. Under our standard galaxy formation scenario such fast growth implies large gas densities providing sustained accretion at critical or supercritical rates onto an initial black hole seed. It has been a long standing question whether and how such high black hole accretion rates can be achieved and sustained at the centers of early galaxies. Here we use our new MassiveBlack cosmological hydrodynamic simulation covering a volume (0.75 Gpc){sup 3} appropriate for studying the rare first quasars to show that steady high density cold gas flows responsible for assembling the first galaxies produce the high gas densities that lead to sustained critical accretion rates and hence rapid growth commensurate with the existence of {approx}10{sup 9} M{sub Sun} black holes as early as z {approx} 7. We find that under these conditions quasar feedback is not effective at stopping the cold gas from penetrating the central regions and hence cannot quench the accretion until the host galaxy reaches M{sub halo} > or approx. 10{sup 1}2{sup M}{sub Sun }. This cold-flow-driven scenario for the formation of quasars implies that they should be ubiquitous in galaxies in the early universe and that major (proto)galaxy mergers are not a requirement for efficient fuel supply and growth, particularly for the earliest SMBHs.

  18. Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.).

    PubMed

    Szechyńska-Hebda, Magdalena; Wąsek, Iwona; Gołębiowska-Pikania, Gabriela; Dubas, Ewa; Żur, Iwona; Wędzony, Maria

    2015-04-01

    The breeding for resistance against fungal pathogens in winter triticale (Triticosecale Wittm.) continues to be hindered by a complexity of the resistance mechanisms, strong interaction with environmental conditions, and dependence on the plant genotype. We showed, that temperature below 4 °C induced the plant genotype-dependent resistance against the fungal pathogen Microdochium nivale. The mechanism involved, at least, the adjustment of the reactions in the PSII proximity and photoprotection, followed by an improvement of the growth and development. The genotypes capable to develop the cold-induced resistance, showed a higher maximum quantum yield of PSII and a more efficient integration of the primary photochemistry of light reactions with the dark reactions. Moreover, induction of the photoprotective mechanism, involving at least the peroxidases scavenging hydrogen peroxide, was observed for such genotypes. Adjustment of the photosynthesis and stress acclimation has enabled fast plant growth and avoidance of the developmental stages sensitive to fungal infection. The same mechanisms allowed the quick regrow of plants during the post-disease period. In contrast, genotypes that were unable to develop resistance despite cold hardening had less flexible balancing of the photoprotection and photoinhibition processes. Traits related to: photosynthesis-dependent cold-acclimation and cold-induced resistance; biomass accumulation and growth; as well as protection system involving peroxidases; were integrated also at a genetic level. Analysing 95 lines of the mapping population SaKa3006×Modus we determined region on chromosomes 5B and 7R shared within all tested traits. Moreover, similar expression pattern of a set of the genes related to PSII was determined with the metaanalysis of the multiple microarray experiments. Comparable results for peroxidases, involving APXs and GPXs and followed by PRXs, indicated a similar function during cold acclimation and defense responses. These data provide a new insight into the cross talk between cold acclimation and cold-induced resistance in triticale, indicating a key role of photosynthesis-related processes. PMID:25666539

  19. Calculation of residual stresses induced during laser quench-hardening of steel

    SciTech Connect

    Shishkovskii, I.V.

    1992-06-01

    We present a theoretical and numerical analysis of the quasi-stationary uncoupled problem of thermoelastic-plasticity with the goal of estimating the amount of residual stress in steel after laser quench-hardening. 18 refs., 3 figs.

  20. Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors

    NASA Astrophysics Data System (ADS)

    Deo, Chaitanya; Tomé, Carlos; Lebensohn, Ricardo; Maloy, Stuart

    2008-06-01

    Hardening and embrittlement are controlled by interactions between dislocations and irradiation induced defect clusters. In this work we employ the visco plastic self consistent (VPSC) polycrystalline code in order to model the yield stress dependence in ferritic steels on the irradiation dose. We implement the dispersed barrier hardening model in the VPSC code by introducing a hardening law, function of the strain, to describe the threshold resolved shear stress required to activate dislocations. The size and number density of the defect clusters varies with the irradiation dose in the model. We find that VPSC calculations show excellent agreement with the experimental data set. Such modeling efforts can both reproduce experimental data and also guide future experiments of irradiation hardening.

  1. Studies on SEE Characteristic and Hardening Techniques of CMOS SRAM with Sub-micro Feature Sizes

    NASA Astrophysics Data System (ADS)

    Xing-Hua, He; Cong, Zhang; Yong-Liang, Zhang; Huan-Zhang, Lu

    The single event effects (SEE) characteristic and hardening techniques of CMOS SRAM with sub-micron feature size are studied in the paper. After introducing the relationship SEE with the structure of memory cell, the rate of read-write, the feature sizes and the power supply, the SEE hardening techniques for the COMS SRAM are given from tow aspect: device-level hardening techniques and system-level hardening techniques. Finally, an error detection and correction (EDAC) design based on high reliability anti-fused FPGA is presented, this design has special real-time performance and high reliability, and has been adopted in a space-bone integrated processor platform, which works well in all kinds of environmental experiments.

  2. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    SciTech Connect

    Flores, P.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Habraken, A.M.; Duchene, L.; Bael, A. van; He, S.; Duflou, J.

    2005-08-05

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  3. Precipitation hardening in the first aerospace aluminum alloy: the wright flyer crankcase.

    PubMed

    Gayle, F W; Goodway, M

    1994-11-11

    Aluminum has had an essential part in aerospace history from its very inception: An aluminum copper alloy (with a copper composition of 8 percent by weight) was used in the engine that powered the historic first flight of the Wright brothers in 1903. Examination of this alloy shows that it is precipitation-hardened by Guinier-Preston zones in a bimodal distribution, with larger zones (10 to 22 nanometers) originating in the casting practice and finer ones (3 nanometers) resulting from ambient aging over the last 90 years. The precipitation hardening in the Wright Flyer crankcase occurred earlier than the experiments of Wilm in 1909, when such hardening was first discovered, and predates the accepted first aerospace application of precipitation-hardened aluminum in 1910. PMID:17779943

  4. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    NASA Astrophysics Data System (ADS)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  5. The effect of twinning on the work hardening behavior in Hafnium

    SciTech Connect

    Cerreta, E. K.; Gray, G. T. , III; Yablinsky, C.

    2004-01-01

    In many HCP metals, both twinning and slip are known to be important modes of deformation. However, the interaction of the two mechanisms and their effect on work hardening is not well understood. In hafnium, twinning and work hardening rates increase with increasing strain, increasing strain rate, and decreasing temperature. At low strains and strain rates and at higher temperatures, slip dominates deformation and rates of work hardening are relatively lower. To characterize the interaction of slip and twinning, Hf specimens were prestrained quasi-statically in compression at 77K, creating specimens that were heavily twinned. These specimens were subsequently reloaded at room temperature. Twinning within the microstructures was characterized optically and using transmission electron microscopy. The interaction of slip with the twins was investigated as a function of prestrain and correlated with the observed rates of work hardening.

  6. Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Hussein, Abdel-Hamid A.; Abdu, Mahmoud T.; El-Banna, El-Sayed M.; Soliman, Saied E.; Tash, Mahmoud M.

    2016-02-01

    Four medium carbon and low-alloy steels were hardened through oil and forced air cooling. Tempering was then performed in the temperature range 250-600 °C. The martensite content increased with an increased hardenability and/or the rate of cooling. Tempering at T > M s caused a gradual decline in both hardness and strength and an improvement in the Charpy V-notch impact toughness. The low-alloy steels underwent tempered martensite embrittlement (as a result of the formation of carbides at the martensite interlaths and prior austenite grain boundaries) and enhancement of phosphorus segregation (particularly in the presence of Ni). Higher hardenability steels were found to be better hardened via the more recent forced air quenching rather than the conventional oil quenching. In this work, a modest, novel attempt is presented to empirically correlate the impact toughness with the hardness measurements to enable future prediction of impact toughness from hardness measurements.

  7. Analysis of structure and phase composition of rails subjected to differential hardening at different regimes

    SciTech Connect

    Gromov, V. E. Morozov, K. V. Konovalov, S. V.; Alsaraeva, K. V.; Semina, O. A.; Ivanov, Yu. F.; Volkov, K. V.

    2014-11-14

    Differential hardening of rails by compressed air in different regimes is accompanied by formation of morphologically different structure, being formed according to the diffusion mechanism of γ↔α transformation and consisting of grains of lamellar pearlite, free ferrite and grains of ferrite-carbide mixture. By methods of transmission electron microscopy the layer by layer analysis of differentially hardened rails has been carried out, the quantitative parameters of the structure, phase composition and dislocation substructure have been established and their comparison has been made for different regimes of hardening. It has been found that the structure-phase states being formed have gradient character, defined by the hardening regime, direction of study from the surface of rolling and by depth of location of layer under study.

  8. Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Hussein, Abdel-Hamid A.; Abdu, Mahmoud T.; El-Banna, El-Sayed M.; Soliman, Saied E.; Tash, Mahmoud M.

    2016-04-01

    Four medium carbon and low-alloy steels were hardened through oil and forced air cooling. Tempering was then performed in the temperature range 250-600 °C. The martensite content increased with an increased hardenability and/or the rate of cooling. Tempering at T > M s caused a gradual decline in both hardness and strength and an improvement in the Charpy V-notch impact toughness. The low-alloy steels underwent tempered martensite embrittlement (as a result of the formation of carbides at the martensite interlaths and prior austenite grain boundaries) and enhancement of phosphorus segregation (particularly in the presence of Ni). Higher hardenability steels were found to be better hardened via the more recent forced air quenching rather than the conventional oil quenching. In this work, a modest, novel attempt is presented to empirically correlate the impact toughness with the hardness measurements to enable future prediction of impact toughness from hardness measurements.

  9. Experimental and Numerical Investigation of Kinematic Hardening Behavior in Sheet Metals

    SciTech Connect

    Cheng, Hang Shawn; Lee, Wonoh; Cao Jian; Seniw, Mark; Wang Huiping; Chung, Kwansoo

    2007-04-07

    Characterization of material hardening behavior has been investigated by many researchers in the past decades. Experimental investigation of thin sheet metals under cyclic loading has become a challenging issue. A new test fixture has been developed to use with a regular tensile-compression machine (for example, MTS machine). Experimental results of tension-compression tests are presented followed by a review of existing testing methods. Numerical modeling of the tested data is presented using a new kinematic hardening model.

  10. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  11. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Tuck, Chris; Ashcroft, Ian; Maskery, Ian; Everitt, Nicola M.

    2015-08-01

    Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms.

  12. Measuring the shrinkage of UV-hardenable composites based on acrylates and diacrylates

    NASA Astrophysics Data System (ADS)

    Smirnova, T. V.; Burunkova, Yu. É.; Denisyuk, I. Yu.

    2006-05-01

    This paper proposes a new method for the laboratory measurement of the shrinkage of UV-hardenable composites during polymerization. This method is used to investigate the shrinkage of UV-hardenable composites, as well as to study how the physical and chemical properties of polymers depend on the composition and ratio of the components in the composite. Recommendations are given for choosing the optimum formulations of composites for fabricating various optical elements based on them.

  13. Distinct Hardening Behavior of Ultrafine-Grained Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Kaka; Smith, Thale; Hu, Tao; Topping, Troy D.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-08-01

    The age-hardening response for ultrafine-grained, powder-metallurgy-consolidated aluminum 7091 was investigated for the first time. Peak hardening occurred after aging at 353 K (80 °C) for only 4 hours; further aging for up to 26 hours resulted in only slight fluctuations in hardness values. After the 4-hour aging, the precipitate population consists of a high density of nanoscale GP zones (diameter ~3 nm) and nanoscale η' phase (<30 nm); η phase is not present.

  14. Distinct Hardening Behavior of Ultrafine-Grained Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Kaka; Smith, Thale; Hu, Tao; Topping, Troy D.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-10-01

    The age-hardening response for ultrafine-grained, powder-metallurgy-consolidated aluminum 7091 was investigated for the first time. Peak hardening occurred after aging at 353 K (80 °C) for only 4 hours; further aging for up to 26 hours resulted in only slight fluctuations in hardness values. After the 4-hour aging, the precipitate population consists of a high density of nanoscale GP zones (diameter ~3 nm) and nanoscale η' phase (<30 nm); η phase is not present.

  15. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    NASA Astrophysics Data System (ADS)

    Nelyubova, V.; Pavlenko, N.; Netsvet, D.

    2015-11-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier.

  16. Strain-hardening in nano-structured single phase steels: mechanisms and control.

    PubMed

    Bouaziz, O; Barbier, D

    2012-11-01

    The detrimental effect of grain size refinement on the strain hardening is highlighted in single phase steels. A physical based approach for understanding the underlying mechanisms is presented. In order to overcome this limitation a promising metallurgical route exploiting the thermal stability of mechanically induced twins in austenitic steels has been successfully applied to a stainless grade confirming the opportunity to get nano-structured alloys exhibiting high yield stress with high strain-hardening. PMID:23421275

  17. Rapid Heat Treatment of Aluminum High-Pressure Diecastings

    NASA Astrophysics Data System (ADS)

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.

    2009-07-01

    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  18. Investigation of Clusters in Medium Carbon Secondary Hardening Ultra-high-strength Steel After Hardening and Aging Treatments

    NASA Astrophysics Data System (ADS)

    Veerababu, R.; Balamuralikrishnan, R.; Muraleedharan, K.; Srinivas, M.

    2015-06-01

    Clusters, containing between 10 and 1000 atoms, have been investigated in a martensitic secondary hardening ultra-high-strength steel austenitized at 1173 K (900 °C) for 1 hour and tempered at either 768 K or 783 K (495 °C or 510 °C) for 4 or 8 hours using 3D atom probe. The presence of clusters was unambiguously established by comparing the observed spatial distribution of the different alloying elements against the corresponding distribution expected for a random solid solution. Maximum separation envelope method has been used for delineating the clusters from the surrounding "matrix." Statistical analysis was used extensively for size and composition analyses of the clusters. The clusters were found to constitute a significant fraction accounting for between 1.14 and 2.53 vol pct of the microstructure. On the average, the clusters in the 783 K (510 °C) tempered sample were coarser by ~65 pct, with an average diameter of 2.26 nm, relative to the other samples. In all samples, about 85 to 90 pct of the clusters have size less than 2 nm. The percentage frequency histograms for carbon content of the clusters in 768 K and 783 K (495 °C and 510 °C) tempered samples revealed that the distribution shifts toward higher carbon content when the tempering temperature is higher. It is likely that the presence of these clusters exerts considerable influence on the strength and fracture toughness of the steel.

  19. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  20. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  1. Microstructural Evolution of the 55 Wt Pct Al-Zn Coating During Press Hardening

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; De Cooman, Bruno Charles

    2014-09-01

    Press hardening is increasingly being used to produce ultra-high strength steel parts for passenger cars. Al-Si, Zn, and Zn-alloy coatings have been used to provide corrosion protection to press hardening steel grades. The use of coatings has drawbacks such as coating delamination or liquid metal-induced embrittlement. In the present work, the microstructural evolution of Al-Zn coating during press hardening was studied. The 55 wt pct Al-Zn coating can in principle provide both Al barrier protection and Zn cathodic protection to press hardened steel. During the heat treatment associated with the press hardening, the 55 wt pct Al-Zn alloy coating is converted to an intermetallic surface layer of Fe2Al5 and a FeAl intermetallic diffusion layer. The Zn is separated from both intermetallic compounds and accumulates at grain boundaries and at the surface. This Zn separation process is beneficial in terms of providing cathodic protection to Al-Zn coated press hardening steel.

  2. Deformation and strain hardening of different steels in impact dominated systems

    SciTech Connect

    Rojacz, H.; Mozdzen, G.; Winkelmann, H.

    2014-04-01

    Strain hardening is a common technique to exploit the full potential of materials in diverse applications. Single impact studies were performed to evaluate work hardening effects of different steels, correlated to their deformation at different energy and momentum levels. Three different steels were examined regarding their forming behavior and their tendency to strain harden in impact loading conditions, revealing different intensities of hardness increase, deformation and coinciding microstructural changes. Detailed studies in the deformed zone such as micro hardness mappings were performed to reveal the materials hardness increase in the deformed zones. Additionally high resolution scanning electron microscopy (HRSEM) supported by electron backscatter diffraction (EBSD) was used to determine microstructural changes. Results indicate, that the influence of different velocities/strain rates at constant energy levels cannot be neglected for the strain hardening behavior of steels and provide data for a better control of the hardness increase in impact dominated materials fabrication operations. - Highlights: • Deformation and strain hardening behaviour of three different steels. • Influence of impact energies and momenta on the strain hardening. • Hardness increase and depth controllable by momentum and energy.

  3. Microstructural analysis of ion-irradiation-induced hardening in inconel 718

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Hunn, J. D.; Byun, T. S.; Mansur, L. K.

    2003-05-01

    As an assessment for a possible accelerator beam line window material for the US Spallation Neutron Source (SNS) target, performance, radiation-induced hardening and microstructural evolution in Inconel 718 were investigated in both solution annealed (SA) and precipitation hardened (PH) conditions. Irradiations were carried out using 3.5 MeV Fe +, 370 keV He + and 180 keV H + either singly or simultaneously at 200 °C to simulate the damage and He/H production in the SNS target vessel wall. This resulted in systematic hardening in SA Inconel and gradual net softening in the PH material. TEM microstructural analysis showed the hardening was associated with the formation of small loop and faulted loop structures. Helium-irradiated specimens included more loops and cavities than Fe + ion-irradiated specimens. Softening of the PH material was due to dissolution of the γ '/γ ″ precipitates. High doses of helium were implanted in order to study the effect of high retention of gaseous transmutation products. Simultaneous with the hardening and/or softening due to the displacement damage cascade, helium filled cavities produced additional hardening at high concentrations.

  4. Manufacturing of high-strength Ni-free Co-Cr-Mo alloy rods via cold swaging.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko

    2016-07-01

    The strengthening of biomedical metallic materials is crucial to increasing component durability in biomedical applications. In this study, we employ cold swaging as a strengthening method for Ni-free Co-Cr-Mo alloy rods and examine its effect on the resultant microstructures and mechanical properties. N is added to the alloy to improve the cold deformability, and a maximum reduction in area (r) of 42.6% is successfully obtained via cold swaging. The rod strength and ductility increase and decrease, respectively, with increasing cold-swaging reduction r. Further, the 0.2% proof stress at r=42.6% eventually reaches 1900MPa, which is superior to that obtained for the other strengthening methods proposed to date. Such significant strengthening resulting from the cold-swaging process may be derived from extremely large work hardening due to a strain-induced γ (fcc)→ε (hcp) martensitic transformation, with the resultant intersecting ε-martensite plates causing local strain accumulation at the interfaces. The lattice defects (dislocations/stacking faults) inside the ε phase also likely contribute to the overall strength. However, excessive application of strain during the cold-swaging process results in a severe loss in ductility. The feasibility of cold swaging for the manufacture of high-strength Co-Cr-Mo alloy rods is discussed. PMID:26773647

  5. Cold Drawn Steel Wires-Processing, Residual Stresses and Ductility-Part I: Metallography and Finite Element Analyses

    SciTech Connect

    Phelippeau,A.; Pommier, S.; Tsakalakos, T.; Clavel, M.; Prioul, C.

    2006-01-01

    Cold drawing steel wires lead to an increase of their mechanical strength and to a drop of their ductility. The increase of their mechanical strength has long been related to the reduction of the various material scales by plastic deformation, but the mechanisms controlling their elongation to failure have received relatively little attention. It is usually found that heavily deformed materials show a tendency to plastic strain localization and necking. However, in this paper it is shown that, though the steel wires are plastically deformed up to strain levels as high as 3.5, a significant capability of plastic deformation is preserved in as-drawn wires. This apparent contradiction is resolved by the existence of residual stresses inside the wire. Finite element analyses have been conducted in order to show that residual stresses, inherited from the drawing process, are sufficient to produce a significant hardening effect during a post-drawing tensile test, without introducing any hardening in the local material behavior. The main conclusion of this paper is that once the material has lost its hardening capabilities, residual stresses, inherited from the process, control the elongation of cold drawn wires. The finite element method allowed also the determination of the residual stress field that would lead to the best agreement between the simulated and the experimental stress strain curve of as-drawn wires.

  6. On the work hardening of fiber reinforced copper

    SciTech Connect

    Mortensen, A.; Pedersen, O.B.; Lilholt, H.

    1998-03-03

    The prediction and optimization of metal matrix composite mechanical behavior necessitates an understanding of the influence exerted by the reinforcement on matrix plastic deformation. This influence can be substantial, as was first eloquently shown in 1969 by Kelly and Lilholt. In this work, composites of continuous 10 and 20 {micro}m diameter tungsten fiber reinforced copper composites were produced and tested in tension along the fiber direction. This system was chosen for its simplicity, both in structure and in processing: copper and tungsten feature no mutual solubility nor intermetallic phases, and copper wets tungsten well. The composites were fabricated by spontaneous infiltration of molten copper into packed bundles of parallel fibers held within cylindrical molds, followed by directional solidification to ensure proper feeding of metal solidification shrinkage. Resulting composites were free of pores, and their matrix was found to be essentially monocrystalline. In processing the composites, the fiber volume fraction V{sub f} was carefully measured by counting the number of fibers in each preform, checking that the fiber diameter was in good agreement (within 1%) with the nominal fiber diameter. V{sub f} values thus determined were also verified using measurements of composite density, to find good agreement; quoted V{sub f} values can thus be deemed reliable. The aim of the present note is to propose an alternative explanation for the Stage II matrix hardening rates measured in infiltrated copper-tungsten composites. The explanation is close to the original interpretation, but proposes an observable physical basis for the occurrence of plastically non-yielding matrix regions in Stage II.

  7. Setting reaction and hardening of an apatitic calcium phosphate cement.

    PubMed

    Ginebra, M P; Fernández, E; De Maeyer, E A; Verbeeck, R M; Boltong, M G; Ginebra, J; Driessens, F C; Planell, J A

    1997-04-01

    The combination of self-setting and biocompatibility makes calcium phosphate cements potentially useful materials for a variety of dental applications. The objective of this study was to investigate the setting and hardening mechanisms of a cement-type reaction leading to the formation of calcium-deficient hydroxyapatite at low temperature. Reactants used were alpha-tricalcium phosphate containing 17 wt% beta-tricalcium phosphate, and 2 wt% of precipitated hydroxyapatite as solid phase and an aqueous solution 2.5 wt% of disodium hydrogen phosphate as liquid phase. The transformation of the mixture was stopped at selected times by a freeze-drying techniques, so that the cement properties at various stages could be studied by means of x-ray diffraction, infrared spectroscopy, and scanning electron microscopy. Also, the compressive strength of the cement was measured as a function of time. The results showed that: (1) the cement setting was the result of the alpha-tricalcium phosphate hydrolysis, giving as a product calcium-deficient hydroxyapatite, while beta-tricalcium phosphate did not participate in the reaction; (2) the extent of conversion of alpha-TCP was nearly 80% after 24 hr; (3) both the extent of conversion and the compressive strength increased initially linearly with time, subsequently reaching a saturation level, with a strong correlation observed between them, indicating that the microstructural changes taking place as the setting reaction proceeded were responsible for the mechanical behavior of the cement; and (4) the microstructure of the set cement consisted of clusters of big plates with radial or parallel orientations in a matrix of small plate-like crystals. PMID:9126187

  8. BAE Systems Radiation Hardened SpaceWire ASIC and Roadmap

    NASA Technical Reports Server (NTRS)

    Berger, Richard; Milliser, Myrna; Kapcio, Paul; Stanley, Dan; Moser, David; Koehler, Jennifer; Rakow, Glenn; Schnurr, Richard

    2006-01-01

    An Application Specific Integrated Circuit (ASIC) that implements the SpaceWire protocol has been developed in a radiation hardened 0.25 micron CMOS, technology. This effort began in March 2003 as a joint development between the NASA Goddard Space Flight Center (GSFC) and BAE Systems. The BAE Systems SpaceWire ASlC is comprised entirely of reusable core elements, many of which are already flight-proven. It incorporates a 4-port SpaceWire router with two local ports, dual PC1 bus interfaces, a microcontroller, 32KB of internal memory, -and a memory controller for additional external memory use. The SpaceWire ASlC is planned for use on both the Geostationary Operational Environmental Satellites (GOES)-R and the Lunar Reconnaissance Orbiter (LRO). Engineering parts have already been delivered to both programs. This paper discusses the SpaceWire protocol and those elements of it that have been built into the current SpaceWire reusable core. There are features within the core that go beyond the current standard that can be enabled or disabled by the user and these will be described. The adaptation of SpaceWire to BAE Systems' On Chip Bus (OCB) for compatibility with the other reusable cores will be discussed. Optional configurations within user systems will be shown. The physical imp!ementation of the design will be described and test results from the hardware will be discussed. Finally, the BAE Systems roadmap for SpaceWire developments will be discussed, including some products already in design as well as longer term plans.

  9. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  10. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  11. Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys

    SciTech Connect

    Inaekyan, K.; Brailovski, V.; Prokoshkin, S.; Pushin, V.; Dubinskiy, S.; Sheremetyev, V.

    2015-05-15

    This work sets out to study the peculiar effects of aging treatment on the structure and mechanical behavior of cold-rolled and annealed biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) (at.%) shape memory alloys by means of transmission electron microscopy, X-ray diffractometry, functional fatigue and thermomechanical testing techniques. Dissimilar effects of aging treatment on the mechanical behavior of Zr- and Ta-doped alloys are explained by the differences in the ω-phase formation rate, precipitate size, fraction and distribution, and by their effect on the alloys' critical stresses and transformation temperatures. Even short-time aging of the TNZ alloy leads to its drastic embrittlement caused by “overaging”. On the contrary, during aging of the TNT alloy, formation of finely dispersed ω-phase precipitates is gradual and controllable, which makes it possible to finely adjust the TNT alloy functional properties using precipitation hardening mechanisms. To create in this alloy nanosubgrained dislocation substructure containing highly-dispersed coherent nanosized ω-phase precipitates, the following optimum thermomechanical treatment is recommended: cold rolling (true strain 0.37), followed by post-deformation annealing (600 °C, 15–30 min) and age-hardening (300 °C, 30 min) thermal treatments. It is shown that in TNT alloy, pre-transition diffraction effects (diffuse reflections) can “mask” the β-phase substructure and morphology of secondary phases. - Highlights: • TNZ alloy is characterized by much higher ω-phase precipitation rate than TNT alloy. • Difference in precipitation rates is linked to the difference in Zr and Ta diffusion mobility. • Aging of nanosubgrained TNZ alloy worsens its properties irrespective of the aging time. • Aging time of nanosubgrained TNT alloy can be optimized to improve its properties.

  12. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  13. Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress

    SciTech Connect

    John Martin

    2002-02-19

    The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.

  14. Exercise during intermittent cold exposure prevents acclimation to cold rats.

    PubMed Central

    Arnold, J; Richard, D

    1987-01-01

    1. Energy balance and brown adipose tissue growth were examined in four groups of male Wistar rats: (i) sedentary, living at 24 degrees C (warm), (ii) exercise-trained, 2 h daily, living at 24 degrees C, (iii) living at 24 degrees C but exposed to -5 degrees C, 2 h daily and (iv) living at 24 degrees C but exercise-trained while being exposed to -5 degrees C, 2 h daily. 2. Cold exposure during exercise training appeared to have little additional influence on body composition following 28 days of treatment; body mass gain, in addition to protein and fat gains, of exercised cold-exposed rats were similar to the gains observed in exercised warm-exposed control animals. However, in sedentary cold-exposed rats protein, fat and body mass gains were significantly lower than the gains measured in sedentary rats not exposed to cold. 3. Metabolizable energy intake, expressed mass-independently, was similar in sedentary warm-exposed rats and both groups of animals that were exercise-trained. Metabolizable energy intake was increased almost 15% in sedentary cold-exposed rats. 4. Energy expenditure (mass independent), excluding the net cost of exercise training, was not different in sedentary warm-exposed and exercised rats; energy expenditure was almost 20% higher in sedentary cold-exposed rats. 5. Total protein and deoxyribonucleic acid (DNA) contents of brown adipose tissue were more than doubled in sedentary rats exposed to cold; protein and DNA levels were similar among the other three groups of rats. 6. Treadmill running during daily, 2 h exposure at -5 degrees C appears to prevent the cold acclimation responses that occur in sedentary rats receiving similar cold exposure. PMID:3443942

  15. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse simulations. Overall, the properties of CDM halos are broadly consistent with the properties of dark halos derived from the observations of galaxies.

  16. Catching a Cold When It's Warm

    MedlinePlus

    ... please review our exit disclaimer . Subscribe Catching a Cold When It’s Warm What’s the Deal with Summertime ... what could be more unfair than catching a cold when it’s warm? How can cold symptoms arise ...

  17. Difference between Sinusitis and a Cold

    MedlinePlus

    ... Print Share The Difference Between Sinusitis and a Cold Page Content Article Body Sinusitis is an inflammation ... a cold or allergy . General Characteristics of Viral Colds It is often difficult to tell if an ...

  18. Cough and Cold Medicine Abuse (For Parents)

    MedlinePlus

    ... Caring for Your Child All About Food Allergies Cough and Cold Medicine Abuse KidsHealth > For Parents > Cough ... cough and cold medicine. Why Do Kids Abuse Cough and Cold Remedies? Before the U.S. Food and ...

  19. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-01-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 C/0.5 h/water quenching + 600 C/4 h/air cooling), 0.068 for FC (850 C/0.5 h/furnace cooling), 0.121 for AC (850 C/0.5 h/air cooling), and 0.412 for WQ (850 C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with ? + ? phases increases with the increase in the relative content of the retained ? phase but is independent of average thickness of ? plates. The increase in strain-hardening rate in WQ specimen depends on metastable ?? martensite and martensitic transition induced by tensile stress.

  20. The Strain-Hardening Behavior of TZAV-30 Alloy After Various Heat Treatments

    NASA Astrophysics Data System (ADS)

    Liang, S. X.; Yin, L. X.; Zheng, L. Y.; Ma, M. Z.; Liu, R. P.

    2016-02-01

    The Ti-Zr-Al-V series titanium alloys with excellent mechanical properties and low density exhibit tremendous application potential as structural materials in aviation, automotive, and navigation industries. The strain-hardening behavior of Ti-30Zr-5Al-3V (wt.%, TZAV-30) alloy with various heat treatments is investigated in this study. Experimental results show that strain-hardening behavior of the examined alloy depends on the heat treatment process. The average strain-hardening exponent, n, is approximately 0.061 for WA specimen (825 °C/0.5 h/water quenching + 600 °C/4 h/air cooling), 0.068 for FC (850 °C/0.5 h/furnace cooling), 0.121 for AC (850 °C/0.5 h/air cooling), and 0.412 for WQ (850 °C/0.5 h/water quenching). Analysis of strain-hardening rate versus true strain curves indicates that higher n of AC specimen results from the lower degradation rate of strain-hardening rate with strain, and the ultrahigh n of WQ specimen is attributed to the evident increase in strain-hardening rate at the true strain from 0.04 to 0.06. Phase constitution and microstructural analyses reveal that the n of the examined alloy with α + β phases increases with the increase in the relative content of the retained β phase but is independent of average thickness of α plates. The increase in strain-hardening rate in WQ specimen depends on metastable α″ martensite and martensitic transition induced by tensile stress.

  1. Cold fusion verification

    NASA Astrophysics Data System (ADS)

    North, M. H.; Mastny, G. F.; Wesley, E. J.

    1991-03-01

    The objective of this work to verify and reproduce experimental observations of Cold Nuclear Fusion (CNF), as originally reported in 1989. The method was to start with the original report and add such additional information as became available to build a set of operational electrolytic CNF cells. Verification was to be achieved by first observing cells for neutron production, and for those cells that demonstrated a nuclear effect, careful calorimetric measurements were planned. The authors concluded, after laboratory experience, reading published work, talking with others in the field, and attending conferences, that CNF probably is chimera and will go the way of N-rays and polywater. The neutron detector used for these tests was a completely packaged unit built into a metal suitcase that afforded electrostatic shielding for the detectors and self-contained electronics. It was battery-powered, although it was on charge for most of the long tests. The sensor element consists of He detectors arranged in three independent layers in a solid moderating block. The count from each of the three layers as well as the sum of all the detectors were brought out and recorded separately. The neutron measurements were made with both the neutron detector and the sample tested in a cave made of thick moderating material that surrounded the two units on the sides and bottom.

  2. Cold dense photoionized universes

    NASA Technical Reports Server (NTRS)

    Sherman, R. D.

    1980-01-01

    This investigation employs a computer code, initially constructed for modeling the evolution of a hot dense intergalactic medium (IGM), to study some properties of a cold dense IGM photoionized by QSOs. Within the observational constraints set by flux measurements in the far-ultraviolet, night sky brightness, and hard X-ray region, and the optical depth limits on various QSO spectra, it determines some allowable scenarios for a range of QSO spectral indices (alpha) and cutoff energies. With H(0) = 50 km/s-Mpc, closure density of an IGM (composed of H and He in their cosmic ratio) is possible only if alpha is greater than or equal to 0.1, a circumstance not likely to prevail; the most probable value, alpha = -0.7, implies an upper limit density about 0.35 of closure, which is somewhat larger than previous estimates. These estimates are substantially independent of whether or not QSOs produce the observed diffuse extragalactic X-ray background; such QSO spectral details are critical, however, in determining the ionization of heavy elements that are expected to contaminate a pure primeval plasma.

  3. Cold urticaria and celiac disease.

    PubMed

    Pedrosa Delgado, M; Martín Muñoz, F; Polanco Allué, I; Martín Esteban, M

    2008-01-01

    Cold urticaria can be associated with blood and thyroid disorders, drugs, or infections. Celiac disease is an autoimmune enteropathy caused by permanent gluten intolerance. It is often associated with other autoimmune diseases, such as chronic idiopathic urticaria. Nevertheless, association with cold urticaria has not yet been described. A boy aged 3 years 8 months presented local urticaria-angioedema when exposed to cold temperatures. An ice cube test was positive and iron deficiency anemia was demonstrated. He later developed legume intolerance, rhinoconjunctivitis related to pollen sensitization, and asthma. Due to persistence of cold urticaria symptoms and refractory anemia, a test for immunoglobulin A autoantibodies to tissue transglutaminase and an intestinal biopsy were performed. Results of both tests were compatible with celiac disease.A study of human leukocyte antigen indicated a high risk phenotype (HLA, DR6/DR7; DQA 0501, 0201; DQB 0301, 0201). After 7 months of a gluten-free diet, the boy's anemia resolved and he is free of symptoms when exposed to cold. This is a first description of the possibility of an association between celiac disease and cold urticaria. A poor course of cold urticaria in the absence of evidence of another underlying condition should lead to suspicion of celiac disease. PMID:18447142

  4. Rapid weight loss

    MedlinePlus

    ... loss-rapid weight loss; Overweight-rapid weight loss; Obesity-rapid weight loss; Diet-rapid weight loss ... for people who have health problems because of obesity. For these people, losing a lot of weight ...

  5. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2015-02-01

    This investigation deals with the evaluation of structural and mechanical behavior of deformed (10% and 20% cold work) and annealed (at 1050°C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs). The microstructure was observed by optical micrograph and the mechanical properties were determined by macrohardness and tensile tests. Both stress strain behavior and work hardening behavior were evaluated. HNSs have smaller grain size as compared to low nitrogen steels and no formation of martensite was observed after 20% cold working. Further, it was found that hardness; yield strength and ultimate tensile strength of the steels linearly increases and elongation decreased with nitrogen content and degree of cold working. The strength coefficient was observed to be higher for the high nitrogen steels; it decreased to some extent with degree of cold working. The work hardening exponent was also observed to decrease with degree of cold working. Influence of nitrogen on mechanical properties was mainly related to its effect on solid solution strengthening. X-ray diffraction analysis of annealed as well as deformed alloys further confirmed no evidence for formation of martensite or any other secondary phases. SEM fractography of the annealed and deformed samples after tensile tests indicates predominantly ductile fracture in all specimens. PMID:25492189

  6. Nonfreezing cold-induced injuries.

    PubMed

    Imray, C H E; Richards, P; Greeves, J; Castellani, J W

    2011-03-01

    Non-freezing cold injury (NFCI) is the Cinderella of thermal injuries and is a clinical syndrome that occurs when tissues are exposed to cold temperatures close to freezing point for sustained periods. NFCI is insidious in onset, often difficult to recognize and problematic to treat, and yet the condition accounts for significant morbidity in both military and civilians who work in cold conditions. Consequently recognition of those at risk, limiting their exposure and the appropriate and timely use of suitable protective equipment are essential steps in trying to reduce the impact of the condition. This review addresses the issues surrounding NFCI. PMID:21465916

  7. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  8. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    NASA Astrophysics Data System (ADS)

    Economy, D. Ross; Mara, N. A.; Schoeppner, R. L.; Schultz, B. M.; Unocic, R. R.; Kennedy, M. S.

    2016-03-01

    In complex loading conditions ( e.g., sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed regions (as-deposited). Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 µm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022, respectively) were less than that determined for 100 nm systems ( n ≈ 0.041). These results suggest that single-dislocation-based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  9. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation

    NASA Astrophysics Data System (ADS)

    Liu, Xiangbing; Wang, Rongshan; Ren, Ai; Jiang, Jing; Xu, Chaoliang; Huang, Ping; Qian, Wangjie; Wu, Yichu; Zhang, Chonghong

    2014-01-01

    Nanoindentation in combination with ion irradiation offers the possibility to quantify irradiation hardening due to radiation damage. Irradiation experiments for Fe-1.0wt.%Cu alloys, China A508-3 steels, and 16MND5 steels were carried out at about 100 °C by proton and Fe-ions with the energy of 240 keV, 3 MeV respectively. The constant stiffness measurement (CSM) with a diamond Berkovich indenter was used to obtain the depth profile of hardness. The results showed that under 240 keV proton irradiation (peak damage up to 0.5 dpa), Fe-1.0wt.%Cu alloys exhibited the largest hardening (∼55%), 16MND5 steels resided in medium hardening (∼46%), and China A508-3(2) steels had the least hardening (∼10%). Under 3 MeV Fe ions irradiation (peak damage up to 1.37 dpa), both China A508-3(1) and 16MND5 steels showed the same hardening (∼26%). The sequence of irradiation tolerance for these materials is China A508-3(2) > 16MND5 ≈ China A508-3(1) > Fe-1.0wt.%Cu. Based on the determination of the transition depth, the nominal hardness H0irr was also calculated by Kasada method.

  10. Incorporating the effect of orientation hardening in an effective temperature nonequilibrium theory for glassy polymers

    NASA Astrophysics Data System (ADS)

    Guo, Jingkai; Xiao, Rui; Nguyen, Thao

    Amorphous polymers exhibit a wide range of time and temperature dependent behavior. Recently, Xiao and Nguyen developed an effective temperature theory that can capture a wide variety of nonequilibrium behaviors at moderate strains. At large strains, the stress response of glassy polymers is dominated by strain hardening as a result of chain alignment. The goal of this study was to extend the effective temperature theory to large deformation and make it capable of modeling strain hardening from deformation-induced molecular alignment. We compared two approaches. In the spirit of internal state variable thermodynamics theory, we introduced a series of stretch-like internal state variables to characterize the molecular resistance to plastic flow associated with each inelastic mechanism. The dependence of free energy on the internal state variables naturally gives rise to a deformation dependent back stress. The flow rule and the evolution of effective temperatures were derived in a thermodynamically consistent manner. In the second approach, we introduced a steady-state limit in the evolution of the effective temperature characterizing the nonequilibrium structure of the material. Both approaches can well capture the experimentally measured phenomena of orientation hardening, including the development of deformation-induced anisotropy in the yield strength and hardening modulus, the Bauschinger effect, and differences in the hardening moduli in tension and compression of pre-oriented specimens.

  11. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  12. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  13. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  14. Beam hardening effects in grating-based x-ray phase-contrast imaging

    SciTech Connect

    Chabior, Michael; Donath, Tilman; David, Christian; Bunk, Oliver; Schuster, Manfred; Schroer, Christian; Pfeiffer, Franz

    2011-03-15

    Purpose: In this work, the authors investigate how beam hardening affects the image formation in x-ray phase-contrast imaging and consecutively develop a correction algorithm based on the results of the analysis. Methods: The authors' approach utilizes a recently developed x-ray imaging technique using a grating interferometer capable of visualizing the differential phase shift of a wave front traversing an object. An analytical description of beam hardening is given, highlighting differences between attenuation and phase-contrast imaging. The authors present exemplary beam hardening artifacts for a number of well-defined samples in measurements at a compact laboratory setup using a polychromatic source. Results: Despite the differences in image formation, the authors show that beam hardening leads to a similar reduction of image quality in phase-contrast imaging as in conventional attenuation-contrast imaging. Additionally, the authors demonstrate that for homogeneous objects, beam hardening artifacts can be corrected by a linearization technique, applicable to all kinds of phase-contrast methods using polychromatic sources. Conclusions: The evaluated correction algorithm is shown to yield good results for a number of simple test objects and can thus be advocated in medical imaging and nondestructive testing.

  15. Photosynthetic microorganisms in cold environments

    NASA Astrophysics Data System (ADS)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    The polar regions are considered as a model of extraterrestrial ecosystems. Depending on the average temperature, temperature variation and water availability, these conditions could be used as a model of Mars or Europa (e.g. (Elster and Benson, 2004). Two cases are presented: 1) Stable temperature and water availability The environment of cryosestic communities, i.e. organisms living in snow, is characterized by very stable temperature; the diurnal variations do not exceed 1 -2 ° C (Kváderová, 2010) and a are not usually exposed to freeze/thaw. Water is not usually limiting since the water content could reach up to 54 % (Nedbalová et al., 2008). The windblown sediments are important a source of nutrient and could provide protection against the excess of radiation. The nutrient concentrations in the snow are low are depleted rapidly when massive algal blooms forms. Such environment could be found near Mars polar caps or in Europa ice cover. The snow algae are the most important primary producers in snow. Their adaptation strategy is dependent on the developmental stages; the motile stages avoid the harsh conditions (e.g. high light) and sessile stages acclimatize to actual conditions. The main genera Chlamydomonas and Chloromonas (both Chlorophyta) are psychrophilic. Their growth optimum temperature is lower than 15 ° C and their growth is inhibited at temperatures above 20 ° C. 2) Unstable temperature and water availability The deglaciated surfaces, inhabited by lichen communities, are typical by variation in temper-ature and moisture. The temperature could range several tens ° C within a short time and the water availability is usually very limited. Due to temperature variation, the lichens are subjected to many freeze/thaw cycles. Such environments could be found in Martian deserts. The lichens are symbotic organisms composed of a mycobiont (heterotrophic fungi) and photo-bionts (algae and/or cyanobacteria). Majority of lichens are dehydrated in the field and their physiological processes are inactive. If hydrated, they are physiologically active even at subzero temperatures (Kappen et al., 1996). Although living in cold environments, the growth optimum temperature of typical phycobiont Trebouxia (Chlorophyta) sp. is above 15 ° C, so these algae are considered to be rather psychrotolerant. Acknowledgement The work was supported from projects GA AS CR Nos. KJB 601630808 and KJ KJB600050708, CAREX and long-term institutional research plan of the Institute of Botany AS CR AV0Z600050516 and the Masaryk University. Prof. Martin Backor (Safarik University in Kosice) is kindly ac-knowledged for providing the strains Trebouxia erici and T. glomerata (Backor). References Elster, J. , Benson, E.E. Life in the polar terrestrial environment with a focus on algae and cyanobacteria, in Fuller, B.J., Lane, N. , Benson, E.E. (Eds), Life in the Frozen State. CRC Press, pp. 111-150, 2004. Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. , Hestmark, G. Cold resistance and metabolic activity of lichens below 0 ° C. Adv. Space Res. 18, 119-128, 1996. Kviderova, J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. accepted, 2010. Nedbalova, L., Kocianova, M. , Lukavsky, J. Ecology of snow algae in the Giant Mountains and their relation to cryoseston in Europe. Opera Corcontica 45, 59-68, 2008.

  16. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  17. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  18. Role of copper in precipitation hardening of high-alloy Cr-Ni cast steels

    NASA Astrophysics Data System (ADS)

    Gajewski, Mirosław

    2006-02-01

    The mechanism of strengthening with second-phase particles that results from heat treatment, i.e., precipitate hardening, plays an important role in modern alloys. The strengthening effect of such particles can result from their coherence with the matrix, inhibition of dislocation slip, inhibition of grain boundary slip, as well as hampering recovery processes due to dislocation network pinning. The results of investigations into high-alloy Cr-Ni-Cu cast steels precipitate hardened with highly dispersed ɛ phase particles are presented within. The influence of heat treatment on changes in microstructure, mechanical properties, and morphology of fracture surfaces obtained under loading have been analyzed. It has been demonstrated that, with the appropriate selection of heat treatment parameters, it is possible to control the precipitation of the hardening ɛ phase and, thus, to change the final mechanical and functional properties.

  19. Design of a total-dose radiation hardened monolithic CMOS DC-DC boost converter

    NASA Astrophysics Data System (ADS)

    Zhi, Liu; Hongying, Ning; Hongbo, Yu; Youbao, Liu

    2011-07-01

    This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and device-level RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 μm CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance.

  20. Densification and Strain Hardening of a Metallic Glass under Tension at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Z. T.; Pan, J.; Li, Y.; Schuh, C. A.

    2013-09-01

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  1. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jgle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-01-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  2. ["Work hardening" for chonic back pain. An integral component of multimodal therapy programs].

    PubMed

    Hamel, M; Maier, A; Weh, L; Klein, A; Lucan, S; Marnitz, U

    2009-10-01

    Work hardening is aimed at a reestablishment of the potentials needed in occupational everyday life. Fundamental motor abilities, such as strength, stability, flexibility and persistence, are restored and merged into the everyday life so that psychological contents, such as fear avoidance behavior will be positively affected. The design of work hardening is interdisciplinary in the sense of a holistic approach to back pain. Handling the pain under load requires sophisticated treatment and the training demands a high degree of individual design. A trusting and mutual agreement between therapist and patient is essential. Work hardening represents an important part of the therapy of chronic back pain and greatly supports regaining confidence in the physical efficiency and the ability to control the body. PMID:19777204

  3. Analysis of the infrared spectrum and microstructure of hardened cement paste

    SciTech Connect

    Gao, X.F.; Lo, Y.; Tam, C.M.; Chung, C.Y. )

    1999-06-01

    Phase transformation was found in hardened cement paste exposed to dynamic loading caused by typhoon and the normal static-dynamic loading. The concrete samples were obtained from a 20-year-old residential building. The bonding characteristics and microstructure of the hardened cement paste with different loading history have been carefully studied using scanning electron microscopy analysis and infrared spectrum technique. The scanning electron microscopy micrographs indicate that there is a morphological difference in the concrete microstructure. The infrared spectrum analysis has provided information for understanding the phase transformation characteristics of the primary bonds and secondary bonds. This has led to the establishment of a microscopic model describing the correlation between the behavior of the hydrate lime and the properties of the hardened cement paste.

  4. A nonlinear kinematic hardening model for elastoplastic deformations in grey cast iron

    SciTech Connect

    Josefson, B.L.; Hjelm, H.E.; Stigh, U.

    1995-04-01

    A kinematic hardening model including an associated flow rule is proposed for elastoplastic deformations in graphitic grey cast iron. Quantitatively good results are obtained when comparing with previously performed biaxial experiments. Use of a nonassociated flow rule is found to result in an undesirable weakening behavior that can be explained as a deficiency with the combination of kinetic hardening and the present choice of yield potential. The model proposed is also extended to include multilinear kinematic hardening. With this model qualitatively good agreement with experimental cyclic results from the literature is obtained. A three-dimensional FE-analysis of a cylinder head for a heavy duty Diesel engine is performed as an application. To predict initiation of thermal fatigue cracks, it is essential to use an elastoplastic material model.

  5. Influence of explosive density on mechanical properties of high manganese steel explosion hardened

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Shen, Zhaowu; Liu, Yingbin; Liu, Tiansheng; Wang, Fengying

    2013-12-01

    The explosion hardening tests of high manganese steel were carried out by using two kinds of explosives of the same composition but different density, respectively. The detonation velocities were tested and the relevant mechanical properties were studied. The results show that the stronger single impulse acting on the specimen, the more hardness of surface increases and the more impact toughness decreases. Compared with the explosive of 1.48 g/cm3 density, the hardness, elongation rate, and impact toughness of the sample for triple explosion with explosive of 1.38 g/cm3 density are larger at the same hardening depth. In addition, the tensile strength of the sample for triple explosion with density of 1.38 g/cm3 is higher from the surface to 15 mm below the surface hardened.

  6. Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1995-01-01

    Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behavior is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behavior is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.

  7. Effects of freezing and hardening on the sulfhydryl groups of protein fractions from cabbage leaves.

    PubMed

    Morton, W M

    1969-02-01

    Disc electrophoresis was used to separate water soluble proteins from hardy, non-hardy, and frost killed cabbage (Brassica oleracea var. capitata) leaves. Amidoschwarz staining failed to reveal any new bands as a result of hardening although the relative amounts of proteins in individual bands changed. Sulfhydryl groups in the protein bands were stained with 2,2-dihydroxy-6,6-dinaphthyl disulfide and labeled with (14)C p-chloromercuribenzoate. Significant decreases in the sulfhydryl content of the total water soluble protein were found during hardening and as a result of frost death. The decrease during hardening was paralleled by a significant increase in the water soluble protein. There was a significant increase in the sulfhydryl content per unit high molecular weight protein but a decrease in the sulfhydryl content per total protein as a result of frost death. This was interpreted as evidence for intermolecular disulfide bond formation during freezing. PMID:16657040

  8. Electron microscopy observations of twin-twin intersections in a particle hardened copper-titanium alloy

    SciTech Connect

    Radetic, T.; Soffa, W.A.; Radmilovic, V.

    1999-03-05

    The authors have recently reported electron microscopy (CTEM and HREM) observations of mechanical twinning in age hardened copper-titanium alloys containing a fine dispersion of the metastable Cu{sub 4}Ti ({beta}{prime}; D1{sub a}) phase ({approx}15 vol%). These particle hardened alloys are known to twin profusely and it has been suggested that single crystals of Cu-Ti-Al alloys containing coherent Cu{sub 4}Ti (D1{sub a}) particles yield by twinning at the onset of plastic flow. In this short paper conventional (CTEM) and high-resolution (HREM) electron microscopy observations of twin/twin intersections in the precipitation hardened two-phase copper-titanium alloys are reported. These results will suggest that the mechanisms governing shear accommodation in obstacle twins remain to be elucidated.

  9. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    NASA Astrophysics Data System (ADS)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  10. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  11. Quantification of age hardening in maraging steels and an Ni-base superalloy

    SciTech Connect

    Sha, W.

    2000-02-01

    Age hardening process in metallic alloys due to precipitation can be quantified using phase transformation theories. Two ageing stages are of particular interest, for both theory and practice. The early stage of precipitation hardening is under the description of the Johnson-Mehl-Avrami equation. Wilson has recently provided a detailed theoretical analysis for early stages of ageing. Wilson successfully used equations in the quantification of early and over-ageing stages of hardening in an Fe-12Ni-6Mn maraging-type alloy. In the present work, these were applied to further alloys. All the hardness data were taken from published literature. Original references should be consulted for details of materials, testing and characterization.

  12. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  13. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars

    PubMed Central

    Li, L. L.; Zhang, Z. J.; Tan, J.; Jiang, C. B.; Qu, R. T.; Zhang, P.; Yang, J. B.; Zhang, Z. F.

    2015-01-01

    Vast experiments have demonstrated that the external specimen size makes a large difference in the deformation behavior of crystalline materials. However, as one important kind of internal planar defects, the role of grain boundary (GB) in small scales needs to be clarified in light of the scarce and inconsistent experimental results at present. Through compression of Cu bicrystal and its counterpart monocrystal micropillars, it is found that, in contrast to the monocrystals, the bicrystals are characterized by work hardening with discrete strain bursts. Interestingly, the stress rise between two adjacent strain bursts of the bicrystals increases with the decrease of specimen size. The results suggest that GBs play a critical role in the work hardening of materials in small scales, which may provide important implications to further understand the general work hardening behaviors of materials in the future. PMID:26490543

  14. Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening

    NASA Astrophysics Data System (ADS)

    Vorselaars, Bart; Lyulin, Alexey V.; Michels, M. A. J.

    2009-02-01

    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling.

  15. Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening.

    PubMed

    Vorselaars, Bart; Lyulin, Alexey V; Michels, M A J

    2009-02-21

    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling. PMID:19239314

  16. Cold Fusion at Hotspots

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2009-12-01

    Olivine-liquid FeO-MgO (OLFM) equilibria is often assumed and used to estimate eruptive (To) and melting (potential) temperatures (TP) of primitive magmas and their MgO contents at spreading ridges and linear volcanic chains. The technique involves incremental addition of melt calculated to be in equilibrium with successively more magnesian olivine until an olivine of “mantle” composition is reached. Incremental olivine addition depends on the assumption that that this olivine and the host liquid lie along a single liquid line of descent determined by crystallization of olivine and no other mineral; i.e., the parental liquid was formally picritic in composition. This assumption can be questioned on three grounds, which may vary in importance from place to place, but at least one of which always appears to be operative: 1) most picrites are hybrids between primitive and differentiated magmas, the latter expressing cotectic crystallization of olivine, plagioclase and/or clinopyroxene (e.g., Baffin-West Greenland, Hawaii, Samoa), and have higher Fe/Mg than primitive magma, making estimates of To and TP too high; 2) the rocks themselves contain phenocrysts of plagioclase (e.g., Iceland) and/or clinopyroxene (e.g., Samoa) as well as olivine; 3) not even the most primitive magmas, evidenced by mineral associations in accumulative magmatic xenoliths (dunite, wehrlite, olivine clinopyroxene; many examples) indicate stages of crystallization involving olivine by itself. An alternative approach that uses liquid compositions to estimate compositions of Cr-spinel (Poustovetov and Roeder, 2000) predicts no natural Cr-spinel that crystallized at temperature >1400C or pressure 1.5 GPa either in picrites or xenoliths at any of these localities; no parental liquid had MgO > 16%. Spinel predicted from high-MgO (>20%) parental liquids postulated by OLFM matches nothing in nature. Natural glass in Samoan harzburgite xenoliths is mainly differentiated basalt, hawaiite and mugearite with average melt temperature of ~1100C, the same temperature as given by Ca-in-orthopyroxene of the harzburgites. Cold ambient mantle draws heat from ascending magma, forcing differentiation at depth. Magma with TP greater by 200C than primitive basalt at spreading ridges does not exist at any of these places. TP does not constrain temperature of the mantle below the depth of melt extraction. High and variable 3He/4He at all these places may result from volatile incorporation from old harzburgite through which magmas must ascend. Poustovetov, A., and Roeder, P.L., 2000. Canad. Min. 39: 309-317.

  17. Biochemical Changes in Tuber-bearing Solanum Species in Relation to Frost Hardiness during Cold Acclimation.

    PubMed

    Chen, H H; Li, P H

    1980-09-01

    Biochemical changes in potato leaves during cold acclimation have been examined and compared between a frost-tolerant S. acaule and a frost-susceptible S. tuberosum species. Changes were also examined in S. tuberosum, S. acaule, and S. commersonii species when they were hardened at different temperatures to varying hardiness levels.During three weeks of stepwise cold acclimation, S. acaule increased frost hardiness from -6.0 C (killing temperature) to -9.0 C, whereas frost hardiness of S. tuberosum remained unchanged at -3.0 C. Decreases in DNA content on a dry weight basis in both species suggest that matured leaf cells accumulated more dry matter during acclimation. The advantage of using DNA as a reference for comparing metabolite changes during cold acclimation is discussed.Under the stepwise acclimating conditions, both species showed the same trends for increasing total sugar and starch with an insignificant decrease in leaf water content. High levels of total RNA, rRNA, and total and soluble protein were observed in treated S. acaule plants as compared with controls, but not in S. tuberosum. Levels of total lipid and phospholipid also were high in treated S. acaule plants as compared with controls but decreased in S. tuberosum during acclimation.When S. tuberosum, S. acaule, and S. commersonii potatoes were cold-treated at constant day/night temperatures of 10, 5, and 2 C with 14-hour daylength, each species responds differently in terms of frost hardiness increase upon subjecting plants to a low temperature. For instance, after 20 days at 2 C, a net frost hardiness of 3 and 7 C was observed in S. acaule and S. commersonii, respectively, whereas the frost hardiness in S. tuberosum remained unchanged. Also, various levels of frost hardiness can be achieved in a species by subjecting plants to different low temperature treatments. Under a warm regime of 20/15 C day/night temperatures (14-hour light), both S. acaule and S. commersonii can survive at -4.5 C or colder, whereas S. tuberosum can survive only at -2.5 C.Biochemical changes in the leaf tissue of these species were investigated at 5-day intervals during low temperature treatments. Increases in total sugar and starch were found in all three species during hardening, although S. tuberosum failed to harden. Soluble protein contents were increased in both S. acaule and S. commersonii but decreased in S. tuberosum. RNA contents change in a pattern similar to the soluble protein. Net increases of the soluble proteins were positively and significantly correlated with net increases of frost hardiness in S. acaule and S. commersonii. PMID:16661447

  18. Increase of cold tolerance in cotton plant (Gossypium hirsutum L.) by mepiquat chloride

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R. (Principal Investigator); Huang, S. Y.; Rittig, F. R.

    1982-01-01

    Three mepiquat chloride (MC) concentrations - 40, 70, and 100 g a.i./ha - were used to spray cotton (Gossypium hirsutum L., cultival McNair 220) plants to determine whether or not MC would increase their cold tolerance. Seven to ten days after the spray, the plants were exposed to three different cold treatments. No important difference in cold damage was noticed between the control and the MC-treated plants when they were exposed repeatedly to 4.5 C. No plants died when exposed to 0.5 C for 12 h; however, 90% of the 1st and 2nd leaves of the control plants were damaged. This was three times more damage than those leaves of plants treated with 70 and 100 g a.i./ha MC concentrations; 60% f the control and 10-20% of the MC-treated plants died when the plants were subjected to a cold hardening process with 15.5 C day (12 h) and 1.7 C night (12 h) for 10 days, and then, held at -2.2 C for 24 hours. The electrolyte leakage and reflectance measurement data showed that the cell membranes of the MC-treated plants sustained much less damage than those of the control. Freezing injury was easily assessed by reflectance measurements at the 1.65 micrometer wavelength.

  19. Cold tolerance of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae), in Ontario.

    PubMed

    Clarke, Matthew W; Thompson, Graham J; Sinclair, Brent J

    2013-08-01

    We characterized the cold tolerance of natural populations of the Eastern subterranean termite (Reticulitermes flavipes (Kollar) [Isoptera, Rhinotermitidae]) in southwestern Ontario, Canada. We measured cold tolerance in workers from six colonies of termites established from Pelee Island in Lake Erie, and Point Pelee National Park. The mean critical thermal minimum, at which termites entered chill coma, ranged from 8.1 to 5.7°C. Mean supercooling points (SCP, the temperature at which individuals freeze) ranged from -4 to -4.6°C, and did not differ significantly between colonies, nor was SCP dependent on body size. Individuals survived brief exposure to low temperatures, as long as they did not freeze, but internal ice formation was always lethal, suggesting a freeze avoiding strategy. The LT50 (temperature at which 50% of individuals were killed by a 1 h exposure) was -5.1°C, but all individuals could survive -2°C for at least 72 h. Low temperature acclimation (12°C, 7 d) or hardening (4°C, 2 h) had no impact on the SCP, but acclimation did slightly increase the critical thermal minimum, making the termites less cold tolerant. We conclude that R. flavipes is not particularly cold tolerant, and likely relies on burrowing deep into the soil to avoid exposure to temperature to extremes. PMID:23905745

  20. Cold Spraying of Amorphous Cu50Zr50 Alloys

    NASA Astrophysics Data System (ADS)

    List, A.; Gärtner, F.; Mori, T.; Schulze, M.; Assadi, H.; Kuroda, S.; Klassen, T.

    2015-01-01

    A new range of applications in cold spraying is expected for bulk metallic glass (BMG) coatings. For retaining amorphous structures in cast multi-component BMG parts, typically high purity raw material must be used. The present investigation explores an alternative approach, where cold spraying is used to deposit a technical-grade binary amorphous alloy. This approach is shown to be potentially cost-effective and suitable for rapid manufacturing. For this purpose, amorphous Cu50Zr50 was chosen as a model alloy system, and cold spraying was performed using nitrogen as process gas. By a systematic variation of the spray parameter sets, the critical velocities for coating formation were determined experimentally. Based on the current models of bonding of amorphous Cu50Zr50 powder in cold spraying, a new, more comprehensive concept of bonding and rebound is presented, which also considers the presence of liquefied interfaces and quenching rates for resolidification. Results concerning impact morphologies and coating formation demonstrate that under suitable choice of spray conditions, well-adhering coatings with amorphous structure of the Cu50Zr50 powders can be obtained by cold spraying.